

1 **Title: Novel 3D Approach to Model Non-Alcoholic Fatty Liver Disease using human
2 Pluripotent Stem Cells**

3 Carola Maria Morell¹, Samantha Grace Tilson^{1,2,##a}, Rute Alexandra Tomaz^{1,##b}, Arash
4 Shahsavari¹, Andi Munteanu¹, Giovanni Canu^{1,##c}, Brandon Tyler Wesley¹, Marion Perrin¹,
5 Imbisaat Geti^{1,##d}, Subhankar Mukhopadhyay^{3,##e}, Francesca Mazzacuva^{4,##f}, Paul Gissen⁵,
6 Jose Garcia-Bernardo^{3,##g}, Martin Bachman⁶, Casey Allison Rimland^{1,7,##h}, Fotios
7 Sampaziotis¹, Irina Mohorianu¹, Ludovic Vallier^{1,8,9}.

8 ¹Wellcome-MRC Cambridge Stem Cell Institute, JCBC Cambridge Biomedical Campus, Dept of
9 Surgery, University of Cambridge, Cambridge, UK; ²Liver Disease Branch, NIDDK, NIH, Bethesda,
10 Maryland, USA; ³Wellcome Trust Sanger Institute, Hinxton, UK; ⁴UCL Great Ormond Street Institute
11 of Child Health, London, London, UK; ⁵NIH Great Ormond Street Hospital Biomedical Research
12 Centre, London, UK; ⁶Medicines Discovery Catapult, Alderley Park, UK; ⁷Immunopathogenesis
13 Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD; ⁸Berlin Institute of Health
14 Centre for Regenerative Therapies, Berlin, Germany; ⁹ Max Planck Institute for Molecular Genetics,
15 Berlin, Germany.

16 Current address: ^{##a} Innate Immunity and Pathogenesis Section, Laboratory of Virology, National
17 Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA; ^{##b}
18 bit.bio, Cambridge, UK; ^{##c} UCL Institute of Ophthalmology, University College London, London, UK; ^{##d}
19 Stemcell Technologies, Cambridge, UK; ^{##e} Peter Gorer Department of Immunobiology, School of
20 Immunology & Microbial Sciences, King's College London, London, UK; ^{##f} Medicines Research Group,
21 School of Health, Sport and Bioscience, University of East London, London, UK; ^{##g} PetMedix Ltd, The
22 Glenn Berge Building, Babraham Research Campus, Cambridge, UK; ^{##h} University of North Carolina
23 at Chapel Hill, Department of Internal Medicine.

24

25 **Correspondence to:** Ludovic Vallier, ludovic.vallier@bih-charite.de

26

27 **Conflict of Interest Statement:** LV is a founder and shareholder of DEFINIGEN. FS and LV
28 are founders and shareholders of BILITECH. The remaining authors have no competing
29 interests to disclose.

30 **Author contributions:** Conceptualization: CMM, LV; Data curation: CMM, AS, IM ; Formal
31 analyses: Lead – CMM; Supporting – AS, AM, IM, SGT, RAT; Funding: CMM, LV;
32 Investigation: Lead – CMM; Supporting – SGT, IG, GC, MP, BTW, JGB, FM, CR, MB;
33 Methodology: CMM, LV; Project administration: CMM, LV; Resources: Lead – LV;
34 Supporting – IM, PG, SM, MB, FS; Software: IM, AS, AM, RAT; Supervision: CMM, LV;
35 Validation: CMM; Visualisation: Lead – CMM, LV; Supporting – SGT, RAT, AS, IM; Writing
36 original draft: CMM, LV; Writing revision & editing: CMM, LV.

37 **Financial Support:** This work was supported by the NC3Rs training fellowship
38 (NC/R001987/1 to CMM) and grant (NC/N001540/1 to CMM, LV), the NC3Rs T2T grant (to
39 GC, LV), the European Research Council Grant New-Chol (ERC: 741707 to SGT, RAT, LV),
40 Wellcome Sanger Institute (SGT, JGB), the NIH Oxford Cambridge Scholars Program (SGT,
41 CAR), the Gates Cambridge funding program (BTW, CAR), the Cambridge University
42 Hospitals NIHR Biomedical Research Centre (FS, IG), the NIHR Senior Investigator
43 (NIHR202370 to PG), and the core support grant from the Wellcome Trust (203151/Z/16/Z)
44 and the UKRI Medical Research Council (MC_PC_17230). For the purpose of open access,
45 the author has applied a CC BY public copyright licence to any Author Accepted Manuscript
46 version arising from this submission. The views expressed are those of the authors and not
47 necessarily those of the NIHR or the Department of Health and Social Care.

48 **Data Transparency Statement:** Sequencing data will be made available after publication:
49 RNAseq bulk accession number: E-MTAB-10598
50 Array Express link: <http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-10598>

51

52 scRNA-Seq accession number: GSM4824487
53 Shiny app 3D liver: <https://bioinf.stemcells.cam.ac.uk:3838/vallier/3Dliver/>
54 Code availability: <https://github.com/Core-Bioinformatics/Morell-et-al-2022-scRNAseq>
55
56 **Key words:** hiPSCs, disease modelling, hepatocytes, liver, NAFLD
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73 **ABSTRACT**

74 **Background and aims:** Non-alcoholic fatty liver disease (NAFLD) is a major health care
75 challenge and new therapies are urgently needed. However, the mechanisms underlying
76 disease remain to be understood. Indeed, studying NAFLD remains challenging due to the
77 lack of model systems recapitulating the different aspects of the human pathology. Human
78 induced pluripotent stem cells (hiPSCs) offer a unique opportunity to address this limitation
79 since they can be differentiated into large quantity of liver cells. Here, we took advantage of
80 hiPSCs to develop a multi-cellular platform mimicking the complex interplays involved in
81 NAFLD progression.

82 **Methods:** hiPSCs-derived hepatocyte like cells (HLCs), cholangiocytes, stellate cells, and
83 macrophages were co-cultured in a collagen-based 3D system to reproduce the liver
84 microenvironment. Fatty acid treatments led to a NAFLD phenotype involving cell-cell
85 interactions which were investigated by transcriptomic and functional analyses.

86 **Results:** Hepatic cells were grown up to 4 weeks in 3D, retaining key functions and markers.
87 Importantly, co-cultured cells spontaneously reorganised into physiologically relevant
88 connections: HLCs arranged around biliary structures, which established contacts with
89 stellate cells, while macrophages organised around HLCs. Fatty acid treatments induced
90 steatosis and lipotoxicity in HLCs. Furthermore, fat-laden HLCs prompted a non-
91 parenchymal cells response altering tissue architecture.

92 **Conclusions:** Our multicellular platform provides a new approach to model interactions
93 between human hepatic cells during NAFLD progression. Such approach has the potential to
94 investigate the sequential events driving chronic liver diseases, including hepatocellular
95 injury, inflammation and fibrosis. Furthermore, our system provides a unique and urgently
96 needed tool to investigate the molecular mechanisms associated with NAFLD and ultimately
97 to validate new targets for therapeutics development.

98 **List of abbreviations:** COs, cholangiocytes organoids; FFA, free fatty acids; hiPSCs,
99 human induced pluripotent stem cells; HLCs, hepatocyte like cells; HSCs, hepatic stellate
100 cells; M0, hiPSCs-derived macrophages; NAFLD, non-alcoholic fatty liver disease; NPCs,
101 non-parenchymal cells; OA, oleic acid; PA, palmitic acid.

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120 **INTRODUCTION**

121 Non-alcoholic fatty liver disease (NAFLD) designates a group of diseases sharing a wide
122 range of hepatic manifestations starting with hepatocytes steatosis, the first pathogenic step
123 towards steatohepatitis and fibrosis, followed by cirrhosis and ultimately liver failure or
124 cancer. The incidence of NAFLD is exponentially growing due to the pandemic of metabolic
125 disorders associated with obesity. Approximately 30% of the general population could be
126 affected by NAFLD in developed countries[1, 2]. Our understanding of the mechanisms
127 driving NAFLD is still incomplete and there are no available therapies to slow disease
128 progression. Currently, therapeutic interventions focus on lifestyle modifications, while organ
129 transplantation is the only option for end stage disease, making NAFLD one of the leading
130 causes of liver transplant[2, 3].

131 NAFLD is a multi-cellular disease. Chronic lipid accumulation in hepatocytes eventually
132 leads to cellular damage. This scenario triggers an intense cross-talk between hepatic non-
133 parenchymal cells (NPCs) (cholangiocytes, hepatic stellate cells [HSCs] and Kupffer cells),
134 which strongly influences the pathologic phenotype and disease progression. Hepatocytes
135 lipotoxicity provokes inflammation via macrophages activation, fibrosis orchestrated by
136 HSCs, and ductular reaction involving cholangiocyte proliferation[4, 5]. Thus, understanding
137 cellular interplays is essential to develop new therapies.

138 Animal models are commonly used to investigate the mechanisms underlying NAFLD and
139 have provided important knowledge regarding disease pathogenesis. Accordingly, a wide
140 range of dietary or genetic murine models are currently available to study NAFLD[6].
141 However, these models don't reproduce the full spectrum of the human pathophysiology,
142 and they are not easily compatible with large scale drug screening. Furthermore, their use is
143 becoming increasingly ethically questionable. Thus, a major effort is ongoing to develop
144 humanised *in vitro* platforms providing a complementary approach. A variety of *in vitro*
145 systems has been developed[7-9], which have established a proof of principle that NAFLD
146 can be modelled *in vitro* for testing drugs currently in clinical trials. However, they rely on

147 primary human cells which are only available in limited supply. Thus, these *in vitro* platforms
148 remain challenging to use for high-throughput screenings. Alternatively, transformed hepatic
149 cell lines are often used, but their malignant background decreases their metabolic
150 relevance[9, 10].

151 An advantageous alternative to primary cells is offered by human induced pluripotent stem
152 cells (hiPSCs) since they can produce large quantities of not only hepatocytes, but a
153 diversity of hepatic cells including macrophages[11], stellate cells[12] and
154 cholangiocytes[13]. hiPSC-derived hepatocytes (HLCs) recapitulate key properties of their *in*
155 *vivo* counterparts[14-17], can be produced from a diversity of patients, and have been
156 proven useful to model liver disorders[18-20]. Recently, multicellular hiPSCs-based
157 approaches have been used to model NAFLD. In one study[21], hiPSC-derived hepatoblasts
158 were used to generate hepatic organoids comprising both hepatocytes and cholangiocytes,
159 which allowed to model steatosis, lipotoxic damage and ductular reaction. Interestingly, lipid-
160 related metabolic pathways were dysregulated, revealing a transcriptomics signature similar
161 to NAFLD patients. However, this model was limited by the absence of mesenchymal cells,
162 therefore lacking inflammatory and fibrotic components. To include NPCs, another report[22]
163 took advantage of foregut spheroids to generate liver organoids containing mainly HLCs,
164 followed by HSCs, while biliary-like cells and macrophages were present in small
165 percentages. This allowed to mimic aspects of steatosis, inflammation and fibrosis in a dose
166 and time-dependent fashion. However, in this model, the precise identity and percentages of
167 cells could not be regulated, giving rise to heterogeneous cellular aggregates without
168 functional organisation.

169 To address these limitations, we developed a novel 3D *in vitro* platform that captures hepatic
170 multicellularity and liver organization. We recreated the hepatic microenvironment by co-
171 culturing HLCs with NPCs in a physiological ratio using a 3D collagen matrix. Hepatic cells
172 generated *in vitro* self-assembled to mimic the architecture of the liver and maintained key
173 features for up to 4-weeks in culture. We used this platform to model NAFLD and we were

174 able to recapitulate several aspects of the disease, from hepatic steatosis to NPCs
175 response. Moreover, transcriptomic and lipidomic analyses revealed a NAFLD signature in
176 HLCs, while NPCs displayed inflammatory and fibrotic responses. Our platform offers a new
177 approach to model NAFLD reproducing key aspects of the disease and providing a new tool
178 to study the human pathogenesis. Ultimately, our system will enable the discovery and
179 validation of novel therapeutic targets.

180 **METHODS**

181 *Cell treatments, Reporter cell lines, Cytochrome P450 activity, Presto Blue assay,*
182 *Albumin/AFP ELISA, Bile acids mass spectrometry, Lipidomics, Quantitative Real Time PCR*
183 *(qPCR), Immunofluorescence, and Flow protocols, RNA sequencing and statistical analyses,*
184 *are detailed in Supplementary Information.*

185 **Cell Culture**

186 Please refer to Supplementary Tables1-2 for a complete description of cell culture reagents.
187 The hiPSC line A1ATD^{R/R}[16, 19] was cultured on 10µg/ml vitronectin coated plates and
188 maintained in chemically defined medium (in house E8) supplemented with 2ng/mL TGFβ1
189 and 25ng/mL FGF2, as previously reported[23]. hiPSCs were used to generate hepatocyte
190 like cells (HLC), following our protocol[14] (summarised in supplementary table3), and to
191 obtain macrophages (M0) as previously reported[11]. Cholangiocytes organoids (CO) were
192 obtained from primary tissues[24], while the human cell line LX2[25] was used to model
193 stellate cells.

194 **3D (co)cultures**

195 The 96-wells RAFT system (Lonza) was chosen for 3D cultures. At D23 of differentiation,
196 HLCs were dissociated in small clumps with Cell Dissociation buffer, and seeded in the
197 RAFT following the manufacturer's instruction at a density of 70'000cells. COs were treated
198 with Cell Recovery Solution for 30 minutes, and clumps were mechanically broken into
199 smaller aggregates with a p1000 pipette; LX2 were detached with Trypsin-EDTA, while M0

200 at D7 of differentiation were collected after 10 minutes treatment with TrypLE express. NPCs
201 were seeded in the RAFT at a density of 50'000 cells for monocultures. In simple co-cultures,
202 the ratio was 70%HLCs/30%NPCs, while in complex co-cultures ratio was
203 60%HLCs/5%COs/10%HSCs/25%M0. The co-culture medium (CBD medium) was
204 supplemented with 20ng/mL OSM and 50ng/mL HGF.

205 **Bulk RNA-sequencing**

206 RNA was extracted from 3 biological replicates of control, PA and OA treated (24h and
207 1 week) samples using the RNeasy Micro Kit (Qiagen). Library preparation and sequencing
208 was performed at the Wellcome Trust Sanger Institute (Hinxton, UK). RNA was poly-A
209 selected and used for library preparation with the NEBNext Ultra II Directional RNA Library
210 Prep Kit for Illumina. Sequencing was run on an Illumina HiSeq v4 to obtain 75bp paired-end
211 reads, generating at least 100 million reads per sample. To assist with the filtering of reads,
212 FastQC was performed on all samples to ensure that the quality threshold was above 30
213 throughout the entire read length. For analyses please refer to Supplementary Information.
214 The RNA-sequencing dataset is available at Array Express under the accession number E-
215 MTAB-10598.

216 **Single cell RNA-sequencing (scRNA-seq)**

217 *Samples preparation* – RAFTs were rinsed with PBS before treatment with DNase [200U]
218 (D4627, Sigma)/Liberase [0.2U] (5401160001, Sigma) solution in culture medium. Samples
219 were left on a shaker for 15 minutes at 37C to completely digest the matrix. Cells suspension
220 was washed in warm medium+10%FBS and further dissociated into single cells via gentle
221 pipetting and 4 minutes of StemPro™ Accutase™ incubation at 37C, followed by 2 washes
222 in cold medium. To ensure a sufficient number of viable cells was retrieved, 5 technical
223 replicates were pooled together. Single-cell suspension was processed into single-cell
224 emulsions using the 10X Genomics Chromium controller. Each individual cell was
225 encapsulated in an oil-based droplet and individual transcripts were barcoded using short

226 DNA sequences containing both an identifier for the cell and individual transcript. A reverse
227 transcription immediately following the formation of this emulsion converted the transcripts
228 into stable DNA and was stored at -25C. Library preparation using V2 chemistry was
229 performed using the recommended protocol from 10X Genomics.

230 *scRNA-Seq analyses*: Quality assessment of raw fastq files was performed with FastQC
231 v0.11.3 and MultiQC v1.8. Checks included nucleotide composition and distribution of GC-
232 content. Reads were aligned to the *H. sapiens* reference genome (GRCh38) using 10X
233 cellranger v3.1.0; 3,449 cells were detected using default filters. The resulting count matrix
234 was analysed in R (version 3.6.3), using custom scripts. The quality of the quantification was
235 assessed on distributions of sequencing depth, number of unique features, and
236 mitochondrial and ribosomal protein-coding expression levels per cell. Based on inspection
237 of these distributions, cells with <80,000 UMIs and >1000 detected genes were retained for
238 downstream analysis, totalling 1,519 cells. For details on normalisation, clustering and
239 identification of marker genes, please refer to Supplementary Information. The scRNA-
240 sequencing dataset is available under the accession number GSM4824487.

241 **RESULTS**

242 **HLCs maintain key markers and functions in long term 3D cultures.**

243 To develop co-culture conditions mimicking the liver micro-environment, we took advantage
244 of the RAFT system which allows the production of 3D collagen scaffolds. Importantly, we
245 previously showed that this system supports the functionality of hepatocyte like cells
246 (HLCs)[26]. To further reinforce these results, HLCs differentiated in 2D were seeded into
247 RAFTs at a density of 70'000cells/well and grown for short term (1-week) or long term (4-
248 weeks) studies (Fig1A); HLCs were seeded in 3D as clumps of cells to preserve cell-cell
249 junctions which are crucial for hepatocyte functionality and survival[26]. HLCs grown in 3D
250 retained the expression of hepatocyte markers, such as albumin (ALB), hepatocyte nuclear
251 factor 4 alpha (HNF4 α), alpha-1-antitrypsin (protein α 1AT; gene SERPINA1) and

252 transthyretin (TTR) at similar levels compared to HLCs maintained in 2D or primary human
253 hepatocytes (PHH)(Fig1B). Interestingly, HLCs seemed to improve their functional
254 maturation in 3D as shown by the increase in ALB and SERPINA1 expression over time
255 (Fig1B-C). HLCs grown in the RAFT continued to express α -fetoprotein (AFP) and
256 CYP3A7(Fig1B); nonetheless, AFP and EPCAM expression strongly decreased with time in
257 3D culture (Fig1C). Furthermore, ALB/AFP secretion ratio was significantly augmented
258 (Fig1D) while 3D HLCs expressed significantly higher levels of CYP3A4, although still not
259 reaching PHH level (Fig1E). Similarly, CYP3A4 basal activity in 2D vs 3D cells (Fig1F)
260 indicated that the RAFT did not alter HLC functionality. 3D culture also promoted the
261 formation of MRP2 positive bile canaliculi (Fig1C, Supp Fig1A), which play a key function in
262 toxin metabolism *in vivo*. Finally, we also detected the presence of bile acids in both 2D and
263 3D cultures (Fig1G and Supp Fig1B). Altogether, these results indicate that the RAFT
264 system does not interfere with HLCs identity, increases specific functions and allows
265 prolonged culture, necessary to model chronic insults *in vitro*.

266 **HLCs grown in 3D cultures allow modelling of lipid accumulation and lipotoxicity
267 associated with NAFLD.**

268 We next decided to explore the utility of our system for modelling NAFLD. For that, HLCs
269 were grown in 3D in the presence of oleic acid (OA) or palmitic acid (PA). OA is known to
270 promote lipid accumulation, while PA is a saturated free fatty acid (FFA) more prone to
271 lipotoxicity. HLCs were treated for 24hrs, 1-week or 4-weeks to model chronic injury.
272 Exposure to OA resulted in significant lipid accumulation after 24hrs, and by 1-week lipid
273 droplets were observed throughout HLCs aggregates (Fig2A,B). Of note, 2D HLCs cultures
274 failed to produce a clear steatotic phenotype (Fig2A, top row), suggesting that the 3D
275 environment enhanced HLCs ability to accumulate lipids. On the other hand, HLCs
276 challenged with PA displayed limited steatosis while showing signs of cellular stress
277 including loss of cell-cell tight junctions after 4weeks (Fig2A, Fig2B, Supp Fig2A).
278 Furthermore, exposure to PA reduced HLCs viability by 50 and 70% after 1-week and 4-

279 weeks treatments, respectively (Fig2D and Supp Fig2C). We then assessed cell functionality
280 of fat laden HLCs. Addition of PA decreased the expression of albumin suggesting that the
281 observed cell death could be associated with dedifferentiation (Fig2A). Furthermore,
282 CYP3A4 basal activity was decreased by OA (4-weeks) and PA (1-week) (Fig2C and Supp
283 Fig2B); this was expected as hepatocyte metabolic activity is altered in patients with NAFLD
284 and reduced cytochrome P450 capacity has been reported[27]. These results show that our
285 3D platform allows the modelling of lipid accumulation and lipotoxicity induced by FFAs.

286 **Transcriptomic analyses confirm the interest of HLCs to model NAFLD.**

287 To further confirm the interest of our approach for modelling NAFLD, we performed bulk
288 RNA-Seq analyses on HLCs exposed to FFAs for 24hrs and 1-week. Principal component
289 analysis (PCA) showed a distinct separation of treated versus control samples depending on
290 the length of the treatment (Supp Fig3A) thereby confirming the impact of FFAs on HLCs.
291 Differential gene expression analyses identified 159 downregulated and 102 upregulated
292 genes after 24hrs treatments, while 155 and 42 genes were respectively down- and
293 upregulated after 1-week (Supp Fig3B-C). Gene ontology analyses revealed that 24hrs of
294 FFAs treatment upregulated pathways related to cell cycle, lipid metabolism and transport
295 (Supp Fig3D). On the other hand, HLCs also downregulated pathways related to cellular
296 adhesion, cell-cell signalling, and basic hepatocytes functions such as drug metabolism
297 (Supp Fig3E) and protein secretion (i.e. ALB/TTR/AFP/EPO, Fig2E). Of note, 1-week PA
298 was the most impactful treatment for HLCs functionality. These analyses confirm that HLCs
299 undergo steatosis and cell death associated with dedifferentiation especially when grown in
300 the presence of PA.

301 We then focused on specific pathways known to be dysregulated in NAFLD (Supplemental
302 Table4 and Fig2E). Gluconeogenesis genes (G6PC, PCK1) were upregulated, while genes
303 associated with glycogen synthesis decreased (GYS1, GYS2). On the other hand, few
304 insulin signalling genes (PIK3CA, IRS2, FOXO1) increased suggesting a process resembling
305 insulin resistance. Importantly, for all groups but one (1-week PA) we registered an

306 upregulation in genes involved in lipid uptake and trafficking, and in lipid oxidation.
307 Interestingly, 24hrs treatments resulted in a transient increase in cell cycle-related genes
308 (CDK1 and MKI67) suggesting that FFAs could increase proliferation in this acute phase.
309 However, cell cycle regulators reverted to basal levels in prolonged treatments, while the
310 expression of markers related to senescence (CDKN2A/CEBPB/TP53/NFKB), UPR (DDIT3)
311 and autophagy (SQSTM1/MAP1LC3B) were strongly induced. Repeated exposure to FFAs
312 upregulated pro-inflammatory genes suggesting that hepatocytes themselves could be part
313 of the inflammation process leading to fibrosis in chronic injury. Of particular interest, CXCL8
314 was significantly induced by 1-week exposure to FFAs; CXCL8 is a known activator of the
315 immune system, while significantly high levels of CXCL8 were reported in serum from NASH
316 patients[28]. Thus, steatotic hepatocytes might play a pivotal role in NAFLD progression by
317 promoting a pro-inflammatory environment. Taken together these results demonstrate that
318 FFAs, especially PA, have a potent effect on HLCs functionality, metabolism and survival
319 while inducing associated senescence, UPR and autophagy, and a strong pro-inflammatory
320 signature.

321 **Lipidomic analyses reveal disease pathways in HLCs exposed to FFAs.**

322 Altered lipid metabolism is hallmark of NAFLD, and thus we decided to investigate the
323 lipidomic profiles of our *in vitro* model. We collected supernatants after 1-week of culture in
324 the presence of FFAs and probed the lipids secreted in each condition. PCA analyses
325 revealed that the lipidome of OA-treated HLCs diverged strongly from control and PA-treated
326 groups (Supp Fig4A). This difference in lipids composition suggested that OA-treated HLCs
327 retained specific lipid species which might result from the induction of steatosis. This is in
328 line with the hypothesis that steatosis could be an initial response to FFAs overload. Indeed,
329 unsaturated FFAs are more prone to be incorporated into triglycerides, and this mechanism
330 appears to be protective against lipotoxicity; the opposite occurs with PA which, as a result,
331 is detrimental for hepatocytes[29, 30]. These analyses revealed numerous FFAs derivatives
332 and the main detectable products were corresponding mono and di-substituted

333 phospholipids (phosphatidylcholines [PC] and phosphatidylethanolamines [PE]) and
334 triglycerides (Supp Fig.4B, Supplementary Table7). The supernatant of OA-treated HLCs
335 was enriched with arachidonic acid, lysoPC and lysoPE (Supp Fig4B). Interestingly,
336 arachidonic acid is a pro-inflammatory mediator while lysoPC is linked to lipotoxicity;
337 furthermore, several reports have described an increase of lysoPC and lysoPE in the plasma
338 of NASH patients[31, 32]. Taken together, these data suggest that chronic OA exposure
339 could predispose hepatocytes to lipotoxicity by releasing lipid species that support disease
340 progression. Surprisingly, PA treatment resulted in reduced release of lysoPC, which could
341 be explained by accumulation of these species intracellularly, but also by HLCs
342 dedifferentiation induced by PA. In conclusion, these results reinforce the evidence that
343 HLCs grown in the presence of FFAs acquire an injury signature related to NAFLD at the
344 molecular level.

345 **Non-parenchymal cells can be grown for prolonged time in 3D while preserving their
346 cellular identity.**

347 Several cell types play a key role in NAFLD and a multicellular platform would be useful to
348 model the different steps characterising disease progression. Therefore, we decided to
349 develop 3D conditions to co-culture cholangiocytes, hepatic stellate cells (HSCs) and
350 macrophages. The first step was to address whether the 3D collagen-based environment
351 could interfere with the activity or survival of non-parenchymal cells (NPCs). Cholangiocytes
352 organoids (COs) (Supp Fig5A-B) were derived from human common bile ducts[24]. COs in
353 RAFTs organised into elongated structures with a lumen, while retaining the expression of
354 cholangiocytes markers (Fig3A-B) up to 4-weeks in culture.

355 The same approach was applied to HSCs taking advantage of the LX2 cell line[25].
356 Interestingly, HSCs in RAFTs did not display an activated morphology (Fig3C) or phenotype
357 as shown by the decrease in the expression of profibrotic markers TGF β 1 and collagen type
358 I (Col1 α 1) (Supp Fig6A). Other fibrotic markers were either not affected (TIMP1) or
359 increased (α SMA) only after 4-weeks. Of note, both α SMA and GFAP (Supp Fig6B) were

360 expressed at basal levels in 2D or 3D, as expected with LX2 cultures. To confirm that 3D
361 HSCs could model fibrotic response, we stimulated LX2 with TGF β 1. While efficiently
362 promoting a profibrotic phenotype in 2D cells in 72hrs (Supp Fig6C), a longer treatment was
363 required to induce a fibrotic response in 3D (1-week, Supp Fig6D-E). This activation was
364 associated with the acquisition of a myofibroblast-like morphology (Fig3D) and induction of
365 fibrotic markers (Fig3E).

366 Concerning Kupffer cells, we generated macrophages (M0) from hiPSCs following a well-
367 established protocol[11]. M0 were derived in 2D and expressed typical myeloid markers
368 CD11b and CD45 (Supp Fig7A-C). These cells lost their phenotype after 14 days in 2D (data
369 not shown), while M0 transferred into RAFTs retained the expression of CD14 and CD68
370 and did not spontaneously increase the expression of pro-inflammatory markers (Supp
371 Fig7D). Furthermore, 3D M0 maintained a pancake-like morphology up to 4-weeks and
372 retained the expression of IBA1 (Fig3F). The cells were also polarised by LPS stimulation as
373 shown by the induction of IL6 and TNF α (Fig3G) as reported in 2D[11] (Supp Fig7E).

374 In sum, the RAFT system is suitable to grow hepatic NPCs up to 4-weeks. Each cell type
375 maintained key phenotypical features including the capacity to react to pro-fibrotic and pro-
376 inflammatory stimuli.

377 **Hepatic cells co-cultured in 3D spontaneously organize to mimic the liver
378 microenvironment.**

379 We established conditions allowing the co-culture of these different cell types with HLCs. We
380 started with 2 cell types at a ratio of 7:3 (HLCs:NPCs) to respect *in vivo* cell ratio. In addition,
381 we took advantage of reporter cell lines expressing EGFP or RFP (tdTomato or mStrawberry
382 reporters) to monitor cellular organization. Of note, a major challenge in establishing co-
383 cultures conditions is to define media formulations compatible with all the different cell types.
384 HLCs medium was not compatible with COs survival (data not shown). Thus, we screened
385 several basal media and identified that William's E supplemented with 50ng/ml HGF and

386 20ng/ml OSM (refer to Supplementary Tables1-2) could support all the hepatic cells included
387 in our platform. In these conditions, HLCs rapidly surrounded the tubular-like structures
388 formed by cholangiocytes (Supp Fig8A, Fig4A), while developing a well-defined canaliculi-
389 like network which seemed to connect HLCs and biliary cells (Fig4B). We also observed that
390 HSCs progressively localised around HLC clusters (Supp Fig8B, Fig4C) without direct
391 interactions, unless treated with TGF β 1, which induced a myofibroblast-like morphology
392 characteristic of activated HSCs while prompting more direct contacts with HLCs (Fig 4D).
393 Finally, M0 initially dispersed in the collagen (Supp Fig 8C) and progressively colonised the
394 spaces between HLC clumps over time (Fig 4E). Importantly, the presence of additional cell
395 types did not interfere with HLCs functionality including ALB/AFP production or CYP3A4
396 activity (Fig 4F-G and Supp Fig 8D-E). Therefore, our co-culture conditions support hepatic
397 cell types while allowing their spontaneous organisation in 3D.

398 Next, we seeded the 4 cell types together at physiologic ratios:
399 60%HLCs/5%COs/10%HSCs/25%M0. The co-cultured cells self-organised, with HLCs
400 surrounding COs duct-like structures within 24hrs, while HSCs and M0 dispersed around the
401 edges of HLC clumps (Supp Fig 9A-B). Interestingly, a fraction of HSCs (Supp Fig 9C)
402 surrounded cholangiocytes in close contact with HLCs. These interactions persisted up to 4-
403 weeks (Fig 5A), while functionality of co-cultured HLCs was maintained as shown by
404 CYP3A4 activity, increasing ALB/AFP secretion and bile acid production (Fig 5B-C, Supp Fig
405 10A-C). These results indicate that this system allows long term co-culture of hepatic cell
406 types *in vitro* without altering HLCs functionality. Moreover, this approach enables us to
407 precisely control the number and the cell types co-cultured, allowing the creation of a self-
408 organised micro-environment mimicking the composition of the liver.

409 **3D co-cultures mimic cell-cell interactions observed in the liver microenvironment.**

410 To better characterise cellular interactions in our 3D co-culture system, we performed single
411 cell RNA-Seq (scRNA-Seq) analyses on 1-week cultures. scRNA-Seq was performed to
412 profile a total of 3449 cells, of which 44% passed QC (1519 cells; see Methods and

413 Supplementary information). Seurat clustering was chosen for analyses due to its stability
414 across different numbers of features, and identified 16 groups of cells (Fig 5D). The
415 biological relevance of these clusters was assessed by enrichment analyses of marker
416 genes that were manually curated. Using this approach, four superclusters were identified:
417 HLCs (317 cells), COs (63 cells), HSCs (198 cells) and M0 (941 cells), thereby confirming
418 the presence of the main cell types originally seeded into the RAFT. Of note, the numbers of
419 retrieved cells did not mirror the seeding ratio; this difference could be explained by technical
420 difficulties in extracting single cells from the collagen scaffold, especially hepatocytes or
421 cholangiocytes. Nonetheless, HLCs cluster was characterised by the expression of key
422 hepatocyte markers (ALB/ASGR1/AFP/APOB/TTR/HPX). COs expressed biliary markers
423 (KRT19/KRT7/MUC1) and basement membrane proteins (LAMB3/LAMC2/ITGB4) among
424 others. HSCs were identified by PDGFRB expression and by the presence of fibrosis
425 regulators (LUM/SPARC/LOXL1/CTHRC1/COL1A1). M0 expressed markers known to
426 regulate innate immunity (HLA-B/IL1R2/C1R/PTX3) or ECM proteins (SRGN/CCBE1) (Fig
427 5D and Supp Fig11). These observations demonstrate that the identity of each cell type is
428 preserved in our co-culture setting.

429 To further understand cellular interactions, we applied the CellPhone database[33] to our
430 single-cell data set. This approach identified a diversity of known physiologic interactions
431 (Fig6) associated with the function of each cell type. For example, the production of plasma
432 proteins by HLCs seemed to be supported by NPCs via the albumin-FcRn complex, which is
433 crucial for albumin homeostasis and stabilisation[34]. On the other hand, HLCs expressed
434 IGF2 thereby supporting cell survival. Mesenchymal cells are an important source of
435 cytokines and growth factors in the liver. Accordingly, HSCs expressed a diversity of
436 mitogens including EGF, FGF and HGF while the corresponding receptors appeared to be
437 expressed by COs or HLCs. On the other hand, HLCs and COs regulated epithelial-
438 mesenchymal cross-talk via VEGFA and PDGF signalling, acting on respective receptors on
439 HSCs and M0. Moreover, cells-matrix interactions (integrins/ECM proteins) would suggest

440 that these mechanisms could be responsible for guiding the 3D self-organisation of our co-
441 culture system. Finally, our analyses also revealed the source of WNT and Notch signalling
442 in our culture with a specific function for HSCs, which seemed to be the primary source of
443 RSPO, WNT ligands, and TGF β 1.

444 All together, these results show that our co-culture system preserves hepatic cells identity
445 while allowing cellular interactions naturally occurring in the liver microenvironment.

446 **Modelling NPCs response to steatotic HLCs.**

447 The progression from steatosis to steatohepatitis is a multicellular process involving
448 inflammation from macrophages, ductal plate reaction with cholangiocytes and fibrosis
449 associated with HSCs. Thus, we decided to study the response of NPCs to FFAs treatment.
450 We first evaluated the effects of FFAs on hepatic cells grown in 3D with or without HLCs.
451 COs and HSCs were found to uptake a limited amount of lipids when grown in the presence
452 of OA, while PA treatment had little visible effect (Supp Fig12A-B). Interestingly, HSCs
453 acquired an activated morphology when grown with HLCs in the presence of OA (Supp
454 Fig12C). FFAs had no effect on M0 in terms of lipid accumulation (Supp Fig12D) but
455 seemed to induce recruitment around HLCs clumps (Supp Fig12E). We then combined the 4
456 cell types and challenged them with FFAs (Fig7A). HLCs accumulated lipid droplets in the
457 presence of OA and underwent dedifferentiation/cell death especially after long term
458 exposure to PA. Thus, co-culture with NPCs did not affect the main phenotypes induced by
459 different FFAs (Fig7B-C). In addition, HSCs seemed to proliferate while adopting an
460 activated morphology around HLCs. Pro-inflammatory and pro-fibrotic cytokines were also
461 detected in the medium with differences for the two treatments. OA induced a stable
462 secretion of TNF α from 1-week treatment (Fig7D), while chronic exposure to PA induced
463 progressive secretion of IL6 (Fig7E). Similarly, 4-weeks treated co-cultures also produced
464 higher although more variable levels of TGF β 1, suggesting a pro-fibrotic response (Fig7F).
465 Interestingly, TNF α is known to play a key role in NAFLD development and progression, and
466 its inhibition has been shown to decrease liver injury[35]. IL6 role in NAFLD is still

467 controversial, since it stimulates liver regeneration but also exacerbates hepatocellular
468 damage. Both are implicated in insulin resistance and stimulate lipogenesis. However, TNF α
469 is more linked to steatosis development and lipids/glucose metabolism while IL6 controls
470 inflammatory response[28]. These results suggest that our platform models in part the
471 impact of hepatic injury on NPCs. In conclusion, 3D co-cultures grown in the presence of
472 FFAs successfully reproduced steatosis, hepatocytes lipotoxicity and key aspects of NPCs
473 response *in vitro*.

474

475 **DISCUSSION**

476 With this report, we introduce a novel multicellular hiPSCs-based hepatic platform and
477 demonstrate its interest to model complex liver diseases, especially NAFLD. We showed
478 how hiPSCs-derived hepatocytes (HLCs) can mimic aspects of steatosis and lipotoxicity
479 when grown in 3D. Moreover, we were able to generate “mini livers” by combining HLCs with
480 non-parenchymal cells (NPCs), thereby promoting cellular interactions representative of the
481 hepatic microenvironment. This multicellular platform enabled to model hepatocytes injury
482 observed during NAFLD progression including key associated mechanisms with
483 inflammatory and fibrotic components.

484 Our approach has several advantages over currently available models. HLCs provide an
485 unlimited source of cells which is impossible to obtain with primary cells[7, 8]. Moreover,
486 HLCs production is robust and consistent when compared to batches of primary hepatocytes
487 which display large variability from different donors. Furthermore, the RAFTs culture system
488 provides a suitable environment to increase HLCs functional maturity[26]. In this study, we
489 demonstrated that HLCs grown in 3D acquired functions which can be maintained up to 4-
490 weeks, thereby allowing the modelling of chronic hepatic injury associated with NAFLD. Of
491 note, HLCs have been previously used to model NAFLD. For example, lipotoxic stimuli in
492 HLCs resulted in mitochondrial metabolism alterations[36] or interfered with lipid metabolism

493 by inducing genes associated with disease[37]. Furthermore, our group has recently showed
494 that HLCs provide a valuable tool to investigate the function of genetic variants associated
495 with NAFLD, and to unravel the mechanisms by which they can influence disease
496 progression[38]. While providing useful insights, these studies were limited to steatosis and
497 could not address aspects linked to NPCs.

498 This aspect was addressed in part by using differentiation protocols resulting in
499 heterogeneous populations of cells[21, 22]. More precisely, stochastic differentiation of
500 foregut organoids was used to simultaneously produce several hepatic cells. However, the
501 resulting organoids lacked functional maturation, organised 3D architecture or physiologic
502 ratios[22]. Starting from the hepatoblast stage enabled a slightly higher control on cellular
503 maturation, but failed to include the cells from mesoderm origin[21].

504 Our platform provides a solution to these limitations by precisely incorporating different
505 hepatic cells involved in disease progression including stellate cells, macrophages and
506 cholangiocytes. Furthermore, our approach allowed co-culture of these cell types in
507 physiological ratios thereby mimicking the *in vivo* environment. Accordingly, combination
508 with HLCs results in self-organisation resembling the liver architecture. scRNA-Seq analyses
509 confirmed the functionality of these cellular interactions by revealing a diversity of interplays
510 between these cell types. Finally, our approach allowed to control the presence of specific
511 cell types which could provide the opportunity to investigate specific cell-cell interactions.

512 Importantly, our culture system could be further optimised by including endothelial cells.
513 Indeed, it is well documented that the endothelium sustains the inflammatory and fibrotic
514 evolution of NAFLD[39]. However, we have been so far unable to find culture conditions
515 compatible with all the cell types included in our co-culture system and supporting
516 endothelial cells. We used endothelial cells (HUVEC) without success, suggesting that this
517 cell type could be particularly difficult to maintain *in vitro*.

518 Our approach also relies on cell types from different origins and ideally, all the cells should
519 be generated from the same hiPSC line. This option was not implemented for the current
520 study since production of all cell lineages from hiPSCs is complex and technically
521 challenging even if protocols to generate cholangiocytes[13], HSCs[12], and endothelial
522 cells[40] are now available. Nonetheless, future evaluation could involve fully derived
523 hiPSCs platforms, which would be useful to dissect the functions of key polymorphisms
524 without interference of genetic background.

525 Despite these restrictions, we showed the interest of our *in vitro* culture system to study
526 hepatocyte injury induced by FFAs. Indeed, we demonstrated that FFAs can induce
527 steatosis, reduce cellular function, and decrease viability to different degrees depending on
528 the duration of treatment and the nature of the lipotoxic insult. As previously reported[30], the
529 outcome of OA is steatosis, while PA has a lipotoxic effect, which became already evident
530 after 1-week exposure. RNA-Seq analyses further showed that PA stimulated the expression
531 of genes related to senescence/cell death and inflammation mediators, while affecting
532 cellular functions. On the other hand, OA treated cells displayed an increase in the
533 expression of genes related to lipid β oxidation. In line with these findings, OA treated cells
534 released lipid species that were found to be increased in NAFLD patients[31, 32]. Moreover,
535 FFAs also perturbed glucose metabolism, and the expression patterns were suggestive of
536 insulin resistance development. Similar expression profiles were previously reported in *in*
537 *vitro* models and patients' biopsies[8], validating in part the clinical relevance of our system
538 to model NAFLD.

539 Interestingly, FFAs-challenged HLCs significantly increased the expression of pro-
540 inflammatory signals, especially CXCL8. Given the role of CXCL8 in activating the immune
541 system, we speculated that injured HLCs could release signals creating an inflammatory
542 environment. In addition, we also observed that TNF α was increased by OA, while PA-
543 treated cells relied more on an IL6 response. Both cytokines are involved in NAFLD
544 progression[28] and this could indicate a differential induction dependent on the severity of

545 the damage or the type of injury. Intriguingly, our results showed an activation of NPCs just
546 by enriching the medium with FFAs, without the need to add other exogenous stimuli. Taken
547 together these results suggest that NPCs could be activated directly by injured hepatocytes
548 and this interaction could be a relevant target for future drug development.

549 These data demonstrate that our platform can be used not only to model hepatocyte injury
550 associated with NAFLD but also to uncover new mechanisms related to the disease. Thus,
551 this novel humanised platform provides a comprehensive *in vitro* approach to identify and to
552 validate new pathways for drug development at cell specific level.

553

554 **FIGURE LEGENDS**

555 **Figure1 – 3D HLCs cultures characterisation.** A) Schematic representation of HLCs
556 embedding into RAFTs at D23. B) 2D and 3D cultures were characterised for gene
557 expression of key hepatocyte markers (PHH and undifferentiated hiPSCs [undifferentiated
558 control, UC] were used as positive and negative control, respectively). C)
559 Immunofluorescence of 3D HLCs. D) ALB/AFP secretion. E) CYP3A4 expression. D)
560 CYP3A4 basal activity. G) production of cholic acid (CA). Graphs represent average \pm SD of
561 n=3-7 experiments, analysed with ANOVA.

562 **Figure2 – 3D HLCs cultures mimic steatosis and lipotoxicity.** A) FFAs challenge in
563 HLCs visualised with Bodipy493/503 (green): top row, 2D HLCs treated with OA; middle row,
564 OA treatment; bottom row, PA treatment. 3D cells were stained for albumin (yellow). B)
565 Bodipy493/503 quantification, C) CYP3A4 activity and D) cell viability, all performed on 3D
566 cultures. Graphs represent average \pm SD of n=3 experiments, analysed with ANOVA. E)
567 RNA-Seq analyses on HLCs monocultures of disease-associated pathways. Heatmaps
568 represent the log2 fold change of each treatment and timepoint vs control group. Red
569 indicates an increase, whereas blue indicates a decrease in expression relative to control.

570 **Figure3 – 3D cultures are compatible with the growth and activation of NPCs.** A)
571 Representative pictures of COs structures in RAFTs, positive for tdTomato reporter and
572 biliary markers; B) biliary gene expression compared to COs grown in matrigel. C)
573 Quiescent-like morphology of HSCs-tdTomato+ grown in collagen; TGF β 1-induced D)
574 myofibroblast-like morphology and E) pro-fibrotic genes expression. F) M0-mStrawberry+
575 pancake-like shape and IBA1 expression. G) Pro-inflammatory genes expression after LPS
576 treatment. Graphs represent average \pm SD of n=3-10 experiments, analysed with t-Test.

577 **Figure4 – 3D co-cultures promote physiologic cellular interactions.** A) Live cell imaging
578 of HLCs-EGFP+ around COs-tdTomato+, with z-stack reconstruction showing the presence
579 of a lumen. B) MRP2 positivity of a bile canaliculi-like network after 1-week culture (HLCs-
580 unstained, COs-tdTomato+). C) HSCs-tdTomato+ arranged on one side of HLCs-EGFP+
581 clumps; D) TGF β 1 treatment induced a myofibroblast-like morphology in HSCs-tdTomato+,
582 while surrounding HLCs-EGFP+. E) M0-mStrawberry+ diffused in the RAFT, while gradually
583 organising on one side of the HLCs-EGFP+ clumps; after 4-weeks culture, M0-
584 mStrawberry+ spread within HLCs-EGFP+ structures. F) ALB/AFP secretion and G) basal
585 CYP3A4 activity in 3D mono- versus co-cultures. Graphs represent average \pm SD of n=3-10
586 experiments, analysed with t-Test.

587 **Figure5 – Complex 3D co-cultures mimic liver microenvironment.** A) Cell-cell contacts
588 were maintained throughout 4-weeks. HLCs-EGFP+ surrounded COs-tdTomato+, which in
589 turn recruited HSCs-CFP+; the co-culture also included M0-unstained. B) CYP3A4 activity
590 and C) ALB/AFP secretion in 3D mono- versus co-cultures. “Mix” indicates 4 cell types co-
591 cultures. Graphs represent average \pm SD of n=3-4 experiments, analysed with t-Test. D)
592 scRNA-Seq analyses of 1-week co-cultures. UMAP representation of 16 different groups that
593 organised in 4 cellular clusters, identified by typical markers shown by violin plots.

594 **Figure6 – Cell-cell communication *in vitro*.** CellPhone DB representation of the different
595 cell types in 3D expressing ligands/receptors to regulate a variety of signalling. These

596 interactions are not symmetric. The size of the dots indicates the mean-of-means ($p<0.05$);
597 interactions and cell-type pairs without any dot indicate no significant interaction.

598 **Figure7 – Complex 3D co-cultures promote NAFLD-like features.** A) Live cell imaging
599 shows cellular structures after long term FFAs challenge. Top row, HSCs-CFP+
600 accumulated around fat laden HLCs-EGFP+, that organised around COs-tdTomato+ cells
601 after OA treatment. 4-weeks of PA resulted in the near absence of HLCs-EGFP+ clumps
602 and unorganised COs-tdTomato+, while HSCs-CFP+ showed an activated morphology. M0s
603 were included in the culture, but lacked a reporter gene. Bottom row, Lipidtox Deep Red
604 (yellow) confirmed that HLCs-EGFP+ developed a steatotic phenotype after OA treatment.
605 B) CYP3A4 activity and C) cell viability in 1-week and 4-weeks co-cultures. D) TNF α , E) IL6,
606 and F) TGF β 1 secretion in co-cultures. Graphs represent average \pm SD of $n=3-10$
607 experiments, analysed with ANOVA.

608

609 REFERENCES

610 [1] Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver Int 2017;37 Suppl
611 1:81-84.

612 [2] Younossi ZM, Henry L. Epidemiology of non-alcoholic fatty liver disease and hepatocellular
613 carcinoma. JHEP Rep 2021;3:100305.

614 [3] Konerman MA, Jones JC, Harrison SA. Pharmacotherapy for NASH: Current and emerging. J
615 Hepatol 2018;68:362-375.

616 [4] Gouw AS, Clouston AD, Theise ND. Ductular reactions in human liver: diversity at the
617 interface. Hepatology 2011;54:1853-1863.

618 [5] Schwabe RF, Tabas I, Pajvani UB. Mechanisms of Fibrosis Development in Nonalcoholic
619 Steatohepatitis. Gastroenterology 2020;158:1913-1928.

620 [6] Ibrahim SH, Hirsova P, Malhi H, Gores GJ. Animal Models of Nonalcoholic Steatohepatitis:
621 Eat, Delete, and Inflame. Dig Dis Sci 2016;61:1325-1336.

622 [7] Duriez M, Jacquet A, Hoet L, Roche S, Bock MD, Rocher C, et al. A 3D Human Liver Model of
623 Nonalcoholic Steatohepatitis. J Clin Transl Hepatol 2020;8:359-370.

624 [8] Feaver RE, Cole BK, Lawson MJ, Hoang SA, Marukian S, Blackman BR, et al. Development of
625 an in vitro human liver system for interrogating nonalcoholic steatohepatitis. JCI Insight
626 2016;1:e90954.

627 [9] Müller FA, Sturla SJ. Human in vitro models of nonalcoholic fatty liver disease. Current
628 Opinion in Toxicology 2019;16:9-16.

629 [10] Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, et al. Recent
630 advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources
631 and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell
632 signalling and ADME. Arch Toxicol 2013;87:1315-1530.

633 [11] Alasoo K, Martinez FO, Hale C, Gordon S, Powrie F, Dougan G, et al. Transcriptional profiling
634 of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and
635 novel alternative transcription. *Sci Rep* 2015;5:12524.

636 [12] Coll M, Perea L, Boon R, Leite SB, Vallverdu J, Mannaerts I, et al. Generation of Hepatic
637 Stellate Cells from Human Pluripotent Stem Cells Enables In Vitro Modeling of Liver Fibrosis. *Cell*
638 *Stem Cell* 2018;23:101-113 e107.

639 [13] Sampaziotis F, de Brito MC, Madrigal P, Bertero A, Saeb-Parsy K, Soares FAC, et al. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug
640 validation. *Nat Biotechnol* 2015;33:845-852.

641 [14] Hannan NR, Segeritz CP, Touboul T, Vallier L. Production of hepatocyte-like cells from human
642 pluripotent stem cells. *Nat Protoc* 2013;8:430-437.

643 [15] Hay DC, Zhao D, Fletcher J, Hewitt ZA, McLean D, Urruticoechea-Uriguen A, et al. Efficient
644 differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating
645 liver development in vivo. *Stem Cells* 2008;26:894-902.

646 [16] Rashid ST, Corbneau S, Hannan N, Marciniak SJ, Miranda E, Alexander G, et al. Modeling
647 inherited metabolic disorders of the liver using human induced pluripotent stem cells. *J Clin Invest*
648 2010;120:3127-3136.

649 [17] Segeritz CP, Rashid ST, de Brito MC, Serra MP, Ordonez A, Morell CM, et al. hiPSC hepatocyte
650 model demonstrates the role of unfolded protein response and inflammatory networks in alpha1-
651 antitrypsin deficiency. *J Hepatol* 2018;69:851-860.

652 [18] Cayo MA, Cai J, DeLaForest A, Noto FK, Nagaoka M, Clark BS, et al. JD induced pluripotent
653 stem cell-derived hepatocytes faithfully recapitulate the pathophysiology of familial
654 hypercholesterolemia. *Hepatology* 2012;56:2163-2171.

655 [19] Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, et al. Targeted gene
656 correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. *Nature* 2011;478:391-
657 394.

658 [20] Zhang S, Chen S, Li W, Guo X, Zhao P, Xu J, et al. Rescue of ATP7B function in hepatocyte-like
659 cells from Wilson's disease induced pluripotent stem cells using gene therapy or the chaperone drug
660 curcumin. *Hum Mol Genet* 2011;20:3176-3187.

661 [21] Ramli MNB, Lim YS, Koe CT, Demircioglu D, Tng W, Gonzales KAU, et al. Human Pluripotent
662 Stem Cell-Derived Organoids as Models of Liver Disease. *Gastroenterology* 2020;159:1471-1486
663 e1412.

664 [22] Ouchi R, Togo S, Kimura M, Shinozawa T, Koido M, Koike H, et al. Modeling Steatohepatitis in
665 Humans with Pluripotent Stem Cell-Derived Organoids. *Cell Metab* 2019;30:374-384 e376.

666 [23] Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, et al. Chemically defined
667 conditions for human iPSC derivation and culture. *Nat Methods* 2011;8:424-429.

668 [24] Sampaziotis F, Justin AW, Tysoe OC, Sawiak S, Godfrey EM, Upponi SS, et al. Reconstruction
669 of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids.
670 *Nat Med* 2017;23:954-963.

671 [25] Xu L, Hui AY, Albanis E, Arthur MJ, O'Byrne SM, Blaner WS, et al. Human hepatic stellate cell
672 lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. *Gut* 2005;54:142-151.

673 [26] Gieseck RL, 3rd, Hannan NR, Bort R, Hanley NA, Drake RA, Cameron GW, et al. Maturation of
674 induced pluripotent stem cell derived hepatocytes by 3D-culture. *PLoS One* 2014;9:e86372.

675 [27] Fisher CD, Lickteig AJ, Augustine LM, Ranger-Moore J, Jackson JP, Ferguson SS, et al. Hepatic
676 cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver
677 disease. *Drug Metab Dispos* 2009;37:2087-2094.

678 [28] Brauwersreuther V, Viviani GL, Mach F, Montecucco F. Role of cytokines and chemokines in
679 non-alcoholic fatty liver disease. *World J Gastroenterol* 2012;18:727-735.

680 [29] McClain CJ, Barve S, Deaciuc I. Good fat/bad fat. *Hepatology* 2007;45:1343-1346.

682 [30] Ricchi M, Odoardi MR, Carulli L, Anzivino C, Ballestri S, Pinetti A, et al. Differential effect of
683 oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. *J Gastroenterol*
684 *Hepatol* 2009;24:830-840.

685 [31] Hu C, Wang T, Zhuang X, Sun Q, Wang X, Lin H, et al. Metabolic analysis of early nonalcoholic
686 fatty liver disease in humans using liquid chromatography-mass spectrometry. *J Transl Med*
687 2021;19:152.

688 [32] Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J, Cheung O, et al. A lipidomic analysis
689 of nonalcoholic fatty liver disease. *Hepatology* 2007;46:1081-1090.

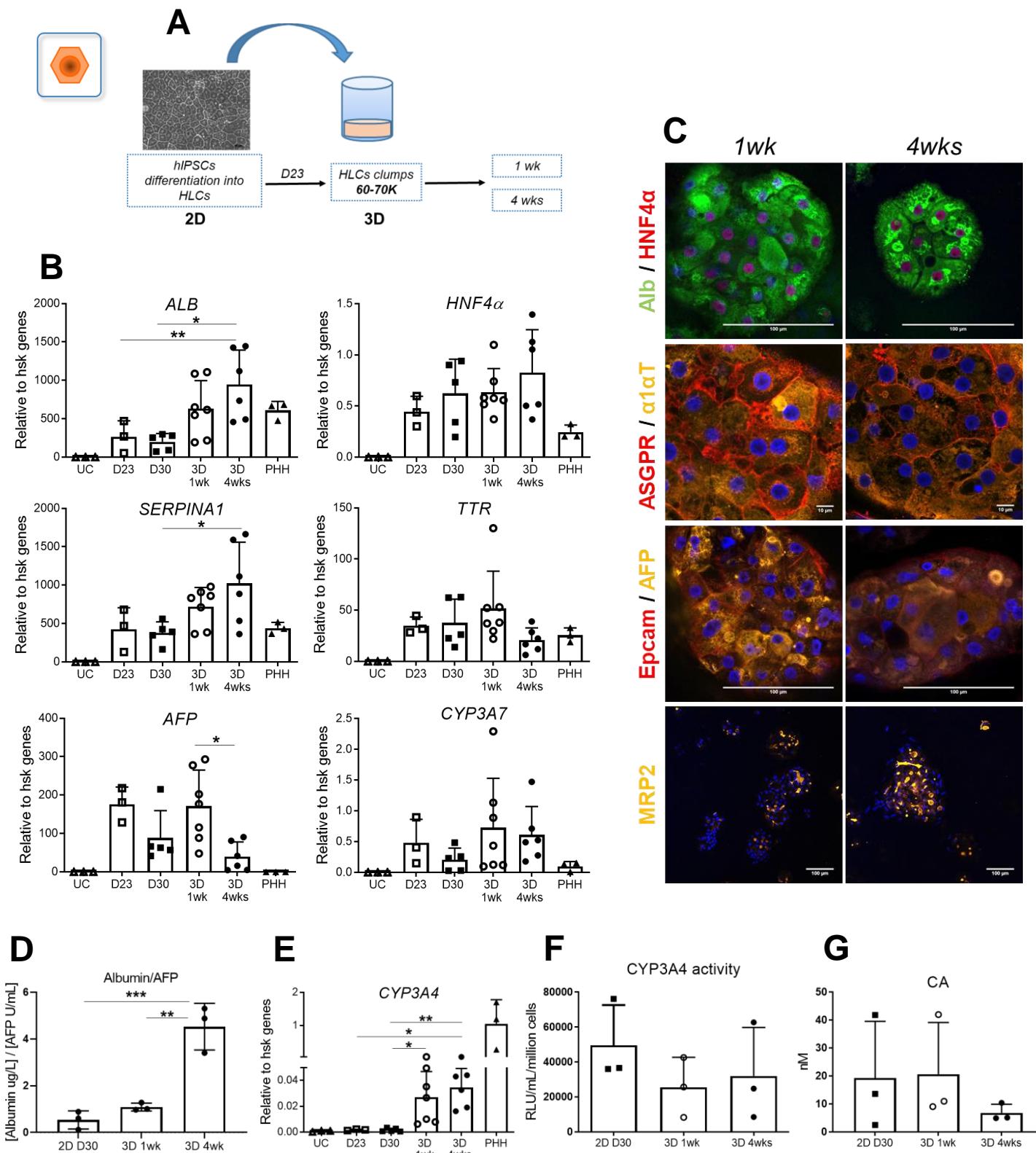
690 [33] Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB: inferring cell-
691 cell communication from combined expression of multi-subunit ligand-receptor complexes. *Nat*
692 *Protoc* 2020;15:1484-1506.

693 [34] Chaudhury C, Mehnaz S, Robinson JM, Hayton WL, Pearl DK, Roopenian DC, et al. The major
694 histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its
695 lifespan. *J Exp Med* 2003;197:315-322.

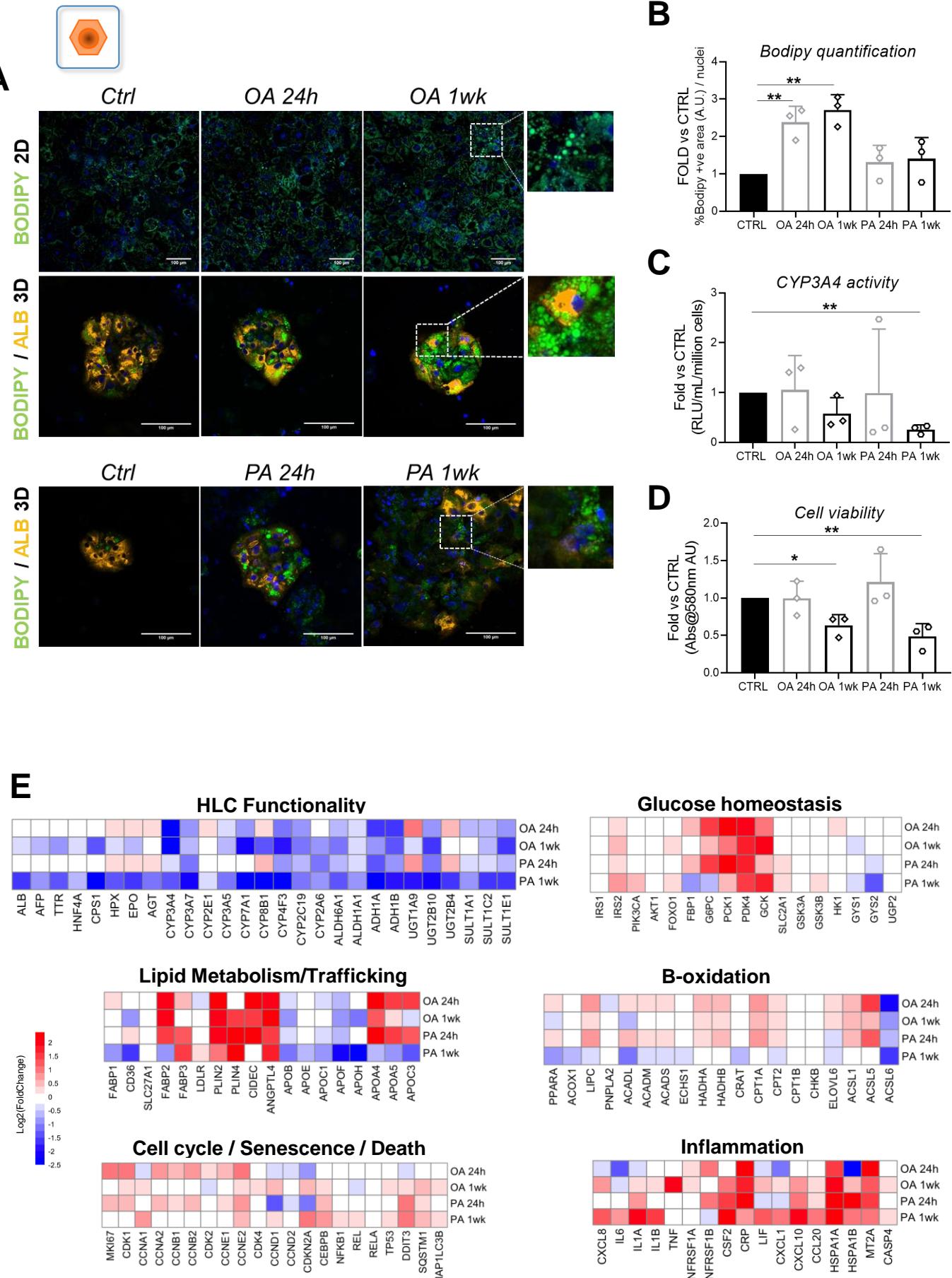
696 [35] Wandrer F, Liebig S, Marhenke S, Vogel A, John K, Manns MP, et al. TNF-Receptor-1
697 inhibition reduces liver steatosis, hepatocellular injury and fibrosis in NAFLD mice. *Cell Death Dis*
698 2020;11:212.

699 [36] Sinton MC, Meseguer-Ripolles J, Lucendo-Villarin B, Wernig-Zorc S, Thomson JP, Carter RN,
700 et al. A human pluripotent stem cell model for the analysis of metabolic dysfunction in hepatic
701 steatosis. *iScience* 2021;24:101931.

702 [37] Graffmann N, Ring S, Kawala MA, Wruck W, Ncube A, Trompeter HI, et al. Modeling
703 Nonalcoholic Fatty Liver Disease with Human Pluripotent Stem Cell-Derived Immature Hepatocyte-
704 Like Cells Reveals Activation of PLIN2 and Confirms Regulatory Functions of Peroxisome Proliferator-
705 Activated Receptor Alpha. *Stem Cells Dev* 2016;25:1119-1133.


706 [38] Tilson SG, Morell CM, Lenaerts AS, Park SB, Hu Z, Jenkins B, et al. Modeling PNPLA3-
707 Associated NAFLD Using Human-Induced Pluripotent Stem Cells. *Hepatology* 2021;74:2998-3017.

708 [39] Hammoutene A, Rautou PE. Role of liver sinusoidal endothelial cells in non-alcoholic fatty
709 liver disease. *J Hepatol* 2019;70:1278-1291.


710 [40] Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T, O'Sullivan JF, et al. Generation of
711 vascular endothelial and smooth muscle cells from human pluripotent stem cells. *Nat Cell Biol*
712 2015;17:994-1003.

713

Figure 1

Figure 2

Figure 3

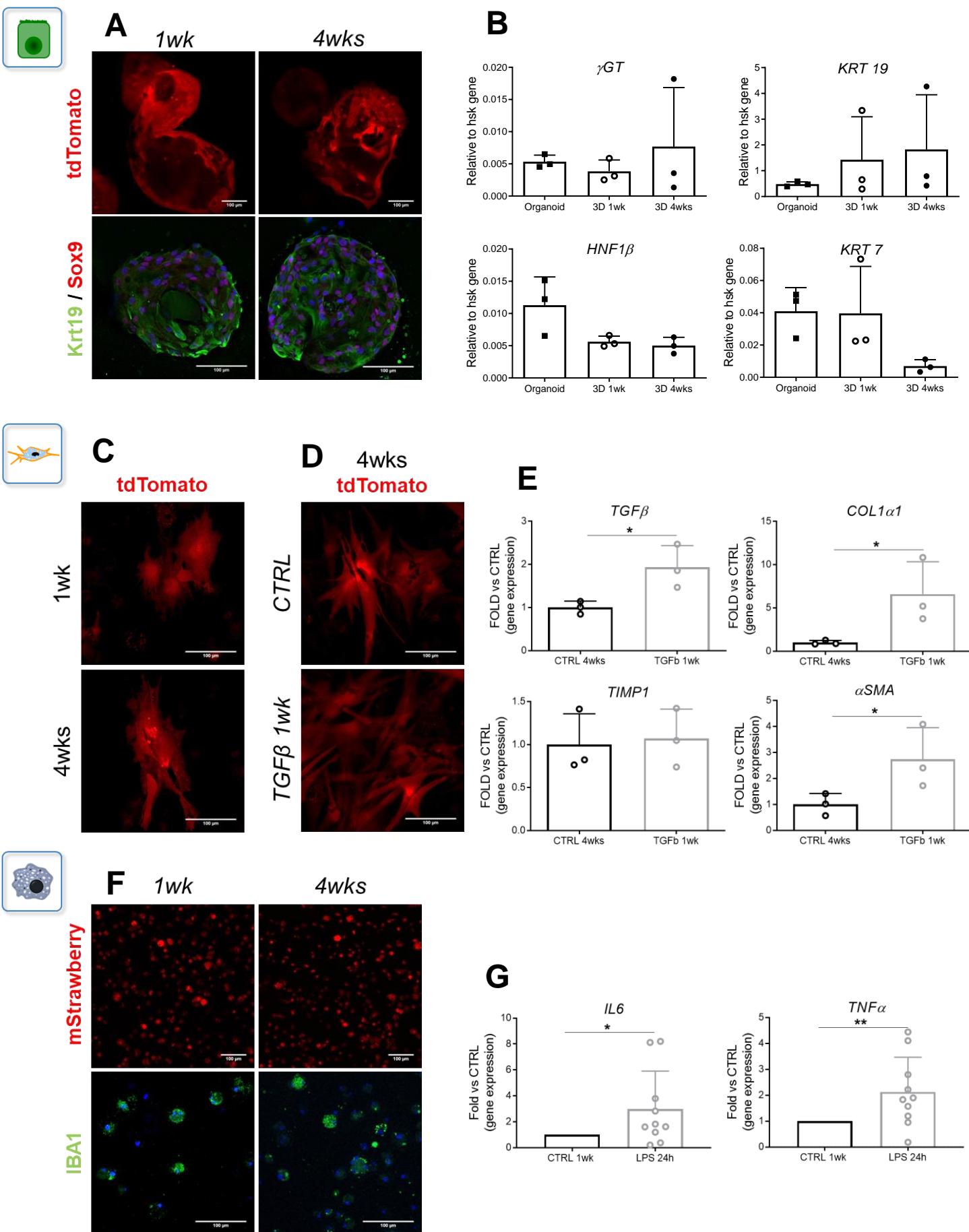
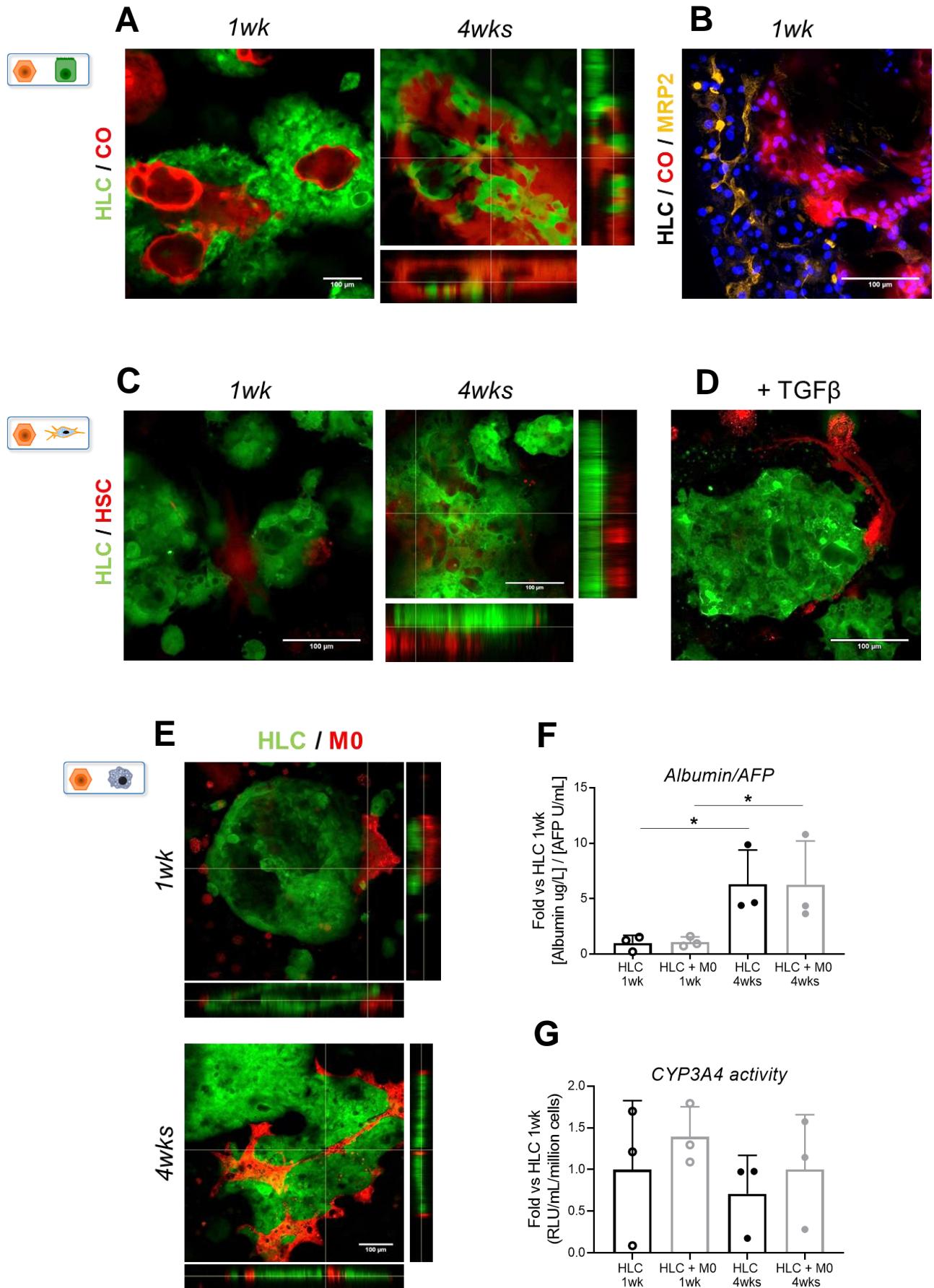



Figure 4

Figure 5

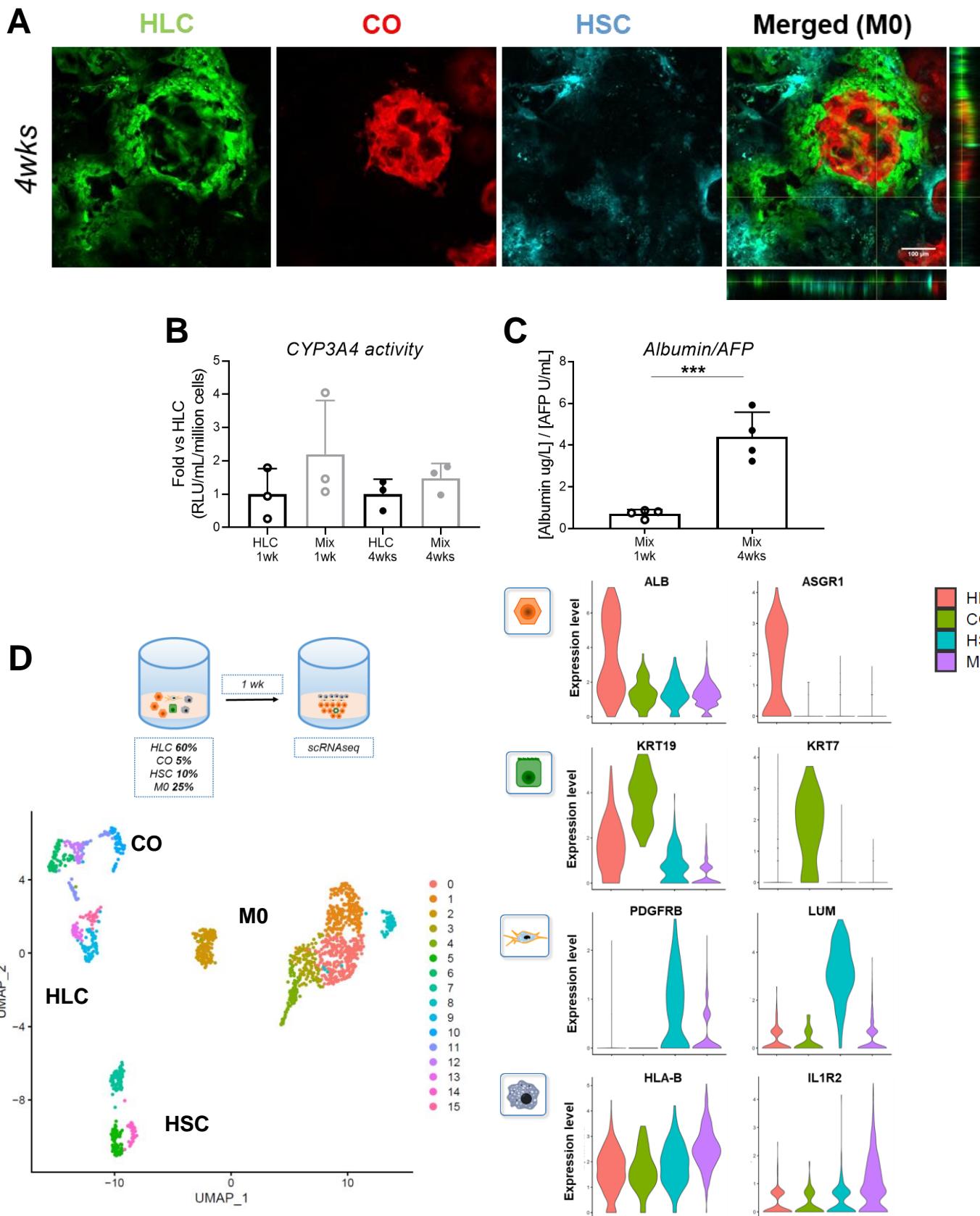
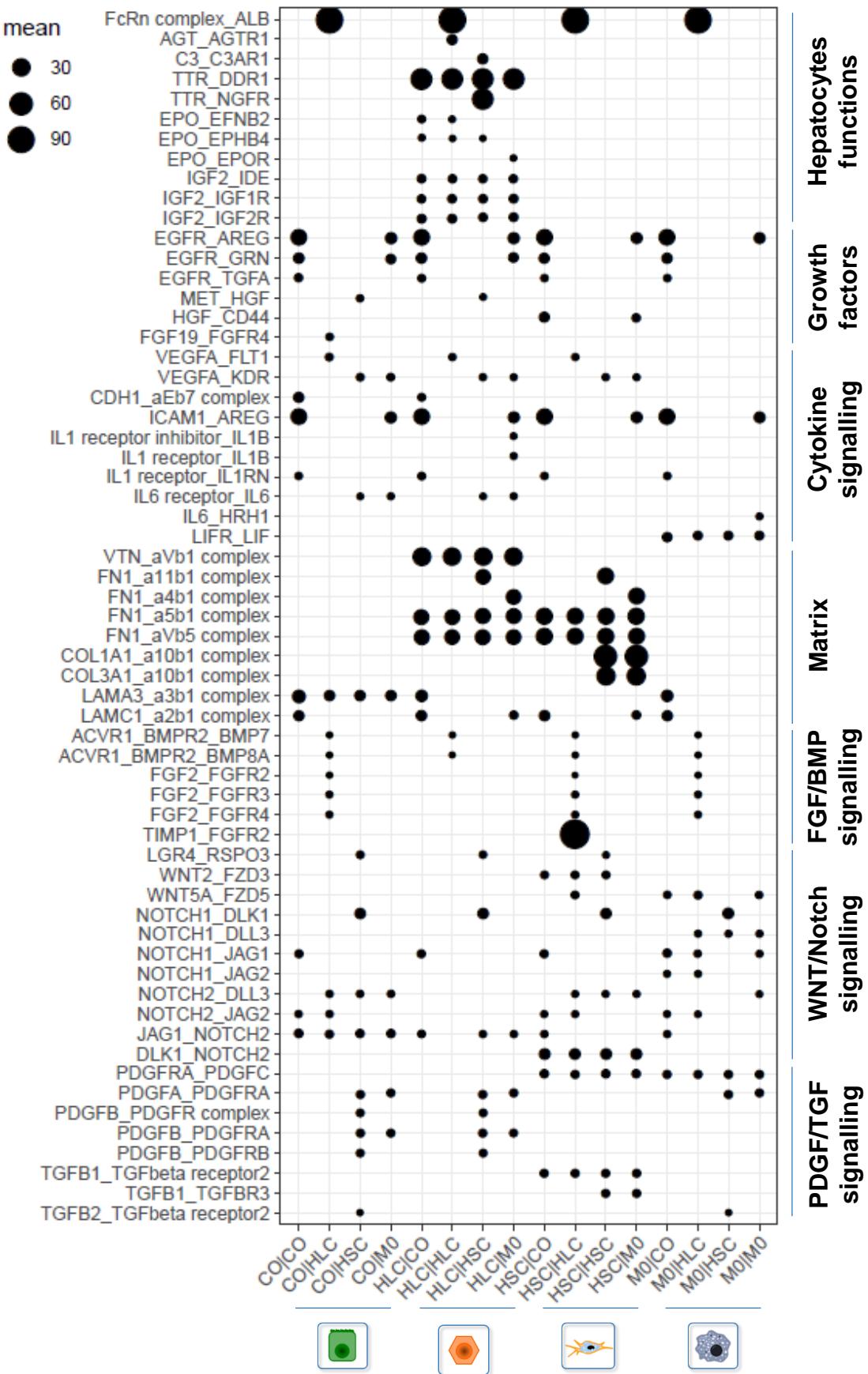
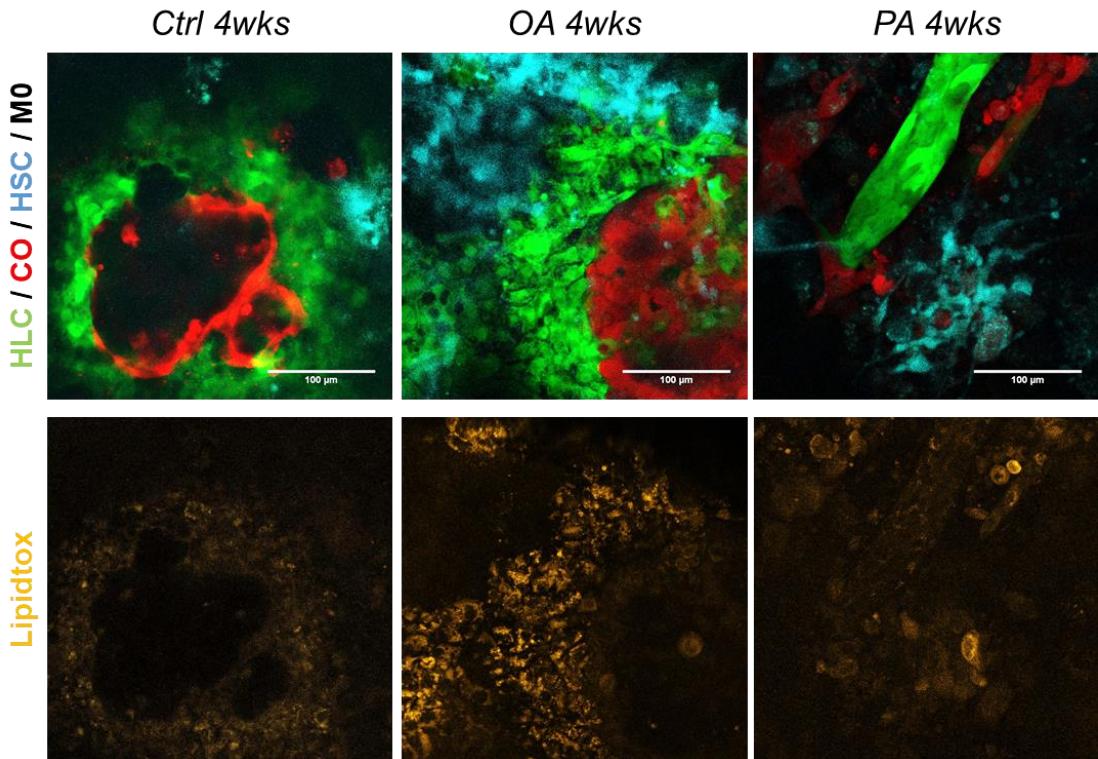
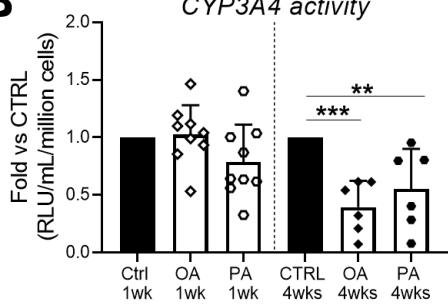
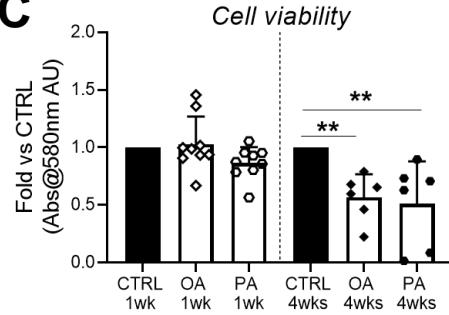
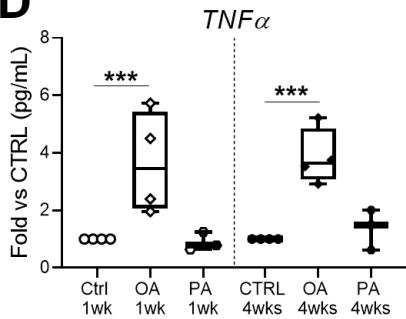


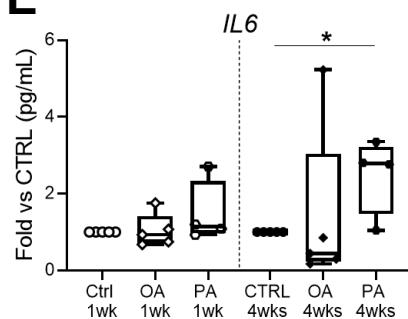
Figure 6

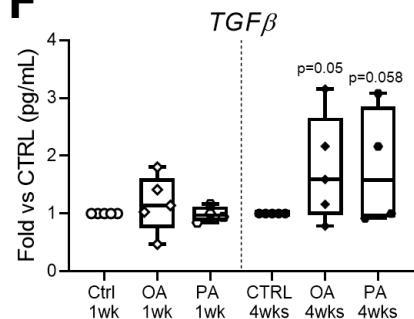




Figure 7


A


B


C


D

E

F

