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Abstract: Huntingtin protein, mutated in Huntington disease, is implicated in nucleic acid-
mediated processes, yet evidence for direct huntingtin-nucleic acid interaction is limited. Here we
show wildtype and mutant huntingtin co-purify with nucleic acids, primarily RNA, and interact
directly with G-rich RNAs in in vitro assays. Huntingtin RNA immunoprecipitation sequencing
from patient-derived fibroblasts and neuronal progenitor cells expressing wildtype and mutant
huntingtin revealed NEATI as a significantly enriched transcript. Altered NEATI levels were
evident in Huntington’s disease cells and postmortem brain tissues, and huntingtin knockdown
decreased NEAT]1 levels. Huntingtin co-localized with NEATT in paraspeckles, and we identified
a high-affinity RNA motif preferred by huntingtin. This study highlights NEAT1 as a novel
huntingtin interactor, demonstrating huntingtin’s involvement in RNA-mediated functions and
paraspeckle regulation.

One-Sentence Summary: HTT is an RNA-binding protein that interacts with G-rich sequences,
including those in the paraspeckle IncRNA NEATI.
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Huntington’s disease (HD) is a rare autosomal dominant neurodegenerative disorder with a wide
range of motor, cognitive, and psychological symptoms (/, 2). HD is caused by expansions of a
naturally occurring CAG (encoding polyglutamine) repeat tract in the Huntingtin (H77) gene (3).
The HTT gene has 5-35 CAG repeats in unaffected individuals while, mutant HTT (mHTT)
contains >36 CAG repeats (4, 5). CAG repeat length is the primary driver of age-of-onset in HD,
with other genetic factors such as polymorphic variants within DNA repair genes and repeat tract
purity, also influencing the age-of-onset and progression of the disease (6, 7).

HTT is a 348 kDa HEAT-repeat protein thought to serve as a scaffold for protein-protein
interactions (8, 9). Among these, HAP40 is the only structurally and biophysically characterized
protein interactor that forms a stable hetero-dimer with both HTT and mHTT (/0-12). Notably,
the N-terminal HEAT domain has a positively charged solvent-exposed surface, which has been
postulated to act as a binding site for nucleic acids (/7). Indirectly, HTT has been implicated by
colocalization experiments in RNA transport (/3, /4) and may interact with its own mRNA (735).

Although evidence for direct interaction of HTT with RNA is limited, there is significant literature
implicating HTT in gene expression and stress responses through mechanisms that could involve
HTT-RNA interactions. Furthermore, RNA binding proteins like FUS consists of prion-like
domains (PLDs) enriched in disordered regions with low sequence complexity, are also implicated
in the formation of liquid-liquid phase separation (LLPS) (/6). Similar to this, exon 1 of HTT
(HTTex1), comprising polyQ and proline-rich prion-like domain (PLD) regions, is known to
undergo LLPS and transition to form higher-ordered assemblies, both in vitro and in cells (17, 18).
Both wildtype (WT) and mutant HTTex1 associate with Ago2 in P-bodies, suggesting a potential
role for HTT in RNA-mediated gene silencing (/9). Additionally, HTT functions in the nucleus
and subnuclear speckles, contributing to transcription repression and RNA processing (20). During
oxidative stress, HTT translocates to the nucleus, colocalizing with SC35+ nuclear speckles (27).
Associations with Caprin-1 and G3BP1, stress granule markers, could suggest a role for HTT in
regulating RNA processing and translation under stress (22, 23). These findings suggest HTT's
involvement in LLPS with proteins and RNA, potentially impacting cellular RNA-dependent
processes such as gene regulation and stress response.

To better understand HTT’s potential role in RNA mediated processes we used biophysical,
biochemical, and cell-based assays to investigate the interaction of HTT and mHTT with RNA.
We demonstrate direct interaction between HTT and RNA, identifying NEAT1 as a major HTT-
binding RNA in cells, supporting a role for HTT in RNA-mediated stress responses involving
NEATI1-mediated nuclear paraspeckles.

RESULTS
HTT-HAPA40 interacts with RNA in vitro

We previously reported biophysical and structural studies of recombinant HTT (polyQ length of
23, or Q23) and expanded mHTT (Q54), and their HTT-HAP40 complexes, a biologically
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important proteoform of HTT and an obligate interaction partner of HTT (77, 24, 25). An
intriguing observation was that both HTT and mHTT samples, extracted from either insect or
mammalian cells via one-step affinity purification, co-purified with large amounts of nucleic acid,
and additional purification steps were required to yield highly pure (>98%) HTT protein (fig.
S1A).

Using a 5’-FAM labeled, single stranded (ss) RNA and 100 bp double stranded DNA (dsDNA)
oligonucleotides with the same random sequence (Table 1), we conducted electrophoretic mobility
shift assays (EMSA) with fully purified, recombinant HTT-HAP40 proteins (fig. S1A). We
observed protein concentration-dependent band shifts indicating formation of a complex of HTT-
HAP40 with ssSRNA, while dsSDNA of the same sequence produced no shift. (Fig. 1A, and fig.
S1B). Quantitative fluorescence polarization (FP) assays using the same oligonucleotides
confirmed a consistent trend, with HTT-HAP40 binding to ssSRNA (Kp = 1 + 0.6 uM), while no
significant binding to dsDNA (Kp > 15 uM, highest titration concentration) (Fig. 1B, and fig.
S1C). We further validated this finding using surface plasmon resonance (SPR) analysis, yielding
a similar trend with Kp values of 0.4 £ 0.2 uM and 2.0 £ 0.2 uM, for ssRNA and dsDNA,
respectively (Fig. 1C, and fig. S1D). Similar binding results were obtained for mHTT-HAP40
(Q54) compared to the wildtype protein for both ssRNA (KD = 0.5 + 0.3 uM) and dsDNA (KD >
15 uM) oligonucleotide substrates. These findings suggest limited influence of the polyglutamine
tract on the observed interactions.
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Fig 1. HTT protein binds RNA and prefers G-rich RNA sequences. (A) Representative EMSA
images of increasing HTT-HAP40 Q23 protein (0—15 uM) binding with 1 uM of 100-mer random
ssSRNA. RNA is in red. EMSA, electrophoretic mobility shift assay. (B) Representative FP binding
curve of HTT-HAP40 Q23 and 100-mer random ssRNA (Kp = 1 £ 0.6 uM). (C) Representative
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SPR binding curve and sensorgram of HTT-HAP40 Q23 and 100-mer random ssRNA (Kp = 0.4
+ 0.2 uM). (D) Schematic showing the protocol for HTT RIP-seq in isogenic NPCs and fibroblasts.
(E-F) GO enrichment analysis for biological process (BP) in both WT and expanded isogenic
NPCs (E) and fibroblasts (F). (G-H) MEME identified HTT-protein binding RNA motif sequences
captured by isogenic NPC (G) and fibroblast (H) RIP-seq. (I) Representative FP binding curve of
HTT-HAP40 Q23 and 100-mer random ssRNA (Kp =1 £ 0.6 uM) and motif RNA (Kp =40 £ 8.5
nM). (J) Representative FP binding curve of HTT-HAP40 Q23 and motif RNA, DNA form of
motif RNA (Kp > 15 uM), low IGV (Kp > 15 uM) and G to C mutated RNA (Kp > 15 uM). NC,
not calculated, outside of range of protein concentrations tested. (K) Representative EMSA image
of increasing HTT-HAP40 Q23 protein (0—15 uM) binding with 1 pM of 20-mer rG. RNA is in
red. EMSA, electrophoretic mobility shift assay.

HTT protein binds RNA and prefers G-rich RNA sequences.

To gain insight into the endogenous RNAs bound by HTT in disease-relevant cells, we performed
HTT RNA-immunoprecipitation sequencing (RIP-seq) in control and patient-derived fibroblast
cells and isogenic neural progenitor cells (NPCs). Specifically, one WT (Q19/Q17) and two HD
(Q40/Q18 and Q43/Q19) patient-derived fibroblast cell lines (27) and WT (Q30/Q19) and two
isogenic HD NPC cell lines representing adult (Q45/Q19) and juvenile (Q81/Q27) disease-onset
patients (26) were used. Cells were UV-crosslinked to form covalent bonds between RNA and
protein, followed by immunoprecipitation (IP) of HTT and purification of its associated RNA
transcripts and then sequencing of the prepared RNA libraries (Fig. 1D, and fig. S2, A and B).
Principle component analysis (PCA) showed grouping distinctions between input and IP samples,
as well as the separation of WT and HD samples in both NPCs and fibroblasts (fig. S2, C and D).

In total, 177 and 541 RNA transcripts were commonly and significantly enriched across all the
WT and HD IP samples of NPCs (fig. S3, A and B) and fibroblasts (fig. S3, C and D),
respectively. A subset of 53 transcripts were common between the isogenic NPCs and fibroblasts,
including NEAT1, ADARBI, EIF4A1, HOTAIRM1, BCL6, DOHH, CHKB as well as certain
other RP11 transcripts, micro-RNAs, and mitochondrial-encoded RNAs. We found significant
enrichment of HTT RNA transcript in WT NPCs, similar to reported earlier (/5), however, it was
not enriched in any other samples. Gene ontology (GO) enrichment analysis for biological process
(BP) and cellular components (CC) showed that the enriched transcripts were associated with
pathways involved in mitochondrial ATP (MT-ATP) synthesis-coupled electron transport, RNA
splicing, spliceosome machinery, 5’-splice site recognition, and several other mitochondrial
functional pathways such as oxidative-phosphorylation (OXPHOS), electron transport chain and
cellular respiration (Fig. 1, E and F, and fig. S3, E and F).

To delve deeper into HTT-RNA interactions, we sought to determine whether HTT exhibits a
preference for binding to specific RNA sequence(s). MEME motif sequence analysis (27)
identified a G-rich sequence HTT-binding RNA motif (GGAAGGCGAGGC) in both NPCs (Fig.
1G) and fibroblasts (Fig. 1H). To evaluate direct binding of HTT to the identified G-rich RNA
motif we used synthetic, 5’-FAM labeled, 25-mer oligonucleotides bearing the identified RNA
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motifs, in a fluorescence polarization (FP) assay where HTT proteins were titrated (Table 1). HTT-
HAP40 Q23 exhibited binding to the identified RNA motif, (labeled as Motif-RNA) with a Kp
value of 40 + 8.5 nM compared to the same 100b random ssRNA used above (Fig. 1, A to C) with
aKp=1=0.6 uM (Fig. 1I). We also assessed the binding affinity of HTT-HAP40 Q23 to the
RNA motif sequence within a DNA backbone, (labeled as Motif-DNA) which indicated a much
weaker binding affinity (Kp= not calculated), supporting HTT’s preference for RNA over DNA
for this motif (Fig. 1J). We further tested a region of NEAT1 that had no peaks enriched in our
RIP-seq data (labeled as low IGV Control), which also showed weak binding to HTT-HAP40 Q23
(Fig. 1J).

Considering the preferred RNA motifs were all G-rich, a sequence that is prone to secondary
structures, we conducted circular dichroism (CD) spectroscopy analysis of the motifs (Table 1) to
assess for potential secondary structures. We found that the motif with either an RNA or DNA
backbone was likely formed into G-quadruplexes (fig. S4A), which could indicate that HTT has a
preference to bind to these structures. To test if HTT’s binding is influenced by G-quadruplex
structured elements, we replaced three guanines (G’s) in the RNA motif with cytosines
[(GCAAGCCGAGCQ)] (labeled as G to C mutation); which would disrupt the ability of the
sequence to form a G-quadruplex (Table 1). This G to C mutation resulted in significantly reduced
binding of HTT-HAP40 Q23 (Kp = greater than highest concentration tested (Fig. 1J).

To validate this finding, we conducted an EMSA assay using 20-mer ssRNA substrates (rG, rU,
rC, and rA) (Table 1) with increasing concentrations of HTT-HAP40 Q23 protein. Our EMSA
results revealed formation of RNA-protein complexes in the presence of rG (Fig. 1K). However,
no significant RNA-protein complex formation was observed in the presence of rU, rC, and rA
substrates (fig. S4, B to D). Thus, our study suggests that HTT-HAP40 Q23 protein exhibits a
preference for binding G-rich RNA motifs, aligning with our motif analysis and FP assay results.
These findings contribute to our understanding of the molecular interactions involving HTT-
HAP40 Q23 and its RNAs, particularly those with G-quadruplex forming sequences.

Long non-coding RNA NEATT1 is a highly enriched HTT-bound transcript

The long non-coding RNA (IncRNA) NEAT1 was consistently the topmost significantly enriched
transcript across all IP samples from different genetic backgrounds (Fig. 2, A to C, and fig. S5, A
to C). Previous studies have highlighted the presence of abundant and conserved G-quadruplex
motifs in NEAT1, with RNA-binding proteins such as NONO exhibiting specificity for these
motifs (Simko et al., 2020). NEAT]1 displayed a consistent enrichment pattern across all RIP-seq
samples (Fig. 2D). We used RT-qPCR to quantify the enrichment of the NEAT]1 transcript in the
IP fractions compared to the cytoplasmic RNA encoding the 40S ribosomal protein RPS28, as well
as U6, and MALATI, which are exclusively nuclear transcripts. A robust signal was detected for
NEATI transcripts in the IP fractions compared to the housekeeping genes RPS28, U6 and
IncRNA MALAT]I, used as a negative control (Fig. 2E, and fig. S4, D and E).
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Given that the HTT-binding RIP-seq motif featured G-rich sequences (Fig. 1, G and H), and our
recombinant HTT-HAP40 preferred G-rich ssRNA and G-quadruplexes (Fig. 1, I to K) we
searched our NEAT1 RIP-seq data for for G-rich sequences. Using the QGRS mapper tool
(https://bioinformatics.ramapo.edu/QGRS/index.php), employing parameters similar to Simko et
al., we identified putative G-quadruplex-forming sequences in NEAT1 2. Analyzing NEATI1
enrichment profiles in NPC IP samples and QGRS data on the UCSC genome browser, we
observed enrichment of HTT at multiple regions across NEAT1. Notably, these regions appeared
to largely overlap with G-quadruplex-forming segments (Fig. 2F). To further explore the
interactions between HTT and NEAT1 RNA, we synthesized four in vitro transcribed sense RNA
fragments of NEATI1 (Fig. 2F), following the previously described protocol (28). Using an EMSA
assay of the resultant transcripts, band shifts were observed in a concentration dependent manner
with increasing concentration of HTT-HAP40 Q23 protein, providing further evidence of a direct
interaction between HTT protein and IncRNA NEAT]1 (Fig. 2G).
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Fig 2. LncRNA NEATI1 as a novel HTT binding substrate. (A-C) Volcano plots showing
IncRNA NEAT]I as a significantly enriched target in the WT and expanded isogenic NPCs IP
samples (Log: fold change cutoff: 1; p-value cutoff: 0.05). (D) Integrative Genomic Viewer
snapshot showing the enrichment profile of NEATT1 across individual NPC and fibroblast IPs after
autoscaling to their respective Inputs. (E) RT-qPCR validation of NEAT1 transcript enrichment in
WT and expanded NPC IP samples compared to U6 control gene. Data was analyzed using 2-way
ANOVA and shown as mean +s.d.; n=3. ***P < 0.001. (F) Isogenic NPCs Q30/Q19 IP data
mapped to NEAT1. Quadruplex-forming G-rich sequences (QGRS) mapped to NEAT1 are shown
as tall bars. In vitro transcribed NEAT1 fragments are mapped to the NEATI gene. (G)
Representative EMSA images of increasing HTT-HAP40 Q23 protein (0—15 uM) binding with
250 nM of NEAT1 RNAs in red.
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NEAT1 levels in NPCs, patient derived fibroblasts, and human post-mortem brain tissues
are altered in HD

NEATI levels are reported to be dysregulated in various neurodegenerative diseases, including
HD (29-32). Nevertheless, the association between NEAT1 and HD pathology remains unclear,
with conflicting reports indicating either an increase or decrease in NEAT1 expression levels in
various HD models (32, 33).

The NEATI locus produces two isoforms: NEATI 1 (short, ~3.7kb) and NEATI 2 (long,
~22.7kb), (Fig. 2, D and E) with NEAT1 2 being an essential component of paraspeckles (28,
34). We therefore assessed the levels of NEATI in the isogenic NPC allelic series, with RT-qPCR
using NEAT1 isoform-specific primers. Because the NEAT1 1 sequence is identical to the 5’
sequence of the longer NEAT1 2, it is difficult to distinguish between the two (35). Therefore,
primers that amplify the 5’ region of the gene will report on both NEAT1 1 and NEAT1 2 and
such results are referred to as total NEAT1 throughout the text, whereas NEAT1 2 represents the
long isoform (see also Fig. 2D, 2F). The qPCR results indicated that both total NEAT1 and
NEATI1 2 levels were significantly lower in the polyQ-expanded NPCs compared to WT (Fig.
3A). Similarly, gPCR of WT and HD fibroblast cell lines showed a significant reduction of NEAT1
in the HD cell lines compared to WT (Q21/Q18), with the homozygous HD cell line displaying
significantly lower NEAT1 levels compared to the heterozygous HD cell lines (Fig. 3B).

Subsequently, we conducted qPCR wusing cDNA from three distinct brain regions
(putamen/caudate nucleus, frontal pole, and cerebellum) derived from postmortem brain tissues of
HD patients kindly provided from the Neurological Foundation Human Brain Bank in the Centre
for Brain Research, University of Auckland with full consent from the donor families. These
tissues were collected from HD patients diagnosed with different grades of disease (Table 2). To
normalize the RT-qPCR data, we utilized age- and sex-matched unaffected brain tissues (Table
2). The qPCR results suggest a potential relationship between NEAT1 and human tissues from
different HD grades, where we observed lower levels of both total NEAT1 and NEAT1 2 in HD
grade 1, in all three brain regions. Interestingly, the NEAT]1 levels seem to increase as the disease
progresses from grade 1 to grade 2, especially the putamen and frontal pole (Fig. 3, C to E, and
fig. S6). This might potentially reflect the heightened stress on neurons. However, NEAT1 levels
appear to subsequently decrease in grade 3, which could possibly be attributed to either neuronal
loss or the presence of mutant HTT (mHTT) (Fig. 3, C to E, and fig. S6). Larger sample sizes
from different brain regions of unaffected and HD patients across different grades are required for
robust statistical analysis and to draw any conclusions.
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Fig 3. Altered levels of IncRNA NEAT1 across WT and expanded cell lines and HD human
brain samples (A-B) RT-qPCR quantification of expression levels of total NEAT1 and long
NEAT1 (NEATI1 2) isoform in WT and expanded isogenic NPCs (A) and patient-derived
fibroblasts (B). U6 was used as control gene and data was analyzed using 2-way ANOVA. Data

was

analyzed using two-way ANOVA. Data are shown as mean +s.d.; n=3. ***P <(0.001, **P <

0.01. (C-E) RT-qPCR quantification of total NEATI and long NEAT1 (NEAT1 2) expression
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levels in putamen/caudate nucleus (C), frontal pole (D), and cerebellum (E) regions of human
unaffected and HD patient (at different HD-grades) brain. Age and sex matched unaffected brain
tissues for each region were used to normalize data (gray). » = 5 HD and unaffected
individuals/group/tissue, 3 technical replicates/person. Dots indicate striatal neuropathological
grade (HD 1-3). U6 was used as a control gene. See fig. S6 for an alternative figure of the same
data. No statistics applied due to limited patient sample size.

HTT levels influence IncRNA NEATT1 levels

To understand whether there is a relationship between HTT and NEAT1 levels we knocked down
HTT in WT (Q21/Q18) and two HD (Q43/Q17, Q57/Q17) fibroblast cell lines using both siRNAs
(fig. S7TA, C to E) and shRNAs (Fig. 4, A to C). HTT knockdown resulted in a reduction of both
isoforms of NEAT1 in both WT and HD fibroblasts. We also assessed NEAT1 levels in two control
cell lines; HEK293T cells expressing WT HTT and a derivative cell line in which full-length HTT
was entirely knocked out (36) (fig. S7, B to F), as well as an hTERT immortalized RPE1 cell line,
which is Tet-inducible for HTT knockdown (Fig. 3, A to D). Again, we observed that NEATI
levels were reduced upon knockdown of HTT in RPE1 cells and in HEK293T HTT null cells
compared to the parental cells, expressing normal HTT (fig. S7F). Taken together these data
suggest that the levels of HTT protein positively correlated with the abundance of NEAT1 IncRNA
isoforms in a variety of cell lines.

We hypothesized that HTT protein may be contributing to the stability of NEAT1 IncRNA, thereby
reducing its half-life under conditions of low HTT levels. To test this possibility, we used
actinomycin-D to inhibit transcription in control and HTT knockdown RPE1 cells and assessed
NEATI1 levels over time via qPCR. The abundance of both NEATI isoforms decreased
dramatically within 2-4 hours with a significantly rapid reduction after HTT knockdown compared
to the control cells expressing normal HTT (Fig. 4, E and F). These findings suggest that HTT
plays a crucial role in maintaining the stability of NEAT1 RNA following transcription.
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Fig 4. HTT knockdown reduces NEAT1 levels and HTT stabilizes IncRNA NEATI. (A)
Western blot analysis of HTT knockdown by shRNAs in WT (Q21/Q18), HD (Q43/Q17)
fibroblast and RPE1 cell lines (B-D) RT-qPCR quantification of IncRNA NEAT1 isoforms upon
HTT knockdown by shRNAs in WT (Q21/Q18) and HD (Q43/Q17) fibroblasts and RPE1 cell
lines. (E-F) Graphs depicting the decay of Total NEAT1 (E) and NEAT1 2 (F) in shGFP control
and shRNAs HTT-knockdown (KD) RPE1 cells following Actinomycin D treatment. U6 was used
as control gene and data were analyzed using 2-way ANOVA. Data are shown as
mean +s.d.; n=3. ***P <(.001, **P < 0.01, *P < 0.05, ns, not significant.

HTT and NEAT1 co-localize in RPE1 and fibroblast cell lines.

To further understand the relationship between HTT and NEAT1, we used fluorescence in situ
hybridization (FISH) and confocal microscopy to visualize and quantify NEATI in cells. As
previously reported (Naganuma & Hirose, 2013) we observe both isoforms of NEATT are retained
in the nucleus in discrete paraspeckles (Fig. 5). Using RNA probes detecting either total NEAT1
(5°-NEATI1) or only NEATI1 2 (middle-NEAT1) we quantified the number of NEATI
paraspeckles in WT fibroblast cells (Q21Q18) before and after HTT knockdown. The number of
total NEAT1 and NEAT1 2 foci were significantly reduced after HTT protein knockdown in
comparison to an shGFP control (Fig. 5, A and B, and fig. S8, A and B). These data suggest that
HTT contributes to NEAT1-mediated paraspeckle formation. Moreover, quantification of NEAT1
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foci number and intensity using FISH revealed a significant reduction in the homozygous HD
fibroblast cell line (Q50/Q40) compared to the WT (Q21/Q18) and heterozygous HD (Q43/Q17)
fibroblasts (Fig. 5C, and fig. S8, C to E), mirroring the qPCR results (Fig. 3B), and suggesting a
potential deficit in NEAT1-mediated paraspeckles in homozygous HD cells.

Our HTT-IP data suggests that HTT can bind to both isoforms of NEAT1 (Fig. 2B). To confirm
HTT-NEATI interaction, we combined immunofluorescence (IF) with RNA-FISH to examine
whether HTT co-localizes with both isoforms, 5’- and middle-NEAT1 RNA within the cells.
Nuclear HTT can also be visualized by immunofluorescence (IF) in distinct nuclear puncta, using
an antibody that targets HTT phosphorylated serine residues 13 and 16 (phospho-N17) (8, 21, 37).
We observed co-localization of HTT with both 5°- and middle-NEATT1 probes in WT (Q21/Q18),
heterozygous HD (Q43/Q17) as well as homozygous HD (Q50/Q40) fibroblasts (Fig. 5D, and fig.
S9A). Co-localization was also observed in RPE1 cells (fig. S9B). These results further support
direct HTT-NEAT]1 interaction and suggest HTT participates in most NEAT1-positive nuclear
PS:s.

We performed Pearson’s correlation coefficient (PCC) analysis on co-localization images to assess
differences between WT (Q21/Q18) and HD (Q43/Q17, Q50/Q40) fibroblast cell lines. The
analysis revealed no significant distinctions between the WT and HD cell lines (fig. S9C).
Subsequently, we quantified the percentage of NEATI foci co-localized with phospho-N17 HTT
in these cell lines, demonstrating that approximately 75-80% of NEAT1 foci co-localized with
HTT foci. Both HD cell lines exhibited a trend toward reduced co-localization. While statistical
significance was not consistently reached for the heterozygous HD (Q43/Q17) cells, the percentage
co-localization in homozygous HD (Q50/Q40) cells was significantly decreased compared to WT
(fig. S9D). Again, a stronger phenotype in the HD (Q50/Q40) cells suggests a deficit in NEAT1
paraspeckle-related functions for mHTT.

A large proportion of HTT protein also formed nuclear foci without co-localizing with NEAT].
Since, HTT is also known to associate with SC35+ nuclear speckles (27), NEAT1 foci are reported
to predominantly localize at the peripheries of SC35+ nuclear speckles (38, 39). Therefore, we
assessed if phospho-N17 HTT co-localized with both SC35+ nuclear speckles and NEATI1
paraspeckles. Confirming previous studies, we observed that phospho-N17 HTT co-localized with
SC35+ nuclear speckles, in addition to NEAT1 2 foci in RPE1 cells in RPE1 cells. (fig. S9E).
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Fig 5. HTT co-localizes with NEAT1. (A-B) Representative images (A) and quantification (B)
of NEAT1 2 positive foci in Q21Q18 fibroblast cell lines assessed by FISH. Scale bar = 10 um.
For statistical analysis of the NEAT1 2 RNA foci, CellProfiler software was used, and images
were processed using ImageJ (Fiji app). (C) Quantification of NEAT1 levels in Q21Q18 (WT),
Q43Q17 (heterozygous HD) and Q50Q40 (homozygous HD) fibroblast cell lines. Data represent
mean + sem. Data were analyzed by ordinary one-way ANOVA with Tukey’s test for multiple
comparisons. ***P < 0.001. (D) Phospho-N17 HTT antibody co-localizes with both 5’-NEAT1
and middle-NEAT1 probes in WT and HD patient derived fibroblast cells. Quantitation of HTT
and NEAT]1 co-localization performed using ImagelJ (Fiji app). Scale bar indicates Spum.

Discussion

Our study demonstrates for the first time the ability of HTT protein to directly bind to RNA species,
both in vitro and in cells, suggesting its potential involvement in RNA-mediated pathways. In our
HTT RIP-seq experiments, we identified a G-rich RNA motif sequence with high affinity for HTT-
HAP40, a major proteoform of HTT in cells (25). Our results also show that HTT interacts with
NEATI, which plays a crucial role as a structural scaffold for paraspeckles. Paraspeckles are
dynamic, membrane-less nuclear bodies that influence various fundamental cellular functions and
gene expression networks, particularly in response to stress induced by factors such as viral
infections, proteasome inhibition, and mitochondrial stress (16, 29, 40). NEAT1 harbors conserved
G-quadruplex motifs (47), aligning with our in vitro motif analysis and assays indicating the
preference of HTT for G-rich sequences.

Our study has unveiled a reduction of NEATI levels in HD cell models compared to their WT
counterparts. The reduction of NEAT]1 levels in HD isogenic NPCs may be attributed to decreased
expression of WT HTT protein, as previously observed in these cell lines with increasing polyQ
repeats (26). This aligns with our finding that HTT knockdown reduces NEATI1 levels,
underscoring an essential role of HTT in NEAT1-mediated paraspeckles. Furthermore, our results
indicate a decrease in NEAT1 foci numbers, intensities, and percentage co-localization in HD
fibroblasts, particularly in the homozygous HD cell line (Q50/Q40). Again, this decrease may be
linked to the reduced levels of HTT protein in these cell lines, as previously reported (27). NEAT1
binding proteins such as NONO, SFPQ, and RBM14 are crucial for paraspeckle biogenesis and
maintaining stability of the IncRNA, preventing it’s degradation (29). In our study, we discovered
that HTT also plays a role in stabilizing both short and long NEAT1 isoforms, similarly aiding in
preventing the degradation of NEATI.

Recent research has highlighted the multifaceted functions of paraspeckles, including the
regulation of various RNA-centric cellular processes like mRNA retention, A-to-I editing, mRNA
cleavage, and protein sequestration (35, 40, 42, 43). Our HTT RIP-seq analysis also revealed the
enrichment of other transcripts such as ADARBI1, EIF4A1 and DHXS58 helicases, that are involved
in stress response and other antiviral signaling pathways (44—48). Finally, we identified HTT RNA
transcripts enriched in the WT NPCs (Q30), highlighting its association with its own mRNA as
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reported previously (/5). Interestingly this enrichment was specific to the WT NPCs and not
observed in other [P samples. Our analysis also unveiled the enrichment of various other IncRNAs
such as HOTAIRM1, RP11, RPI1, and RP13, along with mitochondrial encoded RNAs in all
immunoprecipitated samples. These transcripts are linked to mitochondrial-functional pathways
and RNA regulatory mechanisms, including splicing, transcription, and translation regulation.
Cross-regulation between NEAT1-mediated paraspeckles and mitochondria has been reported
earlier, where depletion of NEAT1 significantly impacts mitochondrial dynamics and function by
altering the sequestration of mito-mRNAs within paraspeckles under stress conditions (40).
Mitochondrial dysfunction is an early pathological mechanism in HD, where mHTT disrupts
mitochondria releasing mito-RNAs into the cytoplasm. This, in turn, upregulates the innate
immune response in the most vulnerable cell type, striatal spiny neurons (49, 50). It is tempting to
envision that mHTT may lead to compromised paraspeckle function, resulting in a reduced ability
to cope with mitochondrial stress and potentially leading to cell death in relevant HD tissues. The
function and mechanisms underlying these interactions, as well as potential differences in WT and
HD conditions, warrants further investigation.
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Table 1. List of RNA and DNA substrates used in the study.

No. Substrate Name Nucleotide Sequence (5°—3°)

1. 100-mer random ssRNA RNA 100-mer:
CACGUAUGAGAAGGUAUUUGCCCGAUAAUCAAUACC
CCAGGCUUCUAACUUUUUCCACTCGCUUGAGCCGGC
UAGGCCUUUCUGCCCGAAGUUUCGAUGG

2. 100bp random dsDNA DNA 100-mer:
CACGTATGAGAAGGTATTTGCCCGATAATCAATACCCCA
GGCTTCTAACTTTTTCCACTCGCTTGAGCCGGCTAGGC
CTTTCTGCCCGAAGTTTCGATGG

DNA 100-mer comp:
CCATCGAAACTTCGGGCAGAAAGGCCTAGCCGGCTCA
AGCGAGTGGAAAAAGTTAGAAGCCTGGGGTATTGATTA
TCGGGCAAATACCTTCTCATACGTG

3. 20-mer tA RNA + 5 FAM 5’FAM - AAAAAAAAAAAAAAAAAAAA

4. 20-mer 1C RNA + 5 FAM 5’ FAM - CCCCCCCCcCc ceeecececececce

5. 20-mer 1G RNA + 5’ FAM 5’ FAM - GGGGGGGGGG GGGGGGGGGG

6. 20-mer 1U RNA + 5’ FAM 5’ FAM - UUUUUUUUUU UuUUUUUUUU

7. 25-mer Motif-RNA 5’FAM-AAUGGAAGGCGAGGCAGGCGGGCGU
8. 25-mer Motif-DNA 5’FAM-AATGGAAGGCGAGGCAGGCGGGCGT
9. 25-mer G to C Mutation RNA | 5’FAM-AAUGCAAGCCGAGCCAGCCGCGCGU

10. 25-mer Low IGV control RNA | 5 FAM-AGTTTTGAAATAGTCTAATTTATCT
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Table 2. Demographic characteristics of human postmortem brain tissue.

Subject Condition Age Sex CAG Region COD PMI
(years) (M/F) sampled (hr)
HD
1. HD-1 32 M 17/47  Put/CN, Submandibular 14
CB, FP squamous cell
carcinoma
2. HD-2 65 M 17/43  Put/CN, Renal failure 14
CB, FP
3. HD-2 70 F 17/42  Put/CN, HD 8
CB, FP
4. HD-3 64 M 27/42  Put, CB, Pulmonary 18
FP thromboembolus
5. HD-3 63 M 22/43  Put/CN, Pulmonary 16
CB, FP emblism
Control
1. Control 22 M 11/23 Asphyxia 21
2. Control 60 M 10/17  Put, CB, Ischaemic heart 17
FP disease
3. Control 78 F 18/19  Put/CN, Aortic aneurysm 20
CB, FP
4. Control 64 M 13/15  Put, CB, Ischemic Heart 15.5
FP Disease
5. Control 68 M 17/19  Put, CB, Coronary 22.5
FP atherosclerosis

HD Huntington’s disease, COD cause of death, PMI postmortem interval, Pus putamen, CN caudate
nucleus, CB cerebellum, FP frontal pole
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