

1 **ASPYRE-Lung: Validation of a simple, fast, robust and novel method for multi-variant**
2 **genomic analysis of actionable NSCLC variants in tissue**

3

4 Short title: Actionable genomic NSCLC biomarker panel validation of ASPYRE-Lung FFPE
5 tissue

6

7 Authors:

8 Ryan T Evans, Elizabeth Gillon-Zhang, Julia N. Brown, Katherine E. Knudsen, Candace King,
9 Amanda S Green, Ana-Luisa Silva, Justyna M. Mordaka, Rebecca N. Palmer, Alessandro
10 Tomassini, Alejandra Collazos, Christina Xyrafaki, Iyelola Turner, Chau Ha Ho, Dilyara Nugent,
11 Jinsky Jose, Simonetta Andreazza, Kristine von Bargen, Eleanor R. Gray, Magdalena Stolarek-
12 Januszkiwicz, Aishling Cooke, Honey Reddi, Barnaby W Balmforth, Robert J Osborne

13

14 *Biofidelity Inc., Morrisville, North Carolina, USA*

15

16 *Corresponding author. Dr Robert J Osborne, r.osborne@biofidelity.com, +44 1223 981750,
17 <https://orcid.org/0000-0002-1914-1239>

18

19 **Abstract**

20 Genomic variant testing of tumors is a critical gateway for patients to access the full potential of
21 personalized oncology therapeutics. Current methods such as next-generation sequencing are
22 costly and challenging to interpret, while PCR assays are limited in the number of variants they
23 can cover. We developed ASPYRE® (Allele-Specific PYrophosphorylation REaction) technology
24 to address the urgent need for rapid, accessible and affordable diagnostics informing actionable
25 genomic target variants of a given cancer. The targeted ASPYRE-Lung panel for non-small cell

26 carcinoma covers 114 variants in 11 genes (*ALK*, *BRAF*, *EGFR*, *ERBB2*, *KRAS*, *RET*, *ROS1*,
27 *MET* & *NTRK1/2/3*) to robustly inform clinical management. The assay detects single nucleotide
28 variants, insertions, deletions, and gene fusions from tissue-derived DNA and RNA
29 simultaneously. We tested the limit of detection, specificity, analytical accuracy and analytical
30 precision of ASPYRE-Lung using FFPE lung tissue samples from patients with non-small cell
31 lung carcinoma, variant-negative FFPE tissue from healthy donors, and FFPE-based contrived
32 samples with controllable variant allele fractions. The sensitivity of ASPYRE-Lung was
33 determined to be $\leq 3\%$ variant allele fraction for single nucleotide variants and insertions or
34 deletions, 100 copies for fusions, and 200 copies for MET exon 14 skipping. The specificity was
35 100% with no false positive results. The analytical accuracy test yielded no discordant calls
36 between ASPYRE-Lung and expected results for clinical samples (via orthogonal testing) or
37 contrived samples, and results were replicable across operators, reagent lots, runs, and real-
38 time PCR instruments with a high degree of precision. The technology is simple and fast,
39 requiring only four reagent transfer steps using standard laboratory equipment (PCR and qPCR
40 instruments) with analysis via a cloud-based analysis algorithm. The ASPYRE-Lung assay has
41 the potential to be transformative in facilitating access to rapid, actionable molecular profiling of
42 tissue for patients with non-small cell carcinoma.

43

44 **Introduction**

45

46 Worldwide, over 2 million people are diagnosed with lung cancer, which has the highest
47 mortality rate of any cancer (1). In particular, non-small cell lung carcinoma (NSCLC) has a five-
48 year survival rate of just 16% when patients with metastatic NSCLC are treated with
49 chemotherapy alone (2). Historically, standard of care treatment for NSCLC included platinum-
50 based cytotoxic chemotherapy. Prognosis has significantly improved following the emergence of

51 targeted therapies, which typically inactivate oncogenic growth factors and their receptors or
52 inhibit oncogenic tyrosine kinase pathways (3). In addition to higher therapeutic success rates,
53 targeted therapies are often better tolerated, with reduced side effects in patients thus improving
54 quality of life (4). There are now over 30 FDA-approved targeted therapies for NSCLC (5), each
55 targeting specific drivers of this disease, making treatment personalized to the genomic variants
56 of a patient's tumor.

57

58 In order to identify patients who are most likely to benefit from specific targeted therapeutics,
59 tools that enable the detection of multiple variants from a single small quantity patient sample
60 are required. Small core needle-biopsies yielding limited material are becoming increasingly
61 common, and repeated invasive specimen collection from patients for comprehensive genomic
62 testing is not feasible for many reasons (including safety and access to tissue). PCR and
63 fluorescence in-situ hybridization are commonly utilized diagnostic tools. However, both
64 methods test only a limited number of mutations, quickly leading to sample exhaustion, and thus
65 limiting the opportunity to identify the most appropriate targeted therapeutic option. Conversely,
66 next-generation sequencing (NGS) can analyze multiple variations from a single sample but is a
67 costly diagnostic tool, with complex laboratory processes, a suboptimal turnaround time (TAT),
68 and the need for comprehensive bioinformatics analysis, which can be difficult to interpret even
69 in a comprehensive cancer care setting. Moreover, as only a small subset of the mutations
70 detected by NGS are clinically actionable, detection of such a broad panel (including variants of
71 unknown significance) lends little benefit and added complexity to clinical decision making.
72 While patients wait for diagnostic results from molecular testing, non-targeted standard cytotoxic
73 chemotherapies are frequently administered to mitigate tumor progression and address patient
74 safety, which can compromise outcomes even if a prelude to targeted therapy (4). Similarly,
75 guidelines indicate that appropriate targeted therapy should take precedence over treatment

76 with an immune checkpoint inhibitor as concurrent or sequential immunotherapy and targeted
77 therapy can lead to toxicity (6). Overall, fewer than 50% of patients with NSCLC receive
78 appropriate therapy due to either not being tested, not receiving molecular variant testing results
79 in a timely manner, or not receiving appropriate treatment (7) . Life-saving targeted therapies
80 thus remain underutilized. Taken together, it is clear that access to rapid, robust actionable
81 genomic testing is critical in enabling patients to access the appropriate treatment in a timely
82 manner.

83

84 To address this genomic testing gap, we have recently described ASPYRE, a new technology
85 for the detection of DNA variants and RNA fusions (8,9). Previously, we have shown that
86 ASPYRE technology is highly sensitive, allowing the detection of specific DNA sequences to
87 single-molecule level (8) and RNA fusion detection of under six copies (9), alongside high
88 specificity and robustness against interference from carryover contaminants from formalin fixed
89 paraffin embedded (FFPE) samples (8,9).

90

91 The ASPYRE assay comprises four sequential enzymatic stages with reagent transfer between
92 each stage (Figure 1). Briefly, mutant and wild-type molecules are amplified by PCR (or RT-
93 PCR), and the remaining DNA polymerase is enzymatically digested. Amplicons are made
94 single-stranded via exonuclease digestion. Probes that perfectly match target variants hybridize
95 to mutant targets and are subject to pyrophosphorolysis using a DNA polymerase with no
96 exonuclease activity. Conversely, probes that hybridize to wild-type targets are mismatched,
97 and the mismatch prevents pyrophosphorolysis past the variant site. Probes that have been
98 subject to pyrophosphorolysis beyond the variant site are circularized by ligation and amplified
99 by an isothermal hyper-branched rolling-circle amplification reaction that is multiplexed to detect
100 amplification in four fluorescence channels. The ASPYRE assay is run on thermal cyclers and

101 quantitative real-time PCR (qPCR) instruments, which are readily available in most clinical
102 laboratories.

103

104 Herein, we describe the ASPYRE-Lung assay and its performance in our Clinical Laboratory
105 Improvement Amendments (CLIA)-certified laboratory. ASPYRE-Lung enables the concurrent
106 detection of 77 DNA variants, 36 RNA fusions and *MET* exon 14 skipping (S1 Table).

107 Importantly, the variants detected within the assay are clinically actionable and recommended
108 by the National Comprehensive Cancer Network (NCCN), College of American Pathologists
109 (CAP), Association for Molecular Pathology (AMP) and European Society of Medical Oncology
110 (ESMO) advanced NSCLC treatment guidelines. The assay uses DNA and RNA extracted from
111 FFPE tissue samples. The TAT from sample extraction to analysis can be completed within two
112 days. A single patient sample is analyzed in a total of 24 wells, allowing 16 patient samples to
113 be run on a 384-well instrument.

114

115 We assessed the performance of the ASPYRE-Lung assay across a range of parameters using
116 both contrived samples and FFPE patient lung tissue. The assay limit of detection (LoD) was
117 determined using serially diluted contrived DNA and RNA samples, and assay specificity (Limit
118 of Blank, LoB) was established using FFPE variant-negative tonsil tissue samples from patients
119 without a known cancer diagnosis. Analytical accuracy was assessed by determining variant
120 calls from FFPE NSCLC lung tumor tissue samples, and analytical precision assessed using
121 FFPE NSCLC lung tissue and variant-negative FFPE tissue. Additionally, common exogenous
122 contaminants (potential interfering substances) from nucleic acid extraction were added to DNA
123 and RNA samples to determine the effect on assay performance. Overall, this study
124 successfully validated the performance of the ASPYRE-Lung assay on FFPE lung tissue
125 samples in our CLIA-certified laboratory. Importantly, ASPYRE-Lung will address the gap

126 clinicians face in obtaining sensitive and actionable mutation testing for patients with NSCLC, at
127 a lower cost, faster TAT, and with minimal sample requirements.

128

129

130 **Results**

131

132 **The ASPYRE-Lung assay analyzes DNA and RNA derived from tissue**

133 The ASPYRE-Lung assay assesses the status of 114 actionable variants across 11 genes from
134 paired DNA (20 ng) and RNA (6 ng) derived from FFPE lung tissue in a single workflow.

135 Multiplexed targeted PCR amplification of 9 exons of DNA (KRAS exons 2 & 3, BRAF exon 15,
136 ERBB2 exons 17 & 20, EGFR 18, 19, 20, and 21) occurs alongside a separate but parallel RT-
137 PCR reaction to amplify any of 36 RNA fusion targets and one exon skipping event that are
138 present in the sample. The digestion, hybridisation, pyrophosphorolysis and isothermal
139 amplification steps are common to both DNA and RNA. The result for each variant detected by
140 the ASPYRE-Lung panel is interpreted from one of four fluorescent channel signals within each
141 of the 20 DNA and 2 RNA wells (these also incorporate a positive control well for DNA and RNA
142 respectively). An additional two wells are used as negative controls for the DNA and RNA
143 detection reactions. The fluorescent output from the qPCR instrument is analyzed through
144 ASPYRELab software to provide variant call results for each sample, including assay and
145 sample quality checks. Combined with patient information, the parsed results are used to
146 generate a clinical report that indicates presence or absence of a specific mutation (e.g. BRAF
147 exon 15 p.V600E) or class of mutation (e.g. ALK fusion) and the potential therapeutic options
148 available, without manual bioinformatic interpretation. An assay schematic is illustrated in Figure
149 1.

150

151 **Figure 1 Parallelised workflow of the ASPYRE-Lung targeted mutation panel.** Workflow
152 schematic, showing the four separate steps of the assay for DNA (Section 2, left) and RNA
153 (Section 2, right). While steps shown in section 2 differ technically between DNA and RNA,
154 there is no difference to the user in handling the assay, facilitating ease of use.

155

156 **The limit of detection of ASPYRE-Lung is \leq 3% VAF for SNV and indels, \leq 100 copies for**
157 **fusions, and \leq 200 copies for *MET* exon 14 skipping**

158 The LoD95 was established as the lowest test level with at least a 95% hit rate. This was
159 determined in two stages: first by estimating the value within a wide range of VAFs or copies for
160 each class-representative variant in the panel (DNA single nucleotide variations (SNV), DNA
161 insertions or deletions (indel), RNA fusion, and *MET* exon 14 skipping), and second by
162 confirming the estimated value with greater replicate testing power. During the estimation stage
163 all replicates were positive across all SNV and indel samples at 3% VAF, all fusion samples at
164 100 copies, and the *MET* exon 14 skipping mutation at 200 copies, although one false negative
165 was observed for a single exon 14 skipping replicate at 400 copies (S2 Table). The levels
166 chosen for the estimation phase may therefore have been conservative, and the LoD95 likely
167 lies below, or considerably below, these levels.

168

169 Secondly, the LoD95 was confirmed by testing 20 replicates of each variant at the estimated
170 LoD95 using a new reagent lot. A minimum of 17/20 (85%) positive results was required for
171 confirmation per variant as per CLSI EP17-A2 specifications with 20 replicates (an upper one-
172 sided 95% confidence limit of 93.8%). At this confirmation stage, 100% of replicates were
173 positive across all SNV and indel samples at 3% VAF, 100% of *RET*, *ROS1* and *NTRK1/2/3*
174 fusions were positive at 100 copies, and 100% of the *MET* exon 14 skipping mutation at 200

175 copies (Table 1). 90% (18/20) of replicates of the *ALK* fusion were positive at 100 copies.

176 Therefore, the confirmed LoD95 for SNV and indels was $\leq 3\%$, for fusions ≤ 100 copies, and for

177 *MET* exon 14 skipping mutation ≤ 200 copies (Table 1). The LoD of each variant was confirmed

178 at the lowest tested level, which suggests that the true LoD95 likely lies below (and possibly

179 considerably below) 3% VAF for SNVs and indels, 100 copies for fusions, and 200 copies for

180 *MET* exon 14 skipping.

181

182 **Table 1: LoD95 confirmation data**

					Confirmation positive hit rate	
Variant type	Gene	Exon	Protein variant	COSMIC ID	Sample (n=20, %)	Aggregated positive/total tests*
DNA					3% VAF	
SNV	KRAS	2	G12C	COSM516	100	80/80
	EGFR	21	L858R	COSM6224	100	
	EGFR	20	T790M	COSM6240	100	
	BRAF	15	V600E	COSM476	100	
Deletion	EGFR	19	E746_A750del	COSM6223	100	60/60
Insertion	ERBB2	20	Y772_	COSM20959	100	

			A775dup			
	EGFR	20	A767_V769dup	COSM12376	100	
RNA Fusions					100 copies	
Fusion	EML4-ALK	E13_A20	NA	COSF408	90	118/120
	KIF5B-RET	K15_R12		COSF1232	100	
	CD74-ROS1	C6_R34		COSF1200	100	
	TMP3-NTRK1	T8_N10		COSF1329	100	
	QKI-NTRK2	Q6_N16		COSF1446	100	
	ETV6-NTRK3	E5_N15		COSF571	100	
RNA Exon Skipping					200 copies	
Exon skipping	MET	14	L982_D1028 del	COSM29312	100	20/20

183 Results of testing 20 replicate contrived samples at levels determined by the LoD estimation (S2

184 Table). Confirmed LoD95 by mutation class (SNV, indel, fusion and MET exon 14 skipping)

185 were \leq 3% VAF for SNV and indel, \leq 100 copies for fusions, and \leq 200 copies for MET exon 14

186 skipping. *Results were aggregated across the given variant class. NA, not applicable.

187

188 **The ASPYRE-Lung assay in FFPE tissue is highly specific**

189 Next, the specificity of the assay was tested using DNA and RNA extracts from 30 FFPE tonsil

190 samples from donors with no history of cancer diagnosis. DNA and RNA from each FFPE

191 sample was extracted, and each nucleic acid tested in duplicate using two different reagent lots
192 for a total of 60 tests. One DNA sample was repeated once to obtain a valid result as the
193 internal positive control failed in the first run. There were no positive calls for any sample at any
194 of the 6840 variants analyzed by ASPYRE-Lung (Table 2); therefore, the false positive rate was
195 0% (0-6% Clopper-Pearson 95%CI) and the LoB of the test is zero (0-4.1% Jeffreys 95%
196 confidence interval).

197

198 **Table 2: Variants tested per sample during the LoB assessment**

Category	Number (n)		
	Tested per ASPYRE assay	Total Tested	Positive
Samples	1	60	0
Total nucleotide variants tested	114	6840	0
SNVs	26	1560	0
Indels + complex substitutions	31 + 20	3060	0
Fusions	36	2160	0
Exon skipping	1	60	0
Reportable variants	71	4260	0

199 A total of 60 independently extracted nucleic acid samples from 30 FFPE variant-free blocks
200 were tested for all variants covered by the ASPYRE-Lung panel. A single 'Reportable Variant'
201 may cover multiple nucleotide variants where the associated therapeutics are identical. For
202 example, all gene fusions that involve *NTRK1*, *NTRK2* or *NTRK3* will be reported under a single

203 reportable variant as “*NTRK1/2/3* fusion biomarker”. The total number of nucleotide variants
204 tested is therefore higher than the number of reported variants.

205

206 **ASPYRE-Lung has high analytical accuracy**

207 The analytical accuracy of the ASPYRE-Lung assay was assessed using both contrived
208 specimens (Table 3 and S3 Table) and nucleic acid extracted from 30 FFPE samples from
209 patients with a diagnosis of NSCLC for which targeted enrichment NGS data were available
210 (Table 3 and S4 Table). Each of the contrived samples was tested once at twice the LoD95.
211 Variants were aggregated according to class, and all results were according to expected output
212 with 100% PPA and 100% NPA across all samples (Table 3).

213

214 **Table 3: Summary of analytical accuracy of ASPYRE-Lung assessed using contrived and**
215 **clinical samples**

Level	Metric	Actual % (CI95, Clopper-Pearson, DNA & RNA)
Sample	PPA	100 (90-100)
	NPA	100 (91-100)
Variant	PPA	100 (92-100)
	NPA	100 (99.87-100)

216 Shown are the PPA and NPA obtained for each sample and for each variant across both clinical
217 and contrived sample types, and the associated 95% confidence intervals.

218

219 **The ASPYRE-Lung assay has excellent analytical precision**

220 The reproducibility and repeatability of the assay were tested using FFPE tissue samples (DNA
221 and RNA from variant-positive and variant-negative patient samples) tested in duplicate across
222 four runs with two instruments by two operators over four days (Table 4). The three FFPE
223 NSCLC variant-positive tissue samples were sequenced by targeted enrichment NGS (S4
224 Table). All replicate runs were matched with each other and expected results, giving 100% PPA
225 and NPA, and 100% reproducibility and repeatability.

226

227 **Table 4: Summary of analytical precision (repeatability and reproducibility) data**

Level	Metric	Actual % (CI95, Clopper-Pearson)
Sample	PPA	100 (86-100)
	NPA	100 (93-100)

228 Shown are the positive and negative percent agreement values between runs of ASPYRE-Lung,
229 demonstrating 100% reproducibility (inter-run precision) and repeatability (intra-run precision).
230 Samples were assayed in four independent runs across four days by two operators using two
231 real-time PCR instruments and two reagent lots. An expanded dataset from which this table is
232 derived is shown in S5 Table.

233

234 **ASPYRE-Lung is not affected by common interfering substances present in nucleic acid
235 extracts**

236 As ASPYRE-Lung utilizes isolated nucleic acids as sample input, it is potentially susceptible to
237 interfering substances carried over during DNA and RNA extraction. Common substances used
238 in nucleic acid extraction that often impact molecular assays include guanidinium salts and
239 ethanol. We tested whether the performance of the ASPYRE-Lung assay was affected by the
240 presence of carry-over chemicals by spiking two DNA and two RNA samples with guanidinium

241 thiocyanate and ethanol, with five replicates per sample and spike-in condition (Table 5). The
242 ethanol test level was the same as used by the Foundation Medicine FoundationOne CDx FDA
243 submission (Summary of Safety and Effectiveness Data, P170019), while guanidine thiocyanate
244 levels were chosen from in-house preliminary testing of levels found in samples with incomplete
245 removal of contaminants. None of the contaminants tested showed any effect on assay results
246 at the levels tested and are therefore considered non-interfering (Table 5).

247

248 **Table 5: Contaminants carried over from FFPE sample extraction do not interfere with the**
249 **ASPYRE-Lung assay**

						TP / total Replicates			
						5 % Ethanol	Guanidine thiocyanate		
Analyte	Gene	Exon	Protein Variant	COSMIC ID	VAF/ Copies		5 mM	10 mM	20 mM
DNA	KRAS	2	G12C	COSM516	6%	5/5	5/5	5/5	5/5
DNA	EGFR	21	L858R	COSM6224	6%	5/5	5/5	5/5	5/5
RNA	EML4-ALK	E13_A20	NA	COSF408	200 copies	5/5	5/5	5/5	5/5
RNA	KIF5B-RET	K15_R12	NA	COSF1232	200 copies	5/5	5/5	5/5	5/5

250 Two DNA and two RNA contrived samples at twice the LoD were spiked with ethanol or
251 guanidinium thiocyanate to mimic carryover from substances used during sample extraction.
252 Shown are the positive calls made compared to total runs from the subsequent ASPYRE-Lung
253 assay runs. NA, not applicable.

254

255

256 **Discussion**

257 In an ideal scenario, patients newly diagnosed with NSCLC would receive results from genomic
258 tests that identify all actionable driver mutations within a short timeframe after confirmed
259 diagnosis, in order to access the appropriate targeted therapy as soon as possible (4). While
260 practice guidelines recommend molecular testing at the outset for all actionable biomarkers
261 (10,11), around 90% of patients are tested for at least one actionable biomarker, only just under
262 half are tested for five or more biomarkers, with many beginning chemotherapy before results
263 from biomarker testing are returned (12,13). Stratification of patients according to the mutation
264 in their tumor can be achieved through a variety of methods, including single-target and
265 multiplex PCR which look for specific alterations, and NGS which captures specific genomic
266 regions and analyzes changes therein. There are advantages and disadvantages to each
267 method. Targeted methods of detection are well established, faster, and more affordable, but
268 can require running multiple sequential assays in order to capture all possible actionable
269 variants, with the potential for tissue exhaustion and extended laboratory time. NGS has a long
270 TAT and yields large amounts of data that require expert bioinformatics interpretation and may
271 generate technically unclear results for some targets (for example, the prediction of gene
272 fusions at the RNA level from DNA sequence in introns, (7,12) .

273

274 The characteristics of the ASPYRE-Lung assay make it eminently suitable for all patients with
275 NSCLC to undergo mutational profiling, as it is simple and rapid to perform using standard
276 laboratory techniques and equipment (8,9). The panel covers the guideline recommended 77
277 mutations from DNA and 36 gene fusions and MET exon 14 skipping events in RNA. In this
278 study, we have estimated and confirmed an LoD95 of ASPYRE-Lung in FFPE tissue at ≤ 3%

279 VAF for SNV and indels found in DNA, ≤ 100 copies for RNA fusions and ≤ 200 copies for MET

280 exon 14 skipping. The specificity of the assay was 100%, with no false positive results yielded

281 from 60 independent tests of 30 variant-free FFPE tissue samples using two lots of reagents.

282 The accuracy of the assay compared with targeted enrichment NGS was 100% PPA and NPA,

283 with no false negative calls, including for samples with more than one mutation present.

284 Repeated testing of six samples (three positive and three negative) across different days,

285 operators, reagent lots, instruments and assay runs gave 100% consistent results. Finally,

286 spiking samples with potential interfering substances that are commonly found in extraction kits,

287 and can be incompletely removed during pre-analytical procedures, did not affect whether

288 correct calls were made.

289

290 While these results demonstrate excellent assay performance, work is ongoing to expand the

291 remit of the assay by further testing and validating performance characteristics on a wide range

292 of samples to address unmet clinical need. Lung tissue biopsies can take different forms,

293 including core needle biopsies and samples taken for cytology (pleural effusions, bronchial

294 washings) which do not meet tissue requirements for NGS or sequential PCR testing. Previous

295 work has shown that the ASPYRE assay has robust results down to 1 ng extracted RNA from

296 clinical lung FFPE tissue samples (9), and this work will be updated and expanded to include

297 DNA and a lower range of sample input levels. Further goals include validating the assay and

298 analysis algorithm for circulating nucleic acid extracted from plasma. As new targeted therapies

299 become available and guidelines change, the panel can be expanded to include detection of

300 additional biomarkers, allowing more patients to access the appropriate targeted therapy for

301 which they may best respond.

302

303 **Conclusions**

304 1. There are now many targeted therapies available but biomarker testing remains a crucial
305 roadblock to accessing these highly efficacious and well-tolerated treatments in a timely
306 manner. This is largely due to the limitations of existing genomic testing technologies.

307 2. ASPYRE is a new class of diagnostic technology that leverages a unique series of
308 exquisitely sensitive and specific enzymatic reactions to give the benefits of multi-gene
309 testing yet with rapid TAT, simple bioinformatics, and with easily interpretable clinical
310 decision making (only actionable markers are tested).

311 3. In this study, we demonstrate that ASPYRE-Lung FFPE Tissue assay has excellent
312 analytical sensitivity at $\leq 3\%$ VAF for SNV and indels from DNA, ≤ 100 copies for gene
313 fusions from RNA, and ≤ 200 copies MET exon 14 skipping from RNA. The assay has
314 high specificity with no false positive results out of 6,840 calls made from variant-free
315 samples. The assay is also highly reproducible and repeatable across different
316 operators, reagent lots, runs, days and qPCR instruments.

317 4. Obtaining sufficient quantity and quality of tissue samples from lung biopsies for robust
318 genomic analysis can be challenging, and future plans for ASPYRE-Lung include
319 validating the assay on small biopsy and cytopathology samples. Finally, we are
320 developing a version of the assay that will analyze liquid (plasma) biopsy samples as
321 input to provide results for individuals where tissue specimens are not available.

322

323 **Methods**

324

325 **Reference samples**

326 DNA and RNA variants were selected to represent the most common variant in each target
327 exon from *BRAF* exon 15; *EGFR* exons 18, 19, 20, 21; *KRAS* exons 2, 3; and *ERBB2* exons 17,

328 20; and the most common *ALK*, *RET*, *ROS1*, *NTRK1/2/3* fusions alongside *MET* exon 14 exon
329 skipping (selected variants are listed in S2 Table). Contrived control oligonucleotides made from
330 DNA (SNV, indel) or RNA (fusions, *MET* exon 14 skipping) were manufactured (DNA from
331 Eurofins, Wolverhampton, UK, RNA from IDT, Leuven, Belgium), quantified by digital PCR
332 (QIAcuity Digital PCR system, Qiagen) at the Biofidelity R&D facility (Cambridge, UK), and
333 spiked into DNA or RNA extracted from FFPE variant-free tonsil tissue quantified by dPCR
334 (DNA) or Qubit (RNA), serially diluted to the appropriate concentrations, and immediately frozen
335 at -20°C (DNA) or -80°C (RNA).

336

337 **Clinical samples**

338 FFPE variant-free tonsil tissue blocks from patients without any known cancer diagnosis were
339 procured from a commercial biobank retrospectively, sample selection and data access July 1
340 2022 (Reprocell, Maryland, USA). FFPE lung tissue blocks with a confirmed NSCLC diagnosis
341 were obtained from commercial biobanks (Geneticist, Tissue Solutions, Reprocell, BocaBio,
342 Cureline, VitroVivo) between August 2020 and August 2021.

343

344 **Nucleic acid extraction**

345 FFPE blocks were manually sectioned with a microtome (Shandon Finesse, ThermoFisher),
346 producing three 12 µM thick curls, at the Biofidelity R&D facility (Cambridge, UK). DNA and
347 RNA were extracted from specimens in parallel using the Quick-DNA/RNA™ FFPE miniprep kit
348 (Zymo Research). Nucleic acid concentration was determined with a Qubit™ 1xDNA or RNA
349 high sensitivity kit (ThermoFisher) and stored at -80°C until further usage.

350

351 **ASPYRE reaction**

352 The ASPYRE reaction has been described for DNA detection (8) and RNA detection (9) and
353 was performed as carried out previously with input levels of 20 ng DNA per PCR reaction and 6
354 ng RNA per RT-PCR reaction.

355

356 **Orthogonal testing of clinical samples**

357 DNA extracted from FFPE lung tissue samples was sequenced through an orthogonal method
358 by targeted enrichment (Roche Avenir Targeted Assay) and sequencing (NextSeq 500,
359 Illumina) by Glasgow Polyomics (University of Glasgow, UK), according to the manufacturer's
360 guidelines. Analysis was performed by the Roche Sequencing Solutions team.

361

362 **Interfering substances**

363 Four contrived reference samples of COSM516 at 6% VAF, COSM6224 at 6% VAF, COSF408
364 at 200 copies or COSF1232 at 200 copies prepared in background DNA or RNA (extracted from
365 FFPE variant-free tissue) was spiked with molecular biology-grade ethanol (Sigma-Aldrich) or
366 guanidinium thiocyanate (Sigma-Aldrich) at concentrations mimicking potential carryover during
367 the extraction process (ethanol at 5%, guanidine thiocyanate at 5, 10 or 20 mM).

368

369 **Data analysis**

370 Data were downloaded from QuantStudio 5 RealTime PCR System (Thermofisher) instruments
371 running Design and Analysis 2 software. The Raw Data CSV produced by this software was
372 analyzed using custom ASPYRELab v1.0.0 software. This cloud-based web application takes
373 the Raw Data CSV as input and provides variant calls and control statuses as output. All variant
374 calling was blinded to results from orthogonal analyses. The ASPYRELab results were then
375 further collated and analyzed using standalone Python scripts.

376

377 **Acknowledgements**

378 We thank Kasia Anton, Maksym Artomenko, Ethan A. Clark, Seb Dangerfield, Timon Heide,
379 Donald McAusland, Nicola D. Potts, Paulina Powalowska for assistance in the development of
380 ASPYRE-Lung. We acknowledge the work of the Roche Sequencing Solutions team in
381 Mannheim, Germany in assisting with analyses of NGS data.

382

383 **Author Contributions:**

384 Methodology: RTE, HR, BWB, RJO
385 Investigation: RTE, ASG, ALS, JMM, MSJ, AC
386 Conducted experiments: RTE, EGZ, JNB, KEK, CK, ALS, JMM, AC, CX, IT, CHH, DN, JJ, SA,
387 KVB
388 Formal analysis: RTE, ASG, RNP, AT, AC
389 Study Supervision: RJO, BB
390 Writing - Original Draft Preparation: ERG
391 Writing - Review & Editing: RJO, RTE, BWB, ASG, MSJ, ALS, JMM, ERG, KEK

392

393 **Conflict of Interest:**

394 All authors are employees or consultants of Biofidelity Ltd, a privately held company and may
395 hold stock or stock options. Biofidelity has filed patent applications on aspects of this research
396 (WO2021130494A1).

397

398 **References**

399

400 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer
401 Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in
402 185 Countries. CA: A Cancer Journal for Clinicians [Internet]. 2021;71(3):209–49. Available
403 from: <https://onlinelibrary.wiley.com/doi/10.3322/caac.21660>

404 2. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszsi T, Fülöp A, et al. Five-Year
405 Outcomes With Pembrolizumab Versus Chemotherapy for Metastatic Non-Small-Cell Lung
406 Cancer With PD-L1 Tumor Proportion Score \geq 50%. *Journal of Clinical Oncology* [Internet].
407 2021;39(21):2339–49. Available from: <https://ascopubs.org/doi/10.1200/JCO.21.00174>

408 3. Ciavarella S, Milano A, Dammacco F, Silvestris F. Targeted Therapies in Cancer: BioDrugs
409 [Internet]. 2010;24(2):77–88. Available from: <http://link.springer.com/10.2165/11530830-00000000-00000>

411 4. Scott JA, Lennerz J, Johnson ML, Gordan LN, Dumanois RH, Quagliata L, et al.
412 Compromised Outcomes in Stage IV Non-Small-Cell Lung Cancer With Actionable Mutations
413 Initially Treated Without Tyrosine Kinase Inhibitors: A Retrospective Analysis of Real-World
414 Data. *JCO Oncol Pr.* 2023;OP2200611.

415 5. Targeted Therapy Drug List by Cancer Type - NCI [Internet]. [cited 2023 Sep 21]. Available
416 from: <https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/approved-drug-list#targeted-therapy-approved-for-lung-cancer>

418 6. McCoach CE. A Cautionary Analysis of Immunotherapy Prior to Targeted Therapy. *J Thorac
419 Oncol.* 2019;14(1):8–10.

420 7. Sadik H, Pritchard D, Keeling DM, Policht F, Riccelli P, Stone G, et al. Impact of Clinical
421 Practice Gaps on the Implementation of Personalized Medicine in Advanced Non-Small-Cell
422 Lung Cancer. *JCO Precis Oncol* [Internet]. 2022;6(6):e2200246. Available from:
423 <https://ascopubs.org/doi/full/10.1200/PO.22.00246>

424 8. Silva AL, Powalowska PK, Stolarek M, Gray ER, Palmer RN, Herman B, et al. Single-copy
425 detection of somatic variants from solid and liquid biopsy. *Scientific Reports* [Internet].
426 2021;11(1):6068. Available from: <https://www.nature.com/articles/s41598-021-85545-3>

427 9. Gray ER, Mordaka JM, Christoforou ER, Bargen KV, Potts ND, Xyrafaki C, et al. Ultra-
428 sensitive molecular detection of gene fusions from RNA using ASPYRE. *BMC Medical
429 Genomics* [Internet]. 2022;15(1):215. Available from:
430 <https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-022-01363-0>

431 10. Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, et al. Updated
432 molecular testing guideline for the selection of lung cancer patients for treatment with targeted
433 tyrosine kinase inhibitors guideline from the college of American pathologists, the international
434 association for the study of lung cancer, and the association for molecular pathology. In:
435 *Archives of Pathology and Laboratory Medicine* [Internet]. College of American Pathologists;
436 2018. p. 321–46. Available from: [https://www.jto.org/article/S1556-0864\(17\)33071-X/fulltext](https://www.jto.org/article/S1556-0864(17)33071-X/fulltext)

437 11. NCCN. Non-Small Cell Lung Cancer Version 3.2023 [Internet]. 2023. Available from:
438 <https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1450>

439 12. Robert NJ, Nwokeji ED, Espiritu JL, Chen L, Karhade M, Evangelist MC, et al. Biomarker
440 tissue journey among patients (pts) with untreated metastatic non-small cell lung cancer
441 (mNSCLC) in the U.S. Oncology Network community practices. *Journal of Clinical Oncology*

442 [Internet]. 2021;39(15_suppl):9004–9004. Available from:
443 https://doi.org/10.1200/JCO.2021.39.15_suppl.9004

444 13. Lim C, Tsao MS, Le LW, Shepherd FA, Feld R, Burkes RL, et al. Biomarker testing and time
445 to treatment decision in patients with advanced nonsmall-cell lung cancer. Ann Oncol.
446 2015;26(7):1415–21.

447

448 Supporting Information Captions

449 **S1 Table: List of variants covered by the ASPYRE-Lung panel.** There are 77 variants
450 detected by ASPYRE-Lung using DNA, and 37 detected by analysis of RNA. The assay output
451 is 71 calls, as many calls are identical for multiple targets (e.g. “ALK-positive” for the seven
452 gene fusions involving ALK exon 20 that are detected by ASPYRE-Lung).

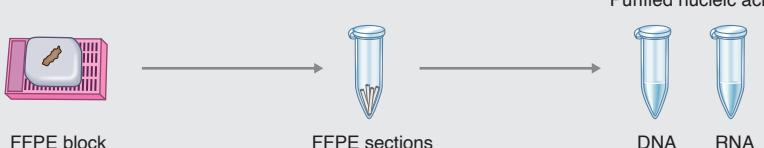
453

454 **S2 Table. Estimation of the LoD95.** Shown are the analyte type (DNA or RNA) and input
455 level: percent positive samples tested at 3, 5 and 10% VAF for those detected in DNA (SNV and
456 indel); 100, 200, and 300 copies for fusions detected by analysis of RNA; and 200, 400, and 800
457 copies of RNA for MET exon 14 skipping. *Results were aggregated across the given variant
458 class. NA, not applicable.

459

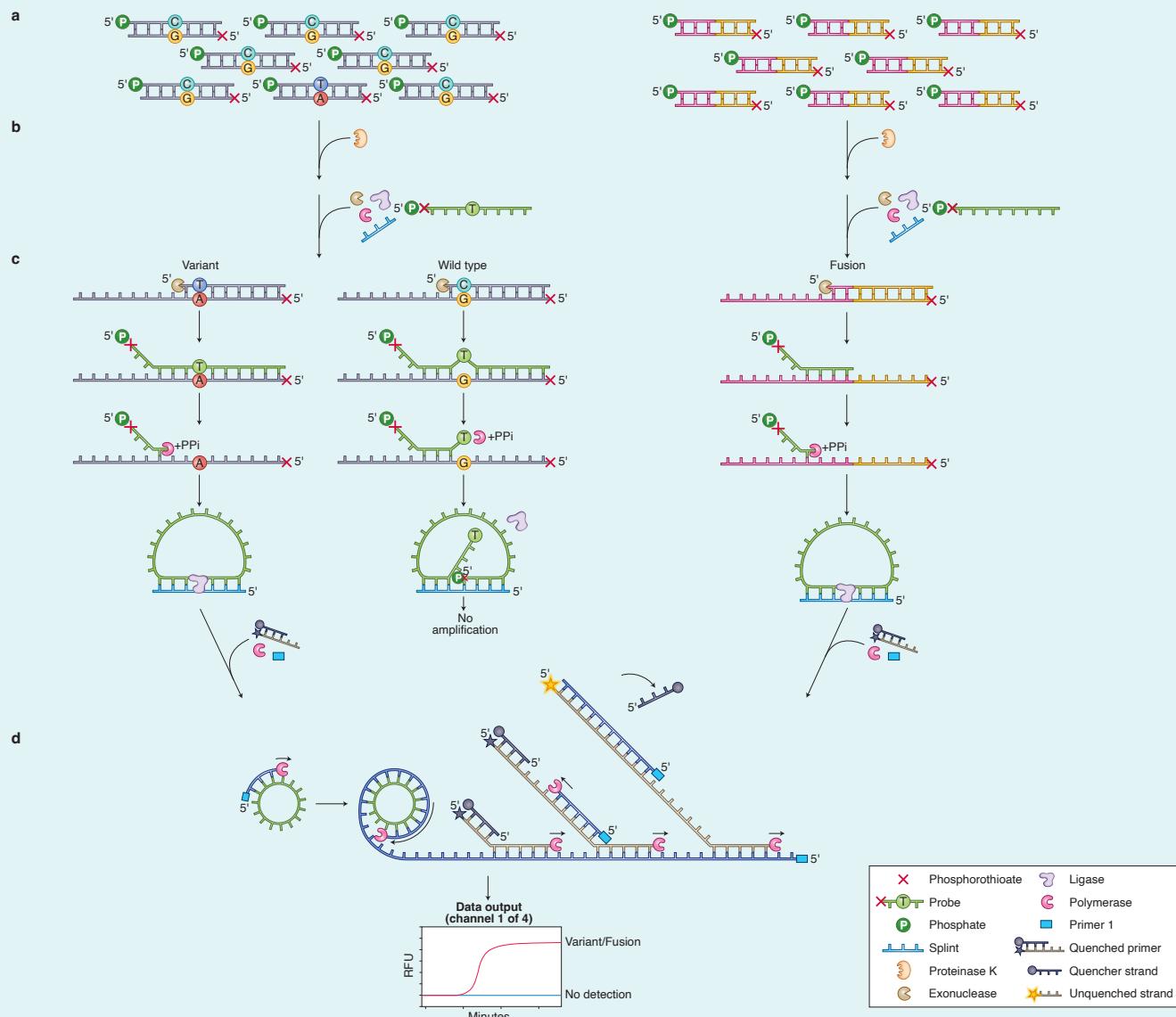
460 **S3 Table. Contrived samples generated for this study and tested in the analytical
461 accuracy assessment.** Oligonucleotides bearing sequences matching the variations were
462 quantified using dPCR, and added to a background nucleic acid pool comprising DNA or RNA
463 derived from FFPE tonsil tissue nucleic acid extracts.

464


465 **S4 Table. FFPE lung tissue samples from patients with a confirmed NSCLC diagnosis.**
466 Shown are the clinical characteristics associated with each sample, and how each sample was
467 used during the analytical validation. *Fusion breakpoint not predicted to be detected by
468 ASPYRE-Lung.

469

470 **S5 Table. Expanded Results from testing analytical precision.** Results from testing nine
471 clinical samples across four runs using two different instruments, two different reagents lots, by
472 two different operators over four days.


Section 1

Nucleic acid extraction

Section 2

a) Target enrichment, b) proteinase K digestion, c) exonuclease digestion, hybridisation, pyrophosphorylation and ligation, d) amplification and detection

Section 3

Computational analysis and results obtained

Proprietary, cloud-based analysis process including validation checks. Assay output is a two-page report clearly stating the biomarkers identified and interpretation of the results

