

1 Temperatures above 37°C increase virulence

2 of a convergent *Klebsiella pneumoniae*

3 sequence type 307 strain

4 Justus U. Müller¹, Michael Schwabe¹, Lena-Sophie Swiatek¹, Stefan E. Heiden¹, Rabea Schlüter²,
5 Max Sittner¹, Jürgen A. Bohnert³, Karsten Becker³, Evgeny A. Idelevich^{3,4}, Sebastian Guenther⁵, Elias
6 Eger^{1#}, Katharina Schaufler^{1,6#}

7 ¹Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health,
8 Helmholtz Centre for Infection Research HZI, Greifswald, Germany

9 ²Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany

10 ³Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany

11 ⁴Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.

12 ⁵Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany

13 ⁶University Medicine Greifswald, Greifswald, Germany

14

15 [#] authors contributed equally

16 Corresponding author:

17 Katharina Schaufler, Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute
18 for One Health, Helmholtz Centre for Infection Research HZI, Greifswald, Germany, Phone: +49 3834-3916-200;
19 E-mail: katharina.schaufler@helmholtz-hioh.de;

20

21

22 (i) length of the abstract: 250 words

23 (ii) length of the paper, without references: 4501 words

24

25 Running head: Temperature driven hypermucoviscosity in convergent KP

26 Keywords

27 *K. pneumoniae*; temperature-dependent virulence; hypermucoviscosity; hypervirulence; plasmid copy
28 number; transcriptomics

29 Abstract

30 Hypermucoviscosity in *Klebsiella pneumoniae* is often related to the overexpression of
31 capsular polysaccharides, regulated by complex biosynthetic mechanisms in response to
32 external cues. However, little is known about the processes involved in hypermucoviscosity
33 in convergent *K. pneumoniae*, which combine extensive drug resistance with high bacterial
34 virulence, under pathophysiological conditions. This study aimed to fill this gap by
35 investigating the temperature dependence of hypermucoviscosity and overall virulence in a
36 convergent *K. pneumoniae* strain isolated during a clonal outbreak belonging to the high-risk
37 sequence type (ST)307.

38 Hypermucoviscosity, biofilm formation, and mortality rates in *Galleria mellonella* larvae
39 were examined at different temperatures (room temperature, 28°C, 37°C, 40°C and 42°C)
40 and with various phenotypic experiments including electron microscopy. The underlying
41 mechanisms of the phenotypic changes were explored via qPCR analysis to evaluate plasmid
42 copy numbers, and transcriptomics.

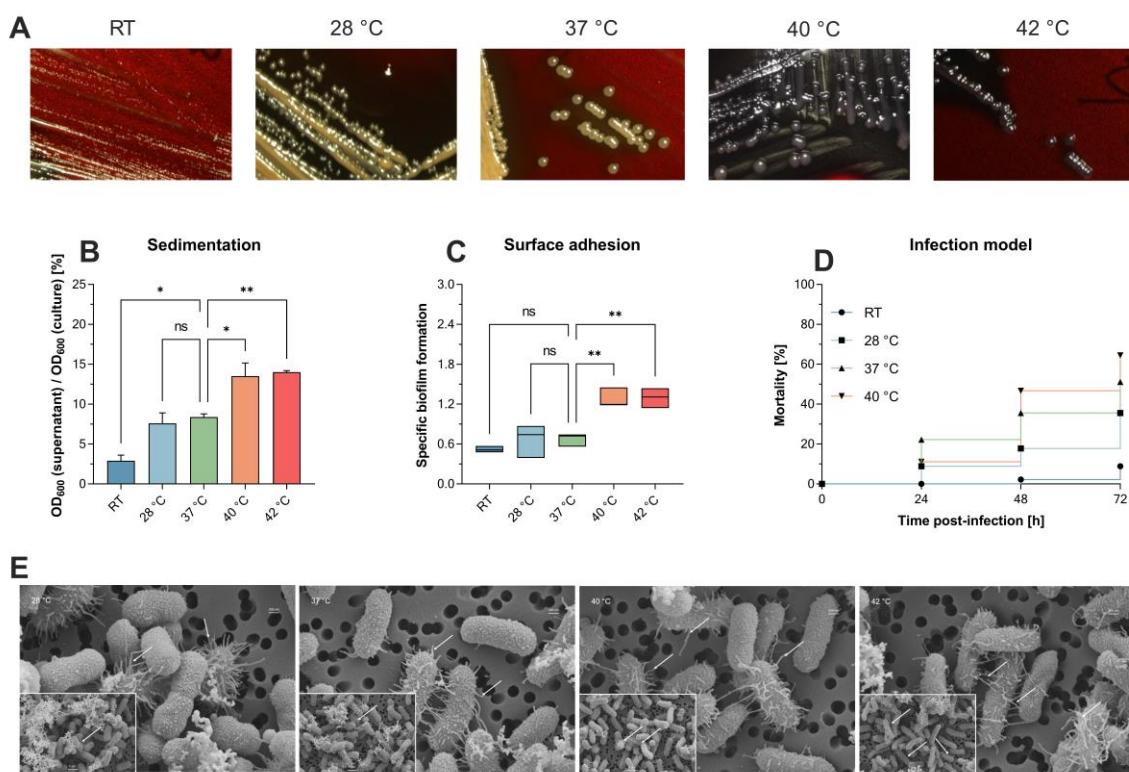
43 Our results indicate a temperature-dependent “switch” above 37°C to a hypermucoviscous
44 phenotype, correlating with increased biofilm formation capacity and *in vivo* mortality,
45 which might be due to a bacterial response to pathophysiological conditions, i.e., fever. In
46 addition, we detected upregulation of a hybrid plasmid encoding both carbapenemase and
47 the mucoid regulator *rmpA* genes. Surprisingly, *rmpA* did not exhibit temperature-
48 dependent differential gene expression, suggesting other drivers. Apparent co-regulation of
49 hypermucoviscosity and fimbrial expression was also identified.

50 This study not only revealed the impact that increased temperatures above 37°C have on
51 hypermucoviscosity and virulence in a convergent *K. pneumoniae* strain but contributes to
52 the understanding of previously unrecognized dimension of *K. pneumoniae*’s behavior,
53 emphasizing its adaptability to changing environments.

54 Abstract importance

55 Understanding the temperature-dependent dynamics of hypermucoviscosity in
56 *Klebsiella pneumoniae* is crucial for unraveling the intricacies of its hypervirulence. This
57 study investigates a convergent *K. pneumoniae* strain, ST307, revealing a temperature-
58 dependent switch to hypermucoviscosity above 37 °C. The findings showcase a correlation
59 between increased temperature, hypermucoviscosity, enhanced attachment, and
60 heightened *in vivo* mortality. Notably, a hybrid plasmid encoding carbapenemase and
61 mucoid regulator genes was upregulated at elevated temperatures. The study sheds light on
62 previously unexplored aspects of *K. pneumoniae* behavior, emphasizing its adaptability in
63 response to changing environments. The identified temperature-associated regulatory
64 mechanisms offer insights into the pathogen's response to fever, contributing to our
65 broader understanding of bacterial adaptation. This research contributes to addressing the
66 global challenge of hypervirulent, drug-resistant *K. pneumoniae* strains, providing valuable
67 implications for future treatment strategies.

68 1. Introduction


69 The opportunistic pathogen *Klebsiella pneumoniae* is frequently associated with nosocomial
70 infections worldwide including pneumonia, urinary tract, and bloodstream infections [1].
71 Classic, mostly nosocomial *K. pneumoniae* (cKp) often affects individuals with compromised
72 immune systems [2] exacerbated by the rise of multidrug-resistant (MDR) representatives
73 [3]. Beyond the hospital walls, hypervirulent, *K. pneumoniae* (hvKp) strains can cause
74 infections in healthy individuals [4]. HvKp harbors a repertoire of key virulence factors such
75 as siderophores [5]. In recent years, the global emergence of converging pathotypes of
76 *K. pneumoniae* strains contributed to difficult-to-treat infections, as they combine extensive
77 drug resistance with hypervirulence mostly driven by hybrid plasmids [6]. Traditionally,
78 *K. pneumoniae* hypervirulence has been identified through a positive string test [7]. This test
79 explores “hypermucoviscosity”, a characteristic associated with better evasion of
80 macrophages contributing to the invasive potential of hvKp [8]. Despite the assumption that
81 hypervirulence and hypermucoviscosity are connected, there is evidence that
82 hypermucoviscosity is not a peculiar marker of hypervirulence [9]. Precise determination of
83 hypervirulence involves *in vivo* experiments and specific genetic markers like *iutA*
84 (hydroxamate siderophore), *iroB* (catecholate siderophore), and *rmpA* or *rmpA2* (regulator
85 of the mucoid phenotype) [8]. Hypermucoviscosity correlates with clinical outcomes such as
86 pyogenic liver abscesses [10]. While more than 79 different *Klebsiella* capsule types exist,
87 the various capsule types seemingly differ in the composition of the capsule, which
88 influences virulence and hypermucoviscosity. Especially monosaccharides such as mannose
89 and rhamnose seem to play a role [11]. Other complex biosynthetic and regulatory
90 mechanisms responding to external stimuli such as iron availability and carbon sources are
91 also involved [12]. While mechanisms for bacterial adaptation to host temperatures are
92 well-established, the impact of temperature changes within the host, such as fever
93 episodes, on the regulation of virulence factors is not fully explored. Notably, there is a
94 significant gap in understanding the temperature effects on hypermucoviscosity of *K.*
95 *pneumoniae*, particularly above 37 °C [13, 14].

96 Here, we investigated capsule production and hypermucoviscosity in a convergent
97 *K. pneumoniae* ST307 strain at different temperatures. By combining omics with *in vitro* and
98 *in vivo* phenotypic experiments, we revealed temperature dependence of

99 hypermucoviscosity and additional bacterial virulence, which are seemingly based on
100 plasmid copy number (PCN)- and transcriptional changes.

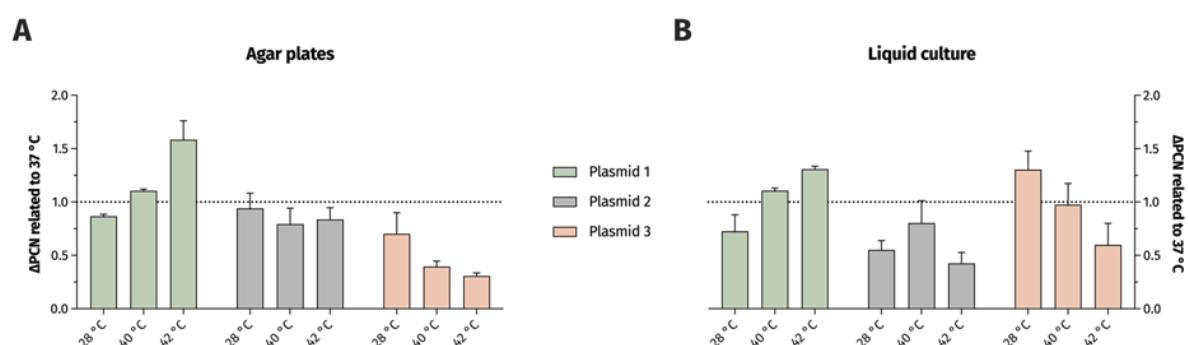
101

102 2. Results

103

104 **Figure 1. Different temperatures affect mucoviscosity and overall virulence of the**
105 **convergent *K. pneumoniae* ST307 strain PBIO1953. A** Staining of capsular polysaccharides
106 revealed a temperature-dependent change from a “normal” mucoid phenotype (yellow-beige
107 colonies) to a hypermucoid phenotype (black colonies) at 40 °C and 42 °C. **B** The increased
108 production of capsule polysaccharides was associated with a decrease in sedimentation upon
109 centrifugation at 1,000 x g for 5 min. Results are shown as mean and standard error of
110 percentage OD₆₀₀ remaining in the supernatant after centrifugation (n = 3). **C** Temperatures
111 above 37 °C resulted in increased adhesion to plastic surfaces. Results are expressed as
112 growth-adjusted specific biofilm formation. The line in the box indicates the median value
113 (n = 3). **D** The in vivo infection model showed a temperature-dependent increase in mortality
114 rates. Kaplan-Meier plot of mortality rates in the *G. mellonella* larvae (n = 30). Results are
115 expressed as mean percent mortality after injection of 2 × 10⁵ CFU/larvae. For all results,
116 mucoviscosity-associated characteristics at the different temperatures were compared to
117 37 °C using analysis of variance (one-way ANOVA with Dunnett’s multiple comparison post hoc
118 test); ns, not significant; P* <0.05; **, P <0.01. RT, room temperature. **E** Scanning electron
119 micrographs of PBIO1953 at 28 °C, 37 °C, 40 °C, and 42 °C at 20,000x magnification, scale bar =
120 200 nm (insets: 10,000x magnification, scale bar = 1 μm), arrowheads show fimbriae-like
121 structures.

122 We investigated hypermucoviscosity and mortality for a previously published, convergent
123 *K. pneumoniae* ST307 strain (PBIO1953 [15]) at RT, 28 °C, 37 °C, 40 °C, and 42 °C (Figure 1).
124 First, we stained capsular polysaccharides (Figure 1A). Here, white to yellow-beige colonies
125 indicate “normal” exopolysaccharide production, which applied to PBIO1953 at RT, 28 °C,
126 and 37 °C. In contrast, black colonies appeared above 37 °C (Figure 1A, Figure Appendix (A)
127 6), implying increased polysaccharide biosynthesis [16]. String tests confirmed these result
128 (data not shown), hypermucoviscosity was identified at 40 °C and 42 °C. The sedimentation
129 assay also confirmed higher viscosity at 40 °C ($p = 0.0325$) and 42 °C ($p = 0.0187$) compared
130 to 37 °C, indicating increased capsular polysaccharide production (Figure 1B). Third, biofilm
131 experiments revealed that increasing temperatures led to higher affinity of PBIO1953 to
132 adhere to abiotic surfaces (Figure 1C). A significant increase in specific biofilm formation was
133 observed at 40 °C ($p = 0.0053$) and 42 °C ($p = 0.0049$) in comparison to 37 °C. Interestingly,
134 this was not related to curli or cellobiose production (Figure (A) 1).


135 Finally, to explore the impact of different temperatures on the overall virulence of
136 PBIO1953, we assessed mortality rates in *Galleria (G.) mellonella* larvae (Figure 1D). After
137 24 hours, mortality rates at 37 °C (22.22%) exceeded those observed at 40 °C (11.12%).
138 However, 48 hours post-infection, mortality rates at 40 °C consistently exceeded those at
139 37 °C, with a peak after 72 hours. As control, the larvae were mock-infected with PBS and
140 incubated at RT, 28 °C, 37 °C, 40 °C with no detected temperature influence on the larvae
141 mortality (Figure A3). Note that incubation of mock-infected *G. mellonella* larvae at 42 °C
142 resulted in mortality rates greater than 10% (data not shown) (e.g., [17]).

143 Interestingly, scanning electron micrographs indicate an increasing amount of virulence- and
144 biofilm-associated fimbriae structures with higher temperatures (Figure 1E), reinforcing
145 earlier observations. It is important to note that the bacterial capsule appears compromised
146 during the staining process. Nevertheless, the visible increase of these structures at higher
147 temperatures (40 °C, 42 °C) implies a temperature-associated regulation [18]

148 *Different temperatures affect PCN*

149 To explore the underlying mechanisms, PCN-variations were measured using qPCR.
150 Previously, we have shown that the convergent PBIO1953 strain harbors five different
151 plasmids, one of which is a hybrid plasmid (plasmid 1) encoding both AMR and

152 hypervirulence genes [15]. The three largest PBIO1953 plasmids were included in the
153 subsequent analysis: plasmid 1 (360,596 bp), positive for the metallo- β -lactamase gene
154 *bla*_{NDM-1} and the regulator of the mucoid phenotype *rmpA*, plasmid 2 (130,131 bp) encoding
155 the extended-spectrum β -lactamase (ESBL) gene *bla*_{CTX-M-15}, and plasmid 3 (72,679 bp)
156 without any resistance genes (Figure 2).

157

158 **Figure 2. Temperature variation affect PCN.** The PCN was determined from individual colonies
159 grown on congo-red-dye-enriched agar plates (A) or from cells pelleted from sedimentation
160 assay cultures (B). The results are expressed as mean and standard error of the change in the
161 normalized PCN.

162 As the hypermucoviscosity switch was observed above 37 °C, we normalized all PCN to
163 37 °C. Interestingly, the PCN differed not only based on the different temperatures but also
164 regarding the respective plasmid and experimental set-ups (Figure 2). For the hybrid plasmid
165 1, the PCN increased with higher temperatures, with the highest value obtained at 42 °C.
166 The PCN of plasmid 2 did not show a clear temperature dependency, but a PCN reduction was
167 apparent at both 28 °C and 42 °C in the liquid culture set-up. Plasmid 3 showed a PCN
168 decreasing with higher temperatures.

169 *Temperature-dependent transcriptomic changes.*

170 For transcriptomics, we first focused on genes displaying differential gene expression (DGE)
171 at 28 °C, 40 °C and 42 °C (e-value < 0.05, |log2fold| change > 1.5) in comparison to 37 °C.
172 DGE appeared mostly between 28 °C and 37 °C (Figure A 2, Figure (A) 4), while, at 37 °C
173 compared to 40 °C and 42 °C, we only noticed few differentially expressed genes. Our initial
174 hypothesis that *rmpA* would be differentially expressed was rejected and, genes related to
175 the capsular gene cluster were unaffected.

176 When comparing 28 °C-associated gene expression to 37 °C (and 40 °C and 42 °C), we
177 observed various, significant changes. Notably, the chromosomally located *ibpAB* gene and
178 two small heat shock proteins encoded on plasmid 2, exhibited differential expression at
179 increased temperatures. These genes are known for mitigating growth defects under
180 thermal stress [19]. Furthermore, we observed the upregulation of several stress-related
181 genes at 37 °C and higher, including the Fur repressor, which possesses protective
182 properties against reactive oxygen species [20] and *sodA*, a gene involved in radical
183 scavenging. Of particular interest was the upregulation of *acrAB*, known for its role in
184 antimicrobial resistance and virulence [21]. Remarkably, the expression of *mrkABCD*, which
185 encodes the type 3 fimbriae system, increased at 37 °C and above. Previous research has
186 suggested that environmental factors [22], like temperature, can impact attachment factors,
187 making this observation particularly intriguing. Conversely, we noted a downregulation of
188 *fimHGFDCIA*, responsible for the expression of fimbriae type 1 [23], and the downregulation
189 of the *rfb* gene, which encodes O-antigens [24]. Additionally, *ompA*, a known virulence
190 factor and key element in immune system recognition [25] was downregulated at increased
191 temperatures. On plasmid 1, the partitioning system *parAB* responsible for segregation and
192 plasmid stability [26] demonstrated increased expression at higher temperatures. Notably,
193 genes associated with transposon activation and IS sequences were also upregulated on
194 plasmid 1. The gene *iutA*, encoding aerobactin and contributing to bacterial virulence, was
195 upregulated at 37 °C (and 40 °C and 42 °C). Moreover, on plasmid 2, the metallo-resistance
196 gene *arsR* was upregulated [27]. Finally, plasmids 4 and 5 showed increased expression of
197 genes involved in conjugative transfer, including *traA* [28] and *mobC* [29]. When comparing
198 the transcriptomes of 40 °C to those at 37 °C, DGE was observed in six genes. Notably, two
199 downregulated genes, *metR* (associated with the methionine pathway) and *argC* (linked to
200 the arginine pathway), were particularly interesting as they are important for general
201 growth. Only two genes were upregulated, with *betB* standing out as this gene is involved in
202 the biosynthesis of osmoprotective choline-glycine betadine [30]. Similarly, the comparison
203 of 42 °C to 37 °C revealed six differentially expressed genes. *betB* demonstrated
204 concordance with the upregulated genes at 40 °C. An intriguing finding was the upregulation
205 of *pecM*, a gene previously implicated as a potential deactivator of the *fim* operon and a
206 member of the permease of the drug/metabolite transporter (DMT) superfamily.

207 3. Discussion

208 Hypermucoviscosity is often referred to as the most important virulence characteristic of
209 hvKp. However, it is largely unclear how external stressors can affect capsule expression and
210 thus virulence in bacteria, especially in convergent *K. pneumoniae*. We revealed that a
211 convergent *K. pneumoniae* ST307 outbreak strain [15], changed from a “normal” to a
212 hypermucoid and pronounced virulent phenotype upon temperature exposure above the
213 healthy human body temperature at about 37 °C.

214 Bacterial capsule formation is a highly complex process influenced by several internal and
215 external factors. Although hvKp frequently exhibits capsule types K1 and K2, a clear
216 correlation between the capsule type and hypervirulence has not yet been established [31].
217 To our knowledge, we are the first to report a temperature-dependent phenotypic switch
218 for *K. pneumoniae*. Previously, Le et al. (2022) have shown that temperatures below 37 °C
219 may affect hypermucoviscosity, based on the upregulation of plasmid-encoded *rmpA* at
220 37 °C when compared to RT [32]. In contrast, our results suggest that *rmpA*, although also
221 plasmid-encoded, was not differentially expressed at different temperatures. More
222 importantly, the increased PCN plasmid 1 does seemingly not have any effect on *rmpA*
223 expression, although it is known that higher gene abundance as a result of increased PCN
224 can lead to higher gene expression. It seems likely that hypermucoviscosity does not
225 exclusively depend on *rmpA* expression. This assumption has been previously supported by
226 studies where *K. pneumoniae* isolates harbor impaired capsule locus genes and the
227 respective regulator but show hypermucoviscosity [33].

228 While a substantial number of genes exhibited DGE between 28 °C and 37 °C, only a limited
229 number of genes was differentially regulated at 37 °C vs. 40 °C or 42 °C. For all comparisons,
230 most of the differentially expressed genes were chromosomally encoded, which suggests
231 that increasing temperatures up to pathophysiological conditions (i.e., fever) does not lead
232 to major shifts in the transcriptome and to the phenotypic switch. Rather, this seems to
233 fine-tune the expression of a small number of genes together with the different PCN. We
234 surmise that temperature-dependent stress regulators and heat shock proteins may be
235 involved in the regulation of capsule production, which is supported by previous studies
236 [34]. However, why the upregulation of stress response regulators and proteins, which

237 normally control the expression of a large number of protein-associated genes [19], does
238 not lead to a clearer change in the bacterial transcriptome, remains unclear. The only direct
239 regulatory pathway previously connected to capsule synthesis and influenced by increased
240 temperatures was the *rcsA* gene, which contributes to capsular overexpression and is
241 usually expressed at temperatures below 37 °C [35]. Note that this is contrary to our
242 findings.

243 Here, we identified a link between hypermucoviscosity and fimbrial regulation. The
244 upregulation of type 3 fimbriae at temperatures above 28 °C might be responsible for the
245 fimbrial-like structures at higher temperatures as visualized by scanning electron
246 microscopy. Interestingly, Lin et al. (2011) showed that hypermucoviscosity and type 3
247 fimbriae production can be co-regulated and depend on iron availability, and that iron
248 limitation results in a reduction of mucoviscosity and fimbriae expression [36]. Conversely,
249 we observed a downregulation of type 1 fimbriae at higher temperatures. This might be
250 because type 1 and type 3 fimbriae are independently regulated. However, in the CV assay,
251 which measures specific biofilm formation, increased attachment at 40 °C (and 42 °C)
252 compared to 37 °C was measured, indicating a higher cell-to-cell and cell-to-plastic
253 adherence, which could be fimbriae type 3-related and is essential in the transition from a
254 planktonic to a multicellular lifestyle.

255 We speculate that PBIO1953 has evolved specific mechanisms to respond to the host's
256 immune system, combined with a temperature-dependent formation of a physical capsule
257 barrier and increased attachment at 40 °C and 42 °C. In the *in vivo* infection model, higher
258 mortality was initially achieved after 24 hours at 37 °C than at 40 °C, which may be due to
259 the initial encapsulation process combined with higher adherence at 40 °C. As a result, the
260 immune system response may be impeded, enabling bacterial proliferation. After 48 h and
261 72 h, we noticed a subsequent mortality increase at 40 °C, again hinting towards better
262 bacterial proliferation, possibly due to encapsulation and the previously mentioned
263 changes. Similar has been previously suggested for various pathogens [37] but not
264 *Klebsiella*. At the same time, we must acknowledge that some of our results are based on
265 RNA sequencing data with stringent cutoffs and obtained from liquid cultures, which adds
266 some uncertainty when trying to apply these findings to *in vivo* situations. A further
267 limitation is the fact that we only investigated a single *K. pneumoniae* strain. Prospective

268 studies will have to explore whether similar applies to other strains. Nevertheless, our
269 results suggest that enhanced temperatures and thus pathological conditions (i.e., fever)
270 can lead to increased bacterial virulence, further exacerbating the overall tense situation.
271 However, hypermucoviscosity could also represent a vulnerability that could be considered
272 in a future treatment strategy.

273 4. Conclusions

274 Here we show that increased temperatures and thus potentially pathological conditions led
275 to increased virulence in a convergent *K. pneumoniae* strain, which might play a pivotal role
276 in shaping the dynamics of infection processes. In addition, our study contributes to a better
277 understanding of the underlying mechanisms leading to hypermucoviscosity and *in vivo*
278 bacterial virulence.

279

280 5. Methods & Methods

281 *Bacterial strains*

Name	Species, source
------	-----------------

PBIO1953	<i>K. pneumoniae</i> , [15]
----------	-----------------------------

282 *Hypermucoviscosity*

283 In the string test, a sterile loop was applied to a single colony on an agar plate, which had
284 been cultured at varying temperatures (28 °C, 37 °C, 40 °C, 42 °C) for a duration of 24 h. The
285 loop was gently lifted, and if there was a 5 mm extension without breaking, the string test
286 was considered positive, which characterizes hypermucoviscosity [38]. Furthermore, the
287 hypermucoviscosity was confirmed with the sedimentation assay as described previously
288 [12]. In short, 50 µL of a standardized bacterial suspension (0.5 McFarland standard turbidity
289 in 0.9 % (w/v) aqueous NaCl solution) was transferred into 5 mL LB broth and was incubated
290 at the desired temperature (RT, 28 °C, 37 °C, 40 °C, 42 °C) for 24 h. Afterwards 1.5 mL of the
291 24 h culture was transferred into a 2 mL reaction tube and centrifuged for 1000 x g for
292 5 minutes, 200 µL from the supernatant as well as from the 24 h culture were pipetted as
293 triplicates into a 96 well plate and the OD₆₀₀ was measured with a plate reader
294 (CLARIOstarplus, BMG LABTECH, Ortenberg, Germany) [39].

295 The ability to generate exopolysaccharides was assessed using BHI agar plates
296 supplemented with 5 % sucrose (w/v) and 0.08 % congo-red (w/v), following the
297 methodology outlined in a prior study [16]. A single colony was picked up from an LB agar
298 plate, streaked onto the stained BHI agar plates, and subsequently incubated overnight for
299 24 h at (RT, 28 °C, 37 °C, 38 °C, 39 °C, 40 °C, 42 °C). If the single colonies color black, they
300 would be classified as positive for exopolysaccharides, while single colonies which are white
301 to yellow would be considered negative for exopolysaccharide production.

302 *Attachment and specific biofilm formation*

303 The temperature influence on attachment factors was investigated with the crystal violet
304 assay, as described previously [40], [41] In short 50 µL of an overnight culture was
305 transferred to 5 mL LB. After a visible turbidity samples were adjusted to an OD₆₀₀ of 0.01

306 and 200 μ L was transferred as into a 96 well plate. Afterwards, they were incubated at
307 28 °C, 37 °C, 40 °C and 42 °C for 24 h. Following the incubation, the OD₆₀₀ was measured to
308 determine the overall growth. Then, the supernatant of each well was discarded, the plate
309 was washed three times with deionized water and dried for 10 min. Subsequently, fixed
310 with 250 μ L methanol for 15 min and then air dried for 15 min. Now the remaining cells
311 were stained with 250 μ L 1 % crystal violet solution (w/v) for 30 min. This was followed by
312 three washing steps with deionized water and drying for 10 min. The stained bacteria were
313 dissolved with 300 μ L of an ethanol acetone mixture with a ratio of 80 to 20 (v/v) and
314 shaken for 30 min at 220 rpm at room temperature. Then the OD₅₇₀ was measured. The
315 specific biofilm formation (SBF) [42] was then calculated. The negative control was
316 subtracted from the OD₅₇₀ of the sample and then divided by the OD₆₀₀ of the sample.

317 *Galleria mellonella in vivo infection model*

318 To test the influence of different temperatures on the pathogenic potential the
319 *Galleria mellonella in vivo* infection model was used, as previously described [43] with slight
320 adjustments of the experiments setup in respect to this temperature dependent study.
321 Briefly, 2 mL of overnight culture of PBIO1953 was harvested and pelleted at 16000 x g for
322 5 min at RT. The pellet was once washed with PBS and diluted to an OD₆₀₀ of 1.0. The 2×10^9
323 CFU/mL were further adjusted to 2×10^6 CFU/mL. The larvae (from Peter Zoopalast, Kiel,
324 Germany) were randomly divided into 6 different groups of 10 individuals. 10 μ L of the
325 bacterial suspension was injected into the right proleg of the larvae. For the control groups
326 10 μ L of PBS solution was used as injection, to check if the Infection of *Galleria mellonella*
327 larvae was affected by the traumata or the altered incubation temperature. The sample and
328 control groups were incubated in a 90 mm glass petri dish at 28 °C, 37 °C and 40 °C each.
329 The vital state of the larvae was controlled every 24 h. The larvae were considered dead, if
330 they showed strong pigmentation accompanied by not responding to physical stimuli. This
331 assay was performed three independent times the results were pooled for each condition. A
332 Kaplan-Meier plot was generated to visualize the mortality rates.

333 *Plasmid copy number (PCN)*

334 To determine the plasmid copy numbers of the three largest plasmids (plasmid 1 *bla*_{NDM-1}
335 and *rmpA*, plasmid 2 *bla*_{CTX-M-15}, plasmid 3) at different temperatures (RT, 28 °C, 37 °C, 40 °C,

336 42 °C) qPCR was used. Therefore, sets of different Primers were designed to amplify a
337 specific region on the gene constructs of interest. The primers were designed according to
338 the manufacture's instruction for Luna qPCR Kit (New England Biolabs GmbH, Ipswich, MA,
339 US) and ordered from Eurofins (Eurofins Genomics Europe Shared Services GmbH,
340 Ebersberg, Germany).

341 Table 1. Primer Sequences for plasmid copy number analyses of plasmid 1- 3, and chromosome.

Name	Primer sequence	Amplicon length
plasmid_1_forward	CGGAAGGAAGCCAGTACAGG	141 bp
plasmid_1_reverse	TTGTCAACGAGGTCTGGACG	
plasmid_2_forward	TTGCCGTTGTCTCACCTACC	196 bp
plasmid_2_reverse	TGTACTGGCCACCTTCATCG	
plasmid_3_forward	TGACATGGCAAAAGTTCAAGGC	83 bp
plasmid_3_reverse	CCTCAACTCGCCTCTTCTCC	
chromo_forward	TCGCGATGAGTACAATCCGG	82 bp
chromo_reverse	AAGGTCAACAGCAGGGTACG	

342

343 The calibration for the plasmids (1-3) and the chromosome was performed with the Q5
344 High-Fidelity DNA Polymerase (New England Biolabs GmbH, Ipswich, MA, US) according to
345 the manufacture's guideline, and isolated with NucleoSpin Gel and PCR Clean-up
346 (MACHEREY-NAGEL GmbH & Co. KG, Düren, Germany) and quantified with the Qubit 4
347 fluorometer using the dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA).
348 The qPCR was performed with the Luna qPCR protocol (New England Biolabs GmbH,
349 Ipswich, MA, US) in regard to the qPCR cycler CFX Opus 96 Real-Time PCR System (Bio-Rad,
350 Hercules, CA, US). Each sample was set up as seen in the Table 2 and each sample was
351 measured in triplicates following the protocol shown in Table 3.

352

353 Table 2. qPCR reaction setup per well.

Component	20 µl reaction
Luna Universal qPCR Master Mix	10 µl
Forward primer (10µM)	0.5 µl
Reverse primer (10µM)	0.5 µl
Template DNA	50 ng
Nuclease free water	to 20µl

354

355 Table 3. qPCR thermocycler protocol for the Biorad DFX Optus 96-well, qPCR Luna Mastermix.

Cycle step	Temperature	Time	Cycles
Initial Denaturation	95 °C	60 s	1
Denaturation Extension	95 °C 60 °C	15 s 30 s (+plate read)	45
Meltingcurve	60 °C -> 95 °C	Biorad CFX Optus standard	1

356 The measured concentration of the samples was related to the overall length of the gene
357 structure and the plasmid copy number was calculated as

$$PCN = (P/C) * (Lc/Lp)$$

358 PCN: Plasmid copy number per genome equivalent P: Overall amount of the plasmid (in ng)
359 C: Overall amount of the chromosome (in ng) Lc: Overall length of the chromosome (in base
360 pairs) Lp: Overall length of the plasmid (in base pairs).

361 *Electron microscopy*

362 A single colony was inoculated into 30 mL of LB in an Erlenmeyer flask and cells were
363 incubated at 28 °C, 37 °C, 40 °C and 42 °C for 24 hours. Subsequently, the bacterial
364 suspension was adjusted to OD₆₀₀ = 1, and 1 mL of the suspension was diluted with 9 mL of
365 0.9% NaCl. The resulting suspension was then filtered through a hydrophilic polycarbonate
366 filter (0.2 µm pore size, Merck Millipore). A segment of the filter was fixed with 1%
367 glutaraldehyde and 4% paraformaldehyde in washing buffer (10 mM cacodylate buffer, 1

368 mM CaCl₂, 0.075% ruthenium red; pH 7) and then the samples were stored at 4 °C until
369 further processing (not more than 16 hours).

370 Samples were washed with washing buffer three times for 10 min each time , treated with
371 2% tannic acid in washing buffer for 1 h at RT, and then washed again with washing buffer
372 three times for 15 minutes each time. Afterwards, the samples were dehydrated in a graded
373 series of aqueous ethanol solutions (10, 30, 50, 70, 90, 100%) on ice for 15 min each step.
374 Before the final change to 100% ethanol, samples were allowed to reach RT and then critical
375 point-dried with liquid CO₂. Finally, the samples were mounted on aluminum stubs,
376 sputtered with gold/palladium, and examined with a field emission scanning electron
377 microscope Supra 40VP (Carl Zeiss Microscopy Deutschland GmbH, Oberkochen, Germany)
378 using the Everhart-Thornley SE detector and the in-lens detector in a 70:30 ratio at an
379 acceleration voltage of 5 kV. All micrographs were edited by using Adobe Photoshop CS6.

380 *DNA Isolation*

381 The DNA isolation for the qPCR was performed by either 1 mL of 24 h cultures in LB at 28 °C,
382 37 °C, 40 °C and 42 °C or directly from the BHI agar plates supplemented with congo-red and
383 sucrose incubated at the 4 different temperatures, where 4 to 6 single colonies were
384 scraped off and resuspended via vortexing in 500 µL of PBS in a 1.5 mL test tube. The DNA
385 isolation was then performed with the *MasterPure DNA Purification Kit for Blood* according
386 to the manufacturer's specifications (Lucigen, Middleton, WI, USA). The quantification of the
387 DNA was ensured by using the Qubit 4 fluorometer using the dsDNA HS Assay Kit (Thermo
388 Fisher Scientific, Waltham, MA, USA).

389 *RNA Isolation*

390 For transcriptomic analyses the RNA was isolated from 50 mL liquid 24 h cultures at (28 °C,
391 37 °C, 40 °C and 42 °C). 800 µL of the cultures were harvested in a 1.5 mL reaction tube and
392 instantly chilled with liquid nitrogen for 5 s, to inhibit changes in the transcriptome. After
393 the centrifugation (16,000 × g for 3 min at 2 °C), the following RNA isolation was performed
394 immediately with Monarch™ Total RNA Miniprep Kit (New England Biolabs GmbH, Ipswich,
395 MA, US) according to the manufacture's instruction. The quality of the isolated RNA was
396 tested using the Bioanalyzer with the Total RNA Nano Chip (Agilent, Santa Clara, CA, US).

397 The samples were shipped on dry ice to Novogene (NOVOGENE COMPANY LTD., Cambridge,
398 UK) for RNA sequencing (Illumina NovaSeq 6000; paired-end 150 bp).

399 The closed genome sequence of PBIO1953 was annotated with Bakta v. 1.7.0 and bakta
400 database v. 5. In order to process the raw reads and to further quality trim the data, Trim
401 Galore v. 0.6.8 (<https://github.com/FelixKrueger/TrimGalore>) was used. The trimmed reads
402 were then mapped with Bowtie 2 v. 2.5.1 (mode: –very-sensitive-local), where the assembly
403 of PBIO1953 was used as a reference. The gene counts were calculated using featureCounts
404 v.2.0.1 /stranded-mode) based on PBIO1953's annotation. In the following step, the count
405 table was imported into R v. 4.3.1 (<https://www.R-project.org/>), and differentially expressed
406 genes were identified with DESeq2 v. 1.40.0 in default mode, with one exception; genes
407 with rowSums of <10 in the count table were excluded before the analysis. Within our
408 analyses, we used an absolute log2 fold change 1.5 threshold combined with an adjusted e
409 value lower than 0.05 to determine differences within gene expression, between the
410 different incubation conditions. We excluded one replicate which was incubated at 37 °C
411 due to a shift on principal component 1 (PC1) and PC2, which can be seen in Table 2 where
412 principal-component analysis is plotted. Finally, all genes were annotated using the online
413 tool eggNOG-mapper v. 2.1.9 to extract COG (cluster of orthologous groups) categories.

414 *Statistical analysis*

415 Statistical analyses were conducted using GraphPad Prism v. 9.5.1 for Windows, developed
416 by GraphPad Software (San Diego, CA US). To assess qPCR results, the Bio-Rad CFX Maestro
417 2.3 v. 5.3.0 22.1030 (Bio-Rad, Hercules, CA, US) was utilized. All phenotypic experiments
418 consisted of three or more independent biological replicates. Unless otherwise specified,
419 data were presented as the mean and standard deviation. Statistical significance was
420 determined using *p* values below 0.05 to indicate significant differences among the results.

421

422

423 **Author contributions.** Conceptualization, E.E. and K.S.; methodology, E.E., L.S., J.U.M and R.S.; software, M.Sc.
424 and S.E.H.; validation, E.E. and J.U.M; formal analysis, E.E., E.A.I., L.S., J.A.B., J.U.M., K.B., K.S., M.Si., M.Sc., R.S.,
425 S.G. and S.E.H.; investigation, E.E., J.U.M., M.Si. and R.S.; resources, K.S.; data curation, M.Sc. and S.E.H.;
426 writing—original draft preparation, J.U.M. and E.E.; writing—review and editing, K.S., M.Sc. and S.E.H.;
427 visualization, J.U.M.; supervision, K.S.; project administration, K.S.; funding acquisition, K.S. All authors have
428 read and agreed to the published version of the manuscript.

429 **Acknowledgments.** We thank Sara-Lucia Wawrzyniak for her excellent technical assistance as well as Stefan
430 Bock for excellent technical assistance regarding electron microscopy.

431 **Data availability.** The data for this study have been deposited in the European Nucleotide Archive (ENA) at
432 EMBL-EBI under accession number PRJEB72193 (<https://www.ebi.ac.uk/ena/browser/view/PRJEB72193>).

433 **Funding.** This work and the positions of L.S., J.U.M. and M.Sc. were supported by a grant from the Federal
434 Ministry of Education and Research (BMBF) to K.S. entitled “Disarming pathogens as a different strategy to
435 fight antimicrobial-resistant Gram-negatives” Federal Ministry of Education and Research [grant no 01KI2015].

436 **Potential conflicts of interest.** All authors report no potential conflicts.

437 **Ethical approval** was given by the ethics committee of the University of Greifswald, Germany (BB 133/20).
438 Informed patient consent was waived as samples were taken under a hospital surveillance framework for
439 routine sampling. The research conformed to the principles of the Helsinki Declaration.

440

441 References

442 [1] A. J. Mathers, G. Peirano, and J. D. D. Pitout, "The role of epidemic resistance
443 plasmids and international high-risk clones in the spread of multidrug-resistant
444 Enterobacteriaceae," *Clin Microbiol Rev*, vol. 28, no. 3, pp. 565–591, 2015, doi:
445 10.1128/CMR.00116-14.

446 [2] P. Lan, Y. Jiang, J. Zhou, and Y. Yu, "A global perspective on the convergence of
447 hypervirulence and carbapenem resistance in *Klebsiella pneumoniae*," *J Glob
448 Antimicrob Resist*, vol. 25, pp. 26–34, 2021, doi: 10.1016/j.jgar.2021.02.020.

449 [3] T. J. Kochan *et al.*, "Genomic surveillance for multidrug-resistant or hypervirulent
450 *Klebsiella pneumoniae* among United States bloodstream isolates," *BMC Infect Dis*,
451 vol. 22, no. 1, p. 603, 2022, doi: 10.1186/s12879-022-07558-1.

452 [4] J. E. Choby, J. Howard-Anderson, and D. S. Weiss, "Hypervirulent *Klebsiella*
453 *pneumoniae* - clinical and molecular perspectives," *J Intern Med*, vol. 287, no. 3, pp.
454 283–300, 2020, doi: 10.1111/joim.13007.

455 [5] T. A. Russo and C. M. Marr, "Hypervirulent *Klebsiella pneumoniae*," *Clin Microbiol
456 Rev*, vol. 32, no. 3, 2019, doi: 10.1128/CMR.00001-19.

457 [6] C. Shankar *et al.*, "Hybrid Plasmids Encoding Antimicrobial Resistance and Virulence
458 Traits Among Hypervirulent *Klebsiella pneumoniae* ST2096 in India," *Front Cell Infect
459 Microbiol*, vol. 12, p. 875116, 2022, doi: 10.3389/fcimb.2022.875116.

460 [7] J. C. Catalán-Nájera, U. Garza-Ramos, and H. Barrios-Camacho, "Hypervirulence and
461 hypermucoviscosity: Two different but complementary *Klebsiella* spp. phenotypes?,"
462 *Virulence*, vol. 8, no. 7, pp. 1111–1123, 2017, doi: 10.1080/21505594.2017.1317412.

463 [8] T. A. Russo *et al.*, "Identification of Biomarkers for Differentiation of Hypervirulent
464 *Klebsiella pneumoniae* from Classical *K. pneumoniae*," *J Clin Microbiol*, vol. 56, no. 9,
465 2018, doi: 10.1128/JCM.00776-18.

466 [9] H.-C. Lee *et al.*, "Clinical implications of hypermucoviscosity phenotype in *Klebsiella*
467 *pneumoniae* isolates: association with invasive syndrome in patients with
468 community-acquired bacteraemia," *J Intern Med*, vol. 259, no. 6, pp. 606–614, 2006,
469 doi: 10.1111/j.1365-2796.2006.01641.x.

470 [10] A. S. Shon, R. P. S. Bajwa, and T. A. Russo, "Hypervirulent (hypermucoviscous)
471 *Klebsiella pneumoniae*: a new and dangerous breed," *Virulence*, vol. 4, no. 2, pp. 107–
472 118, 2013, doi: 10.4161/viru.22718.

473 [11] X. Huang *et al.*, "Capsule type defines the capability of *Klebsiella pneumoniae* in
474 evading Kupffer cell capture in the liver," *PLoS Pathog*, vol. 18, no. 8, Aug. 2022, doi:
475 10.1371/journal.ppat.1010693.

476 [12] L. A. Mikei *et al.*, "A systematic analysis of hypermucoviscosity and capsule reveals
477 distinct and overlapping genes that impact *Klebsiella pneumoniae* fitness," *PLoS*
478 *Pathog*, vol. 17, no. 3, Mar. 2021, doi: 10.1371/journal.ppat.1009376.

479 [13] P. Mandin and J. Johansson, "Feeling the heat at the millennium: Thermosensors
480 playing with fire," *Molecular Microbiology*, vol. 113, no. 3. Blackwell Publishing Ltd,
481 pp. 588–592, Mar. 01, 2020. doi: 10.1111/mmi.14468.

482 [14] O. Lam, J. Wheeler, and C. M. Tang, "Thermal control of virulence factors in bacteria:
483 A hot topic," *Virulence*, vol. 5, no. 8. Landes Bioscience, pp. 852–862, 2014. doi:
484 10.4161/21505594.2014.970949.

485 [15] S. E. Heiden *et al.*, "A *Klebsiella pneumoniae* ST307 outbreak clone from Germany
486 demonstrates features of extensive drug resistance, hypermucoviscosity, and
487 enhanced iron acquisition," *Genome Med*, vol. 12, no. 1, p. 113, 2020, doi:
488 10.1186/s13073-020-00814-6.

489 [16] D. J. Freeman, F. R. Falkiner, and C. T. Keane, "New method for detecting slime
490 production by coagulase negative staphylococci," *J Clin Pathol*, vol. 42, no. 8, pp. 872–
491 874, 1989, doi: 10.1136/jcp.42.8.872.

492 [17] G. Ménard, A. Rouillon, V. Cattoir, and P.-Y. Donnio, "Galleria mellonella as a Suitable
493 Model of Bacterial Infection: Past, Present and Future," *Front Cell Infect Microbiol*,
494 vol. 11, p. 782733, 2021, doi: 10.3389/fcimb.2021.782733.

495 [18] F.-J. Chen *et al.*, "Structural and mechanical properties of *Klebsiella pneumoniae* type
496 3 Fimbriae," *J Bacteriol*, vol. 193, no. 7, pp. 1718–1725, 2011, doi: 10.1128/jb.01395-
497 10.

498 [19] M. Kitagawa, Y. Matsumura, and T. Tsuchido, "Small heat shock proteins, IbpA and
499 IbpB, are involved in resistances to heat and superoxide stresses in *Escherichia coli*,"
500 *FEMS Microbiol Lett*, vol. 184, no. 2, pp. 165–171, 2000, doi: 10.1111/j.1574-
501 6968.2000.tb09009.x.

502 [20] L. A. Achenbach and W. Yang, "The fur gene from *Klebsiella pneumoniae*:
503 characterization, genomic organization and phylogenetic analysis," *Gene*, vol. 185, no.
504 2, pp. 201–207, 1997, doi: 10.1016/s0378-1119(96)00642-7.

505 [21] E. Padilla, E. Llobet, A. Doménech-Sánchez, L. Martínez-Martínez, J. A. Bengoechea,
506 and S. Albertí, "Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial
507 resistance and virulence," *Antimicrob Agents Chemother*, vol. 54, no. 1, pp. 177–183,
508 2010, doi: 10.1128/AAC.00715-09.

509 [22] J. G. Johnson, C. N. Murphy, J. Sippy, T. J. Johnson, and S. Clegg, "Type 3 fimbriae and
510 biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella
511 pneumoniae," *J Bacteriol*, vol. 193, no. 14, pp. 3453–3460, 2011, doi:
512 10.1128/JB.00286-11.

513 [23] C. Struve, M. Bojer, and K. A. Krogfelt, "Characterization of Klebsiella pneumoniae
514 type 1 fimbriae by detection of phase variation during colonization and infection and
515 impact on virulence," *Infect Immun*, vol. 76, no. 9, pp. 4055–4065, 2008, doi:
516 10.1128/IAI.00494-08.

517 [24] R. F. Kelly and C. Whitfield, "Clonally diverse rfb gene clusters are involved in
518 expression of a family of related D-galactan O antigens in Klebsiella species," *J
519 Bacteriol*, vol. 178, no. 17, pp. 5205–5214, 1996, doi: 10.1128/jb.178.17.5205-
520 5214.1996.

521 [25] E. Llobet, C. March, P. Giménez, and J. A. Bengoechea, "Klebsiella pneumoniae OmpA
522 confers resistance to antimicrobial peptides," *Antimicrob Agents Chemother*, vol. 53,
523 no. 1, pp. 298–302, 2009, doi: 10.1128/AAC.00657-08.

524 [26] C. Bignell and C. M. Thomas, "The bacterial ParA-ParB partitioning proteins," *J
525 Biotechnol*, vol. 91, no. 1, pp. 1–34, 2001, doi: 10.1016/s0168-1656(01)00293-0.

526 [27] C. Xu, W. Shi, and B. P. Rosen, "The chromosomal arsR gene of *Escherichia coli*
527 encodes a trans-acting metalloregulatory protein," *J Biol Chem*, vol. 271, no. 5, pp.
528 2427–2432, 1996, doi: 10.1074/jbc.271.5.2427.

529 [28] J. C. Yang *et al.*, "TraA is required for megaplasmid conjugation in *Rhodococcus*
530 *erythropolis* AN12," *Plasmid*, vol. 57, no. 1, pp. 55–70, 2007, doi:
531 10.1016/j.plasmid.2006.08.002.

532 [29] S. Zhang and R. Meyer, "The relaxosome protein MobC promotes conjugal plasmid
533 mobilization by extending DNA strand separation to the nick site at the origin of
534 transfer," *Mol Microbiol*, vol. 25, no. 3, pp. 509–516, 1997, doi: 10.1046/j.1365-
535 2958.1997.4861849.x.

536 [30] B. Landfald and A. R. Str0m, "Choline-Glycine Betaine Pathway Confers a High Level of
537 Osmotic Tolerance in *Escherichia coli*," 1986.

538 [31] Y.-J. Pan *et al.*, “Capsular polysaccharide synthesis regions in Klebsiella pneumoniae
539 serotype K57 and a new capsular serotype,” *J Clin Microbiol*, vol. 46, no. 7, pp. 2231–
540 2240, 2008, doi: 10.1128/JCM.01716-07.

541 [32] M. N.-T. Le *et al.*, “Genomic epidemiology and temperature dependency of
542 hypermucoviscous Klebsiella pneumoniae in Japan,” *Microb Genom*, vol. 8, no. 5,
543 2022, doi: 10.1099/mgen.0.000827.

544 [33] T. Dey *et al.*, “Unusual Hypermucoviscous Clinical Isolate of Klebsiella pneumoniae
545 with No Known Determinants of Hypermucoviscosity,” *Microbiol Spectr*, vol. 10, no. 3,
546 p. e0039322, 2022, doi: 10.1128/spectrum.00393-22.

547 [34] M. J. Dorman, T. Feltwell, D. A. Goulding, J. Parkhill, and F. L. Short, “The capsule
548 regulatory network of klebsiella pneumoniae defined by density-traDISort,” *mBio*, vol.
549 9, no. 6, Nov. 2018, doi: 10.1128/mBio.01863-18.

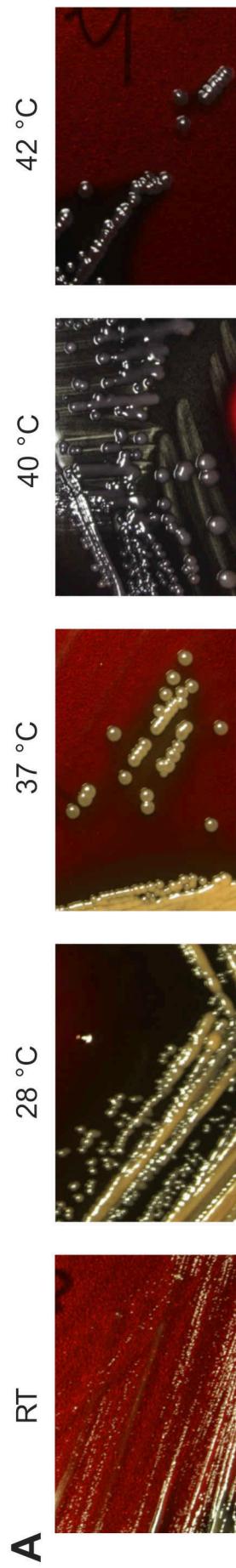
550 [35] K. L. McCallum and C. Whitfield, “The rcsA gene of Klebsiella pneumoniae O1:K20 is
551 involved in expression of the serotype-specific K (capsular) antigen,” *Infect Immun*,
552 vol. 59, no. 2, pp. 494–502, 1991, doi: 10.1128/iai.59.2.494-502.1991.

553 [36] C.-T. Lin *et al.*, “Fur regulation of the capsular polysaccharide biosynthesis and iron-
554 acquisition systems in Klebsiella pneumoniae CG43,” *Microbiology (Reading)*, vol.
555 157, no. Pt 2, pp. 419–429, 2011, doi: 10.1099/mic.0.044065-0.

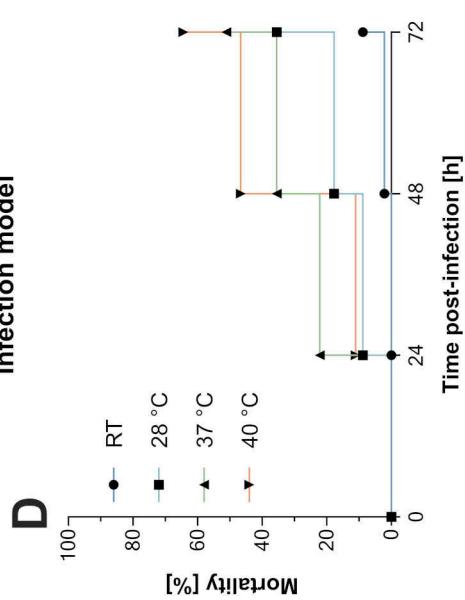
556 [37] B. B. Finlay and G. McFadden, “Anti-immunology: Evasion of the host immune system
557 by bacterial and viral pathogens,” *Cell*, vol. 124, no. 4. Elsevier B.V., pp. 767–782, Feb.
558 24, 2006. doi: 10.1016/j.cell.2006.01.034.

559 [38] C.-T. Fang, Y.-P. Chuang, C.-T. Shun, S.-C. Chang, and J.-T. Wang, “A novel virulence
560 gene in Klebsiella pneumoniae strains causing primary liver abscess and septic
561 metastatic complications,” *J Exp Med*, vol. 199, no. 5, pp. 697–705, 2004, doi:
562 10.1084/jem.20030857.

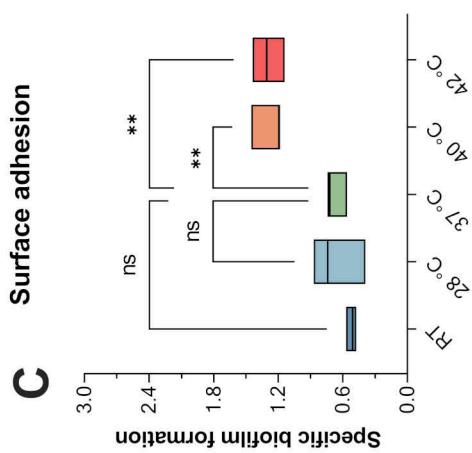
563 [39] E. Eger *et al.*, “Hypervirulent Klebsiella pneumoniae Sequence Type 420 with a
564 Chromosomally Inserted Virulence Plasmid,” *Int J Mol Sci*, vol. 22, no. 17, 2021, doi:
565 10.3390/ijms22179196.

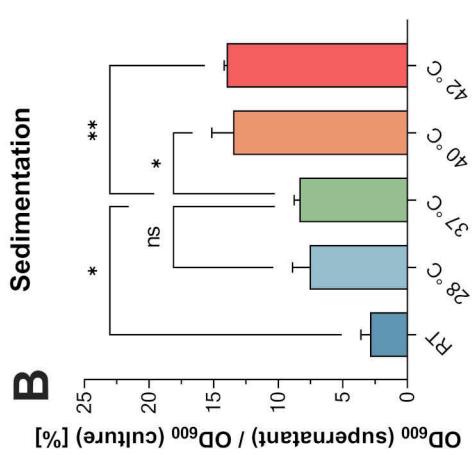

566 [40] E. Eger *et al.*, “Highly Virulent and Multidrug-Resistant Escherichia coli Sequence Type
567 58 from a Sausage in Germany,” *Antibiotics (Basel)*, vol. 11, no. 8, 2022, doi:
568 10.3390/antibiotics11081006.

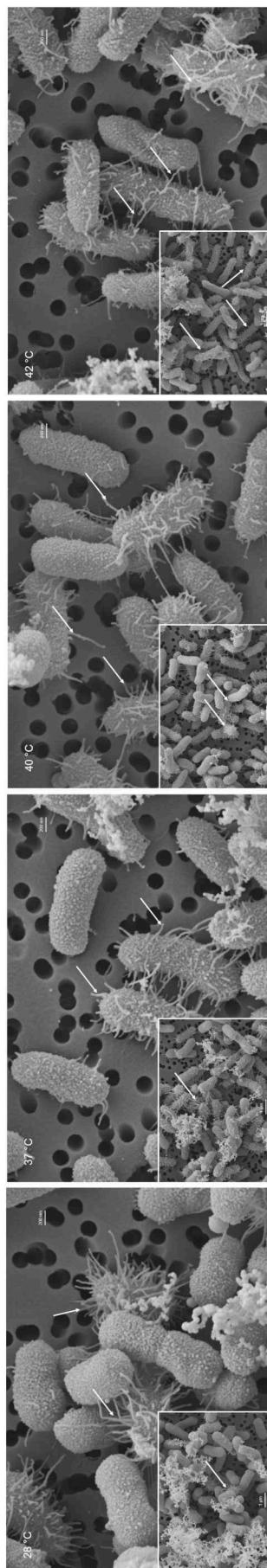
569 [41] K. Schaufler *et al.*, "Carriage of Extended-Spectrum Beta-Lactamase-Plasmids Does
570 Not Reduce Fitness but Enhances Virulence in Some Strains of Pandemic *E. coli*
571 Lineages," *Front Microbiol*, vol. 7, p. 336, 2016, doi: 10.3389/fmicb.2016.00336.

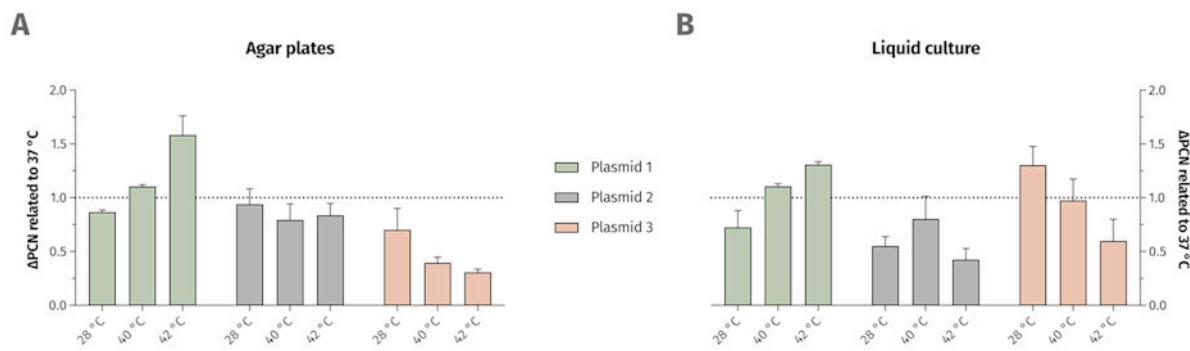

572 [42] C. Niu and E. S. Gilbert, "Colorimetric method for identifying plant essential oil
573 components that affect biofilm formation and structure," *Appl Environ Microbiol*, vol.
574 70, no. 12, pp. 6951–6956, 2004, doi: 10.1128/AEM.70.12.6951-6956.2004.

575 [43] J. L. Insua *et al.*, "Modeling *Klebsiella pneumoniae* pathogenesis by infection of the
576 wax moth *Galleria mellonella*," *Infect Immun*, vol. 81, no. 10, pp. 3552–3565, 2013,
577 doi: 10.1128/IAI.00391-13.


578


Infection model


Surface adhesion



Sedimentation

E

