

1 Circadian period is compensated for repressor protein 2 turnover rates in single cells

3

4 Christian H. Gabriel¹, Marta del Olmo², Arunya Rizki Widini¹, Rashin Roshanbin¹, Jonas
5 Woyde¹, Ebrahim Hamza¹, Nica-Nicoleta Gutu³, Amin Zehtabian⁴, Helge Ewers⁴, Adrian
6 Granada³, Hanspeter Herzel², Achim Kramer^{1*}

7

8 ¹ Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-
9 Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany

10 ² Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

11 ³ Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany

12 ⁴ Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie
13 Universität Berlin, Berlin, Germany

14 * corresponding author, Correspondence: achim.kramer@charite.de

15

16

17 **Summary**

18 Most mammalian cells possess molecular circadian clocks generating widespread rhythms,
19 e.g. in transcript and protein abundance. While circadian clocks are robust to fluctuations in
20 the cellular environment, little is known about how circadian period is compensated for
21 fluctuating metabolic states. Here, we exploit the heterogeneity of single cells both in
22 circadian period and metabolic state, governing protein stability, to study their
23 interdependence without the need for genetic manipulation. We generated cells expressing
24 key circadian proteins (CRY1/2 and PER1/2) as endogenous fusions with fluorescent proteins
25 and simultaneously monitored circadian rhythms and degradation in thousands of single cells.
26 We found that the circadian period is compensated for fluctuations in the turnover rates of
27 circadian repressor proteins and uncovered possible mechanisms using a mathematical
28 model. In addition, the stabilities of the repressor proteins are circadian phase-dependent and
29 correlate with the circadian period in a phase-dependent manner, in contrast to the prevailing
30 model.

31 **Keywords**

32 circadian rhythms, metabolic compensation, CRISPR/Cas9, single-cell imaging, fluorescence
33 microscopy, protein degradation.

34 **Introduction**

35 Circadian clocks have evolved in all kingdoms of life, enabling organisms to track, anticipate
36 and adapt to the ~24-hour rhythm of day and night. They exist at all levels of hierarchy, from
37 single cells to organs and whole organisms - but the basis of all circadian rhythms is a cell-
38 autonomous oscillator.¹ However, the dynamics of single-cell circadian rhythms have a high
39 degree of noise and stochasticity, e.g. the circadian clock of individual cells can oscillate with
40 periods ranging from about 18 hours to 30 hours and beyond, despite being genotypically
41 identical.²⁻⁵ Intercellular communication allows noisy single-cell oscillations to give rise to a
42 robust rhythmic signal at the population or organ level.^{6,7} In mammals, the generation of
43 molecular oscillations is thought to rely on a transcriptional-translational feedback loop
44 (TTFL): CLOCK:BMAL1 promotes the rhythmic expression of the repressors CRY1-2 and PER1-
45 3, by binding to E-box elements in their promoters.⁸ PERs and CRYs form high molecular-
46 weight complexes that inhibit CLOCK:BMAL1, thereby repressing their own transcription.⁹⁻¹²
47 After the regulated degradation of the complex, the monomeric CRY1 still independently
48 represses CLOCK:BMAL1 until the inhibition is released and a new cycle begins.^{13,14}

49 A fundamental question in circadian biology remains: what determines the circadian period
50 length? The mere structure of the TTFL cannot explain this and critical delays are required to
51 enable oscillation in the first place and extend the duration of this loop to ~24 h.¹⁵ After
52 Konopka and Benzer discovered that phosphorylation mutants of the *Drosophila period* gene
53 cause period phenotypes, it became clear that post-translational modifications (PTMs) play
54 important roles in period determination^{16,17}, e.g. by modulating the stability of the repressors.
55 In fact, mutation, inhibition or ablation of ubiquitin ligases targeting CRYs and PERs for
56 degradation, e.g. FBXL3 and βTrCP, not only increases the protein half-life, but also lengthens
57 the period¹⁸⁻²⁴, suggesting that repressor stability and circadian period may be directly
58 correlated. However, this concept did not hold when circadian oscillations were restored by
59 introducing CRY1 into arrhythmic *Cry1/2*-knockout cells¹³: although for several CRY1 mutants
60 the rescued period did indeed correlate with protein stability, other mutants did not fit this
61 pattern.²⁵⁻²⁷ Genetic manipulation by mutation almost always carries the risk of also altering
62 protein function, and thus a period phenotype may occur because of, in addition to, or despite
63 the alteration in protein stability. Therefore, while mutants can be valuable tools, they also
64 have clear limitations.^{25,28}

65 Here we exploit the natural heterogeneity of both the circadian period and protein
66 degradation rates at the single cell level, which allows us to study the interdependence of
67 these traits without the need for genetic manipulation.^{2,4,29} Using tens of thousands of
68 engineered single cells expressing CRYs and PERs as fusion proteins with fluorescent reporters,
69 we found that the stability of these proteins is far from constant, but varies with the time of
70 day, which, in addition to circadian transcription, conditions rhythmic protein levels. The
71 influence of repressor stability on the circadian period also turned out to be phase-dependent:
72 early in the cycle, high stability correlates with a shorter period, late in the cycle with a longer
73 period. Overall, however, the circadian period is surprisingly resilient to strongly fluctuating
74 protein degradation rates. We reproduce and conceptualize these findings with a

75 mathematical model that describes several interacting mechanisms for this compensation of
76 the circadian period against highly variable protein degradation rates.

77

78 **Results**

79 **Visualization of endogenous CRY2 and PER1 proteins in living cells**

80 We have previously used CRISPR/Cas9-mediated knock-in approaches to generate U-2 OS cells
81 expressing CRY1 and/or PER2 as fluorescent fusion proteins from the endogenous locus⁴. In
82 these cells, the nuclear accumulation of both fusion proteins oscillates in a circadian manner.
83 Because the paralogues PER1 and CRY2 have overlapping but not redundant functions within
84 the TTFL,^{30–33} and to study the protein dynamics of all circadian repressors side by side in
85 living cells, we generated CRY2-mScarlet-I and PER1-mScarlet-I knock-in cells (referred to as
86 CRY2-mSca and PER1-mSca, respectively). We used a similar Cas9-mediated HDR approach to
87 insert the sequence of the red fluorescent protein mScarlet-I (mSca) 5' to the PER1 or CRY2
88 stop codon into the genome of U-2 OS cells (**Supplementary Fig. S1A**) and screened clones by
89 fluorescence microscopy and genomic PCR. We selected two homozygous CRY2-mSca-I and
90 two heterozygous PER1-mSca clones (**Supplementary Fig. S1B-E**) and confirmed the specificity
91 of the fluorescence using shRNA targeting CRY2 and PER1, respectively (**Fig. 1A-B**). Circadian
92 rhythms were intact in all clones, as demonstrated by rhythmic activation of a Bmal1::Luc
93 reporter with similar circadian dynamics compared to wild-type cells (**Supplementary Fig. S1F-J**). CRY2-mSca fluorescence was seen exclusively in the nucleus of the knock-in cells (**Fig. 1A**),
94 similar to what we have observed for CRY1¹. While fluorescence signals in PER1 knock-in cells
95 were mainly detected in the nucleus, fluorescence levels above background were also
96 observed in the cytoplasm (**Fig. 1B**). Taken together, these results indicate successful
97 expression of the fluorescent CRY2-mSca or PER1-mSca fusion protein from the endogenous
98 genomic loci in these clones, while the circadian oscillator remains intact.
99

100 **CRY2 and PER1 protein abundance oscillates in single cells**

101 The protein abundance of both PER1 and CRY2 is known to oscillate over the course of a day
102 at the population level,^{34,35} but little is known about their expression dynamics in single cells.
103 To address this, we recorded fluorescence of single cells from our newly generated knock-in
104 clones for three days after dexamethasone synchronization with a time resolution of 1h. We
105 observed that the nuclear abundance of both PER1-mSca and CRY2-mSca oscillated in single
106 cells, but with different characteristics. CRY2-mSca was detected in the nucleus of expressing
107 cells throughout the circadian cycle and did not exceed background levels in the cytoplasm at
108 any time point (**Fig. 1C**). In contrast, nuclear PER1-mSca levels of many cells dropped to near
109 background fluorescence levels in the trough of the circadian oscillation (**Fig. 1D**).

Figure 1

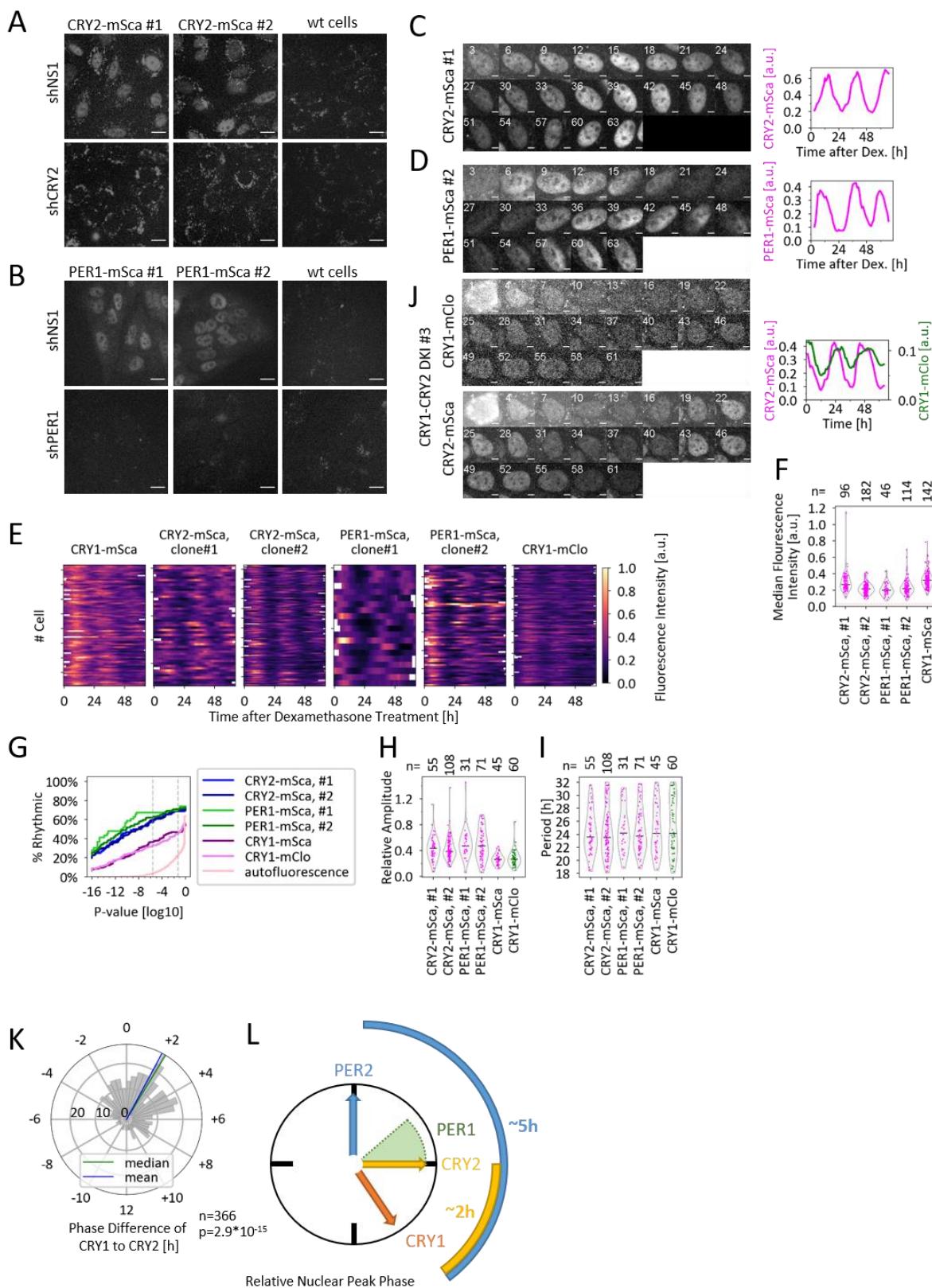


Figure 1: CRY2 and PER1 protein oscillation in single cells.

(A,B) Fluorescent knock-in and wild-type (wt) U-2 OS cells transduced with shRNA targeting either *CRY2* or *PER1*, or with a non-silencing control shRNA (shNS1). Scale bar: 20 μ m. (C,D) Montage of a CRY2-mSca (C) or PER1-mSca (D) knock-in cell nucleus recorded at indicated hours after dexamethasone (dex) treatment, and time course of mean fluorescence intensity. Scale bar: 5 μ m. (E) Time series of mean nuclear fluorescence of indicated knock-in clones after dex treatment. Only time series with ≥ 60 h are shown. y-axis ticks mark every 10th cell. (F) Median fluorescence intensities for individual cells from all time points after background subtraction. Horizontal lines: median of all cells, red line: median nuclear autofluorescence. (G) Percentage of rhythmic cells as a function of p-value cutoff. Vertical dashed lines represent p-values of 0.05 and the more stringent value used here, respectively. See **Supplementary Note 1**. (H,I) Relative amplitudes (H) and periods (I) of rhythmic time series. (J) Montage of a CRY1-mClo/CRY2-mSca double knock-in (DKI) cell nucleus imaged in the two fluorescence channels at the indicated hours after dex treatment, and time course of mean fluorescence intensities. Scale bar: 5 μ m. (K) Histogram of phase difference (30-min bins) in unsynchronized CRY1/CRY2 double knock-in cells. p-value: Wilcoxon signed-rank test. (L) Sequence of mean nuclear peak expression in U-2 OS cells. PER1 timing is estimated from **Supplementary Fig. S3B-C**.

111

112 To quantify circadian dynamics, we developed an automated approach to track and extract
113 signals from thousands of cells in a single experiment. Briefly, cells were stably transduced to
114 express a nuclear infrared protein (histone-2B-miRFP720). After imaging, nuclei were
115 segmented and tracked based on miRFP720 fluorescence using Cellprofiler software, and the
116 background-subtracted mean nuclear fluorescence from different channels was extracted. To
117 improve data quality, mistracked nuclei were identified by an apparent abrupt size change in
118 the absence of cell division and filtered out using a Python script (see Methods). Using this
119 approach, we extracted nuclear fluorescence signals from hundreds of dexamethasone-
120 synchronized PER1-mSca, CRY2-mSca, and - as a reference - CRY1-mSca and CRY1-mClover3
121 reporter cells over the course of 68 hours (**Fig. 1E, Supplementary Fig. S2, Supplementary**
122 **Video SV1**). In contrast to what we have observed for PER2 - which was expressed 6-10 times
123 lower than CRY1⁴ - the average intensity levels of PER1-mSca, CRY1-mSca and CRY2-mSca were
124 similar (**Fig. 1F**).

125 Next, we analyzed the circadian rhythmicity of these time series using Metacycle2D, which
126 integrates nonparametric and Lomb-Scargle periodogram analysis³⁶⁻³⁸ to calculate circadian
127 parameters and a p-value for rhythmicity (**Supplementary Fig. S2**). We defined a dataset-
128 specific stringent p-value cut-off based on the autofluorescence recording ($p < 10^{-5}$, see
129 **Supplementary Note 1** for details) and excluded time series that fell below this value or whose
130 calculated period exactly matched the entered limits (18-32 h), as the latter are most likely to
131 contain oscillations longer or shorter than these limits. Using these criteria, 59-66% of the time
132 series from CRY2-mSca and PER1-mSca cells were classified as 'highly rhythmic', compared to
133 ~33% of those from CRY1 reporter cells. These differences between repressor oscillations
134 were present regardless of the p-value cutoffs (**Fig. 1G**). Among the highly rhythmic time
135 series, PER1 protein oscillations had the highest relative amplitude, while CRY1 oscillations
136 had the lowest (**Fig. 1H**). The average periods of the rhythmic signals were similar for all six
137 clones analyzed (**Fig. 1I**). Notably, the periods of individual cells - even within clonal
138 populations - were highly variable, covering the full range of 18-32 hours.

139 Phase relationship between CRY and PER proteins

140 Previously, we observed that the expression phase of CRY1 protein was delayed by
141 approximately 5 h relative to that of PER2 in dual reporter cells⁴, which is consistent with a
142 delayed mRNA expression of CRY1 relative to the other circadian repressor proteins and ChIP-
143 Seq time series showing exclusive presence of CRY1 at E-boxes in a late repression phase^{14,35}.

144 To obtain a more complete and time-resolved profile of circadian repressor expression, we
145 also aimed to estimate the expression phase of CRY2 and PER1 in relation to CRY1. Overall,
146 our rhythmic cells had a low phase coherence of clonal cell populations, i.e., the circadian
147 phases at 2 and 3 days after synchronization were quite different (**Supplementary Fig. S3A**).
148 While this was consistent with the single-cell heterogeneity observed for circadian periods, it
149 made it difficult to calculate a significant average peak phase. To estimate the average phase
150 at the population level, we calculated the mean of all normalized time series and determined
151 the time of the second peak after synchronization (**Supplementary Fig. S3B-C**). This revealed
152 that the nuclear accumulation of PER1 peaked first, followed by CRY2 and CRY1 last, with the
153 limitation that the clonal difference was larger than the differences between the reporters.
154 To overcome this limitation, we generated double knock-in cells expressing CRY1-mClover
155 together with either PER1-mSca or CRY2-mSca. These double knock-in cells allowed us to
156 visualize and study the dynamics of different repressor proteins in parallel within the same
157 cell. Unfortunately, putative PER1-mSca/CRY1-mClo double knock-in cells unexpectedly
158 showed an exclusively cytoplasmic localization of the mSca fluorescence signal, suggesting a
159 deleterious interplay of the two fusion proteins. However, we successfully generated CRY1-
160 mClover3/CRY2-mSca double knock-in cells in which both mClo and mSca fluorescence signals
161 were localized to the nucleus, as seen in cells expressing either fusion protein alone (**Fig. 1J**,
162 **Supplementary Fig. S4A**). Knock-in was verified by genomic PCR (**Supplementary Fig. S4B-C**)
163 and the specificity of the fluorescence signal was confirmed by shRNA-mediated knockdown
164 (**Supplementary Fig. S4A**) for four clones. These clones showed similar circadian rhythmicity
165 compared to their respective parental clone (**Supplementary Fig. S4D-H**) allowing us to
166 simultaneously monitor both CRY proteins in single cells with intact circadian clocks (**Fig. 1J**).
167 We monitored the nuclear fluorescence of unsynchronized CRY1/CRY2 double knock-in cells
168 over the course of two days and identified cells in which the signals of both proteins were
169 rhythmic. In these cells, CRY2 nuclear accumulation peaked on average 1.9 ± 4.3 hours (mean
170 \pm SD) before that of CRY1 (**Fig. 1K**). The high standard deviation again demonstrated the high
171 degree of variability of protein oscillations in single cells. Thus, from our data, we propose the
172 following sequence of events in the nucleus of U-2 OS cells: (1) peak of PER2 protein, (2) peak
173 of PER1 protein ~ 1.5 -3 hours later, (3) peak of CRY2 protein 3 hours after the peak of PER2
174 and finally peak of CRY1 protein another 2 hours later (**Fig. 1L**).

175 Stability of repressor proteins

176 Using these circadian reporter cells, we sought to address the fundamental unresolved
177 question of how the period of the molecular circadian clock is tuned to ~ 24 hours. While there
178 is evidence that altering the stability of circadian repressor proteins, i.e., CRYs and PERs, can
179 also affect the circadian period,^{18,23} such data have mostly been derived from genetic
180 perturbation studies, and it remains unclear whether the altered period is a consequence of
181 altered stability or of the perturbation itself. Given the high variability of circadian oscillations
182 in single cells, we hypothesized that we could exploit the heterogeneity of single cells to
183 analyze the interdependence of repressor stability and circadian period without the need for
184 genetic manipulation. To simultaneously obtain circadian parameters and repressor protein
185 stability in the same cells, we monitored nuclear protein abundance of unsynchronized single

186 and double knock-in cells (**Supplementary Tab. S1**) over the course of three days, capturing
 187 rhythms in the first two days and recording degradation dynamics on the third day by then
 188 stopping any new protein synthesis with cycloheximide (CHX, 20 µg/ml, **Supplementary Video**
 189 **SV2**). Circadian parameters and the circadian phase at which CHX was added – and at which
 190 protein half-life is assessed – were calculated from time points prior to CHX addition using
 191 Metacycle2D. Protein half-lives were obtained by fitting mono-exponential decay curves to
 192 the time series after CHX addition (**Fig. 2A**).

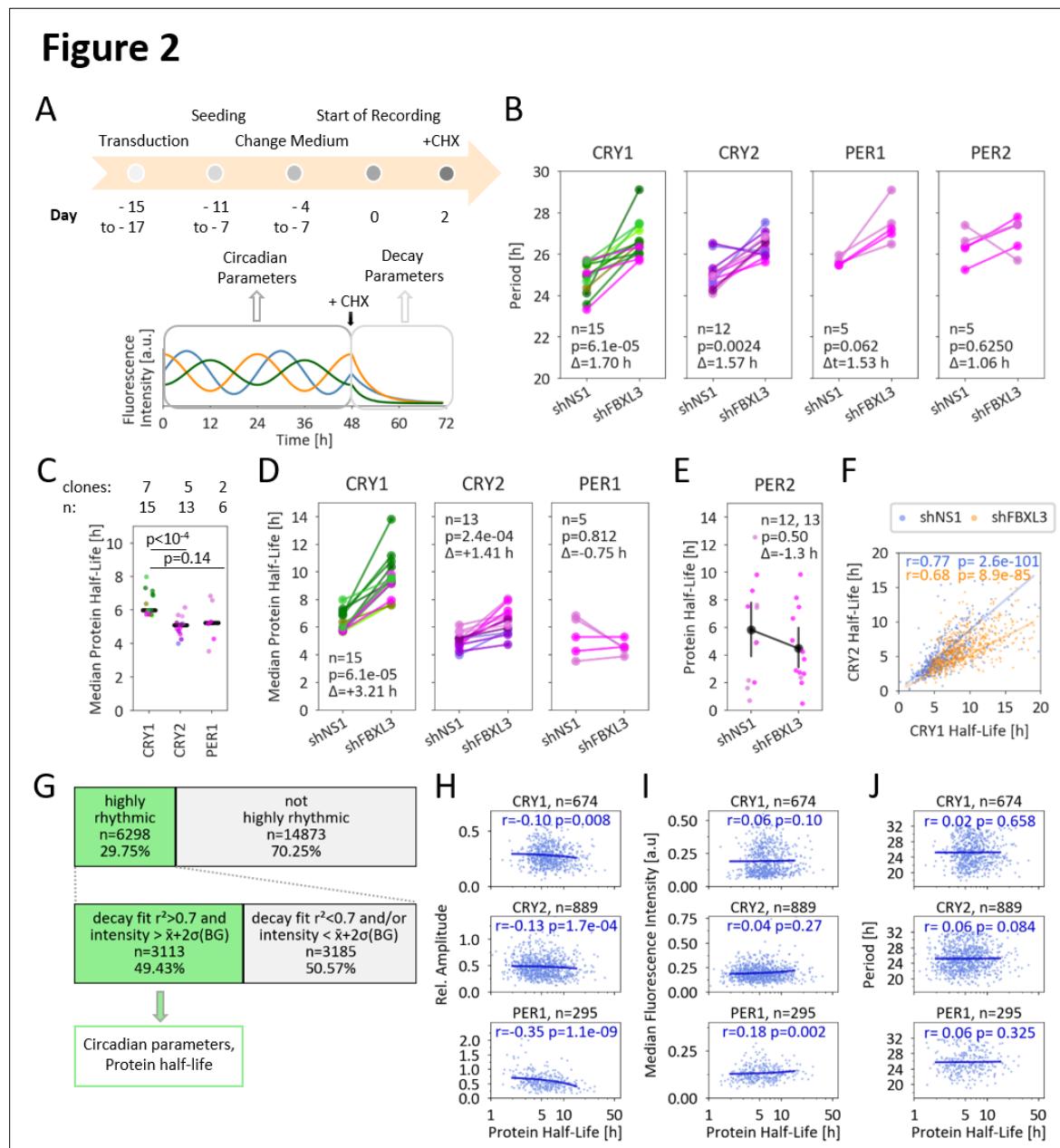


Figure 2: Stability of repressor proteins and correlation with circadian dynamics

(A) Experimental setup: Unsynchronized single knock-in reporter cells transduced with shRNA were imaged 2 days prior and 1 day after cycloheximide addition. Circadian parameters were extracted from days 1 and 2, and protein half-life from day 3. (B) Median periods of reporter cells transduced with the indicated shRNAs, each calculated from ≥ 10 rhythmic cells. Same colors (green: mClo clones, purple: mSca clones) represent the same clonal population from different experiments. p-value: Wilcoxon signed-rank test. (C,D) Median protein half-life of clonal populations transduced with control shRNA (C) or the indicated shRNAs (D), each calculated from ≥ 10 decay fits. Black lines (C) indicate median. p-values: Mann-Whitney-U test (C), Wilcoxon signed-rank test (D). (E) Half-life of individual PER2-mSca cells. Shown are means $\pm 95\%$ confidence interval (CI). p-value: Wilcoxon signed-rank test. (F) Correlation of CRY1 and CRY2 half-life in double knock-in cells (Spearman). (G) Highly rhythmic time series (**Supplementary Note 1**) were filtered for reliable decay fits. (H,I,J) Correlation of measured half-lives with relative circadian amplitude (H), signal intensity (abundance, I) and circadian period length (J). Correlation coefficient (r) and p-value from Spearman correlation, line: linear regression.

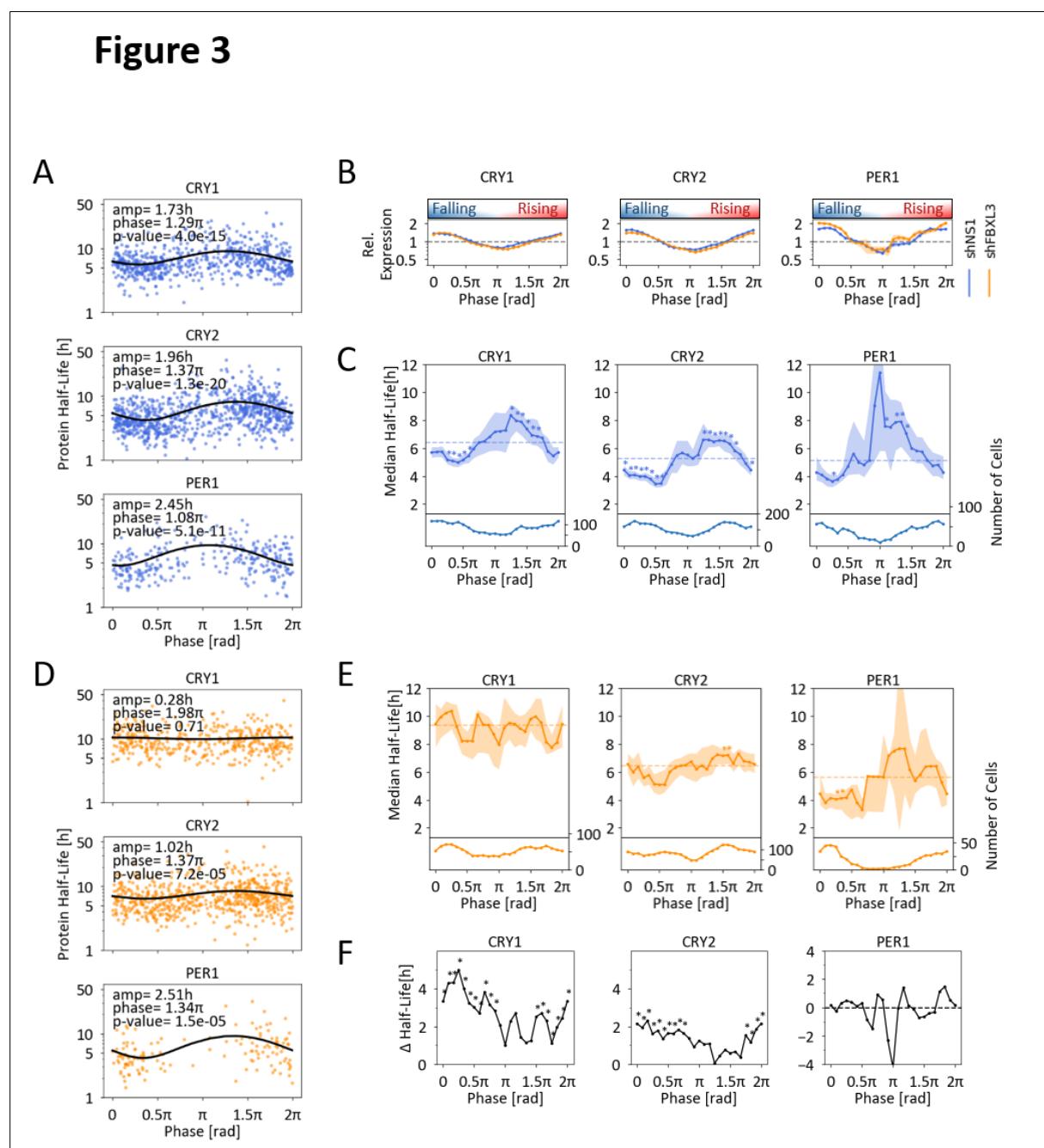
194

195 To test our ability to accurately determine periods and protein half-lives in single cells, we
196 sought to reproduce the observation from population studies that knockdown of the ubiquitin
197 ligase FBXL3 results in a long circadian period and increased CRY half-lives²³. To this end, cells
198 were transduced with either a non-silencing shRNA or an shRNA targeting FBXL3. In total, we
199 obtained more than 20,000 time series of nuclear fluorescence from three independent
200 experiments (**Supplementary Tab. S2**). Using the same threshold criterion as described above,
201 approximately 30% of all time series were classified as highly rhythmic (24.4% for FBXL3
202 knockdown and 36.9% for control cells, **Supplementary Tab. S2**). Cells from most clones
203 oscillated with average periods between 23 and 25 hours and had various phases when CHX
204 was added (**Supplementary Fig. S5A**). Knockdown of FBXL3 increased the average period of
205 almost all clonal populations by 1.5 ± 1.1 hours (mean \pm SD, **Fig. 2B**), similar to what has been
206 described previously²³. This demonstrates that despite the high cell-to-cell variability of
207 circadian periods, differences in period distribution can be faithfully detected in single cell
208 data. Next, we calculated the half-life of the mean nuclear fluorescence signal after addition
209 of CHX, which we will refer to as the half-life of the respective protein for ease of reading.
210 After correction for photobleaching (see Methods), we fitted mono-exponential decay curves
211 to the second part of the time series, starting 2 hours after addition of CHX. We required (i)
212 that the initial intensity be significantly above background levels ($\sim 54\%$ of all traces), and (ii) a
213 r^2 value of at least 0.7 for a successful fit (9211 traces, $\sim 82\%$).

214 Overall, the protein half-lives obtained were highly variable, covering almost an order of
215 magnitude, with 95% of the values falling between 2.3 and 19.0 hours (**Supplementary Fig.**
216 **S5B-C**). Comparing the median half-lives of the repressor proteins of the clonal populations,
217 we observed that on average CRY1 proteins had a significantly longer half-life (5.9 ± 0.7 h,
218 median \pm SD) than CRY2 (5.1 ± 0.6 h, $p = 9.3 \times 10^{-5}$, Mann-Whitney-U test) and, although not
219 statistically significant, PER1 (5.2 ± 1.2 h, $p = 0.14$, **Fig. 2C**). For PER2, we could only reliably
220 determine the half-life in 25 cells (5.8 ± 4.6 h, **Fig. 2E**) because the signal's intensity was too low
221 in most cells. Therefore, we had to refrain from further statistical analysis of PER2 half-lives
222 and instead focus on the other three repressors. Consistent with previous reports and the
223 established role of FBXL3 as a CRY ubiquitin ligase, FBXL3 knockdown significantly increased
224 the average half-life of CRY1 and CRY2 (by 3.2 h and 1.4 h, $p = 6.1 \times 10^{-5}$ and 1.2×10^{-4} ,
225 respectively, Wilcoxon signed rank test), but not of PER proteins (**Fig. 2D-E**). Thus, we were
226 able to detect known changes in protein half-lives using noisy single cell data, despite the wide
227 distribution of half-lives within clonal populations (**Supplementary Fig. S5C**). Furthermore, the
228 half-lives of the fusion proteins represent those of the repressors and not those of the

229 fluorescent reporter because, first, only CRY, but not PER fusion protein half-lives increased
230 after FBXL3 knockdown, and second, fluorescent protein half-lives are typically much longer.³⁹
231 Interestingly, we observed a strong correlation between CRY1 and CRY2 half-lives in cells
232 expressing both reporters, which was also evident when FBXL3 was knocked down (**Fig. 2F**).
233 Thus, the stability of CRY1 and CRY2 appears to be co-regulated.

234 To investigate the effect of repressor stability on circadian dynamics, we focused on those
235 ~3100 highly rhythmic time series for which we also obtained reliable decay fits (**Fig. 2G**). We
236 observed the expected positive correlation of half-life with expression level (magnitude,
237 **Fig. 2H**) and the negative correlation of half-life with relative amplitude (**Fig. 2I**).⁴⁰ Surprisingly
238 and in contrast to the prevailing model (see above), we did not detect a significant correlation
239 between repressor half-life and circadian period (**Fig. 2J, Supplementary Fig. S5D**). In cells
240 with similar circadian periods, the half-life of e.g. CRY1 can differ by a factor of up to 10
241 (**Fig. 2J**).


242 Protein stability of repressor proteins changes with circadian phase

243 We speculated that the half-life of CRY1, CRY2, and PER1 may not be a static value, but may
244 itself be subject to circadian changes, as reported for PER2⁴¹. If this were the case, the
245 measured decay rates would represent a phase-dependent snapshot rather than constant
246 rates, and as such may be insufficient to explain the period of a cell. Indeed, we observed that
247 the half-life of all three proteins showed significant rhythmicity, with a peak of stability during
248 the rising phase (**Fig. 3A**). To get a clearer picture of how the repressor half-life changes during
249 different phases, we binned the half-life and relative expression data into 24 overlapping
250 phase windows of 0.78 rad, corresponding to 3 hours of a 24-hour cycle (**Supplementary**
251 **Fig. S6**). Thus, by definition, each cell is represented in 3 consecutive bins. Plotting relative
252 expression against circadian phase at the time of CHX addition showed the expected rhythmic
253 patterns, validating the phase determination and binning (**Fig. 3B**). The relationship between
254 half-life and protein expression is as follows (**Fig. 3B-C**): the stability of all three proteins was
255 lowest in cells assayed at or after the peak phase, when protein abundance declines, and
256 highest during and after the trough phase, when proteins reaccumulate. Notably, the number
257 of time series that could be analyzed was lower in the trough phase (**Fig. 3C, lower panels**)
258 because, as with PER2 in general (see above), the low initial signal levels often precluded a
259 faithful determination of the decay dynamics. This is especially true for time series from PER1
260 reporter cells, whose nuclear trough expression levels are close to background (**Fig. 1D**).

261 Rhythmic CRY1 stability is dependent on FBXL3

262 Next, we asked how the observed rhythmic stabilities might be generated. For the CRY
263 proteins, we speculated that FBXL3 not only affects the average stability (**Fig. 2D**), but acts in
264 a phase-dependent manner. Indeed, we observed that upon FBXL3 knockdown, the observed
265 phase dependence of CRY1 stability is lost (**Fig. 3D**) and CRY1 half-lives are high in all phases
266 (**Fig. 3E**). Thus, the presence of FBXL3 seems to be necessary for the rhythmic stability of CRY1.
267 For CRY2, phase-dependent differences in protein half-life are still present, but are reduced in
268 the absence of FBXL3. In contrast, FBXL3 does not appear to alter the pattern of rhythmic PER1
269 stability. Interestingly, during the rising phase, when CRY stability was already high,

270 knockdown of FBXL3 did not result in a significant further increase (**Fig. 3F**) suggesting that
 271 FBXL3 targets CRY proteins for degradation mainly during the falling phase, resulting in phase-
 272 dependent differences in protein stability.

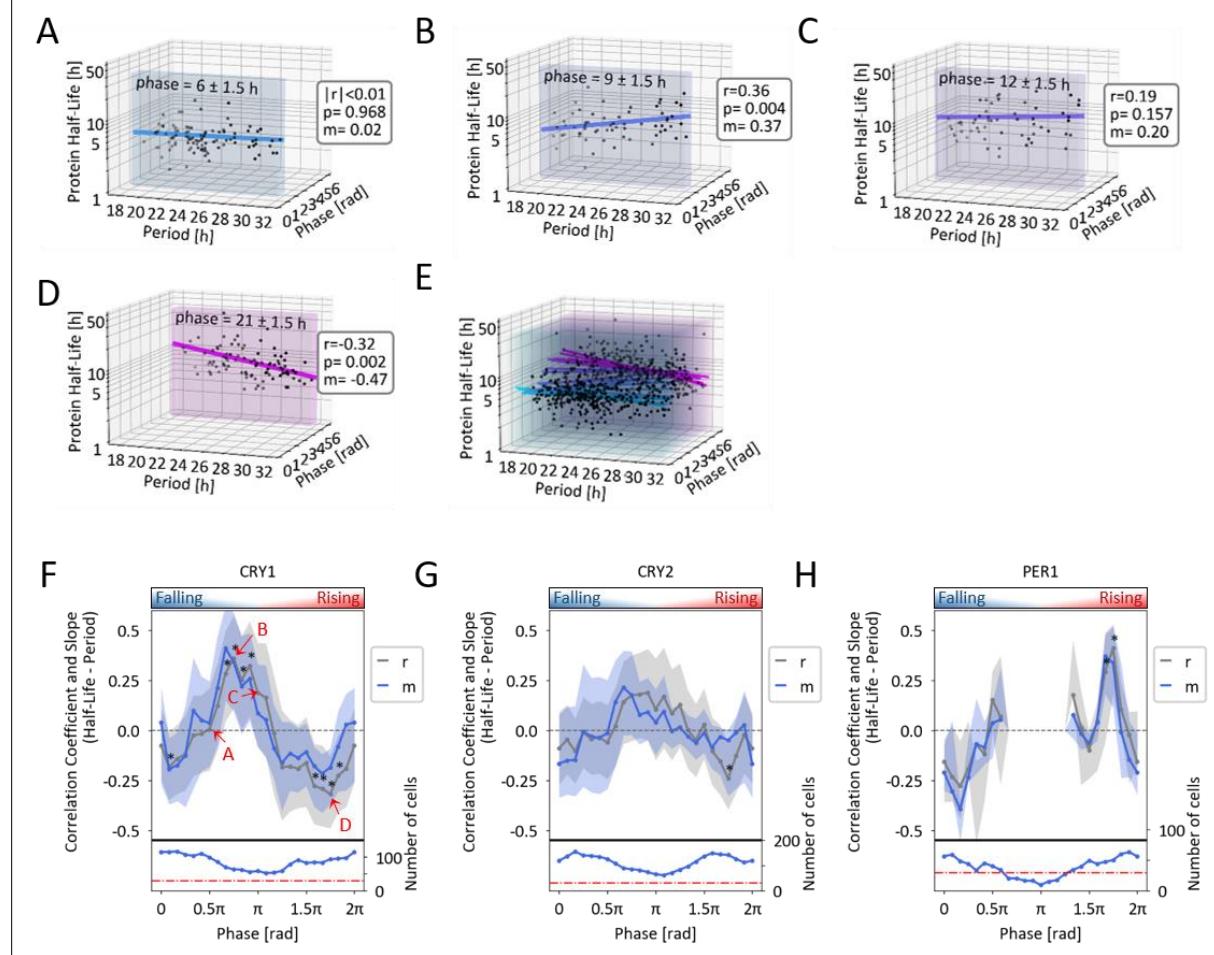
273

Figure 3: Stability of repressor proteins is circadian phase dependent

(A) Harmonic regression analysis of protein half-life and circadian phase in which the half-life was measured. p-values: F-test. (B) Relative expression at time of CHX addition (mean \pm SEM) for each 3-hour phase window. (C) Protein half-life (median and 95% CI) and cell number for each 3-hour phase window. Dashed lines represent median, and * statistically significant ($p < 0.05$) difference from median (1sample Wilcoxon Signed test, corrected for multiple testing (Sidak-Holmes). (D) Harmonic regression analysis of protein half-life and circadian phase after knockdown of FBXL3. p-values: F-test. (E) Protein half-lives as in (C) after knockdown of FBXL3. (F) Increase in median protein half-life in FBXL3 knock-down cells compared to controls, number of cells as in (C) and (E). *: $p < 0.05$, Mann-Whitney-U test, corrected for multiple testing (Sidak-Holmes).

274

275 Impact of CRY half-life on circadian period is phase dependent


276 Since PER and CRY stabilities change in a phase-dependent manner, the decay rate obtained
277 from a cell represents only a snapshot of a dynamic measure. Therefore, we investigated
278 whether the independence of the period of repressor stability that we found (**Fig. 2J**) could be
279 an artifact of analyzing pooled data. To this end, we grouped time series into overlapping
280 phase windows of 3 hours (as before, **Supplementary Fig. S6B**) and correlated repressor half-
281 life and period separately for cells within these phase windows (**Fig. 4A-E**). Indeed, we found
282 correlations between repressor stability and circadian period, but to an unexpected extent:
283 depending on the circadian phase, we observed either a significantly positive (**Fig. 4B**),
284 negative (**Fig. 4D**) or no correlation (**Fig. 4A,C**) between period and repressor half-life. When
285 the Spearman correlation coefficient and the slope of the linear regression were plotted for
286 all phase windows, a general pattern emerged (**Fig. 4E-H**): in cells assayed during the rising
287 phase, CRY1 stability and circadian period were negatively correlated, i.e. a relatively longer
288 CRY1 half-life in this phase was correlated with shorter periods and vice versa (**Fig. 4B,F**). In
289 contrast, CRY1 half-life and period were positively correlated in cells analyzed during the late
290 falling phase (**Fig. 4D,F**). This was very similar for the phase-dependent correlation of period
291 and CRY2 half-life (**Fig. 4G**). For PER1, the correlation analysis suffered from lower cell
292 numbers and did not show clear trends (**Fig. 4H**).

293 In summary, CRY stability varies throughout the day, with the shortest average half-life
294 occurring a few hours after the peak of expression and the longest half-lives occurring shortly
295 after the trough of expression (**Fig. 3C**). However, the circadian periods of the cells seem to be
296 rather independent of the absolute half-life of CRY1 at these extremes (**Fig. 4F-G**). In contrast,
297 a rather short CRY1 half-life during the late rising phase (**Fig. 4G**) or a rather long CRY1 half-
298 life during the late falling phase (**Fig. 4E**) is more often observed in cells with an above-average
299 period and vice versa. However, even if only the stabilities assessed during the same phase
300 are compared, cells with very different repressor half-lives can have a similar period length
301 (**Fig. 4A-D**).

302 Circadian period is compensated for protein turnover rates

303 One implication of the phase-dependent correlation between CRY half-life and period is that
304 the stability of circadian repressor proteins may affect the length of the circadian cycle
305 differentially. Intuitively, overall low protein stability could (i) prolong the time to reach a
306 threshold of repression during the rising phase, but (ii) also shorten the time to release
307 repression due to the accelerated disappearance of repressor proteins (**Fig. 5A**).⁴² If these
308 effects were to cancel each other out, the period would remain stable, i.e., it would
309 compensate for cellular fluctuations affecting protein turnover. However, intuition can easily
310 be misled by the complexity and non-linearities present in the TTFL. Therefore, we developed
311 an adapted mathematical model of the TTFL based on a single prototypical CRY1 repressor
312 (**Fig. 5B**). Using linear kinetics for production terms, Michaelis-Menten kinetics for degradation
313 terms and Hill functions for transcriptional repression, our model has four variables describing
314 different types of the CRY1 repressor (**Supplementary Tab. S4** and Methods).

Figure 4

315

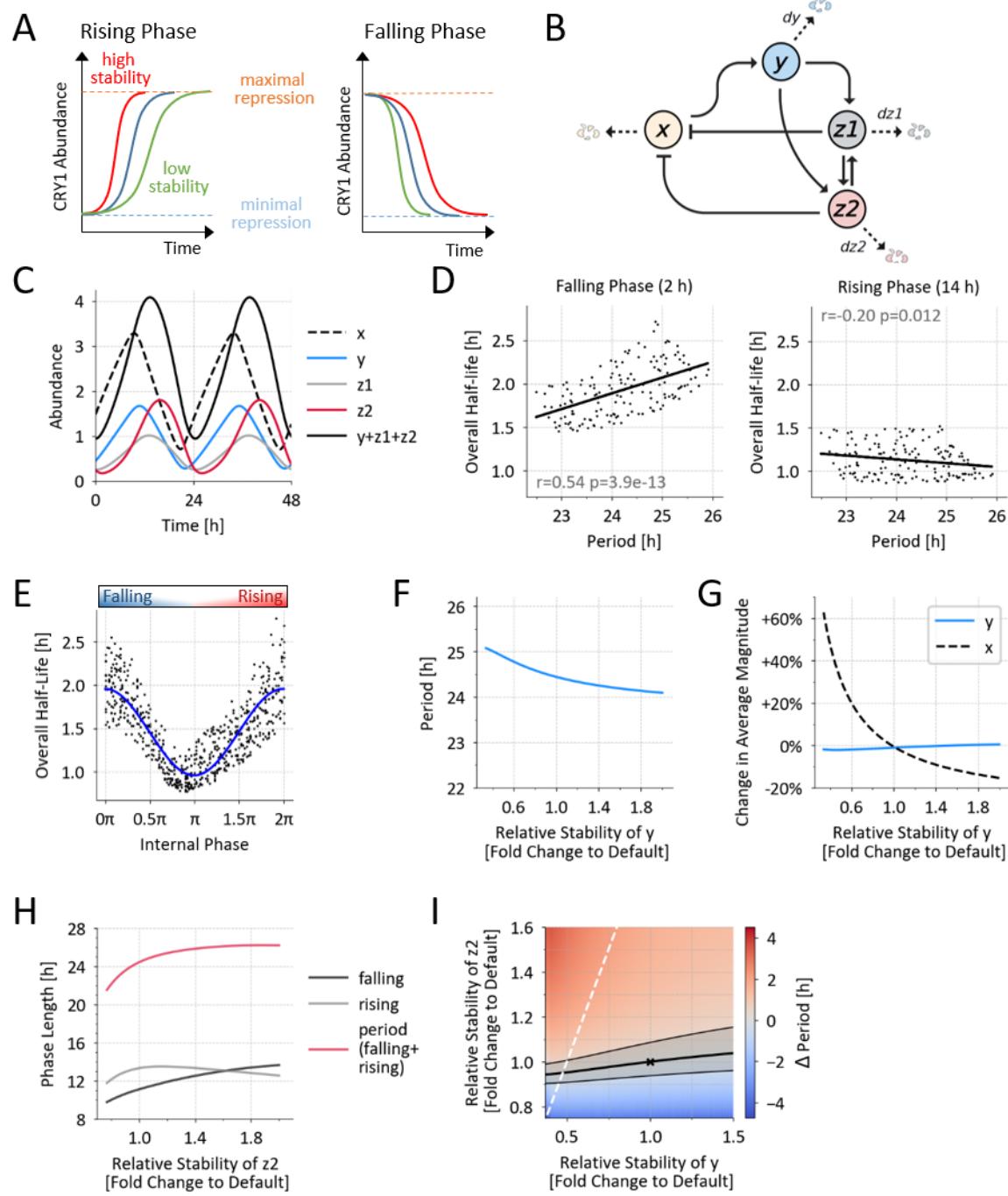
Figure 4: Circadian period depends on repressor protein stability in a phase-dependent manner

(A-E) 3D plots of circadian period, CRY1 half-life and circadian phase at half-life measurement. Data from indicated phase windows. (A-D) or from all phases (E) are shown. Colored lines represent linear regression (m: slope, r: Spearman correlation coefficient). (F-H) Spearman correlation coefficient and slope (m) of linear regression (median and 95% CI) for each 3-hour phase window, and number of cells for each correlation. Red dashed line: n=30 cells (minimum for correlation analysis).

316

317 Transcription of this repressor leads to accumulation of mRNA (x) and translation into an early
 318 non-repressive CRY1 protein (y), which is degraded at a basal rate (dy). Post-translational
 319 modifications (e.g. phosphorylation) allow the repressor to inhibit its own transcription, but
 320 also make it more susceptible to degradation. This mature CRY1 (z_1 and z_2) can either inhibit
 321 E-Box-mediated transcription in a complex (e.g. with PERs, z_1), where it is largely shielded
 322 from FBXL3-mediated ubiquitination/degradation, or as monomeric CRY1 (z_2), in which case
 323 it is degraded at a higher rate (degradation rate $dz_2 > dy, dz_1$). To evaluate the total half-life
 324 of all species in this model, analogous to the experimentally measured half-life (see Figs. 2-3,
 325 hereafter referred to as ‘pool half-life’), translation is set to 0 and the decay curve is analyzed
 326 for 15 hours.

327 In this model, the mRNA and all three repressor types, as well as the total amount of protein,
328 oscillate in a self-sustained manner (**Fig. 5C**), with the contribution of each CRY1 species to the
329 total amount of CRY1 changing over the course of the day. While the early, non-repressive
330 CRY1 (y) is the most abundant species during the accumulation phase, the late, monomeric
331 repressive CRY1 ($z2$) dominates during the falling, repressive phase. A simulated population
332 of single cells with stochastically varying turnover rates of early and late CRY1 (**Supplementary**
333 **Fig. S7A**) shows the experimentally observed negative and positive correlation between total
334 CRY1 half-life and period during the rising and falling phases, respectively (**Fig. 5D**). Moreover,
335 the average of pool half-life was time-of-day dependent, as observed in our experiments (**Fig.**
336 **5E**). Thus, the model reproduced key features of our experimental data, which motivated us
337 to take a closer look at the underlying principles.


338 We first investigated why the overall half-life of the CRY1 pool is time-dependent. Our model
339 suggests two possible mechanisms, which are not mutually exclusive. First, the composition
340 of the total CRY1 pool changes with time (from y to $z2$), which leads to changes in the half-life
341 of this pool because the different CRY1 species have different degradation kinetics. The high
342 amount of stable early CRY1 during the rising phase makes the pool more stable, whereas
343 during the falling phase an unstable monomeric CRY1 dominates the pool composition
344 (**Supplementary Fig. S7B**). Second, due to rate limitation of degradation processes, half-lives
345 are longer when CRY1 abundance is high and shorter when abundance is low, resulting in a
346 minimum pool half-life near the trough of expression (**Supplementary Fig. S7C**).

347 Next, we examined how the stability of the two monomeric CRY1 species affects period. We
348 observed different effects on period depending on whether the stability of early y or late $z2$
349 was changed. Increasing the stability of early CRY1 (y) shortens the period (**Fig. 5F**), but to a
350 much lesser extent than we expected (**Fig. 5A**), likely due to a compensatory mechanism by
351 reducing its production. In short, even when y stability is increased, y levels remain relatively
352 stable because increased feedback repression leads to less mRNA (x) and thus less production
353 of y (**Fig. 5G**), partially decoupling the dynamics of CRY1 accumulation from its stability
354 (**Supplementary Fig. S7D**). In contrast, increasing the stability of late monomeric, repressive
355 CRY1 ($z2$) lengthens the period with a saturation of the effect at very high stabilities (**Fig. 5H**).
356 This behavior can be explained by the effect of late CRY1 stabilization on both the onset and
357 duration of repression: While $z2$ stabilization prolongs the repression, leading to a longer
358 falling phase, it also shortens the rising phase, probably by accelerating its own accumulation,
359 so that the threshold for repression is reached more quickly (**Fig. 5H**). These two processes
360 have opposite effects on the period, and for stable $z2$, the shortening of the rising phase
361 offsets the lengthening of the falling phase.

362 Thus, the model suggests three different mechanisms by which period may be compensated
363 for variations in repressor stability: First, adjusted production may compensate for changes in
364 turnover rates (e.g., of y). Second, changes in the stability of a particular CRY1 species (e.g.,
365 $z2$) may affect the length of the rising and falling phases differentially. Third, changes in the
366 stability of different subspecies (y and $z2$) may have opposite effects on period length. As a
367 consequence, different combinations of (basal and FBXL3-dependent) turnover rates may
368 result in similar period lengths (**Fig. 5I**), and cells with the same period may have different half-

369 lives of the CRY1 pool even when assayed at the same circadian phase (**Fig. 5D**). Thus, our
 370 model conceptualizes how a broad distribution of repressor stabilities can lead to similar
 371 circadian periods.

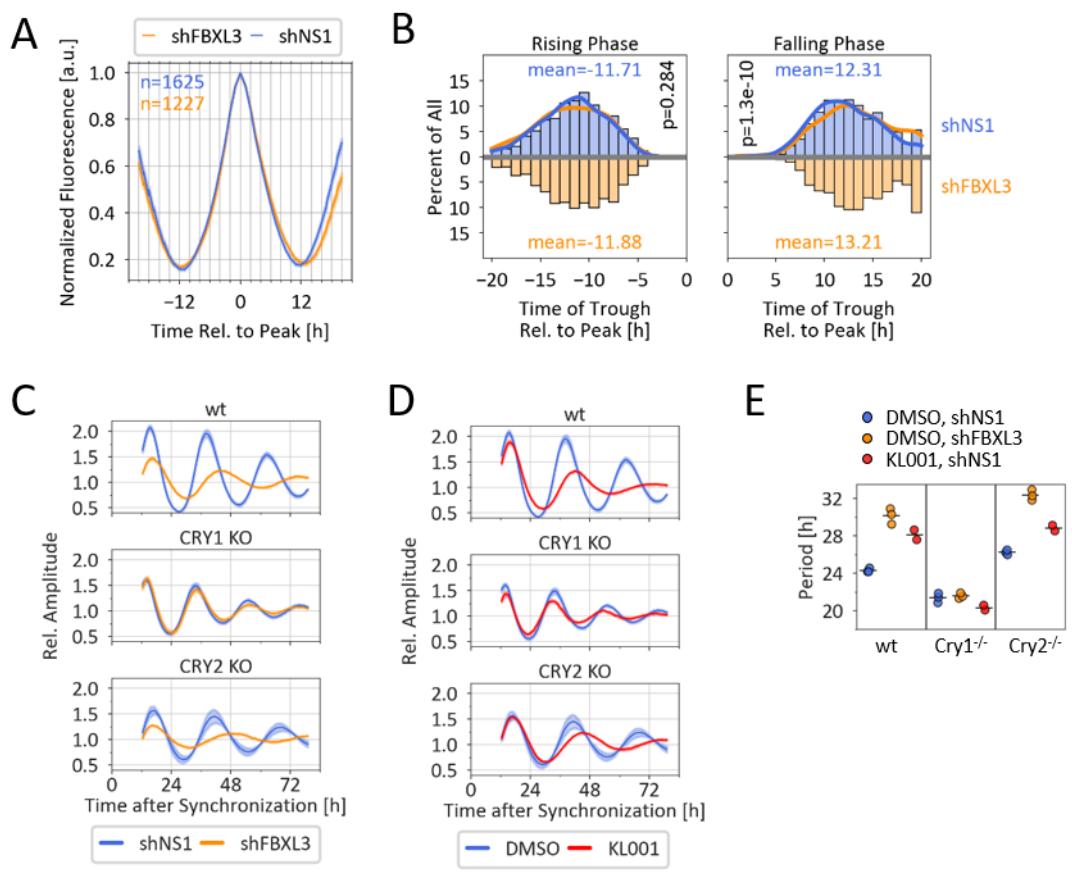
Figure 5

372

Figure 5: Period is compensated for protein turnover rates: a mathematical model

(A) Simple schematic of how CRY1 stability differentially affects period length. (B) Architecture of the mathematical model (see text for details). x: CRY1 mRNA, y: 'early', non-repressive CRY1, z1: CRY1 in high molecular weight complexes, z2: 'late' monomeric, repressive CRY1. (C) Oscillation in the absolute abundance of the state variables for the default parameters. (D) Regression analysis of the period and total 'pool half-life' (i.e., all CRY1 species y, z1, and z2) of a simulated population of single cells with stochastically varying turnover rates of early and late CRY1 for two indicated phases (n = 155). (E) Pool half-lives of the simulated population described in (D). For each cell, decay is simulated at 5 random time points. (F,G) Effect of changes in early CRY1 (y) stability on period length (F) and expression level of early CRY1 protein (y) and CRY1 mRNA (x) (G). Stability = 1/dy, dz1 and dz2 are constant. (H) Effect of changes in late CRY1 (z2) stability on length of rising phase, falling phase, and total period (rising + falling). Stability = 1/dz2, dy is constant. (I) Heatmap of period changes for different combination of y and z2 stabilities (1/y and 1/dz2, normalized to default values). Grey area shows period length of ± 0.5 h from that for default parameters. White line shows where the degradation rate of y is equal to that of z2.

373


374 FBXL3 prolongs the falling phase of CRY protein levels

375 One prediction of our model is that the period lengthening caused by FBXL3 knockdown, i.e.,
376 the stabilization of late CRY1, would be mainly due to an increase in the length of the falling
377 phase of CRY1 (**Fig. 5H**). To test this, we compared the average peak shapes of thousands of
378 normalized, peak-centered CRY1 time series recorded in the presence or absence of FBXL3
379 (**Fig. 6A**). Indeed, while the shape of the rising phase was little affected by FBXL3 knockdown,
380 the average slope of the falling phase was reduced, resulting in a prolongation of the falling
381 phase. We analyzed the distance between peak and trough at the single cell level without
382 normalization (**Supplementary Fig. S8A**) and found that while the rising and falling phases
383 were of similar length in wild-type cells (mean: 11.7 h vs. 12.3 h, **Fig. 6B**), FBXL3 knockdown
384 significantly prolonged the falling phase, resulting in an asymmetric peak shape (11.9 h vs.
385 13.2 h, **Fig. 6B**). This was similar for CRY2 (**Supplementary Fig. S8B,E**), indicating that FBXL3
386 depletion indeed lengthens the period by prolonging the repressive phase, consistent with
387 FBXL3 knockdown increasing CRY half-life mainly at times when CRY levels are decreasing (**Fig.**
388 **3F**). For PER1 and PER2, FBXL3 knockdown primarily prolonged the rising phase
389 (**Supplementary Fig. 8C,D,F,G**). Since FBXL3 is not known to directly affect PER stability, this
390 effect is likely caused indirectly by altered transcriptional dynamics within the TTFL.

391 FBXL3 effect on period is dependent on CRY1

392 While depletion of FBXL3 increases the half-life of both CRY1 and CRY2, it had a greater effect
393 on CRY1, as indicated by a greater increase in CRY1 protein half-life upon knockdown and
394 greater loss of rhythmicity of CRY1 stability. We therefore asked whether the associated long
395 period phenotype depends on both CRY proteins. To test this, we depleted FBXL3 in CRY1 or
396 CRY2 knockout reporter cells⁴³ and found that the period of CRY2 knockout cells and wild-type
397 cells was lengthened by several hours after FBXL3 knockdown, but to our surprise, the period
398 of CRY1 knockout cells was not affected (**Fig. 6C,E, Supplementary Fig. 8H**). Similar results
399 were obtained when FBXL3 binding to CRY proteins was pharmacologically inhibited by KL001
400 (**Fig. 6D,E, Supplementary Fig. 8I**) suggesting that FBXL3 destabilizes CRY1 and CRY2, but its
401 effect on circadian period is modulated primarily by its action on CRY1.

Figure 6

402

Figure 6: The effects of FBXL3 on circadian period is CRY1 dependent

(A) Average Peak shape of CRY1 expression after normalization (see Methods). (B) Histogram of through-to-peak durations in CRY1 time series. Lines represent kernel density estimation. p-value: Mann-Whitney-U test, n as in (A). (C,D) Detrended bioluminescence time series of wt, Cry1^{-/-} and Cry2^{-/-} *Bmal1:Luc* reporter cells after dexamethasone synchronization either transduced with non-silencing or FBXL3-targeting shRNA (C) and treated with DMSO (solvent control, (C) and (D)) or 1 μ M KL001(D). Mean \pm SD of 5-8 replicates representative of 3 (C) and 2 (D) experiments. (E) Periods from the recordings shown exemplarily in (C) and (D), n=2 (KL001+shNS1) and 3 (DMSO+shNS1, DMSO+shFBXL3) independent experiments, respectively.

403 **Discussion**

404 Circadian clocks are characterized by both robustness, e.g. the period is temperature-
 405 compensated, and plasticity, i.e. they respond to zeitgebers. While several mechanisms have
 406 been proposed for temperature compensation⁴⁴⁻⁴⁶, less is known about how the clock is
 407 stabilized against changes in energy supply that affect the metabolic state and thus global
 408 reaction rates such as macromolecule assembly and turnover.⁴⁷⁻⁴⁹

409 In this study, we exploit the natural heterogeneity of single cell clocks to discover fundamental
 410 principles for metabolic compensation of the circadian period without the need for genetic
 411 manipulation. By generating novel fluorescent knock-in cells targeting all major circadian
 412 repressors and simultaneously monitoring thousands of individual cells for circadian dynamics
 413 and decay characteristics, we have uncovered three key insights: (i) the length of the circadian
 414 period correlates with the stability of repressor proteins, but, contrasting the prevailing

415 model, in a complex, phase-dependent manner; (ii) the circadian period is compensated for
416 fluctuations in the turnover rates of circadian repressor proteins; (iii) the repressor protein
417 stabilities are not constant, but circadian phase-dependent, and for CRY proteins this is
418 mediated by FBXL3.

419 At first, we were surprised that in the naturally variable cell population, there appeared to be
420 no dependence of circadian period on repressor protein stability, in contrast to what has often
421 been observed.^{18,23,25} However, when analyzed separately for different phases, a complex
422 picture emerged. First, both period length and repressor stability covered a surprisingly wide
423 range in individual cells. Second, repressor stability and circadian period were correlated in a
424 phase-dependent manner. Our mathematical model suggests that this is because the turnover
425 rates of CRY subspecies are not only different, but also correlate in opposite ways with
426 circadian period length. Depending on which species is dominant, the resulting pool half-life
427 changes, providing an explanation for the inverse correlations: When - and only when - the
428 stability of one species dominates the pool half-life, its true influence on period is revealed.

429 Thus, these opposite correlations are likely caused by the differential stabilities of the CRY
430 subspecies and the phase-dependent differential composition of the CRY pool providing one
431 explanation for the compensation of the period against fluctuating degradation rates. Our
432 model suggests two additional, not mutually exclusive, mechanisms: Adapted production may
433 counteract changes in turnover, thereby stabilizing protein levels and net flux. For example,
434 greater CRY stability leads to greater transcriptional repression and thus less CRY production.
435 Indeed, we and others have observed that despite increased stability, average CRY1 protein
436 levels remain constant after FBXL3 ablation, whereas mRNA levels decrease.^{19,20,50} Finally,
437 even changing the stability of a single CRY species can have both lengthening and shortening
438 effects on the period, as seen for late CRY1. Thus, we propose that the circadian period is to
439 some extent insensitive to changes in cellular protein turnover rates due to several
440 counteracting effects.

441 However, mutations that affect only the turnover rate of late CRY and not the basal
442 degradation may well affect the average period. Upon deletion of FBXL3, late CRY1 is likely to
443 be degraded only at the basal rate (white diagonal line in **Fig. 5I**), resulting in a long period.
444 The model predicts that even under this condition, the period is compensated for the different
445 basal degradation rates, consistent with the lack of correlation between period and half-life
446 observed for FBXL3 knockdown (**Supplementary Fig. S5D**). Therefore, we hypothesize that
447 CRY mutations that prolong both CRY half-life and circadian period mainly reduce FBXL3-
448 dependent but not basal CRY degradation.

449 Interestingly, we also observed that the protein half-lives of CRY1, CRY2 and PER1 are not
450 constant, but decrease during the repression phase, paralleling previous findings on the
451 rhythmic stability of PER2.⁴¹ Circadian rhythms in protein stability have long been postulated
452 to contribute to rhythmic protein abundance. In addition to differences in translation
453 efficiency^{51–54}, rhythmic degradation can explain rhythmic protein despite constant mRNA
454 levels, as well as large delays between transcript and protein expression.^{35,40,55–57} Direct
455 experimental evidence for rhythmic degradation of individual proteins is limited^{41,45,58}, but our
456 findings suggest widespread degradation rhythms⁵⁹ consistent with circadian rhythms in

457 autophagy and protein ubiquitination.^{60,61} For CRY1 - and to a lesser extent for CRY2 - the
458 oscillation in protein stability depends on FBXL3, but the molecular basis is unclear. FBXL3
459 expression rhythms peak at times of lowest CRY1 abundance²² and thus cannot explain the
460 high CRY1 stability we observed at this phase (**Fig. 3C**). Whether FBXL3 activity is regulated in
461 a circadian manner is unknown. In addition, targeting of the substrate for ubiquitination, e.g.
462 by post-translational modifications (PTMs) such as phosphorylation might be rhythmic.
463 Indeed, all circadian repressors show rhythmic phosphorylation patterns suggesting that the
464 pool of cellular repressors is not homogeneous, but consists of differentially modified
465 subspecies^{17,62}. Thus, circadian changes in degradation rates may result from changes in the
466 composition of a pool of species with different stabilities, leading to a change in their average
467 stability. Target accessibility may also affect degradation rates. For example, both CRY1 and
468 CRY2 can bind to PER2 with high affinity, and the CRY-PER2 interface overlaps with the FBXL3
469 binding site.^{9,11,63} Thus, binding of PERs protects CRYs from degradation.⁶⁴ A lower stability of
470 CRYs during the falling phase could therefore be due to the absence of PERs, since CRYs are
471 expressed later than PERs and PER concentrations at the trough are very low (**Fig. 1D**).

472 In CRY1-deficient U-2 OS cells, we see virtually no effect of FBXL3 knockdown or inhibition on
473 the circadian period, in contrast to period lengthening in fibroblasts from *Cry1* knockout
474 mice^{23,65}. This suggests that in mice the long period phenotype in the absence of FBXL3 is not
475 entirely dependent on CRY1. It is possible that this discrepancy is due to differences between
476 mouse and human: while in mice the E3 ligase FBXL21 plays an additional competing role^{66,67},
477 the human FBXL21 locus is a pseudogene containing a premature stop codon
478 (NR_152421.1).⁶⁸

479

480 Acknowledgement

481 We thank all current and former members of the Kramer laboratory for technical and
482 intellectual support. We acknowledge the support of the FCCF at the German Rheumatism
483 Research Center. We also thank the Advanced Medical Bioimaging Core Facility (AMBIO) of
484 the Charité for assistance with the acquisition of imaging data. We thank Christoph Harms,
485 Steven Brown and Michela Di Virgilio for providing materials and Bharath
486 Ananthasubramaniam and Gal Manella for helpful discussions. Adrián E. Granada's research
487 was supported by the German Federal Ministry of Education and Research (BMBF) through
488 the Junior Network in Systems Medicine, under the auspices of the e:Med program (grant
489 01ZX1917C). This work was funded by the German Research Foundation (DFG) - project
490 number 278001972 - TRR 186.

491 Author Contribution

492 Conceptualization, C.H.G. and A.K.; Methodology, C.H.G., M.O. and A.K.; Software: C.H.G.,
493 M.O., A.Z., N.G.; Investigation, C.H.G., M.O., A.W., R.R., J.W., and E.H.; Writing – Original Draft,
494 C.H.G., M.O., and A.K.; Writing – Review and Editing: C.H.G., M.O., and A.K.; Visualization:
495 C.H.G. and M.O., Review & Editing, A.K., H.H., H.E., A.G.; Funding Acquisition, A.K., H.H.;
496 Supervision: A.K., H.H., A.G., H.E.

497 Declaration of Interest

498 The authors declare no competing interests.

499

500 References

501

502 1. Dibner, C., Schibler, U., and Albrecht, U. (2010). The Mammalian Circadian Timing System:
503 Organization and Coordination of Central and Peripheral Clocks. *Annu. Rev. Physiol.* 72, 517–549.
504 10.1146/annurev-physiol-021909-135821.

505 2. Welsh, D.K., Logothetis, D.E., Meister, M., and Reppert, S.M. (1995). Individual neurons dissociated
506 from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. *Neuron* 14,
507 697–706. 10.1016/0896-6273(95)90214-7.

508 3. Herzog, E.D., Takahashi, J.S., and Block, G.D. (1998). Clock controls circadian period in isolated
509 suprachiasmatic nucleus neurons. *Nat. Neurosci.* 1, 708–713. 10.1038/3708.

510 4. Gabriel, C.H., Olmo, M. del, Zehtabian, A., Jäger, M., Reischl, S., Dijk, H. van, Ulbricht, C.,
511 Rakhytmzhan, A., Korte, T., Koller, B., et al. (2021). Live-cell imaging of circadian clock protein
512 dynamics in CRISPR-generated knock-in cells. *Nat Commun* 12, 3796. 10.1038/s41467-021-24086-9.

513 5. Nikhil, K.L., Korge, S., and Kramer, A. (2020). Heritable gene expression variability and stochasticity
514 govern clonal heterogeneity in circadian period. *Plos Biol* 18, e3000792.
515 10.1371/journal.pbio.3000792.

516 6. Finger, A., Dibner, C., and Kramer, A. (2020). Coupled network of the circadian clocks: a driving
517 force of rhythmic physiology. *FEBS Lett.* 594, 2734–2769. 10.1002/1873-3468.13898.

518 7. Finger, A.-M., Jäschke, S., Olmo, M. del, Hurwitz, R., Granada, A.E., Herz, H., and Kramer, A.
519 (2021). Intercellular coupling between peripheral circadian oscillators by TGF- β signaling. *Sci. Adv.* 7,
520 eabg5174. 10.1126/sciadv.abg5174.

521 8. Gekakis, N., Staknis, D., Nguyen, H.B., Davis, F.C., Wilsbacher, L.D., King, D.P., Takahashi, J.S., and
522 Weitz, C.J. (1998). Role of the CLOCK Protein in the Mammalian Circadian Mechanism. *Science* 280,
523 1564–1569. 10.1126/science.280.5369.1564.

524 9. Nangle, S.N., Rosensweig, C., Koike, N., Tei, H., Takahashi, J.S., Green, C.B., and Zheng, N. (2014).
525 Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex. *Elife* 3,
526 e03674. 10.7554/elife.03674.

527 10. Aryal, R.P., Kwak, P.B., Tamayo, A.G., Gebert, M., Chiu, P.-L., Walz, T., and Weitz, C.J. (2017).
528 Macromolecular Assemblies of the Mammalian Circadian Clock. *Mol Cell* 67, 770–782.e6.
529 10.1016/j.molcel.2017.07.017.

530 11. Schmalen, I., Reischl, S., Wallach, T., Klemz, R., Grudziecki, A., Prabu, J.R., Benda, C., Kramer, A.,
531 and Wolf, E. (2014). Interaction of Circadian Clock Proteins CRY1 and PER2 Is Modulated by Zinc
532 Binding and Disulfide Bond Formation. *Cell* 157, 1203–1215. 10.1016/j.cell.2014.03.057.

533 12. Ye, R., Selby, C.P., Chiou, Y.-Y., Ozkan-Dagliyan, I., Gaddameedhi, S., and Sancar, A. (2014). Dual
534 modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian
535 circadian clock. *Gene Dev* 28, 1989–1998. 10.1101/gad.249417.114.

536 13. Ukai-Tadenuma, M., Yamada, R.G., Xu, H., Ripperger, J.A., Liu, A.C., and Ueda, H.R. (2011). Delay
537 in Feedback Repression by Cryptochrome 1 Is Required for Circadian Clock Function. *Cell* 144, 268–
538 281. 10.1016/j.cell.2010.12.019.

539 14. Koike, N., Yoo, S.-H., Huang, H.-C., Kumar, V., Lee, C., Kim, T.-K., and Takahashi, J.S. (2012).
540 Transcriptional Architecture and Chromatin Landscape of the Core Circadian Clock in Mammals.
541 *Science* 338, 349–354. 10.1126/science.1226339.

542 15. Korenčič, A., Bordyugov, G., Košir, R., Rozman, D., Goličnik, M., and Herzl, H. (2012). The
543 Interplay of cis-Regulatory Elements Rules Circadian Rhythms in Mouse Liver. *PLoS ONE* 7, e46835.
544 10.1371/journal.pone.0046835.

545 16. Konopka, R.J., and Benzer, S. (1971). Clock Mutants of *Drosophila melanogaster*. *Proc. Natl. Acad.*
546 *Sci.* 68, 2112–2116. 10.1073/pnas.68.9.2112.

547 17. Crosby, P., and Partch, C.L. (2020). New insights into non-transcriptional regulation of mammalian
548 core clock proteins. *J Cell Sci* 133, jcs241174. 10.1242/jcs.241174.

549 18. Vanselow, K., Vanselow, J.T., Westermark, P.O., Reischl, S., Maier, B., Korte, T., Herrmann, A.,
550 Herzl, H., Schlosser, A., and Kramer, A. (2006). Differential effects of PER2 phosphorylation:
551 molecular basis for the human familial advanced sleep phase syndrome (FASPS). *Gene Dev* 20, 2660–
552 2672. 10.1101/gad.397006.

553 19. Busino, L., Bassermann, F., Maiolica, A., Lee, C., Nolan, P.M., Godinho, S.I.H., Draetta, G.F., and
554 Pagano, M. (2007). SCFFbxl3 Controls the Oscillation of the Circadian Clock by Directing the
555 Degradation of Cryptochrome Proteins. *Science* 316, 900–904. 10.1126/science.1141194.

556 20. Siepka, S.M., Yoo, S.-H., Park, J., Song, W., Kumar, V., Hu, Y., Lee, C., and Takahashi, J.S. (2007).
557 Circadian Mutant Overtime Reveals F-box Protein FBXL3 Regulation of Cryptochrome and Period
558 Gene Expression. *Cell* 129, 1011–1023. 10.1016/j.cell.2007.04.030.

559 21. Godinho, S.I.H., Maywood, E.S., Shaw, L., Tucci, V., Barnard, A.R., Busino, L., Pagano, M., Kendall,
560 R., Quwailid, M.M., Romero, M.R., et al. (2007). The After-Hours Mutant Reveals a Role for Fbxl3 in
561 Determining Mammalian Circadian Period. *Science* 316, 897–900. 10.1126/science.1141138.

562 22. Shi, G., Xing, L., Liu, Z., Qu, Z., Wu, X., Dong, Z., Wang, X., Gao, X., Huang, M., Yan, J., et al. (2013).
563 Dual roles of FBXL3 in the mammalian circadian feedback loops are important for period
564 determination and robustness of the clock. *Proc National Acad Sci* 110, 4750–4755.
565 10.1073/pnas.1302560110.

566 23. Hirota, T., Lee, J.W., John, P.C.St., Sawa, M., Iwaisako, K., Noguchi, T., Pongsawakul, P.Y., Sonntag,
567 T., Welsh, D.K., Brenner, D.A., et al. (2012). Identification of Small Molecule Activators of
568 Cryptochrome. *Science* 337, 1094–1097. 10.1126/science.1223710.

569 24. Liu, J., Zou, X., Gotoh, T., Brown, A.M., Jiang, L., Wisdom, E.L., Kim, J.K., and Finkielstein, C.V.
570 (2018). Distinct control of PERIOD2 degradation and circadian rhythms by the oncoprotein and
571 ubiquitin ligase MDM2. *Sci. Signal.* 11. 10.1126/scisignal.aau0715.

572 25. Ode, K.L., Ukai, H., Susaki, E.A., Narumi, R., Matsumoto, K., Hara, J., Koide, N., Abe, T., Kanemaki,
573 M.T., Kiyonari, H., et al. (2016). Knockout-Rescue Embryonic Stem Cell-Derived Mouse Reveals
574 Circadian-Period Control by Quality and Quantity of CRY1. *Mol Cell* 65, 176–190.
575 10.1016/j.molcel.2016.11.022.

576 26. Gul, S., Aydin, C., Ozcan, O., Gurkan, B., Surme, S., Baris, I., and Kavakli, I.H. (2020). The Arg-293 of
577 Cryptochrome1 is responsible for the allosteric regulation of CLOCK-CRY1 binding in circadian
578 rhythm. *J. Biol. Chem.* 295, 17187–17199. 10.1074/jbc.ra120.014333.

579 27. Liu, N., and Zhang, E.E. (2016). Phosphorylation Regulating the Ratio of Intracellular CRY1 Protein
580 Determines the Circadian Period. *Front Neurol* 7, 159. 10.3389/fneur.2016.00159.

581 28. Larrondo, L.F., Olivares-Yañez, C., Baker, C.L., Loros, J.J., and Dunlap, J.C. (2015). Decoupling
582 circadian clock protein turnover from circadian period determination. *Science* 347, 1257277.
583 10.1126/science.1257277.

584 29. Alber, A.B., Paquet, E.R., Biserni, M., Naef, F., and Suter, D.M. (2018). Single Live Cell Monitoring
585 of Protein Turnover Reveals Intercellular Variability and Cell-Cycle Dependence of Degradation Rates.
586 *Mol Cell* 71, 1079-1091.e9. 10.1016/j.molcel.2018.07.023.

587 30. Horst, G.T.J. van der, Muijtjens, M., Kobayashi, K., Takano, R., Kanno, S., Takao, M., Wit, J. de,
588 Verkerk, A., Eker, A.P.M., Leenen, D. van, et al. (1999). Mammalian Cry1 and Cry2 are essential for
589 maintenance of circadian rhythms. *Nature* 398, 627–630. 10.1038/19323.

590 31. Zheng, B., Albrecht, U., Kaasik, K., Sage, M., Lu, W., Vaishnav, S., Li, Q., Sun, Z.S., Eichele, G.,
591 Bradley, A., et al. (2001). Nonredundant Roles of the mPer1 and mPer2 Genes in the Mammalian
592 Circadian Clock. *Cell* 105, 683–694. 10.1016/s0092-8674(01)00380-4.

593 32. Huber, A.-L., Papp, S.J., Chan, A.B., Henriksson, E., Jordan, S.D., Kriebs, A., Nguyen, M., Wallace,
594 M., Li, Z., Metallo, C.M., et al. (2016). CRY2 and FBXL3 Cooperatively Degrade c-MYC. *Mol Cell* 64,
595 774–789. 10.1016/j.molcel.2016.10.012.

596 33. Rosensweig, C., Reynolds, K.A., Gao, P., Laothamatas, I., Shan, Y., Ranganathan, R., Takahashi, J.S.,
597 and Green, C.B. (2018). An evolutionary hotspot defines functional differences between
598 CRYPTOCHROMES. *Nat Commun* 9, 1138. 10.1038/s41467-018-03503-6.

599 34. Weger, B.D., Gobet, C., David, F.P.A., Atger, F., Martin, E., Phillips, N.E., Charpagne, A., Weger, M.,
600 Naef, F., and Gachon, F. (2021). Systematic analysis of differential rhythmic liver gene expression
601 mediated by the circadian clock and feeding rhythms. *Proc National Acad Sci* 118, e2015803118.
602 10.1073/pnas.2015803118.

603 35. Narumi, R., Shimizu, Y., Ukai-Tadenuma, M., Ode, K.L., Kanda, G.N., Shinohara, Y., Sato, A.,
604 Matsumoto, K., and Ueda, H.R. (2016). Mass spectrometry-based absolute quantification reveals
605 rhythmic variation of mouse circadian clock proteins. *Proc National Acad Sci* 113, E3461–E3467.
606 10.1073/pnas.1603799113.

607 36. Wu, G., Anafi, R.C., Hughes, M.E., Kornacker, K., and Hogenesch, J.B. (2016). MetaCycle: an
608 integrated R package to evaluate periodicity in large scale data. *Bioinformatics* 32, 3351–3353.
609 10.1093/bioinformatics/btw405.

610 37. Hughes, M.E., Hogenesch, J.B., and Kornacker, K. (2010). JTK_CYCLE: An Efficient Nonparametric
611 Algorithm for Detecting Rhythmic Components in Genome-Scale Data Sets. *J Biol Rhythm* 25, 372–
612 380. 10.1177/0748730410379711.

613 38. Glynn, E.F., Chen, J., and Mushegian, A.R. (2006). Detecting periodic patterns in unevenly spaced
614 gene expression time series using Lomb–Scargle periodograms. *Bioinformatics* 22, 310–316.
615 10.1093/bioinformatics/bti789.

616 39. Li, X., Zhao, X., Fang, Y., Jiang, X., Duong, T., Fan, C., Huang, C.-C., and Kain, S.R. (1998).
617 Generation of Destabilized Green Fluorescent Protein as a Transcription Reporter*. *J. Biol. Chem.*
618 273, 34970–34975. 10.1074/jbc.273.52.34970.

619 40. Lück, S., Thurley, K., Thaben, P.F., and Westermark, P.O. (2014). Rhythmic Degradation Explains
620 and Unifies Circadian Transcriptome and Proteome Data. *Cell Reports* 9, 741–751.
621 10.1016/j.celrep.2014.09.021.

622 41. Matsumura, R., Yoshimi, K., Sawai, Y., Yasumune, N., Kajihara, K., Maejima, T., Koide, T., Node, K.,
623 and Akashi, M. (2022). The role of cell-autonomous circadian oscillation of Cry transcription in
624 circadian rhythm generation. *Cell Reports* 39, 110703. 10.1016/j.celrep.2022.110703.

625 42. Maier, B., Wendt, S., Vanselow, J.T., Wallach, T., Reischl, S., Oehmke, S., Schlosser, A., and
626 Kramer, A. (2009). A large-scale functional RNAi screen reveals a role for CK2 in the mammalian
627 circadian clock. *Gene Dev* 23, 708–718. 10.1101/gad.512209.

628 43. Börding, T., Abdo, A.N., Maier, B., Gabriel, C., and Kramer, A. (2019). Generation of Human CRY1
629 and CRY2 Knockout Cells Using Duplex CRISPR/Cas9 Technology. *Front Physiol* 10, 577.
630 10.3389/fphys.2019.00577.

631 44. Narasimamurthy, R., and Virshup, D.M. (2017). Molecular Mechanisms Regulating Temperature
632 Compensation of the Circadian Clock. *Front Neurol* 8, 161. 10.3389/fneur.2017.00161.

633 45. Zhou, M., Kim, J.K., Eng, G.W.L., Forger, D.B., and Virshup, D.M. (2015). A Period2 Phosphoswitch
634 Regulates and Temperature Compensates Circadian Period. *Mol Cell* 60, 77–88.
635 10.1016/j.molcel.2015.08.022.

636 46. Burt, P., Grabe, S., Madeti, C., Upadhyay, A., Merrow, M., Herz, H., and Schmal, C. (2021).
637 Mechanisms Underlying the Complex Dynamics of Temperature Entrainment by a Circadian Clock.

638 47. Nandagopal, N., and Roux, P.P. (2015). Regulation of global and specific mRNA translation by the
639 mTOR signaling pathway. *Translation* 3, e983402. 10.4161/21690731.2014.983402.

640 48. Tokunaga, C., Yoshino, K., and Yonezawa, K. (2004). mTOR integrates amino acid- and energy-
641 sensing pathways. *Biochem. Biophys. Res. Commun.* 313, 443–446. 10.1016/j.bbrc.2003.07.019.

642 49. Zhao, J., Zhai, B., Gygi, S.P., and Goldberg, A.L. (2015). mTOR inhibition activates overall protein
643 degradation by the ubiquitin proteasome system as well as by autophagy. *Proc. Natl. Acad. Sci.* 112,
644 15790–15797. 10.1073/pnas.1521919112.

645 50. Korge, S., Grudziecki, A., and Kramer, A. (2015). Highly Efficient Genome Editing via CRISPR/Cas9
646 to Create Clock Gene Knockout Cells. *J Biol Rhythm* 30, 389–395. 10.1177/0748730415597519.

647 51. Janich, P., Arpat, A.B., Castelo-Szekely, V., Lopes, M., and Gatfield, D. (2015). Ribosome profiling
648 reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading
649 frames. *Genome Res.* **25**, 1848–1859. 10.1101/gr.195404.115.

650 52. Jang, C., Lahens, N.F., Hogenesch, J.B., and Sehgal, A. (2015). Ribosome profiling reveals an
651 important role for translational control in circadian gene expression. *Genome Res.* **25**, 1836–1847.
652 10.1101/gr.191296.115.

653 53. Castelo-Szekely, V., Arpat, A.B., Janich, P., and Gatfield, D. (2017). Translational contributions to
654 tissue specificity in rhythmic and constitutive gene expression. *Genome Biol.* **18**, 116.
655 10.1186/s13059-017-1222-2.

656 54. Atger, F., Gobet, C., Marquis, J., Martin, E., Wang, J., Weger, B., Lefebvre, G., Descombes, P.,
657 Naef, F., and Gachon, F. (2015). Circadian and feeding rhythms differentially affect rhythmic mRNA
658 transcription and translation in mouse liver. *Proc. Natl. Acad. Sci.* **112**, E6579–E6588.
659 10.1073/pnas.1515308112.

660 55. Lim, R., Chae, J., Somers, D.E., Ghim, C.-M., and Kim, P.-J. (2021). Cost-effective circadian
661 mechanism: rhythmic degradation of circadian proteins spontaneously emerges without rhythmic
662 post-translational regulation. *iScience* **24**, 102726. 10.1016/j.isci.2021.102726.

663 56. Mauvoisin, D., Wang, J., Jouffe, C., Martin, E., Atger, F., Waridel, P., Quadroni, M., Gachon, F., and
664 Naef, F. (2014). Circadian clock-dependent and -independent rhythmic proteomes implement distinct
665 diurnal functions in mouse liver. *Proc. Natl. Acad. Sci.* **111**, 167–172. 10.1073/pnas.1314066111.

666 57. Deery, M.J., Maywood, E.S., Chesham, J.E., Sládek, M., Karp, N.A., Green, E.W., Charles, P.D.,
667 Reddy, A.B., Kyriacou, C.P., Lilley, K.S., et al. (2009). Proteomic Analysis Reveals the Role of Synaptic
668 Vesicle Cycling in Sustaining the Suprachiasmatic Circadian Clock. *Curr. Biol.* **19**, 2031–2036.
669 10.1016/j.cub.2009.10.024.

670 58. Horiguchi, M., Koyanagi, S., Hamdan, A.M., Kakimoto, K., Matsunaga, N., Yamashita, C., and
671 Ohdo, S. (2013). Rhythmic Control of the ARF-MDM2 Pathway by ATF4 Underlies Circadian
672 Accumulation of p53 in Malignant Cells. *Cancer Res.* **73**, 2639–2649. 10.1158/0008-5472.can-12-
673 2492.

674 59. Seinkmane, E., Peak-Chew, S.Y., Zeng, A., Rzechorzek, N.M., Beale, A.D., Wong, D.C., and O'Neill,
675 J.S. (2022). Circadian regulation of protein turnover and proteome renewal. *bioRxiv*,
676 2022.09.30.509905. 10.1101/2022.09.30.509905.

677 60. Wang, Y., Song, L., Liu, M., Ge, R., Zhou, Q., Liu, W., Li, R., Qie, J., Zhen, B., Wang, Y., et al. (2018).
678 A proteomics landscape of circadian clock in mouse liver. *Nat. Commun.* **9**, 1553. 10.1038/s41467-
679 018-03898-2.

680 61. Ma, D., Panda, S., and Lin, J.D. (2011). Temporal orchestration of circadian autophagy rhythm by
681 C/EBP β . *EMBO J.* **30**, 4642–4651. 10.1038/emboj.2011.322.

682 62. Robles, M.S., Humphrey, S.J., and Mann, M. (2017). Phosphorylation Is a Central Mechanism for
683 Circadian Control of Metabolism and Physiology. *Cell Metab* **25**, 118–127.
684 10.1016/j.cmet.2016.10.004.

685 63. Xing, W., Busino, L., Hinds, T.R., Marionni, S.T., Saifee, N.H., Bush, M.F., Pagano, M., and Zheng, N.
686 (2013). SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. *Nature* **496**, 64–68.
687 10.1038/nature11964.

688 64. Chen, R., Schirmer, A., Lee, Y., Lee, H., Kumar, V., Yoo, S.-H., Takahashi, J.S., and Lee, C. (2009).
689 Rhythmic PER Abundance Defines a Critical Nodal Point for Negative Feedback within the Circadian
690 Clock Mechanism. *Mol Cell* **36**, 417–430. 10.1016/j.molcel.2009.10.012.

691 65. Miller, S., Son, Y.L., Aikawa, Y., Makino, E., Nagai, Y., Srivastava, A., Oshima, T., Sugiyama, A.,
692 Hara, A., Abe, K., et al. (2020). Isoform-selective regulation of mammalian cryptochromes. *Nat Chem
693 Biol* **16**, 676–685. 10.1038/s41589-020-0505-1.

694 66. Yoo, S.-H., Mohawk, J.A., Siepka, S.M., Shan, Y., Huh, S.K., Hong, H.-K., Kornblum, I., Kumar, V.,
695 Koike, N., Xu, M., et al. (2013). Competing E3 Ubiquitin Ligases Govern Circadian Periodicity by
696 Degradation of CRY in Nucleus and Cytoplasm. *Cell* **152**, 1091–1105. 10.1016/j.cell.2013.01.055.

697 67. Hirano, A., Yumimoto, K., Tsunematsu, R., Matsumoto, M., Oyama, M., Kozuka-Hata, H.,
698 Nakagawa, T., Lanjakornsiripan, D., Nakayama, K.I., and Fukada, Y. (2013). FBXL21 Regulates
699 Oscillation of the Circadian Clock through Ubiquitination and Stabilization of Cryptochromes. *Cell*
700 **152**, 1106–1118. 10.1016/j.cell.2013.01.054.

701 68. Zhang, Z.D., Frankish, A., Hunt, T., Harrow, J., and Gerstein, M. (2010). Identification and analysis
702 of unitary pseudogenes: historic and contemporary gene losses in humans and other primates.
703 *Genome Biol.* **11**, R26. 10.1186/gb-2010-11-3-r26.

704 69. Gabriel, C.H., Gross, F., Karl, M., Stephanowitz, H., Hennig, A.F., Weber, M., Gryzik, S., Bachmann,
705 I., Hecklau, K., Wienands, J., et al. (2016). Identification of Novel Nuclear Factor of Activated T Cell
706 (NFAT)-associated Proteins in T Cells*. *J Biol Chem* **291**, 24172–24187. 10.1074/jbc.m116.739326.

707 70. Haeussler, M., Schönig, K., Eckert, H., Eschstruth, A., Mianné, J., Renaud, J.-B., Schneider-
708 Maunoury, S., Shkumatava, A., Teboul, L., Kent, J., et al. (2016). Evaluation of off-target and on-target
709 scoring algorithms and integration into the guide RNA selection tool CRISPOR. *Genome Biol* **17**, 148.
710 10.1186/s13059-016-1012-2.

711 71. Brinkman, E.K., Chen, T., Amendola, M., and van Steensel, B. (2014). Easy quantitative
712 assessment of genome editing by sequence trace decomposition. *Nucleic Acids Res* **42**, e168–e168.
713 10.1093/nar/gku936.

714 72. Manella, G., Aizik, D., Aviram, R., Golik, M., and Asher, G. (2021). Circa-SCOPE: high-throughput
715 live single-cell imaging method for analysis of circadian clock resetting. *Nat Commun* **12**, 5903.
716 10.1038/s41467-021-26210-1.

717 73. Goodwin, B.C. (1965). Oscillatory behavior in enzymatic control processes. *Adv. Enzym. Regul.* **3**,
718 425–437. 10.1016/0065-2571(65)90067-1.

719 74. Cao, X., Wang, L., Selby, C.P., Lindsey-Boltz, L.A., and Sancar, A. (2023). Analysis of Mammalian
720 Circadian Clock Protein Complexes Over a Circadian Cycle. *J Biol Chem*, 102929.
721 10.1016/j.jbc.2023.102929.

722 75. Cao, X., Yang, Y., Selby, C.P., Liu, Z., and Sancar, A. (2021). Molecular mechanism of the repressive
723 phase of the mammalian circadian clock. Proc National Acad Sci 118, e2021174118.
724 10.1073/pnas.2021174118.

725 76. Westermark, P.O., and Herzl, H. (2013). Mechanism for 12 Hr Rhythm Generation by the
726 Circadian Clock. Cell Rep. 3, 1228–1238. 10.1016/j.celrep.2013.03.013.

727

728 [Methods](#)

729 [Cells lines](#)

730 U-2 OS (RRID:CVCL_0042, human, female, ATCC HTB-96) cells were cultured in DMEM
731 supplemented with 10% FBS(Life, lot 2453915), 25 mM HEPES and penicillin/streptomycin at
732 37°C and 5% CO₂. CRISPR KI cell lines expressing CRY1-mScarlet, CRY1-mClover and PER2-
733 mScarlet have been described previously⁴. Cells were tested for the absence of mycoplasma
734 using Lonza's MycoAlert kit. For long-term imaging, cells were cultured in FluroBrite medium
735 (GIBCO) supplemented with 2% FBS, 1x GlutaMax, 25 mM HEPES and penicillin/streptomycin
736 from 9 days prior to imaging.

737 To allow automated detection of nuclei, all clones were transduced with a histone-2B-iRFP720
738 fusion protein, which results in nuclear expression of the infrared protein miRFP720, and cells
739 were sorted for high expression by FACS.

740 [Plasmids](#)

741 The generation of the original donor vectors (pDB) has been described in detail⁶⁹ The original
742 donor vector was modified as follows: The His/Flag tag was replaced by a 3xFLAG tag, and GSG
743 linker sequences were introduced between protein and fluorophore and between fluorophore
744 and 3xFLAG tag (designated pDB2). Sequences homologous to regions surrounding the stop
745 codon of PER1 and CRY2 were synthesized by Twist bioscience and were inserted into pDB2
746 by restriction enzyme cloning. The pCAG-i53bp expression plasmid was a gift from Ralf Kuhn
747 and was modified from Addgene (RRID:Addgene_74939). The SV40-NLS-CRE recombinase was
748 a gift from Christoph Harms and was subcloned into the pLenti6 backbone. The pLenti-H2B-
749 iRFP720 was obtained from Addgene (RRID:Addgene_128961).

750 Single guide RNAs (**Supplementary Tab. S3**) were designed to cut just after the STOP codon
751 using CRISPOR⁷⁰, and corresponding DNA oligos were ligated into pCRISPR-Lenti-v2
752 (RRID:Addgene_52961). To test the efficiency of the guides, cells were transduced with
753 lentiviruses harboring the Cas9/sgRNA expression plasmid, gDNA from puromycin resistant
754 cells was isolated, and the corresponding region was amplified by PCR and sequenced.
755 Efficiency was assessed using the TIDE⁷¹ assay.

756 pGIPZ clones expressing shRNA targeting FBXL3 (V2LHS_254986), CRY1 (V2LHS_172866), CRY2
757 (V2LHS_67009), PER1 (V2LHS_7714) or a non-silencing control (NS1), (**Supplementary Tab.**
758 **S3**) were purchased from Open Biosystems (GE Healthcare) and the tGFP was mutated to
759 abolish fluorescence. The 0.9-kb *Bmal1* promoter-driven luciferase reporter construct has

760 been described.⁴² The sgRNA-Cas9 plasmids and donor vectors generated for this manuscript
761 are available at Addgene (#189980-189988) along with their sequences.

762 [Transfection](#)

763 For knock-in experiments, 10⁶ cells were harvested by trypsinization and transfected with 2 µg
764 each of i53bp, donor vector, and pCRSIPR-Lenti-V2 by electroporation using the NEON system
765 (Thermo Fisher, buffer N, 4 pulses, 10 ms, 1230 V). After electroporation, cells were seeded in
766 antibiotic-free DMEM and cultured for 24 hours before selection. Transient transfections of
767 CRE recombinase were performed using 1 µL Lipofectamine 2000 and 200 ng CRE expression
768 plasmid in a 48-well plate format.

769 [Virus production and transduction of cells using lentivirus](#)

770 HEK293-T cells were transiently transfected in a T75 flask with 8.6 µg lentiviral expression
771 plasmid, 6 µg psPAX2, and 3.6 µg pMD2G (gift from Trono lab, RRID:Addgene_12259 and
772 RRID:Addgene_12260) packaging plasmid using the CalPhos Mammalian Transfection Kit
773 (Takara). The next day, culture medium was replaced with 12.5 mL of complete culture
774 medium, and lentiviral supernatant was collected after 24 and 48 h. The combined
775 supernatant was passed through a 0.45-µm filter (Filtropur S 0.45) and either used directly or
776 stored in aliquots at -80°C. For transduction, cells were seeded into lentivirus-containing
777 supernatant supplemented with 8 µg/mL protamine sulfate. The next day, lentivirus-
778 containing supernatant was aspirated and cells were cultured in complete culture medium for
779 another 24 hours before antibiotic selection of transduced cells.

780 [Antibiotic selection](#)

781 To select for transfected or transduced cells, cells were grown subconfluently in medium
782 containing blasticidin (10 µg/ml) for >3 days or in medium containing puromycin (10 µg/ml)
783 for >1 day until non-transfected control cells died.

784 [FACS sorting](#)

785 Cells were sorted on a FACS AriaII (BD). For staining of surface hCD4 for negative selection, 2
786 × 10⁶ cells were trypsinized, washed with 0.5% BSA/ PBS and incubated with 200 µL of a 1:50
787 dilution of hCD4-BV711 (OKT4, Bio-Legend, UK) for 30 minutes. The cells were washed twice
788 with BSA/PBS. Excitation: 405 nm. Emission filter: 525LP-525/50 (CFP), 685LP-710/50 (BV711).

789 [Nucleic acid isolation and PCR](#)

790 Genomic DNA was extracted using Direct PCR Lysis Reagent Cell (VWR). RNA was extracted
791 using the AMBION PureLink RNA Mini Kit (Thermo Fisher) according to the manufacturer's
792 instructions, including an on-column DNase digest. RNA was reverse transcribed using a
793 primer that anneals to the 3xFLAG sequence in a two-step protocol. PCR amplification was
794 performed with Phusion polymerase (New England Biolabs), and products were analyzed by
795 agarose gel electrophoresis and detected using RedSafe/UV light. Primer sequences are listed
796 in **Supplementary Tab. S3**.

797 Bioluminescence recording of circadian oscillations

798 Cells transduced with a reporter plasmid in which luciferase expression is driven by a *mBmal1*
799 promoter fragment, were seeded to confluence. To synchronize circadian rhythms, cells were
800 treated with 1 μ M dexamethasone for 20 minutes followed by two washes with warm PBS.
801 Cells were then incubated in DMEM without phenol-red supplemented with 250 μ M
802 D-luciferin, and dishes were sealed with parafilm. Bioluminescence was recorded in a
803 LumiCycle (Actimetrics) or TopCount (Perkin Elmer). Raw data were detrended by dividing by
804 the 24-hour running average. Periods, phases and mean bioluminescence signal were
805 estimated by fitting the cosine wave function using ChronoStar software.

806 Fluorescence microscopy

807 For microscopy, cells were seeded on glass bottom #1.5H-N 96-well plates (Cellvis, USA)
808 coated with 50 μ g/ml human serum fibronectin (Merck, Germany). Imaging was performed
809 on a Nikon Widefield Ti2 equipped with a sCMOS, PCO.edge camera and a live cell incubator.
810 Images were acquired in Flurobrite medium (GIBCO) supplemented with 2% FBS, 1:100
811 PenStrep, and 1x GlutaMax at 37°C and 5% CO₂. The following light sources (LEDs) and
812 emission filters were used for the different channels: YFP (mClover3): excitation 511/16 nm,
813 12.3 mW, 30% intensity, emission 540/30 nm; RFP (mScarlet-I): excitation 555/28 nm,
814 145 mW, 12% intensity, emission 642/80 nm; iRFP: excitation 635/22 nm, 38.9 mW, 75%
815 intensity, emission 697/60 nm. Objectives: 40x ApoFluor, NA 0.95, WD 250 μ m. Illumination
816 time for iRFP 700 ms and 2 s for all other channels. Images were acquired in a regular imaging
817 interval of 1 h.

818 Cell tracking and quality control

819 Cell tracking was performed automatically using Cellprofiler. Multidimensional .nd2 files were
820 decomposed into individual tiff files using Fiji. Per channel, 100 images from buffer only wells
821 were loaded into Cell Profiler (pipeline 1, supplemental material) and used to generate relative
822 illumination patterns for each channel. Images from each time series were loaded into
823 Cellprofiler (pipeline 2, modified from Manella et al.⁷², supplemental material). Within this
824 pipeline, images were corrected for non-uniform illumination by dividing pixel by pixel by the
825 previously generated patterns. iRFP channel was used for segmentation of nuclei in each
826 image and subsequent tracking of nuclei throughout the time series. The background of the
827 illumination-corrected RFP and YFP images was determined by the median fluorescence
828 intensity of all unsegmented pixels (i.e. not identified as nuclei). Finally, the mean fluorescence
829 intensity for each tracked nucleus for each time point was extracted from the RFP and YFP
830 channel. After cell division, tracking continued with one daughter cell, while the other
831 daughter cell was considered a newly emerging object. Only objects tracked for at least 24
832 subsequent images were retained at this stage (primary objects).

833 For quality control, we developed a Python script (Note: script will be made publicly available
834 on GitHub) that detects abrupt changes in nuclear size of >20% and cell division events,
835 defined as a peak in average H2B-iRFP720 fluorescence due to chromatin condensation,
836 followed by a decrease (>20%) in nuclear size. Subsequently, all size changes not related to
837 cell divisions were flagged as potential tracking/segmentation errors. Time series were

838 cropped to exclude errors and accepted if they contained ≥ 60 error-free consecutive images.
839 Overall, 9-31% of primary objects passed these quality control criteria. We visually inspected
840 a subset of accepted time series and estimated that $\sim 90\%$ were correctly tracked.
841 Fluorescence intensities at cell division and subsequent time points were linearly extrapolated
842 from neighboring time points, because detachment of dividing cells produced fluorescence
843 artifacts.

844 [Circadian parameter extraction and rhythmicity threshold](#)

845 Circadian parameters were determined using metacycle2D³⁶ with LS and JTK cycle analysis, a
846 period range of 18-32 h and Fisher corrected p-values. Where appropriate, input data were
847 truncated to begin 24 hours after synchronization or to end at the time of CHX addition. Phase
848 at CHX addition was calculated from phase and period using a equation (E1):

849 (E1)
$$\text{phase(CHX addition)} = 2\pi * \frac{(\text{time point CHX addition} - \text{phase}) \text{ mod period}}{\text{period}}$$

850 To calculate a high-confidence threshold for rhythmicity for each channel, time series of non-
851 fluorescent cells recorded during the same experiment were analyzed in parallel, and the
852 threshold was set to the 5th percentile of the p-value from these time series. For a time series
853 to be considered rhythmic, its p-value had to exceed this threshold. See **Supplementary Note**
854 **SN1** for details.

855 [Determination of photobleaching](#)

856 Prior to each experiment, photobleaching was measured by imaging cells from different
857 clones 20 times within 1 hour using the same microscope settings, a time frame in which signal
858 decay is expected to be dominated by photobleaching. Cells were tracked and
859 monoexponential decay curves fitted to time point 3-16 of the individual cell time series using
860 the Python package *scipy.optimize.curve_fit* and equation (E2):

861 (E2)
$$y(t) = y_0 * e^{-t * \frac{1}{\tau}}$$

862
$$t - \text{timepoint}$$

863
$$y(t) - \text{signal at time-point t}$$

864
$$\tau - \text{time constant}$$

865
866 and filtered for fits with a correlation coefficient $r^2 > 0.7$. The median time constant τ was then
867 calculated for each fluorophore.

868 [Calculation of protein half-life](#)

869 Protein half-life was calculated from time points 2-8 hours after CHX addition. For each
870 channel, background was determined as the mean intensity of non-fluorescent nuclei. We
871 excluded data from cells whose intensity at time point 2 h did not clearly exceed background
872 (median + 2*SD). Median background was subtracted from all time series and time series
873 were corrected for additive photobleaching using equation (E3):

874 (E3) $int_{fb_corr} = (int - int_{BG}) * e^{t * \frac{1}{\tau}}$
875 int_{fb_corr} – photobleaching corrected intensity
876 int_{BG} – median background intensity
877 t – time-point, equals number of illuminations
878 τ – time constant

879 Decay parameters were calculated by fitting monoexponential decay curves (no plateau) to
880 the photobleach-corrected time series after CHX addition as described above, and filtering for
881 fits with a correlation coefficient r^2 of >0.7. Finally, the half-life was calculated using equation
882 (E4)

883 (E4) $protein\ half-life = \tau * \ln 2$

884 Analysis of phase length and average peak shapes

885 Rhythmic fluorescence time series were smoothed by calculating the running average of 3
886 consecutive time points. Peak time was determined as the maximum intensity within 5 hours
887 of the first calculated peak phase time (Metacyc2D), and trough time was determined as the
888 minimums within 20 hours either before or after the peak time. The length of rising and falling
889 phases was determined as the time difference between peak and trough times.

890 For extraction of average peak shapes, signal intensities of rising and falling phases were
891 further normalized independently between 0 and 1. The time axes of the time-series were
892 stretched to the median period of each genotype, and the average peak shape was calculated
893 as mean \pm SEM.

894 Mathematical modelling

895 We have developed an adapted mathematical model of the transcription-translation feedback
896 loop (TTFL) based on a single CRY1 repressor, which is based on the classical model described
897 by Goodwin more than 50 years ago.⁷³ Our model was developed to capture the dual inhibition
898 mechanism of CRY1: in the earlier phase of repression, CRY1 interacts with other PER and CRY
899 proteins to form a high molecular weight complex that binds and inhibits the activator
900 complex containing CLOCK and BMAL1⁹⁻¹². In the later circadian repression phase, CRY1
901 independently represses E-box-induced transcription.^{13,14,74,75}

902 We used linear terms to model production and import/export terms, Michaelis-Menten
903 kinetics for degradation processes and Hill functions with an 'AND' funnel⁷⁶ for both modes
904 of transcriptional repression. The model equations are given below as (E5-E8):

905 (E5) $\frac{dx}{dt} = V \frac{K_1^h}{K_1^h + z1^h} \frac{K_2^h}{K_2^h + z2^h} - d_x \frac{x}{K_x + x}$

906 (E6) $\frac{dy}{dt} = b_0 x - (t_1 + t_2)y - d_y \frac{y}{K_y + y}$

907 (E7) $\frac{dz1}{dt} = t_1 y - q_1 z1 + q_2 z2 - d_{z1} \frac{z1}{K_{z1} + z1}$

908 (E8)
$$\frac{dz2}{dt} = q_1 z1 + t_2 y - q_2 z2 - d_{z2} \frac{z2}{K_{z2} + z2}$$

909 With the above assumptions (dual inhibition mechanism of CRY1, and linear, Michaelis-
910 Menten and Hill kinetics to describe the biological processes), we systematically explored the
911 parameter space to find sets of parameters that reproduce our experimental findings, namely
912 (i) the phase-dependent stability of total CRY1 protein ($y+z1+z2$) (**Fig. 3**); (ii) a later peak phase
913 of $z2$ than that of $z1$ (**Fig. 1L**); (iii) a positive correlation of the oscillator period with the overall
914 stability of total CRY1 protein during the falling phase (**Fig. 4B**); and (iv) a negative correlation
915 of the circadian period with the overall stability of total CRY1 protein ($y+z1+z2$) during the
916 rising phase (**Fig. 4D**). Stability of total CRY1 ($y+z1+z2$) was calculated by setting the translation
917 rate (b_0) to 0 (mimicking CHX addition) and fitting a mono-exponential decay function to the
918 decay curve of total CRY1 protein ($y+z1+z2$). The pool half-life was calculated from the fitted
919 parameters.

920 The default values of the wild-type parameters are listed in **Supplementary Tab. S4**. These
921 values were chosen to demonstrate the plausibility of our conceptual model and should not
922 be considered as exact representations of the true biochemical rate constants. To simulate
923 cell-to-cell heterogeneity, we randomly varied the turnover rates of early and late CRY1
924 (**Supplementary Fig. S6A**). The turnover rates of y were drawn from a uniform distribution,
925 allowing dy to vary between 20% and 300% of its default parameter value. In the case of $z2$,
926 we limited the range of variation to 80% to 120% of its default parameter value, as large
927 changes in $dz2$ resulted in the loss of oscillations. We also ensured that $dz2$ was at least as
928 large as the basal degradation rate dy . Numerical simulations were performed in Python using
929 the *odeint* function from the *scipy* library to solve the ordinary differential equations.

930 [Blinding and randomization, data exclusion, statistical analysis](#)

931 For two of the three experimental runs (run 1 and 2, **Supplementary Tab. S5**), the virus type
932 (shRNA) was blinded to the experimenter. Prior to seeding cells into the 96-well plate, clonal
933 identity was blinded to the experimenter, which also meant that cell seeding was randomized.
934 Deblinding was performed during automated quality control and no data were manually
935 excluded afterwards, with the exception of one clone in experiment 2 that did not show the
936 expected fluorescence. During data analysis, non-rhythmic time series were excluded from all
937 analyses requiring determination of circadian periods, phases, or amplitudes. Protein half-
938 lives derived from poor fits ($r^2 < 0.70$) or low initial intensities were ignored, and corresponding
939 time series were excluded from all analyses requiring determination of protein half-life.
940 Statistical analyses were performed in Python using the *scipy* library. Unless otherwise noted,
941 all statistical tests were two-sided.

942 [Data and material availability](#)

943 Imaging raw and metadata will be provided via the EMBL-EBI BioImage Archive
944 (<https://www.ebi.ac.uk/bioimage-archive>) with accession number #. The Cellprofiler
945 pipelines used for analysis are deposited on GitHub along with supporting and output files.
946 All own Python scripts can be found at GitHub (#). A data table of all successfully tracked
947 cells including raw data and derived values is included in the supplement (**Supplementary**

948 **Tab. S5).** All relevant plasmids are deposited at Addgene (#179441, 179453, 189980-
949 189988). All cell lines generated in this study are available from the lead contact with a
950 completed Material Transfer Agreement.

951