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Abstract  35 

Background 36 

Pathogens have been one of the primary sources of natural selection affecting modern humans. 37 

The footprints of historical selection events – “selective sweeps” – can be detected in the genomes 38 

of present-day individuals. Previous analyses of 629 samples from the 1000 Genomes Project 39 

suggested that an ancient coronavirus epidemic ~20,000 years ago drove multiple selective 40 

sweeps in the ancestors of present-day East Asians, but not in other worldwide populations.  41 

Results 42 

Using a much larger genetic dataset of 76,719 unrelated individuals from each of the China 43 

Kadoorie Biobank (CKB) and UK Biobank (UKB) to identify regions of long-range linkage 44 

disequilibrium, we further investigated signatures of past selective sweeps and how they reflect 45 

previous viral epidemics. Using independently-curated lists of human host proteins which interact 46 

physically or functionally with viruses (virus-interacting proteins; VIPs), we found enrichment in 47 

CKB for regions of long-range linkage disequilibrium at genes encoding VIPs for coronaviruses, but 48 

not DNA viruses. By contrast, we found no clear evidence for any VIP enrichment in UKB. These 49 

findings were supported by additional analyses using saltiLASSi, a selection-scan method robust to 50 

false positives caused by demographic events. By contrast, for GWAS signals for SARS-Cov2 51 

susceptibility (critical illness, hospitalisation, and reported infection), there was no difference 52 

between UKB and CKB in the number located at or near signals of selection, as expected for a 53 

novel virus which has had no opportunity to impact the CKB/UKB study populations.  54 

Conclusions 55 

Together, these results provide evidence of selection events consistent with historical coronavirus 56 

epidemic(s) originating in East Asia. These results show how biobank-scale datasets and 57 

evolutionary genomics theory can provide insight into the study of past epidemics. The results also 58 
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highlights how historic infectious diseases epidemics can shape the genetic architecture of 59 

present-day human populations.  60 

Keywords: genomics, selection, pathogens, humans, computational biology  61 
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Background 62 

Pathogens and their associated diseases have been widespread across human history (1). In 63 

particular, the transition from sparsely populated groups of hunter-gatherers to densely-packed 64 

farming communities in close vicinity to domesticated animals likely facilitated the spread of many 65 

novel pathogens from animals to humans, and then within and between human populations (2, 3). 66 

Despite widespread and substantial improvements in sanitation and treatment of infectious 67 

diseases, pathogens were still responsible for about a quarter of global deaths in 2019 (4). Thus, 68 

they are expected to have exerted substantial selective pressure on human populations throughout 69 

history; indeed, analysis of genetic data has suggested that pathogens represent the strongest 70 

selective effect on modern humans (5). 71 

The impact of such past natural selection on the ancestors of modern humans can be observed in 72 

the genomes of present-day populations using a variety of statistical methods (e.g. Extended 73 

Haplotype Homozygosity (6), Population Branch Statistic (7), reviewed in (8)). These techniques 74 

have identified many immune-related loci inferred to have been targets of natural selection (9-12), 75 

supporting the hypothesis that pathogens play an important role in shaping patterns of human 76 

genetic variation. One such footprint of selection is known as a ‘selective sweep’: as an allele 77 

under positive selection rapidly increases in frequency within a population across generations, 78 

neighbouring alleles which are in linkage disequilibrium (LD) with the selected allele also rise to 79 

high frequency, erasing genetic diversity around the locus under selection (13, 14). Such selective 80 

sweeps can be detected by scanning the genome to identify e.g. long-range homozygous 81 

haplotypes (6, 9) or significant distortions of the haplotype frequency spectrum (15).  82 

One set of likely pathogen-related targets of selection are virus interacting proteins (VIPs), which 83 

are classes of human proteins known to physically interact with or provide functions essential for 84 

replication of particular viruses. Previous analyses using sequencing data from the 1000 genomes 85 

project (16)  identified an enrichment of selective sweep signals at genes encoding coronavirus (a 86 

type of RNA virus) VIPs in East Asian (EAS) but not European-ancestry (EUR) populations. 87 
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Conversely, no evidence for enrichment at genes for DNA-virus VIPs was found (12). Together, 88 

these results imply one or more historic coronavirus epidemics, either localised to East Asia or with 89 

signature(s) not detectable in EUR (e.g. due to different demographic histories or higher levels of 90 

post-selection genetic drift).  91 

In the past few decades, there have been multiple epi/pandemics related to novel coronaviruses 92 

(i.e. COVID-19, MERS and SARS), which likely arose from zoonotic transmission. However, there 93 

also exist several ‘seasonal’ coronaviruses which are endemic in human populations, such as 94 

HCoV-229E and HCoV-NL63 (17). It is possible that these current seasonal coronaviruses 95 

originated as epidemics similar to the more recent epi/pandemics. Accordingly, the signals of 96 

selection identified by Souilmi et al (12) may reflect selection events related to the ancestors of 97 

these endemic viruses, and that there were multiple different sweeps related to several different 98 

endemic viruses. The COVID-19 pandemic predominantly affected older individuals in terms of 99 

mortality, suggesting that its selective impact at the population level through reproductive fitness 100 

may be limited. However, recent studies have indicated that long COVID, potentially among 101 

younger as well as older individuals, can lead to pathologies in various physical systems, including 102 

cardiovascular, neurological, cognitive and immune (18). Consequently, there may be a selective 103 

effect of long COVID mediated through its effect on these systems.  104 

The finding that historical coronavirus epidemic(s) may have occurred in the ancestors of present-105 

day EAS populations has important consequences for future studies on the effect of population-106 

wide prior pathogen exposure on the risk of infection from novel diseases. Whilst the methodology 107 

employed by Souilmi, et al. gave statistically robust conclusions, their study was conducted on 108 

relatively small sample sizes (~500 individuals across 5 EAS populations). To better characterise 109 

these historical selective sweeps, larger scale studies are needed, in both EAS and other 110 

populations; increasing sample size is known to improve precision when detecting weaker/more 111 

ancient sweeps (19, 20).   112 
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We have sought to replicate and extend the reported findings using a much larger genetic dataset 113 

comprising sets of 76,719 unrelated individuals from each of the China Kadoorie Biobank (CKB) 114 

and UK Biobank (UKB). We identified regions of long-range linkage disequilibrium (LRLD) in each 115 

population, and found that VIPs for coronaviruses, but not DNA viruses, were enriched for overlap 116 

with LRLD in CKB. By contrast, we found no clear evidence for any VIP enrichment in UKB. These 117 

findings were supported by concordant results for VIP enrichment at genomic regions identified by 118 

a selection scan using a different approach, in which distortion of the haplotype frequency 119 

spectrum was used to detect signals of selection. Together, these results provide further strong 120 

supporting evidence that one or more historical coronavirus epidemics occurred specifically in East 121 

Asia.  122 

Results 123 

Virus-interacting protein classification 124 

VIPs are proteins expressed in humans that have been shown to interact with viruses, either 125 

physically or by providing functions essential for viral propagation. Genes encoding these proteins 126 

may be subject to selection driven by viral epidemics. We used a set of proteins grouped into VIP 127 

categories, as previously defined by Souilmi et al (12),  based on low-throughput molecular 128 

methods and high-throughput mass-spectrometry (Figure 1f), Supplementary Table S1). VIPs 129 

were classified based on i) whether they primarily interact with DNA or RNA viruses; ii) whether or 130 

not RNA virus VIPs interact with coronaviruses; and iii) whether or not coronavirus VIPs interact 131 

with SARS-CoV-2 viruses. In addition, we defined a separate subset of 42 SARS-VIPs previously 132 

identified as being potentially sites of selection in past coronavirus epidemics (12) and which would 133 

be expected to be similarly identified in our analyses and which, therefore, could be used as a 134 

positive control to test the effectiveness of our analytical approach. 135 
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PCA-based identification of long-range LD regions 136 

Natural selection and other demographic processes can result in regions of LRLD in the genome. 137 

In previous work, to facilitate genotype PCA analysis of the CKB cohort, we identified such regions 138 

of LRLD using an approach similar to one previously used in UKB (21), by applying an iterative 139 

hidden Markov-model based algorithm to principal components (PCs) derived from genotypes of 140 

76,719 unrelated CKB individuals (see Methods) (22). Excluding the extended region of LD at the 141 

chromosome 6 HLA region (chr6:20-40Mbp), we identified 229 unique regions of LRLD (median 142 

length = 593.1Kbp, total length = 218.1Mbp) on the basis of distortions in the variant loadings of 143 

the top 11 PCs (i.e. those previously identified as being informative for geographic population 144 

structure in CKB) (Supplementary Table S2). Using the same approach for analysis of genotypes 145 

from a similar number of 76,719 randomly-selected unrelated white British individuals from UKB, 146 

applied to the top 5 (geographically-informative) PCs (23), we identified 326 LRLD regions (median 147 

length = 1070.0Kbp, total length = 518.77 Mbp) (Supplementary Table S3). Further sets of LRLD 148 

regions were defined based on splitting the CKB LDLR regions according to whether they were 149 

uniquely identified in CKB (n=128) or they overlapped with UKB LRLD regions (n=104) 150 

(Supplementary Table S4-5).  151 

Enrichment of long-range LD at VIP genes 152 

We hypothesised that if a particular class of VIPs were the target of natural selection, then the 153 

genes encoding those VIPs would overlap with regions of LRLD more often than expected by 154 

chance. To test this, we compared the observed overlap of VIPs with LRLD regions with empirical 155 

null distributions, derived using sets of “decoy” LRLD regions generated by repeatedly 156 

redistributing the LRLD regions randomly across each chromosome while retaining their size 157 

characteristics, as illustrated in Figure 1. Table 1 shows the results of this analysis for different 158 

classes of VIP and different sets of LRLD regions. Consistent results were found for 3 different 159 

methods for scoring LRLD - VIP overlap – i) any overlap, ii) >50% overlap, iii) total base-pair 160 

overlap (Supplementary Tables S6-7). 161 
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Compared to the null distribution, there was strong evidence in CKB for LRLD enrichment at loci 162 

encoding the subset of SARS-VIPs (n=40 after exclusion of the HLA region) previously identified 163 

as likely sites of selection (enrichment ratio ER=2.50; 95% CI 1.25-10.00; P=0.005). This finding 164 

provides further population genetic evidence in support of the previous finding that one or more 165 

ancient coronavirus epidemics occurred in East Asia approximately 25,000 years ago, and 166 

indicates that, as expected, the identified regions of LRLD are enriched for signals of selection. 167 

Using the same approach to test the other classes of VIPs, there was a strong signal in CKB that 168 

CoV-VIP genes (n=394) are enriched for regions of LRLD (enrichment ratio, ER=1.50; 95% CI 169 

1.10-2.16; P=0.004) relative to the null. This LRLD enrichment was further investigated by 170 

classifying VIPs according to whether they have been found to be related to SARS viruses, or only 171 

related to other types of coronavirus (i.e. endemic coronaviruses). Both classes of VIPs displayed 172 

LRLD enrichment in CKB, with somewhat greater enrichment in non-SARS CoV-VIPs (ER=1.86, 173 

95% CI 1.00-4.33; P=0.021) compared to SARS CoV-VIPs (ER=1.41, 95% CI 1.02-2.16; P=0.020). 174 

There was also suggestive evidence for more moderate enrichment of LRLD at genes encoding 175 

non-CoV-VIPs (ER=1.16; 95% CI 0.99-1.38; P=0.038), and for RNA-VIPs overall (ER=1.19; 95% 176 

CI 1.01-1.41; P=0.018). Conversely, DNA-VIPs (n=1,273) showed no enrichment for regions of 177 

LRLD (ER=1.03; 95% CI 0.83-1.28; P=0.419), again consistent with findings from the previous 178 

study by Souilmi et al (12). 179 

By contrast with CKB, in UKB we found no evidence for enrichment of LRLD near to genes 180 

encoding CoV-VIPs (P=0.316), or for any other kind of VIPs (all P>0.05) (Table 1). Furthermore, 181 

the LRLD enrichment observed for CKB was predominantly due to LRLD regions found only in 182 

CKB. For almost all classes of RNA VIP, enrichment for overlap with CKB-only LRLD was greater 183 

than for the main analysis while, conversely, overlap with LRLD regions identified in both CKB and 184 

UKB displayed less enrichment and/or was not statistically significant. The one exception was a 3-185 

fold enrichment for the “under selection” SARS-CoV-VIP genes, although this was based on only 6 186 

overlapping genes. 187 
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Detecting signals of selection using saltiLASSi   188 

In addition to selective sweeps, regions of LRLD may also arise from demographic processes such 189 

as population bottlenecks (24, 25), potentially confounding the above analysis. To address this 190 

issue, we aimed to replicate our findings using putative signals of natural selection identified using 191 

an unrelated method, saltiLASSi (15), which detects regions of the genome that display substantial 192 

distortions of the haplotype-frequency spectrum (illustrated in Figure 1c). Importantly, saltiLASSi is 193 

robust to false positives driven by e.g. demographic events. Applying saltiLASSi to the same sets 194 

of unrelated individuals from CKB and UKB, across the autosomes (again excluding the extended 195 

HLA region on chromosome 6), we identified 117 non-overlapping regions in CKB showing strong 196 

evidence of selection (median length = 175.2Kbp, total length = 35.3Mbp), and 118 regions in UKB 197 

(median length = 134.3Kbp, total length = 25.2Mbp) (Supplementary Tables S8-9. A total of 42 198 

regions of selection overlapped between CKB and UKB, comprising 6.20Mbp of overlapping DNA. 199 

Enrichment of saltiLASSi regions at VIP genes 200 

We assessed the proximity of VIP structural genes to these signals of selection, scoring for each 201 

VIP class the proportion lying within 10Kbp of a saltiLASSi-identified region (Table 2). For each of 202 

CKB and UKB, only 2.7% of DNA virus VIPs were close to at least one signal of selection, 203 

substantially fewer than for any other VIP class, consistent with the findings from our LRLD 204 

analysis and the previous finding of no evidence of selective sweep enrichment near DNA VIP 205 

genes (12). By comparison, in CKB the proportion of CoV-VIP genes in close proximity to a 206 

saltiLASSi signal of selection was substantially larger (27/394, 6.9%; P=5.6x10-5), with similar 207 

proportions for both SARS (6.9%; P=1.1x10-4) and non-SARS (6.5%; P=0.026) VIPs, in each case 208 

representing an enrichment of ~2.5-fold relative to DNA virus VIPs. Further, for the SARs-VIPs 209 

previously identified as under selection, the proportion of genes close to a signal of selection was 210 

even larger (7/40, 17.5%; P=5.5x10-8), a 6.6-fold enrichment. In UKB, on the other hand, any 211 

enrichment of genes in proximity to signals of selection relative to DNA virus VIPs was much more 212 
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limited. Nevertheless, there was near 2-fold enrichment for CoV-VIPs (20/394, 5.1%; 1.9-fold; 213 

P=0.012) and for SARs-VIPs (17/317, 5.4%; 2.0-fold; P=0.0096). 214 

To provide a more rigorous test for these observed enrichments of signals of selection near to 215 

VIPs, we adopted a bootstrapping approach similar to that used for LDLR. For each set of VIP 216 

structural genes, we scored the number that were in close proximity (within 10Kbp) to one or more 217 

saltiLASSi-identified regions, and compared this with a null distribution derived by redistributing the 218 

saltiLASSi-selected regions 10,000 times across the genome. In order to retain large-scale 219 

patterns of GC- and gene-content, the units of permutation were in the region of 300Kbp, so that it 220 

was necessary to exclude from analysis large saltiLASSi selection regions (those >500Kbp) and 221 

the VIPs in close proximity to them. Nevertheless, despite the resulting reduction in statistical 222 

power, in CKB both CoV-VIPs (ER = 2.12; 95% CI 1.13 – 5.67; P= 0.004) and SARS-VIPs (ER = 223 

2.17; 95% CI 1.08 - 6.50; P=0.009) were once again strongly enriched for proximity to saltiLASSi-224 

selected regions compared to the empirical null (Table 3). By contrast, we found no evidence for 225 

appreciable enrichment in any class of VIPs in UKB, consistent with the similar analysis of regions 226 

LRLD. These findings were robust to variations in the distance between the VIP structural gene 227 

and selection region used to define ‘proximity’, and to different sensitivity thresholds for detection 228 

of selection regions, with different sets of parameters giving qualitatively the same results 229 

(Supplementary Tables S10a-d). 230 

Regional analysis 231 

Since CKB participants were recruited in 10 geographically diverse regions across China (26), we 232 

conducted further analyses to explore whether there were differences in selective signals between 233 

regions which might narrow down the geographical origins of the putative historical epidemic(s) 234 

which gave rise to the LRLD and saltiLASSi signals. Using phased CKB genetic data, we identified 235 

haplotypes which spanned the regions of LRLD that overlapped with COV VIPs (n=36) and 236 

determined the frequencies of a random subset of 2000 of the most common haplotypes in the 237 

different CKB recruitment regions (Supplementary Table S11). No consistent pattern was 238 
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discernible from this analysis, with no region showing strong evidence of having higher frequencies 239 

of these long-range haplotypes (Figure 2a). Similarly, we repeated saltiLASSi analyses for equal 240 

numbers of individuals from each CKB recruitment region (n = 10) and, for the 28 saltiLASSi 241 

selection signals which overlapped with COV-VIPs in the main analysis, scored the frequency with 242 

which these selection signals were identified when restricting analysis to individuals from a single 243 

recruitment centre (Figure 2b. Again, no clear difference was observed between regions, with 78-244 

92% (mean 87%) of the signals being replicated across each region.  245 

Overlap with SARS-Cov2 susceptibility GWAS associations 246 

To explore whether signals of selection overlapped with recently published GWAS associations for 247 

COVID susceptibility (27), we selected all 51 lead SNPs which reached genome-wide significance 248 

(i.e. 5 x 10-8) for “Critical illness", "Hospitalized" and "Reported infection" and counted the overlap 249 

between these loci (defined by the region within 200Kbp of the lead variant) and either the LRLD or 250 

the saltiLASSi  regions identified in CKB and UKB, again using permutation across the genome to 251 

provide an empirical null. Of the 51 lead variants for COVID-19 susceptibility, 6 overlapped with 252 

regions of LRLD in CKB (ER=1.67, 95% CI 0.71 – Inf, P=0.257), and 5 overlapped with UKB LRLD 253 

regions (ER=0.71, 95% CI 2-12, P=0.836). The corresponding analysis using saltiLASSi regions, 254 

and the bootstrapped regions from the previous section, yielded similar results for both CKB (7/51; 255 

ER=1.75, 95% CI 0.78 – 7.00, P=0.09) and UKB (5/51; ER=1.25, 95% CI 0.56 – 5.00 P=0.27). The 256 

saltiLASSi results were robust to variation in the size of the window surrounding the GWAS lead 257 

variants (50Kbp-500Kbp) (Supplementary Table S12). 258 

Discussion 259 

Viral epidemics are expected to exert relatively fast-acting selection on the human genome. Such 260 

events can leave footprints in the form of ‘selective sweeps’, in which linked neutral variants 261 

‘hitchhike’ to higher frequency, thereby reducing genetic variation around a selected locus and 262 

generating regions of LRLD (13, 28). Previous work provided evidence that an ancient coronavirus 263 
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epidemic(s) more than 20,000 years ago drove selective sweeps(s) in the genomes of EAS 264 

individuals (12). However, this study was based on a relatively small size of ~100 individuals from 265 

each of 5 populations, and simulations have shown progressive increases in sweep detection 266 

accuracy with increasing sample sizes; for instance, for a sweep occurring 1000 generations ago, 267 

there is a 1.6 fold increase in power when increasing the number of haplotypes from 10 to 50 (20). 268 

We sought to further investigate these potential signatures of historic viral epidemics in a 269 

substantially larger dataset comprising ~70k individuals from each of CKB and UKB, and again 270 

found that genes encoding proteins which interact with coronaviruses are significantly more likely 271 

to be near regions of selection, in Chinese but not British individuals. 272 

We first assessed enrichment of VIP genes in regions of LRLD, relative to a null distribution in 273 

which regions of the same size were repeatedly randomly distributed around the genome, an 274 

approach widely used to assess the significance of associations of one genomic feature with 275 

another (e.g. (29, 30)). DNA virus VIP genes showed no enrichment of LRLD, consistent with the 276 

previous finding of no signals of selection at these VIPs. By contrast, genes encoding a set of 277 

SARS-VIPs that were previously identified as potentially under selection showed a 2.5-fold 278 

enrichment of nearby LRLD regions. Together, these findings indicate that this approach is both 279 

well-calibrated and capable of detecting signatures of selection.  280 

However, LRLD does not arise exclusively from selective sweeps and can arise due to various 281 

non-selective processes, such as restrictions on genetic recombination due to genomic structural 282 

variants such as inversions (31-33). Furthermore, demographic events such as population 283 

bottlenecks can produce regions of LDLR (24) and other signatures which mimic positive selection 284 

and can thus confound selection scans. Such processes could influence both the previous 285 

analyses (12) and our analysis based on LRLD. To address these potential issues, therefore, we 286 

conducted a separate analysis in which signals of selection were instead identified using 287 

saltiLASSi, which accounts for the spatial distribution of the sweep test statistic across the genome 288 

and is thereby more robust to non-selection demographic events. Once again, there was no 289 
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enrichment of signals of selection near to DNA virus VIPs, while the previously identified set of 290 

SARS-VIPs potentially under selection showed substantial enrichment relative to other VIP 291 

classes. 292 

These two analyses, based on methodologically distinct approaches to identification of regions of 293 

selection, gave consistent results when applied to different classes of VIP. Both identified strong 294 

enrichment of selection regions in CKB near to CoV-VIPs and SARS-VIPs, but not near non-CoV-295 

VIPs. Both methods also identified enrichment at non-SARS-VIPs (comparable to that at SARS-296 

VIPs), although this was based on a smaller number of VIPS in this class, giving wide confidence 297 

intervals. Conversely, we found no evidence of any significant enrichment of any classes of VIPs in 298 

UKB. Furthermore, the observed enrichment in CKB was almost entirely derived from regions of 299 

selection identified only in CKB and not in UKB. These findings, that there is enrichment of 300 

signatures of selection at genes encoding CoV-VIPs in CKB but not UKB, are entirely consistent 301 

with the hypothesis that one or more historical epidemics of coronaviruses (or other viruses which 302 

interact similarly with cellular processes) occurred in the ancestors of modern-day EAS 303 

populations.  304 

Given the geographical restriction of the putative selective sweep(s), it was of interest to explore 305 

whether the much larger sample size in our analyses enabled any greater geographical resolution 306 

of the origins of such sweep(s). However, we found no clear evidence that enabled localisation of 307 

the enrichment of selection signals to one or more particular regions in China. This is perhaps not 308 

surprising, as many population migrations and population mixing have taken place across China in 309 

the past 20,000 years which are likely to have obscured any region-specific signals (34). 310 

Alternatively, any epidemic may have been widespread across East Asia, which would be 311 

consistent with the results of Souilmi et al who found signals in other East/South East Asian 312 

countries.  313 

It is known that environmental pressures in the history of a population may confer lasting 314 

adaptations to humans (35-37). Therefore, it is plausible that widespread, and potentially repeated, 315 
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historical coronavirus epidemics in East Asia may have provided a degree of resistance for 316 

modern-day East Asians to the recent COVID-19 pandemic. Evidence has shown that different 317 

populations have different mortality risks from severe COVID-19 (38, 39). Whilst it is clear that 318 

sociodemographic factors and provision of appropriate health care play a substantial part in these 319 

differences, there is also the possibility that variants with protective effects against COVID-19 may 320 

be distributed differentially across populations. For instance, African American ancestry has been 321 

reported as an independent risk factor for hospitalisation from COVID-19 (40), 322 

If ancient and current coronavirus epidemics have VIPS in common, the putative historic epidemic 323 

in East Asia may have driven selective sweeps in regions of the genome which are currently under 324 

selection by COVID-19. This could be manifested in a higher number of overlaps between GWAS 325 

hits and regions of selection in Chinese compared to British individuals. However, we found no 326 

discernible differences between the populations. Whilst this may be due to a low number of GWAS 327 

hits, or may reflect insufficient EAS individuals in GWAS of COVID-19 susceptibility, this may also 328 

point to differences in the proteins relevant to present-day and ancient coronaviruses. A further 329 

consideration is that signatures of selection from the putative historical epidemic(s) will included 330 

contributions from the long-term effects of the virus, analogous to the long-term “long Covid” 331 

effects of SARS-Cov2, which are not included in GWAS of COVID-19 susceptibility. 332 

Nevertheless, observational evidence suggests that countries in East Asia have a substantially 333 

lower acute case-fatality rate than comparable countries in Western Europe (41). While it is very 334 

likely a substantial part of the observed differences in severity and case-fatality rates between 335 

different populations are due to non-biological factors, e.g. public policy and differences in social 336 

behaviour, these data, alongside VIP enrichment results from this and previous studies, suggest 337 

that EAS populations may have a higher frequency of alleles protective against severe COVID-19, 338 

that may be one cause of the reduced case-fatality rates in these populations. For instance, non-339 

synonymous mutations in TMPRSS2 that confer decreased COVID-19 susceptibility are found at 340 

higher frequencies in EAS (36%) than EUR (23%) (42).  341 
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Variation in genetic susceptibility to disease across different ancestries, driven by differing nature 342 

selection environments, is well documented; for instance, alleles which provide a protective effect 343 

against Malaria are found at substantially higher frequencies in West Africa than in Europe (43, 344 

44). Further, in vivo studies have shown that the transcriptional response of primary macrophages 345 

to live bacterial pathogens varies between ethnicities, and that genetic effects in the immune 346 

response are strongly enriched for recent, population-specific signatures of adaptation (45). It is 347 

also known that epi/pandemics drive population-level immunity which protects against future 348 

outbreaks; historical evidence cites that during the initial outbreak of the plague across Europe, 349 

during 1347 to 1353, not a single town was re-infected two or more years running (46). Thus, it is 350 

plausible that past coronavirus selective sweeps in EAS populations have provided a degree of 351 

resistance to COVID-19. For instance, the ACE2 locus on the X chromosome (not included in our 352 

analysis, which was restricted to autosomes) has reduced haplotype diversity in EAS, one of the 353 

two major haplotypes being associated with appreciably lower SAR-Cov2 severity (47). 354 

Furthermore, single cell transcription analyses have shown that natural selection has driven 355 

population-specific differences in the immune response to SARS-Cov2 (48). 356 

The key strength of our study is the use of biobank-scale data to provide greater power to identify 357 

signals of selection. Apart from the large sample sizes, the genetic data in CKB and UKB were 358 

generated using similar Axiom arrays with 50% of the genotyped variants being the same, reducing 359 

the chance of possible array-specific confounding. Moreover, we used a method, saltiLASSi, which 360 

is more robust to false-positives than the approach used by Souilmi et al (15), and the involvement 361 

of 10 geographically diverse regions in CKB enabled us to explore possible regional variations 362 

within China. However, the study also has limitations, most notably that, unlike the study by 363 

Souilmi et al. which was based on sequence data, we used genotype array data. This means we 364 

could not explore more detailed parameters of putative sweeps, such as strength and age.  365 

Conclusions 366 
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This study provides further evidence that historical coronavirus epidemic have shaped the genetic 367 

landscape of East Asian populations, as observed through significant enrichment of coronavirus 368 

interacting protein (CoV-VIP) genes in regions undergoing selection. Our findings, leveraging large 369 

biobank-scale datasets, reinforce the important role of pathogen epidemics in human evolutionary 370 

history but also underscore the potential influence of ancestral viral exposures on population-371 

specific disease susceptibility as a research avenue.  372 

  373 
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Methods 525 

Statistics and reproducibility 526 

The details of each analysis are outlined in the methods section and all of the code has been made 527 

publicly available on GitHub at https://github.com/sahwa/CKB_COVID_selection 528 

Study populations and genotyping data 529 

CKB: China Kadoorie Biobank is a population based prospective cohort of >512,000 participants, 530 

of whom 100,706 had available genotyping data as previously described (22, 26). Individuals were 531 

genotyped on custom-designed Axiom® arrays optimised for individuals with East Asian ancestry, 532 

on which 340,562 genotyped variants overlapped with the UK Biobank genotype array. Analyses 533 

were based on 513,164 variants passing quality control on both array versions and in all 534 

genotyping batches. One individual from each pair of individuals with KING kingship coefficient 535 

cutoff >0.05 (determined using an LD-pruned set of 171,236 variants) was removed to create a set 536 

of 76,719 unrelated individuals used in the present study. 537 

UKB: Genotyping data for 805,426 directly-genotyped variants in UKB participants was available 538 

under project 50474. We selected self-identified ‘White British’ individuals based on Data-Field 539 

22006 and used an LD-pruned set of 230,948 variants to define an unrelated set of individuals 540 

using KING kingship coefficient cutoff >0.05. From the set of 348,845 unrelated individuals, we 541 

randomly selected 76,719 samples to match the number of CKB samples.  542 

Virus Interacting Proteins 543 

VIPs (n=4,768 after exclusions) and their categorisations were as defined by Soulimi et al 2021 544 

(12), with genomic coordinates of structural genes (build 37) as downloaded using Ensembl v102 545 

(49). VIPs were excluded whose genes were non-autosomal or which lay within an extended MHC 546 

region (chr6:21,745,208-39,042,510) defined based on results from LDLR identification in CKB. 547 

Similarly, for all analyses we only considered VIPs which overlapped with regions genotyped in the 548 
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CKB and UKB datasets, by splitting the genome up into regions of 500Kb non overlapping 549 

segments and then only considering VIPs which are fully covered by a segment.  550 

 551 

Identification of putative regions under selection 552 

a) Long-range linkage disequilibrium 553 

The method for identification of LRLD regions as applied to CKB has been described previously 554 

(49). Adapted from an approach to remove distortions principal components analysis (PCA) (23) , 555 

we conducted a systematic iterative search for regions of LRLD by applying a hidden Markov 556 

model (HMM) to PCA loadings. For each biobank, an initial variant set was derived by filtering to 557 

remove variants with MAF<0.01 and Hardy-Weinberg P<10-4. We also performed local pairwise LD 558 

pruning using plink --indep-pairwise 50 5 0.2 (50). We then performed PCA of the pruned 559 

genotypes using flashpca (51). Starting with the variant loadings for PC1, and for each 560 

chromosome in turn, variants were assigned to one of two states: under selection (SR) or not, 561 

using a hidden Markov model. The emission probability of a variant being within a SR region, given 562 

its absolute loading value, was determined from the cumulative p-value from the chi-squared 563 

distribution with one degree of freedom. The transition probability between the states is in 564 

proportion to EAS recombination rates (downloaded from SniPA (52)); over a scaling factor of 565 

1E+7. The loadings were decoded using the forward-backward algorithm given by Rabiner (53), 566 

and variants with a marginal likelihood >0.5 were assigned to the final set of selected regions. 567 

SNPs were assigned to one of the two states. Regions were defined by combining consecutive 568 

SNPs of the same states, while borders are at the middle points of two consecutive SNPs of 569 

different states. 570 

In the next iteration, the SNPs covered by the SR regions were removed and PCA was performed 571 

again. Then the newly identified SR regions were merged with the previous sets. Once the 572 

detection of SR set converged, with no additional SR regions to be discovered, the number of PCs 573 
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to be parsed were incremented by 1. In total we analysed the loadings of the first 11 and 5 PCs for 574 

CKB and UKB, respectively, these being the PCs informative for geographical population 575 

stratification. 576 

In addition to the CKB and UKB SR sets, we also defined sets of selection regions which were i) 577 

the intersection of CKB and UKB or ii) found in CKB but not in UKB.  578 

b) PCA loadings permutation test 579 

To test whether the overlap between VIPs and SR regions was greater than would be expected by 580 

chance, we used bedtools (version v2.30.0) (54) to generate decoy SR sets, to enable derivation of 581 

empirical P values. Given a SR set, for each chromosome, the locations of the selection regions 582 

were randomly shuffled, with no overlaps, 10,000 times. We collected the corresponding 10,000 583 

“decoy” selection region sets. 584 

Adding 10Kb upstream and downstream to each VIP, the overlap between a VIP gene set and a 585 

SR set was compared with the overlap in the decoy SR sets, to give empirical p-values for three 586 

sets of features: the number of VIP genes overlapping selection regions by at least 1bp; the 587 

number of VIP genes with greater than half covered by selection regions; and the number of base-588 

pairs covered by the regions. The rank of the genuine overlapping statistics, among the sorted 589 

10,000 decoy values, was taken as the empirical P-value.   590 

VIP set Multiple Testing Correction 591 

To account for testing multiple sets of sometimes correlated VIPs, we applied the procedure from 592 

Machado 2007 (55) to determine a Bonferonni correction to apply to the P-value threshold. To 593 

derive, �, the approximate number of independent tests, first let � be an � � � matrix, where � is 594 

the number of VIP sets and � the total number of VIPs across all sets. The elements of �, denoted 595 

by ��� , are defined as follows: 596 
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��� ��� ��� � �� ��� 	
� ��
 

���
���	
��
	, where 
 � 1,2 … . , � and � � 1,2 … . . �. Let �
 , ��,….,�� be the eigenvalues of 597 

�. Rescale all eigenvalues so that they sum to n: �∑ ��� � ��
��
 . For each eigenvalue ��, modify 598 

such that �� � min ��� , 1�. The sum of the modified eigenvalues, � �  ∑ ��
�
��
  gives the number of 599 

approximately independent tests, and we accordingly use 0.05/S as our significance threshold.  600 

LASSi 601 

Genotype data from each biobank were phased using shapeit v4.1.3 using default settings (56). 602 

The saltiLASSi (v-1.1.1) (15) algorithm was applied to the same CKB and UKB datasets of 76,719 603 

participants each. After initial QC (22) no allele frequency/count filters were applied to the genotype 604 

data before applying the selection scan. We used the settings --winsize 10 and --winstep 1, with all 605 

other parameters as default. A small window size was selected to give increased power to detect 606 

relatively old or weak selective sweeps (15). The value L, the saltiLASSI composite-likelihood ratio 607 

test statistic, was used as a metric for the strength of evidence for a selective sweep and the basis 608 

on which to define a region under selection. 609 

“Selected regions” (SRs) were defined as regions of contiguous SNPs which had L values above 610 

the 0.99 quantile for all L values for that chromosome and at least 200 SNPs away from another 611 

contiguous region of SNPs above the 0.99 quantile.  612 

Bootstrapping saltiLASSi regions of selection 613 

To determine whether the overlap between the regions of selection identified by saltiLASSi and 614 

different classes of VIPs was greater than would be expected by chance, we used the bootRanges 615 

function from the nullRanges R library (57). Following the steps in the vignette, we used the 616 

EnsDb.Hsapiens.v86 genome (58) and excluded the following regions  617 

i) hg38.Kundaje.GRCh38_unified_Excludable  618 

ii) hg38.UCSC.centromere  619 

iii) hg38.UCSC.telomere  620 
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iv) hg38.UCSC.short_arm 621 

v) the extended HLA region (chr6:21,745,208-39,042,510) 622 

vi) MT, chrY and chrX  623 

The length of isochores (i.e. regions which capture large-scale patterns of GC and gene content) 624 

across the human genome are in the range of 300Kb - 1Mb (59). Hence, in order to capture the 625 

structure of the isochores, we also removed any regions of selection which were longer than 626 

500Kb. 627 

We segmented the remaining genome according to gene density. We performed 10,000 bootstrap 628 

iterations and calculated the overlap between each VIP set and the bootstrapped saltiLASSi 629 

selection regions. The empirical P-value was given by the proportion of times the randomly 630 

permuted selection regions had a greater number of overlaps with the VIP set than the true 631 

number of selection regions, divided by the number of bootstrap iterations. 97.5% enrichment 632 

intervals around the enrichment ratios were obtained by dividing the true proportion of overlaps by 633 

the 97.5 quantiles of the bootstrapped distribution of overlaps. We applied the same P-value 634 

threshold adjustment as in the LRLD analysis (VIP set Multiple Testing Correction). 635 

Relative enrichment of VIP sets relative to DNA VIPs 636 

Our analysis and that of Souilmi et al (2019) suggested that DNA VIPs are not under any kind of 637 

detectable selection. Therefore, we used the overlap between saltiLASSi selection regions and 638 

DNA VIPs as a null success rate with which to compare other VIP sets against. We calculated P-639 

values of the relative enrichment of non-DNA VIP sets relative to DNA VIP sets using 640 

stats::prop.test in R (v4.3.2). 641 

Overlap between selection regions and GWAS hits 642 

We downloaded the lead hits for 3 different COVID-19 related traits (“Critical illness", "Hospitalized" 643 

and "Reported infection"), from https://app.covid19hg.org/, retaining only hits in autosomal regions. 644 
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We also removed any hits which fell inside the extended HLA region (~chr6:20-40Mb). Due to the 645 

small overall number of hits, to maximise power to detect any signals, we combined the lead hits 646 

for all 3 traits together, resulting in a total of 51 loci.  647 

We counted the number of overlaps between each class of lead hit loci (defined by the region 648 

within 200Kbp of the lead variant) and either the i) regions of long-range linkage disequilibrium 649 

(LRLD) or ii) saltiLASSi regions of selection. We also tested varying the window added around 650 

each GWAS loci between 50Kb, 100Kb, 200Kb and 500Kb. To determine whether the overlap 651 

between GWAS loci and selection regions was greater than expected by chance, we used the 652 

same bootstrapping procedure as in the previous section, using bootranges for the saltiLASSi 653 

regions and the decoy regions for regions of LRLD.  654 
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Figure 1. Schematic to estimate the enrichment of different VIP classes for regions of 656 

selection. We began by using two different methods to identify regions of as candidate regions of 657 

selection, PCA HMM and saltiLASSi. (a) The first step of the PCA HMM is to perform a PCA on the 658 

subset of unrelated individuals and then identify regions of the genome which show distortions in 659 

PC loadings using an HMM-based algorithm (b). Panel (b) shows a spike in the loadings of one 660 

principle component, caused by a region of long-range LD. The other method, saltiLASSi, identifies 661 

regions of the genome which show a strong distortion in the haplotype frequency spectrum in a 662 

sliding window approach (c) to calculate a selection scan test statistic. We then identified peaks of 663 

this test statistic (d). We then estimated the enrichment of each set of VIPS (e) with regions of 664 

selection (f). We calculated the empirical overlap between the regions of selection and different 665 

classes of VIPs (g) and then calculated whether this overlap is greater than expected by chance by 666 

permuting/bootstrapping the regions of selection across the genome to generate a null distribution 667 

(h). 668 

 669 

 670 

 671 

 672 

 673 

 674 

 675 

 676 
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Figure 2. b) Frequency, in each recruitment region (n=10), of the most common haplotypes which span the regions of long-range LD which 689 

overlap with the COV-VIPs (n=36). We took the phased CKB data and extracted the haplotypes which covered the regions inferred to be under 690 

selection by the LRLD selection method and calculated the frequency of the most common haplotype (across the entire dataset), within each region. 691 

Each region was subsamples to 2000 randomly selected individuals to ensure comparability across regions. b) Replication of saltiLASSi selection 692 

hits in different recruitment centres (RC) in China (n=10). We analysed each recruitment region using saltiLASSi separately, after subsampling 693 

the number of individuals to match the RC with the fewest number of individuals and determined whether selection hits obtained from analysing the 694 

full cohort were replicated in each RC. The colour of each tile represents the proportion of the selection hit inferred in the full cohort which was 695 

covered by the selection hit inferred a given CKB region.  696 

 697 

 698 

.
C

C
-B

Y
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted F
ebruary 6, 2024. 

; 
https://doi.org/10.1101/2024.02.06.579075

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2024.02.06.579075
http://creativecommons.org/licenses/by/4.0/


31 | P a g e  

 

 

Table 1. Enrichment of regions of Long-range Linkage Disequilibrium (LRLD) at Virus Interacting Protein (VIP) genes. Enrichment and P-699 

values (one-tailed test) were determined for the frequency with which the genes encoding different classes of VIPs overlap with sets of LDLR 700 

regions, compared with random permutation of LDLR locations across the genome. Number in brackets denotes the number of VIPs in that class 701 

included in the analysis. Enrichment and 95% CIs were derived from the median and 2.5% / 97.5% centiles of the null and P from the empirical 1-702 

tailed test against the null. The HLA region (chr6:20-40Mb) and VIP genes lying within it were excluded from analysis. Asterisks next to P-values 703 

denote significance after multiple testing adjustment (P<0.05/(2*2.56), see Methods). 704 

LRLD Selection Region Set  

  CKB   UKB   CKB-only   CKB+UKB   

VIPs enrichment P enrichment P enrichment P enrichment P 

All (4768) 1.13 (0.98-1.31) 0.047 0.98 (0.88-1.08) 0.673 1.15 (0.95-1.42) 0.076 1.11 (0.89-1.42) 0.178 

RNA viruses (3495) 1.19 (1.01-1.41) 0.018 1.01 (0.90-1.14) 0.429 1.25 (1.02-1.59) 0.016 1.12 (0.87-1.48) 0.183 

DNA viruses (1273) 1.03 (0.83-1.28) 0.419 0.92 (0.80-1.08) 0.852 0.93 (0.70-1.31) 0.687 1.12 (0.82-1.62) 0.242 

CoV (394) 1.50 (1.10-2.16) 0.004* 1.04 (0.84-1.32) 0.374 1.89 (1.21-3.40) 0.001* 1.11 (0.74-2.00) 0.316 

non-CoV (3101) 1.16 (0.99-1.38) 0.038 1.03 (0.91-1.16) 0.337 1.20 (0.97-1.54) 0.046 1.12 (0.86-1.48) 0.195 

non-SARS (77) 1.86 (1.00-4.33) 0.021 1.07 (0.71-1.88) 0.372 2.00 (1.00-8.00) 0.023 1.67 (0.62-Inf) 0.208 

SARS (317) 1.41 (1.02-2.16) 0.02 1.04 (0.82-1.34) 0.41 1.86 (1.13-3.71) 0.005* 1.07 (0.65-2.14) 0.424 

under-selection (42) 2.50 (1.25-10.00) 0.005* 1.50 (0.86-4.00) 0.083 2.00 (0.80-Inf) 0.109 3.00 (1.20-Inf) 0.011 
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 709 

Table 2. Overlaps of genes encoding different classes of Virus Interacting Protein (VIP) with saltiLASSi selected regions in UKB and CKB 710 

participants. Genes encoding different classes of VIPs lie were scored according to whether they lay within 10Kbp of saltiLASSi-identified regions 711 

of selection (“overlap”), Enrichment and P-values were calculated relative to the proportional overlap for DNA virus VIPs using a two-sample 712 

proportion test, with the DNA VIP overlap as the null success rate. The HLA region (chr6:20-40Mb) and VIP genes lying within it were excluded from 713 

analysis. Asterisks next to P-values denote significance after multiple testing adjustment (P<0.05/(2*2.36)). 714 

saltiLASSi Selection Region Set 

  CKB     UKB     

VIP Overlap Enrichment P Overlap Enrichment P 

DNA_ref 34/1273 (2.7%) 1.00 ref 35/1273 (2.7%) 1.00 ref 

RNA 144/3495 (4.1%) 1.54 0.010* 131/3495 (3.7%) 1.36 0.048 

non-COV 117/3101 (3.8%) 1.41 0.035 111/3101 (3.6%) 1.30 0.083 

CoV 27/394 (6.9%) 2.57 0.000* 20/394 (5.1%) 1.85 0.012* 

non-SARS 5/77 (6.5%) 2.43 0.026 3/77 (3.9%) 1.42 0.277 

SARS 22/317 (6.9%) 2.60 0.000* 17/317 (5.4%) 1.95 0.010* 

under-selection 7/40 (17.5%) 6.55 0.000* 2/40 (5.0%) 1.82 0.199 
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 720 

Table 3. Overlaps between genes encoding different classes of Virus Interacting Protein (VIPs) and saltiLASSi selected regions in UKB 721 

and CKB participants. Enrichment and P-values (one-tailed test) were determined for the frequency with which the genes encoding different 722 

classes of VIPs lie within 10Kbp of saltiLASSi-identified regions of selection, compared with 10,000 bootstrap iterations of randomly distributing 723 

regions of selection across the genome, controlling for local gene density. Enrichment and 95% CIs are derived from the median and 2.5% / 97.5% 724 

centiles of the null distribution. The HLA region (chr6:20-40Mb) and other excludable regions (see methods), and VIP genes lying within them, were 725 

excluded from analysis. Asterisks next to P-values denote significance after multiple testing adjustment (P<0.05/(2*2.36). 726 

saltiLASSi Selection Region Set  

  CKB     UKB     

VIP Overlap Enrichment P Overlap Enrichment P 

All 114/4663 (2.4%) 1.06 (0.78 - 1.54) 0.362 105/4667 (2.2%) 1.05 (0.77 - 1.50) 0.381 

DNA viruses 21/1254 (1.7%) 0.72 (0.48 - 1.24) 0.889 23/1250 (1.8%) 0.85 (0.56 - 1.44) 0.719 

RNA viruses 93/3409 (2.7%) 1.18 (0.85 - 1.75) 0.157 82/3417 (2.4%) 1.12 (0.81 - 1.67) 0.240 

non-CoV 76/3031 (2.5%) 1.07 (0.78 - 1.62) 0.320 72/3033 (2.4%) 1.11 (0.79 - 1.64) 0.283 

CoV 17/378 (4.5%) 2.12 (1.13 - 5.67) 0.004* 10/384 (2.6%) 1.43 (0.71 - 3.33) 0.152 

non-SARS 4/74 (5.4%) 4.00 (0.80 -  Inf) 0.030 1/76 (1.3%) 1.00 (0.20 -  Inf) 0.464 

SARS 13/304 (4.3%) 2.17 (1.08 - 6.50) 0.009* 9/308 (2.9%) 1.50 (0.82 - 4.50) 0.088 

under-selection 1/39 (2.6%)  Inf (0.33 -  Inf) 0.142 2/38 (5.3%) 2.00 (0.67 -  Inf) 0.062 
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