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35 Abstract

36 Background

37  Pathogens have been one of the primary sources of natural selection affecting modern humans.
38  The footprints of historical selection events — “selective sweeps” — can be detected in the genomes
39  of present-day individuals. Previous analyses of 629 samples from the 1000 Genomes Project

40  suggested that an ancient coronavirus epidemic ~20,000 years ago drove multiple selective

41  sweeps in the ancestors of present-day East Asians, but not in other worldwide populations.

42 Results

43  Using a much larger genetic dataset of 76,719 unrelated individuals from each of the China

44  Kadoorie Biobank (CKB) and UK Biobank (UKB) to identify regions of long-range linkage

45  disequilibrium, we further investigated signatures of past selective sweeps and how they reflect

46  previous viral epidemics. Using independently-curated lists of human host proteins which interact
47  physically or functionally with viruses (virus-interacting proteins; VIPs), we found enrichment in

48  CKB for regions of long-range linkage disequilibrium at genes encoding VIPs for coronaviruses, but
49  not DNA viruses. By contrast, we found no clear evidence for any VIP enrichment in UKB. These
50 findings were supported by additional analyses using saltiLASSI, a selection-scan method robust to
51 false positives caused by demographic events. By contrast, for GWAS signals for SARS-Cov2

52 susceptibility (critical illness, hospitalisation, and reported infection), there was no difference

53  between UKB and CKB in the number located at or near signals of selection, as expected for a

54  novel virus which has had no opportunity to impact the CKB/UKB study populations.

55  Conclusions

56  Together, these results provide evidence of selection events consistent with historical coronavirus
57  epidemic(s) originating in East Asia. These results show how biobank-scale datasets and

58  evolutionary genomics theory can provide insight into the study of past epidemics. The results also
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59  highlights how historic infectious diseases epidemics can shape the genetic architecture of

60  present-day human populations.

61  Keywords: genomics, selection, pathogens, humans, computational biology
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62  Background

63  Pathogens and their associated diseases have been widespread across human history (1). In

64  particular, the transition from sparsely populated groups of hunter-gatherers to densely-packed

65 farming communities in close vicinity to domesticated animals likely facilitated the spread of many
66  novel pathogens from animals to humans, and then within and between human populations (2, 3).
67  Despite widespread and substantial improvements in sanitation and treatment of infectious

68  diseases, pathogens were still responsible for about a quarter of global deaths in 2019 (4). Thus,
69 they are expected to have exerted substantial selective pressure on human populations throughout
70  history; indeed, analysis of genetic data has suggested that pathogens represent the strongest

71  selective effect on modern humans (5).

72  The impact of such past natural selection on the ancestors of modern humans can be observed in
73  the genomes of present-day populations using a variety of statistical methods (e.g. Extended

74  Haplotype Homozygosity (6), Population Branch Statistic (7), reviewed in (8)). These techniques
75  have identified many immune-related loci inferred to have been targets of natural selection (9-12),
76  supporting the hypothesis that pathogens play an important role in shaping patterns of human

77  genetic variation. One such footprint of selection is known as a ‘selective sweep’: as an allele

78 under positive selection rapidly increases in frequency within a population across generations,

79  neighbouring alleles which are in linkage disequilibrium (LD) with the selected allele also rise to
80 high frequency, erasing genetic diversity around the locus under selection (13, 14). Such selective
81  sweeps can be detected by scanning the genome to identify e.g. long-range homozygous

82  haplotypes (6, 9) or significant distortions of the haplotype frequency spectrum (15).

83  One set of likely pathogen-related targets of selection are virus interacting proteins (VIPs), which
84  are classes of human proteins known to physically interact with or provide functions essential for
85  replication of particular viruses. Previous analyses using sequencing data from the 1000 genomes
86  project (16) identified an enrichment of selective sweep signals at genes encoding coronavirus (a

87  type of RNA virus) VIPs in East Asian (EAS) but not European-ancestry (EUR) populations.
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88  Conversely, no evidence for enrichment at genes for DNA-virus VIPs was found (12). Together,
89 these results imply one or more historic coronavirus epidemics, either localised to East Asia or with
90 signature(s) not detectable in EUR (e.g. due to different demographic histories or higher levels of

91  post-selection genetic drift).

92 Inthe past few decades, there have been multiple epi/pandemics related to novel coronaviruses
93 (i.e. COVID-19, MERS and SARS), which likely arose from zoonotic transmission. However, there
94  also exist several ‘seasonal’ coronaviruses which are endemic in human populations, such as
95  HCoV-229E and HCoV-NL63 (17). It is possible that these current seasonal coronaviruses
96 originated as epidemics similar to the more recent epi/pandemics. Accordingly, the signals of
97  selection identified by Souilmi et al (12) may reflect selection events related to the ancestors of
98 these endemic viruses, and that there were multiple different sweeps related to several different
99 endemic viruses. The COVID-19 pandemic predominantly affected older individuals in terms of
100  mortality, suggesting that its selective impact at the population level through reproductive fitness
101  may be limited. However, recent studies have indicated that long COVID, potentially among
102  younger as well as older individuals, can lead to pathologies in various physical systems, including
103  cardiovascular, neurological, cognitive and immune (18). Consequently, there may be a selective

104  effect of long COVID mediated through its effect on these systems.

105 The finding that historical coronavirus epidemic(s) may have occurred in the ancestors of present-
106  day EAS populations has important consequences for future studies on the effect of population-
107  wide prior pathogen exposure on the risk of infection from novel diseases. Whilst the methodology
108 employed by Souilmi, et al. gave statistically robust conclusions, their study was conducted on
109 relatively small sample sizes (~500 individuals across 5 EAS populations). To better characterise
110 these historical selective sweeps, larger scale studies are needed, in both EAS and other

111  populations; increasing sample size is known to improve precision when detecting weaker/more

112 ancient sweeps (19, 20).
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113  We have sought to replicate and extend the reported findings using a much larger genetic dataset
114  comprising sets of 76,719 unrelated individuals from each of the China Kadoorie Biobank (CKB)
115 and UK Biobank (UKB). We identified regions of long-range linkage disequilibrium (LRLD) in each
116 population, and found that VIPs for coronaviruses, but not DNA viruses, were enriched for overlap
117  with LRLD in CKB. By contrast, we found no clear evidence for any VIP enrichment in UKB. These
118 findings were supported by concordant results for VIP enrichment at genomic regions identified by
119  a selection scan using a different approach, in which distortion of the haplotype frequency

120  spectrum was used to detect signals of selection. Together, these results provide further strong
121  supporting evidence that one or more historical coronavirus epidemics occurred specifically in East

122 Asia.

123 Results

124  Virus-interacting protein classification

125  VIPs are proteins expressed in humans that have been shown to interact with viruses, either

126  physically or by providing functions essential for viral propagation. Genes encoding these proteins
127  may be subject to selection driven by viral epidemics. We used a set of proteins grouped into VIP
128  categories, as previously defined by Souilmi et al (12), based on low-throughput molecular

129  methods and high-throughput mass-spectrometry (Figure 1f), Supplementary Table S1). VIPs
130  were classified based on i) whether they primarily interact with DNA or RNA viruses; ii) whether or
131  not RNA virus VIPs interact with coronaviruses; and iii) whether or not coronavirus VIPs interact
132 with SARS-CoV-2 viruses. In addition, we defined a separate subset of 42 SARS-VIPs previously
133 identified as being potentially sites of selection in past coronavirus epidemics (12) and which would
134  be expected to be similarly identified in our analyses and which, therefore, could be used as a

135  positive control to test the effectiveness of our analytical approach.
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136  PCA-based identification of long-range LD regions

137  Natural selection and other demographic processes can result in regions of LRLD in the genome.
138  In previous work, to facilitate genotype PCA analysis of the CKB cohort, we identified such regions
139  of LRLD using an approach similar to one previously used in UKB (21), by applying an iterative
140  hidden Markov-model based algorithm to principal components (PCs) derived from genotypes of
141 76,719 unrelated CKB individuals (see Methods) (22). Excluding the extended region of LD at the
142 chromosome 6 HLA region (chr6:20-40Mbp), we identified 229 unique regions of LRLD (median
143 length = 593.1Kbp, total length = 218.1Mbp) on the basis of distortions in the variant loadings of
144  the top 11 PCs (i.e. those previously identified as being informative for geographic population

145  structure in CKB) (Supplementary Table S2). Using the same approach for analysis of genotypes
146  from a similar number of 76,719 randomly-selected unrelated white British individuals from UKB,
147  applied to the top 5 (geographically-informative) PCs (23), we identified 326 LRLD regions (median
148 length = 1070.0Kbp, total length = 518.77 Mbp) (Supplementary Table S3). Further sets of LRLD
149  regions were defined based on splitting the CKB LDLR regions according to whether they were
150  uniquely identified in CKB (n=128) or they overlapped with UKB LRLD regions (n=104)

151  (Supplementary Table S4-5).

152 Enrichment of long-range LD at VIP genes

153  We hypothesised that if a particular class of VIPs were the target of natural selection, then the
154  genes encoding those VIPs would overlap with regions of LRLD more often than expected by

155 chance. To test this, we compared the observed overlap of VIPs with LRLD regions with empirical
156  null distributions, derived using sets of “decoy” LRLD regions generated by repeatedly

157  redistributing the LRLD regions randomly across each chromosome while retaining their size

158  characteristics, as illustrated in Figure 1. Table 1 shows the results of this analysis for different
159 classes of VIP and different sets of LRLD regions. Consistent results were found for 3 different
160  methods for scoring LRLD - VIP overlap — i) any overlap, ii) >50% overlap, iii) total base-pair

161  overlap (Supplementary Tables S6-7).
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Compared to the null distribution, there was strong evidence in CKB for LRLD enrichment at loci
encoding the subset of SARS-VIPs (n=40 after exclusion of the HLA region) previously identified
as likely sites of selection (enrichment ratio ER=2.50; 95% CI 1.25-10.00; P=0.005). This finding
provides further population genetic evidence in support of the previous finding that one or more
ancient coronavirus epidemics occurred in East Asia approximately 25,000 years ago, and

indicates that, as expected, the identified regions of LRLD are enriched for signals of selection.

Using the same approach to test the other classes of VIPs, there was a strong signal in CKB that
CoV-VIP genes (n=394) are enriched for regions of LRLD (enrichment ratio, ER=1.50; 95% ClI
1.10-2.16; P=0.004) relative to the null. This LRLD enrichment was further investigated by
classifying VIPs according to whether they have been found to be related to SARS viruses, or only
related to other types of coronavirus (i.e. endemic coronaviruses). Both classes of VIPs displayed
LRLD enrichment in CKB, with somewhat greater enrichment in non-SARS CoV-VIPs (ER=1.86,
95% CI 1.00-4.33; P=0.021) compared to SARS CoV-VIPs (ER=1.41, 95% CI 1.02-2.16; P=0.020).
There was also suggestive evidence for more moderate enrichment of LRLD at genes encoding
non-CoV-VIPs (ER=1.16; 95% CIl 0.99-1.38; P=0.038), and for RNA-VIPs overall (ER=1.19; 95%
Cl 1.01-1.41; P=0.018). Conversely, DNA-VIPs (n=1,273) showed no enrichment for regions of
LRLD (ER=1.03; 95% CI 0.83-1.28; P=0.419), again consistent with findings from the previous

study by Souilmi et al (12).

By contrast with CKB, in UKB we found no evidence for enrichment of LRLD near to genes
encoding CoV-VIPs (P=0.316), or for any other kind of VIPs (all P>0.05) (Table 1). Furthermore,
the LRLD enrichment observed for CKB was predominantly due to LRLD regions found only in
CKB. For almost all classes of RNA VIP, enrichment for overlap with CKB-only LRLD was greater
than for the main analysis while, conversely, overlap with LRLD regions identified in both CKB and
UKB displayed less enrichment and/or was not statistically significant. The one exception was a 3-
fold enrichment for the “under selection” SARS-CoV-VIP genes, although this was based on only 6

overlapping genes.
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188  Detecting signals of selection using saltiLASSi

189 In addition to selective sweeps, regions of LRLD may also arise from demographic processes such
190 as population bottlenecks (24, 25), potentially confounding the above analysis. To address this

191 issue, we aimed to replicate our findings using putative signals of natural selection identified using
192  an unrelated method, saltiLASSi (15), which detects regions of the genome that display substantial
193  distortions of the haplotype-frequency spectrum (illustrated in Figure 1c¢). Importantly, saltiLASSi is
194  robust to false positives driven by e.g. demographic events. Applying saltiLASSi to the same sets
195  of unrelated individuals from CKB and UKB, across the autosomes (again excluding the extended
196  HLA region on chromosome 6), we identified 117 non-overlapping regions in CKB showing strong
197  evidence of selection (median length = 175.2Kbp, total length = 35.3Mbp), and 118 regions in UKB
198 (median length = 134.3Kbp, total length = 25.2Mbp) (Supplementary Tables S8-9. A total of 42

199 regions of selection overlapped between CKB and UKB, comprising 6.20Mbp of overlapping DNA.

200  Enrichment of saltiLASSi regions at VIP genes

201  We assessed the proximity of VIP structural genes to these signals of selection, scoring for each
202  VIP class the proportion lying within 10Kbp of a saltiLASSi-identified region (Table 2). For each of
203 CKB and UKB, only 2.7% of DNA virus VIPs were close to at least one signal of selection,

204  substantially fewer than for any other VIP class, consistent with the findings from our LRLD

205 analysis and the previous finding of no evidence of selective sweep enrichment near DNA VIP
206  genes (12). By comparison, in CKB the proportion of CoV-VIP genes in close proximity to a

207  saltiLASSi signal of selection was substantially larger (27/394, 6.9%; P=5.6x10"), with similar

208  proportions for both SARS (6.9%; P=1.1x10) and non-SARS (6.5%; P=0.026) VIPs, in each case
209 representing an enrichment of ~2.5-fold relative to DNA virus VIPs. Further, for the SARs-VIPs
210  previously identified as under selection, the proportion of genes close to a signal of selection was
211 even larger (7/40, 17.5%; P=5.5x10®%), a 6.6-fold enrichment. In UKB, on the other hand, any

212 enrichment of genes in proximity to signals of selection relative to DNA virus VIPs was much more
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213 limited. Nevertheless, there was near 2-fold enrichment for CoV-VIPs (20/394, 5.1%; 1.9-fold;

214  P=0.012) and for SARs-VIPs (17/317, 5.4%; 2.0-fold; P=0.0096).

215  To provide a more rigorous test for these observed enrichments of signals of selection near to

216  VIPs, we adopted a bootstrapping approach similar to that used for LDLR. For each set of VIP

217  structural genes, we scored the number that were in close proximity (within 10Kbp) to one or more
218  saltiLASSi-identified regions, and compared this with a null distribution derived by redistributing the
219  saltiLASSi-selected regions 10,000 times across the genome. In order to retain large-scale

220 patterns of GC- and gene-content, the units of permutation were in the region of 300Kbp, so that it
221  was necessary to exclude from analysis large saltiLASSi selection regions (those >500Kbp) and
222  the VIPs in close proximity to them. Nevertheless, despite the resulting reduction in statistical

223 power, in CKB both CoV-VIPs (ER =2.12; 95% CI 1.13 — 5.67; P=0.004) and SARS-VIPs (ER =
224  2.17;95% CI 1.08 - 6.50; P=0.009) were once again strongly enriched for proximity to saltiLASSi-
225  selected regions compared to the empirical null (Table 3). By contrast, we found no evidence for
226  appreciable enrichment in any class of VIPs in UKB, consistent with the similar analysis of regions
227  LRLD. These findings were robust to variations in the distance between the VIP structural gene
228  and selection region used to define ‘proximity’, and to different sensitivity thresholds for detection
229  of selection regions, with different sets of parameters giving qualitatively the same results

230  (Supplementary Tables S10a-d).

231  Regional analysis

232 Since CKB participants were recruited in 10 geographically diverse regions across China (26), we
233 conducted further analyses to explore whether there were differences in selective signals between
234  regions which might narrow down the geographical origins of the putative historical epidemic(s)
235  which gave rise to the LRLD and saltiLASSi signals. Using phased CKB genetic data, we identified
236  haplotypes which spanned the regions of LRLD that overlapped with COV VIPs (n=36) and

237  determined the frequencies of a random subset of 2000 of the most common haplotypes in the

238  different CKB recruitment regions (Supplementary Table S11). No consistent pattern was
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discernible from this analysis, with no region showing strong evidence of having higher frequencies
of these long-range haplotypes (Figure 2a). Similarly, we repeated saltiLASSi analyses for equal
numbers of individuals from each CKB recruitment region (n = 10) and, for the 28 saltiLASSi
selection signals which overlapped with COV-VIPs in the main analysis, scored the frequency with
which these selection signals were identified when restricting analysis to individuals from a single
recruitment centre (Figure 2b. Again, no clear difference was observed between regions, with 78-

92% (mean 87%) of the signals being replicated across each region.

Overlap with SARS-Cov2 susceptibility GWAS associations

To explore whether signals of selection overlapped with recently published GWAS associations for
COVID susceptibility (27), we selected all 51 lead SNPs which reached genome-wide significance
(i.e. 5 x 10®) for “Critical illness", "Hospitalized" and "Reported infection" and counted the overlap
between these loci (defined by the region within 200Kbp of the lead variant) and either the LRLD or
the saltiLASSi regions identified in CKB and UKB, again using permutation across the genome to
provide an empirical null. Of the 51 lead variants for COVID-19 susceptibility, 6 overlapped with
regions of LRLD in CKB (ER=1.67, 95% CI 0.71 — Inf, P=0.257), and 5 overlapped with UKB LRLD
regions (ER=0.71, 95% CI 2-12, P=0.836). The corresponding analysis using saltiLASSi regions,
and the bootstrapped regions from the previous section, yielded similar results for both CKB (7/51;
ER=1.75, 95% CI 0.78 — 7.00, P=0.09) and UKB (5/51; ER=1.25, 95% CI 0.56 — 5.00 P=0.27). The

saltiLASSI results were robust to variation in the size of the window surrounding the GWAS lead

variants (50Kbp-500Kbp) (Supplementary Table S12).

Discussion

Viral epidemics are expected to exert relatively fast-acting selection on the human genome. Such
events can leave footprints in the form of ‘selective sweeps’, in which linked neutral variants
‘hitchhike’ to higher frequency, thereby reducing genetic variation around a selected locus and

generating regions of LRLD (13, 28). Previous work provided evidence that an ancient coronavirus
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264  epidemic(s) more than 20,000 years ago drove selective sweeps(s) in the genomes of EAS

265 individuals (12). However, this study was based on a relatively small size of ~100 individuals from
266  each of 5 populations, and simulations have shown progressive increases in sweep detection

267  accuracy with increasing sample sizes; for instance, for a sweep occurring 1000 generations ago,
268 thereis a 1.6 fold increase in power when increasing the number of haplotypes from 10 to 50 (20).
269  We sought to further investigate these potential signatures of historic viral epidemics in a

270  substantially larger dataset comprising ~70k individuals from each of CKB and UKB, and again
271  found that genes encoding proteins which interact with coronaviruses are significantly more likely

272  to be near regions of selection, in Chinese but not British individuals.

273 We first assessed enrichment of VIP genes in regions of LRLD, relative to a null distribution in
274 which regions of the same size were repeatedly randomly distributed around the genome, an
275  approach widely used to assess the significance of associations of one genomic feature with

276  another (e.g. (29, 30)). DNA virus VIP genes showed no enrichment of LRLD, consistent with the
277  previous finding of no signals of selection at these VIPs. By contrast, genes encoding a set of
278  SARS-VIPs that were previously identified as potentially under selection showed a 2.5-fold

279  enrichment of nearby LRLD regions. Together, these findings indicate that this approach is both

280  well-calibrated and capable of detecting signatures of selection.

281  However, LRLD does not arise exclusively from selective sweeps and can arise due to various

282  non-selective processes, such as restrictions on genetic recombination due to genomic structural
283  variants such as inversions (31-33). Furthermore, demographic events such as population

284  bottlenecks can produce regions of LDLR (24) and other signatures which mimic positive selection
285  and can thus confound selection scans. Such processes could influence both the previous

286  analyses (12) and our analysis based on LRLD. To address these potential issues, therefore, we
287  conducted a separate analysis in which signals of selection were instead identified using

288  saltiLASSI, which accounts for the spatial distribution of the sweep test statistic across the genome

289  and is thereby more robust to non-selection demographic events. Once again, there was no
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290  enrichment of signals of selection near to DNA virus VIPs, while the previously identified set of
291  SARS-VIPs potentially under selection showed substantial enrichment relative to other VIP

292 classes.

293  These two analyses, based on methodologically distinct approaches to identification of regions of
294  selection, gave consistent results when applied to different classes of VIP. Both identified strong
295  enrichment of selection regions in CKB near to CoV-VIPs and SARS-VIPs, but not near non-CoV-
296  VIPs. Both methods also identified enrichment at non-SARS-VIPs (comparable to that at SARS-
297  VIPs), although this was based on a smaller number of VIPS in this class, giving wide confidence
298 intervals. Conversely, we found no evidence of any significant enrichment of any classes of VIPs in
299  UKB. Furthermore, the observed enrichment in CKB was almost entirely derived from regions of
300 selection identified only in CKB and not in UKB. These findings, that there is enrichment of

301 signatures of selection at genes encoding CoV-VIPs in CKB but not UKB, are entirely consistent
302  with the hypothesis that one or more historical epidemics of coronaviruses (or other viruses which
303 interact similarly with cellular processes) occurred in the ancestors of modern-day EAS

304 populations.

305  Given the geographical restriction of the putative selective sweep(s), it was of interest to explore
306  whether the much larger sample size in our analyses enabled any greater geographical resolution
307 of the origins of such sweep(s). However, we found no clear evidence that enabled localisation of
308 the enrichment of selection signals to one or more particular regions in China. This is perhaps not
309  surprising, as many population migrations and population mixing have taken place across China in
310 the past 20,000 years which are likely to have obscured any region-specific signals (34).

311  Alternatively, any epidemic may have been widespread across East Asia, which would be

312  consistent with the results of Souilmi et al who found signals in other East/South East Asian

313 countries.

314  Itis known that environmental pressures in the history of a population may confer lasting

315 adaptations to humans (35-37). Therefore, it is plausible that widespread, and potentially repeated,
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316  historical coronavirus epidemics in East Asia may have provided a degree of resistance for

317 modern-day East Asians to the recent COVID-19 pandemic. Evidence has shown that different
318  populations have different mortality risks from severe COVID-19 (38, 39). Whilst it is clear that

319  sociodemographic factors and provision of appropriate health care play a substantial part in these
320 differences, there is also the possibility that variants with protective effects against COVID-19 may
321  be distributed differentially across populations. For instance, African American ancestry has been

322  reported as an independent risk factor for hospitalisation from COVID-19 (40),

323  If ancient and current coronavirus epidemics have VIPS in common, the putative historic epidemic
324  in East Asia may have driven selective sweeps in regions of the genome which are currently under
325  selection by COVID-19. This could be manifested in a higher number of overlaps between GWAS
326  hits and regions of selection in Chinese compared to British individuals. However, we found no
327  discernible differences between the populations. Whilst this may be due to a low number of GWAS
328  hits, or may reflect insufficient EAS individuals in GWAS of COVID-19 susceptibility, this may also
329  point to differences in the proteins relevant to present-day and ancient coronaviruses. A further
330 consideration is that signatures of selection from the putative historical epidemic(s) will included
331  contributions from the long-term effects of the virus, analogous to the long-term “long Covid”

332  effects of SARS-Cov2, which are not included in GWAS of COVID-19 susceptibility.

333  Nevertheless, observational evidence suggests that countries in East Asia have a substantially
334  lower acute case-fatality rate than comparable countries in Western Europe (41). While it is very
335 likely a substantial part of the observed differences in severity and case-fatality rates between

336 different populations are due to non-biological factors, e.g. public policy and differences in social
337  behaviour, these data, alongside VIP enrichment results from this and previous studies, suggest
338 that EAS populations may have a higher frequency of alleles protective against severe COVID-19,
339 that may be one cause of the reduced case-fatality rates in these populations. For instance, non-
340  synonymous mutations in TMPRSS2 that confer decreased COVID-19 susceptibility are found at

341  higher frequencies in EAS (36%) than EUR (23%) (42).
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342  Variation in genetic susceptibility to disease across different ancestries, driven by differing nature
343  selection environments, is well documented; for instance, alleles which provide a protective effect
344  against Malaria are found at substantially higher frequencies in West Africa than in Europe (43,
345  44). Further, in vivo studies have shown that the transcriptional response of primary macrophages
346  to live bacterial pathogens varies between ethnicities, and that genetic effects in the immune

347  response are strongly enriched for recent, population-specific signatures of adaptation (45). It is
348  also known that epi/pandemics drive population-level immunity which protects against future

349  outbreaks; historical evidence cites that during the initial outbreak of the plague across Europe,
350 during 1347 to 1353, not a single town was re-infected two or more years running (46). Thus, it is
351  plausible that past coronavirus selective sweeps in EAS populations have provided a degree of
352 resistance to COVID-19. For instance, the ACE2 locus on the X chromosome (not included in our
353  analysis, which was restricted to autosomes) has reduced haplotype diversity in EAS, one of the
354  two major haplotypes being associated with appreciably lower SAR-Cov2 severity (47).

355  Furthermore, single cell transcription analyses have shown that natural selection has driven

356  population-specific differences in the immune response to SARS-Cov2 (48).

357  The key strength of our study is the use of biobank-scale data to provide greater power to identify
358  signals of selection. Apart from the large sample sizes, the genetic data in CKB and UKB were

359  generated using similar Axiom arrays with 50% of the genotyped variants being the same, reducing
360 the chance of possible array-specific confounding. Moreover, we used a method, saltiLASSi, which
361  is more robust to false-positives than the approach used by Souilmi et al (15), and the involvement
362  of 10 geographically diverse regions in CKB enabled us to explore possible regional variations

363  within China. However, the study also has limitations, most notably that, unlike the study by

364  Souilmi et al. which was based on sequence data, we used genotype array data. This means we

365 could not explore more detailed parameters of putative sweeps, such as strength and age.

366 Conclusions
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This study provides further evidence that historical coronavirus epidemic have shaped the genetic
landscape of East Asian populations, as observed through significant enrichment of coronavirus
interacting protein (CoV-VIP) genes in regions undergoing selection. Our findings, leveraging large
biobank-scale datasets, reinforce the important role of pathogen epidemics in human evolutionary
history but also underscore the potential influence of ancestral viral exposures on population-

specific disease susceptibility as a research avenue.
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525 Methods

526  Statistics and reproducibility

527  The details of each analysis are outlined in the methods section and all of the code has been made

528  publicly available on GitHub at https://github.com/sahwa/CKB_COVID_selection

529  Study populations and genotyping data

530 CKB: China Kadoorie Biobank is a population based prospective cohort of >512,000 participants,
531 of whom 100,706 had available genotyping data as previously described (22, 26). Individuals were
532  genotyped on custom-designed Axiom® arrays optimised for individuals with East Asian ancestry,
533  on which 340,562 genotyped variants overlapped with the UK Biobank genotype array. Analyses
534  were based on 513,164 variants passing quality control on both array versions and in all

535  genotyping batches. One individual from each pair of individuals with KING kingship coefficient
536  cutoff >0.05 (determined using an LD-pruned set of 171,236 variants) was removed to create a set

537  of 76,719 unrelated individuals used in the present study.

538  UKB: Genotyping data for 805,426 directly-genotyped variants in UKB participants was available
539 under project 50474. We selected self-identified ‘White British’ individuals based on Data-Field
540 22006 and used an LD-pruned set of 230,948 variants to define an unrelated set of individuals
541  using KING kingship coefficient cutoff >0.05. From the set of 348,845 unrelated individuals, we

542  randomly selected 76,719 samples to match the number of CKB samples.

543  Virus Interacting Proteins

544  VIPs (n=4,768 after exclusions) and their categorisations were as defined by Soulimi et al 2021
545  (12), with genomic coordinates of structural genes (build 37) as downloaded using Ensembl v102
546  (49). VIPs were excluded whose genes were non-autosomal or which lay within an extended MHC
547  region (chr6:21,745,208-39,042,510) defined based on results from LDLR identification in CKB.

548  Similarly, for all analyses we only considered VIPs which overlapped with regions genotyped in the
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549  CKB and UKB datasets, by splitting the genome up into regions of 500Kb non overlapping

550 segments and then only considering VIPs which are fully covered by a segment.

551

552  Identification of putative regions under selection

553  a) Long-range linkage disequilibrium

554  The method for identification of LRLD regions as applied to CKB has been described previously
555  (49). Adapted from an approach to remove distortions principal components analysis (PCA) (23) ,
556  we conducted a systematic iterative search for regions of LRLD by applying a hidden Markov

557  model (HMM) to PCA loadings. For each biobank, an initial variant set was derived by filtering to
558  remove variants with MAF<0.01 and Hardy-Weinberg P<10™. We also performed local pairwise LD
559  pruning using plink --indep-pairwise 50 5 0.2 (50). We then performed PCA of the pruned

560  genotypes using flashpca (51). Starting with the variant loadings for PC1, and for each

561 chromosome in turn, variants were assigned to one of two states: under selection (SR) or not,

562  using a hidden Markov model. The emission probability of a variant being within a SR region, given
563 its absolute loading value, was determined from the cumulative p-value from the chi-squared

564  distribution with one degree of freedom. The transition probability between the states is in

565  proportion to EAS recombination rates (downloaded from SniPA (52)); over a scaling factor of

566  1E+7. The loadings were decoded using the forward-backward algorithm given by Rabiner (53),
567 and variants with a marginal likelihood >0.5 were assigned to the final set of selected regions.

568  SNPs were assigned to one of the two states. Regions were defined by combining consecutive

569  SNPs of the same states, while borders are at the middle points of two consecutive SNPs of

570 different states.

571 Inthe next iteration, the SNPs covered by the SR regions were removed and PCA was performed
572  again. Then the newly identified SR regions were merged with the previous sets. Once the

573  detection of SR set converged, with no additional SR regions to be discovered, the number of PCs
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574  to be parsed were incremented by 1. In total we analysed the loadings of the first 11 and 5 PCs for
575 CKB and UKB, respectively, these being the PCs informative for geographical population

576 stratification.

577  In addition to the CKB and UKB SR sets, we also defined sets of selection regions which were i)

578  the intersection of CKB and UKB or ii) found in CKB but not in UKB.

579 b) PCA loadings permutation test

580  To test whether the overlap between VIPs and SR regions was greater than would be expected by
581 chance, we used bedtools (version v2.30.0) (54) to generate decoy SR sets, to enable derivation of
582  empirical P values. Given a SR set, for each chromosome, the locations of the selection regions
583  were randomly shuffled, with no overlaps, 10,000 times. We collected the corresponding 10,000

584  “decoy” selection region sets.

585  Adding 10Kb upstream and downstream to each VIP, the overlap between a VIP gene set and a
586 SR set was compared with the overlap in the decoy SR sets, to give empirical p-values for three
587  sets of features: the number of VIP genes overlapping selection regions by at least 1bp; the

588  number of VIP genes with greater than half covered by selection regions; and the number of base-
589  pairs covered by the regions. The rank of the genuine overlapping statistics, among the sorted

590 10,000 decoy values, was taken as the empirical P-value.

591  VIP set Multiple Testing Correction

592  To account for testing multiple sets of sometimes correlated VIPs, we applied the procedure from
593  Machado 2007 (55) to determine a Bonferonni correction to apply to the P-value threshold. To

594  derive, S, the approximate number of independent tests, first let M be an n * p matrix, where n is
595  the number of VIP sets and P the total number of VIPs across all sets. The elements of M, denoted

596 by M;;, are defined as follows:

J
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597 My {7VIPImVIPSeti=l where i =1,2...,nand j = 1,2.....p. Let vy, v, v, be the eigenvalues of

otherwise=0

598 M. Rescale all eigenvalues so that they sum to n: )=, v,] = n. For each eigenvalue v;,, modify
599  such that v, = min (v, 1). The sum of the modified eigenvalues, S = Y.}_; v gives the number of

600  approximately independent tests, and we accordingly use 0.05/S as our significance threshold.
601  LASSI

602  Genotype data from each biobank were phased using shapeit v4.1.3 using default settings (56).
603 The saltiLASSI (v-1.1.1) (15) algorithm was applied to the same CKB and UKB datasets of 76,719
604  participants each. After initial QC (22) no allele frequency/count filters were applied to the genotype
605 data before applying the selection scan. We used the settings --winsize 10 and --winstep 1, with all
606  other parameters as default. A small window size was selected to give increased power to detect
607 relatively old or weak selective sweeps (15). The value L, the saltiLASSI composite-likelihood ratio
608 test statistic, was used as a metric for the strength of evidence for a selective sweep and the basis

609  on which to define a region under selection.

610  “Selected regions” (SRs) were defined as regions of contiguous SNPs which had L values above
611  the 0.99 quantile for all L values for that chromosome and at least 200 SNPs away from another

612  contiguous region of SNPs above the 0.99 quantile.
613  Bootstrapping saltiLASSi regions of selection

614  To determine whether the overlap between the regions of selection identified by saltiLASSi and
615 different classes of VIPs was greater than would be expected by chance, we used the bootRanges
616  function from the nullRanges R library (57). Following the steps in the vignette, we used the

617 EnsDb.Hsapiens.v86 genome (58) and excluded the following regions

618 i) hg38.Kundaje.GRCh38_unified_Excludable
619 i) hg38.UCSC.centromere
620 iii) hg38.UCSC.telomere
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621 iv) hg38.UCSC.short_arm
622 V) the extended HLA region (chr6:21,745,208-39,042,510)
623 Vi) MT, chrY and chrX

624  The length of isochores (i.e. regions which capture large-scale patterns of GC and gene content)
625  across the human genome are in the range of 300Kb - 1Mb (59). Hence, in order to capture the
626  structure of the isochores, we also removed any regions of selection which were longer than

627  500Kb.

628 We segmented the remaining genome according to gene density. We performed 10,000 bootstrap
629 iterations and calculated the overlap between each VIP set and the bootstrapped saltiLASSI

630 selection regions. The empirical P-value was given by the proportion of times the randomly

631 permuted selection regions had a greater number of overlaps with the VIP set than the true

632  number of selection regions, divided by the number of bootstrap iterations. 97.5% enrichment

633 intervals around the enrichment ratios were obtained by dividing the true proportion of overlaps by
634 the 97.5 quantiles of the bootstrapped distribution of overlaps. We applied the same P-value

635 threshold adjustment as in the LRLD analysis (VIP set Multiple Testing Correction).

636 Relative enrichment of VIP sets relative to DNA VIPs

637  Our analysis and that of Souilmi et al (2019) suggested that DNA VIPs are not under any kind of
638 detectable selection. Therefore, we used the overlap between saltiLASSi selection regions and
639  DNA VIPs as a null success rate with which to compare other VIP sets against. We calculated P-
640  values of the relative enrichment of non-DNA VIP sets relative to DNA VIP sets using

641  stats:prop.testin R (v4.3.2).

642  Overlap between selection regions and GWAS hits

643  We downloaded the lead hits for 3 different COVID-19 related traits (“Critical illness", "Hospitalized"

644  and "Reported infection"), from https://app.covid19hg.org/, retaining only hits in autosomal regions.
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We also removed any hits which fell inside the extended HLA region (~chr6:20-40Mb). Due to the
small overall number of hits, to maximise power to detect any signals, we combined the lead hits

for all 3 traits together, resulting in a total of 51 loci.

We counted the number of overlaps between each class of lead hit loci (defined by the region
within 200Kbp of the lead variant) and either the i) regions of long-range linkage disequilibrium
(LRLD) or ii) saltiLASSi regions of selection. We also tested varying the window added around
each GWAS loci between 50Kb, 100Kb, 200Kb and 500Kb. To determine whether the overlap
between GWAS loci and selection regions was greater than expected by chance, we used the
same bootstrapping procedure as in the previous section, using bootranges for the saltiLASSi

regions and the decoy regions for regions of LRLD.
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Figure 1. Schematic to estimate the enrichment of different VIP classes for regions of
selection. We began by using two different methods to identify regions of as candidate regions of
selection, PCA HMM and saltiLASSiI. (a) The first step of the PCA HMM is to perform a PCA on the
subset of unrelated individuals and then identify regions of the genome which show distortions in
PC loadings using an HMM-based algorithm (b). Panel (b) shows a spike in the loadings of one
principle component, caused by a region of long-range LD. The other method, saltiLASSI, identifies
regions of the genome which show a strong distortion in the haplotype frequency spectrum in a
sliding window approach (c) to calculate a selection scan test statistic. We then identified peaks of
this test statistic (d). We then estimated the enrichment of each set of VIPS (e) with regions of
selection (f). We calculated the empirical overlap between the regions of selection and different
classes of VIPs (g) and then calculated whether this overlap is greater than expected by chance by

permuting/bootstrapping the regions of selection across the genome to generate a null distribution

(h).
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Figure 2. b) Frequency, in each recruitment region (n=10), of the most common haplotypes which span the regions of long-range LD which
overlap with the COV-VIPs (n=36). We took the phased CKB data and extracted the haplotypes which covered the regions inferred to be under
selection by the LRLD selection method and calculated the frequency of the most common haplotype (across the entire dataset), within each region.
Each region was subsamples to 2000 randomly selected individuals to ensure comparability across regions. b) Replication of saltiLASSi selection
hits in different recruitment centres (RC) in China (n=10). We analysed each recruitment region using saltiLASSi separately, after subsampling
the number of individuals to match the RC with the fewest number of individuals and determined whether selection hits obtained from analysing the
full cohort were replicated in each RC. The colour of each tile represents the proportion of the selection hit inferred in the full cohort which was

covered by the selection hit inferred a given CKB region.
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699 Table 1. Enrichment of regions of Long-range Linkage Disequilibrium (LRLD) at Virus Interacting Protein (VIP) genes. Enrichment and P-
700 values (one-tailed test) were determined for the frequency with which the genes encoding different classes of VIPs overlap with sets of LDLR
701 regions, compared with random permutation of LDLR locations across the genome. Number in brackets denotes the number of VIPs in that class
702 included in the analysis. Enrichment and 95% Cls were derived from the median and 2.5% / 97.5% centiles of the null and P from the empirical 1-
703 tailed test against the null. The HLA region (chr6:20-40Mb) and VIP genes lying within it were excluded from analysis. Asterisks next to P-values
704 denote significance after multiple testing adjustment (P<0.05/(2*2.56), see Methods).
LRLD Selection Region Set
CKB UKB CKB-only CKB+UKB
VIPs enrichment P enrichment P enrichment P enrichment P
All (4768) 1.13(0.98-1.31) 0.047 0.98 (0.88-1.08) 0.673 1.15 (0.95-1.42) 0.076 1.11 (0.89-1.42) 0.178
RNA viruses (3495) 1.19 (1.01-1.41) 0.018 1.01 (0.90-1.14) 0.429 1.25 (1.02-1.59) 0.016 1.12 (0.87-1.48) 0.183
DNA viruses (1273) 1.03 (0.83-1.28) 0.419 0.92 (0.80-1.08) 0.852 0.93 (0.70-1.31) 0.687 1.12 (0.82-1.62) 0.242
CoV (394) 1.50 (1.10-2.16) 0.004* 1.04 (0.84-1.32) 0.374 1.89 (1.21-3.40) 0.001* 1.11 (0.74-2.00) 0.316
non-CoV (3101) 1.16 (0.99-1.38) 0.038 1.03 (0.91-1.16) 0.337 1.20 (0.97-1.54) 0.046 1.12 (0.86-1.48) 0.195
non-SARS (77) 1.86 (1.00-4.33) 0.021 1.07 (0.71-1.88) 0.372 2.00 (1.00-8.00) 0.023 1.67 (0.62-Inf) 0.208
SARS (317) 1.41 (1.02-2.16) 0.02 1.04 (0.82-1.34) 0.41 1.86 (1.13-3.71) 0.005* 1.07 (0.65-2.14) 0.424
under-selection (42) 2.50 (1.25-10.00) 0.005* 1.50 (0.86-4.00) 0.083 2.00 (0.80-Inf) 0.109 3.00 (1.20-Inf) 0.011
705
706
707
708
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Table 2. Overlaps of genes encoding different classes of Virus Interacting Protein (VIP) with saltiLASSi selected regions in UKB and CKB
participants. Genes encoding different classes of VIPs lie were scored according to whether they lay within 10Kbp of saltiLASSi-identified regions
of selection (“overlap”), Enrichment and P-values were calculated relative to the proportional overlap for DNA virus VIPs using a two-sample
proportion test, with the DNA VIP overlap as the null success rate. The HLA region (chr6:20-40Mb) and VIP genes lying within it were excluded from
analysis. Asterisks next to P-values denote significance after multiple testing adjustment (P<0.05/(2*2.36)).

saltiLASSi Selection Region Set

CKB UKB
VIP Overlap Enrichment P Overlap Enrichment P
DNA ref 34/1273 (2.7%) 1.00 ref 35/1273 (2.7%) 1.00 ref

RNA 144/3495 (4.1%) 1.54 0.010*  131/3495 (3.7%) 1.36 0.048

non-COV 117/3101 (3.8%) 1.41 0.035 111/3101 (3.6%) 1.30 0.083
CoV 27/394 (6.9%) 2.57 0.000*  20/394 (5.1%) 1.85 0.012*

non-SARS 5/77 (6.5%) 2.43 0.026 3/77 (3.9%) 1.42 0.277
SARS 22/317 (6.9%) 2.60 0.000*  17/317 (5.4%) 1.95 0.010*

under-selection 7/40 (17.5%) 6.55 0.000*  2/40 (5.0%) 1.82 0.199
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Table 3. Overlaps between genes encoding different classes of Virus Interacting Protein (VIPs) and saltiLASSi selected regions in UKB
and CKB participants. Enrichment and P-values (one-tailed test) were determined for the frequency with which the genes encoding different
classes of VIPs lie within 10Kbp of saltiLASSi-identified regions of selection, compared with 10,000 bootstrap iterations of randomly distributing
regions of selection across the genome, controlling for local gene density. Enrichment and 95% Cls are derived from the median and 2.5% / 97.5%
centiles of the null distribution. The HLA region (chr6:20-40Mb) and other excludable regions (see methods), and VIP genes lying within them, were
excluded from analysis. Asterisks next to P-values denote significance after multiple testing adjustment (P<0.05/(2*2.36).

saltiLASSi Selection Region Set

CKB UKB

VIP Overlap Enrichment P Overlap Enrichment P
All 114/4663 (2.4%)  1.06 (0.78-1.54)  0.362 105/4667 (2.2%)  1.05(0.77 - 1.50)  0.381
DNA viruses 21/1254 (1.7%) 0.72 (0.48-1.24)  0.889 23/1250 (1.8%) 0.85(0.56 - 1.44)  0.719
RNA viruses 93/3409 (2.7%) 1.18 (0.85-1.75)  0.157 82/3417 (2.4%) 1.12 (0.81-1.67)  0.240
non-CoV 76/3031 (2.5%) 1.07 (0.78-1.62)  0.320 72/3033 (2.4%) 1.11 (0.79-1.64)  0.283
CoV 17/378 (4.5%) 2.12(1.13-5.67) 0.004*  10/384 (2.6%) 143(0.71-3.33) 0.152
non-SARS 4174 (5.4%) 4.00 (0.80 - Inf) 0.030 1/76 (1.3%) 1.00 (0.20 - Inf) 0.464
SARS 13/304 (4.3%) 2.17 (1.08-6.50)  0.009*  9/308 (2.9%) 1.50 (0.82 - 4.50)  0.088
under-selection 1/39 (2.6%) Inf (0.33 - Inf) 0.142 2/38 (5.3%) 2.00 (0.67 - Inf) 0.062
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