

February 2, 2024

1 **Osiris gene family defines the cuticle nano-patterns of *Drosophila***

2

3 **Running Title: Formation of sensory nano-structures**

4

5 Zhengkuan Sun^{1, 2}, Sachi Inagaki¹, Keita Miyoshi^{3, 4}, Kuniaki Saito^{3, 4}, Shigeo Hayashi^{1, 2, *}

6 ¹Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics
7 Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan

8 ² Department of Biology, Kobe University Graduate School of Science, 1-1 Rokkodai-cho,
9 Nada-ku, Kobe, Hyogo, 657-8051, Japan

10 ³ Department of Chromosome Science, National Institute of Genetics, Research

11 Organization of Information and Systems (ROIS), 1111 Yata, Mishima, Shizuoka 411-8540,
12 Japan

13 ⁴Graduate Institute for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka 411-
14 8540, Japan

15

16 ***Correspondence to:**

17 Shigeo Hayashi

18 RIKEN Center for Biosystems Dynamics Research

19 2-2-3 Minatojima-minamimachi, Chuo-ku Kobe 650-0047, Japan

20 Tel: 81-78-306-3185, Fax: 81-78-306-3183

21 E-mail: shigeo.hayashi@riken.jp

22

23 **Keywords:**

24 Insect, Cuticle, Nanostructure, Sensory organ, Triple lethal

25

26 **Abstract**

27 Nanostructures of pores and protrusions in the insect cuticle modify molecular permeability
28 and surface wetting and help insects sense a variety of environmental cues. The cellular
29 mechanism specifying cuticle nanostructures is poorly understood. Here, we show that
30 insect-specific *Osiris* family genes are expressed in various cuticle-secreting cells in the
31 *Drosophila* head in the early stage of cuticle secretion and collectively cover nearly the
32 entire surface of the head epidermis. We show that each sense organ cell with various
33 cuticular nanostructures expresses a unique combination of *Osiris* genes. *Osiris* gene
34 mutations caused various cuticle defects in the corneal nipples of the eye and pores of the
35 chemosensory sensilla. *Osiris* genes provide an entry point for investigating cuticle
36 nanopatterning in insects.

37

February 2, 2024

38 **1. Introduction**

39 Extracellular materials cover the body surface of every higher animal and plant in the form
40 of stratum corneum, cell wall, or cuticle, protecting fragile internal body environments from
41 the external world filled with toxic chemicals, genotoxic radiations, and predators. Those
42 extracellular matrices are denucleated remnants of keratinocytes of the vertebrate
43 epidermis or the cellulose-based plant cell walls.

44 In insects, cuticles are multilayered structures consisting of chitin-rich procuticles covered
45 by protein and lipid-rich epicuticles, secreted sequentially by the epidermal cells in an
46 outside-to-inside-order (Wigglesworth 1948). The cuticles harden to form protective shells
47 that serve as exoskeletons. In addition, cuticles of sensory organs serve as the window to
48 receive environmental signals such as light, chemicals, and mechanical stimuli (Stocker
49 1994). The insect sensillum comprises the hair (bristle) and socket cuticles, each secreted
50 from trichogen and tormogen cells (Shanbhag *et al.* 1999). Sensory neurons innervate inside
51 the hair cell cuticles and are associated with glia and sheath cells. All cells in each
52 sensillum are descendants of single sensory precursor cells uniquely fated for specific
53 sensory lineage (Hartenstein and Posakony 1989).

54 Cuticles of sense organs adopt specific nanostructures to optimize the reception of each
55 type of environmental signal. The cuticle of mechanosensory bristles is supported by
56 longitudinal pillar-like bulges that enhance the mechanical strength of the bristle so that its
57 deflection caused by mechanical contact or air vibration is sensitively transmitted to the
58 mechanosensory neurons that innervate to the base of the bristle. Cuticles of olfactory
59 bristles contain multiple pores, the nanopore, of 30 to 100 nm in diameter that serves as a
60 molecular filter, allowing the entry of airborne olfactory molecules of up to a few nm and
61 preventing the entry of larger particles of dust and virus (Steinbrecht 1997; Hunger and
62 Steinbrecht 1998; Shanbhag *et al.* 1999). In the case of gustatory sensillum, a single tip pore
63 is used to incorporate water-soluble taste molecules in the food (Shanbhag *et al.* 2001). The
64 corneal nipples are equally spaced ~200 nm high protrusions covering the corneal lens
65 (Kryuchkov *et al.* 2011). It deflects water droplets, self-cleaning the corneal surface, and
66 decreases light reflection. Despite industrial fabrication mimicking those surface structures
67 attracting much attention from engineers (Bhushan 2009), the investigation into the
68 biological processes of cuticle nanostructure formation and its genetic basis has been slow.

69 One clue for approaching this problem was obtained from the recent study on the
70 *Drosophila* olfactory organ with cuticle nanopores. We previously reported that the gene
71 *Osiris23/gore-tex* (*Osi23/gox*) is expressed in the olfactory hair cell (trichogen) during day 2
72 of pupal development when the outermost layer of the epicuticle (envelope) is secreted
73 (Ando *et al.* 2019a). Nanopores were shown to be derived from the indentation of the
74 enveloping layer. In *Osi23/gox* mutants, the envelop indentation was flattened, nanopores
75 were lost, and the mutant animals exhibited reduced olfactory response. Since the

February 2, 2024

76 *Osi23/gox* mutant adults are viable and fertile with the normal external shape at the
77 macroscopic level, this gene functions specifically in the nano-level patterning of the
78 cuticles.

79 *Osi23/gox* belongs to the *Osiris* gene family of 25 homologous genes in the *Drosophila*
80 genome. 22 of *Drosophila Osiris* genes are clustered in the chromosome region 83E,
81 corresponding to the triple-lethal region, which shows unusual dosage sensitivity: either one
82 or three copies of the region caused lethality (Dorer et al., 2003; Lindsley et al., 1972). *Osi*
83 gene family was found in many insect genomes spanning the basal groups of mayflies and
84 silverfish to highly derived dipterans. No *Osi* homologs are found in the genomes of basal
85 hexapods (bristletails, Archaeognatha), crustaceans, and other arthropods. Molecular
86 phylogenetic analysis demonstrated that specific classes of *Osi* genes from different insects
87 are clustered. This suggests that the *Osi* gene was acquired in the early stage of insect
88 evolution, rapidly increased in number, and diverged (Shah et al. 2012). Then, the gene
89 family was conserved thereafter. This implies that each member of *Osi* genes is conserved
90 in insect evolution. Although a few studies are addressing the function of specific *Osi* genes
91 (Smith et al. 2018; Scholl et al. 2018, 2023; Scalzotto et al. 2022), no comprehensive analysis
92 of the expression and genetic requirement for *Osi* family genes has been reported for
93 *Drosophila* or other insects.

94 In this study, we performed a gene expression analysis of all *Osi* genes in the *Drosophila*
95 head. The results showed that in the early stage of adult cuticle deposition, *Osi* gene
96 transcripts are found exclusively in specific cuticle-secreting cells in patterns unique for
97 each *Osi* gene. Collectively, most adult cuticles are secreted by cells expressing specific
98 combinations of *Osi* genes. Systematic gene knockout experiments demonstrated a varying
99 degree of requirement, from haploinsufficiency for viability to no apparent requirement of
100 adult viability and fertility. Among adult viable *Osi* mutants, many showed specific defects in
101 olfactory nanopores, gustatory tip pores, and corneal nipples in the eye. Those results
102 indicate that the *Osi* gene family plays an essential role in cuticle nanopatterning in insects.
103

104 **2. Results**

105 **2.1. Unique combination of *Osiris* gene expression prefigures morphogenesis of 106 specific cuticle structures.**

107 Expression patterns of *Osiris* genes in the *Drosophila* embryo were described previously
108 (Ando et al. 2019a). We sought to study tissue expression patterns of *Osiris* genes in the
109 head of pupae at 42-44 hours APF (after puparium formation) when the amounts of *Osiris*
110 gene transcripts peaked in the pupal stage (Brown et al., 2014; Larkin et al., 2021; Sobala &
111 Adler, 2016), and the expression of *Osi23/gox* was detected in the olfactory hair cells (Ando
112 et al., 2019). This is the time when the envelope layer of the cuticle is assembled before the
113 production of chitin and other components of the procuticle (Ando et al., 2019; Sobala and

February 2, 2024

114 Adler, 2016). We reasoned that if other *Osiris* genes play a role analogous to *Osi23/gox* in
115 nano-patterning of the cuticle through modulation of envelope shape, they are expressed at
116 this stage of envelope formation.

117 Fluorescence *in situ* hybridization (FISH) was performed on the whole head with 25
118 probes for each *Osi* RNA (*Osi1* to *Osi24*. *Osi10* was reannotated as *Osi10a* and *Osi10b*,
119 Figure 1A; Supplementary Figure S1; S2). The samples were co-stained with anti-
120 phosphotyrosine and anti-Futsch antibodies to reveal cell outline and bristle shaft cells
121 (trichogen) and neurons, respectively, and the nuclei were labeled with DAPI
122 (Supplementary Figure S1 and S2). Based on the low magnification views, *Osiris* expression
123 patterns were classified into three categories (Figure 1A, Supplementary Figure S2, S3,
124 Supplementary Table S1). The first group of genes (3, 7, 9 and 22) are mainly expressed in
125 epidermal cells, and the second group (1, 4, 5, 6, 8, 11, 12, 13, 16, 21, 23 and 24) are
126 expressed in various sensory organs in the eye, antenna, maxillary palp, and proboscis
127 (Figure 1A). The third group of genes (2, 10a, 10b, 14, 15, 17, 18, 19 and 20;
128 Supplementary Figure S2) were not expressed at a detectable level in the head of this
129 stage. We noted that our FISH assay is sensitive enough to detect robust sensory
130 expression of *Osi16* and *Osi23/gox* RNAs that were classified as “low” expressed genes (5
131 fragments per kilobase of exon per million mapped reads / FPKM) in the modENCODE
132 temporal gene expression database (Graveley et al., 2011). *Osi* expression patterns are
133 highly divergent and complex. We describe cell type-specific expression patterns of 16
134 *Osiris* genes expressed in the pupal head at 42 hours APF. A detailed expression of each
135 *Osi* gene is presented in Figures 1-4 and Supplementary Figure S3.

136

137 **2.1. Expressions in sensory organs**

138 The head of adult *Drosophila* is highly concentrated with various sense organs (Figure 1B,
139 1C). The olfactory organs are hair-like protrusions with nanopores covering the surface of
140 the maxillary palp (Mp) and the third antennal segment (An3; Figure 1C, Figure 2G). Taste
141 organs with single-tip pores are present on the surface of the labella (Lab), the bilateral
142 structure in the distiproboscis. 31 gustatory bristles cover the dorsal (outer) side of the
143 labella (Figure 3J). In the ventral side of the labella, rows of taste pegs are present on the
144 side of 6 rows of pseudotrachea, the teeth-like cuticular structures (Figure 3J).
145 Mechanosensory bristles of various sizes are present in many positions of the epidermis.
146 External structures of those sensory organs consist of bristle (hair) and socket, secreted by
147 trichogen and tormogen cells, respectively (Figure 3K). The light-sensing compound eye is
148 an assembly of about 800 ommatidia, each covered with a transparent lens cuticle that
149 focuses incoming light to the internal retinal cells (Figure 5G). In addition, three ocelli
150 present on the dorsal head are also covered with lens cuticle.

February 2, 2024

151 Nine *Osi* genes are expressed in trichogen cells, which were classified into two partially
152 overlapping groups, one expressed in olfactory organs and the other in mechanosensory
153 organs (Figure 1D, E). The latter group included those expressed in gustatory organs. In
154 addition, four *Osi* genes expressed in lens-secreting cells were grouped into another cluster.
155 The result suggests distinct *Osi* genes are expressed in cells covering sensory organs with
156 different cuticle nanostructures (Figure 1D, E; Supplementary Table S1).

157 Tormogen cells of mechanosensory, gustatory, and olfactory organs expressed *Osi3*, *Osi4*,
158 *Osi7*, and *Osi12*, which form a group overlapping the epidermis- and trichogen-expressed
159 genes (Figure 1C). *Osi3* and *Osi7* are also expressed in the epidermis. The result suggests
160 that *Osi* genes do not distinguish socket cuticles of different sensory organs.
161

162 **2.2 Olfactory sensillum**

163 Olfactory organs are categorized into sensilla basiconica (sb), sensilla trichordia (st) and
164 sensilla coeloconica (sc), each has multiple cuticular nanopores (Shanbhag et al., 1999,
165 Figure 2K, L, L'). Those sensilla are further classified based on size, expression of olfactory
166 receptors, and response to specific chemicals (Chai *et al.* 2019). All three types of olfactory
167 sensillum are present in An3, and only sb is present in Mp. *Osi13*, *Osi23/gox*, and *Osi24*
168 were detected in trichogen cells of maxillary palp in patterns resembling the distribution of
169 HA-Gox driven by the *Osi23/gox* promoter (Figure 1B; Figure 2; Supplementary Figure S3;
170 Ando et al., 2019a), suggesting that those genes are expressed in sb. *Osi5* was expressed
171 abundantly in An3, in a pattern complementary to the sb location labeled by strong *Osi23*
172 (Figure 2H). Based on the similarity to the st distribution in adult an3, *Osi5* is likely to be
173 expressed in st. *Osi13* and *Osi23* were expressed in mostly overlapping patterns in An3
174 (Figure 2I) and Mp (Supplementary Figure S4). *Osi24* expression partially overlapped with
175 *Osi5* (Figure 2J). *Osi16* was expressed in a scattered pattern in An3 (Figure 2D;
176 Supplementary Figure S3). It is possible that *Osi16* is expressed in sc. Each olfactory
177 sensillum is associated with sets of neurons expressing specific olfactory receptors or
178 ionotropic receptors (reviewed by Vosshall and Stocker, 2007). However, none of those
179 receptor promoters of Gal4 fusion are active in ~42 hours APF. Since no specific marker for
180 sb, st and sc expressed in this stage is available, definitive identification of *Osi5* and *Osi16*
181 expressing cells requires new lineage tracing tools.
182

183 **2.3 Mechanosensory and gustatory sensillum**

184 Mechanosensory bristles transmit mechanical stimuli to the mechanoresponsive nerve
185 terminus attached to one side of the bristle base. Their shape is characterized by prominent
186 bulges running along the long axis of the bristle, which is pre-patterned by actin bundles
187 formed during the pupal stage (Figure 3K, Lees AD and Picken L. E. R., 1945; Tilney et al.,
188 1995). Gustatory organs sense water-soluble chemicals with taste neurons inside of the

February 2, 2024

189 bristle. Long and short types of gustatory bristles are branched, and one of the branches
190 has a pore at the tip, through which water and dissolved taste molecules reach gustatory
191 neurons inside the bristle (Figure 1B, Figure 3J). Gustatory bristles are also innervated by
192 the mechanosensitive neuron (Jeong *et al.*, 2016). Five *Osiris* genes (*Osi4*, *Osi8*, *Osi11*,
193 *Osi21* and *24*) are expressed in all trichogen cells of the mechanosensory bristles (Figure
194 1B; Figure 3; Supplementary Figure S1). Four of these (*Osi4*, *Osi8*, *Osi11* and *Osi21*) were
195 detected in all trichogen cells of gustatory bristles of the proboscis (Figure 1B, 1E; Figure 3;
196 Supplementary Figure S3). In addition, *Osi3* expression was detected in gustatory
197 tormogen cells (Supplementary Figure S3).

198

199 **2.4 *Osi* expression in the eye**

200 *Osi4*, *Osi6*, *Osi7* and *Osi9* are expressed in primary pigment cells of the compound eye
201 (Figure 1F; Figure 4; Supplementary Figure S3). *Osi7* was also expressed in cone cells
202 (Figure 4). Those cells are involved in the secretion of the transparent lens cuticle. In
203 addition, *Osi4* expression was detected in unidentified cells deep in the compound eye
204 (Supplementary Figure S3). It is unlikely that those cells are involved in lens secretion.

205

206 **2.5 Epidermis and arista**

207 *Osi3*, *Osi7*, *Osi9* and *Osi22* are expressed in most parts of the epidermis (Figure 1A),
208 which is covered by an epidermal protrusion called spinule (sometimes called trichome or
209 hair). We noted that a part of the central-posterior part of the proboscis showed little or no
210 expression of any of the *Osi* genes (Supplementary Figure S3). Another position lacking
211 *Osi* expression was a horizontal strip above the antenna (Figure 1C). This region appears
212 to be located dorsal to the ptilinum and folded inside the adult head.

213 *Osi1*, *Osi8*, *Osi11* and *Osi12* are expressed in arista, the distal part of the antenna
214 (Supplementary Figure S3). *Osi1*, *Osi8* and *Osi11* are expressed in the basal cylinder and
215 farther distal part, with enhanced expression in the dorsal side. *Osi12* showed a distinct
216 pattern of a ring in the boundary of the basal cylinder and arista.

217

218 **2.6 Mutagenesis of *Osiris* gene family**

219 Mutations of a subset of *Osiris* genes have been reported (Ando *et al.* 2019a; Scalzotto *et al.*
220 2022; Scholl *et al.* 2023), but no comprehensive mutagenesis of the *Osiris* gene has been
221 performed before. Preliminary experiments to knock down *Osi* genes with transgenic UAS-
222 RNAi strains (Dietzl *et al.* 2007; Ni *et al.* 2008) gave mixed results: some RNAi constructs
223 caused lethality while others did not (Supplementary Table S2). We then performed
224 systematic gene knocked out of all 25 *Osiris* genes using the transgenic guide RNA and
225 Cas9 technique (Kondo and Ueda, 2013; Table 1, Supplementary Table S3). Multiple small
226 deletion alleles causing frameshift mutations in the open reading frame of each *Osiris* were

February 2, 2024

227 recovered for 24 *Osiris* genes, among which 5 were lethal (*Osi7*, *Osi17*, *Osi20* and *Osi24*)
228 and two semi-lethal (*Osi10a*, *Osi14*). We were unable to recover any mutation of *Osi6* with
229 3 different guide RNA design. One allele of lethal *Osi6* previously isolated was embryonic
230 lethal with a strong cuticle defect (Ando *et al.* 2019a). Heterozygous *Osi6* and *Osi7* stocks
231 were weak and sluggish, indicating that one dose reduction of those genes seriously
232 impacted viability.

233 Heads of adult viable mutant animals were examined by field emission scanning electron
234 microscopy (FE-SEM). Cuticle patterns of the antenna, compound eyes, and proboscis
235 were observed at magnifications up to 10,000x (Figure 5). External morphology was
236 observed in the antenna (olfactory organs in An3, mechanosensory organs in An2, arista),
237 Mp, Lab (gustatory organs, pseudo trachea), and the lens of compound eyes of multiple
238 independent alleles of homozygous mutant adults of each gene (Table 1, Supplementary
239 Table S3). Defects in nanostructures were found in olfactory organs, gustatory organs, and
240 eye lenses, as described below.

241

242 **2.7 Phenotypes in the olfactory organs**

243 *Osi23/gox* mutants show the loss of nanopores in the sb of maxillary palp, as previously
244 reported (Ando *et al.* 2019a). The mutations also caused the loss-of-nanopore phenotype in
245 the sb of An3 (Figure 5). Furthermore, we observed a loss of nanopores in the st of An3
246 (Figure 5). We also examined olfactory organ phenotypes in mutants *Osi4*, *Osi5*, *Osi13*,
247 *Osi16* and *Osi24* expressed in bristles of olfactory organs in the An3, but no obvious
248 phenotype was observed. To investigate the role of *Osi23/gox* in st morphogenesis, we re-
249 examined its expression pattern in An3 at 42 hours APF and found that many trichogen
250 cells express *Osi23/gox* RNA at a low level in the ventrolateral region of An3, which is
251 covered by numerous st in the adult (Figure 6). The results imply that *Osi23/gox* contributes
252 to nanopore formation in the two types of olfactory hair cells of sb and st. The external
253 appearance of sc (sensilla coeloconica) was normal in *Osi23/gox* mutants.

254

255 **2.8 Phenotypes in the gustatory organ**

256 Among 4 *Osi* genes expressed in the gustatory organs (*Osi4*, *Osi8*, *Osi11* and *Osi21*),
257 mutants of *Osi11* showed a change in the morphology of branched tips of long-type and
258 short-type gustatory hairs (Figure 5).

259

260 **2.9 Phenotypes in the lens**

261 In control eyes, corneal nipples are ~30 nm high protrusions spaced by ~255 nm equally
262 spaced on the surface of the lens (Kryuchkov *et al.* 2011). In *Osi4* and *Osi9* mutants, some
263 corneal nipples are fused laterally to form a labyrinthine pattern. No specific defect was
264 observed in *Osi6* and *Osi7*.

February 2, 2024

265

266 **2.10 Phenotype of *Osi17* knockdown in the wing**

267 Although *Osi17* was homozygous lethal, RNAi-mediated knockdown by the *actin-Gal4*
268 driver caused an eclosion defect with shrunken wings (Supplementary Figure S5). Since
269 *Osi17* is expressed in the embryonic tracheal system (Ando et al., 2019), we targeted RNAi
270 to the tracheal system using the tracheal driver. We did not observe the wing defect. We
271 next selectively produced *Osi17* mutant clones using *Ubx-flip* recombinase. The mutant
272 flies reproduced the shrunken wing phenotype. Since recombination occurred in the wing
273 pouch region but not in the trachea or adult muscle precursor cells associated with the wing
274 disc, we conclude that the *Osi17* function is required in the wing epithelium to produce a
275 properly expanded wing.

276

277 **3. Discussion**

278 In this study, we presented the expression patterns of *Osiris* gene mRNAs in the pupal
279 heads at the earliest stage of cuticle formation. Of 25 *Osi* genes, 16 were expressed in
280 specific patterns in cuticle-secreting epidermal and sensory organ cells. Those cells form
281 fine protrusions (trichomes and spinules of epidermis), corneal nipples (eye lens), ridges
282 (mechanosensory bristles), tip pores (gustatory bristles), and nanopores (olfactory bristles).
283 Some parts of the epidermis, such as the rear part of the proboscis, lack cuticular
284 protrusions. No *Osi* gene expression was observed in this part. The results imply that the
285 *Osi* gene family is a strong candidate for the regulator of various forms of cuticle nano-
286 patterns.

287

288 **3.1. *Osiris* functions in sensory bristle nanopatterns**

289 Nine *Osi* genes are expressed in sensory bristle-forming trichogen cells. Two showed
290 clear defects in cuticle nano-patterns. In the olfactory bristles in An3 and Mp, *Osi23/gox*
291 was required not only for the nanopore formation of sensilla basiconica (Ando et al., 2019a;
292 this study) but also for sensilla trichordia. This is consistent with the expression of
293 *Osi23/gox* in bristle cells, albeit at a low level, in the ventrolateral region of An3, where st is
294 enriched (Figure 6). Although *Osi5* is likely to be expressed in st, *Osi5* mutants did not
295 show obvious defects in nanopores of st or other olfactory bristle types, so as the other
296 viable mutants of *Osi* genes expressed in olfactory bristle hair cells in An3 and Mp (*Osi4*,
297 *Osi13* and *Osi16*).

298 Of 4 *Osi* genes expressed in gustatory and mechanosensory bristle cells (*Osi4*, *Osi8*,
299 *Osi11* and *Osi21*), only *Osi11* mutants showed defects in the formation of the forked bristle
300 tip morphology in the gustatory bristles. No change in mechanosensory bristles shape was
301 observed. The results support the hypothesis that the *Osi* family genes play important roles
302 in cuticle nanopatterns of sensory bristles. The results also showed that the other trichogen-

February 2, 2024

303 expressed *Osi* genes are apparently dispensable for cuticle patterning when singly mutated.
304 It is possible that some *Osi* genes function redundantly in those cells, as demonstrated for
305 the embryonic trachea where mutations of three genes (*Osi9*, *Osi15* and *Osi19*) were
306 required to produce clear tracheal phenotype (Scholl et al., 2018).

307 *Osi3*, *Osi4* and *Osi12* are expressed in socket-forming tormogen cells, but none of their
308 mutants showed visible defects in the socket.

309

310 **3.2. *Osiris* functions in the corneal nipple nanopattern**

311 Of the 5 *Osi* genes expressed in the lens cuticle-secreting cells, mutants of *Osi4* and *Osi9*
312 showed defects in the pattern of nipple arrays. Lateral fusion of nipple arrays formed
313 labyrinthine patterns that are reminiscent of the lens patterns observed in some *Drosophila*
314 species and in *Drosophila melanogaster* mutants deficient in Retinin and waxes that partly
315 constitute the nipple structures (Blagodatski et al. 2015; Kryuchkov et al. 2020). It is likely that
316 *Osi4* and *Osi9* are components of the reaction-diffusion mechanism of corneal nipple array
317 patterning (Kryuchkov et al., 2020; Turing, 1990).

318

319 **3.3. *Osiris* gene functions in the epidermis**

320 *Osi3*, *Osi7*, *Osi9* and *Osi22* are expressed strongly in the epidermis. Although three of
321 them (*Osi3*, *Osi9* and *Osi22*) are viable and did not cause obvious defects in the epidermal
322 cuticle and trichome, it was previously shown that embryonic lethal *Osi6* and *Osi7* mutants
323 showed strong defects in the larval cuticle formation (Ando et al. 2019a). In addition, the lack
324 of *Osi17* function caused wing expansion defects, likely due to the weakening of the
325 epidermal cuticle. Whether those defects reflect the functions of cuticle nanopatterns or
326 general cuticle production remains to be determined.

327

328 **3.4. Dynamic *Osiris* gene expression**

329 In the case of *Osi4*, we observed related but distinct expression patterns in a batch of
330 pupae similarly staged, fixed at 42 hours APF, and processed together in a single tube
331 (Supplementary Figure S3). One head shows a high expression in the eye but not in the
332 pseudotrachea. Another one showed weaker eye expression and prominent expression in
333 pseudotrachea. It is possible that *Osi4* expression dynamically changes, and a slight
334 difference in the developmental stage (less than +/- 0.5 hours) causes a significant
335 difference in the expression pattern. As described above, we noted that nanopore formation
336 in sensilla trichordia (st) is sensitive to *Osi23/gox* mutation, although its expression in st
337 was low at 42 hours APF. A stage of high *Osi23/gox* expression is st primordia may have
338 been missed. Time-course analyses of the expression *Osi23/gox* and other *Osi* genes are
339 required to fully understand how the genes contribute to the complex morphogenesis of
340 cuticle nano-patterns.

February 2, 2024

341

342 **3.5. Genetic requirement for *Osi* genes**

343 Systematic knockout of *Osi* genes revealed variable requirements for each *Osi* gene in
344 organismal viability and cuticle nano-patterning. The requirement for *Osi6* and *Osi7*
345 activities is especially high since heterozygosity of either of the genes reduces the fitness of
346 animals (Ando et al., 2019a; this study). Five additional *Osi* genes are lethal or semi-lethal.
347 The results support the hypothesis that the combined effect of *Osi* genes accounts for the
348 haplo-insufficiency of the chromosomal locus 83D-E covering the complex of 22 *Osi* gene
349 (Lindsley et al., 1972; Shah et al., 2012).

350 The 22 *Osi* genes are densely packed and sometimes overlap in the ~168 kb region of
351 83D-E. In such cases, enhancer sharing, and co-regulation would be anticipated. However,
352 we did not see any obvious co-regulation of neighboring genes. 5 kb *Osi23/gox* genomic
353 fragment with 2kb each of 5' and 3' fragment flanking the gene was sufficient to rescue
354 *Osi23/gox* mutant phenotype (Ando et. al., 2019). Therefore, the expression of each *Osi*
355 gene is likely to be regulated independently by nearby enhancer sequences.

356 Although the mutations in *Osi4*, *Osi9*, *Osi11* and *Osi23/gox* caused defects in cuticle
357 nano-patterns in the compound eye, and gustatory and olfactory bristles, respectively,
358 mutations of other *Osi* genes co-expressed in those tissues did not cause a notable change
359 in the cuticle. No defect in the cuticle pattern of mechanosensory organs and epidermis was
360 observed, although expression of multiple *Osi* genes was detected. Genetic redundancy,
361 reported for the tracheal function (Scholl et al. 2023), is a likely reason. The expression
362 patterns reported in this work will guide a future study of introducing multiple mutations in
363 genes co-expressed in the same cell type.

364 The laterally fused corneal nipple phenotypes of *Osi4* and *Osi9* are reminiscent of the
365 eyes of some *Drosophila* species (other than *D. melanogaster*) that show naturally fused
366 nipple patterns with decreased surface wetting and increased light reflection compared to *D.*
367 *melanogaster* (Kryuchkov et al. 2020). It would be interesting to study the difference in the
368 functions of *Osi4* and *Osi9*-related genes in those *Drosophila* species to investigate the
369 potential function of *Osi* genes in the variation of cuticle nanopatterns.

370

371 **5. Materials and Methods**

372 **5.1. Key resource table**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
P-Tyr-1000 MultiMab Rabbit mAb mix	Cell Signaling Technology	Cat# 8954, RRID:AB_2687925
futsch antibody	DSHB	Cat# 22C10, RRID:AB_528403
Goat anti-Rabbit IgG, Alexa Fluor 488	Thermo Fisher Scientific	Cat# A-11034, RRID:AB_2576217
Goat anti-Mouse IgG, Alexa Fluor 633	Thermo Fisher Scientific	Cat# A-21052, RRID:AB_2535719
Anti-Digoxigenin-POD, Fab fragments	Roche	11207733910
Streptavidin-POD	Roche	11089153001

February 2, 2024

Chemicals, Peptides, and Recombinant Proteins		
Alexa Fluor 568 Phalloidin	Thermo Fisher Scientific	Cat# A12380
TSA Fluorescein	PerkinElmer	SAT701001KT
TSA Cyanine 3	PerkinElmer	SAT704A001KT
Paraformaldehyde	TAAB	Cat# P001
Glutaraldehyde EM Grade	TAAB	Cat# G011/1
16% Formaldehyde Solution (w/v)	Thermo Scientific	Cat# 28908
Blocking Reagent	Roche	Cat# 11 096 176 001
DIG RNA Labeling Mix, 10x conc.	Roche	Cat. No. 11 277 073 910
Biotin RNA Labeling Mix, 10x conc.	Roche	Cat. No. 11 685 597 910
Antifade Mounting Medium with DAPI	Vector Laboratories	H-1200
Xylene	Wako	244-00086
Acetone	Wako	016-00346
Ethanol	Wako	057-00451
PBS (10x)	nacalai tesque	Cat# 27575-31
Molecular Sieves 3A 1 / 16	nacalai tesque	Cat# 04170-15
Experimental Models: Organisms/Strains		
<i>D. melanogaster</i> : Oregon R		N/A
<i>D. melanogaster</i> : <i>neur-Gal4</i>	(Bellaïche <i>et al.</i> 2001)	FBti0017282
<i>D. melanogaster</i> : <i>act-Gal4</i>	Direct fusion of Gal4 to Act5C promoter	N/A
<i>D. melanogaster</i> : <i>da-Gal4</i>	(Wodarz <i>et al.</i> 1995)	
<i>D. melanogaster</i> : <i>btl-Gal4</i>	(Shiga <i>et al.</i> 1996)	DGRC 109128
<i>D. melanogaster</i> : <i>y[1] w{[']}</i>	Akira Nakamura	
<i>D. melanogaster</i> : <i>y[1] w{[']}</i> <i>P{w[+mC]=Ubx-FLP}1</i>	Jurgen Knoblich	RRID:BDSC_42718
<i>D. melanogaster</i> : <i>w[1118];</i> <i>P{ry[+t7.2]=neoFRT}82B P{w[+mC]=Ubi-GFP(S65T)nls}3R</i> <i>P{ry[+t7.2]=A92}RpS3[Plac92]/TM6C, Sb[1]</i>	Bloomington <i>Drosophila</i> Stock Center	RRID:BDSC_5627
<i>D. melanogaster</i> : RNAi strains	See supplementary Table S1	
<i>D. melanogaster</i> : <i>Osi</i> knockout strains	See supplementary Table S1	This study
Microscope		
Confocal microscope	Olympus	FV1000
FE-SEM	JEOL	JSM-IT700HR
Software and Algorithms		
ImageJ-Fiji	LOCI	https://fiji.sc

373

374 **5.2. Experimental Models**

375 **All *Drosophila* strains were cultured in standard yeast-cornmeal media at 25°C. Fly**
376 **pupae at the white prepupal stage were picked up and staged.**

377

378 **5.3. RNA probe preparation**

379 Antisense RNA probes for each *Osiris* gene were amplified from DNA templates PCR-
380 amplified from the genomic DNA of *y w* strain or *Osiris* cDNA clones. Digoxigenin or biotin-
381 labelled probes were synthesized using the labelling kit (Roche). The template DNA for the
382 *Osi10b* RNA antisense probe was amplified with the primer set (Forward:

February 2, 2024

383 GTGGCGCGTCGTTTACTAC, Reverse:
384 TAATACGACTCACTATAGGGCTTGATCGAGGCCAGCTC). Primer sequences for other
385 genes and the probe preparation method were previously described (Ando et al., 2019).
386

387 **5.4. Fixation of *Drosophila* pupa for FISH**

388 The pupal heads for the FISH experiment were prepared from pupae at 42 hours APF.
389 Pupae were removed from the pupal case and were poked at the posterior abdomen to
390 increase the permeability of the fixative. Pupae were transferred into ~250 μ l of 4%
391 paraformaldehyde in PBS and incubated overnight at 4°C. The pupal cuticle was then
392 removed with fine forceps. Pupal heads (with legs and wings) were collected and rinsed
393 with PBST (0.1% Tween-20 in 1x PBS). Fixed pupal heads were dehydrated by washing for
394 more than 10 minutes with 25%, 50%, 80% and 100% ethanol. After one more wash with
395 100% ethanol, they were stored at -20°C. Unless otherwise indicated, the incubations and
396 rinses performed below were all at room temperature with 500 μ l of each solution. All rinse
397 steps of at least 5 minutes were performed.
398

399 **5.5. Single-color FISH**

400 The procedure modifies the protocol previously described (Inagaki *et al.* 2005). Fixed and
401 dehydrated pupal heads were incubated in a 2 ml microfuge tube with a 1:1 mixture of
402 xylene and ethanol for 60 minutes. Heads were rinsed twice in 100% ethanol and
403 rehydrated through a graded series of ethanol: 80%, 50%, 25% ethanol, and water.
404 Rehydrated pupal heads were incubated in a 4:1 acetone-water solution at -20°C for 10
405 minutes. Subsequently, heads were rinsed twice with PBST and re-fixed in 4%
406 paraformaldehyde in PBS for 20 minutes. Then rinsed in PBST five times. The pupal heads
407 were prehybridized with prehybridization solution (50% formamide, 5X SSC, 100 μ g/ml
408 heparin, 0.1% Tween-20, 100 μ g/ml yeast RNA, 10 mM DTT) at 61.7°C for 60 minutes. The
409 prehybridization solution was replaced with the hybridization solution (50% formamide, 5X
410 SSC, 100 μ g/ml heparin, 0.1% Tween-20, 100 μ g/ml yeast RNA, 10 mM DTT, 10% dextran
411 sulfate) with a final concentration of 0.6 ng/ μ l digoxigenin-labeled *Osiris* RNA probe. Heads
412 were hybridized overnight at 61.7 °C in a rocking incubator. The pupal heads were washed
413 in a series of wash solutions (50% formamide in PBST), mixed with 5x, 4x, 3x, 2x, and
414 1xSSC. Each wash was repeated three times for 5 minutes at 61.7°C.

415 Then, heads were rinsed for 5 minutes in PBST five times and incubated in Blocking
416 Reagent (Roche, 1:5000 dilution) for 60 minutes. Then, the heads were incubated in the
417 mixture of Anti-Digoxigenin-POD (Roche, 1:500 dilution), anti-Futsch (DSHB, 1:10 dilution),
418 and Phospho-Tyrosine (Cell Signalling Technology, 1:200 dilution) in PBST for overnight at
419 4°C. The heads were rinsed five times in PBST at room temperature and then incubated in
420 50x diluted Cy3 Tyramide Reagent (PerkinElmer Life Science, Inc. 1:50 dilution) in

February 2, 2024

421 Amplification Dilution buffer for 90 minutes at room temperature. The reaction was
422 terminated by rinsing in Blocking Reagent three times, 10 minutes each. Subsequently, the
423 samples were incubated for 90 minutes in anti-Rabbit Alexa Fluor 488 (Invitrogen, 1:500
424 dilution) to detect Phospho-Tyrosine and anti-Mouse Alexa Fluor 633 (Invitrogen, 1:500
425 dilution) to detect Futsch. Finally, the samples were rinsed in PBST three times and
426 mounted in Antifade Mounting Medium with DAPI (VECTASHIELD).

427

428 **5.6. Two-color RNA FISH**

429 After prehybridization and blocking, pupal heads were incubated overnight in the
430 hybridization solution with 0.6 ng/μl each digoxigenin- and biotin-labelled RNA probe. After
431 washing and blocking, the samples were incubated overnight with Streptavidin-POD
432 conjugate (Roche, 1:500 dilution) and then washed. A Tyramide amplification reaction
433 (Cy3) was performed (see in single-color fish). After the reaction, the sample was treated
434 with 0.01 M HCl for 10 minutes to inactivate HRP (Lécuyer *et al.* 2008). The samples were
435 rinsed with PBST, and the blocking was repeated. Then, anti-digoxigenin-POD and anti-
436 Futsch (or phospho-tyrosine) were added simultaneously and incubated overnight at 4°C.
437 The immune reaction was ended by rinsing in PBST three times. Another Tyramide
438 amplification reaction (FITC) was performed for 90 minutes (PerkinElmer Life Science, Inc.
439 1:50 diluted in Amplification Dilution buffer). After the TSA reaction, the samples were
440 washed and incubated in 1:500 anti-Mouse Alexa Fluor 633 to detect Futsch (or 1:500 anti-
441 Rabbit Alexa Fluor 633 to detect Phospho-Tyrosine) for 90 minutes. Finally, the samples
442 were washed with PBST three times and mounted by Antifade Mounting Medium with DAPI.
443

444 **5.7. Imaginal disc staining** Third instar larvae of the *Osi17* mutant mosaic experiment
445 were dissected, and the wing, haltere, and hind leg discs were fixed at 4% PFA in PBS for
446 40 min at room temperature. The tissues were blocked with 0.1% BSA in PBST (0.1%
447 Triton-X in PBS) three times for 10 minutes each. Discs were incubated with 1:400 diluted
448 Alexa Fluor 568 Phalloidin in PBST with BSA for 1 hour. Finally, the discs were washed
449 three times and mounted using an Antifade Mounting Medium with DAPI.

450

451 **5.8. Sample preparation for FE-SEM**

452 The adult heads were dissected in PBS and then rinsed with 0.1 M cacodylate buffer 3
453 times, more than 5 minutes each, and incubated in fixation buffer 1 (2% paraformaldehyde,
454 2.5% glutaraldehyde, 0.1 M cacodylate buffer) at 4°C overnight. The samples were rinsed
455 with 0.1 M cacodylate buffer 3 times at room temperature, more than 5 minutes each. Then,
456 the samples were incubated in fixation buffer 2 (1% osmium tetroxide, 0.1 M cacodylate
457 buffer) on ice for 120 minutes in a light-shielded condition. The fly heads were further rinsed
458 in water three times on ice with the light-shielded condition and subsequently dehydrated in

February 2, 2024

459 a gradient of ethanol concentration, from 25%, 50%, 75%, 80%, 90%, 95%, 99.5%, and
460 100% for 10 minutes each at room temperature. The final 100% ethanol was dehydrated by
461 the addition of a molecular sieve. The samples were dried by overnight incubation in a
462 vacuum. After dehydration, the heads were mounted on double-sided carbon tape on a
463 brass pedestal and coated with OsO₄ at approximately 13 nm thickness using an osmium
464 coater (Tennant 20, Meiwafosis Co., Ltd.).

465

466 **5.9. Image acquisition**

467 Fluorescent images were captured via a confocal microscope (Olympus, FV1000) with a
468 10X objective lens (NA 0.40) for whole pupal head scans and a 60X water immersion
469 objective lens (NA 1.20) for higher resolution images of the antenna, the palps, the
470 distiproboscis and the eyes. For higher resolution images, 0.54 μ m z stacks were taken. All
471 image data were analyzed via Fiji ImageJ.

472 External views of adult flies were observed using a field emission scanning electron
473 microscope (JSM-IT700HR, JEOL). A Helium Ion Microscope (ORION Plus, Carl Zeiss,
474 installed at the Nano-processing facility in AIST Tsukuba, Japan) was used in the early
475 screening stage.

476

477 **5.10. Image processing**

478 In order to map *Osi23/gox* expression in the curved surface of An3, we employed the
479 ImageJ plugin “SheetMeshProjection” (Wada and Hayashi 2020). This tool allows the
480 conversion of the curved surfaces of objects into 3D stacks of cut-open flat views. The
481 correlation of olfactory organs identified by the phosphotyrosine staining and the strong and
482 weak *Osi23/gox* expression was confirmed by moving through the stacks.

483

484 **5.11. Genome editing**

485 Gene knockout strains were produced by the transgenic guide RNA and Cas9 method
486 (Kondo and Ueda, 2013). Multiple alleles were recovered for each gene. Complementation
487 tests with a deficiency chromosome were not possible due to haploinsufficiency of the locus
488 (Lindsley *et al.* 1972). Judgment of lethality was made when all alleles were homozygous
489 lethal (Table 1, Supplementary Table S3). Knock-out strains of *Osi6* were not recovered
490 after the trial with two different guide RNAs, possibly due to haploinsufficiency of this gene.

491

492 **6.1. Data Availability Statement**

493 Resource origin and associated information are described in the key resource table. *Osiris*
494 knock out strains and guide RNA strains created in this study are available from the
495 National Institute of Genetics (<https://shigen.nig.ac.jp/fly/nigfly/>). Original image stacks of
496 FISH images of each *Osi* gene in .oib format are deposited to the SSBD repository

February 2, 2024

497 (<https://doi.org/10.24631/ssbd.repos.2022.10.256>).

498

499 **Acknowledgements**

500 We thank the Kyoto *Drosophila* Stock Center, National Institute of Genetics, Bloomington
501 *Drosophila* Stock Center, Vienna *Drosophila* Resource Center, Takahiro Chihara
502 (Hiroshima University) and Developmental Studies Hybridoma Bank for providing fly stocks
503 and antibodies. We thank Shin-ichi Ogawa and Yukinori Morita for the support of Helium
504 Ion Microscopy imaging at AIST. We thank Housei Wada for the preparation of the flattened
505 image stack and members of the Hayashi lab for their comments on the manuscript. ZS
506 was supported by the RIKEN Junior Research Associate. This study was supported by a
507 Grant-in-Aid for Scientific Research (19H05548 to SH) from MEXT, RIKEN-AIST Challenge
508 Project Grant to Yukinori Morita, Shin-ichi Ogawa and SH, and JST SPRING (JPMJSP2148
509 to ZS).

510

511 **Competing interests**

512 The authors declare no competing or financial interests.

513

February 2, 2024

514 **References**

515 Ando T., S. Sekine, S. Inagaki, K. Misaki, L. Badel, et al., 2019b Nanopore Formation in the
516 Cuticle of an Insect Olfactory Sensillum. *Current Biology* 29: 1512-1520.e6.
517 <https://doi.org/10.1016/J.CUB.2019.03.043>/ATTACHMENT/57EF20BD-A166-47F5-
518 AB37-EDE5C0ACD2F6/MMC5.XLSX

519 Bellaïche Y., M. Gho, J. A. Kaltschmidt, A. H. Brand, and F. Schweisguth, 2001 Frizzled
520 regulates localization of cell-fate determinants and mitotic spindle rotation during
521 asymmetric cell division. *Nat Cell Biol* 3: 50–57. <https://doi.org/10.1038/35050558>

522 Bhushan B., 2009 Biomimetics: lessons from nature—an overview. *Phil. Trans. R. Soc. A*
523 367: 1445–1486. <https://doi.org/10.1098/rsta.2009.0011>

524 Blagodatski A., A. Sergeev, M. Kryuchkov, Y. Lopatina, and V. L. Katanaev, 2015 Diverse
525 set of Turing nanopatterns coat corneae across insect lineages. *Proc Natl Acad Sci U*
526 *S A* 112: 10750–10755. <https://doi.org/10.1073/pnas.1505748112>

527 Brown J. B., N. Boley, R. Eisman, G. E. May, M. H. Stoiber, et al., 2014 Diversity and
528 dynamics of the *Drosophila* transcriptome. *Nature* 2014 512:7515 512: 393–399.
529 <https://doi.org/10.1038/nature12962>

530 Chai P. C., S. Cruchet, L. Wigger, and R. Benton, 2019 Sensory neuron lineage mapping
531 and manipulation in the *Drosophila* olfactory system. *Nat Commun* 10.
532 <https://doi.org/10.1038/s41467-019-08345-4>

533 Dietzl G., D. Chen, F. Schnorrer, K.-C. Su, Y. Barinova, et al., 2007 A genome-wide
534 transgenic RNAi library for conditional gene inactivation in *Drosophila*. *Nature* 448:
535 151–156. <https://doi.org/10.1038/nature05954>

536 Graveley B. R., A. N. Brooks, J. W. Carlson, M. O. Duff, J. M. Landolin, et al., 2011 The
537 developmental transcriptome of *Drosophila melanogaster*. *Nature* 471: 473–479.
538 <https://doi.org/10.1038/nature09715>

539 Hartenstein V., and J. W. Posakony, 1989 Development of adult sensilla on the wing and
540 notum of *Drosophila melanogaster*. *Development* 107: 389–405.
541 <https://doi.org/10.1242/dev.107.2.389>

542 Hunger T., and R. A. Steinbrecht, 1998 Functional morphology of a double-walled
543 multiporous olfactory sensillum: The sensillum coeloconicum of *Bombyx mori* (Insecta,
544 Lepidoptera). *Tissue Cell* 30: 14–29. [https://doi.org/10.1016/S0040-8166\(98\)80003-7](https://doi.org/10.1016/S0040-8166(98)80003-7)

545 Inagaki S., K. Numata, T. Kondo, M. Tomita, K. Yasuda, et al., 2005 Identification and
546 expression analysis of putative mRNA-like non-coding RNA in *Drosophila*. *Genes to*
547 *Cells* 10: 1163–1173. <https://doi.org/10.1111/j.1365-2443.2005.00910.x>

548 Kondo S., and R. Ueda, 2013 Highly Improved gene targeting by germline-specific Cas9
549 expression in *Drosophila*. *Genetics* 195: 715–721.
550 <https://doi.org/10.1534/genetics.113.156737>

February 2, 2024

551 Kryuchkov M., V. L. Katanaev, G. A. Enin, A. Sergeev, A. A. Timchenko, et al., 2011
552 Analysis of Micro- and Nano-Structures of the Corneal Surface of *Drosophila* and Its
553 Mutants by Atomic Force Microscopy and Optical Diffraction. *PLoS One* 6: e22237.
554 <https://doi.org/10.1371/journal.pone.0022237>

555 Kryuchkov M., O. Bilousov, J. Lehmann, M. Fiebig, and V. L. Katanaev, 2020 Reverse and
556 forward engineering of *Drosophila* corneal nanocoatings. *Nature* 585: 383–389.
557 <https://doi.org/10.1038/s41586-020-2707-9>

558 Larkin A., S. J. Marygold, G. Antonazzo, H. Attrill, G. dos Santos, et al., 2021 FlyBase:
559 updates to the *Drosophila melanogaster* knowledge base. *Nucleic Acids Res* 49:
560 D899–D907. <https://doi.org/10.1093/NAR/GKAA1026>

561 Lécuyer E., N. Parthasarathy, and H. M. Krause, 2008 Fluorescent In Situ Hybridization
562 Protocols in *Drosophila* Embryos and Tissues, pp. 289–302 in *Methods Mol Biol* .,
563 Lees AD, and Picken L. E. R., 1945 Shape in relation to fine structure in the bristles of
564 *Drosophila melanogaster*. *Proc R Soc Lond B Biol Sci* 132: 396–423.
565 <https://doi.org/10.1098/rspb.1945.0004>

566 Lindsley D. L., L. Sandler, B. S. Baker, A. T. C. Carpenter, R. E. Denell, et al., 1972
567 SEGMENTAL ANEUPLOIDY AND THE GENETIC GROSS STRUCTURE OF THE
568 *DROSOPHILA* GENOME. *Genetics* 71: 157–184.
569 <https://doi.org/10.1093/genetics/71.1.157>

570 Ni J.-Q., M. Markstein, R. Binari, B. Pfeiffer, L.-P. Liu, et al., 2008 Vector and parameters
571 for targeted transgenic RNA interference in *Drosophila melanogaster*. *Nat Methods* 5:
572 49–51. <https://doi.org/10.1038/nmeth1146>

573 Scalzotto M., R. Ng, S. Cruchet, M. Saina, J. Armida, et al., 2022 Pheromone sensing in
574 *Drosophila* requires support cell-expressed Osiris 8. *BMC Biol* 20: 230.
575 <https://doi.org/10.1186/s12915-022-01425-w>

576 Scholl A., Y. Yang, P. McBride, K. Irwin, and L. Jiang, 2018 Tracheal expression of Osiris
577 gene family in *Drosophila*. *Gene Expression Patterns* 28: 87–94.
578 <https://doi.org/10.1016/j.gep.2018.03.001>

579 Scholl A., I. Ndoja, N. Dhakal, D. Morante, A. Ivan, et al., 2023 The Osiris family genes
580 function as novel regulators of the tube maturation process in the *Drosophila* trachea.
581 *PLoS Genet* 19: e1010571. <https://doi.org/10.1371/JOURNAL.PGEN.1010571>

582 Shah N., D. R. Dorer, E. N. Moriyama, and A. C. Christensen, 2012 Evolution of a large,
583 conserved, and syntenic gene family in insects. *G3: Genes, Genomes, Genetics* 2:
584 313–319. <https://doi.org/10.1534/g3.111.001412>

585 Shanbhag S. R., B. Müller, and R. A. Steinbrecht, 1999 Atlas of olfactory organs of
586 *Drosophila melanogaster* 1. Types, external organization, innervation and distribution
587 of olfactory sensilla. *Int J Insect Morphol Embryol* 28: 377–397.
588 [https://doi.org/10.1016/S0020-7322\(99\)00039-2](https://doi.org/10.1016/S0020-7322(99)00039-2)

February 2, 2024

589 Shanbhag S. R., S. K. Park, C. W. Pikielny, and R. A. Steinbrecht, 2001 Gustatory organs
590 of *Drosophila melanogaster*: fine structure and expression of the putative odorant-
591 binding protein PBPRP2. *Cell and Tissue Research* 2001 304:3 304: 423–437.
592 <https://doi.org/10.1007/S004410100388>

593 Shiga Y., M. Tanaka-Matakatsu, and S. Hayashi, 1996 A nuclear GFP/β-galactosidase
594 fusion protein as a marker for morphogenesis in living *Drosophila*. *Dev Growth Differ*
595 38: 99–106. <https://doi.org/10.1046/j.1440-169X.1996.00012.x>

596 Smith C. R., C. Morandin, M. Noureddine, and S. Pant, 2018 Conserved roles of Osiris
597 genes in insect development, polymorphism and protection. *J Evol Biol* 31: 516–529.
598 <https://doi.org/10.1111/jeb.13238>

599 Sobala L. F., and P. N. Adler, 2016 The Gene Expression Program for the Formation of
600 Wing Cuticle in *Drosophila*. *PLoS Genet* 12.
601 <https://doi.org/10.1371/journal.pgen.1006100>

602 Steinbrecht R. A., 1997 Pore structures in insect olfactory sensilla: A review of data and
603 concepts. *Int J Insect Morphol Embryol* 26: 229–245. [https://doi.org/10.1016/S0020-7322\(97\)00024-X](https://doi.org/10.1016/S0020-7322(97)00024-X)

605 Stocker R. F., 1994 The organization of the chemosensory system in *Drosophila*
606 *melanogaster*: a review. *Cell Tissue Res* 275: 3–26.
607 <https://doi.org/10.1007/BF00305372>

608 Tilney L. G., M. S. Tilney, and G. M. Guild, 1995 F actin bundles in *Drosophila* bristles. I.
609 Two filament cross-links are involved in bundling. *J Cell Biol* 130: 629–638.
610 <https://doi.org/10.1083/jcb.130.3.629>

611 Turing A. M., 1990 The chemical basis of morphogenesis. *Bull Math Biol* 52: 153–197.
612 <https://doi.org/10.1007/BF02459572>

613 Vosshall L. B., and R. F. Stocker, 2007 Molecular architecture of smell and taste in
614 *Drosophila*. *Annu Rev Neurosci* 30: 505–533.
615 <https://doi.org/10.1146/annurev.neuro.30.051606.094306>

616 Wada H., and S. Hayashi, 2020 Net, skin and flatten, ImageJ plugin tool for extracting
617 surface profiles from curved 3D objects. *MicroPubl Biol* 2020.
618 <https://doi.org/10.17912/micropub.biology.000292>

619 Wigglesworth B. Y. V. B., 1948 The insect cuticle

620 Wodarz A., U. Hinz, M. Engelbert, and E. Knust, 1995 Expression of Crumbs Confers
621 Apical Character on Plasma Membrane Domains of Ectodermal Epithelia of *Drosophila*.
622

623

February 2, 2024

624 **Table 1.** List of *Osiris* gene mutants

Symbol	Viability	Viable allele*	adult phenotype	Comment
<i>Osi1</i>	V	9/10		
<i>Osi2</i>	V	2/2		
<i>Osi3</i>	V	7/7		
<i>Osi4</i>	V	4/4	compound eye	
<i>Osi5</i>	V	5/7		
<i>Osi6</i>	L	No allele recovered.		Lethal (Ando et.al. 2019)
<i>Osi7</i>	L	0/3		Lethal (Ando et.al. 2019)
<i>Osi8</i>	V	5/5		
<i>Osi9</i>	V	6/6	compound eye	Viable (Scholl et al., 2023)
<i>Osi10a</i>	semi-L**	3/4		
<i>Osi10b</i>	V	4/5		
<i>Osi11</i>	V	4/4	gustatory organ	
<i>Osi12</i>	V	4/6		
<i>Osi13</i>	V	3/5		
<i>Osi14</i>	semi-L**	4/5		
<i>Osi15</i>	V	3/3		Viable (Scholl et al., 2023)
<i>Osi16</i>	V	5/5		
<i>Osi17</i>	L	0/7		
<i>Osi18</i>	V	7/7		
<i>Osi19</i>	V	6/7		Semi-lethal (Ando et.al., 2019; Scholl et al., 2023)
<i>Osi20</i>	L	0/3		
<i>Osi21</i>	V	2/2		Suppressed norpA phenotype. Lee et al., (2013)
<i>Osi22</i>	V	4/6		
<i>Osi23</i>	V	3/3	Olfactory organ (sb, st).	Viable (Ando et.al. 2019)
<i>Osi24</i>	L	0/6		

625 * Count of viable allele among total number of alleles with out of frame in/del mutation.

626 **Frequent dead pupae were observed.

627

February 2, 2024

628 **Figure Legend**

629 **Figure 1. Expression patterns of *Osi* genes in the pupal head.**

630 (A) mRNA expression of 16 *Osi* genes in 42 hours APF pupal heads. Asterisk (*) indicates
631 a non-specific signal to the pupal cuticle remnants.

632 (B) Schematics of 3 sensory bristle types and examples of pupal *Osi* gene expressions in
633 To (tormogen cell) and Tr (trichogen cell). Th: thecogen cell. mRNA (red), phosphotyrosin
634 (green, cell junction) and Fusch (yellow, bristle shaft).

635 (C) A schematic of *Drosophila* adult head. An3: third antennal segment. Mp: maxillary palp.
636 Lab: labellum.

637 (D) Summary of *Osi* gene expressions in 3 types of cuticle-secreting cells.

638 (E) Summary of *Osi* gene expressions in different sensory organ types. Note that *Osi*
639 expressions in the gustatory organ are a subset of expressions in the mechanosensory
640 organ.

641 (F) An example of *Osi* expression in the compound eye. *Osi7* mRNAs were detected in
642 primary pigment cells (1°) and cone cells (C). 2° and 3°: secondary and tertiary pigment cell.
643 mRNA (red) and DNA (grey).

644

645 **Figure 2. *Osi* gene expressions in olfactory organs.**

646 (A-F) Overview of *Osi* gene expressed in the third antennal segment (An3). Lateral (L),
647 medial (M).

648 (A'-F' and A''-F'') Magnified views of yellow boxes in A-F. Phosphotyrosine (green), Futsch
649 (green).

650 (G) A schematic of An3. Sensilla basiconica (sb) and sensilla trichordia (st) are enriched in
651 the medial top and lateral bottom regions, respectively. SEM views of each region are
652 shown in K and L.

653 (H-J) Two-color FISH images of 3 pairs of *Osi* mRNA expression.

654 (H'-J' and H''-J'') High magnification views of the yellow boxes. Note that *Osi23* expression
655 overlaps significantly with *Osi13* (I) but is distinct from that of *Osi5* (H). *Osi24* expression
656 differs from *Osi5* (J).

657 (K) SEM image of the medial-top region enriched with sb.

658 (L) Lateral-bottom region enriched with st.

659 (L') Enlarged view of sc (white box in L).

660

661 **Figure 3. *Osi* gene expressions in gustatory and mechanosensory organs.**

662 (A-I) Expressions of *Osi* genes expressed in trichogen co-labelled with Futsch.

663 (A'-I') *Osi* expressions co-labelled with phosphotyrosine.

664 (J) SEM observation of labellum (right side). J': small taste bristle. J'': intermediate taste
665 bristle. J'''': large taste bristle. Distal (D), proximal (P), pseudotrachea (pt).

February 2, 2024

666 (K) SEM observation of An2 with mechanosensory bristles.

667

668 **Figure 4. *Osi* gene expressions in the compound eye.**

669 (A-E) *Osi* expressions with nuclei.

670 (A'-E') *Osi* expressions with phosphotyrosine. Approximate depth from the apical surface:
671 4.86 μ m (*Osi1*), 1.62 μ m (*Osi4*), 1.62 μ m (*Osi6*), 2.16 μ m (*Osi7*), 1.62 μ m (*Osi9*).

672

673 **Figure 5. Impact of *Osi* gene mutations on cuticle nanostructure formation.**

674 (A, A', B, B') SEM images of sb in An3. (C, C', D, D') st in An3. Note the clear loss of
675 nanopores in sb and st.

676 (E, F) Tip of long gustatory hairs. In *Osi11* KO, each tip is further bifurcated.

677 (G-I, G'-I') Surface views of ommatidium. Note that individually separated nipple arrays in
678 control (G) are laterally fused in *Osi4* and *Osi9* mutants.

679

680 **Figure 6. *Osi23* expression in An3.**

681 Cut-open views of the top surface of An3. (A) *Osi23* is strongly expressed in the top-medial
682 area enriched with sb and weakly in the bottom-lateral area enriched with st. (B)
683 Schematics of An3. (C, D) Anti-phosphotyrosine (pY) staining and the map of *Osi23*
684 expression.

685

February 2, 2024

686 **Legend for Supplemental Materials**

687

688 **Supplemental Table**

689 **Table S1. Summary of *Osiris* gene expression**

690 Expression patterns of 16 *Osi* genes in sensory organs and epidermal cells.

691

692 **Table S2. Effect of transgenic RNAi experiments**

693 List of UAS-RNAi strains targeting *Osiris* genes collected from the National Institute of
694 Genetics, Bloomington Stock Center, and Vienna Drosophila Stock Center. Their effect on
695 viability, when crossed to either da-Gal4, actin-Gal4, or neur-Gal4, is shown.

696

697 **Table S3. List of *Osiris* knockout strains and guide RNA sequences**

698 **Sheet “KO fly series”.**

699 List of sequenced *Osi* gene alleles. A shaded row of each gene marked WT shows a
700 targeted wild-type sequence. The sequences corresponding to guide RNA are underlined,
701 and the PAM sequences are in bold. For *Osi1*, *Osi6*, and *Osi22*, multiple guide RNAs are
702 designed. Only mutants with out-of-frame in/del mutations were saved for further analysis.

703

704 **Sheet “gRNA oligo&vector”.**

705 List of oligonucleotide sequences used to build guide RNA vectors.

706

707 **Supplementary Figures**

708 **Figure S1. Co-staining with anti-phosphotyrosine and anti-Futsch antibodies**
709 **identifies trichogen and tormogen cells.**

710 Enlarged views of the mechanosensory organs in An3. Anti-Futsch (22C10) antibody
711 (yellow) strongly labeled the shaft part of trichogen and weakly the cytoplasm of soma.
712 Phosphotyrosine (pY) antibody (green) labels the cell outlines. Those markers allowed the
713 identification of *Osi11* expression in trichogen and *Osi12* in tormogen, and were used
714 throughout this study.

715

716 **Figure S2. mRNA FISH patterns of nine *Osi* genes in developing pupal head (42**
717 **hours APF).**

718 Representative images of 9 *Osi* gene expression patterns that were judged to be
719 undetectable. Some red signals are nonspecific reactions to the pupal cuticle remnants.
720 The tissue outlines were marked with DAPI staining (cyan).

721

722 **Figure S3. Additional expression patterns of *Osi* genes.**

February 2, 2024

723 Red: FISH signals of *Osi* RNAs, green: anti-phosphotyrosine, yellow: anti-Futsch (22C10)
724 staining, cyan: DAPI.

725

726 ***Osiris1***. Expression was detected in the basal cylinder and further distal cells of the arista.
727 In the eye, it was detected in primary pigment cells and unidentified cells below
728 photoreceptor cells in the ommatidia.

729

730 ***Osiris3***. Expression was detected broadly in the epidermis. It was also expressed in
731 tormogen of Mp, Lab and An3.

732

733 ***Osiris4***. Two types of expression were observed in the pupal head sampled at 42 hours
734 APF. In the whole head views, the example in left shows the expression in the eye,
735 mechanosensory organ, and gustatory organ (same one shown in Figure 1). Second
736 example shows expression in pseudotrachea in the labella. High magnification views of Mp
737 showed expression in mechanosensory trichogen only in one case, and in both trichogen
738 and tormogen in another case. The example of Lab shows expression in gustatory
739 tormogen. In the example of An2, tormogen expression was strong, but weak trichogen
740 expression was also detected. In the eye, expressions in primary pigment cells and
741 tormogen and trichogen cells of interommatidial mechanosensory bristles were observed.

742

743 ***Osiris5***. This gene was specifically expressed in An3 (middle: projection of anterior surface,
744 right: single slice) in a pattern enriched in the bottom-lateral territory. *Osi5* was not detected
745 in Mp.

746

747 ***Osiris6***. Expression was detected in cells adjacent to pseudotrachea in Lab (middle) and in
748 primary pigment cells in the compound eye.

749

750 ***Osiris7***. Broad expression in epidermal cells was detected. *Osi7* was also expressed in
751 tormogen cells of mechanosensory organs of An2 (top middle: projection view, top right:
752 single slice), Eye (interommatidial bristle cells: lower 5.4 μ m deep slice) and Mp (lower
753 right). It is also expressed in primary pigment cells and cone cells of the compound eye
754 (lower left, Figure 4) and pseudotracheal cells of Lab.

755

756 ***Osiris8***. Expressed in trichogen cells of mechanosensory organs and gustatory organs.
757 The signal in the eye is the trichogen cells of interommatidial mechanosensory cells. In the
758 arista, *Osi8* was expressed in the dorsal side of the basal cylinder and further distal cells. In
759 Mp, trichogen cells of the mechanosensory organ express *Osi8*.

760

February 2, 2024

761 **Osiris9.** Expressed in the epidermis (whole head, An2, An3, Mp), primary pigment cells,
762 and unidentified cells (7.56 μ m deep section) of the eye. In the Labium, *Osi9* expression in
763 epidermal cells is low or absent.

764

765 **Osiris11.** Expressed in the trichogen cells of mechanosensory and gustatory organs. It is
766 also expressed in the arista.

767

768 **Osiris12.** Expressed in the tormogen cells of mechanosensory (Eye, Mp, An2), gustatory
769 (Lab), and olfactory (An2) organs. It is also expressed in a subset of the epidermis of Lab
770 (medial sections) and An3, and arista cells forming a distal ring of basal cylinder.

771

772 **Osiris13.** Expressed in the trichogen cells of olfactory organs in An3 and Mp. Those are
773 sensilla basiconica (sb) of An3 and Mp. The expression in An3 includes sensilla trichordia
774 (st) and likely sensilla coeloconica (sc).

775

776 **Osiris16.** Expressed in a small subset of the trichogen cells of An3, but not in Mp. The
777 expression is likely to be in sensilla coeloconica (sc).

778

779 **Osiris21.** Expressed in the trichogen cells of all mechanosensory organs (examples in An2
780 and Mp are shown). It is also expressed in the gustatory organs (Figure 3).

781 **Osiris22.** Expressed broadly in the epidermis. Examples of An2 and An3 (two focal plains),
782 Mp are and Lab shown. In arista, *Osi22* is expressed in the dorsal half of the basal cylinder.

783

784 **Osiris23 (gore-tex).** Expressed in the trichogen cells of sb in An3 and Mp. Weaker
785 expression was detected in the bottom-medial part, likely corresponding to st (Figure 6).

786

787 **Osiris24.** Expressed in the trichogen cells of mechanosensory (An2) and olfactory (An3,
788 Mp) organs. Weak signals in the epidermis are non-specific.

789

790 **Figure S4. Co-labeling of *Osi13* (red) and *Osi23* (green) in maxillary palp.**

791 Expression of the two genes mostly overlap, with some differences (cell b in the middle
792 panels).

793

794 **Figure S5. *Osi17* KD and KO phenotypes in adult and third instar imaginal discs.**

795 A. Wing expansion defect of *Osi17* RNAi (VDRC37457) induced by actin-Gal4. Treated
796 animals also showed kinked leg phenotype (enlarged view with an asterisk).

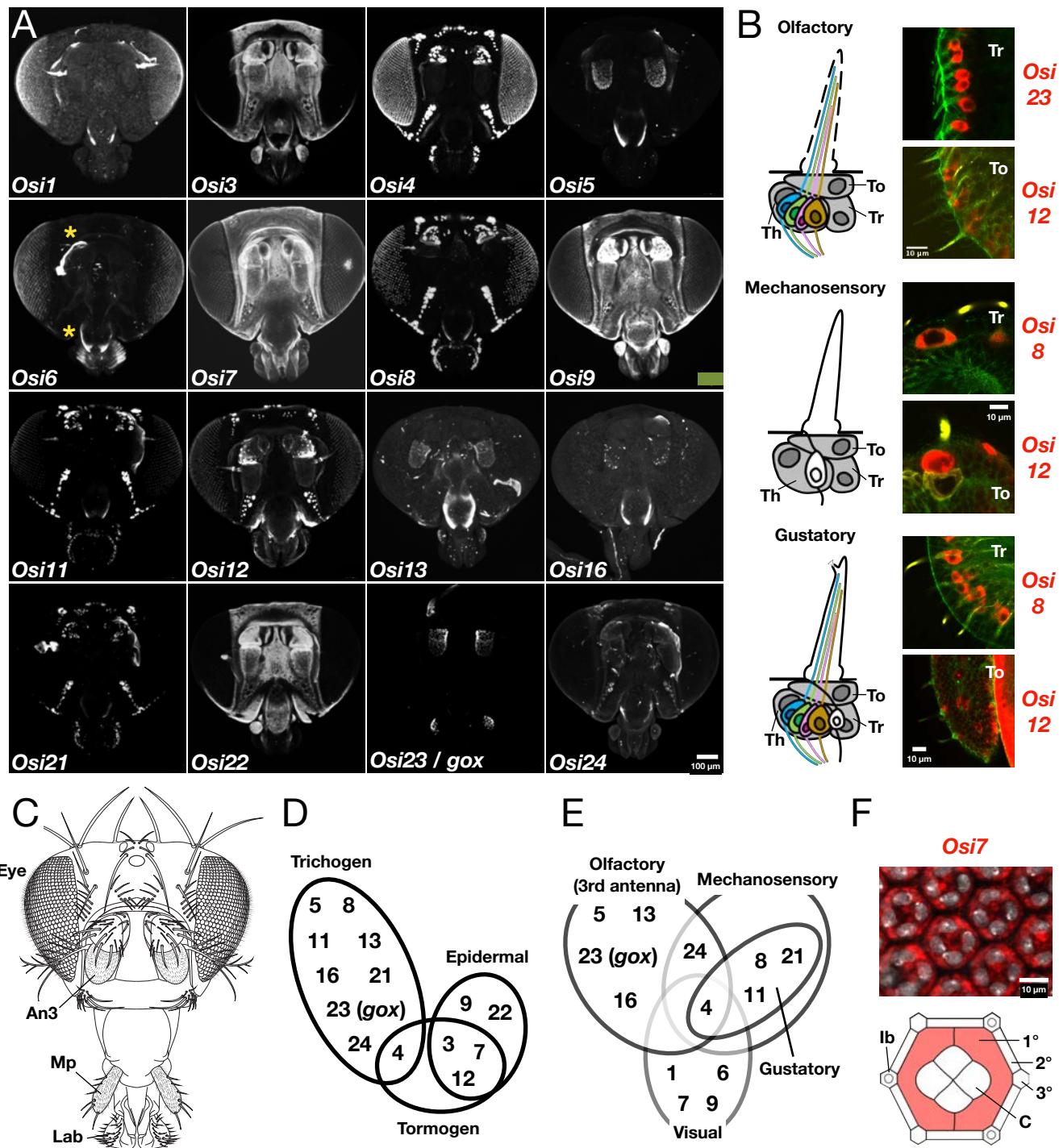
797 B. Wing expansion defect in animals with homozygous *Osi17* knock-out mutant clones
798 induced by wing pouch-specific Ubx-FLP recombination.

February 2, 2024

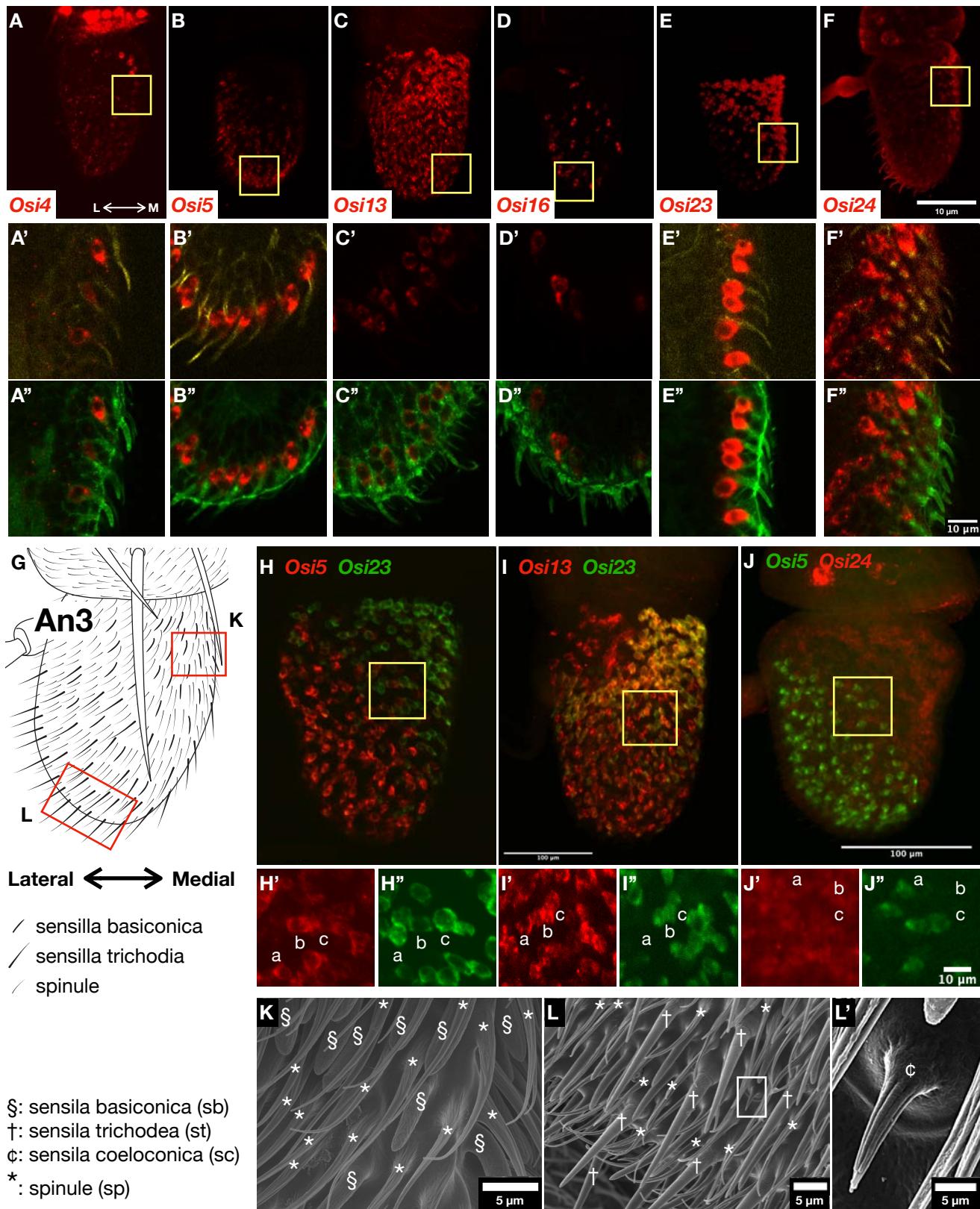
799 C. Expression of *Osi17* RNAi in the trachea did not cause wing defect.
800 D. Wing, leg, and haltere imaginal discs of third instar larvae. GFP marker for wild-type
801 chromosome (green) and F-actin (phalloidin, red). Mosaicism were induced in the
802 pouch regions of the wing and haltere discs. No mosaicism was detected in the notum,
803 trachea (tr), air sac primordium (as), and adult muscle precursors (amp).

804

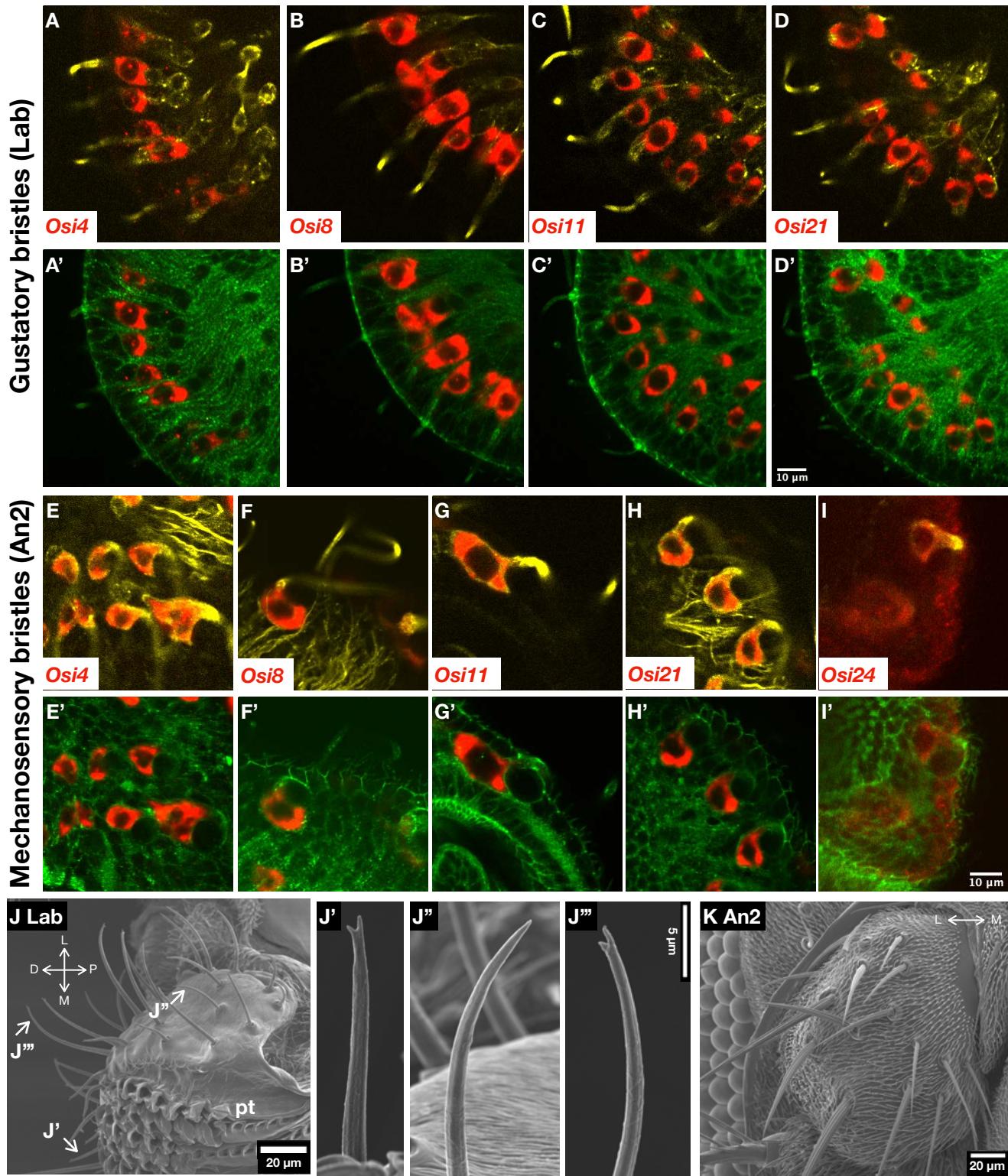
805 **Supplementary Movies**

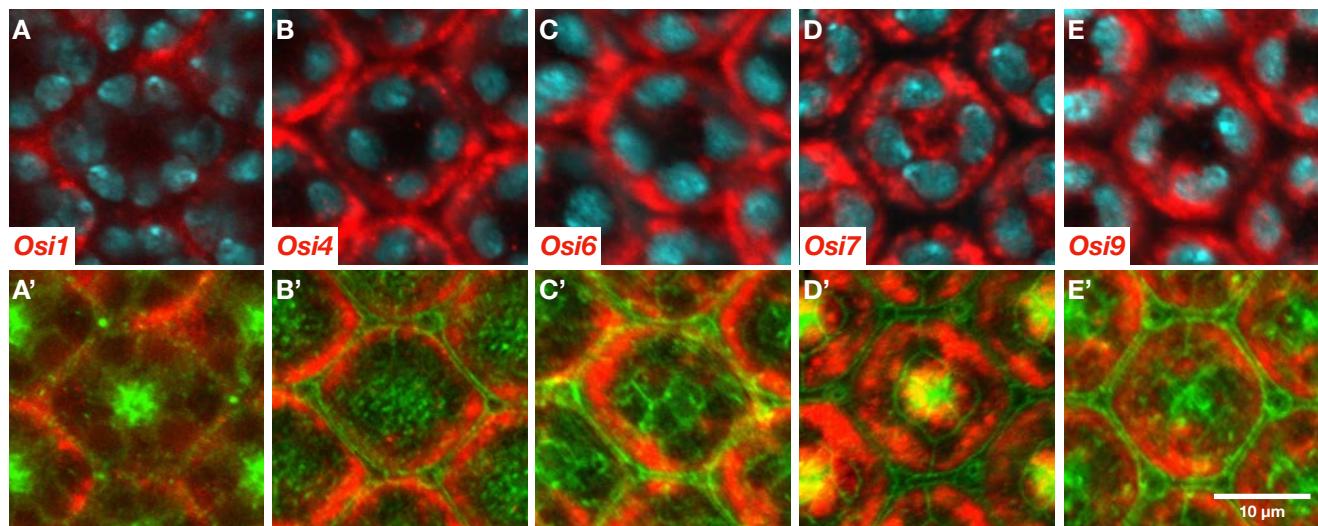

806 **Movie S1. Serial cross-sectional views of *Osi23* expression in An3.**

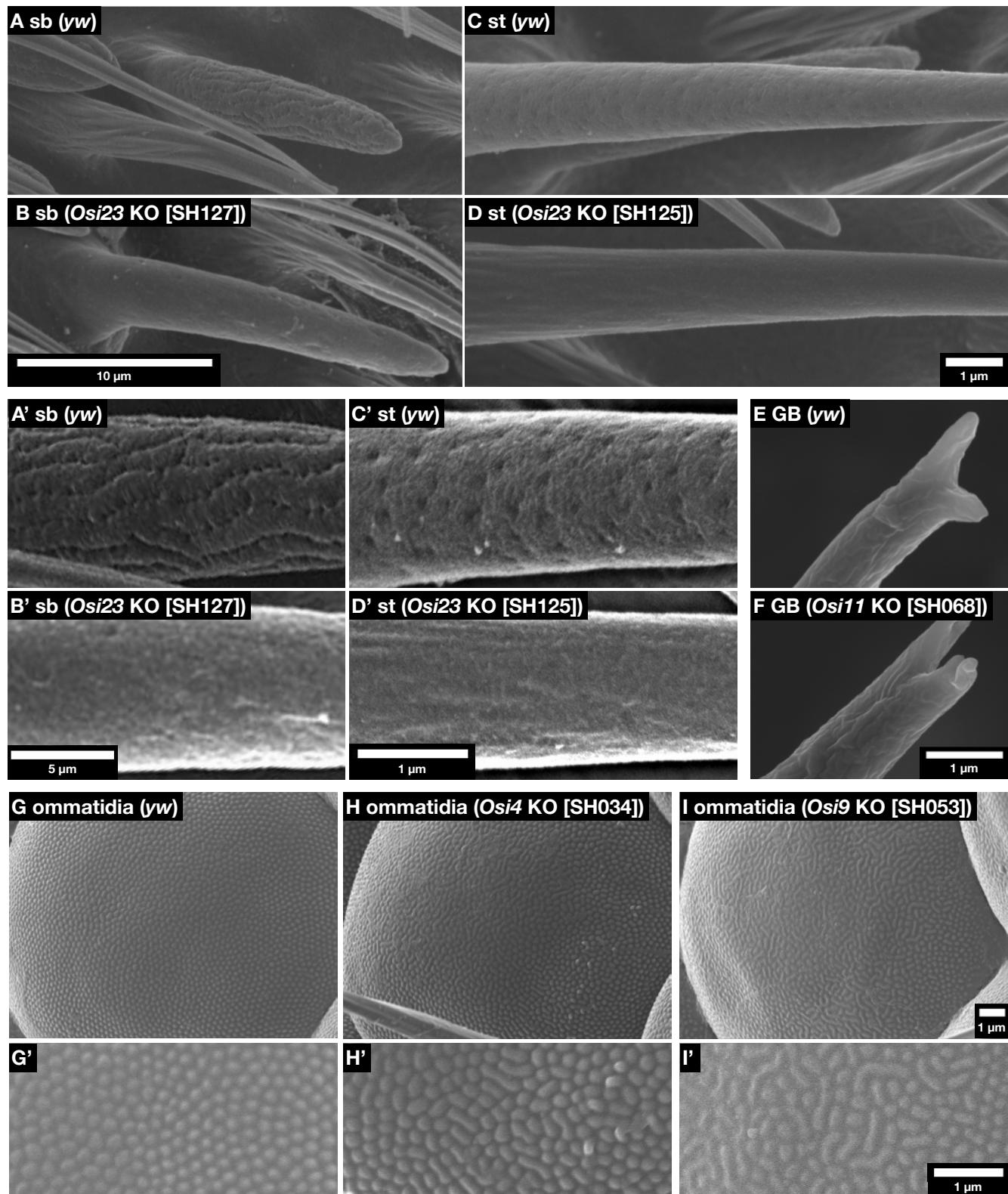
807 A confocal stack of An3 labeled for *Osi23*/gox RNA (magenta) was computationally
808 flattened, separated into lateral (top) and medial (bottom) halves, and presented as a series
809 of sections moving from the surface to the interior.


810

811


Figure 1


Figure 2


Figure 3

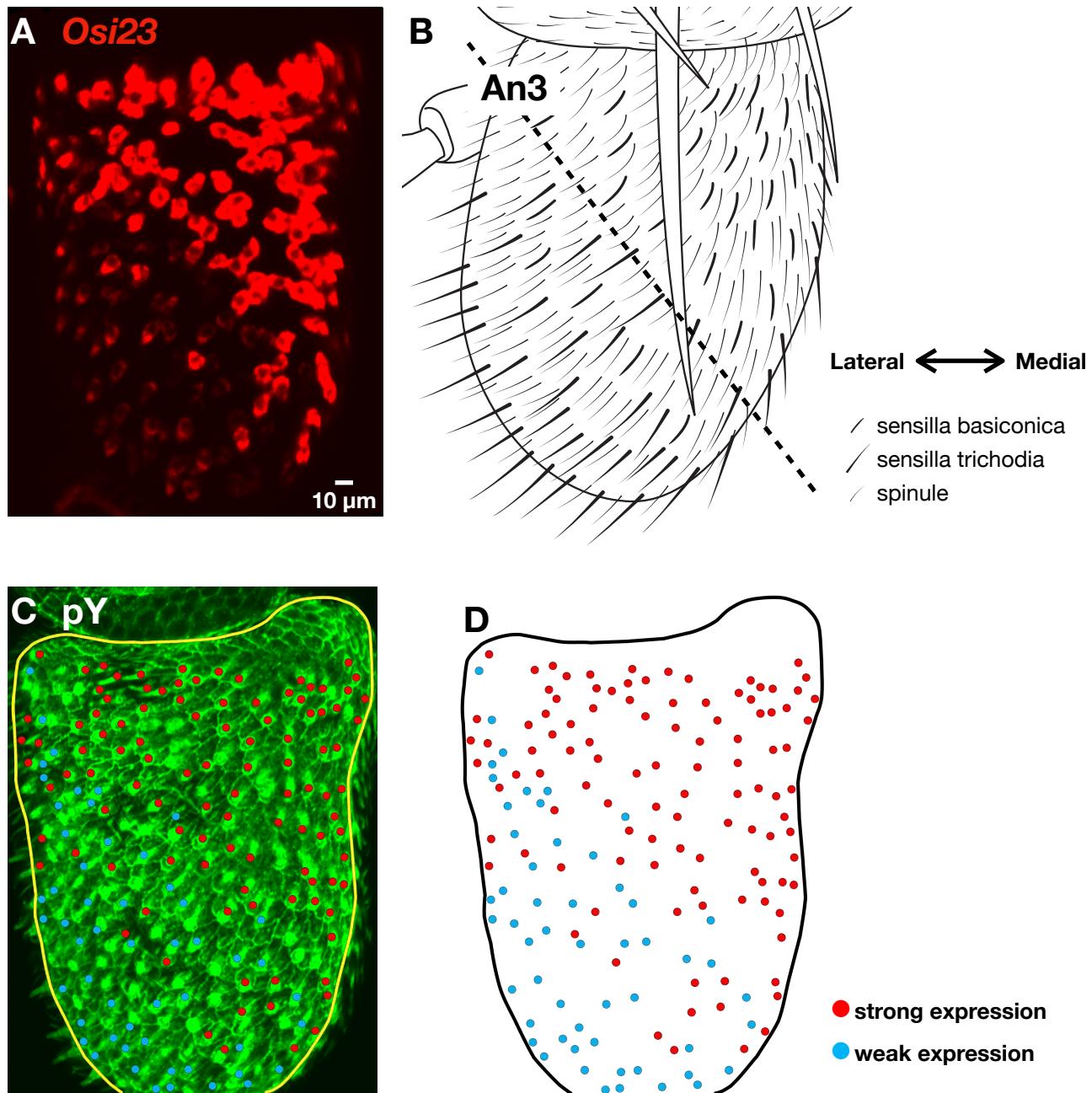

Figure 4

Figure 5

Figure 6

