

1 **Title**

2 **Genetic dissection of the tissue-specific roles of type III effectors and**
3 **phytotoxins in the pathogenicity of *Pseudomonas syringae* pv. *syringae* to**
4 **cherry**

5 Andrea Vadillo-Dieguez¹, Ziyue Zeng¹, John W. Mansfield², Nastasiya F. Grinberg¹, Samantha C. Lynn¹,
6 Adam Gregg¹, John Connell¹, Richard J. Harrison¹, Robert W. Jackson^{3*}, Michelle T. Hulin¹.

7 **Address:**

8 1. NIAB, Lawrence Weaver Road, Cambridge, CB3 0LE, UK.

9 2. Imperial College London, London, SW7 2BX, UK.

10 3. School of Biosciences and the Birmingham Institute of Forest Research, University of
11 Birmingham, Birmingham, B15 2TT, UK.

12 **Current address:**

13 Andrea Vadillo-Dieguez: School of Biosciences and the Birmingham Institute of Forest
14 Research, University of Birmingham, Birmingham, B15 2TT, UK.

15 Richard J. Harrison: Faculty of Natural Sciences. Plant Science Group, Wageningen University
16 and Research, Wageningen 6708WB, the Netherlands.

17 Michelle T. Hulin: Department of Plant Soil & Microbial Sciences, Michigan State University,
18 East Lansing, Michigan, United States.

19 **Corresponding author:**

20 r.w.jackson@bham.ac.uk

21 **Key words:** *Pseudomonas syringae*, type 3 effectors, phytotoxins, mutagenesis, virulence,

22 *Prunus*, comparative genomics

23 **Word count of article:** 7000

24

25 **Abstract (249 words)**

26 When compared with other phylogroups (PGs) of the *Pseudomonas syringae* (*Ps*) species
27 complex, *Ps* pv. *syringae* strains within PG2 have a reduced repertoire of type III effectors
28 (T3Es) but produce several phytotoxins. Effectors within the cherry pathogen *Pss9644* were
29 grouped based on their frequency in strains from *Prunus* as: the conserved effector locus
30 (CEL) common to most *Ps* pathogens; a CORE of effectors common to PG2; a set of PRUNUS
31 effectors common to cherry pathogens; and a FLEXIBLE set of T3Es. *Pss9644* also contains
32 gene clusters for biosynthesis of toxins syringomycin/syringopeptin and syringolin A. After
33 confirmation of virulence gene expression, mutants with a sequential series of T3E and toxin
34 deletions were pathogenicity tested on wood, leaves and fruits of sweet cherry (*Prunus*
35 *avium*) and leaves of ornamental cherry (*Prunus incisa*). The toxins had a key role in disease
36 development in fruits but were less important in leaves and wood. An effectorless mutant
37 retained some pathogenicity to fruit but not wood or leaves. Striking redundancy was
38 observed amongst effector groups. The CEL effectors have important roles during the early-
39 stages of leaf infection and acted synergistically with toxins in all tissues. Deletion of
40 separate groups of T3Es had much more effect in *Prunus incisa* than in sweet cherry. Mixed
41 inocula were used to complement the toxin mutations *in trans* and indicated that strain
42 mixtures may be important in the field. Our results highlight the niche-specific role of toxins
43 in cherry tissues and the complexity of effector redundancy in the pathogen *Pss9644*.

44 **Introduction**

45 Bacterial pathogenicity to plants has, for many diseases, been closely linked to the secretion
46 of effector proteins (Lovelace et al., 2023). Genes encoding effector proteins that are injected
47 into host cells by the Type III secretion system (T3SS) were originally cloned from plant
48 pathogenic bacteria, not by their virulence function, but by their ability to act as avirulence
49 (*avr*) genes whose products triggered the hypersensitive resistance reaction (effector
50 triggered immunity, ETI; Jones and Dangl, 2006, Lovelace et al., 2023, Mansfield, 2009, Xin et
51 al., 2018). The initial isolation of *avr* genes was based on the exchange of genomic libraries
52 between races of pathogens that displayed differential virulence on certain varieties of crop
53 plants such as soybean, pea and pepper (Mansfield, 2009, Staskawicz et al., 1984). The *avr*
54 genes identified were often absent from virulent races of the pathogens and therefore were
55 not at first assigned essential roles in basic pathogenicity. Effectors (T3Es), produced by plant
56 pathogens are now recognised to have key roles in the suppression of host defences, both ETI
57 and those triggered by microbe-associated molecular patterns (MAMPs, MTI). They also have
58 roles in the creation of conditions *in planta* that benefit microbial colonisation (Ekanayake et
59 al., 2022, Lovelace and Ma, 2022, Lovelace et al., 2023, Nomura et al., 2023, Xin et al., 2018)
60 . Some effectors have been predicted to have enzymatic activity that is required for virulence
61 functions (Grant et al., 2006, Washington et al., 2016).

62 There are now several examples of T3Es that have individually been identified as being
63 required for pathogenicity in bacterial plant pathogens, for example VirPphA (also known as
64 HopAB1) in *Pseudomonas syringae* pv. *phaseolicola* (Pph, Jackson et al., 1999), DspA/E in
65 *Erwinia amylovora* (Bogdanove et al., 1998, Yuan et al., 2021) and AvrE, AvrPtoB and AvrPto
66 in strains of *Ps. pv. tomato* (*Pto*, Xin et al., 2018). However, deletion of a single effector more

67 often fails to reduce disease following artificial inoculation. The presence of redundant
68 effector groups (REGs) was clarified by the landmark studies on *Pto* strain DC3000 by Collmer
69 and colleagues (Cunnac et al., 2011, Kvitko et al., 2009, Wei and Collmer, 2018). Deletion of
70 individual effectors from REGs did not cause a loss of pathogenicity, leading to the description
71 of effectors as “*collectively essential but individually dispensable*” (Kvitko et al., 2009).

72 The conserved effector locus (CEL), containing two to four effector genes *hopAA1*, *avrE1*,
73 *hopM1* and *hopN1*, has emerged as an important common determinant of pathogenicity to
74 leaves in several strains of *Pto* and *Ps. pv. actinidiae* (*Psa*) (Alfano et al., 2000, Dillon et al.,
75 2019, Jayaraman et al., 2020). Certain effectors have been assigned functions for promotion
76 of symptom formation rather than the promotion of initial bacterial colonisation, for example
77 HopAM1-1, HopG1 and HopM1 in DC3000 (Badel et al., 2006, Cunnac et al., 2011). In addition
78 to effector proteins, many strains of *Ps* also secrete a second class of pathogenicity factors,
79 low molecular weight phytotoxins such as coronatine, phaseolotoxin and syringomycin that
80 also have key roles in symptom production but are not always required for bacterial
81 multiplication *in planta* (Bender et al., 1999, Geng et al., 2014, Scholz-Schroeder et al., 2001).

82 *Pseudomonas syringae* is an example of a species complex within which pathogenicity to
83 certain host plants has been linked through bioinformatic analyses to the presence of specific
84 T3E repertoires (Baltrus et al., 2017, Newberry et al., 2019). A good example of this is the
85 economically important bacterial canker disease of *Prunus*, which is caused by members of at
86 least six different clades of *Ps*. The main causal agents of cherry canker are *Ps. pv.*
87 *morsprunorum* (*Psm*) races 1 (*Psm1*) and 2 (*Psm2*) and *Ps. pv. syringae* (*Pss*). Despite their
88 differential core genomes, comparative genomics using Bayes-Traits analysis, has identified
89 convergent patterns of gain and loss of effectors associated with clades of *Ps* causing canker,

90 notably the gain of *hopAR1*, *hopBB1*, *hopBF1*, and *hopH1* (Hulin et al., 2018a). Strains of *Psm1*
91 and *Psm2* encode numerous effector proteins (from 30 -35). By contrast, strains of *Pss* have
92 fewer effectors (15-18), but, unlike *Psm*, encode biosynthetic clusters for up to four
93 phytotoxins: syringomycin, syringopeptin, syringolin A and mangotoxin. The role of
94 syringomycin and syringopeptin in the production of necrotic lesions on cherry fruits has been
95 analysed by Scholz-Schroeder et al. (Scholz-Schroeder et al., 2001). It has been suggested that
96 the production of phytotoxic metabolites might compensate for the low numbers of effectors
97 in *Pss* (Hulin et al., 2020, Xin et al., 2018). Indeed, the importance of these toxins was
98 emphasised in a recent genome-wide mutagenesis screen by Helmann et al., 2019 on bean.
99 They identified syringomycin as one of the most important fitness determinants of the related
100 bean pathogen *Pss* B278A in the bean apoplast.

101 Symptoms of bacterial disease of *Prunus* are observed on leaves, buds, fruits and woody
102 tissues (Hulin et al., 2018b, Hulin et al., 2020). Recent screening experiments have identified
103 resistance to the canker pathogens in leaves of wild cherry and related ornamental *Prunus*
104 species (Hulin et al., 2022, Lienqueo et al., 2024). Resistance to *Pss* in *Prunus incisa* was found
105 to be dosage dependent, being overcome by infiltration with high inoculum concentrations (>
106 10^8 per ml of infiltrated suspension).

107 We carried out a genetic dissection of the role of effectors and toxins to understand the ability
108 of the phylogroup 2 strain *Pss* 9644 to invade and cause symptoms in woody shoots, fruits and
109 leaves, of sweet cherry, *Prunus avium*. The roles of the pathogenicity factors were also
110 assessed in leaves of *Prunus incisa*. Following the identification of groups of effector genes,
111 including some that were physically unlinked in the genome but common to pathogens of
112 *Prunus*, successive rounds of deletion mutagenesis led to the construction of effectorless and

113 toxinless mutants. Creation of the panel of mutants has allowed the association between the
114 presence of certain T3Es and pathogenicity to be examined, and the following hypotheses to
115 be tested:

- 116 1. Redundant effector groups exist in *Pss9644*.
- 117 2. Toxins and effectors act synergistically to promote infection.
- 118 3. Toxins and effectors vary in their impact on pathogenicity in different cherry tissues.
- 119 4. The effectors required to cause symptoms in *Prunus incisa* differ from those essential
120 for virulence to *Prunus avium*.

121 **Results**

122 **Categorisation of effectors and toxins in phylogroup 2**

123 *P. syringae* phylogroup 2 is a diverse clade within the *Ps* species complex that contains
124 pathogens of most major crop species. A Maximum Likelihood phylogeny based on the core
125 genome placed 74 strains isolated from sweet cherry across the phylogeny in three clades
126 (PG2a, PG2b and PG2d). The strain used in this study, *Pss9644*, is an isolate from cherry within
127 phylogroup 2d (PG2d), previously characterised to be pathogenic to woody tissues, fruit and
128 leaves (Hulin et al., 2018b). We re-sequenced its complete genome revealing one
129 chromosome (6,164,862 bp) and a small plasmid (45,481 bp). Putative T3Es present in
130 *Pss9644* and a wider range of cherry pathogen genomes were identified by homology and
131 classified into four different categories according to their frequency in cherry pathogen
132 genomes (Figure 1). The conserved effector locus (CEL) is found in most strains of pathogenic
133 *Ps*, and in *Pss9644* comprised *hopAA1*, *hopM1*, and *avrE1*. A second group designated CORE
134 (C) effectors was common to other PG2 strains, *hopAG1*, *hopAH1*, *hopAI1*, and *hopI1*. Thirdly,
135 PRUNUS (P) effectors were commonly found in strains isolated from cherry and other *Prunus*

136 spp., *hopAR1*, *hopH1*, *hopA2*, *hopW*, *hopAW1* and *avrRpm1*. Finally, a group defined as
137 FLEXIBLE (F) was variously distributed amongst PG2 strains, *hopAF1*, *hopAZ1*, and *hopBE1*. In
138 addition, *Pss9644* was found to contain gene clusters for the biosynthesis of the toxins
139 syringomycin, syringopeptin (*syrsyp*), and syringolin A (*sylA*).

140

141 **T3E and phytotoxin genes are upregulated in *hrp*-inducing medium**

142 The expression of genes in *Pss9644* identified to encode T3Es and enzymes predicted to be
143 involved in toxin synthesis was examined using RNA sequencing (Figure 2). Gene expression
144 was observed in *Pss9644* grown to exponential phase in rich medium (Kings medium B, KB)
145 and in *hrp* (hypersensitive resistance and pathogenicity)-inducing minimal medium (HMM),
146 which is a simple mimic of the *in planta* environment. The transcripts detected by RNAseq are
147 reported in Supplementary Figure S1. All the predicted genes for T3Es and toxin biosynthesis
148 were expressed in both media. The upregulated expression in HMM compared with KB varied
149 significantly between one to six-log2-fold change except for *hopAI1*. For example, *hopAR1*,
150 *hopAA1* and *avrE1* were very strongly induced in the minimal medium. The weakest relative
151 expression was identified for *hopAF1*, *hopAW1* and *hopW* with around one-log2-fold change.
152 In addition, *hopAI1*, in the operon *hopAG1*-*hopAH1*-*hopAI1* in CORE effector group, was not
153 differentially expressed. Genes involved in toxin synthesis were also expressed more strongly
154 in HMM medium.

155

156 **Pathogenicity tests identify tissue-specific effects for virulence factors**

157 Given that most effectors and toxins were differentially expressed in HMM, we predicted that
158 these genes were likely to play an important role in the pathogen's ability to cause disease in
159 *cherry*. Deletion mutants as listed and named in Table 1, were constructed sequentially

160 according to the T3E group frequency in cherry isolates from FLEXIBLE to CEL. They were then
161 compared with wildtype *Pss9644* to determine the effects of mutations on pathogenicity in
162 sweet cherry woody tissues, fruits, and leaves, and in leaves of *Prunus incisa*.

163

164 ***Most effectors, but not toxins, are required to cause disease symptoms in wood***

165 Pathogenicity was compared in both cut shoot and whole tree inoculation assays (Fig. 3). In
166 woody stems results were more variable than in other tissues. In cut shoot assays (Fig.3a), the
167 wildtype *Pss9644* caused an average lesion length of 9 mm. No significant differences in lesion
168 size was observed when shoots were inoculated with the Δ CEL, Δ ss, Δ sa, Δ T, Δ F or Δ F Δ P
169 mutants. However, the Δ F Δ P Δ C triple mutant caused a lesion significantly smaller than the
170 wildtype. Surprisingly, the CEL deletion mutant (Δ CEL) caused lesions very similar to wildtype.
171 The deletion of both toxins (Δ T) also had a minor effect but the combination of CEL and Toxin
172 deletions in (Δ CEL Δ T) greatly reduced lesion lengths. The deletion of all effector clusters i.e.
173 Δ CEL Δ F Δ P Δ C, created an effectorless (Δ Eff) mutant that was the least pathogenic strain
174 tested.

175 Inoculations of whole trees were scored for symptom appearance at and around the cut
176 inoculation site (Fig. 3b). Only the two effectorless strains (Δ Eff and Δ Eff Δ T) caused fewer
177 symptoms at the inoculation site than the wildtype. Deletion of CEL effectors and Toxins
178 (Δ CEL Δ T), or toxins alone (Δ T) greatly reduced the numbers of sites with dark necrotic lesions,
179 gumming and spreading, but the effects were not statistically significant (Fisher's exact test,
180 $p>0.05$).

181 ***Effectors and toxins work synergistically to promote disease in immature fruit***

182 Stab inoculation of immature fruits showed that, unlike in other tissues, deletion of all
183 effectors did not result in a failure to cause symptoms, unless the *syrhyp* toxin cluster was also
184 deleted (Fig. 4). The effectorless mutant (Δ Eff) recorded lesion diameters that were
185 significantly reduced compared with wildtype, but only after 6 days of incubation. Deletion of
186 the toxin clusters (Δ T) caused the same reduction in pathogenicity as seen with the
187 effectorless mutant (Δ Eff), highlighting the greater role of toxins in fruit symptoms. The Δ F Δ P
188 mutations did not reduce lesion diameters but the Δ F Δ P Δ C deletions together had a
189 significant effect in reducing disease symptoms. As observed in experiments on cut shoots,
190 the CEL and toxins deletion combination (Δ CEL Δ T) strongly reduced symptom formation, an
191 effect attributed mainly to *syrhyp* since the deletion of the syringolin A genes (Δ sa) only led to
192 a small reduction in lesion size compared to the *syrhyp* (Δ ss) mutant, which could not form
193 lesions.

194 ***Effectors are key virulence factors to enable infection of cherry leaves***

195 Two series of experiments were completed on leaves of sweet cherry cv. Sweetheart. The first
196 focused on the strains with deletions of toxins, CEL and all effectors (Fig. 5a and 5b). The
197 second focused on deletion of the intermediate effector groups CORE, PRUNUS and FLEXIBLE
198 of the polymutant (Fig. 5c, 5d). We observed that deletion of CEL alone (Δ CEL) greatly reduced
199 symptoms 3 days after inoculation, but this effect was overcome to some extent after 6 days
200 (Fig. 5a). The Δ F, Δ F Δ P, Δ F Δ P Δ C sequential deletions had an additive effect on the reduction
201 of symptom formation (Fig. 5c). Deletion of both toxin clusters (Δ T) reduced symptoms to a
202 similar extent as Δ CEL after 6 days and this was primarily attributed to deletion of *syrhyp*. The
203 CEL and Toxins deletion (Δ CEL Δ T) caused a striking reduction in lesion formation. The most
204 pronounced change in pathogenicity was observed using the effectorless mutant (Δ Eff), which

205 failed to produce symptoms in leaves even when both toxin clusters were present. Supporting
206 this conclusion, no symptoms were produced by the effectorless and toxinless mutant
207 ($\Delta\text{Eff}\Delta\text{T}$).

208 An analysis of bacterial numbers at inoculation sites was carried out to gain a further insight
209 into the impacts of deletions on bacterial fitness. Bacterial multiplication did not fully reflect
210 the loss of symptom production observed (compare Figs 5a,c and 5b,d). For example, although
211 there was a trend towards reduced multiplication by sequential deletion of ΔF , $\Delta\text{F}\Delta\text{P}$ and
212 $\Delta\text{F}\Delta\text{P}\Delta\text{C}$, the reduction was only significantly different from wildtype for the triple mutant
213 ($\Delta\text{F}\Delta\text{P}\Delta\text{C}$) 3 days after inoculation ($p=0.05$). Deletion of the CEL cluster (ΔCEL) reduced
214 populations after 3 days, but not 6 days after inoculation. The combination of toxin and CEL
215 deletions ($\Delta\text{CEL}\Delta\text{T}$) did not further reduce bacterial multiplication and the toxin deletions,
216 although reducing symptoms significantly, did not alone result in the pathogen being unable
217 to grow. The effectorless mutant (ΔEff) multiplied, but to a very low population density.

218

219 ***Comparing symptoms in sweet cherry (*Prunus avium*) and *Prunus incisa* shows that***
220 ***ornamental cherry can be a model for the dissection of the roles of T3Es***

221 Although *P. incisa* leaves are resistant to low inoculum concentrations of *Pss9644* (2×10^6 per
222 ml), at high concentration (2×10^8 per ml) infections, the symptoms that develop and the
223 bacterial growth mirror those produced by low concentrations in sweet cherry leaves
224 indicating a susceptible interaction (Hulin et al, 2022). Fig. 6 shows the deletion of effectors
225 caused much clearer reductions in symptoms in *P. incisa* than sweet cherry. For example, the
226 ΔF deletion led to significantly reduced lesion formation 6 days after inoculation and further
227 reductions in symptoms were observed with $\Delta\text{F}\Delta\text{P}$. Delayed symptom development was again

228 observed with the CEL deletion (Δ CEL). Deletion of toxins (Δ T) caused less effect on symptoms
229 in *P. incisa* than in sweet cherry, but the CEL and toxins deletion mutant (Δ CEL Δ T) still
230 produced very few symptoms.

231

232 ***Effects of mixed inocula show that strains of Pss can co-operate in planta to cause maximal***
233 ***disease***

234 A mixture of the effectorless mutant (Δ Eff) that produces both toxins *sysy* and *sysy*, and the
235 CEL-Toxins mutant (Δ CEL Δ T), which produces all effectors except those within the CEL, was
236 examined to determine if the effect of the missing genes for toxin biosynthesis could be
237 supplied, functionally, *in trans*. In theory, with complementation the mixture would have the
238 same pathogenicity as the CEL mutant alone. Results presented in Figure 7 confirmed this
239 hypothesis both in terms of symptom production (Fig. 7a) and bacterial multiplication (Fig.
240 7b).

241

242 **Discussion**

243 *Testing bioinformatics-based predictions*

244 Comparative genomics of the available genomes of strains of *Ps* including all phylogroups
245 identified four effectors that were gained in pathogens of cherry: *hopAR1*, *hopBB1*, *hopBF1*
246 and *hopH1* (Hulin et al., 2018a). Of these, the *Pss9644* strain used here contained only *hopAR1*
247 and *hopH1*, and these genes were part of the PRUNUS group identified in Figure 1. Mutation
248 of the entire PRUNUS group did not cause a significant reduction in symptom formation in
249 wood, or fruit of sweet cherry, indicating that their deletion did not impact on pathogenicity

250 as predicted. Perhaps effectors remaining in the other effector groups allow bacteria to remain
251 pathogenic through redundant roles in disease development. However, a minor effect was
252 observed in leaves of sweet cherry and more clearly in *Prunus incisa* with the combined
253 FLEXIBLE and PRUNUS group deletions (in $\Delta F\Delta P$) causing further reduction than FLEXIBLE
254 alone (ΔF). The clear results from *Prunus incisa* therefore support an important role for
255 *hopAR1* and *hopH1* in the wider infection of *Prunus* species.

256 *Redundant effector groups and the importance of CEL*

257 Our mutation strategy focused on the deletion of groups of effectors identified from genomic
258 analysis of strains within phylogroup 2. The CEL group, physically linked to the *hrp* gene cluster
259 that encodes the T3 secretion system, has been identified as an important group of effector
260 genes in several strains of *Ps* (Badel et al., 2003, Munkvold et al., 2009). The other groups we
261 selected based on phylogenetic analysis - PRUNUS, CORE and FLEXIBLE - were not identified
262 as REGs as conceptualised for *Ps* pv. *tomato* DC3000 by (Kvitko et al., 2009). However, our
263 results highlight that the REG concept is equally applicable to *Pss/Prunus* interactions. Effector
264 deletions in DC3000 also caused stronger effects in tomato than in *N. benthamiana*, a finding
265 similar to the results obtained comparing sweet cherry with *Prunus incisa* and indicating that
266 the roles of effectors may vary in different host species (Kvitko et al., 2009).

267 The roles of the effectors encoded by *hopAA1*, *hopM1* and *avrE1* within the CEL in *Pss9644*
268 have been studied in detail in other pathosystems. In the *PtoDC3000*-tomato system studying
269 bacterial speck, a *hopAA1-1* allele deletion mutant reduced chlorotic lesion symptoms
270 (Munkvold et al., 2009); HopM1 was also implicated in lesion formation, but not enhancement
271 of bacterial growth (Badel et al., 2003). In *Pto23*, AvrE1 functions in both roles (Lorang et al.,
272 1994). In *A. thaliana*, the reduction in virulence of a CEL deletion mutant was associated with

273 enhanced callose deposition adjacent to bacterial colonies, indicating that the CEL may act to
274 suppress MTI (DebRoy et al., 2004). In *PtoDC3000*, AvrE1 and HopM1 have been shown to act
275 as early time point bacterial growth promoters by creating an aqueous apoplastic
276 environment (Wei and Collmer, 2018). Roussin-Leveillee et al., 2022 found that increased
277 water-soaking was due to the effectors redundantly inducing stomatal closure by upregulating
278 ABA pathways in the guard cells. Effects on stomata, which are much more common in leaves,
279 may help to explain the greater reductions in pathogenicity observed caused by CEL deletion
280 in cherry leaves rather than fruits and woody tissue. However, HopM1 has also been reported
281 to have a role in suppression of the MTI-mediated oxidative burst in *A. thaliana* and *N.*
282 *benthamiana* 24h post infiltration (Lozano-Duran et al., 2014, Wei and Collmer, 2018). In
283 kiwifruit bacterial canker caused by *Ps* pv. *actiniae* (*Psa*), only *avrE1* is required for full
284 virulence in leaves and together with *hopR1* (a related non-CEL effector) promotes bacterial
285 fitness and necrosis (Jayaraman et al., 2020). Interestingly, *hopM1* and *hopAA1* in *Psa* do not
286 have a role due to truncation and pseudogenization events, respectively.

287 *Toxins and CEL effectors operate synergistically*

288 Syringomycin and syringopeptin are lipopeptide phytotoxins synthesised by a non-ribosomal
289 mechanism of peptide biosynthesis encoded by the *syrsyp* cluster. They form pores in the plant
290 cell membrane, disrupt ionic potential and cause cell death (Bender et al., 1999). Caponero et
291 al., (1997) and Scholz-Schroeder et al., (2001) reported that mutations in the *syrsyp* cluster
292 preventing their biosynthesis reduced the symptoms produced by *Pss* on immature cherry
293 fruit by 30-70% compared to the wildtype strain. We confirmed the effects of *syrsyp* on fruit
294 but found less significant reductions in virulence in other tissues. Syringolin A is a peptide
295 derivative synthesised by a mixed non-ribosomal peptide/polyketide route. Although it has

296 been implicated as a pathogenicity factor in several plants as a proteasome inhibitor in
297 *Arabidopsis*, wheat and bean (Schellenberg et al., 2010, Misas-Villamil et al., 2013, Dudnik
298 and Dudler, 2014), deletion of *sylA* had no clear effect on the pathogenicity of *Pss9644* to
299 cherry.

300 The influence of toxins was most apparent in fruits. Indeed, unlike in other tissues, the
301 effectorless mutant still produced lesions in fruits, probably through toxin secretion. Fruit
302 tissues may be more sensitive to the toxins and/or toxin synthesis may be enhanced by
303 metabolites in fruit. This proposal is supported by the findings of Mo and Gross (1991) and
304 Quigley and Gross (1994) who recorded enhanced production of syringomycin in media
305 containing plant extracts such as arbutin and fructose. Despite all of the effector genes
306 within *Pss9644* being components of the *HrpL* regulon (Lam et al., 2014, Shao et al., 2021)
307 we observed clear differences in T3E gene expression in *hrp*-inducing media). Such
308 differences imply the potential for further regulatory control in the plant and indicate that
309 the role of effectors may be modified depending on their expression under conditions
310 within specific plant tissues. Shao et al., (2021) have identified several regulatory networks
311 controlling T3E gene expression and their work highlights that regulation within plant
312 tissues remains to be fully understood both in terms of nutrient availability and the location
313 of bacteria within expanding colonies. The differential roles of toxins and effectors in the
314 ability of *Ps* strains to colonise a wide range of ecological niches could be explored by
315 further genetic dissection.

316

317 In all cherry tissues, the deletion of toxins and CEL together led to a strikingly synergistic
318 reduction in pathogenicity. Understanding the cause of this effect may unravel mechanisms
319 of defence targeted by the pathogen. Clearly, the importance of each of the components of

320 the *Pss9644* CEL interacting with *syrsyp* requires further dissection. Deletion of toxins reduced
321 the development of lesions but did not reduce bacterial multiplication in cherry leaves. Similar
322 differential effects on symptoms and populations have been reported for the toxin coronatine
323 in *N. benthamiana* (Chakravarthy et al., 2018) and also in *Arabidopsis* following syringe
324 infiltration (Brooks et al., 2005).

325 *Comparing sweet cherry and Prunus incisa*

326 Our findings present an overview of the complex redundancy of T3Es operating in *Pss9644*.
327 Apart from effectors within the CEL group, we have not been able to identify others with
328 essential functions for pathogenicity to sweet cherry. Given the strong bioinformatics-led
329 predictions of the positive role for effector groups in the evolution of pathogenicity to *Prunus*,
330 it is perhaps surprising that clearer reductions in pathogenicity to sweet cherry were not found
331 using the sequential deletion strategy. By contrast, in *Prunus incisa* several effectors emerged
332 as having important roles. The nature of the resistance of *P. incisa* to low concentrations of
333 inocula has not been explored. The ornamental cherry is resistant to all canker producing
334 strains including *PsmR1* and *PsmR2* as well as *Pss* (Hulin et al., 2022). One explanation for the
335 broad-spectrum resistance is that *P. incisa* has a strong MAMP response to *Ps*. In consequence,
336 multiple effectors may be required to suppress MAMP-induced defences. The effectorless
337 strain should allow further exploration of effector redundancy. It could also be used to unpick
338 some of the components of resistance in wild cherry and related *Prunus* which may prove
339 useful for more informed approaches to resistance breeding.

340 Certain sweet cherry varieties have been found to possess significant resistance to bacterial
341 canker in the field, for example cv. Merton Glory, but resistance is not clearly apparent
342 following artificial inoculation (Crosse and Garret, 1966, Hulin et al., 2022, Hulin et al., 2018b).

343 The lingering concern in this work is therefore that the rapid lab- or greenhouse -based
344 infection assays on sweet cherry create conditions that are very favourable to the pathogenic
345 strains of *Ps*. In consequence the roles of groups of effectors may not be as apparent as in *P.*
346 *incisa*. Direct infiltration of inocula does not allow effectors involved in the entry of bacteria
347 into plant tissues to be assessed.

348 *Mixed inocula and effector guilds*

349 The experiment with mixtures of mutants demonstrated complementation of the *syrsyp* and
350 *syIA* deletions *in trans*. The use of mixed inocula containing several strains each expressing
351 single effectors has been developed for *PtoDC3000*, carrying *in trans* complementation to a
352 higher level (Ruiz-Bedoya et al., 2023). They used a metaclone containing a mixture of 36 co-
353 isogenic strains in an effectorless background. Each co-isogenic strain was individually unfit,
354 but the metaclone was collectively as virulent as wild type. This approach has led to the
355 proposal that effector “guilds” exist in which effectors redundantly target the same host
356 process (Bundalovic-Torma et al., 2022). A similar approach is now possible using the
357 effectorless mutant of *Pss9644*. Given the synergism identified between the CEL and toxins in
358 the infection of cherry it would now be helpful to consider the *Pss* toxins as components of
359 the effectorome. The probability that diseases may be caused by mixtures of weakly virulent
360 stains of *Ps* has been discussed (Hulin et al., 2023) who identified low virulence isolates in the
361 field. The ecological significance of mixed inocula merits further investigation.

362

363 **Experimental procedures**

364 **Bacterial culture**

365 Strains of *Pss9644* deletion mutants used in this study are listed in **Table 1** and plasmids in
366 **Table S1**. The incubation conditions for *Pss9644* and mutants were 28°C, and 180 rpm when
367 cultured in liquid broth. *Escherichia coli* strains were incubated at 37°C, and 200 rpm when in
368 liquid. Agar or broth of Kings medium B (KB) (King et al., 1954) or Lysogeny Broth (LB) (Bertani,
369 1951) were used. Antibiotics and X-Gal used for screening were done using kanamycin (Km,
370 50 µg/ml), nitrofurantoin (Nif, 100 µg /ml) and X-Gal (40 µg /ml).

371 **Comparative genomics of phylogroup 2 strains of *Pss***

372 *Pss9644* was grown in KB broth for DNA isolation using the cetyltrimethylammonium
373 bromide (CTAB) method (William et al., 2012). Quality controls were performed using
374 Nanodrop, Qubit and agarose gel electrophoresis. For long-read sequencing *Pss9644*
375 (SAMN17034057), a MinION (Oxford Nanopore, Oxford, UK) was used. Genome assembly, and
376 annotation were performed as Hulin et al., (2018a). The genome was deposited in NCBI
377 (assembly GCA_023277945, SAMN17034057).

378 Additional genomes (2686) belonging to the *Ps* species complex (taxonomic group ID 136849)
379 were downloaded from NCBI on 21st March 2023. FastANI v.1.33 (Jain et al., 2018) was used
380 to calculate average nucleotide identity between pairwise genomes and R scripting was used
381 to build a dendrogram of relatedness and group genomes into >90% identity groups (Hulin et
382 al., 2023). 363 genomes belonging to the same group as *Pss9644* were kept for further analysis
383 and *Pph1448A* (a phylogroup 3) strain was kept as an out-group. Genomes of low quality (>5%
384 contamination, <95% complete and N50 < 40,000 bp) were removed as in previous work
385 (Hulin et al., 2022), leaving 324 genomes. Panaroo v1.3.2 (Tonkin-Hill et al., 2020) was utilised
386 to generate a filtered core gene alignment of 3,943,305 nucleotides from 3825 core genes. A

387 Maximum Likelihood phylogeny was built using IQ-TREE 2.0.4 (Minh et al., 2020) with model
388 GTR+F+I+G4.

389 T3E genes were identified across the set of genomes using tBLASTn (BLAST+ v2.13.0) (Altschul
390 et al., 1990). A database of 14,613 T3E proteins (Dillon et al., 2019) was utilised to query each
391 genome. Putative hits were kept if they were over 50% ID and 50% query length. Bash scripting
392 was utilised to obtain up to five non-overlapping hits for each effector family. The percentage
393 of alleles for each family present across cherry pathogens was calculated manually. For
394 visualisation purposes, only effector genes in *Pss9644* are presented in the phylogeny.

395 To identify non-ribosomal peptide synthetase clusters in each genome the program
396 antiSMASH 6.1.1 (Blin et al., 2021) was utilised. Bash-scripting was used to extract hits
397 corresponding to the syrinomycin-syringopeptin cluster and syringolin A.

398 Results were plotted on the core genome phylogeny using R packages ggtree (Yu et al., 2016),
399 ggtreeExtra (Xu et al., 2021) and phangorn (Schliep, 2011).

400 **Expression of genes encoding effectors and toxins in *Pss9644***

401 The expression of genes encoding potential virulence factors was compared after 5h growth
402 in KB and Hrp-inducing minimal medium (HMM, Huynh et al., 1989) from overnight
403 subculture. Media were inoculated with bacteria grown overnight in KB. Total RNA was
404 isolated as previously described (Moreno-Perez et al., 2021) from three replicate cultures and
405 sent to Novogene Co., Ltd. (Cambridge, UK) for cDNA synthesis, library preparation including
406 rRNA removal and paired-end 150 bp sequencing performed on Illumina NovaSeq6000
407 platform obtaining 2 Gb raw data per sample. Adapter sequences and poor-quality reads were
408 trimmed using fastq-mcf v1.04.807 (Aronesty, 2013) and quality checked using FastQC v0.11.9

409 (Andrews, 2010). rRNA decontamination was performed using BBduk software v38.18.
410 Transcript alignment and quantification were performed using Salmon v1.9.0 (Patro et al.,
411 2017) with the long-read genome (GCF_023277945.1).
412 Differential gene expression analysis was performed using the DESeq2 package v1.40.2 (Love
413 et al., 2014) in R version 4.2 (RCoreTeam, 2022). Before the analysis, a minimum read cutoff
414 of 50 was imposed to prevent false-positive I2FC values. The DESeq2 contrast function was
415 applied to the experimental (HMM) and control (KB) groups to provide an overall change in
416 gene expression with an adjusted p-value of 0.05. Effectors and toxin synthesis genes were
417 identified as in the comparative genomics analysis. RNA data were uploaded to NCBI
418 (GSE255102).

419

420 **Pss9644 markerless deletion mutants**

421 Markerless deletion mutants of *Pss9644* were obtained as described (Kvitko et al., 2009).
422 Briefly, flanking regions upstream and downstream of the genes of interest (~400bp) were
423 amplified using Phusion™ High-Fidelity DNA Polymerase (Thermo Fisher Scientific, UK)
424 (Phusion PCR). The purified Phusion PCR products were amplified again by splice overlap PCR
425 (SOE PCR) to join the two flanking regions. The purified SOE PCR product was double-
426 restriction enzyme-digested and ligated into a pk18mobsacB vector previously double-
427 digested with the corresponding enzymes and dephosphorylated with rSAP (NEB, UK). The
428 constructs were transformed into *E. coli* DH5 α cells plated on LB containing Km+XGal for
429 blue/white selection, and positive transformants were confirmed using colony M13 PCR and
430 Sanger sequencing (Azenta, UK).

431 T3E and toxin genes were individually deleted from the chromosome via a double homologous
432 recombination process previously described (Hmelo et al., 2015, Neale et al., 2020), with
433 modifications. Triparental mating was performed using *E. coli* DH5 α cells as construct donor
434 and with pRK2013 as a helper plasmid. Recipient *Pss* strains, donors, and helper were mixed
435 in a 2 ml Eppendorf tube at a 2:1:1 volume (OD600 1.5: 0.8: 0.8). After centrifugation the
436 pellet was carefully resuspended, plated on a KB agar plate, and incubated at 30°C for at least
437 24h. Transconjugants were selected on KB+Km+Nif plates. Colonies were streaked on LBA-no
438 salt-15% (w/v) sucrose plates for sucrose counterselection. Merodiploid colonies were replica-
439 plated on KBA and KB+ Km. Deletion mutants were identified by colony PCR.

440 **Pathogenicity tests**

441 All pathogenicity tests were performed in 2022 on the susceptible sweet cherry cv. Sweetheart
442 based on Hulin et al., (2018b). *Prunus incisa* was also used for high inoculum detached leaf
443 assays. *In trans* complementation experiments were performed in 2023, under the same
444 conditions.

445 **Woody tissue**

446 **Cut shoots**

447 One year-old dormant shoots were collected at NIAB-EMR, UK in January. Fifteen shoots per
448 bacterial treatment were dip-inoculated in 2×10^7 CFU per ml suspension for each of the three
449 independent experiments. Shoots were placed in a plastic box for the first two weeks and then
450 randomised on rack trays filled with sterile distilled water. Incubation for 9 weeks was at 17°C,
451 16h Light(L):8h Dark(D) cycles. Lesion lengths (mm) were measured from the cut end of the
452 bark-peeled shoot.

453 **Whole tree**

454 Wound inoculations were conducted in controlled growth rooms (20°C, 16hL:8hD cycles) in
455 February, on 1 year old saplings. Inoculation sites were surface sterilised and 2cm of bark was
456 sliced off. 50 µL of 2×10^7 CFU per ml inoculum was pipetted over the exposed dormant wood
457 and covered with parafilm and tape. 10 biological replicates per bacterial treatment were used
458 performing six inoculations per tree and incubation lasted 9 weeks before scoring. Disease
459 was scored as lesion category of the wound site after peeling it (no symptoms, limited
460 browning, necrosis, necrosis + gummosis, necrosis + gummosis + spreading). The experiment
461 was performed once.

462 **Fruits**

463 Immature fruits were stab-inoculated using toothpicks that had been touched onto 2-day old
464 colonies grown on KB plates. An unused toothpick was used as a mock control. Five fruits were
465 stabbed per bacterial treatment, with two inoculations per fruit for each treatment.
466 Independent experiments were repeated twice. Lesion diameters were measured with a
467 caliper (mm) 3 and 6-days post inoculation.

468

469 **Leaves**

470 Leaves were detached 1-1.5 week after emergence and inoculated with 2×10^6 CFU per ml for
471 symptoms and bacterial population counts in Sweetheart and 10^8 CFU per ml for symptom
472 comparisons in Sweetheart and *P. incisa*. Five leaves were used as biological replicates per
473 bacterial treatment, with four infiltration sites per leaf. Three independent experiments were
474 performed. Leaves were incubated at 22°C, 16h L:8hD cycles on sterilised trays with filter

475 paper moistened with sterile distilled water and covered with a plastic bag to maintain
476 humidity. Lesion scores were taken at infiltration sites 3 and 6-days after inoculation scoring:
477 0, no symptoms; 1, limited browning; 2, browning <50% of the inoculated site; 3, browning
478 >50% of the inoculated site; 4, complete browning; and 5, spread from the site of infiltration.
479 Bacterial multiplication was examined at 3 and 6-days post inoculation at one infiltration site
480 per leaf by excising a 1 cm diameter leaf disc after surface sterilisation. Discs were
481 homogenised individually in Eppendorf tubes containing 1ml 10 mM MgCl₂ and two stainless-
482 steel ball bearings in a 2010 Geno/grinder, 1 cycle 30s at 1200rpm. From the homogenate, a
483 10-fold dilution series down to 10⁻⁵ was performed with sterile 10 mM MgCl₂ and 10 µl
484 aliquots plated on LB medium. After 2 days of incubation at 22°C, individual colonies were
485 counted to calculate CFU per ml.

486

487 **Statistical analyses**

488 R version 4.2.2 was used for experimental design, statistical analysis, and figure preparation.
489 For statistical analysis, continuous variables such as “lesion length in mm” and “population
490 counts” were tested as log data, to reduce skewedness, with ANOVA and posthoc Tukey-
491 Kramer Honestly Significant Difference (HSD) test analysis to assess pairwise differences
492 between mutants. “Diameter of lesion length” for fruit datasets were handled differently due
493 to a zero-inflation problem. All non-zero mutants were formally tested for significant effects
494 using a series of t-tests. Fisher’s exact test was performed on the symptom category
495 classifications for leaves and whole tree with the null-hypothesis being that there is no
496 difference between distribution of lesion type for pairs of strains. The p-values were then
497 adjusted for multiple testing using the Benjamini-Hochberg procedure. Letters showing

498 significant differences ($P < 0.05$) were obtained using the cList function from the rcompanion
499 package. Box plots where shown indicate minimum, first quartile, median (line), mean
500 (diamond) third quartile, and maximum values with bars indicating outliers.

501 **Author contributions**

502 The research was conceived by RJH, RWJ, JWM and MH with later input from AV. Experiments
503 were designed and analysed by AV, MH, JWM, RJH and RWJ. In addition, SL assisted with
504 cloning, JC assisted with RNAseq analysis, NG assisted with statistics, and ZZ and AG with
505 pathogenicity testing. AV and JWM drafted the manuscript initially, with later input from all
506 authors.

507 **Acknowledgements**

508 AV, MH, RWJ, JWM, RJH were funded by BBSRC grants BB/P006272/1 and the Bacterial Plant
509 Diseases programme, BB/T010746/1. We thank Mojgan Rabiey and Nichola Hawkins for
510 discussions and NIAB glasshouse staff for their role in plant maintenance. Support was
511 received from students from the BSPP summer student programme and Global Training-
512 Novia Salcedo. The authors declare no conflict of interest.

513 **Table and Figure legends**

514 **Table 1.** Genotypes of the effector and toxin deletion mutants created in *P. syringae* pv.
515 *syringae* strain 9644 (Roberts, 2012).

516 **Figure 1.** Maximum Likelihood phylogeny of *Ps* strains in phylogroup 2 based on the core
517 genome according to bootstrap support 0-50%; 51-80% and 81-99%. Four different categories
518 of T3E are shown in shades of blue according to their frequency in genomes of isolates from
519 cherry (red): CEL, CORE, PRUNUS, FLEXIBLE. Presence of *syrhyp* and *syIA* clusters are

520 represented with shades of black according to the % identity to the reference in antiSMASH.

521 *Pss9644* is highlighted with a yellow rectangle. *Pph1448A* was used as an outgroup.

522 **Figure 2.** Log 2-Fold change ratio of the upregulated expression of genes encoding effectors

523 and toxin synthesis in *hrp*-inducing minimal medium (HMM) compared to King's medium B

524 (KB) in *Pss9644* wild-type strain. T3Es in the four categories of Fig. 1 are colour coded in shades

525 of blue according to their frequency in phylogroup 2 and genomes of isolates from cherry:

526 CEL, CORE, PRUNUS and FLEXIBLE. Toxin clusters are highlighted in shades of black. Legend

527 represents *syr*, syringomycin; *syp*, syringopeptin; *syIA*, syringolin A. Lines represent the Log 2-

528 Fold change threshold of 1, 2 and 4. ns: non-significant ($\log_{2}fc < 1$). Values represent the

529 average of three biological replicates and error bars represent the standard error of the mean;

530 the experiment was performed once.

531 **Figure 3.** Lesion formation in cut shoots and woody stems on whole trees of cv. Sweetheart

532 inoculated with wild-type *Pss9644* and deletion mutants. Mutants are described in detail in

533 Table 1. WT: wild-type, CEL: Conserved Effector Locus, F: FLEXIBLE group, P: PRUNUS group,

534 C: CORE group, Eff: all effectors in CEL, FLEXIBLE, PRUNUS, CORE groups, sa: syringolin A

535 cluster, ss: syringomycin/syringopeptin cluster, T: both toxin clusters. Mock:10 mM MgCl₂.

536 Letters in common above data points indicate no significant difference between treatments.

537 Letters in red indicate significant differences compared to wildtype ($p < 0.05$). Representative

538 symptoms are shown in Fig. S3.

539 (a) Length of lesions produced in cut shoots. Data from three repeated experiments with 45

540 shoots in total for each treatment were analysed after log transformation by ANOVA and

541 posthoc Tukey-Kramer HSD tests to assess pairwise differences between mutants.

542 (b) Percentage of inoculations (n=10) in each disease score category after wound inoculation
543 into trees. Disease symptoms were scored as illustrated: 1, no symptoms; 2, limited browning;
544 3, necrosis; 4, necrosis and gumming; 5, necrosis, gumming and spread of lesions from the
545 site of inoculation. This experiment was performed once.

546 **Figure 4.** Lesion formation in immature cherry fruits of cv. Sweetheart stab-inoculated with
547 wild-type *Pss9644* and deletion mutants as described in detail in Table 1. WT: wild-type, CEL:
548 Conserved Effector Locus, F: FLEXIBLE group, P: PRUNUS group, C: CORE group, Eff: all effectors
549 in CEL, FLEXIBLE, PRUNUS, CORE groups, sa: syringolin A cluster, ss:
550 syringomycin/syringopeptin cluster, T: both toxins clusters. Mock: sterile toothpick. Letters in
551 common above data points indicate no significant difference between treatments. Letters in
552 red indicate significant differences compared to wildtype (p<0.05). This experiment was
553 performed twice and data from 10 fruits for each treatment were analysed after log
554 transformation, with ANOVA and posthoc Tukey-Kramer HSD tests to assess pairwise
555 differences between mutants. Representative symptoms are shown in Fig. S4.

556 **Figure 5.** Comparison of the effects of mutations on the pathogenicity of *Pss9644* to leaves of
557 cv. Sweetheart and *Prunus incisa* using high concentration inoculum (2×10^8 CFU per ml).
558 Mutants are abbreviated as in Table 1, mock inoculation was with 10 mM MgCl₂. Lesion
559 formation was assessed as in Fig. 4. Detached leaves of cv. Sweetheart infected with wildtype
560 *Pss9644* and deletion mutants as described in detail in Table 1, using low concentration
561 inoculum (2×10^6 CFU per ml). WT: wild-type, CEL: Conserved Effector Locus, F: FLEXIBLE
562 group, P: PRUNUS group, C: CORE group, Eff: all effectors in CEL, FLEXIBLE, PRUNUS, CORE
563 groups, sa: syringolin A cluster, ss: syringomycin/syringopeptin cluster, T: both toxins clusters.
564 Mock: 10 mM MgCl₂. Letters in common above data points indicate no significant difference

565 between treatments. Letters in red indicate significant differences compared to wildtype
566 (p<0.05).

567 (a and c). Lesion formation, assessed using a six-point scale as illustrated, based on the
568 percentage browning /blackening at the inoculation site; 0, no reaction; 1, up to 10%; 2, 10-
569 50%; 3, 50-90%; 4, 100% discoloration; 5, symptoms spreading from the infiltrated area. Data
570 from three repeated experiments with 15 inoculation sites in total per treatment were
571 analysed using pair-wise Fisher's exact test. Representative symptoms are shown in Fig. S5.

572 (b and d). Enumeration of *Ps* bacteria recovered from inoculation sites. Data are from three
573 repeated experiments with 15 sites for each treatment per timepoint, were analysed after log
574 transformation by ANOVA and posthoc Tukey-Kramer HSD tests to assess pair-wise differences
575 between mutants.

576 **Figure 6.** Comparison of the effects of mutations on the pathogenicity of *Pss9644* to leaves of
577 cv. Sweetheart and *Prunus incisa* using high concentration inoculum (2×10^8 CFU per ml). WT:
578 wild-type, CEL: Conserved Effector Locus, F: FLEXIBLE group, P: PRUNUS group, C: CORE group,
579 Eff: all effectors in CEL, FLEXIBLE, PRUNUS, CORE groups, sa: syringolin A cluster, ss:
580 syringomycin/syringopeptin cluster, T: both toxins clusters. Mock:10 mM MgCl₂. Letters in
581 common above data points indicate no significant difference between treatments. Letters in
582 red indicate significant differences compared to wild-type (p<0.05). Lesion formation,
583 assessed using a six-point scale as illustrated, based on the percentage browning /blackening
584 at the inoculation site; 0, no reaction; 1, up to 10%; 2, 10-50%; 3, 50-90%; 4, 100%
585 discoloration; 5, symptoms spreading from the infiltrated area. Data from three repeated
586 experiments with 18 inoculation sites in total per treatment were analysed using pair-wise

587 Fisher's exact test. Note that at low inoculum concentration (2×10^6 CFU per ml) *Pss9644* fails
588 to cause lesions in *Prunus incisa*.

589 **Figure 7.** Use of mixtures of mutants of *Pss9644* to demonstrate complementation of gene
590 deletions. A mixture of the effectorless mutant (Δ Eff) that produces both toxins, and the
591 Δ CEL Δ T mutant which produces all effectors except the CEL was examined to complement the
592 missing genes *in trans*. Pathogenicity to detached leaves of cv. Sweetheart was examined using
593 low concentration inoculum (2×10^6 per ml). WT: wild-type, CEL: Conserved Effector Locus, F:
594 FLEXIBLE group, P: PRUNUS group, C: CORE group, Eff: all effectors in CEL, FLEXIBLE, PRUNUS,
595 CORE groups, sa: syringolin A cluster, ss: syringomycin/syringopeptin cluster, T: both toxins
596 clusters. Mock:10 mM MgCl₂. Letters in common above data points indicate no significant
597 difference between treatments. Letters in red indicate significant differences compared to
598 wildtype (p<0.05).

599 (a) Lesion formation, assessed using a six-point scale as illustrated, based on the
600 percentage browning/blackening at the inoculation site; 0, no reaction; 1, up to 10%;
601 2, 10-50%; 3, 50-90%; 4, 100% discolouration; 5, symptoms spreading from the
602 infiltrated area. Data from three repeated experiments with 15 inoculation sites per
603 treatment were analysed using pair-wise Fisher's exact test.

604 (b) Recovery of bacteria from inoculation sites. Data from three repeated experiments
605 with 15 sites in total for each treatment, were analysed after log transformation by
606 ANOVA and posthoc Tukey-Kramer HSD tests to assess pair-wise differences between
607 mutants.

608 **Supplementary materials**

609 **Figure S1.** Principal Component Analysis (PCA) comparing gene expression of *Pss9644*
610 triplicate samples grown up in rich media (KB) as a control marked in red and minimal medium
611 (HMM) as treatment represented in blue.

612 **Figure S2.** Heat map with differential gene expression log2 fold change ratio, comparing genes
613 of *Pss9644* triplicate samples grown up in rich media (KB) as a control and *hrp*-inducing
614 minimal medium (HMM) as treatment. Red colours represent genes that are upregulated in
615 HMM compared to KB. Blue colours represent genes that are downregulated in HMM
616 compared to KB. Numbers in genes represent their ID in the annotated genome.

617 **Figure S3.** Representative illustration of a lesion score on cherry woody tissue pathogenicity
618 test at 8wpi.

619 **Figure S4.** Representative illustration of pathogenicity test in immature cherry fruits at 3dpi
620 and 6dpi.

621 **Figure S5.** Representative illustration of pathogenicity test in cherry leaves at 3dpi and 6dpi.

622 **Table S1.** Plasmid vectors and constructs used in this study for *Pss9644* virulence factors
623 deletions in the genome.

624 **Table S2.** Primers designed and used for this study for *Pss9644* virulence gene deletion in the
625 genome.

626 **Table S3.** PCR program details used for the different stages of construct cloning and putative
627 mutant check.

628 **Table S4.** Transcript per Million (TPM) of *Pss9644* triplicate samples grown up in rich media
629 (KB) as a control and *hrp*-inducing minimal medium (HMM) as treatment.

630 **References**

631 ALFANO, J. R., CHARKOWSKI, A. O., DENG, W.-L., BADEL, J. L., PETNICKI-OCWIEJA, T., VAN DIJK, K. &
632 COLLMER, A. 2000. The *Pseudomonas syringae* Hrp pathogenicity island has a tripartite
633 mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable
634 effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in
635 plants. *Proceedings of the National Academy of Sciences*, 97, 4856-4861.

636 ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS, E. W. & LIPMAN, D. J. 1990. Basic local alignment
637 search tool. *J Mol Biol*, 215, 403-10.

638 ANDREWS, S. 2010. FastQC: a quality control tool for high throughput sequence data. Babraham
639 Bioinformatics, Babraham Institute, Cambridge, United Kingdom.

640 ARONESTY, E. 2013. Comparison of sequencing utility programs. *The open bioinformatics journal*, 7.

641 BADEL, J. L., NOMURA, K., BANDYOPADHYAY, S., SHIMIZU, R., COLLMER, A. & HE, S. Y. 2003.
642 *Pseudomonas syringae* pv. *tomato* DC3000 HopPtoM (CEL ORF3) is important for lesion
643 formation but not growth in tomato and is secreted and translocated by the Hrp type III
644 secretion system in a chaperone-dependent manner. *Molecular Microbiology*, 49, 1239-1251.

645 BADEL, J. L., SHIMIZU, R., OH, H.-S. & COLLMER, A. 2006. A *Pseudomonas syringae* pv. *tomato*
646 *avrE1/hopM1* Mutant is Severely Reduced in Growth and Lesion Formation in Tomato.
647 *Molecular Plant-Microbe Interactions*®, 19, 99-111.

648 BALTRUS, D. A., MCCANN, H. C. & GUTTMAN, D. S. 2017. Evolution, genomics and epidemiology of
649 *Pseudomonas syringae*: Challenges in Bacterial Molecular Plant Pathology. *Mol Plant Pathol*,
650 18, 152-168.

651 BENDER, C. L., ALARCÓN-CHAIDEZ, F. & GROSS, D. C. 1999. *Pseudomonas syringae* phytotoxins: mode
652 of action, regulation, and biosynthesis by peptide and polyketide synthetases. *Microbiol Mol
653 Biol Rev*, 63, 266-92.

654 BERTANI, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia
655 coli. *J Bacteriol*, 62, 293-300.

656 BLIN, K., SHAW, S., KLOOSTERMAN, A. M., CHARLOP-POWERS, Z., VAN WEZEL, G. P., MEDEMA, M. H.
657 & WEBER, T. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities.
658 *Nucleic Acids Res*, 49, W29-W35.

659 BOGDANOVE, A. J., BAUER, D. W. & BEER, S. V. 1998. *Erwinia amylovora* Secretes DspE, a
660 Pathogenicity Factor and Functional AvrE Homolog, through the Hrp (Type III Secretion)
661 Pathway. *Journal of Bacteriology*, 180, 2244-2247.

662 BROOKS, D. M., BENDER, C. L. & KUNKEL, B. N. 2005. The *Pseudomonas syringae* phytotoxin
663 coronatine promotes virulence by overcoming salicylic acid-dependent defences in
664 *Arabidopsis thaliana*. *Molecular plant pathology*, 6, 629-639.

665 BUNDALOVIC-TORMA, C., LONJON, F., DESVEAUX, D. & GUTTMAN, D. S. 2022. Diversity, Evolution,
666 and Function of *Pseudomonas syringae* Effectoromes. *Annu Rev Phytopathol*, 60, 211-236.

667 CAPONERO, A., HUTCHISON, M. L., IACOBELLIS, N. S. & GROSS, D. C. Isolation and Characterization of
668 Mutants of *Pseudomonas syringae* pv. *syringae* Defective in Production of syringopeptins.
669 1997.

670 CHAKRAVARTHY, S., WORLEY, J. N., MONTES-RODRIGUEZ, A. & COLLMER, A. 2018. *Pseudomonas*
671 *syringae* pv. *tomato* DC3000 polymutants deploying coronatine and two type III effectors
672 produce quantifiable chlorotic spots from individual bacterial colonies in *Nicotiana*
673 *benthamiana* leaves. *Molecular plant pathology*, 19, 935-947.

674 CROSSE, J. & GARRETT, C. M. 1966. Bacterial canker of stone-fruits: infection experiments with
675 *Pseudomonas morsprunorum* and *P. syringae*. *Annals of Applied Biology*, 58, 31-41.

676 CUNNAC, S., CHAKRAVARTHY, S., KVITKO, B. H., RUSSELL, A. B., MARTIN, G. B. & COLLMER, A. 2011.
677 Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire
678 of type III effectors in *Pseudomonas syringae*. *Proc Natl Acad Sci U S A*, 108, 2975-80.

679 DEBROY, S., THILMONY, R., KWACK, Y.-B., NOMURA, K. & HE, S. Y. 2004. A family of conserved
680 bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease
681 necrosis in plants. *Proceedings of the National Academy of Sciences*, 101, 9927-9932.

682 DILLON, M. M., ALMEIDA, R. N. D., LAFLAMME, B., MARTEL, A., WEIR, B. S., DESVEAUX, D. &
683 GUTTMAN, D. S. 2019. Molecular Evolution of *Pseudomonas syringae* Type III Secreted
684 Effector Proteins. *Front Plant Sci*, 10, 418.

685 DUDNIK, A. & DUDLER, R. 2014. Virulence determinants of *Pseudomonas syringae* strains isolated
686 from grasses in the context of a small type III effector repertoire. *BMC Microbiology*, 14, 304.

687 EKANAYAKE, G., GOHMANN, R. & MACKEY, D. 2022. A method for quantitation of apoplast hydration
688 in *Arabidopsis* leaves reveals water-soaking activity of effectors of *Pseudomonas syringae*
689 during biotrophy. *Scientific Reports*, 12.

690 GENG, X., JIN, L., SHIMADA, M., KIM, M. G. & MACKEY, D. 2014. The phytotoxin coronatine is a
691 multifunctional component of the virulence armament of *Pseudomonas syringae*. *Planta*,
692 240, 1149-65.

693 GRANT, S. R., FISHER, E. J., CHANG, J. H., MOLE, B. M. & DANGL, J. L. 2006. Subterfuge and
694 manipulation: type III effector proteins of phytopathogenic bacteria. *Annu Rev Microbiol*, 60,
695 425-49.

696 HELMANN, T. C., DEUTSCHBAUER, A. M. & LINDOW, S. E. 2019. Genome-wide identification of
697 *Pseudomonas syringae* genes required for fitness during colonization of the leaf surface and
698 apoplast. *Proc Natl Acad Sci U S A*, 116, 18900-18910.

699 HMELO, L. R., BORLEE, B. R., ALMBLAD, H., LOVE, M. E., RANDALL, T. E., TSENG, B. S., LIN, C., IRIE, Y.,
700 STOREK, K. M., YANG, J. J., SIEHNEL, R. J., HOWELL, P. L., SINGH, P. K., TOLKER-NIELSEN, T.,
701 PARSEK, M. R., SCHWEIZER, H. P. & HARRISON, J. J. 2015. Precision-engineering the
702 *Pseudomonas aeruginosa* genome with two-step allelic exchange. *Nat Protoc*, 10, 1820-41.

703 HULIN, M. T., ARMITAGE, A. D., VICENTE, J. G., HOLUB, E. B., BAXTER, L., BATES, H. J., MANSFIELD, J.
704 W., JACKSON, R. W. & HARRISON, R. J. 2018a. Comparative genomics of *Pseudomonas*
705 *syringae* reveals convergent gene gain and loss associated with specialization onto cherry
706 (*Prunus avium*). *New Phytol*, 219, 672-696.

707 HULIN, M. T., HILL, L., JONES, J. D. G. & MA, W. 2023. Pangenomic analysis reveals plant NAD(+)
708 manipulation as an important virulence activity of bacterial pathogen effectors. *Proc Natl
709 Acad Sci U S A*, 120, e2217114120.

710 HULIN, M. T., JACKSON, R. W., HARRISON, R. J. & MANSFIELD, J. W. 2020. Cherry picking by
711 pseudomonads: After a century of research on canker, genomics provides insights into the
712 evolution of pathogenicity towards stone fruits. *Plant Pathol*, 69, 962-978.

713 HULIN, M. T., MANSFIELD, J. W., BRAIN, P., XU, X., JACKSON, R. W. & HARRISON, R. J. 2018b.
714 Characterization of the pathogenicity of strains of *Pseudomonas syringae* towards cherry and
715 plum. *Plant Pathol*, 67, 1177-1193.

716 HULIN, M. T., VADILLO DIEGUEZ, A., COSSU, F., LYNN, S., RUSSELL, K., NEALE, H. C., JACKSON, R. W.,
717 ARNOLD, D. L., MANSFIELD, J. W. & HARRISON, R. J. 2022. Identifying resistance in wild and
718 ornamental cherry towards bacterial canker caused by *Pseudomonas syringae*. *Plant Pathol*,
719 71, 949-965.

720 HULIN, M.T., RABIEY, M., ZENG, Z., VADILLO DIEGUEZ, A., BELLAMY, S., SWIFT, P., MANSFIELD, J.W.,
721 JACKSON, R.J., & HARRISON, R.J. 2023. Genomic and functional analysis of phage-mediated
722 horizontal gene transfer in *Pseudomonas syringae* on the plant surface. *New Phytol*, 237(3),
723 959-973.

724 HUYNH, T. V., DAHLBECK, D. & STASKAWICZ, B. J. 1989. Bacterial Blight of Soybean: Regulation of a
725 Pathogen Gene Determining Host Cultivar Specificity. *Science*, 245, 1374-1377.

726 JACKSON, R. W., ATHANASSOPOULOS, E., TSIAMIS, G., MANSFIELD, J. W., SESMA, A., ARNOLD, D. L.,
727 GIBBON, M. J., MURILLO, J., TAYLOR, J. D. & VIVIAN, A. 1999. Identification of a pathogenicity
728 island, which contains genes for virulence and avirulence, on a large native plasmid in the

729 bean pathogen *Pseudomonas syringae* pathovar phaseolicola. *Proceedings of the National
730 Academy of Sciences*, 96, 10875-10880.

731 JAIN, C., RODRIGUEZ, R. L., PHILLIPPY, A. M., KONSTANTINIDIS, K. T. & ALURU, S. 2018. High
732 throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nat
733 Commun*, 9, 5114.

734 JAYARAMAN, J., JONES, W. T., HARVEY, D., HEMARA, L. M., MCCANN, H. C., YOON, M., WARRING, S. L.,
735 FINERAN, P. C., MESARICH, C. H. & TEMPLETON, M. D. 2020. Variation at the common
736 polysaccharide antigen locus drives lipopolysaccharide diversity within the *Pseudomonas
737 syringae* species complex. *Environ Microbiol*, 22, 5356-5372.

738 JONES, J. D. G. & DANGL, J. L. 2006. The plant immune system. *Nature*, 444, 323-329.

739 KING, E. O., WARD, M. K. & RANEY, D. E. 1954. Two simple media for the demonstration of pyocyanin
740 and fluorescin. *J Lab Clin Med*, 44, 301-7.

741 KVITKO, B. H., PARK, D. H., VELASQUEZ, A. C., WEI, C. F., RUSSELL, A. B., MARTIN, G. B., SCHNEIDER, D.
742 J. & COLLMER, A. 2009. Deletions in the repertoire of *Pseudomonas syringae* pv. *tomato*
743 DC3000 type III secretion effector genes reveal functional overlap among effectors. *PLoS
744 Pathog*, 5, e1000388.

745 LAM, H. N., CHAKRAVARTHY, S., WEI, H.-L., BUINGUYEN, H., STODGHILL, P. V., COLLMER, A., SWINGLE,
746 B. M. & CARTINHOUR, S. W. 2014. Global analysis of the HrpL regulon in the plant pathogen
747 *Pseudomonas syringae* pv. *tomato* DC3000 reveals new regulon members with diverse
748 functions. *PLoS One*, 9, e106115.

749 LIENQUEO, I., VILLAR, L., BELTRÁN, F., CORREA, F., SAGREDO, B., GUAJARDO, V., MORENO, M. Á. &
750 ALMADA, R. 2024. Molecular, phenotypic and histological analysis reveals a multi-tiered
751 immune response and callose deposition in stone fruit rootstocks (*Prunus* spp.) against
752 *Pseudomonas syringae* pv. *syringae* (Pss) infection. *Scientia Horticulturae*, 324, 112588.

753 LORANG, J. M., SHEN, H., KOBAYASHI, D., COOKSEY, D. & KEEN, N. T. 1994. *avrA* and *avrE* in
754 *Pseudomonas syringae* pv. *tomato* PT23 play a role in virulence on tomato plants. *MPMI-
755 Molecular Plant Microbe Interactions*, 7, 508-515.

756 LOVE, M. I., HUBER, W. & ANDERS, S. 2014. Moderated estimation of fold change and dispersion for
757 RNA-seq data with DESeq2. *Genome Biol*, 15, 550.

758 LOVELACE, A. H., DORHMI, S., HULIN, M. T., LI, Y., MANSFIELD, J. W. & MA, W. 2023. Effector
759 Identification in Plant Pathogens. *Phytopathology*®, 113, 637-650.

760 LOVELACE, A. H. & MA, W. 2022. How do bacteria transform plants into their oasis? *Cell Host
761 Microbe*, 30, 412-414.

762 LOZANO-DURAN, R., BOURDAIS, G., HE, S. Y. & ROBATZEK, S. 2014. The bacterial effector HopM1
763 suppresses PAMP-triggered oxidative burst and stomatal immunity. *New Phytol*, 202, 259-
764 269.

765 MANSFIELD, J. W. 2009. From bacterial avirulence genes to effector functions via the *hrp* delivery
766 system: an overview of 25 years of progress in our understanding of plant innate immunity.
767 *Mol Plant Pathol*, 10, 721-34.

768 MINH, B. Q., SCHMIDT, H. A., CHERNOMOR, O., SCHREMPF, D., WOODHAMS, M. D., VON HAESELER,
769 A. & LANFEAR, R. 2020. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
770 Inference in the Genomic Era. *Mol Biol Evol*, 37, 1530-1534.

771 MISAS-VILLAMIL, J. C., KOLODZIEJEK, I., CRABILL, E., KASCHANI, F., NIESSEN, S., SHINDO, T., KAISER,
772 M., ALFANO, J. R. & VAN DER HOORN, R. A. 2013. *Pseudomonas syringae* pv. *syringae* uses
773 proteasome inhibitor syringolin A to colonize from wound infection sites. *PLoS Pathog*, 9,
774 e1003281.

775 MO, Y.-Y. & GROSS, D. C. 1991. Plant signal molecules activate the *syrB* gene, which is required for
776 syringomycin production by *Pseudomonas syringae* pv. *syringae*. *Journal of Bacteriology*, 173,
777 5784-5792.

778 MORENO-PEREZ, A., RAMOS, C. & RODRIGUEZ-MORENO, L. 2021. HrpL Regulon of Bacterial
779 Pathogen of Woody Host *Pseudomonas savastanoi* pv. savastanoi NCPPB 3335.
780 *Microorganisms*, 9.

781 MUNKVOLD, K. R., RUSSELL, A. B., KVITKO, B. H. & COLLMER, A. 2009. *Pseudomonas syringae* pv.
782 *tomato* DC3000 type III effector HopAA1-1 functions redundantly with chlorosis-promoting
783 factor PSPTO4723 to produce bacterial speck lesions in host tomato. *Molecular plant-*
784 *microbe interactions*, 22, 1341-1355.

785 NEALE, H. C., HULIN, M. T., HARRISON, R. J., JACKSON, R. W., MANSFIELD, J. W. & ARNOLD, D. L. 2020.
786 An improved conjugation method for *Pseudomonas syringae*. *J Microbiol Methods*, 177,
787 106025.

788 NEWBERRY, E. A., EBRAHIM, M., TIMILSINA, S., ZLATKOVIC, N., OBRADOVIC, A., BULL, C. T., GOSS, E.
789 M., HUGUET-TAPIA, J. C., PARET, M. L., JONES, J. B. & POTNIS, N. 2019. Inference of
790 Convergent Gene Acquisition Among *Pseudomonas syringae* Strains Isolated From
791 Watermelon, Cantaloupe, and Squash. *Front Microbiol*, 10, 270.

792 NOMURA, K., ANDREAZZA, F., CHENG, J., DONG, K., ZHOU, P. & HE, S. Y. 2023. Bacterial pathogens
793 deliver water- and solute-permeable channels to plant cells. *Nature*, 621, 586-591.

794 PATRO, R., DUGGAL, G., LOVE, M. I., IRIZARRY, R. A. & KINGSFORD, C. 2017. Salmon provides fast and
795 bias-aware quantification of transcript expression. *Nat Methods*, 14, 417-419.

796 QUIGLEY, N. B. & GROSS, D. C. 1994. Syringomycin production among strains of *Pseudomonas*
797 *syringae* pv. *syringae*: conservation of the *syrB* and *syrD* genes and activation of phytotoxin
798 production by plant signal molecules. *Molecular plant-microbe interactions: MPMI*, 7, 78-90.

799 RCORETEAM 2022. R: A Language and Environment for Statistical Computing. *R Foundation for
800 Statistical Computing*.

801 ROUSSIN-LEVEILLEE, C., LAJEUNESSE, G., ST-AMAND, M., VEERAPEN, V. P., SILVA-MARTINS, G.,
802 NOMURA, K., BRASSARD, S., BOLAJI, A., HE, S. Y. & MOFFETT, P. 2022. Evolutionarily
803 conserved bacterial effectors hijack abscisic acid signaling to induce an aqueous environment
804 in the apoplast. *Cell Host Microbe*, 30, 489-501 e4.

805 RUIZ-BEDOYA, T., WANG, P. W., DESVEAUX, D. & GUTTMAN, D. S. 2023. Cooperative virulence via the
806 collective action of secreted pathogen effectors. *Nature Microbiology*, 8, 640-650.

807 SCHELLENBERG, B., RAMEL, C. & DUDLER, R. 2010. *Pseudomonas syringae* virulence factor syringolin
808 A counteracts stomatal immunity by proteasome inhibition. *Molecular Plant-Microbe
809 Interactions*, 23, 1287-1293.

810 SCHLIEP, K. P. 2011. phangorn: phylogenetic analysis in R. *Bioinformatics*, 27, 592-3.

811 SCHOLZ-SCHROEDER, B. K., HUTCHISON, M. L., GRGURINA, I. & GROSS, D. C. 2001. The contribution
812 of syringopeptin and syringomycin to virulence of *Pseudomonas syringae* pv. *syringae* strain
813 B301D on the basis of *sypA* and *syrB1* biosynthesis mutant analysis. *Mol Plant Microbe
814 Interact*, 14, 336-48.

815 SHAO, X., TAN, M., XIE, Y., YAO, C., WANG, T., HUANG, H., ZHANG, Y., DING, Y., LIU, J. & HAN, L. 2021.
816 Integrated regulatory network in *Pseudomonas syringae* reveals dynamics of virulence. *Cell
817 Reports*, 34.

818 STASKAWICZ, B. J., DAHLBECK, D. & KEEN, N. T. 1984. Cloned avirulence gene of *Pseudomonas*
819 *syringae* pv. *glycinea* determines race-specific incompatibility on *Glycine max* (L.) Merr.
820 *Proceedings of the National Academy of Sciences*, 81, 6024-6028.

821 TONKIN-HILL, G., MACALASDAIR, N., RUIS, C., WEIMANN, A., HORESH, G., LEES, J. A., GLADSTONE, R.
822 A., LO, S., BEAUDOIN, C., FLOTO, R. A., FROST, S. D. W., CORANDER, J., BENTLEY, S. D. &
823 PARKHILL, J. 2020. Producing polished prokaryotic pangenomes with the Panaroo pipeline.
824 *Genome Biol*, 21, 180.

825 WASHINGTON, E. J., MUKHTAR, M. S., FINKEL, O. M., WAN, L., BANFIELD, M. J., KIEBER, J. J. & DANGL,
826 J. L. 2016. *Pseudomonas syringae* type III effector HopAF1 suppresses plant immunity by
827 targeting methionine recycling to block ethylene induction. *Proc Natl Acad Sci U S A*, 113,
828 E3577-86.

829 WEI, H. L. & COLLMER, A. 2018. Defining essential processes in plant pathogenesis with
830 *Pseudomonas syringae* pv. *tomato* DC3000 disarmed polymutants and a subset of key type III
831 effectors. *Mol Plant Pathol*, 19, 1779-1794.

832 WILLIAM, S., FEIL, H. & COPELAND, A. 2012. Bacterial genomic DNA isolation using CTAB. *Sigma*, 50.

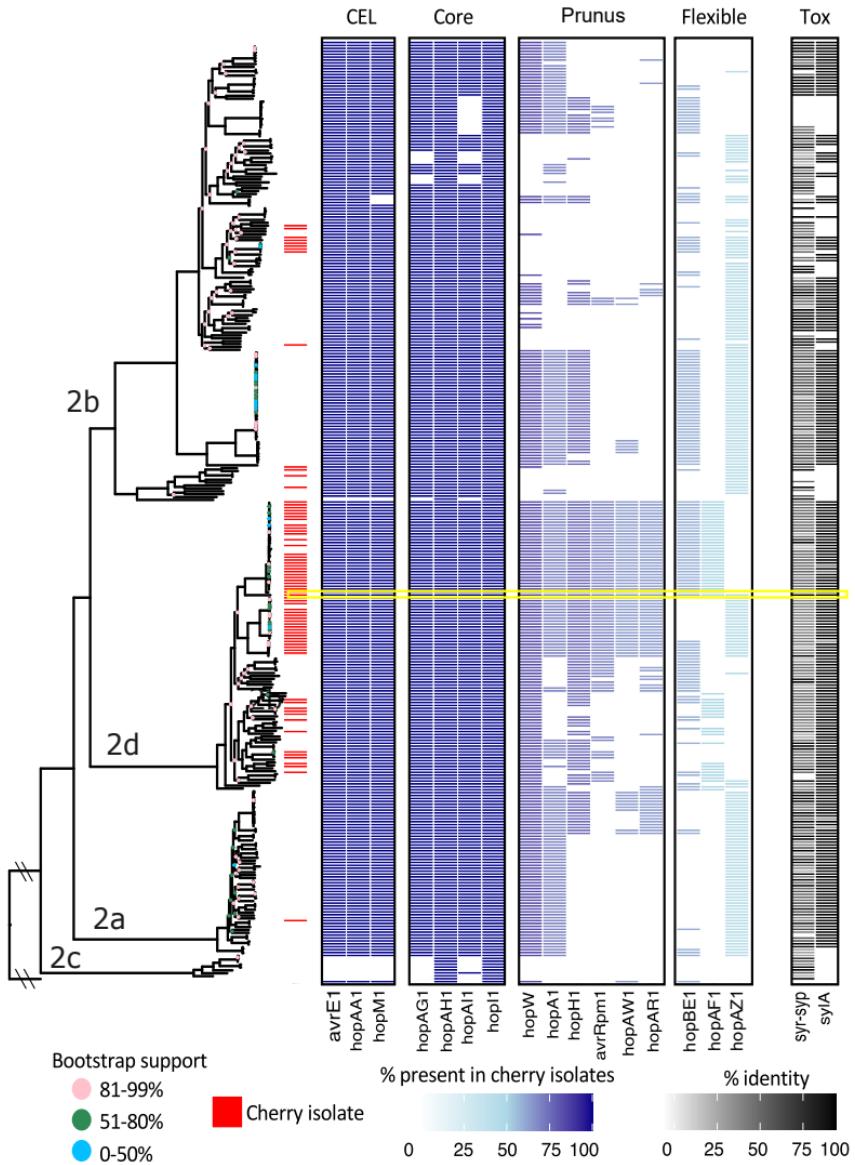
833 XIN, X. F., KVITKO, B. & HE, S. Y. 2018. *Pseudomonas syringae*: what it takes to be a pathogen. *Nat Rev
834 Microbiol*, 16, 316-328.

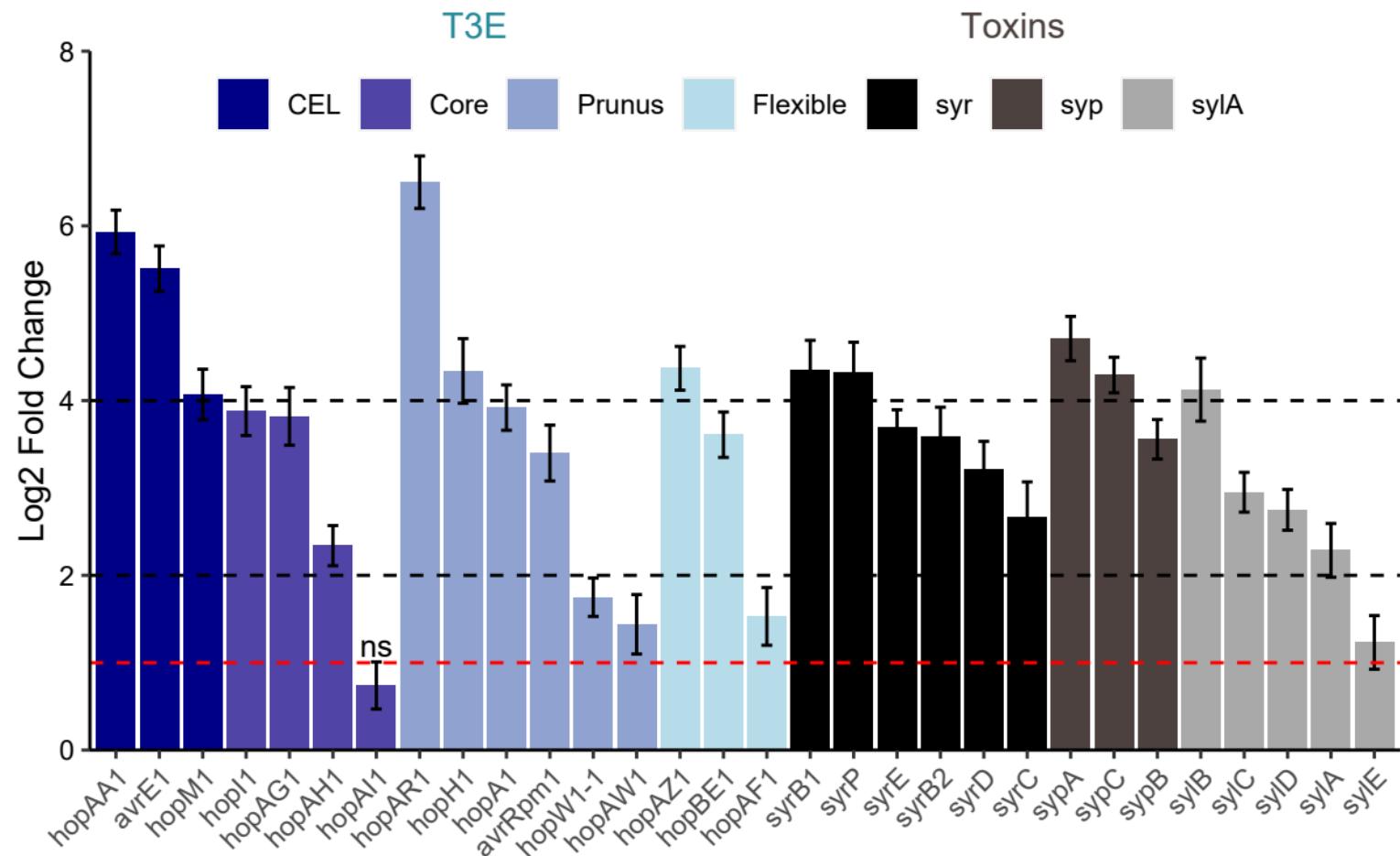
835 XU, S., DAI, Z., GUO, P., FU, X., LIU, S., ZHOU, L., TANG, W., FENG, T., CHEN, M., ZHAN, L., WU, T., HU,
836 E., JIANG, Y., BO, X. & YU, G. 2021. ggtreeExtra: Compact Visualization of Richly Annotated
837 Phylogenetic Data. *Mol Biol Evol*, 38, 4039-4042.

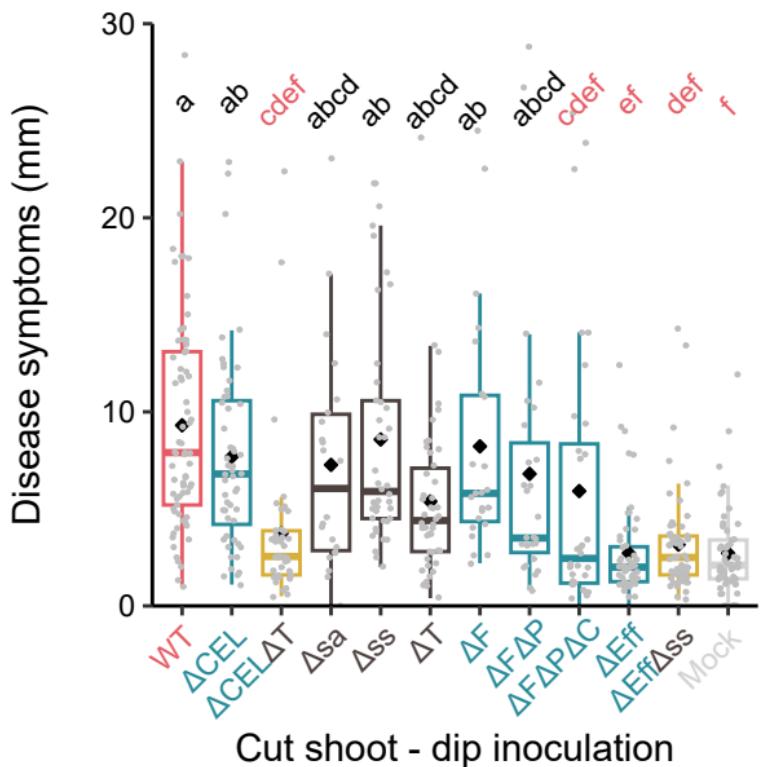
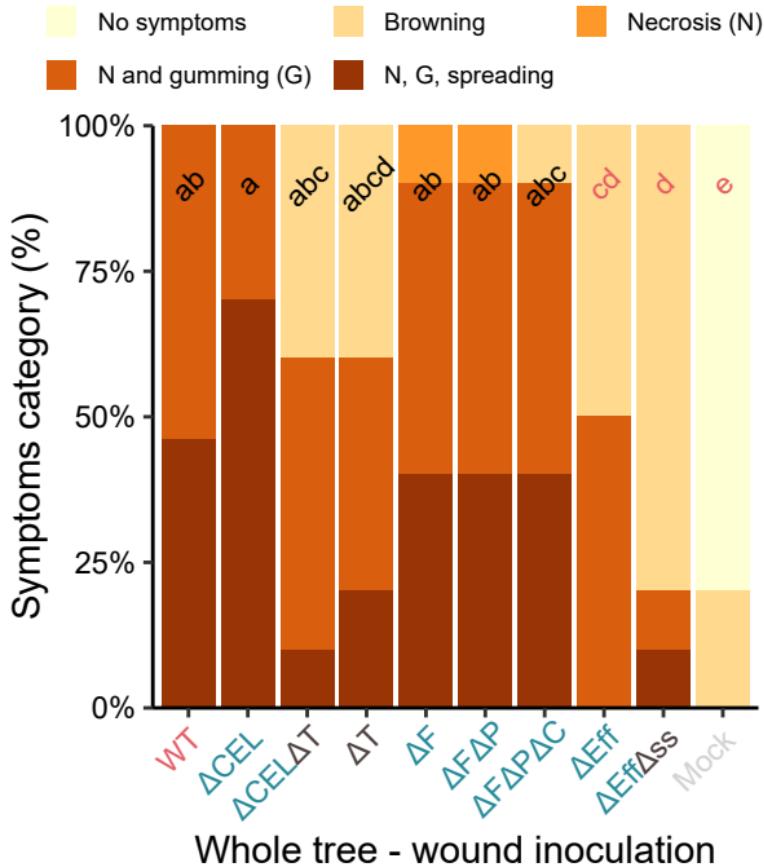
838 YU, G., SMITH, D. K., ZHU, H., GUAN, Y., LAM, T. T. Y. & MCINERNY, G. 2016. ggtree: an r package for
839 visualization and annotation of phylogenetic trees with their covariates and other associated
840 data. *Methods in Ecology and Evolution*, 8, 28-36.

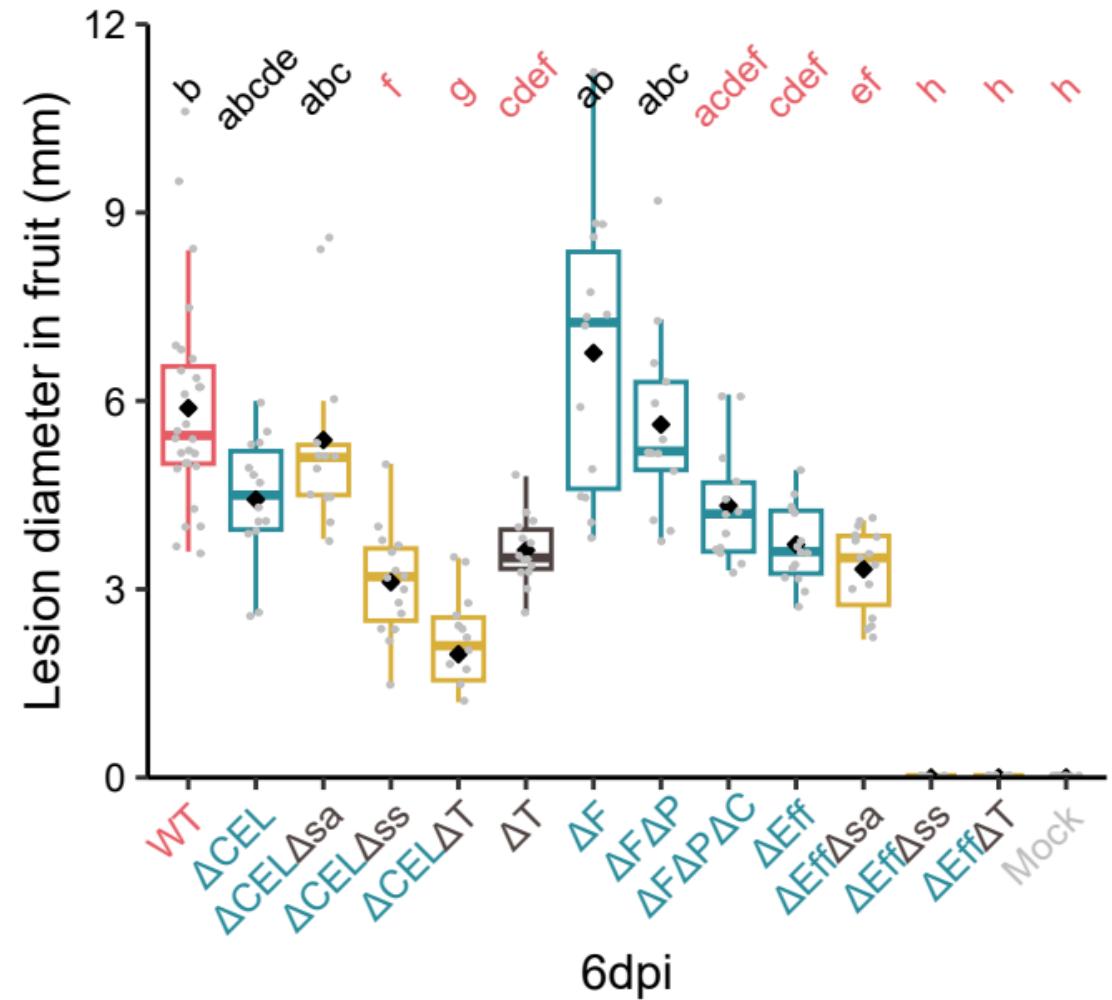
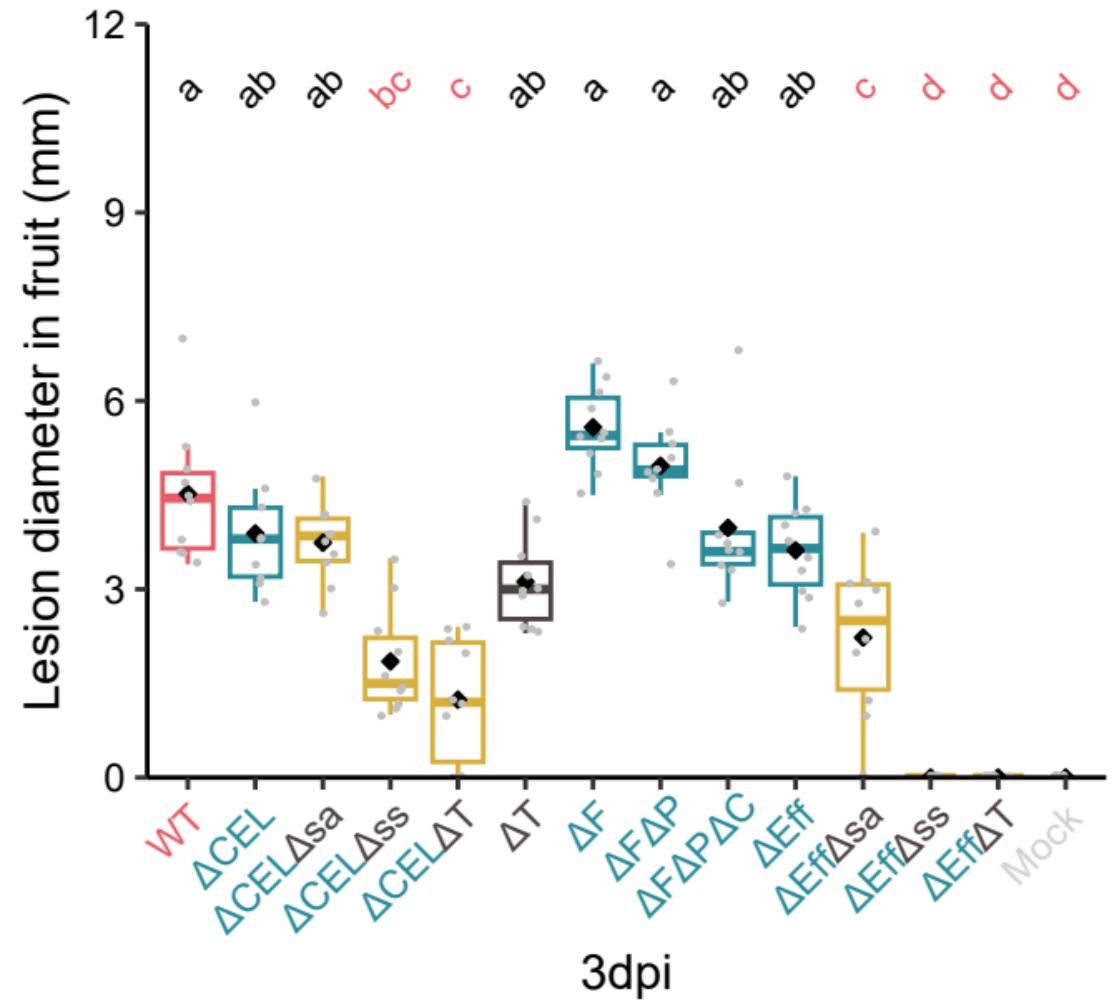
841 YUAN, X., HULIN, M. T. & SUNDIN, G. W. 2021. Effectors, chaperones, and harpins of the Type III
842 secretion system in the fire blight pathogen *Erwinia amylovora*: a review. *Journal of Plant
843 Pathology*, 103, 25-39.

844 **DATA AVAILABILITY STATEMENT**

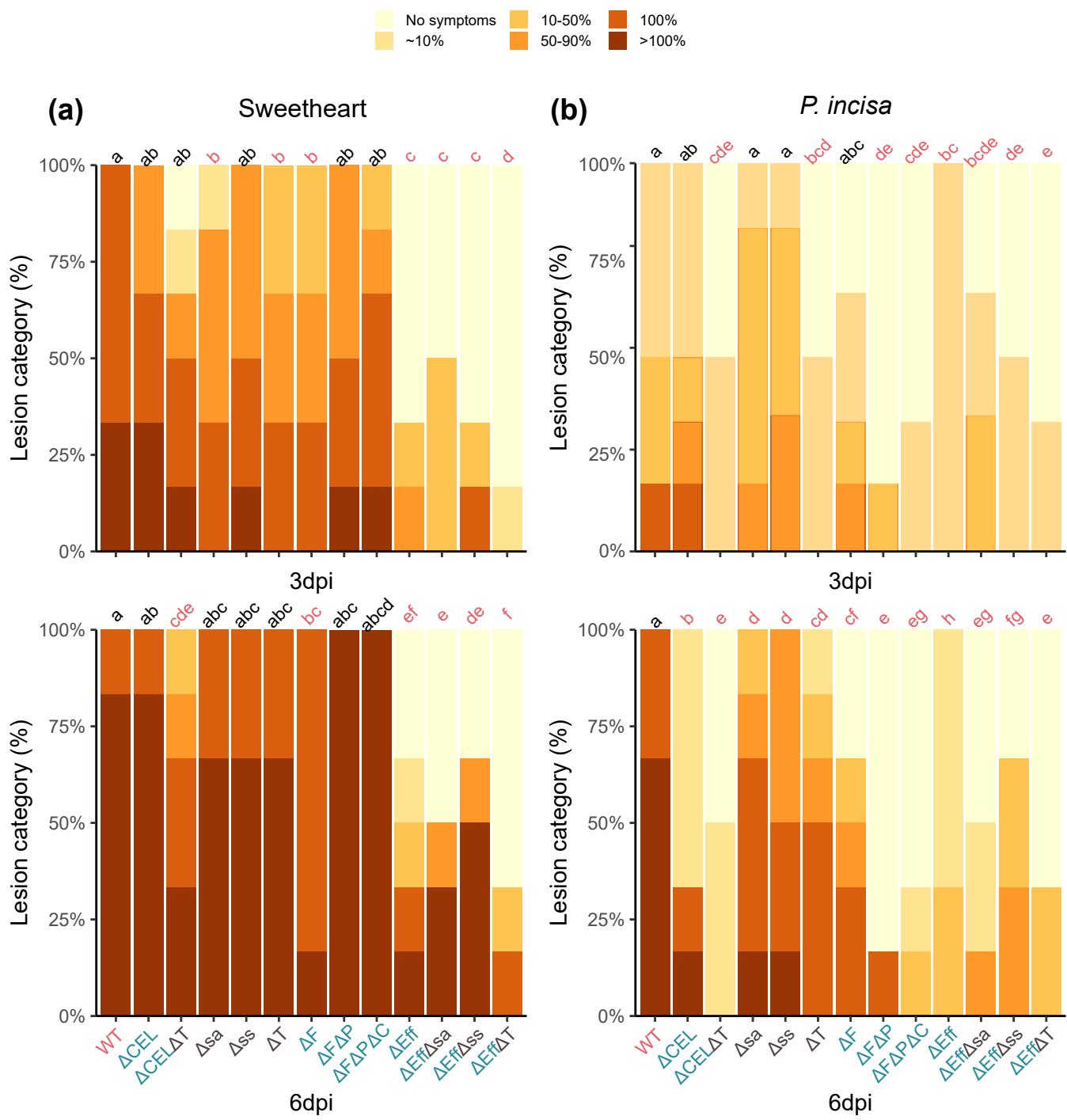

845 The data that support the findings of this study are available from the corresponding author
846 upon reasonable request.

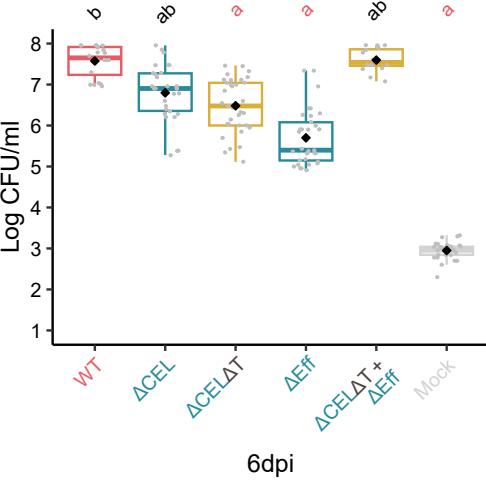
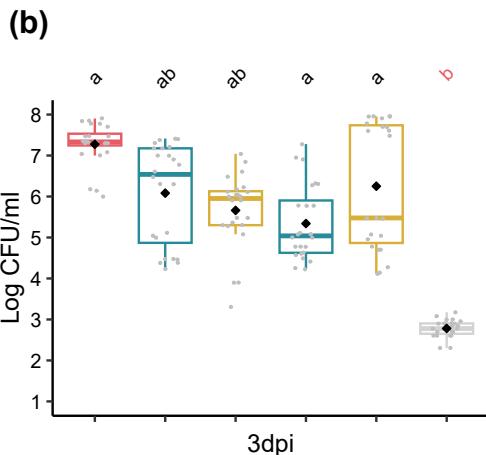
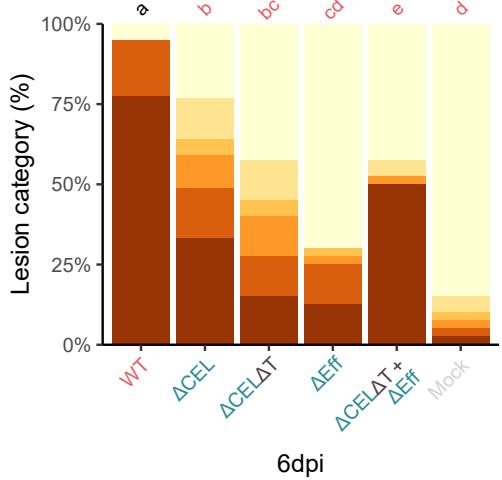
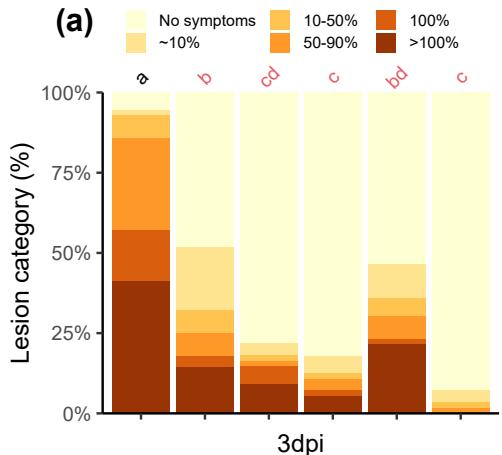

847



Table 1. Genotypes of the effector and toxin deletion mutants created in *P. syringae* pv. *syringae* strain 9644 (Roberts, 2012)



<i>Pseudomonas syringae</i> pv <i>syringae</i> strain abbreviation	Nature of deletion in groups of effectors and toxins	Genotype
WT		Wild-type pathogen of cherry Pss9644
ΔF	Flexible effectors	<i>ΔhopAZ1ΔhopAF1ΔhopBE1</i>
ΔFΔP	Flexible and Prunus effectors	<i>ΔhopAZ1ΔhopAF1ΔhopBE1ΔhopAR1ΔhopAW1ΔavrRpm1</i> <i>ΔhopA2ΔhopW1ΔhopH1</i>
ΔFΔPΔC	Flexible, Prunus and Core effectors	<i>ΔhopAZ1ΔhopAF1ΔhopBE1ΔhopAR1ΔhopAW1ΔavrRpm1</i> <i>ΔhopA2ΔhopW1ΔhopAG1-hopAH1-hopAI1ΔhopI1ΔhopH1</i>
ΔCEL	Conserved Effector Locus	<i>ΔCEL (hopAA1, hopM1, and avrE1)</i>
ΔEff	Effectortless	<i>ΔhopAZ1ΔhopAF1ΔhopBE1ΔhopAR1ΔhopAW1ΔavrRpm1</i> <i>ΔhopA2ΔhopW1ΔhopAG1-hopAH1-</i> <i>hopAI1ΔhopI1ΔCELΔhopH1</i>
ΔT	Toxinless	<i>ΔsylAΔsyrhyp</i>
Δsa	Syringolin A	<i>ΔsylA</i>
Δss	Syringomycin/Syringopeptin	<i>Δsyrhyp</i>
ΔCELΔT	Conserved Effector Locus and Toxins	<i>ΔCELΔsylAΔsyrhyp</i>
ΔCELΔsa	Conserved Effector Locus and Syringolin A	<i>ΔCELΔsylA</i>
ΔCELΔss	Conserved Effector Locus and Syringomycin/Syringopeptin	<i>ΔCELΔsyrhyp</i>
ΔEffΔT	Effectortless Toxinless	<i>ΔhopAZ1ΔhopAF1ΔhopBE1ΔhopAR1ΔhopAW1ΔavrRpm1</i> <i>ΔhopA2ΔhopW1ΔhopAG1-hopAH1-</i> <i>hopAI1ΔhopI1ΔCELΔhopH1ΔsyrhypΔsylA</i>
ΔEffΔsa	Effectortless and Syringolin A	<i>ΔhopAZ1ΔhopAF1ΔhopBE1ΔhopAR1ΔhopAW1ΔavrRpm1</i>

		$\Delta hopA2\Delta hopW1\Delta hopAG1-hopAH1-$ $hopAI1\Delta hopI1\Delta CEL\Delta hopH1\Delta sysI A$
$\Delta Eff\Delta ss$	Effectorless and Syringomycin/Syringopeptin	$\Delta hopAZ1\Delta hopAF1\Delta hopBE1\Delta hopAR1\Delta hopAW1\Delta avrRpm1$ $\Delta hopA2\Delta hopW1\Delta hopAG1-hopAH1-$ $hopAI1\Delta hopI1\Delta CEL\Delta hopH1\Delta sysyp$



(a)**(b)**

