

1 A single-cell 3D spatiotemporal multi-omics

2 atlas from *Drosophila* embryogenesis to

3 metamorphosis

4 Mingyue Wang^{1,2,3,10}, Qinan Hu^{2,4,10,*}, Zhencheng Tu^{1,5,10}, Lingshi Kong^{2,4,10}, Jiajun
5 Yao¹, Rong Xiang^{1,5}, Zhan Chen^{1,5}, Yan Zhao^{2,4,6}, Yanfei Zhou^{2,4}, Tengxiang Yu^{2,4},
6 Yuetian Wang^{2,4}, Zihan Jia^{1,5}, Kang Ouyang^{1,5}, Xianzhe Wang^{1,5}, Yinqi Bai¹, Mingwei
7 Lian^{2,4}, Zhenyu Yang^{2,4}, Tao Yang⁷, Jing Chen⁷, Yunting Huang⁷, Ni Yin⁷, Wenyuan
8 Mo⁷, Wenfu Liang⁷, Chang Liu¹, Xiumei Lin^{1,5}, Chuanyu Liu^{1,8}, Ying Gu^{1,8}, Wei
9 Chen^{2,3}, Longqi Liu^{1,*}, Xun Xu^{1,*}, Yuhui Hu^{2,4,9,11,*}

10

11 ¹BGI Research, Hangzhou 310030, China

12 ²Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life
13 Sciences, Southern University of Science and Technology, Shenzhen 518005, China

14 ³Department of Systems Biology, School of Life Sciences, Southern University of Science and
15 Technology, Shenzhen 518005, China

16 ⁴Department of Pharmacology, School of Medicine, Southern University of Science and
17 Technology, Shenzhen 518005, China

18 ⁵College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

19 ⁶Department of Computational Molecular Biology, Max Planck Institute for Molecular
20 Genetics, Ihnestraße 63-73, Berlin 14195, Germany

21 ⁷China National GeneBank, BGI Research, Shenzhen 518083, China.

22 ⁸BGI Research, Shenzhen 518083, China

23 ⁹Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and
24 Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen
25 518005, Guangdong, China

26 ¹⁰These authors contributed equally

27 ¹¹Lead contact

28 *Authors for correspondence

29 **SUMMARY**

30 The development of a multicellular organism is a highly intricate process tightly
31 regulated by numerous genes and pathways in both spatial and temporal manners.
32 Here, we present Flysta3D, a comprehensive multi-omics atlas of the model organism
33 *Drosophila*, spanning its developmental lifespan from embryo to pupa. Our datasets
34 encompass 3D single-cell spatial transcriptomic, single-cell transcriptomic, and single-
35 cell chromatin accessibility information. By integrating these multi-dimensional data,
36 we constructed cell state trajectories that uncover the detailed profiles of tissue
37 development. With a focus on the central nervous system (CNS) and midgut, we
38 dissected the spatiotemporal dynamics of gene regulatory networks, cell type diversity,
39 and morphological changes from a multi-omics perspective. This extensive atlas
40 provides an unprecedentedly rich resource and serves as a systematic platform for
41 studying *Drosophila* development with integrated single-cell data at an ultra-high
42 spatiotemporal resolution.

43 **Key words:** *Drosophila* development, single-cell multi-omics, spatial
44 transcriptomics, Stereo-seq, Flysta3D

45 INTRODUCTION

46 The advances in single-cell multi-omics technologies have revolutionized our
47 understanding of biological processes, revealing cell-specific functional
48 heterogeneities that underlie the complex physiologies of development, aging, and
49 diseases. To date, the functional profile of a single cell can be characterized across
50 multiple dimensions, including its cell surface epitopes, transcriptome, epigenome, and
51 proteome (reviewed in Ref¹). The development of spatial multi-omics techniques
52 further added spatial context to these dimensions of information (reviewed in Ref²),
53 and progress has been made in integrating these multi-modal data to construct a
54 panoramic profile of context-specific functions of single cells and their communications
55 with one another (reviewed in Ref³).

56 *Drosophila melanogaster* has long been a fundamental model organism for
57 genetics and developmental biology research. Recent single-cell multi-omics studies
58 have highlighted the versatility of *Drosophila* in characterizing transcriptomic and
59 epigenomic dynamics of individual cells during embryogenesis^{4,5}, tissue
60 development^{6–8}, tissue regeneration⁹, and systemic aging¹⁰. These studies generated
61 rich resources for dissecting the multi-omics profiles of various tissues at single cell
62 precision across developmental stages. Nevertheless, the spatial context of such
63 single-cell omics data is crucial to understanding their biological relevance but is often
64 lost during standard single-cell sequencing procedures.

65 Embryogenesis is an intricately regulated process that transforms a totipotent
66 zygote into a fully formed embryo with functional organs. Over the past several
67 decades, research into *Drosophila* embryogenesis has yielded invaluable insights into
68 this meticulous process and many of its features that are conserved in mammals
69 (reviewed in Ref¹¹). Recently, a few studies have addressed *Drosophila*
70 embryogenesis from the perspective of single-cell multi-omics^{4,5}, but focused only on
71 a few developmental time points or are limited in genome coverage. Until recently,
72 genome-wide spatial transcriptomic profiling of developing *Drosophila* was lacking due
73 to the miniature sizes of *Drosophila* samples and resolution limit of spatial
74 transcriptomic techniques. Previously, we utilized spatial enhanced resolution omics
75 sequencing (Stereo-seq)¹², a sequencing- and patterned DNA nanoball (DNB) array-
76 based spatial transcriptomic platform with high spatial resolution and sensitivity, to
77 address this gap. Using Stereo-seq, we generated 3D spatiotemporal transcriptomic
78 maps of *Drosophila* late-stage embryos and larvae and analyzed the development of
79 tissues within their actual 3D spatial context¹³.

80 Here, we expanded our previous spatiotemporal transcriptomic atlas of *Drosophila*
81 to cover its developmental lifespan from embryo to pupa. Using Stereo-seq and *Spateo*,
82 a computational pipeline designed to analyze single-cell multi-modal spatial
83 transcriptomic data¹⁴, we reconstructed 3D transcriptomes at single cell spatial
84 resolution. We further complemented embryo single-cell Stereo-seq (scStereo-seq)
85 data with single-cell RNA sequencing (scRNA-seq) and single-cell assay for
86 transposase-accessible chromatin using sequencing (scATAC-seq) data to create a
87 multi-omics atlas of *Drosophila* embryos that includes transcriptomic and epigenomic
88 information within an ultra-high-resolution spatial context. The data in this single-cell
89 spatiotemporal multi-omics atlas of *Drosophila* development are curated in our
90 database, Flysta3D, for easy access.

91 Based on the unprecedently rich data resource, we established multi-omics cell
92 state trajectories of tissue development. Along these trajectories, we systematically
93 characterized the spatiotemporal dynamics of cell differentiation potential, signaling
94 pathways, and transcription factor (TF) regulatory networks. Focusing on two widely
95 studied *Drosophila* tissues, central nervous system (CNS) and midgut, we delved into
96 their cell type diversification, gene regulatory networks, and morphological changes
97 from a multi-omics perspective. Given that we have produced extensive multi-omics
98 datasets for the embryonic stages, the major focus of this paper will be the analysis of
99 embryogenesis from a multi-omics perspective. The scStereo-seq data for the larval
100 and pupal stages are not discussed extensively here but will be accessible via
101 Flysta3D database. Flysta3D hosts all the datasets generated in this study and
102 provides interactive 3D visualization of gene expression patterns, TF regulatory
103 networks, signaling pathway activities, etc. in these datasets. Our database can
104 facilitate systematic research on *Drosophila* development with its comprehensive
105 information and broad range of applications.

106

107 **RESULTS**

108 **Single-cell 3D spatial transcriptomes of *Drosophila* from** 109 **embryogenesis to metamorphosis**

110 To construct multi-omics atlas of *Drosophila* development, we started off by
111 expanding and enhancing the 3D spatial transcriptomes of *Drosophila* development
112 based on our previous work. Developing embryos were collected at 0.5 to 2 h intervals

113 throughout the ~24 h course of embryogenesis (hereafter termed based on
114 computationally inferred developmental age, see below). Larva samples were
115 collected at early or late time points for each of the three larval stages (hereafter
116 termed L1 to L3 early/late). Pupa samples were collected at 12 h intervals starting from
117 pupation (hereafter termed P12 to P72) (**Figure 1A and Table S1**). Cryosection was
118 performed for each sample to obtain their sagittal sections of 7 or 8 μ m thickness, and
119 all available sections of each sample were subjected to *in situ* mRNA capture, library
120 preparation, and sequencing at the Stereo-seq platform.

121 The subcellular spatial resolution achieved by Stereo-seq (~500 nm distance
122 between DNBs) was not fully utilized in our previous dataset due to the lack of cell
123 location information. Here, to address this, we attempted to achieve single-cell spatial
124 resolution by nucleus staining and imaging of each Stereo-seq chip before library
125 preparation. Cell segmentation was then performed based on the location of each
126 nucleus. After sequencing and mapping, 2D spatial gene expression matrices were
127 aligned with segmented images. Each DNB was then assigned to a cell bin, allowing
128 for more precise single-cell transcriptome analysis (**Figure S1A**). We then combined
129 cell bins from all sections of individual samples, performed unsupervised clustering
130 based on both gene expression profiles and spatial locations (**Data S1**), and manually
131 annotated the clusters according to marker gene expression and spatial morphology
132 (**Table S2**). Utilizing the Stereo-seq platform, we generated organism-wide single-cell
133 spatial transcriptomes for 43 embryo, 9 larva, and 5 pupa samples throughout
134 *Drosophila* development, with a total of 3,812,505 cell bins (**Table S1**).

135 With the 2D single-cell spatial transcriptomic datasets, we reconstructed the
136 spatial transcriptomes in 3D leveraging point cloud-based modeling method in *Spateo*
137 package, which were optimized for cell bins. This approach offered enhanced
138 structural details compared to our previous 3D modeling results and allowed the
139 alignment of 3D models from different time points for morphometric analysis (see
140 below). The 3D modeling of cell bin spatial transcriptomic data effectively captured the
141 anatomical morphology of tissues with finer details than our previous 3D models
142 (**Figure 1B and Figure S1B**). In our previous study on limited embryo and larva
143 samples, we demonstrated that Stereo-seq data reproducibly captured spatial gene
144 expression patterns that largely overlapped with established *in situ* databases^{15,16}, as
145 well as those that were absent in these databases. Based on this more comprehensive
146 spatiotemporal transcriptomic dataset, we further identified a list of 338 genes without
147 reported spatial expression patterns in embryos and reconstructed their patterns in 3D

148 (Table S3). We selected 9 genes to validate their spatial expression patterns with
149 fluorescence *in situ* hybridization (FISH) and found high consistency with scStereo-
150 seq data in terms of spatial gene expression patterns and tissue enrichment (Figure
151 1C and Figure S1C). These results further substantiated the power of Stereo-seq in
152 recapitulating spatial gene expression profiles and guiding *in vivo* validation.

153

154 **A single-cell spatiotemporal multi-omics atlas of *Drosophila***
155 **embryogenesis**

156 Despite its ability to provide a better representation of single-cell spatial
157 transcriptomes, scStereo-seq had a higher dropout rate compared to droplet-based
158 scRNA-seq due to a reduced number of DNBs assigned to each cell bin. This limitation
159 curtailed the ability of scStereo-seq to detect genes that express at a lower level. To
160 overcome this drawback and to augment our single-cell 3D spatial transcriptomic data
161 with deeper transcriptomic and epigenomic information, we collected samples at 2-
162 hour intervals across embryogenesis and performed droplet-based scRNA-seq and
163 scATAC-seq (Figure 1A). Following quality control, we obtained 238,242 single-cell
164 transcriptomes with scRNA-seq, with a median of 6,841 unique molecular identifiers
165 (UMIs) and 1,707 genes per cell (Table S1). These quality control statistics in our
166 scRNA-seq data were comparable to or better than previous *Drosophila* embryo
167 scRNA-seq studies^{4,5} (Figure 1D). Additionally, we obtained 240,573 single-cell
168 chromatin accessibility profiles with scATAC-seq, with a median of 11,772 fragments
169 per cell (Table S1). The number of fragments captured per cell and other quality control
170 statistics in our scATAC-seq data were also comparable to or better than previous
171 *Drosophila* scATAC-seq datasets^{5,17} (Figure 1E and Figure S1D-F) and achieved high
172 coverage of previously reported scATAC-seq datasets^{5,17}, DNase I hypersensitive sites
173 (DHS)¹⁸, annotated transcription start sites (TSS)¹⁹, and known enhancer sites²⁰⁻²²
174 (Figure 1F).

175 With the aggregated scRNA-seq data collected across embryogenesis, we
176 performed an initial round of coarse unsupervised clustering and generated 45 cell
177 clusters in the uniform manifold approximation and projection (UMAP) plot (Figure
178 S1G). We annotated these clusters and classified annotations at three levels (cell
179 type/tissue substructure - tissue - germ layer, e.g., gastric caecum - midgut - endoderm)
180 based on marker gene expression (Figure 1A and Table S2). Similarly, we performed
181 coarse unsupervised clustering in aggregated scATAC-seq data, generating 40 distinct

182 clusters in the UMAP plot (**Figure S1H**). Each cluster was also annotated through
183 inspection of marker genes (**Figure 1A and Table S2**). The data we collected achieved
184 extensive coverage of major tissues, as reflected by the proportion of cells
185 representing each tissue and their dynamics over developmental stages (**Figure 1G**).

186 Given the deep genome coverage of our data, we further profiled tissue cell type
187 heterogeneity by subclustering and annotating tissue clusters from scRNA-seq and
188 scATAC-seq data. The resolution of subclustering for each tissue was determined
189 based on previously reported cell type complexities. Detailed cell types were annotated
190 based on marker gene expression and literature search (**Table S4**). Through
191 subclustering of the scRNA-seq data, we were able to examine the specific
192 composition of embryo tissue cell types. For example, the subclustering of the
193 peripheral nervous system (PNS) cluster allowed for the distinct identification of
194 neurons and glia from external sensory²³ and chordotonal organs^{24,25} (**Figure S2**).
195 These subclustering results indicated that we were able to extensively characterize the
196 major cell types in the embryo and identify several rare ones, such as adult midgut
197 progenitors (AMPs)²⁶ and entero-endocrine cells (EEs)²⁷ in the midgut (see below). We
198 also identified subclusters representing most of these detailed cell types in the
199 scATAC-seq data (**Figure S3**). While we annotated tissue subclusters to the best of
200 our knowledge, there could still be instances where clusters were not assigned their
201 optimal annotations. We annotated some of the ambiguous or unknown cell clusters
202 with reference to cell types they resembled most based on marker genes, such as
203 “neuron-like” (**Figure S2 and S3**). Therefore, community efforts are welcome to help
204 further specify the annotations of tissue cell types. To verify the well annotated
205 subclusters we identified in both datasets, we compiled a list of common tissue
206 substructure/cell type markers, which are identified in both datasets (**Table S5**) and
207 validated the expression specificity of 3 previously unreported cell type markers using
208 FISH (**Figure 2A**).

209 In summary, we generated a compendium of scStereo-seq, scRNA-seq, and
210 scATAC-seq datasets throughout *Drosophila* embryogenesis. The high granularity and
211 temporal continuity of our multi-omics data opened the possibility of cell type- and
212 developmental age-dependent integration of these multi-omics data.

213

214 **Developmental age-matched integration of multi-omics data**

215 Integration of multi-omics data offers more comprehensive perspectives when

216 searching for key molecular factors regulating tissue development. Our multi-omics
217 data were obtained from multiple batches of samples using different techniques.
218 Considering the rapid spatiotemporal gene expression changes during embryogenesis,
219 it is crucial to confirm that the developmental ages of samples were matched before
220 integrating multi-omics data. Age matching was also necessitated by the fact that
221 mated female flies might retain embryos in their reproductive tract for some time
222 between fertilization and egg laying ("egg retention")²⁸, leading to possible deviations
223 of the actual developmental age from the sample collection windows in individual
224 scStereo-seq samples.

225 To precisely stage our samples, we applied *RAPToR*, a predictive model inferring
226 the developmental age of biological samples based on transcriptomic profiles²⁹, on
227 both embryo scStereo-seq and scRNA-seq data. The developmental age of embryo
228 scStereo-seq samples was determined by *RAPToR* inference with the entire embryo
229 as a pseudo-bulk input (**Table S1**). The ages inferred by *RAPToR* aligned well with the
230 collection window for the majority of samples. However, in a few instances, there was
231 a significant discrepancy, with *RAPToR* inferring an age notably older than that derived
232 from the collection window, indicating the presence of female egg retention (**Table S1**).
233 We further validated the age of these samples by inspecting their nuclear staining
234 morphologies and found better agreement with *RAPToR* inference than collection
235 window. Consequently, these samples are denoted by their *RAPToR*-inferred
236 developmental age rather than the actual sample collection time window (e.g., E15.75
237 refers to an embryo sample with the inferred developmental age of 15.75 h). The
238 resulting set of 43 embryo scStereo-seq samples we collected comprehensively
239 covered *Drosophila* embryogenesis (**Figure S4A**). The *RAPToR*-inferred
240 developmental age of single cells from scRNA-seq data showed overall good
241 agreement with their actual sample collection window (**Figure 2B and Figure S4B**),
242 but with significant tissue-dependent variations within each stage (**Figure S4C**), likely
243 because *RAPToR*, a model trained on bulk RNA-seq data, lacks cell type specificity
244 for scRNA-seq data. Similar variations were also observed in age inference of
245 individual cell bins of scStereo-seq samples (**Figure S4D**). To infer the developmental
246 age of cells from scATAC-seq data, we employed a previously described neural
247 network model⁵. The resulting cell developmental age was also largely consistent with
248 the sample collection window (**Figure 2C and Figure S4E**).

249 Subsequently, we selected cells in the scRNA-seq data with a *RAPToR* inferred
250 developmental age difference of 1 hour for integration with scStereo-seq data using

251 *NovoSpaRc*³⁰. The integrated data enabled the imputation of spatial gene expression
252 patterns with higher genome coverage, yielding markedly reduced signal background,
253 enhanced tissue enrichment, and improved spatial gene expression patterns that
254 exhibited greater resemblance to FISH validation results (**Figure 1C and Figure S1C**).

255 We acquired scRNA-seq and scATAC-seq data from several hundred embryos
256 per sample batch. Sample developmental age matched collection window for the
257 majority of embryos, and the substantial sample size mitigated the influence of female
258 egg retention. This was reinforced by the consistency between the model-predicted
259 age and the actual collection window in both datasets (**Figure 2B-C**). Additionally, the
260 developmental ages of scRNA-seq and scATAC-seq were inferred with different
261 models and might not be comparable. Consequently, we directly used sample
262 collection window to integrate the scRNA-seq and scATAC-seq data for downstream
263 analysis.

264 Together, our three multi-omics datasets exhibited coherence during embryo
265 stages and can be integrated in a developmental age-specific manner in downstream
266 analyses.

267

268 **Construction of multi-omics tissue development trajectories**

269 To delve into the detailed dynamics of developing tissues, we aimed to
270 chronologically organize the tissue cell types in scRNA-seq and scATAC-seq data into
271 continuous tissue developmental trajectories. Upon examining the subclustered and
272 annotated data, we noticed that certain developmentally transitional cell types were
273 categorized into different tissue clusters between assays, possibly due to differences
274 in assay techniques, genome coverage, or clustering resolution (e.g., "muscle
275 primordium" was annotated in the "mesoderm" cluster of the scATAC-seq dataset but
276 in the "muscle" cluster of the scRNA-seq dataset) (**Figure S2 and Figure S3**). To
277 resolve this issue, instead of focusing on individual tissues, we included all cells of the
278 same germ layer for collective and continuous analysis.

279 We first integrated the scRNA-seq and scATAC-seq data by finding integrated
280 anchors for label transfer, imputing gene expression matrix from peak matrix of
281 scATAC-seq data, and co-embedding them in the same UMAP space (**Figure 2D**).
282 Subsequently, unsupervised clustering was performed on the integrated germ layer
283 data (**Figure S4F**). Notably, a substantial number of late-stage cells annotated as
284 "muscle" and "epidermis" in the scATAC-seq data did not correspond to any cell

285 clusters in the scRNA-seq data (**Figure 2D**). This discrepancy likely stemmed from
286 technical limitations in capturing late-stage muscle (possibly due to their syncytial
287 characteristics) and epidermal cells with our droplet-based scRNA-seq procedure. This
288 was supported by a significant decrease in the fraction of these two cell types in late-
289 stage scRNA-seq data (**Figure 1G**).

290 To construct tissue developmental trajectories within a germ layer, we applied
291 *PhyloVelo*³¹ to the integrated data to establish velocity vector fields for three germ
292 layers and re-annotated cell clusters based on marker genes and their chronological
293 order along the velocity trajectories (**Figure 2E and Table S4**). Due to their
294 complexities, the trends of cell type differentiation are better visualized in 3D UMAP
295 plots (**Data S2**). With these velocity vector fields, we delineated multi-omics tissue
296 development trajectories for all three germ layers (**Figure 2F**).

297 Multi-omics tissue development trajectories allowed continuous and systematic
298 tracing of various aspects of tissue- and cell type-specific dynamics during embryo
299 development. To assess the differentiation dynamics of single cells, we employed
300 *CytoTRACE*³², which leveraged the number of detectably expressed genes as a robust
301 indicator of differentiation potential. *CytoTRACE* analysis revealed diverse trends in
302 differentiation dynamics across tissues during organ specification and maturation
303 (**Figure 3A-B and Figure S4G**). In general, mesodermal and endodermal tissues
304 exhibited a slower decrease in differentiation potential compared to ectodermal ones.
305 As anticipated, gonad cells maintained a consistently high level of potential throughout
306 embryogenesis. Notably, the nervous system displayed the most rapid decline in
307 differentiation potential throughout development, indicating its relatively faster pace
308 towards terminal differentiation (**Figure 3A**). Within each tissue, different cell types
309 also exhibited varying rates of reduction in differentiation potential during development
310 (**Figure 3B and Figure S4G**). Genes whose expression level showed the strongest
311 positive correlation with *CytoTRACE* scores were enriched in cell differentiation-
312 related and ribosome protein genes (**Figure S4H-I and Table S6**). The latter has been
313 previously reported as indicators of both differentiation potential (reviewed in Ref³³)
314 and aging¹⁰. Conversely, genes whose expression level most negatively correlated
315 with *CytoTRACE* scores included specific markers of differentiated tissues (e.g.,
316 GABAergic neuron-specific marker *Rdl*³⁴ and hemocyte-specific marker *Ppn*³⁵) (**Figure**
317 **S4H**).

318 To characterize the activities of signaling pathways along tissue trajectories, we
319 utilized 7 signaling pathway gene sets from *FlyphoneDB*³⁶ and examined the

320 expression dynamics of core pathway component genes across tissue developmental
321 trajectories (**Figure S5A-B**). Throughout the trajectories, we observed the up-
322 regulation of multiple tissue-specific signaling pathways that are well-documented in
323 the literature. The BMP signaling pathway, known for its integral role in ectoderm
324 dorsal-ventral patterning (reviewed in Ref³⁷), and in the regulation of neuromuscular
325 junctions (NMJ, reviewed in Ref³⁸), demonstrated the highest level of activity in early
326 ectoderm and muscles. Meanwhile, the FGFR signaling pathway, which has been
327 widely recognized for its role in trachea branching morphogenesis (reviewed in Ref³⁹),
328 showed maximum activity during the early stages of tracheal development. Lastly, the
329 Hippo signaling pathway, well-established for its contribution to myogenesis (reviewed
330 in Ref⁴⁰), was most active in early muscle clusters (**Figure 3C**). Thus, our multi-omics
331 tissue developmental trajectories could serve as a systematic framework for exploring
332 cell-cell communication networks.

333

334 **Spatiotemporal cell type succession during tissue development**

335 Next, we aimed to visualize the spatiotemporal dynamics of the identified cell
336 types along the multi-omics tissue development trajectories. Using the marker genes
337 associated with cell types as a reference, we applied the label transfer method from
338 *Seurat* to annotate scStereo-seq cell bins with the cell types identified in the multi-
339 omics tissue development trajectories. At the tissue level, the transferred labels
340 demonstrated good agreement with manually annotated scStereo-seq cell bin clusters
341 (**Figure 3D**). Considering their relatively defined and regular morphology, we selected
342 fat body and foregut/hindgut (both of ectodermal origin⁴¹) as models and aligned their
343 cell types with embryo scStereo-seq samples. Within these tissues, the distribution of
344 cell bins from label-transferred scStereo-seq and cells from scRNA-seq data exhibited
345 a coherent pattern when plotted in the same UMAP space (**Figure 3E**). Additionally,
346 the top marker genes of each label-transferred cell type in scStereo-seq data were
347 consistent with their counterparts in the integrated scRNA-seq and scATAC-seq data
348 (**Figure S5C**). These results suggested a precise mapping of cell types to their spatial
349 locations in scStereo-seq data.

350 Within tissues, at the cell type level, the succession of different stages of cell types
351 can be traced through their proportional changes over development (**Figure 3F**). The
352 spatial distribution of each cell type can be quantified by neighborhood enrichment,
353 where a higher score indicates a greater level of spatial clustering (**Figure 3G**). We

354 observed significantly higher neighborhood enrichment in foregut/hindgut cell types
355 compared to those in the fat body. When mapped to their spatial locations, different
356 stages of foregut/hindgut cell types formed more aggregated clusters, while fat body
357 cell types were more scattered and mixed (**Figure 3H**). These observations suggested
358 that these two tissues employ different cell differentiation strategies. In the fat body,
359 differentiating cells are dispersed across the entire tissue, resulting in the mixing of cell
360 types at different stages. In the foregut/hindgut, spatially defined “differentiation hubs”
361 exist to continuously give rise to new cells, while cells outside the hubs do not
362 contribute much to differentiation and proliferation. Consequently, cell types at different
363 developmental stages occupy more distinct spatial locations. This hypothesis was
364 further supported by the spatial distribution of cell bin *CytoTRACE* scores of scStereo-
365 seq data. Cells with higher differentiation potential were more spatially aggregated in
366 foregut/hindgut than in fat body (**Figure 3I**). It is established that fat body cells originate
367 from precursors arranged in segments that extend throughout the entire tissue⁴². This
368 arrangement could account for the widespread dispersion of differentiating cells we
369 observed here. On the other hand, the role of spatially clustered potential
370 foregut/hindgut differentiation hubs might be associated with previously identified
371 niches of digestive tract stem cells, where two defined groups of stem cells give rise to
372 the adult foregut and hindgut, respectively⁴³.

373 Therefore, through label transfer, we were able to map cell types along tissue
374 development trajectories to their spatial locations in scStereo-seq samples, allowing
375 us to track their spatiotemporal dynamics. In the following analyses, we extended this
376 approach to more complex CNS and midgut cell types to uncover their dynamics during
377 development.

378

379 **Transcription factor regulatory networks along tissue development 380 trajectories**

381 Transcription factors (TFs) play a pivotal role in orchestrating the proper formation
382 and growth of tissues. To unravel the regulatory networks governed by TFs during
383 tissue development and differentiation, we scrutinized the top marker genes of each
384 cell type and investigated the enrichment of TF binding motifs in their promoter/TSS
385 regions in scATAC-seq data. Motif enrichment analysis unveiled the regulatory TFs
386 guiding the differentiation paths from each germ layer (**Table S7**), encompassing both
387 well-established cell type-specific regulators as well as potentially novel and

388 uncharacterized ones.

389 Throughout the developmental trajectories, we pinpointed multiple well-
390 characterized TFs that exhibited stage- and tissue-specific regulatory functions. We
391 then traced the temporal dynamics of their regulatory activities along tissue
392 development trajectories. Exemplary findings include motif enrichment of *GATAe* in
393 Malpighian tubules⁴⁴, *Rfx* in both PNS and CNS⁴⁵, and *sage* in the salivary gland⁴⁶
394 within the ectoderm. In the mesoderm, we identified motif enrichment of *Mef2* in
395 somatic muscle⁴⁷, *bin* in visceral muscle⁴⁸, and *srp* in fat body⁴⁹ and hemocytes⁵⁰. The
396 endoderm displayed motif enrichment of *CrebB* in early endoderm formation⁵¹, along
397 with *fkh*, *GATAe*⁵², and other GATA family TFs (reviewed in Ref⁵³) regulating late-stage
398 endoderm specification (**Figure S6A-B**). Additionally, we uncovered several previously
399 uncharacterized TFs with potential spatiotemporally specific functions during
400 embryogenesis. Notably, CG34367, a TF featuring a Homeobox (Hox) domain,
401 exhibited significant and specific motif enrichment in the early primordium of all three
402 germ layers, suggesting a ubiquitous role in early developmental regulation.
403 Mammalian orthologs of CG34367, SHOX/SHOX2, are implicated in early
404 organogenesis and their mutations are associated with genetic disorders including
405 Turner syndrome^{54,55}. The TF *crp*, ubiquitously expressed in multiple tissues and
406 known for specifying terminal cells in tracheal tubes⁵⁶, demonstrated potential
407 regulatory functions in the mesodermal fat body and hemolymph, as indicated by our
408 analysis. Moreover, we observed significant motif enrichment of CG9727 and
409 CG12219 in nervous systems, CG7368 in cardiac mesoderm, and CG12236 and
410 CG4360 in early endoderm (**Figure 4A-B**), indicating their specific functions in these
411 tissues.

412 To further explore the spatial regulon activities of these TFs, we applied *SCENIC*⁵⁷
413 to the integrated scStereo-seq and scRNA-seq data, revealing that the spatial patterns
414 of regulon activities for both known and uncharacterized TFs were consistent with the
415 motif enrichment analysis in terms of tissue specificity (**Figure 4C**). The spatial
416 expression patterns of these less-characterized TFs were also probed by BDGP *in situ*
417 database and all of them exhibited weak signal or ubiquitous expression patterns in
418 stages of their inferred functions (**Figure S6C**). The lack of staining can be explained
419 by poor probe efficiency or low expression levels of these TFs, while ubiquitously
420 expressed TFs could perform regulatory functions in a tissue-specific manner. The
421 ambiguous *in situ* staining results underscored the advantages of our multi-omics data
422 in facilitating the elucidation of tissue-specific TF functions.

423 Subsequently, we employed *Pando*⁵⁸ on the integrated scRNA-seq and scATAC-
424 seq data to delve into the detailed regulons of identified TFs. Notably, visceral muscles
425 exhibited segregation into two distinct groups in our multi-omics trajectories (dashed
426 rectangles in **Figure 2E-F**, also see **Figure S6D and Data S2**). Upon scrutinizing the
427 regulons of *bin* in these two groups, we observed that gene modules that *bin* regulated
428 varied between them (**Figure 4D**). In the visceral muscle 1 group, *bin* activity was
429 positively correlated with expression levels of muscle assembly genes (*Zasp52*, *sals*,
430 *Zasp66*, and *kon*). Conversely, in the visceral muscle 2 group, *bin* activity was
431 negatively correlated with expression of genes with similar functions (*Prm*, *Zasp52*,
432 *slow*, and *CAP*). Intriguingly, *bin* activity appeared to be partially opposite in regulating
433 muscle structure assembly in these two groups. Supporting this result, the expression
434 level of *Zasp52*, a core component of indirect flight muscles⁵⁹, was significantly lower
435 in scRNA-seq cells from visceral muscle 2 late cluster than those from visceral muscle
436 1 late cluster (**Figure S6E**). It is known that *bin* is a cell fate determinant of
437 transformation between somatic and visceral muscle through the BMP signaling
438 pathway^{48,60}. The contrasting effects *bin* exerted on some target genes in different
439 visceral muscle cell groups may reflect its fine-tuning functions among muscle lineages.
440 We further visualized the gene regulatory networks (GRNs) in which *bin* participated
441 in these two groups (**Figure 4E**). Inspection of GRNs in two visceral muscle groups
442 uncovered several shared known muscle co-regulators of *bin*, such as *Mad*, a BMP
443 pathway regulating TF functional at NMJ⁶¹, and *CHES-1-like*, also a BMP pathway
444 regulator⁶². *bin* also co-regulated with different nervous system-related TFs in the two
445 lineages, including *klu* and *pnr* in visceral muscle 1, and *slp2* and *FoxP* in visceral
446 muscle 2. *klu* had reported functions in motor neurons⁶³ while *FoxP* is important for
447 motor coordination⁶⁴. The organization of these GRNs highlighted the coordinated and
448 cell type-specific co-regulation between nervous and muscle systems.

449 To further characterize the fat body- and hemolymph-specific regulon activities of
450 *crp* identified above, we visualized its GRN in early fat body and discovered that *crp*
451 co-regulated with *srp* (**Figure 4E**). Upon inspecting their regulons, we found that *srp*
452 activity was negatively correlated with lipid metabolism pathway genes (*Apoltp*,
453 *Aldh7A1*, *apolpp*, *Jheh1*, and *Echs1*), while *crp* acted in a contrasting fashion.
454 Additionally, *srp* positively regulated amino acid metabolism genes *Mtap*, *Hn*, and *Gdh*,
455 while *crp* positively regulated glutathione metabolism genes *GstE6*, *GstE7*, *GstE11*,
456 and *GstE12* (**Figure 4D**). Target genes in the regulons of *srp* and *crp* largely
457 overlapped in fat body and plasmacytocytes, and this overlap increased along
458 developmental trajectories of both tissues (**Figure 4F**). The regulons of *srp* we

459 identified were consistent with its role in inducing fat cell formation starting from early
460 fat body development^{49,65} and *crp* is known to affect cell growth and tissue size control⁵⁶.
461 Our analysis suggested an increasingly coordinated role of *crp* and *srp* within the same
462 GRN during fat body and plasmacytoid development.

463 In tracing tissue development trajectories, we successfully identified both
464 previously reported and potential TFs, uncovering their tissue specificity and regulatory
465 networks. It is worth noting that TFs and their binding motifs were linked based on *CIS-BP*
466 database⁶⁶. While the motifs we mentioned here were indeed enriched in specific
467 cell types, it remained possible that their actual binding TFs differ from database
468 inference, or there are additional unknown regulators that could bind these motifs.
469 Algorithms like *Pando* used correlation between gene expression levels of TFs and
470 their target genes to infer up- or down-regulation effects of these TFs, which could be
471 susceptible to capture sensitivity of current single-cell sequencing techniques. Thus,
472 additional experiment validation is required to elucidate these tissue-specific regulatory
473 networks.

474

475 **Multi-omics dissection of gene regulation during embryonic CNS
476 development**

477 The *Drosophila* nervous system serves as a prominent model for investigating
478 neuron development and functions. Thus, we examined the development of CNS from
479 a multi-omics perspective based on our data. The subclustering results of the CNS
480 scRNA-seq data identified most major CNS cell types, including neuroblasts (marked
481 by *mira* and *wor*), ganglion mother cells (GMC, marked by *tap*), neural progenitors
482 (marked by *insb* and *nerfin-1*), glioblasts (marked by *gcm* and *repo*), and various types
483 of glial cells (**Table S4**). The UMAP plot of CNS cells provided an intuitive
484 representation of differentiation paths of neurons and glia (**Figure 5A**). Subclustering
485 scATAC-seq data also identified most of these CNS cell types (**Figure 5B**). Integration
486 of scRNA-seq and scATAC-seq data allowed detailed annotation of various mature
487 neuron cell types by generating more distinct cell type specific markers (**Figure 5C-D**
488 and **Table S4**). In light of the significantly higher complexity of mature neuron cell types,
489 we chose a higher resolution for their clustering and annotation. Each mature neuron
490 cell type was annotated based on expression of neurotransmitters (**Figure 5D**). Within
491 mature neuron groups expressing the same neurotransmitters, cell subtypes were
492 distinguished by a list of largely uncharacterized marker genes (**Figure 5E** and **Table**

493 **S4).** The complex trends of CNS cell differentiation are better visualized in 3D UMAP
494 plots (**Data S3**).

495 Remarkably, mature neurons displayed a significantly more striking diversity in the
496 UMAP plot derived from scATAC-seq data compared to that from scRNA-seq data
497 (**Figure 5A-B and Data S3**). This observation suggested the possibility that mature
498 neurons appear similar in their transcriptomic profiles during late embryogenesis, but
499 various types of neurons are under highly distinct epigenetic regulations, likely in
500 preparation for more complex neural differentiation during larval stages. Notably, co-
501 embedding of scRNA-seq and scATAC-seq CNS cells in the same UMAP plot showed
502 that mature neurons in scATAC-seq data displayed an overall distribution shift from
503 those in scRNA-seq data (**Figure 5C and S7A**). This shift was not observed in non-
504 mature neuron cell types (**Figure S7A**). Similarly, we also noted a temporal mismatch
505 in the distribution of mature neuron subtypes between scATAC-seq and scRNA-seq
506 data (**Figure S7B**). This further reflected the potential divergence between
507 transcriptomic and epigenomic profiles among mature neurons.

508 ***Differentiation trajectories of mature neurons revealed by scATAC-seq***

509 To dissect the epigenetic regulation of mature neuron and identify potential
510 regulators of cell subtype differentiation, we explored the 3D UMAP plot of scATAC-
511 seq data and focused on a cell subset, in which a cell cluster expressing sensory
512 neuron markers (e.g., *ct*, *lov*, and *robo3*) appeared to differentiate into three mature
513 neuron clusters: GABAergic (GABA) neurons 2 & 4 and tyraminergic (TA) neurons 1
514 (**Figure 5F and Data S3**). We employed *STREAM*⁶⁷ to map the differentiation
515 trajectories of these cell clusters, which were then projected onto the 3D UMAP space.
516 This enabled us to identify the branching events within the differentiation trajectories
517 (**Figure 5F**). Leveraging these trajectories, we further subclustered sensory neurons
518 into two distinct groups according to their chromatin accessibility and differentiation
519 outcomes (**Figure 5G**). Focusing on the top DA peaks between sensory 1 & 2, as well
520 as those among GABA 2, GABA 4, and TA 1, we conducted a TF motif enrichment
521 analysis. This revealed *Kr* as a principal regulator of this differentiation process, with
522 significant motif activity contrast between the differentiation branches (**Figure 5G and**
523 **Figure S7C**). *Kr* is a well-established transcription repressor and temporal determinant
524 of neuron fate^{68,69}. The gene *Kr* itself exhibited significantly higher chromatin
525 accessibility and expression level in GABA 2 compared to GABA 4/TA 1 (**Figure S7D**),
526 suggesting a more active regulatory activity in GABA 2. On the contrary, the binding
527 motifs of *Kr* are significantly less enriched in GABA 2 and most of its potential target

528 genes (nearest genes of *Kr* binding motifs) displayed reduced chromatin accessibility
529 and expression level in GABA 2 compared to GABA 4/TA 1 (**Figure 5G**). This
530 observation supports a working model based on previous knowledge that *Kr* performs
531 its transcription repressor functions through local quenching of transcription
532 activators^{70,71}, likely through closing up the proximal chromatin. We carefully examined
533 the genes that showed significant changes in both chromatin accessibility and
534 expression level among the neuron subtypes. Pathway enrichment of these genes
535 showed that these *Kr* target genes were functionally enriched in processes including
536 axon guidance and glycosylation (**Figure S7E**).

537 While most potential targets of *Kr* showed decreased chromatin accessibility, their
538 expression changes varied across target genes. This variability could be due to the
539 impact from transcriptional co-factors of *Kr*. To identify co-regulators that influenced
540 the expression levels of genes repressed by *Kr*, we conducted a motif enrichment
541 analysis within *Kr* peaks (**Figure S7F**). This revealed several previously characterized
542 neuron differentiation regulators, including *hb*, *grh*, and *opa*, through the comparison
543 between GABA 2 and TA 1. (**Figure 5H**). It is well established that the sequential
544 activities of *hb*, *Kr*, and *grh* determine the temporal fate of several neuroblast lineages
545 during differentiation (reviewed in Ref⁷²). *opa* is previously reported as a regulator of
546 *Kr* activity during early embryogenesis⁷³, as well as a regulator of temporal patterning
547 of neural progenitors that acts in coordination with *grh*⁷⁴. Our observations suggested
548 that the synergy of these regulators persist in more differentiated neuron subtypes.
549 Both *hb* and *grh* are known to function as either transcription activators or repressors^{75–}
550 ⁷⁷. In the differentiation process we investigated here, the motif activities of *hb* and *grh*
551 were mostly in up-regulated *Kr* target genes, even in the presence of repressive effect
552 of *Kr*. Conversely, the motif activities of *opa* were enriched in down-regulated *Kr* target
553 genes (**Figure 5H**). We then examined the peaks around the binding motifs of these
554 co-regulators in the chromosomal regions of their mutual target genes using the
555 scATAC-seq data. We observed a dramatic overall increase in chromatin accessibility
556 along the differentiation track from sensory 2 to GABA 4/TA 1, compared to the subtle
557 changes during the transition from sensory 1 to GABA 2. This seems to be a general
558 phenomenon regardless of the expression change between GABA 2 and GABA 4/TA
559 1, suggesting diverse and complex regulatory consequences depending on the
560 cooperating TFs and the targets. This was further supported by the long distance of
561 *Kr*/co-regulator peaks from the TSS of the nearest genes, which could be a few kb in
562 length and mostly downstream of gene targets. As examples, the peaks and
563 chromosomal regions of two genes with the most significant expression level changes,

564 *side-III* (potentially co-regulated by *Kr*, *hb*, and *grh*) and *fz* (potentially co-regulated by
565 *Kr* and *opa*), are plotted to demonstrate their coordinated regulatory roles outside of
566 promoter regions (**Figure S7G**).

567 Overall, we observed a high clustering resolution in scATAC-seq data when
568 characterizing mature neuron subtypes, which was able to facilitate the discovery of
569 transcription regulators and their co-factors that govern the refined developmental
570 trajectories.

571 ***Mutual and diverse GRNs among CNS cell subtypes***

572 In pursuit of potential regulators of the diverse neuron cell types, we conducted
573 motif enrichment analysis and pinpointed TF regulators across various stages of neural
574 development (**Table S7**). Among these, previously reported TFs, such as *seq*,
575 governing dendrite and axon outgrowth⁷⁸, exhibited the highest motif activity in neuron
576 progenitors. Additionally, *klu*, known to specify the identity of a specific group of
577 neuroblasts⁷⁹, displayed sustained activity in several types of mature neurons (**Figure**
578 **S8A**). Our analysis also revealed cell type-specific activity for several less
579 characterized TFs, including *BEAF-32*⁸⁰ and above-mentioned potential nervous
580 system-specific regulator *CG12219* (**Figure S8A**). *Pando* visualization of their
581 regulons showed that in neuroblasts, *BEAF-32* and *seq* co-regulated multiple cell cycle
582 regulator genes (e.g., *PolE2*, *fzy*, *mad2*, and *Mcm2*) and neuroblast determinants (e.g.,
583 *mira* and *CycE*) (**Figure S8B-C**). In mature neuron clusters, *CG12219* and *klu*
584 displayed similar activity patterns across cell types (**Figure S8A**) and their regulons
585 largely coincided in mature neuron cell types (**Figure 5I**). For example, in
586 dopaminergic/serotonergic neurons 2, *CG12219* and *klu* co-regulated the same group
587 of signal transduction genes (e.g., *Pkc53E*, *Oct1R*, *Syngr*, *Syt α* , and *CG34393*) in the
588 same GRN; In cholinergic neurons 3, *klu* and *CG12219* co-regulated glucose
589 metabolism (e.g., *Pgi* and *Pgm1*) gene groups in the same GRN (**Figure S8B-C**).

590 Our findings strongly supported the existence of cell subtype-specific regulons for
591 the same TF, as well as the cooperative actions of different TFs that are finely tuned
592 for neuronal differentiation. These regulatory mechanisms may play a role in
593 orchestrating the precise development of neurons.

594 ***Refined spatiotemporal CNS cell subtypes during embryogenesis***

595 We subsequently applied label transfer to project identified CNS cell types onto
596 scStereo-seq samples (**Figure 5J**). As expected, there was a discernible shift in cell

597 count fraction from undifferentiated neuroblasts and GMCs to differentiated neuron and
598 glia cell types from early to late-stage samples (**Figure S8D**). Co-embedding embryo
599 scStereo-seq data with scRNA-seq data in the same UMAP space demonstrated high
600 coherence (**Figure S8E**). Among the transferred cell types, as expected from their
601 anatomical distribution, neuroblasts and glia cell types exhibited the highest level of
602 spatial aggregation, whereas mature neurons were largely dispersed (**Figure S8F**).
603 Upon inspecting their spatial loci, the distribution of CNS cell types aligned well with
604 their stratified anatomical structures in early-stage samples, with less differentiated cell
605 types occupying the outer layers of the CNS and more differentiated ones in the inner
606 layers (**Figure 5J**). These findings supported the precision of the label transfer method
607 in identifying CNS cell subtypes in scStereo-seq samples, thereby facilitating the
608 exploration of neuron functions within their spatial context.

609 **Gene expression dynamics during CNS morphometric changes**

610 The *Drosophila* CNS undergoes profound morphological transformations
611 throughout embryogenesis, influenced by intrinsic factors such as cell proliferation and
612 differentiation, as well as external cues like inter-organ communication (reviewed in
613 Refs^{72,81,82}). Leveraging our 3D spatial transcriptomes generated with scStereo-seq,
614 we delved into transcriptomic dynamics during morphogenesis by simultaneously
615 tracking changes in tissue morphology and gene expression. Employing morphometric
616 analysis from the *Spateo* package, we were able to align the 3D point-cloud models of
617 two time points in spatial coordinates. Subsequently, we linked cell bins between the
618 two samples based on spatial adjacency and transcriptomic similarity (**Figure S9A**).
619 This enabled the generation of 3D vectors, concurrently characterizing cell migration
620 paths and transcriptomic changes over continuous developmental stages (**Figure 5K**).
621 Finally, we computed morphometric parameters describing cell migration paths and
622 correlated them with transcriptomic changes.

623 We characterized the morphometric changes in the CNS across 3D models of
624 seven scStereo-seq samples, spanning developmental ages from 7 to 18 h. These
625 changes were represented by parameters such as the acceleration of cell migration
626 (proportional to the distance cells migrated given the same migration time between two
627 samples) (**Figure 5K and Movie S1**), curvature (bending of cell migration paths)
628 (**Figure S9B**), curl (rotation of paths) (**Figure S9C**), and torsion (curve twisting of paths)
629 (**Figure S9D**). Throughout CNS development, we observed a shift in regions with the
630 highest acceleration from the posterior end of the ventral nerve cord (VNC) to the
631 anterior end of the brain (**Figure 5K**). The decline in acceleration and curl scores in

632 the VNC was likely linked to the completion of germ band retraction, indicating that the
633 shortening of the VNC during early development primarily relied on the migration of
634 posterior cells toward the anterior end. Conversely, the increase in acceleration and
635 curl scores in the anterior brain region might reflect active cell organization in brain
636 lobes during late embryogenesis (**Figure 5K and Figure S9C**). As anticipated from
637 CNS morphology, regions with the highest curvature and curl scores concentrated
638 around the curved joint between the VNC and the brain (**Figure S9B-C**).

639 The morphometric analysis yielded a set of genes exhibiting spatiotemporal
640 expression changes relevant to CNS morphometric dynamics (**Table S8**). Gene
641 ontology (GO) enrichment revealed that genes linked to CNS morphometric changes
642 were highly enriched in cell fate specification and pattern formation (**Figure S9E and**
643 **Table S8**). Additionally, gene group enrichment analysis highlighted the significance of
644 Hox family transcription factors, such as *Antp*, *Ubx*, *abd-A*, and *Abd-B*, consistent with
645 their critical roles in specifying CNS patterns and segment identity⁸³. The spatial
646 expression patterns of these Hox family genes in our 3D CNS models aligned with
647 BDGP *in situ* results (**Figure S9F**). Notably, the expression levels of these Hox genes
648 were mostly negatively correlated with acceleration scores across developmental
649 stages (**Figure S9G**), suggesting that their expression is associated with the inhibition
650 of CNS cell migration. It is reported that Hox genes' roles include repressing neuroblast
651 formation and entry into neuroblast quiescence in embryonic CNS (reviewed in Ref⁸⁴).
652 It is possible that Hox genes inhibit CNS cell migration through repression of neuroblast
653 differentiation.

654 Associations were also observed between CNS morphometric scores and known
655 CNS development regulators (e.g., *mira*, *tl*, and *toy*) as well as several
656 uncharacterized factors (**Table S8**). For example, the expression level of CG42394
657 was negatively correlated with acceleration, while that of *lncRNA:CR30009* displayed
658 a positive correlation (**Figure 5L**). We validated the CNS-specific expression of these
659 potential regulators with FISH (**Figure 5M**). Notably, this list includes multiple long non-
660 coding RNA (lncRNA) genes besides *lncRNA:CR30009*, which was previously
661 reported to be enriched in glia and co-localize with the glia marker gene *repo*⁸⁵.
662 Examining these lncRNA genes in our scRNA-seq data, we observed that the
663 expression of *lncRNA:CR30009* and *lncRNA:CR45388* showed the highest correlation
664 with neuroblast and glioblast marker genes (**Figure S9H**). These observations implied
665 that the two lncRNA genes may influence CNS morphometric changes through the
666 regulation of neuroblasts. Therefore, by conducting morphometric analysis of the CNS,

667 we were able to identify both known and potential regulators of CNS cell migration.

668

669 **Cell type and functional diversity of developing midgut**

670 The *Drosophila* midgut, serving as the functional equivalent of the mammalian
671 small intestine, fulfills versatile roles in food digestion, nutrient uptake, immunity, and
672 endocrine regulation. The diverse functions of the midgut are carried out by distinct
673 types of cells and the regions they form (reviewed in Refs^{86,87}). Nevertheless, the timing
674 of differentiation of these cell types remained elusive. Our prior investigations indicated
675 that certain functional cell types began to emerge during late embryogenesis¹³.

676 Here, we delved deeper into the diversity of midgut cell types using our multi-
677 omics data. The clustering resolution of our scRNA-seq data was adequate for
678 distinguishing various midgut cell types. Consequently, we concentrated on the
679 scRNA-seq data, combined endoderm and midgut cell clusters, and conducted high-
680 resolution subclustering and annotation (**Figure 6A**). The UMAP plot portrayed a
681 multitude of intestinal cell types throughout the developmental and differentiation
682 stages of the midgut (**Figure 6A-B**). These included endoderm (marked by Notch
683 signaling pathway genes *E(spl)m4-BFM* and *Brd*), adult midgut progenitors (AMPs,
684 marked by *esg*)²⁶, 6 types of entero-endocrine cells [EEs, marked by *pros* and
685 distinguished by specific expression endocrine genes (**Figure 6C**)], and 6 types of
686 enterocytes (ECs, marked and distinguished by digestive enzyme and metabolism-
687 related genes)⁸⁸. Cell clusters in transitional states between midgut primordium and
688 functional ECs were denoted as "midgut chambers", with each cluster distinguished
689 by its top markers.

690 ***Differentiation and molecular characteristics of embryonic midgut cell types***

691 We further investigated the molecular markers of distinct midgut cell types.
692 Pathway enrichment analysis of cluster marker genes revealed that embryonic midgut
693 cells are regulated by distinct signaling pathways, reflecting their versatile functions.
694 Of note, the Notch signaling pathway was enriched in early endoderm, AMP/EE
695 progenitors, and AMPs clusters, consistent with previous reports^{27,89}. Additionally, the
696 Wnt signaling pathway was enriched in multiple EE clusters⁹⁰ (**Figure S10A**).
697 Interestingly, AMPs and several EE clusters showed high enrichment in pathways
698 related to autophagy and apoptosis (**Figure S10A**). Indeed, the expression of
699 autophagy-related genes *Atg101* and *Atg9*⁹¹, as well as apoptosis-related genes *chrb*

700 and *scy*⁹² are specifically enriched in AMPs and EEs within midgut (**Figure S10B**). It
701 is possible that AMPs and EEs employ cell death-related mechanisms to maintain
702 homeostasis during embryogenesis. To further characterize the functions of these
703 diverse midgut cells, we used *Hotspot*⁹³ to identify 17 gene modules from midgut
704 scRNA-seq data (**Figure 6D**), each with distinct functional GO and cell type-specific
705 enrichment (**Figure 6E**). For example, module 1, enriched in neuropeptide signaling
706 pathways, was concentrated in all 6 EE clusters, aligning with their role in sensing
707 stimuli and secreting neural signals for physiological regulation; Module 6, enriched in
708 Cytochrome P450 family enzymes, was concentrated in EC (*Acbp3+*), suggesting a
709 significant role in metabolism; Module 14, functionally enriched in genes regulating
710 nervous system development and the Notch signaling pathway, was concentrated in
711 AMPs and EE (*Mip+*) (**Figure S10C**).

712 It is established that during metamorphosis, larval midgut cells undergo apoptosis,
713 and adult midgut cells arise from AMPs to reconstitute the adult midgut^{89,94}.
714 Interestingly, in the UMAP plot, the differentiation trajectory of endoderm cells
715 branched early on towards adult cell types (AMP/EE) and larval ones, which implied
716 that the fates of these cell types were predetermined upon their differentiation from the
717 endoderm primordium (**Figure 6A**). We observed that AMPs and EEs originated from
718 the same cluster of cells in the UMAP plot, marked by the expression of *esg* and *pros*.
719 This is in line with previous reports indicating that AMPs and EEs derive from the same
720 group of midgut cells²⁷, which we denoted as “AMP/EE progenitors” in our data (**Figure**
721 **2E-F**). To further track the kinetics of cell type emergence, we employed *Dynamo*⁹⁵ to
722 illustrate the transcriptomic vector fields of midgut development. *Dynamo* analysis
723 revealed that the kinetics of cell state changes supported the notion that AMPs and
724 EEs derived from the same group of progenitors (**Figure 6F**). As previously reported,
725 the Notch signaling pathway extensively participated in this differentiation process^{27,89},
726 along with stem cell differentiation factors such as *esg*, *pros*, *ase*, and *Sox100B*⁸⁸.
727 Notably, we observed highly specific dynamics of the innate immune signaling gene
728 *Sting*⁹⁶ in AMPs, suggesting its role in the specification of AMPs (**Figure 6G**). *Dynamo*
729 analysis also facilitated the tracing of EC formation from their precursors in midgut
730 chambers (**Figure 6F**) and suggested cell type-specific markers for their specification
731 (**Figure S10D**).

732 In summary, we categorized and examined the variety of cell types, each with
733 unique functions, present in the embryonic midgut. This allowed us to reveal the
734 differentiation trajectories of AMPs and EEs, as well as identify potential regulatory

735 processes that govern their development and maintenance.

736 ***Spatial distribution of midgut cell types from embryonic to pupal stages***

737 Next, we sought to map the midgut cell types we identified to their spatial locations.
738 Using the cell type marker genes from scRNA-seq data as a reference, we located
739 their counterparts in scStereo-seq data through label transfer (**Figure 6H**). Co-
740 embedding scRNA-seq and label transferred scStereo-seq data in the same UMAP
741 space demonstrated high coherence (**Figure S10E**). The top marker genes of label
742 transferred scStereo-seq cell bins were also consistent with scRNA-seq cells (**Figure**
743 **S10F**), indicating precise mapping of cell types to their spatial locations. In the label
744 transferred scStereo-seq 3D models, we observed the dynamics of changes in cell
745 fraction throughout development, reflecting the different timings of emergence of these
746 cell types. For example, EC (*Try29F+*) appeared around 13 h of development, while
747 EC (*Acbp3+*) did not form until around 17 h (**Figure 6I**). Neighborhood enrichment
748 analysis suggested that although most cell types were sparse in their spatial
749 distribution, EC (*Jon99Cii+*) and EC (*Try29F+*) were more aggregated compared to
750 other cell types (**Figure S10G**). Indeed, these cell types and the expression patterns
751 of their marker genes occupied distinct spatial loci consistently across embryo
752 scStereo-seq samples (**Figure 6J**). Therefore, mapping cell types to our scStereo-seq
753 data enabled the tracing of embryonic midgut cell type distribution within their
754 spatiotemporal context. This approach provides a comprehensive understanding of
755 how different cell types are spatially and temporally organized during embryonic midgut
756 development.

757 We subsequently endeavored to identify midgut cell types in the larva and pupa
758 scStereo-seq samples. We performed subclustering for larval and pupal midgut cell
759 bins and used label transfer results as a reference for annotation. Given the substantial
760 developmental changes and technical differences, we opted to use label transferred
761 and re-annotated embryo scStereo-seq cell bins as the reference for label transfer of
762 larva and pupa scStereo-seq samples, rather than embryo scRNA-seq cells. Cell
763 clusters that demonstrated low confidence in label transfer were annotated as new
764 larval or pupal cell types based on top marker genes (**Figure S11A-C and Table S4**).

765 Compared to embryos, larvae displayed a more diverse array of intestinal
766 epithelial cell types over development (**Figure 6K and Figure S11D**). Notably, different
767 ECs were densely clustered along the anterior-posterior axis of the midgut, as
768 observed in the 3D models of their distribution (**Figure 6K**). To understand their roles,

769 we carried out *Hotspot* gene module analysis on each larva scStereo-seq sample. To
770 fully leverage our scStereo-seq data, we took spatial location of cell bins into
771 consideration during identification of gene modules. Examining the functional
772 enrichment of gene modules, we noticed that various cell types performed unique
773 functions, some of which were similar to those in the embryonic midgut, while others
774 were new and specific to the larval midgut. For instance, the gene module
775 concentrated in EC (CG7298+) in L1 early implied functional enrichment of chitin
776 formation, suggesting that cell type specialized midgut chitinization (reviewed in Ref⁹⁷)
777 commenced in the early larval stages; the gene module concentrated in EC
778 (CG13075+) in L3 late indicated functional enrichment of apoptosis and pattern
779 specification, possibly related with midgut remodeling during late larval stages (**Figure**
780 **6L and Figure S11E**).

781 During the L3 stage, substantial changes occurred among midgut cell types. The
782 anterior gastric caecum and the posterior EC (*Acbp3*+) in the midgut contracted and
783 decreased in number in L3 early sample, eventually vanishing completely in L3 late
784 sample (**Figure 6K and Figure S11D**). This suggested that significant remodeling and
785 reorganization of the midgut takes place during the L3 stage, which coincided with the
786 previously established timing of midgut cell death in this region before
787 metamorphosis⁹⁸. Accompanying this process, we observed a marked and widespread
788 shift in the gene expression profiles of various cell types within the midgut,
789 characterized by a considerable increase in the expression of ribosomal and
790 mitochondrial genes and their representation in marker genes (**Table S4**).

791 We subsequently examined the morphology of the midgut and the marker genes
792 within the pupal midgut subclusters and identified a notable cluster of midgut cells that,
793 rather than expressing digestion-related genes, exhibited strong expression of
794 ecdysone-responsive genes, such as *Eig71Ek*, *Eig71Ea*, and *Edg78E* (**Table S2**).
795 These cells, which we designated as "midgut outer" in manual annotation, formed a
796 sheath-like structure that enveloped the rest of midgut cells, which we labeled as
797 "midgut inner" (**Figure S11F and Data S1**). These structures, which receded after the
798 P24 stage and re-emerged at the P72 stage, bore a strong resemblance to the yellow
799 body and its surrounding midgut epithelium into which the midgut delaminates during
800 metamorphosis²⁶ (reviewed in Ref⁹⁹).

801 In conclusion, the use of label transfer-assisted spatial mapping and annotation
802 unveiled spatially restricted and cell type-specific functions of larval and pupal midgut
803 cell types. The spatial transcriptomic data from our pupa scStereo-seq samples also

804 offered valuable resources for studying the regulation of midgut morphogenesis.

805 ***Emergence and layout of embryonic midgut regions***

806 The adult *Drosophila* midgut is conventionally divided into five regions (hereafter
807 termed R1~R5) based on morphological constraints, with each region performing
808 distinct functions^{100,101}. While functional regionalization of the midgut has been
809 extensively studied at larva and adult stages, the precise timing of subregion
810 emergence during embryonic development remains to be elucidated. In our previous
811 study utilizing 3D spatial transcriptomic models, we observed the emergence of
812 subregions with distinct digestive functions during late embryogenesis¹³.

813 Here, we further characterized the process of embryonic midgut regionalization.
814 Referring to regional marker genes summarized in Ref¹⁰¹, we first identified 6 gene
815 modules from adult midgut regional marker genes with *Hotspot* (**Figure S12A**) and
816 established their correlation with expression profiles of adult midgut regions. Among
817 them, modules 4 and 6 display similar correlation with both R1 and R2, so we denoted
818 the two regions they corresponded to R1/R2-like 1 & 2, respectively (**Figure S12B**).
819 With these regional markers as references, we identified cell groups exhibiting
820 transcriptomic similarity to adult R1 to R5 in scStereo-seq midgut cell bins, which we
821 termed R1-like to R5-like. Each regional cell groups displayed distinct marker gene
822 expression (**Figure S12C**) and increasing levels of spatial clustering over development,
823 suggesting that they occupied distinct areas in the midgut (**Figure S12D**). This allowed
824 us to investigate the timing of their appearance and trace the spatial distribution of
825 these regions. Upon inspecting the expression of gene modules in scStereo-seq
826 samples, we noted that the expression of R1-like gene modules initiated at the very
827 early stages of endoderm development and gradually declined over time. Modules
828 corresponding to other regions began to actively express around 13 h of
829 embryogenesis (**Figure 6M**). Simultaneously, the spatial distribution of regions started
830 to crystallize around the same time point, mirroring the spatial order as observed in the
831 adult midgut (R1 to R5 from anterior to posterior) (**Figure 6N**). This suggested that
832 although midgut underwent lysis and reformation during metamorphosis, its regional
833 organization was already patterned during embryogenesis.

834 To profile the biological functions each region undertook, we examined GO
835 enrichment of marker genes for the identified embryonic midgut regions. The R1-like
836 region is functionally enriched in protein metabolism; the R1/R2-like regions are
837 functionally enriched in fatty acid metabolism; the R3-like region is functionally

838 enriched in ion transport and pH regulation, consistent with the acidic nature of this
839 region¹⁰²; the R4-like region is functionally enriched in stimuli sensing, proteolysis, and
840 nucleic acid metabolism; the R5-like region is functionally enriched in metal ion
841 homeostasis (**Figure S12E**). These functions aligned well with their counterparts in
842 adult midgut regions^{100,101}. We analyzed the cell type composition of each region and
843 observed that over development, each region acquired its major cell types. For
844 instance, R1/R2-like 2 mainly composed of EC (*Muc55B*+) and R3-like mainly
845 composed of copper cells and EC (*Jon65Aiii*+) (**Figure S12F**).

846 Together, our scStereo-seq data demonstrated distinctive cell compositions in the
847 embryonic midgut regions, which determined the spatially localized sub-organ
848 functions maintained through adulthood.

849 ***Morphometric regulators during embryonic midgut development***

850 The *Drosophila* midgut experiences significant morphological transformations
851 during development. It forms from the fusion of two separate rudiments at the anterior
852 and posterior ends of the embryo, evolves into a closed chamber, and eventually
853 establishes a highly convoluted tube-like morphology (reviewed in Ref¹⁰³). We used
854 *Spateo* to model the morphological changes during the fusion of the anterior and
855 posterior midgut around stage 12 (~8 h of development) and the convolution of midgut
856 tubes during late embryogenesis (**Figure 6O and Movie S2**). Morphometric analysis
857 of cell migration modeled the fusion of early midgut and the torsion of late midgut,
858 which revealed an association between midgut cell acceleration and multiple
859 previously reported morphogenesis regulators across stages, including the GATA
860 family TF *grn*, which is known to regulate the process of midgut fusion¹⁰⁴, and Notch
861 signaling pathway component *Kaz-m1*, which displays a highly restricted expression
862 pattern at the fusion site of the midgut and has a potential regulatory role¹⁰⁵ (**Table S8**).
863 The expression levels of both factors were negatively correlated with acceleration
864 scores, suggesting that they were associated with inhibition of midgut cell migration
865 (**Figure 6P**). Starting from E15.77, gastric caecum-specific marker genes *Acbp4* and
866 *Pebp1* ranked top in genes associated with all aspects of morphometric changes
867 (**Table S8**), in line with the timing of gastric caecum extrusion and formation from the
868 midgut chamber (~15 h of development)⁴¹. In addition, multiple Acyl-CoA binding
869 protein (Acbp) family genes demonstrated high correlation with morphometric scores
870 in late-stage midgut, which aligned with their known function of linking nutrient sensing
871 and shaping tissue plasticity¹⁰⁶. We also observed several potential regulators or
872 effectors of midgut morphological changes, such as *CG32633*, which consistently

873 displayed positive correlation with cell migration acceleration across samples (**Figure**
874 **6P**). Thus, morphometric analysis provided clues for identifying potential regulators
875 during the complex morphogenesis process of embryonic midgut.

876

877 **DISCUSSION**

878 After our initial proof-of-principle application of Stereo-seq on *Drosophila*, we
879 present here a single-cell 3D spatiotemporal multi-omics atlas spanning
880 developmental lifespan of *Drosophila* from embryogenesis to metamorphosis. The
881 current study builds upon our previous work by enhancing the Stereo-seq spatial
882 transcriptomic dataset in several ways. Firstly, the sample collection window was
883 expanded to include development from embryo to pupa. While ISH databases like
884 BDGP and Fly-FISH have extensively probed spatial gene expression patterns in
885 embryonic stages, there are still missing genes in these databases. Additionally, similar
886 systematic databases are notably absent for the larval and pupal stages. Our scStereo-
887 seq data effectively encapsulated the spatial gene expression patterns, unveiling the
888 spatiotemporal gene expression dynamics for a list of over 300 genes in embryos,
889 previously uncharted in ISH databases. Our data also serves as a valuable asset for
890 delving into the spatial gene expression patterns in larvae and pupae. Secondly, our
891 previous work using merged bins of a predetermined number of DNBs as units of
892 analysis (e.g., bin 20×20 recognized 400 DNBs as a single "cell") did not accurately
893 capture the transcriptomes of individual cells. Here, we incorporated imaging data from
894 nucleus staining with Stereo-seq to enable cell segmentation and established single-
895 cell spatial transcriptomes. Finally, we integrated droplet-based scRNA-seq and
896 scATAC-seq data with scStereo-seq data for embryo samples, which improved
897 genome coverage and incorporated epigenomic information. The plethora of multi-
898 omics data generated in this study provided many unique angles for dissecting the
899 molecular underpinnings of various aspects of tissue development, as we have shown
900 in this study.

901 The integration of multi-omics data has enriched our analysis, enabling a more
902 nuanced portrayal of cell states. As an example, the transcriptomes of CNS mature
903 neurons are remarkably uniform, as demonstrated by their intertwined distribution in
904 the UMAP space of scRNA-seq data. However, the incorporation of scATAC-seq data,
905 which shows a higher degree of heterogeneity among mature neurons, allowed us to
906 identify detailed neuron subtypes and investigate the regulatory mechanisms driving

907 their differentiation. Leveraging the high heterogeneity of scATAC-seq data, we were
908 able to dissect the differentiation process of a group of neuron subtypes in detail and
909 identified the TF *Kr* as a key regulator. The wealth of chromatin accessibility
910 information allowed us to further uncover TFs that co-regulated gene expression with
911 *Kr*. We also mapped cell clusters, derived from the integration of scRNA-seq and
912 scATAC-seq data, to their spatial positions in the scStereo-seq data. This mapping
913 enabled us to model single-cell transcriptomic and epigenomic profiles within tissue-
914 and developmental stage-specific contexts. Therefore, this multi-omics data
915 integration offered an unprecedented high-resolution spatiotemporal framework for
916 analyzing cell state dynamics, such as TF regulons and signaling pathways.

917 There were also inconsistencies between data generated from different
918 techniques. For example, late-stage epidermis and somatic muscle cells identified in
919 the scATAC-seq data lacked corresponding scRNA-seq counterparts. We observed a
920 similar lack of coherence in CNS mature neurons, which, in addition to missing scRNA-
921 seq data, could also resulted from a temporal mismatch between chromatin
922 accessibility and actual gene expression in these neurons. In certain instances, the
923 chromatin regions of neuron subtype-specific genes were open, but gene expression
924 was delayed. This discrepancy resulted in inaccurately imputed gene expression when
925 integrating scATAC-seq and scRNA-seq data and mismatches in the co-embedded
926 UMAP space. Similar phenomena have been observed in the mammalian nervous
927 system, such as the process of epigenetic priming during normal or pathological
928 development (reviewed in Refs^{107,108}).

929 Compared to our previous study, the point cloud-based 3D modeling of developing
930 tissues in this work provided significantly more detailed structural information that more
931 accurately reflects organ anatomical features. Furthermore, by aligning 3D models
932 between different time points with *Spateo*, we were able to simultaneously track cell
933 migration paths and alterations in gene expression. This morphometric analysis
934 provided a unique perspective, enabling the identification of potential regulators of cell
935 migration and differentiation. It is recognized that the eventual shape and size of an
936 organ can be influenced by physical interactions with neighboring organs and signaling
937 molecules from distant organs during development^{109–111}. In addition to the intra-organ
938 morphometric analysis presented here, these models can also be used to investigate
939 the impact of inter-organ physical or biochemical contact on local gene expression
940 changes, which in turn affect the final boundaries of organs. With the establishment of
941 a complete synapse-resolution connectome of the *Drosophila* larval brain¹¹², our 3D

942 transcriptomes have the potential to be spatially aligned with these synapse
943 connectivity maps. By integrating spatial transcriptome and connectome data, we can
944 simultaneously pinpoint the spatial locations of known and yet-to-be-identified neurons
945 and deconvolute their molecular nature, leading to a deeper understanding of their
946 physiological functions.

947 The extensive datasets we generated here can be leveraged in many ways.
948 *Drosophila* larva and pupa have provided excellent models for studying the course of
949 post-organogenesis development and metamorphosis, yet single-cell profiling of
950 tissues at these stages remained scant. These stages of samples in our scStereo-seq
951 data can be readily integrated with existing larva scRNA-seq datasets^{6,7,113} to
952 complement them with spatial information or provide a spatial framework for future
953 single-cell studies of larval or pupal tissues. The study of early stages of *Drosophila*
954 pupal development has been challenging due to significant tissue lysis and reformation.
955 Our pupa scStereo-seq data provided valuable insights for investigation of tissue-
956 specific transcriptomic changes during metamorphosis.

957 Moreover, the unique organization of our datasets can serve as a source of
958 inspiration for the development of multiple types of bioinformatic algorithms and
959 methods and can serve as benchmarking resources for such algorithms. The
960 organism-wide 3D high-resolution features of our previous Stereo-seq datasets have
961 already facilitated the development of several approaches for various purposes,
962 including quantitative spatiotemporal modeling of single-cell spatial transcriptomic
963 datasets¹⁴, visualization and analysis of spatial omics data¹¹⁴, construction of
964 databases and optimization of their accessibility¹¹⁵, alignment of 2D spatial
965 transcriptomic sections for 3D modeling^{116,117}, and more. The new dataset features in
966 this study can further assist in the development of bioinformatic approaches in many
967 other aspects, such as cell segmentation of spatial transcriptomic data, integration of
968 multi-omics data, spatial mapping of cell types, machine learning-based cell type and
969 age prediction, and cell lineage tracing, among others. With the rapid development of
970 spatial transcriptomic techniques and consequently the mounting number of datasets,
971 these methods will serve as invaluable tools to facilitate our interpretation of multi-
972 omics datasets.

973 In order to make our data more accessible, we have incorporated our datasets
974 into the Spateo Viewer platform. This platform is a versatile and scalable web
975 application specifically designed for the exploration of spatial transcriptomics data.
976 Accessible through our online data portal, Flysta3D, the Spateo Viewer provides user-

977 friendly access to our 3D models. It enables interactive visualization of gene
978 expression, activity of gene groups, and a variety of other customizable parameters
979 within spatiotemporal contexts. We believe that our comprehensive multi-omics
980 database will serve as a catalyst for systematic research into *Drosophila* development,
981 facilitating a deeper understanding of organism-wide spatiotemporal dynamics.

982

983 **LIMITATIONS OF THIS STUDY**

984 Our multi-modal analysis of the dataset revealed a wealth of information and
985 demonstrated its potential for systematic spatiotemporal analysis of *Drosophila*
986 development. However, there are still some areas that require improvement in future
987 studies.

988 The scRNA-seq and scATAC-seq data in this study were obtained from separate
989 samples. We aimed to align cells from the same tissues and same developmental
990 stages between datasets for integrated multi-omics analysis through the control of
991 collection window and inference of single cell developmental age. However, it is still
992 possible that data used for integration were from different states of cells. Methods for
993 simultaneous capture of transcriptomic and chromatin accessibility profiles from single
994 cells have been developed lately^{118,119}, which may provide better integration results,
995 especially addressing the temporal mismatch issue between scRNA-seq and scATAC-
996 seq data. With future technical improvements, spatial information of cells may also be
997 captured simultaneously to generate actual multi-omics profiles for each single cell.

998 This multi-omics atlas was generated exclusively from the genetic background
999 strain *w1118*. However, investigating developmental regulation or disease
1000 mechanisms often involves genetic perturbations, such as knockdown/knockout of key
1001 regulator genes, or changes in environmental conditions, such as pathogen infection
1002 and drug treatment. Therefore, in the future, we plan to expand our study to include
1003 *Drosophila* models with various genetic mutations or subjected to different infection
1004 and/or treatment conditions to establish organism-wide single-cell multi-omics atlases.
1005 This approach will be particularly beneficial for studying complex physiological
1006 processes that involve multiple tissues in response to genetic perturbations, such as
1007 the progression of neurodegenerative diseases, gut-brain axis communication, and
1008 multi-organ metabolic diseases. The pipeline established in this study can serve as a
1009 basis for such investigations, enabling the generation of comprehensive datasets that
1010 incorporate genetic and environmental variability.

1011

1012 **ACKNOWLEDGEMENTS**

1013 This work was supported by Shenzhen Key Laboratory of Gene Regulation and
1014 Systems Biology (Grant No. ZDSYS20200811144002008 to Y.H.), National Natural
1015 Science Foundation of China (Grant No. 32100684 to Q.H.), National Key R&D
1016 Program of China (Grant No. 2022YFC3400405 to X.X. and L.L.), National Key R&D
1017 Program of China (Grant No. 2022YFC3400300 to M.W.), Shenzhen Science and
1018 Technology Innovation Program (Grant No. KQTD20180411143432337, China) (to
1019 Y.H., W.C., and Q.H.), Guangdong Genomics Data Center (2021B1212100001 to T.Y.
1020 and J.C.). Part of data analysis work was performed on the STOMIC Cloud
1021 (<https://cloud.stomics.tech>). Library sequencing was performed in China National
1022 GeneBank. This work was supported by Center for Computational Science and
1023 Engineering and Core Research Facilities at Southern University of Science and
1024 Technology. We thank Dr. Xiaojie Qiu and Dr. Martin Vingron for helpful suggestions
1025 on data analysis and Dr. Mariana Wolfner for helpful comments on the manuscript. We
1026 thank Biorender for graphical resources used in **Figure 1A** and Graphical Abstract.

1027

1028 **AUTHOR CONTRIBUTIONS**

1029 Q.H., L.L., X.X., and Y.H. conceived the idea; C.L., Y.G., W.C., L.L., X.X., and Y.H.
1030 supervised the work; Q.H. prepared the samples; M.W., Z.T., Y.H., N.Y., W.M., W.L.,
1031 C.L., and X.L. prepared the sequencing library and performed sequencing; M.W., Q.H.,
1032 Z.T., L.K., J.Y., R.X., Y.Z., Z.C., Z.J., K.O., X.W., Y.B., and M.L. performed
1033 computational analysis; Q.H., M.W., Z.T., L.K., and Y.H. interpreted the data; Q.H., Y.Z.,
1034 T.Y., Y.W., and Z.Y. performed experimental validation; T.Y., and J.C. established the
1035 data portal and Flysta3D website; Q.H., M.W., W.C., L.L., X.X., and Y.H. acquired
1036 fundings; Q.H., M.W., Z.T., and Y.H. wrote the manuscript; All authors reviewed and
1037 edited the manuscript.

1038

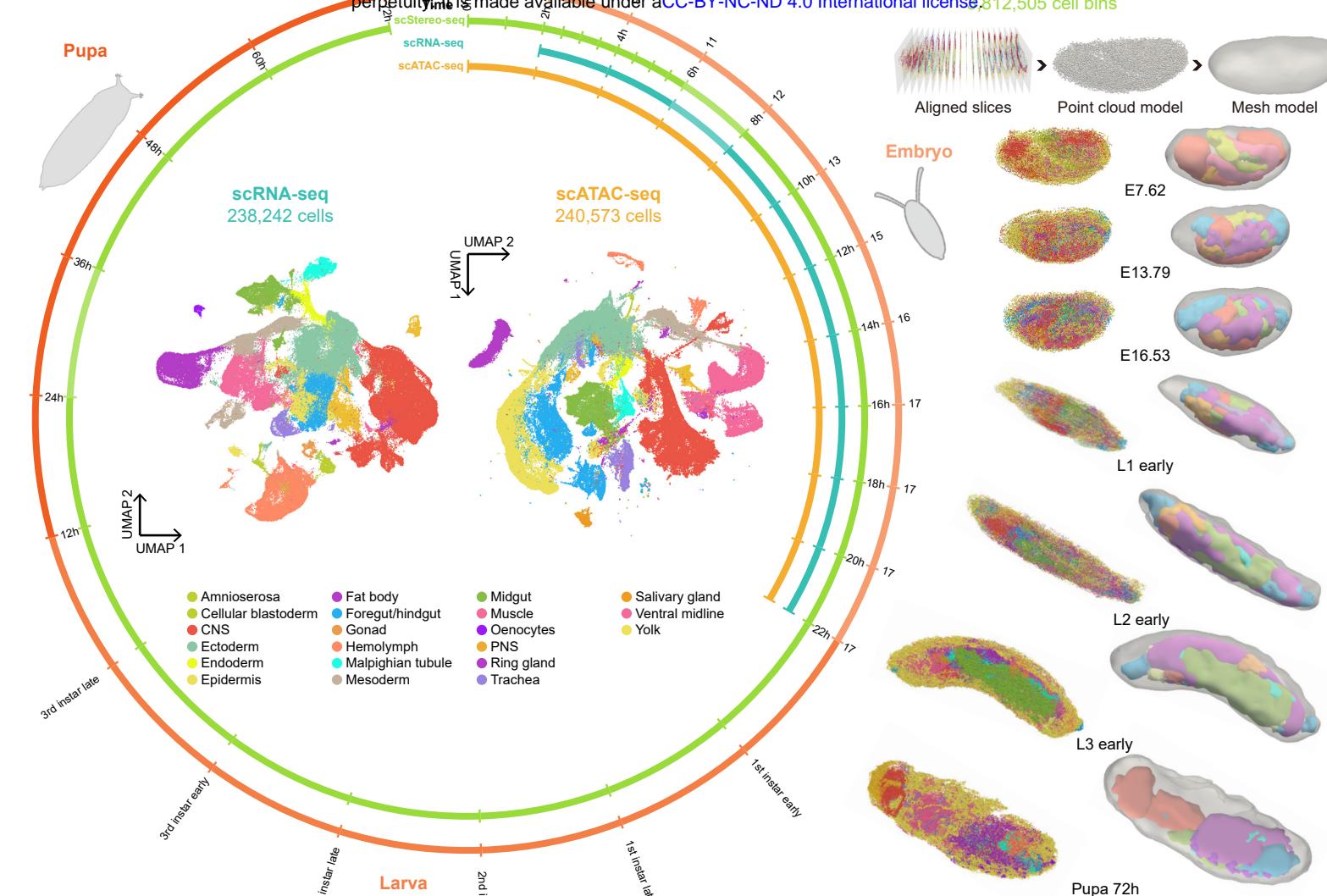
1039 **DECLARATION OF INTERESTS**

1040 The chip, procedure, and application of Stereo-seq are covered in pending patents.
1041 Employees of BGI have stock holdings in BGI.

1042

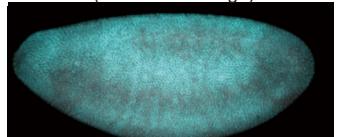
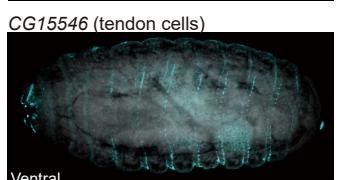
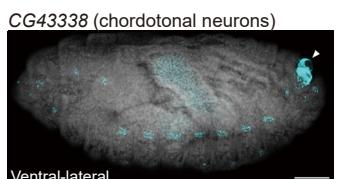
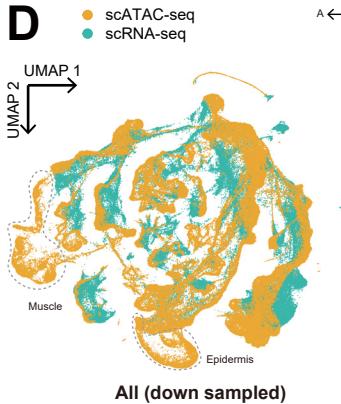
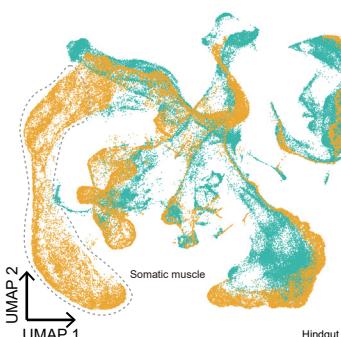
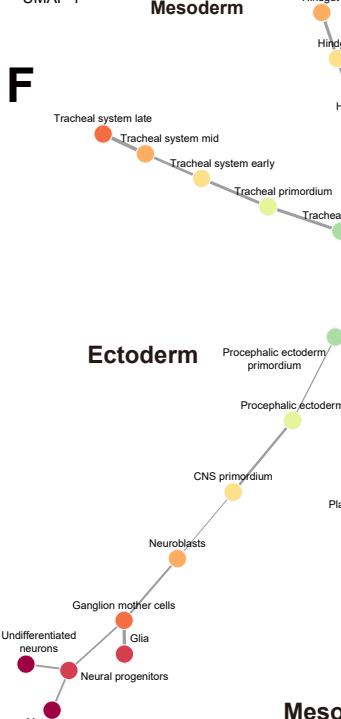
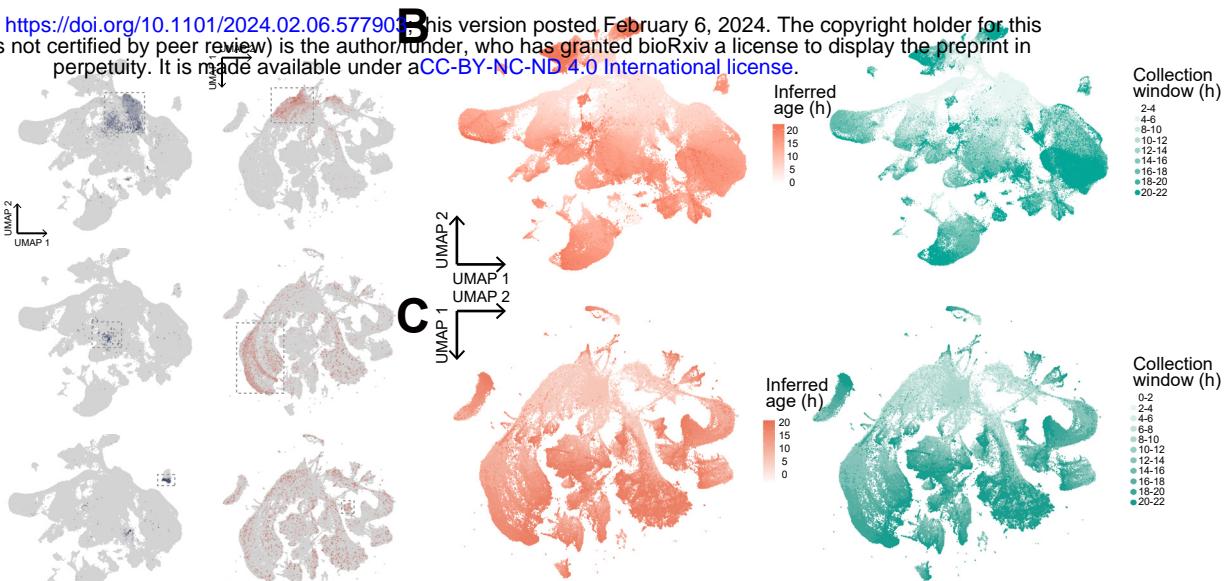
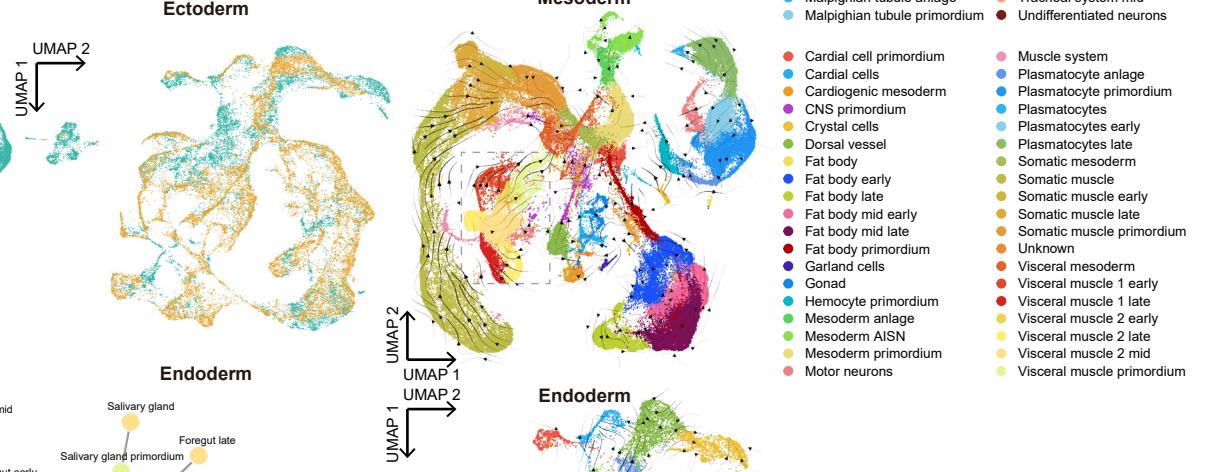
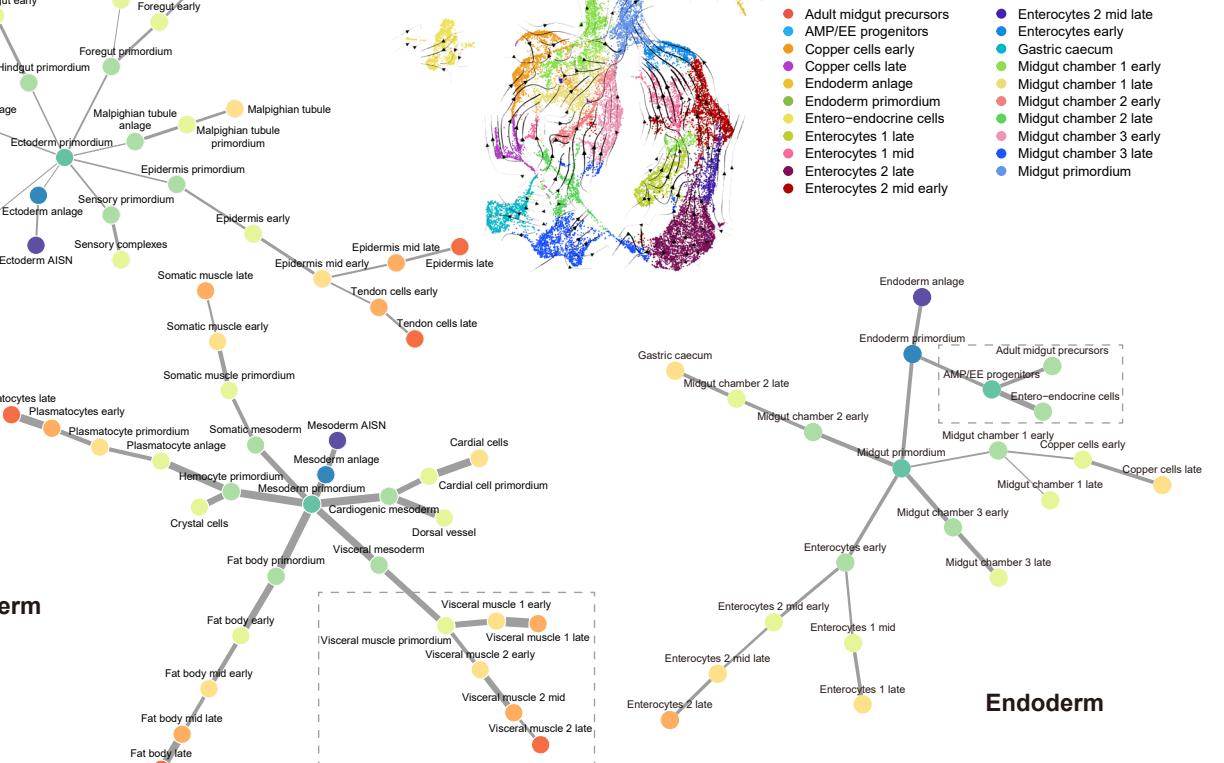
FIGURE LEGENDS

1043



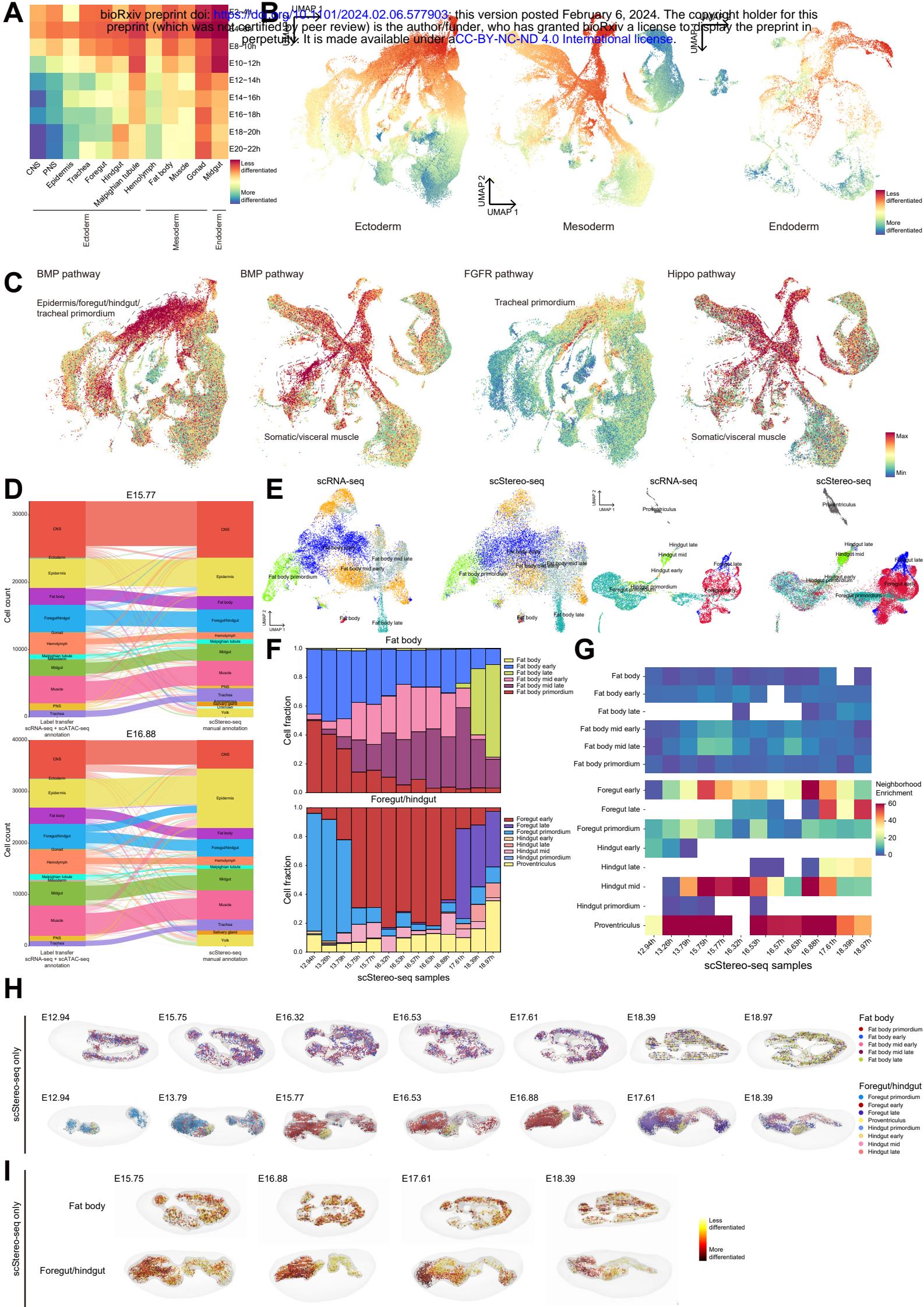
1044 **Figure 1 A single-cell spatiotemporal multi-omics atlas of developing**
1045 ***Drosophila*.**

1046 **(A)** Samples covered in this study. The outer rim indicates sample collection
1047 windows for three omics datasets, with each arc segment represents a collection
1048 window. Time points indicate hours after egg laying in embryos and hours after
1049 pupation in pupa. The inner panel shows UMAP plots of aggregated scRNA-seq and
1050 scATAC-seq data, color coded by tissue annotation. We did not obtain quality P36
1051 scStereo-seq and E6-8h scRNA-seq data. CNS: central nervous system; PNS:
1052 peripheral nervous system. **(B)** 3D modeling of representative scStereo-seq samples
1053 using *Spateo*, showing point cloud (left) and mesh (right) models for the entire animal
1054 over developing stages. Models of epidermis, trachea, hemolymph, and muscle are
1055 not displayed in some samples for better visualization of internal organs. Tissue color
1056 codes are the same as **(A)**. Samples are not on the same scale. **(C)** FISH validation of
1057 representative genes from the list of genes without reported spatial expression
1058 patterns (**Table S3**). For each gene, representative FISH images were obtained from
1059 stage 11-16 embryos from lateral or near-lateral view. Cyan: gene-specific RNA probes;
1060 grey: nuclei stained with DAPI. Arrowheads indicate structures with autofluorescence
1061 (e.g., trachea). Scale bars = 50 μ m. All scStereo-seq samples are shown in lateral or
1062 near-lateral view. A-P: anterior-posterior; D-V: dorsal-ventral. Spatial expression
1063 patterns generated from original scStereo-seq or integrated scStereo-seq and scRNA-
1064 seq data are also from representative stage 13-17 embryos, projected along the Z-
1065 axis. See additional examples in **Figure S1C**. **(D)** Quality benchmark of scRNA-seq
1066 dataset in this study, showing cell number, median UMI number per cell, and median
1067 gene number per cell in datasets from this study and previous *Drosophila* embryo
1068 scRNA-seq studies. **(E)** Quality benchmark of scATAC-seq dataset in this study,
1069 showing cell number and median fragment number per cell from this study and
1070 previous *Drosophila* embryo scATAC-seq studies. **(F)** Heatmap showing proportion of
1071 scATAC-seq peaks in this study overlapping peaks in two previous *Drosophila* embryo
1072 scATAC-seq/scATAC-seq studies, bulk DHS peaks, and peaks in known TSSs and
1073 enhancers. **(G)** Bar plot showing cell type composition of data from scStereo-seq
1074 (some low-quality samples are filtered), scRNA-seq, and scATAC-seq over sample
1075 collection time. The y-axes are fraction of cell types annotated in each dataset. The x-
1076 axes are sample collection time points/windows (*RAPToR* inferred developmental age
1077 for embryo scStereo-seq data).



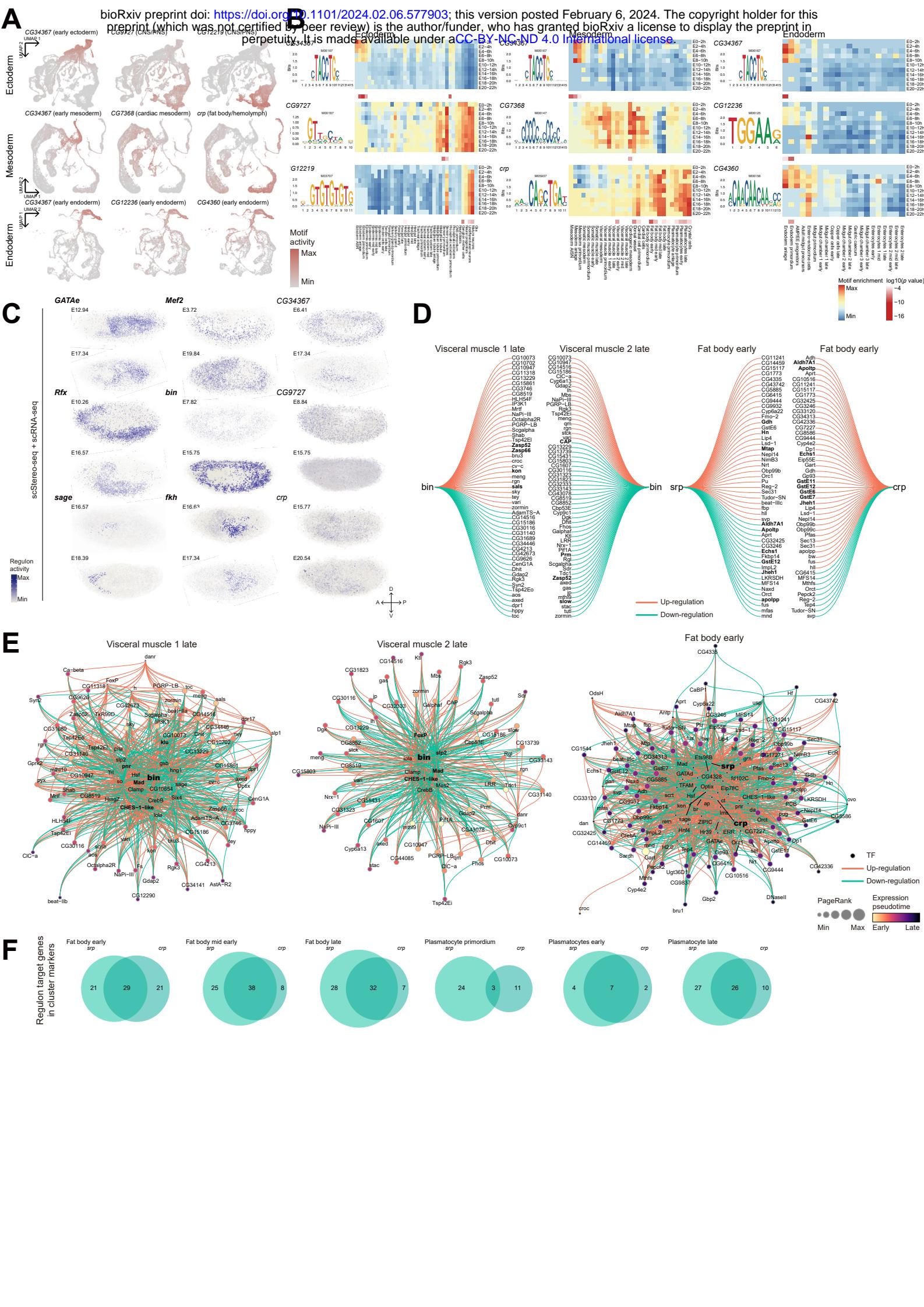
1078 **Figure 2 Integration of scRNA-seq and scATAC-seq data for construction of**
1079 **tissue development trajectories.**

1080 **(A)** FISH validation of representative genes in the list of common tissue
1081 substructure/cell types (**Table S5**). Left: representative FISH images of corresponding
1082 stages of gene expression enrichment, with sample viewpoints labeled. Cyan: gene-
1083 specific RNA probes; grey: nuclei stained with DAPI. Arrowheads indicate structures
1084 with autofluorescence (e.g., trachea). A-P: anterior-posterior; D-V: dorsal-ventral.
1085 Scale bars = 50 μ m; Right: UMAP plots of marker gene expression specificity in
1086 aggregated scRNA-seq and scATAC-seq data. Cells with enriched marker gene
1087 expression/peak accessibility are highlighted in dashed rectangles. **(B)** UMAP plots of
1088 aggregated scRNA-seq data, color coded with *RAPToR* inferred developmental age
1089 (left) and actual sample collection window (right). **(C)** UMAP plots of aggregated
1090 scATAC-seq data, color coded with neural network model inferred developmental age
1091 (left) and actual sample collection window (right). **(D)** UMAP plots of co-embedded
1092 scRNA-seq and scATAC-seq data of all cells (down sampled) and three germ layers.
1093 Dashed lines mark cell clusters in scATAC-seq data that miss corresponding cells in
1094 scRNA-seq data, with their scATAC-seq annotations labeled. **(E)** Velocity fields of co-
1095 embedded UMAP plots of three germ layers in **(D)**, color coded with re-annotated cell
1096 types based on clustering of integrated data. Velocity trajectories point backward from
1097 chronologically older to younger cells. The dashed rectangle indicates visceral muscle
1098 groups discussed in the following analyses. AISN: anlage in statu nascendi. **(F)** Tissue
1099 development trajectories based on cluster phylogeny inferred from **(E)** for major
1100 tissues of three germ layers. Within each germ layer, widths of lines connecting
1101 subcluster annotations indicate gene expression similarities. Dashed rectangles
1102 indicate visceral muscle trajectories discussed in GRN analysis and AMP/EE
1103 trajectories discussed in midgut cell type identification.



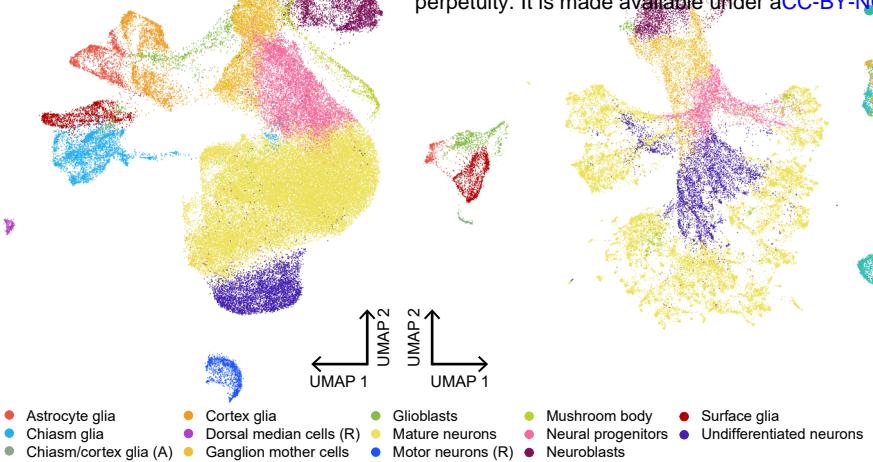
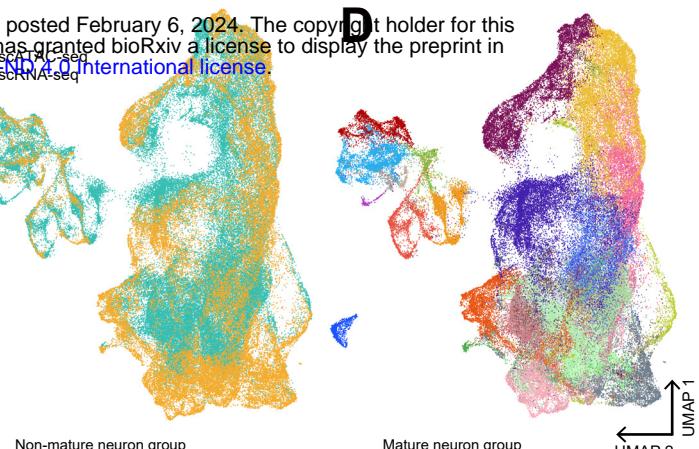
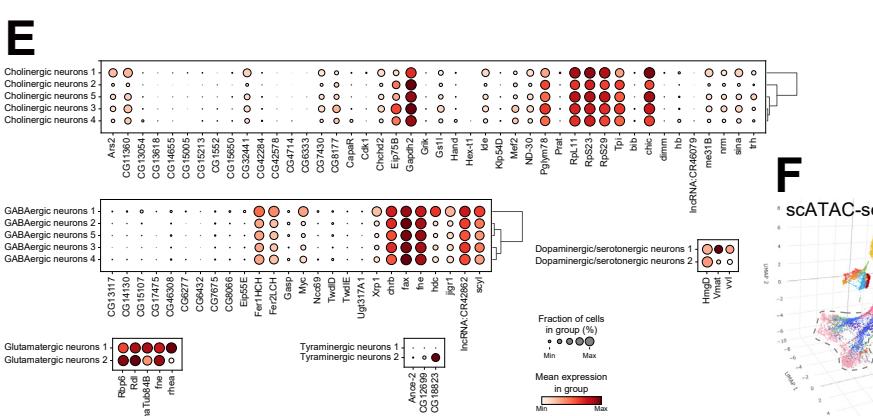
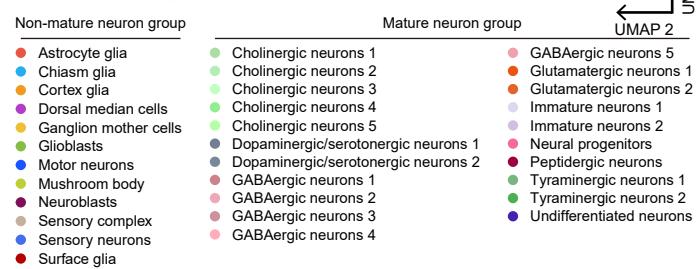
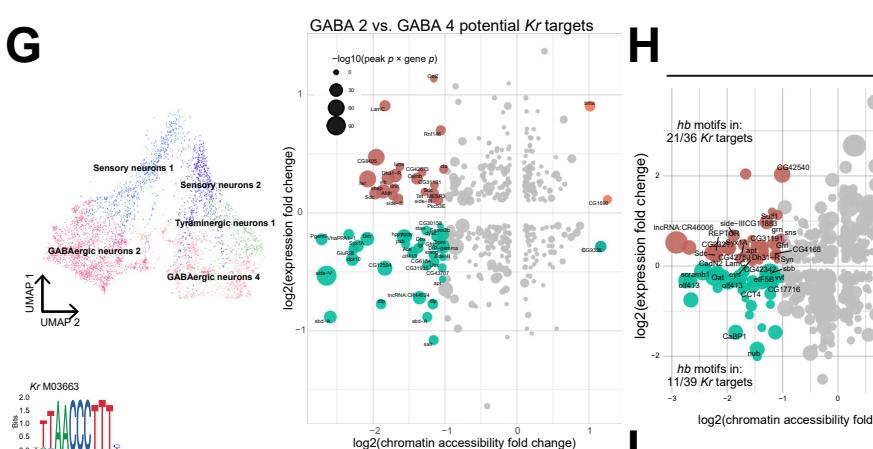
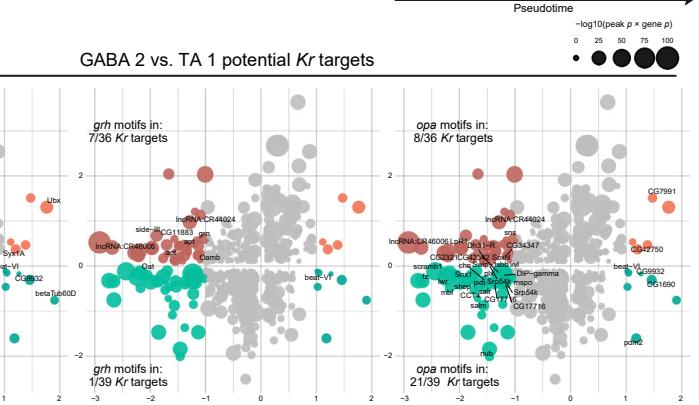
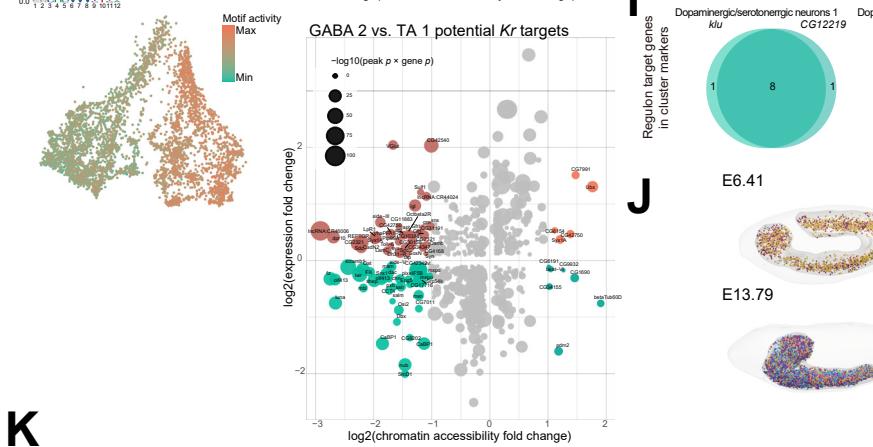
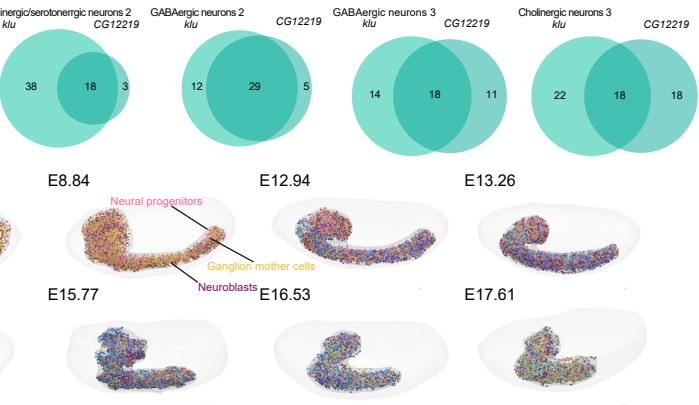
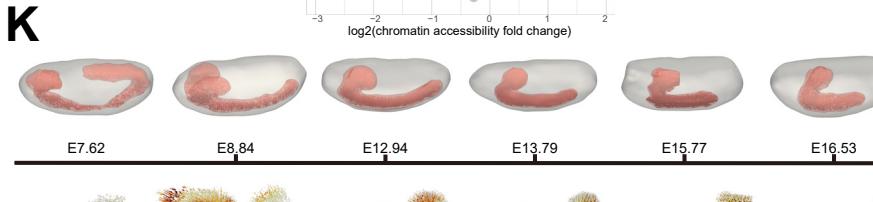
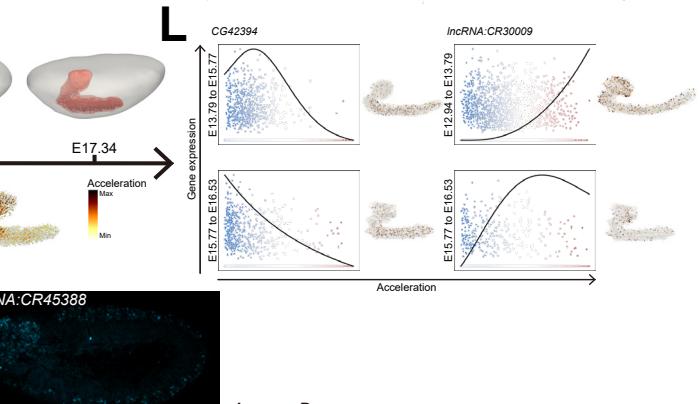
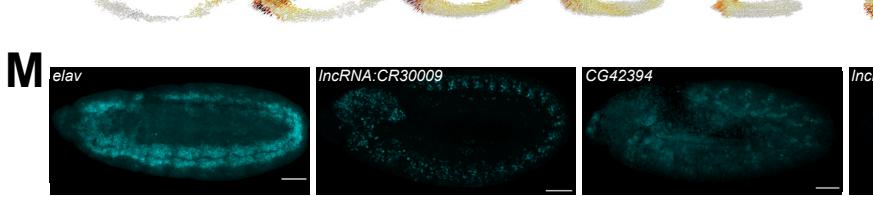
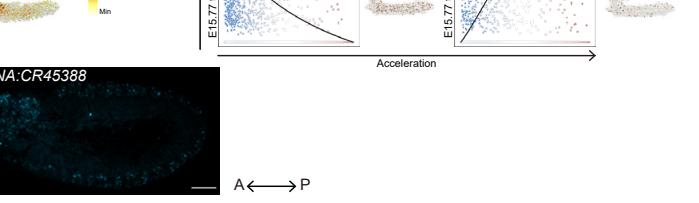
1104 **Figure 3 Spatiotemporal dynamics along multi-omics tissue developmental**
1105 **trajectories.**

1106 **(A)** Heatmap showing median tissue *CytoTRACE* scores based on scRNA-seq
1107 data along tissue development trajectories. *CytoTRACE* scores are scaled across all
1108 cells. **(B)** UMAP plots of scRNA-seq cells in the co-embedded UMAP space in **Figure**
1109 **2E**, color coded with *CytoTRACE* scores. *CytoTRACE* scores are scaled within each
1110 germ layer. **(C)** Same as **(B)** but color coded with gene activity scores of core
1111 components of signaling pathways. Representative tissues enriched in signaling
1112 pathway activities are labeled. **(D)** Sankey plots showing agreement between
1113 scStereo-seq tissue manual annotations and transferred labels from integrated
1114 scRNA-seq and scATAC-seq data in representative scStereo-seq samples. **(E)** Co-
1115 embedding of fat body and foregut/hindgut cells from scRNA-seq and scStereo-seq
1116 (pooled samples) data in the same UMAP plots, labeled with original scRNA-seq
1117 annotations or transferred annotations. **(F)** Bar plots showing cell type composition of
1118 fat body and foregut/hindgut in scStereo-seq samples. Cell types are label transferred
1119 from scRNA-seq data. **(G)** Heatmaps showing neighborhood enrichment scores of fat
1120 body and foregut/hindgut cell types across scStereo-seq samples. Blank cells indicate
1121 absence of label transferred cell types or lack of enrichment in corresponding samples.
1122 **(H)** 3D tissue models across representative embryo scStereo-seq samples, showing
1123 spatial distribution of label transferred cell types, mesh models for fat body or
1124 foregut/hindgut, and mesh models of the entire embryo. Due to high homology, some
1125 hindgut cells are annotated as foregut ones by label transfer. **(I)** Spatial distribution of
1126 cell bin *CytoTRACE* scores in representative fat body and foregut/hindgut models in
1127 **(H)**.



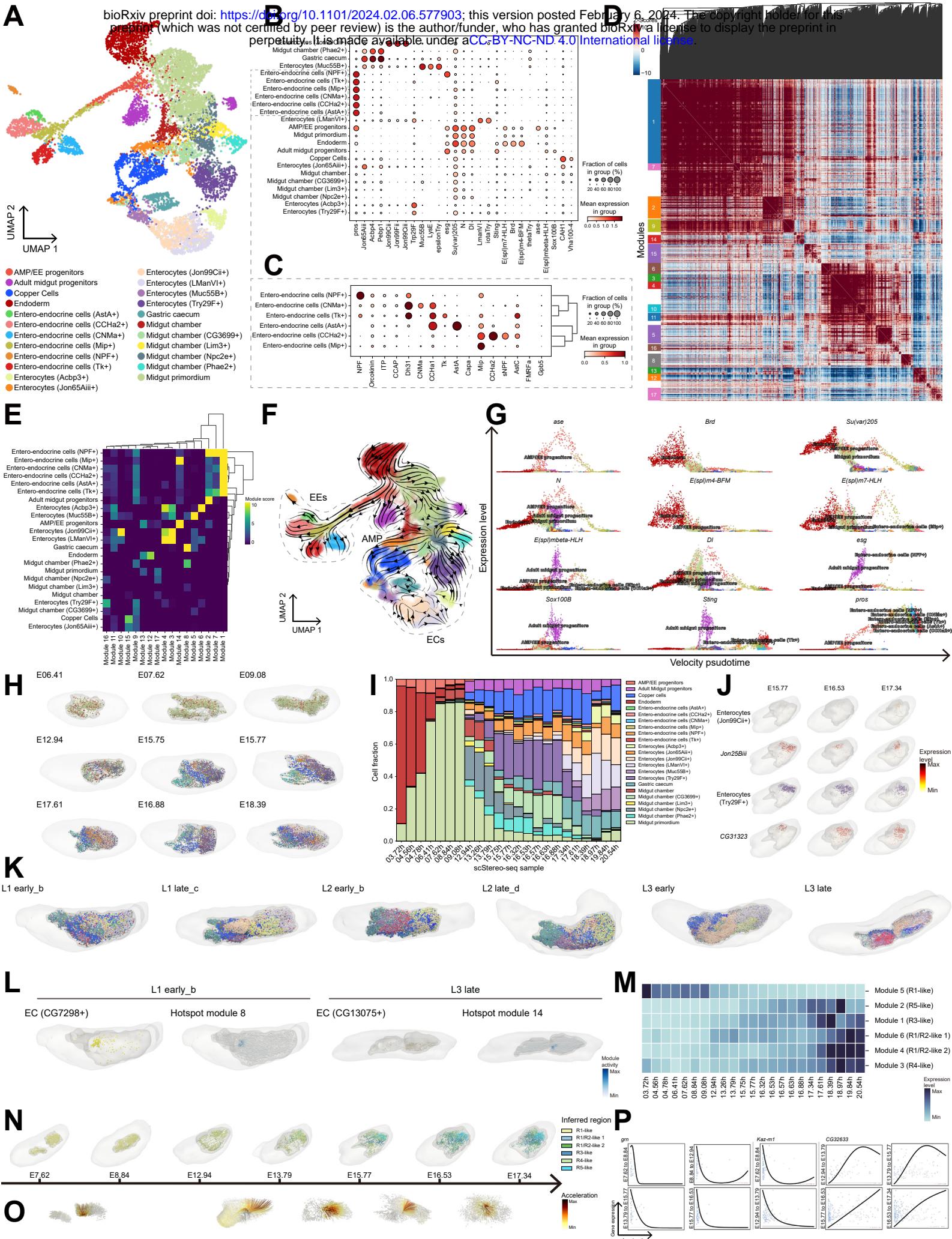
1128 **Figure 4 Transcription factor regulatory networks along multi-omics tissue**
1129 **development trajectories.**

1130 **(A)** The same UMAP plots as **Figure 2E** but only show scATAC-seq cells, color
1131 coded with motif activities of less-characterized TFs. **(B)** TF motif enrichment along
1132 tissue development trajectories, showing less-characterized TF genes in **(A)**, their
1133 binding motifs (left), motif enrichment heatmap (upper right), and enrichment *p* value
1134 heatmap (lower right) across tissue types and developmental stages in cells from three
1135 germ layers in scATAC-seq data. **(C)** Visualization of *SCENIC* regulon activity of some
1136 of TFs in **(A)** in representative samples from integrated scStereo-seq and scRNA-seq
1137 data, projected along the Z-axis. Previously reported tissue-specific TFs are in bold.
1138 All scStereo-seq samples are shown in lateral or near-lateral view. A-P: anterior-
1139 posterior; D-V: dorsal-ventral. **(D)** *Pando* identified regulons of TF *bin* in visceral
1140 muscle 1 late and visceral muscle 2 late, and those of TF *srp* and *crp* in fat body early.
1141 Genes in bold are discussed in detail in the main text. **(E)** *Pando* identified GRNs of
1142 TFs (highlighted in bold) and cell types in **(D)**. Other TFs in bold are discussed in detail
1143 in the main text. **(F)** Venn diagrams showing overlap between target genes in regulons
1144 of *srp* and *crp* along developmental trajectories of fat body and plasmacytes.



1145 **Figure 5 Gene regulation and morphometric dynamics in embryonic CNS.**

1146 **(A)** UMAP plot showing subclustering and annotation of CNS cells from scRNA-
1147 seq data. **(B)** Same as **(A)**, but for scATAC-seq data. Annotations with (R) or (A)
1148 indicate clusters identified only in scRNA-seq data or only in scATAC-seq data,
1149 respectively. **(C)** Co-embedding of CNS cells from scRNA-seq and scATAC-seq data
1150 in the same UMAP plot. **(D)** Same as **(C)**, but re-clustered and re-annotated. **(E)** Bubble
1151 plots showing expression level and enrichment of top marker genes of mature neuron
1152 cell types in **(D)**. **(F)** Left: 3D UMAP plot of scATAC-seq data (also see **Data S3**) and
1153 differentiation trajectories of selected cell clusters, with S0 through S15 denoting
1154 branching points of differentiation. S8 was set as the origin of differentiation; right:
1155 subway map plot showing differentiation trajectories and branching points of the same
1156 cell clusters. Each dot represents one cell from scATAC-seq data subset. **(G)** Upper
1157 left: UMAP plot showing subclustering of sensory neurons and their differentiation
1158 paths; lower left: the same UMAP plot color coded with *Kr* motif activity. *Kr* has 5 known
1159 motifs with highly similar sequence compositions. The composition and activity of
1160 representative motif M03663 are shown; right: scatter plot showing the genes
1161 associated with DA peaks and DE genes, comparing GABAergic neurons 2 with
1162 GABAergic neurons 4, and GABAergic neurons 2 with tyraminergic neurons 1. Nearest
1163 genes of *Kr* binding motifs are labeled. The size of each dot corresponds to the product
1164 of *p* values for DA peaks and DE genes. **(H)** The same scatter plots as **(G)**, comparing
1165 GABAergic neurons 2 with tyraminergic neurons 1 and labeled with nearest genes of
1166 binding motifs of *hb*, *grh*, and *opa*. **(I)** Venn diagrams showing overlap between target
1167 genes in regulons of *klu* and CG12219 among representative mature neuron cell types.
1168 **(J)** 3D CNS models across representative embryo scStereo-seq samples, showing
1169 spatial distribution of cell types, mesh models of CNS, and mesh models of the entire
1170 embryo. Cell type color codes are the same as **(D)**. **(K)** 3D models of CNS, CNS cell
1171 migration trajectories, and acceleration scores across 7 scStereo-seq samples of
1172 developmental age between 7 and 18 h. **(L)** General linear model-based correlation
1173 between acceleration scores and expression levels of CG42394 and *lncRNA:CR30009*
1174 in transitions between representative scStereo-seq samples. Spatial gene expression
1175 patterns in CNS 3D models are shown on the right of each plot. **(M)** FISH validation in
1176 stage 11-16 embryos of gene candidates identified in CNS morphometric analysis.
1177 Representative images of pan-neuronal marker gene *elav* and candidate genes
1178 CG42394, *lncRNA: CR30009*, and *lncRNA:CR45388* are shown. All samples are
1179 shown in lateral view. A-P: anterior-posterior; D-V: dorsal-ventral. Scale bars = 50 μ m.



1180 **Figure 6 Cell type diversity and functional regionalization in midgut.**

1181 **(A)** UMAP plot showing subclustering and annotation of endoderm and midgut
1182 cells from scRNA-seq data, derived from *Dynamo* analysis. **(B)** Bubble plot showing
1183 expression level and enrichment of top marker genes of cell types in **(A)**. **(C)** Same as
1184 **(B)** but within entero-endocrine cells. **(D)** Heat map showing correlation of functional
1185 gene modules identified by *Hotspot* in scRNA-seq data. Each row and each column
1186 represent a module marker gene, and Z-score indicates their correlation. **(E)** Heat map
1187 showing enrichment and clustering of *Hotspot* identified gene modules from **(D)** in
1188 midgut cell types in scRNA-seq data. **(F)** RNA velocity flow projected in UMAP space
1189 in **(A)**. Cell type color codes are the same as **(A)**. Dashed lines mark clusters
1190 representing adult midgut progenitors (AMPs), entero-endocrine cells (EEs), and
1191 enterocytes (ECs) discussed in the main text. **(G)** Dot plots showing relationship
1192 between velocity derived pseudotime and expression levels of genes of interest during
1193 differentiation of AMPs and EEs. Each dot represents one cell from midgut scRNA-seq
1194 data. **(H)** 3D midgut models across representative embryo scStereo-seq samples,
1195 showing spatial distribution of cell types, mesh models of midgut, and mesh models of
1196 the entire embryo. Cell type color codes are the same as **(A)**. **(I)** Bar plot showing cell
1197 type composition of midgut in scStereo-seq samples. Cell types are label transferred
1198 from scRNA-seq data. **(J)** Same as **(H)** but showing spatial distribution of copper cells,
1199 EC (*Jon99Cii*), and EC (*Try29F*) and their cell type marker genes in representative
1200 scStereo-seq samples. **(K)** Same as **(H)** but for larva scStereo-seq samples. Cell type
1201 color codes are the same as **Figure S11D**. Samples are not on the same scale. **(L)** 3D
1202 midgut models of L1 early and L3 late scStereo-seq samples, showing spatial
1203 distribution of representative ECs and their corresponding functional gene modules.
1204 **(M)** Heat map showing expression level of region-related gene modules across
1205 scStereo-seq samples. **(N)** Same as **(H)** but showing spatial distribution of inferred
1206 “adult midgut” regions. **(O)** 3D midgut cell migration trajectories and acceleration
1207 scores across 7 scStereo-seq samples of developmental age between 7 and 18 h.
1208 Sample viewpoints are different from **(N)** for better visualization of trajectories. **(P)**
1209 General linear model-based correlation between acceleration scores and expression
1210 levels of *grn*, *Kaz-m1*, and *CG32633* in transitions between representative scStereo-
1211 seq samples.

1212 **METHODS**

1213 **RESOURCE AVAILABILITY**

1214 **Lead contact**

1215 Further information and requests for the resources and reagents may be directed
1216 to the corresponding author Yuhui Hu (huyh@sustech.edu.cn).

1217 **Materials availability**

1218 All materials used for Stereo-seq, MGI C4 scRNA-seq, and MGI C4 scATAC-seq
1219 are commercially available.

1220 **Data and code availability**

1221 Raw data generated by Stereo-seq, scRNA-seq, and scATAC-seq in this study
1222 and associated analysis protocols and software can be accessed in our online
1223 database, Flysta3D. All data were analyzed with standard programs and packages, as
1224 detailed in Method details. Processed matrices can be accessed through Mendeley
1225 Data (<https://doi.org/10.17632/tvvjfr3c6j.1>, <https://doi.org/10.17632/29695x8txs.1>, and
1226 <https://doi.org/10.17632/4zf847bxfc.1>). All custom codes using open-source software
1227 to support this study are provided in a public GitHub repository. Any additional
1228 information required to re-analyze the data reported in this study is available from the
1229 lead contact upon request.

1230

1231 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

1232 **Fly strain maintenance**

1233 All Stereo-seq, scRNA-seq, and scATAC-seq samples were from *Drosophila* strain
1234 *w1118*. Flies were maintained on cornmeal-sucrose-agar media in a 25 °C incubator
1235 on a 12 h/12 h light/dark cycle.

1236 **Fly sample preparation**

1237 Samples were prepared and embedded for cryosection and Stereo-seq as
1238 previously described¹³. Unless otherwise specified, the samples were sectioned along
1239 the left-right axis to represent sagittal planes.

1240 For scRNA-seq, single cells were isolated and fixed following protocols described

1241 in Ref¹²⁰ and stored at -20 °C until further use.

1242 For scATAC-seq, embryos at the desired stages were collected from a population
1243 cage. The embryos were transferred to a 70 µm cell strainer, dechorionated in
1244 commercial bleach for 3 min, rinsed with ddH₂O, and dried on a Kimwipe.
1245 Dechorionated embryos were then snap-frozen in liquid nitrogen and stored at -80 °C
1246 until further use.

1247

1248 **METHOD DETAILS**

1249 See method details in Supplemental Information.

1250

1251 **SUPPLEMENTAL INFORMATION**

1252 Supplemental Figures, Tables, Movies, and Data can be found in the
1253 Supplemental Information.

1254

REFERENCES

1. Baysoy, A., Bai, Z., Satija, R., and Fan, R. (2023). The technological landscape and applications of single-cell multi-omics. *Nat. Rev. Mol. Cell Biol.* **24**, 695–713. 10.1038/s41580-023-00615-w.
2. Vandereyken, K., Sifrim, A., Thienpont, B., and Voet, T. (2023). Methods and applications for single-cell and spatial multi-omics. *Nat. Rev. Genet.* **24**, 494–515. 10.1038/s41576-023-00580-2.
3. Kang, M., Ko, E., and Mersha, T.B. (2022). A roadmap for multi-omics data integration using deep learning. *Brief. Bioinform.* **23**, bbab454. 10.1093/bib/bbab454.
4. Karaïkos, N., Wahle, P., Alles, J., Boltengagen, A., Ayoub, S., Kipar, C., Kocks, C., Rajewsky, N., and Zinzen, R.P. (2017). The *Drosophila* embryo at single-cell transcriptome resolution. *Science* **358**, 194–199. 10.1126/science.aan3235.
5. Calderon, D., Blecher-Gonen, R., Huang, X., Secchia, S., Kentro, J., Daza, R.M., Martin, B., Dulja, A., Schaub, C., Trapnell, C., et al. (2022). The continuum of *Drosophila* embryonic development at single-cell resolution. *Science* **377**, eabn5800. 10.1126/science.abn5800.
6. Brunet Avalos, C., Maier, G.L., Bruggmann, R., and Sprecher, S.G. Single cell transcriptome atlas of the *Drosophila* larval brain. *eLife* **8**, e50354. 10.7554/eLife.50354.
7. Bageritz, J., Willnow, P., Valentini, E., Leible, S., Boutros, M., and Teleman, A.A. (2019). Gene expression atlas of a developing tissue by single cell expression correlation analysis. *Nat. Methods* **16**, 750–756. 10.1038/s41592-019-0492-x.
8. Li, H., Janssens, J., De Waegeneer, M., Kolluru, S.S., Davie, K., Gardeux, V., Saelens, W., David, F.P.A., Brbić, M., Spanier, K., et al. (2022). Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. *Science* **375**, eabk2432. 10.1126/science.abk2432.
9. Worley, M.I., Everett, N.J., Yasutomi, R., Chang, R.J., Saretha, S., Yosef, N., and Hariharan, I.K. (2022). Ets21C sustains a pro-regenerative transcriptional program in blastema cells of *Drosophila* imaginal discs. *Curr. Biol.* **32**, 3350–3364.e6. 10.1016/j.cub.2022.06.040.
10. Lu, T.-C., Brbić, M., Park, Y.-J., Jackson, T., Chen, J., Kolluru, S.S., Qi, Y., Katheder, N.S., Cai, X.T., Lee, S., et al. (2023). Aging Fly Cell Atlas identifies exhaustive aging features at cellular resolution. *Science* **380**, eadg0934. 10.1126/science.adg0934.
11. Mahowald, A.P., and Hardy, P.A. (1985). Genetics of *Drosophila* Embryogenesis. *Annu. Rev. Genet.* **19**, 149–177. 10.1146/annurev.ge.19.120185.001053.
12. Chen, A., Liao, S., Cheng, M., Ma, K., Wu, L., Lai, Y., Qiu, X., Yang, J., Xu, J., Hao, S., et al. (2022). Spatiotemporal transcriptomic atlas of mouse

1296 organogenesis using DNA nanoball-patterned arrays. *Cell* 185, 1777–1792.e21.
1297 10.1016/j.cell.2022.04.003.

1298 13. Wang, M., Hu, Q., Lv, T., Wang, Y., Lan, Q., Xiang, R., Tu, Z., Wei, Y., Han,
1299 K., Shi, C., et al. (2022). High-resolution 3D spatiotemporal transcriptomic maps
1300 of developing *Drosophila* embryos and larvae. *Dev. Cell* 57, 1271–1283.e4.
1301 10.1016/j.devcel.2022.04.006.

1302 14. Qiu, X., Zhu, D.Y., Yao, J., Jing, Z., Zuo, L., Wang, M., Min, K.H. (Joseph),
1303 Pan, H., Wang, S., Liao, S., et al. (2022). Spateo: multidimensional spatiotemporal
1304 modeling of single-cell spatial transcriptomics. Preprint at bioRxiv,
1305 10.1101/2022.12.07.519417 10.1101/2022.12.07.519417.

1306 15. Tomancak, P., Beaton, A., Weiszmann, R., Kwan, E., Shu, S., Lewis, S.E.,
1307 Richards, S., Ashburner, M., Hartenstein, V., Celtniker, S.E., et al. (2002).
1308 Systematic determination of patterns of gene expression during *Drosophila*
1309 embryogenesis. *Genome Biol.* 3, RESEARCH0088. 10.1186/gb-2002-3-12-
1310 research0088.

1311 16. Lécuyer, E., Yoshida, H., Parthasarathy, N., Alm, C., Babak, T., Cerovina,
1312 T., Hughes, T.R., Tomancak, P., and Krause, H.M. (2007). Global analysis of mRNA
1313 localization reveals a prominent role in organizing cellular architecture and function.
1314 *Cell* 131, 174–187. 10.1016/j.cell.2007.08.003.

1315 17. Cusanovich, D.A., Reddington, J.P., Garfield, D.A., Daza, R.M.,
1316 Aghamirzaie, D., Marco-Ferreres, R., Pliner, H.A., Christiansen, L., Qiu, X.,
1317 Steemers, F.J., et al. (2018). The cis-regulatory dynamics of embryonic
1318 development at single-cell resolution. *Nature* 555, 538–542. 10.1038/nature25981.

1319 18. Reddington, J.P., Garfield, D.A., Sigalova, O.M., Karabacak Calviello, A.,
1320 Marco-Ferreres, R., Girardot, C., Viales, R.R., Degner, J.F., Ohler, U., and Furlong,
1321 E.E.M. (2020). Lineage-Resolved Enhancer and Promoter Usage during a Time
1322 Course of Embryogenesis. *Dev. Cell* 55, 648–664.e9.
1323 10.1016/j.devcel.2020.10.009.

1324 19. Martin, F.J., Amode, M.R., Aneja, A., Austine-Orimoloye, O., Azov, A.G.,
1325 Barnes, I., Becker, A., Bennett, R., Berry, A., Bhai, J., et al. (2023). Ensembl 2023.
1326 *Nucleic Acids Res.* 51, D933–D941. 10.1093/nar/gkac958.

1327 20. Rivera, J., Keränen, S.V.E., Gallo, S.M., and Halfon, M.S. (2019). REDfly:
1328 the transcriptional regulatory element database for *Drosophila*. *Nucleic Acids Res.*
1329 47, D828–D834. 10.1093/nar/gky957.

1330 21. Kvon, E.Z., Kazmar, T., Stampfel, G., Yáñez-Cuna, J.O., Pagani, M.,
1331 Schernhuber, K., Dickson, B.J., and Stark, A. (2014). Genome-scale functional
1332 characterization of *Drosophila* developmental enhancers *in vivo*. *Nature* 512, 91–
1333 95. 10.1038/nature13395.

1334 22. Gao, T., Zheng, Z., Pan, Y., Zhu, C., Wei, F., Yuan, J., Sun, R., Fang, S.,
1335 Wang, N., Zhou, Y., et al. (2022). scEnhancer: a single-cell enhancer resource with
1336 annotation across hundreds of tissue/cell types in three species. *Nucleic Acids Res.*
1337 50, D371–D379. 10.1093/nar/gkab1032.

1338 23. Moore, A.W., Jan, L.Y., and Jan, Y.N. (2002). hamlet, a Binary Genetic

1339 Switch Between Single- and Multiple- Dendrite Neuron Morphology. *Science* **297**,
1340 1355–1358. 10.1126/science.1072387.

1341 24. Styczynska-Soczka, K., and Jarman, A.P. (2015). The *Drosophila*
1342 homologue of Rootletin is required for mechanosensory function and ciliary rootlet
1343 formation in chordotonal sensory neurons. *Cilia* **4**, 9. 10.1186/s13630-015-0018-9.

1344 25. zur Lage, P., Newton, F.G., and Jarman, A.P. (2019). Survey of the Ciliary
1345 Motility Machinery of *Drosophila* Sperm and Ciliated Mechanosensory Neurons
1346 Reveals Unexpected Cell-Type Specific Variations: A Model for Motile Ciliopathies.
1347 *Front. Genet.* **10**. 10.3389/fgene.2019.00024.

1348 26. Micchelli, C.A., Sudmeier, L., Perrimon, N., Tang, S., and Beehler-Evans,
1349 R. (2011). Identification of adult midgut precursors in *Drosophila*. *Gene Expr.*
1350 Patterns GEP **11**, 12–21. 10.1016/j.gene.2010.08.005.

1351 27. Takashima, S., Adams, K.L., Ortiz, P.A., Ying, C.T., Moridzadeh, R.,
1352 Younossi-Hartenstein, A., and Hartenstein, V. (2011). Development of the
1353 *Drosophila* entero-endocrine lineage and its specification by the Notch signaling
1354 pathway. *Dev. Biol.* **353**, 161–172. <https://doi.org/10.1016/j.ydbio.2011.01.039>.

1355 28. Horváth, B., and Kalinka, A.T. (2018). The genetics of egg retention and
1356 fertilization success in *Drosophila*: One step closer to understanding the transition
1357 from facultative to obligate viviparity. *Evolution* **72**, 318–336. 10.1111/evo.13411.

1358 29. Bulteau, R., and Francesconi, M. (2022). Real age prediction from the
1359 transcriptome with RAPToR. *Nat. Methods* **19**, 969–975. 10.1038/s41592-022-
1360 01540-0.

1361 30. Moriel, N., Senel, E., Friedman, N., Rajewsky, N., Karaiskos, N., and
1362 Nitzan, M. (2021). NovoSpaRc: flexible spatial reconstruction of single-cell gene
1363 expression with optimal transport. *Nat. Protoc.* **16**, 4177–4200. 10.1038/s41596-
1364 021-00573-7.

1365 31. Wang, K., Hou, L., Wang, X., Zhai, X., Lu, Z., Zi, Z., Zhai, W., He, X.,
1366 Curtis, C., Zhou, D., et al. (2023). PhyloVelo enhances transcriptomic velocity field
1367 mapping using monotonically expressed genes. *Nat. Biotechnol.* 10.1038/s41587-
1368 023-01887-5.

1369 32. Gulati, G.S., Sikandar, S.S., Wesche, D.J., Manjunath, A., Bharadwaj, A.,
1370 Berger, M.J., Ilagan, F., Kuo, A.H., Hsieh, R.W., Cai, S., et al. (2020). Single-cell
1371 transcriptional diversity is a hallmark of developmental potential. *Science* **367**,
1372 405–411. 10.1126/science.aax0249.

1373 33. Wang, R., and Amoyel, M. (2022). mRNA Translation Is Dynamically
1374 Regulated to Instruct Stem Cell Fate. *Front. Mol. Biosci.* **9**.

1375 34. Liu, X., Krause, W.C., and Davis, R.L. (2007). GABA_A Receptor RDL
1376 Inhibits *Drosophila* Olfactory Associative Learning. *Neuron* **56**, 1090–1102.
1377 10.1016/j.neuron.2007.10.036.

1378 35. Kramerova, I.A., Kawaguchi, N., Fessler, L.I., Nelson, R.E., Chen, Y.,
1379 Kramerov, A.A., Kusche-Gullberg, M., Kramer, J.M., Ackley, B.D., Sieron, A.L., et
1380 al. (2000). Papilin in development; a pericellular protein with a homology to the

1381 ADAMTS metalloproteinases. *Dev. Camb. Engl.* 127, 5475–5485.
1382 10.1242/dev.127.24.5475.

1383 36. Liu, Y., Li, J.S.S., Rodiger, J., Comjean, A., Attrill, H., Antonazzo, G.,
1384 Brown, N.H., Hu, Y., and Perrimon, N. (2022). FlyPhoneDB: an integrated web-
1385 based resource for cell–cell communication prediction in *Drosophila*. *Genetics* 220,
1386 iyab235. 10.1093/genetics/iyab235.

1387 37. Bier, E., and De Robertis, E.M. (2015). BMP gradients: A paradigm for
1388 morphogen-mediated developmental patterning. *Science* 348, aaa5838.
1389 10.1126/science.aaa5838.

1390 38. Bayat, V., Jaiswal, M., and Bellen, H.J. (2011). The BMP signaling
1391 pathway at the *Drosophila* neuromuscular junction and its links to
1392 neurodegenerative diseases. *Curr. Opin. Neurobiol.* 21, 182–188.
1393 10.1016/j.conb.2010.08.014.

1394 39. Ghabrial, A., Luschnig, S., Metzstein, M.M., and Krasnow, M.A. (2003).
1395 Branching Morphogenesis of the *Drosophila* Tracheal System. *Annu. Rev. Cell Dev.*
1396 Biol. 19, 623–647. 10.1146/annurev.cellbio.19.031403.160043.

1397 40. Wackerhage, H., Del Re, D.P., Judson, R.N., Sudol, M., and Sadoshima,
1398 J. (2014). The Hippo signal transduction network in skeletal and cardiac muscle.
1399 *Sci. Signal.* 7, re4–re4. 10.1126/scisignal.2005096.

1400 41. Campos-Ortega, J.A., and Hartenstein, V. (1997). The Embryonic
1401 Development of *Drosophila melanogaster* (Springer) 10.1007/978-3-662-22489-2.

1402 42. Hoshizaki, D.K., Blackburn, T., Price, C., Ghosh, M., Miles, K., Ragucci,
1403 M., and Sweis, R. (1994). Embryonic fat-cell lineage in *Drosophila melanogaster*.
1404 *Development* 120, 2489–2499. 10.1242/dev.120.9.2489.

1405 43. Singh, S.R., Zeng, X., Zheng, Z., and Hou, S.X. (2011). The adult
1406 *Drosophila* gastric and stomach organs are maintained by a multipotent stem cell
1407 pool at the foregut/midgut junction in the cardia (proventriculus). *Cell Cycle* 10,
1408 1109–1120. 10.4161/cc.10.7.14830.

1409 44. Martínez-Corrales, G., Cabrero, P., Dow, J.A.T., Terhzaz, S., and Davies,
1410 S.-A. (2019). Novel roles for GATAe in growth, maintenance and proliferation of
1411 cell populations in the *Drosophila* renal tubule. *Development* 146, dev178087.
1412 10.1242/dev.178087.

1413 45. Dubruille, R., Laurençon, A., Vandaele, C., Shishido, E., Coulon-Bublex,
1414 M., Swoboda, P., Couble, P., Kernan, M., and Durand, B. (2002). *Drosophila*
1415 Regulatory factor X is necessary for ciliated sensory neuron differentiation.
1416 *Development* 129, 5487–5498. 10.1242/dev.00148.

1417 46. Fox, R.M., Vaishnavi, A., Maruyama, R., and Andrew, D.J. (2013). Organ-
1418 specific gene expression: the bHLH protein Sage provides tissue specificity to
1419 *Drosophila* FoxA. *Development* 140, 2160–2171. 10.1242/dev.092924.

1420 47. Cripps, R.M., Lovato, T.L., and Olson, E.N. (2004). Positive
1421 autoregulation of the Myocyte enhancer factor-2 myogenic control gene during
1422 somatic muscle development in *Drosophila*. *Dev. Biol.* 267, 536–547.

1423 10.1016/j.ydbio.2003.12.004.

1424 48. Zaffran, S., Küchler, A., Lee, H.-H., and Frasch, M. (2001). *biniou* (FoxF),
1425 a central component in a regulatory network controlling visceral mesoderm
1426 development and midgut morphogenesis in *Drosophila*. *Genes Dev.* **15**, 2900–
1427 2915. 10.1101/gad.917101.

1428 49. Hayes, S.A., Miller, J.M., and Hoshizaki, D.K. (2001). *serpent*, a GATA-
1429 like transcription factor gene, induces fat-cell development in *Drosophila*
1430 *melanogaster*. *Development* **128**, 1193–1200. 10.1242/dev.128.7.1193.

1431 50. Waltzer, L., Bataillé, L., Peyrefitte, S., and Haenlin, M. (2002). Two
1432 isoforms of *Serpent* containing either one or two GATA zinc fingers have different
1433 roles in *Drosophila* haematopoiesis. *EMBO J.* **21**, 5477–5486.
1434 10.1093/emboj/cdf545.

1435 51. Eresh, S., Riese, J., Jackson, D.B., Bohmann, D., and Bienz, M. (1997).
1436 A CREB-binding site as a target for decapentaplegic signalling during *Drosophila*
1437 endoderm induction. *EMBO J.* **16**, 2014–2022. 10.1093/emboj/16.8.2014.

1438 52. Okumura, T., Matsumoto, A., Tanimura, T., and Murakami, R. (2005). An
1439 endoderm-specific GATA factor gene, dGATAe, is required for the terminal
1440 differentiation of the *Drosophila* endoderm. *Dev. Biol.* **278**, 576–586.
1441 10.1016/j.ydbio.2004.11.021.

1442 53. Stainier, D.Y.R. (2002). A glimpse into the molecular entrails of endoderm
1443 formation. *Genes Dev.* **16**, 893–907. 10.1101/gad.974902.

1444 54. Blaschke, R.J., Monaghan, A.P., Schiller, S., Schechinger, B., Rao, E.,
1445 Padilla-Nash, H., Ried, T., and Rappold, G.A. (1998). SHOT, a SHOX-related
1446 homeobox gene, is implicated in craniofacial, brain, heart, and limb development.
1447 *Proc. Natl. Acad. Sci. U. S. A.* **95**, 2406–2411. 10.1073/pnas.95.5.2406.

1448 55. Rao, E., Weiss, B., Fukami, M., Rump, A., Niesler, B., Mertz, A., Muroya,
1449 K., Binder, G., Kirsch, S., Winkelmann, M., et al. (1997). Pseudoautosomal
1450 deletions encompassing a novel homeobox gene cause growth failure in idiopathic
1451 short stature and Turner syndrome. *Nat. Genet.* **16**, 54–63. 10.1038/ng0597-54.

1452 56. Wong, M.M.-K., Liu, M.-F., and Chiu, S.K. (2015). Cropped, *Drosophila*
1453 transcription factor AP-4, controls tracheal terminal branching and cell growth.
1454 *BMC Dev. Biol.* **15**, 20. 10.1186/s12861-015-0069-6.

1455 57. Aibar, S., González-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova,
1456 H., Hulselmans, G., Rambow, F., Marine, J.-C., Geurts, P., Aerts, J., et al. (2017).
1457 SCENIC: single-cell regulatory network inference and clustering. *Nat. Methods* **14**,
1458 1083–1086. 10.1038/nmeth.4463.

1459 58. Fleck, J.S., Jansen, S.M.J., Wollny, D., Zenk, F., Seimiya, M., Jain, A.,
1460 Okamoto, R., Santel, M., He, Z., Camp, J.G., et al. (2022). Inferring and perturbing
1461 cell fate regulomes in human brain organoids. *Nature*, 1–8. 10.1038/s41586-022-
1462 05279-8.

1463 59. Liao, K.A., González-Morales, N., and Schöck, F. (2016). Zasp52, a Core
1464 Z-disc Protein in *Drosophila* Indirect Flight Muscles, Interacts with α -Actinin via an

1465 Extended PDZ Domain. PLoS Genet. 12, e1006400.
1466 10.1371/journal.pgen.1006400.

1467 60. Popichenko, D., Sellin, J., Bartkuhn, M., and Paululat, A. (2007). Hand is
1468 a direct target of the forkhead transcription factor Biniou during Drosophilavisceral
1469 mesoderm differentiation. *BMC Dev. Biol.* 7, 49. 10.1186/1471-213X-7-49.

1470 61. Sulkowski, M., Kim, Y.-J., and Serpe, M. (2014). Postsynaptic glutamate
1471 receptors regulate local BMP signaling at the Drosophila neuromuscular junction.
1472 *Development* 141, 436–447. 10.1242/dev.097758.

1473 62. Yu, J., Liu, Y., Lan, X., Wu, H., Wen, Y., Zhou, Z., Hu, Z., Sha, J., Guo, X.,
1474 and Tong, C. (2016). CHES-1-like , the ortholog of a non-obstructive azoospermia-
1475 associated gene, blocks germline stem cell differentiation by upregulating Dpp
1476 expression in Drosophila testis. *Oncotarget* 7, 42303–42313.
1477 10.18632/oncotarget.9789.

1478 63. McDonald, J.A., Fujioka, M., Odden, J.P., Jaynes, J.B., and Doe, C.Q.
1479 (2003). Specification of motoneuron fate in Drosophila: Integration of positive and
1480 negative transcription factor inputs by a minimal eve enhancer. *J. Neurobiol.* 57,
1481 193–203. 10.1002/neu.10264.

1482 64. Lawton, K.J., Wassmer, T.L., and Deitcher, D.L. (2014). Conserved role
1483 of Drosophila melanogaster FoxP in motor coordination and courtship song. *Behav.*
1484 *Brain Res.* 268, 213–221. 10.1016/j.bbr.2014.04.009.

1485 65. Tsuyama, T., Hayashi, Y., Komai, H., Shimono, K., and Uemura, T. (2023).
1486 Dynamic de novo adipose tissue development during metamorphosis in
1487 Drosophila melanogaster. *Development* 150, dev200815. 10.1242/dev.200815.

1488 66. Weirauch, M.T., Yang, A., Albu, M., Cote, A.G., Montenegro-Montero, A.,
1489 Drewe, P., Najafabadi, H.S., Lambert, S.A., Mann, I., Cook, K., et al. (2014).
1490 Determination and inference of eukaryotic transcription factor sequence specificity.
1491 *Cell* 158, 1431–1443. 10.1016/j.cell.2014.08.009.

1492 67. Chen, H., Albergante, L., Hsu, J.Y., Lareau, C.A., Lo Bosco, G., Guan, J.,
1493 Zhou, S., Gorban, A.N., Bauer, D.E., Aryee, M.J., et al. (2019). Single-cell
1494 trajectories reconstruction, exploration and mapping of omics data with STREAM.
1495 *Nat. Commun.* 10, 1903. 10.1038/s41467-019-09670-4.

1496 68. Kao, C.-F., Yu, H.-H., He, Y., Kao, J.-C., and Lee, T. (2012). Hierarchical
1497 Deployment of Factors Regulating Temporal Fate in a Diverse Neuronal Lineage
1498 of the Drosophila Central Brain. *Neuron* 73, 677–684.
1499 10.1016/j.neuron.2011.12.018.

1500 69. Isshiki, T., Pearson, B., Holbrook, S., and Doe, C.Q. (2001). Drosophila
1501 neuroblasts sequentially express transcription factors which specify the temporal
1502 identity of their neuronal progeny. *Cell* 106, 511–521. 10.1016/s0092-
1503 8674(01)00465-2.

1504 70. Nibu, Y., Senger, K., and Levine, M. (2003). CtBP-independent repression
1505 in the Drosophila embryo. *Mol. Cell. Biol.* 23, 3990–3999.
1506 10.1128/MCB.23.11.3990-3999.2003.

1507 71. Shimell, M.J., Peterson, A.J., Burr, J., Simon, J.A., and O'Connor, M.B.
1508 (2000). Functional analysis of repressor binding sites in the *iab-2* regulatory region
1509 of the abdominal-A homeotic gene. *Dev. Biol.* 218, 38–52. 10.1006/dbio.1999.9576.

1510 72. Doe, C.Q. (2017). Temporal Patterning in the *Drosophila* CNS. *Annu. Rev. Cell Dev. Biol.* 33, 219–240. 10.1146/annurev-cellbio-111315-125210.

1512 73. Soluri, I.V., Zumerling, L.M., Payan Parra, O.A., Clark, E.G., and Blythe,
1513 S.A. (2020). Zygotic pioneer factor activity of Odd-paired/Zic is necessary for late
1514 function of the *Drosophila* segmentation network. *eLife* 9, e53916.
1515 10.7554/eLife.53916.

1516 74. Abdusselamoglu, M.D., Eroglu, E., Burkard, T.R., and Knoblich, J.A. The
1517 transcription factor odd-paired regulates temporal identity in transit-amplifying
1518 neural progenitors via an incoherent feed-forward loop. *eLife* 8, e46566.
1519 10.7554/eLife.46566.

1520 75. Huang, J.D., Dubnicoff, T., Liaw, G.J., Bai, Y., Valentine, S.A., Shirokawa,
1521 J.M., Lengyel, J.A., and Courey, A.J. (1995). Binding sites for transcription factor
1522 NTF-1/Elf-1 contribute to the ventral repression of decapentaplegic. *Genes Dev.* 9,
1523 3177–3189. 10.1101/gad.9.24.3177.

1524 76. Attardi, L.D., and Tjian, R. (1993). *Drosophila* tissue-specific transcription
1525 factor NTF-1 contains a novel isoleucine-rich activation motif. *Genes Dev.* 7, 1341–
1526 1353. 10.1101/gad.7.7b.1341.

1527 77. Tran, K.D., Miller, M.R., and Doe, C.Q. (2010). Recombineering
1528 Hunchback identifies two conserved domains required to maintain neuroblast
1529 competence and specify early-born neuronal identity. *Dev. Camb. Engl.* 137,
1530 1421–1430. 10.1242/dev.048678.

1531 78. Gunnar, E., Bivik, C., Starkenberg, A., and Thor, S. (2016). *sequoia*
1532 Controls the type I>0 daughter proliferation switch in the developing *Drosophila*
1533 nervous system. *Development*, dev.139998. 10.1242/dev.139998.

1534 79. Xiao, Q., Komori, H., and Lee, C.-Y. (2012). *klumpfuss* distinguishes stem
1535 cells from progenitor cells during asymmetric neuroblast division. *Dev. Camb. Engl.*
1536 139, 2670–2680. 10.1242/dev.081687.

1537 80. Avva, S.V.S.P., and Hart, C.M. (2016). Characterization of the *Drosophila*
1538 BEAF-32A and BEAF-32B Insulator Proteins. *PloS One* 11, e0162906.
1539 10.1371/journal.pone.0162906.

1540 81. Marqués, G. (2005). Morphogens and synaptogenesis in *Drosophila*. *J. Neurobiol.* 64, 417–434. 10.1002/neu.20165.

1542 82. Corty, M.M., and Coutinho-Budd, J. (2023). *Drosophila* glia take shape to
1543 sculpt the nervous system. *Curr. Opin. Neurobiol.* 79, 102689.
1544 10.1016/j.conb.2023.102689.

1545 83. Hirth, F., Hartmann, B., and Reichert, H. (1998). Homeotic gene action in
1546 embryonic brain development of *Drosophila*. *Development* 125, 1579–1589.
1547 10.1242/dev.125.9.1579.

1548 84. Estacio-Gómez, A., and Díaz-Benjumea, F.J. (2014). Roles of Hox genes
1549 in the patterning of the central nervous system of *Drosophila*. *Fly (Austin)* 8, 26–
1550 32. 10.4161/fly.27424.

1551 85. McCorkindale, A.L., Wahle, P., Werner, S., Jungreis, I., Menzel, P., Shukla,
1552 C.J., Abreu, R.L.P., Irizarry, R.A., Meyer, I.M., Kellis, M., et al. (2019). A gene
1553 expression atlas of embryonic neurogenesis in *Drosophila* reveals complex
1554 spatiotemporal regulation of lncRNAs. *Development* 146, dev175265.
1555 10.1242/dev.175265.

1556 86. Hung, R.-J., Li, J.S.S., Liu, Y., and Perrimon, N. (2021). Defining cell types
1557 and lineage in the *Drosophila* midgut using single cell transcriptomics. *Curr. Opin.*
1558 *Insect Sci.* 47, 12–17. 10.1016/j.cois.2021.02.008.

1559 87. Lemaitre, B., and Miguel-Aliaga, I. (2013). The Digestive Tract of
1560 *Drosophila melanogaster*. *Annu. Rev. Genet.* 47, 377–404. 10.1146/annurev-
1561 genet-111212-133343.

1562 88. Hung, R.-J., Hu, Y., Kirchner, R., Liu, Y., Xu, C., Comjean, A., Tattikota,
1563 S.G., Li, F., Song, W., Ho Sui, S., et al. (2020). A cell atlas of the adult *Drosophila*
1564 midgut. *Proc. Natl. Acad. Sci. U. S. A.* 117, 1514–1523. 10.1073/pnas.1916820117.

1565 89. Mathur, D., Bost, A., Driver, I., and Ohlstein, B. (2010). A Transient Niche
1566 Regulates the Specification of *Drosophila* Intestinal Stem Cells. *Science* 327, 210–
1567 213. 10.1126/science.1181958.

1568 90. Lin, G., Xu, N., and Xi, R. (2008). Paracrine Wingless signalling controls
1569 self-renewal of *Drosophila* intestinal stem cells. *Nature* 455, 1119–1123.
1570 10.1038/nature07329.

1571 91. Xu, T., Nicolson, S., Denton, D., and Kumar, S. (2015). Distinct
1572 requirements of Autophagy-related genes in programmed cell death. *Cell Death
1573 Differ.* 22, 1792–1802. 10.1038/cdd.2015.28.

1574 92. Scuderi, A., Simin, K., Kazuko, S.G., Metherall, J.E., and Letsou, A.
1575 (2006). scylla and charybde, homologues of the human apoptotic gene RTP801,
1576 are required for head involution in *Drosophila*. *Dev. Biol.* 291, 110–122.
1577 10.1016/j.ydbio.2005.12.014.

1578 93. DeTomaso, D., and Yosef, N. (2021). Hotspot identifies informative gene
1579 modules across modalities of single-cell genomics. *Cell Syst.* 12, 446–456.e9.
1580 10.1016/j.cels.2021.04.005.

1581 94. Jiang, H., and Edgar, B.A. (2009). EGFR signaling regulates the
1582 proliferation of *Drosophila* adult midgut progenitors. *Development* 136, 483–493.
1583 10.1242/dev.026955.

1584 95. Qiu, X., Zhang, Y., Martin-Rufino, J.D., Weng, C., Hosseinzadeh, S., Yang,
1585 D., Pogson, A.N., Hein, M.Y., Min, K.H. (Joseph), Wang, L., et al. (2022). Mapping
1586 transcriptomic vector fields of single cells. *Cell* 185, 690–711.e45.
1587 10.1016/j.cell.2021.12.045.

1588 96. Martin, M., Hiroyasu, A., Guzman, R.M., Roberts, S.A., and Goodman,
1589 A.G. (2018). Analysis of *Drosophila* STING Reveals an Evolutionarily Conserved

1590 Antimicrobial Function. *Cell Rep.* 23, 3537-3550.e6. 10.1016/j.celrep.2018.05.029.

1591 97. Moussian, B. (2013). The apical plasma membrane of chitin-synthesizing
1592 epithelia. *Insect Sci.* 20, 139–146. 10.1111/j.1744-7917.2012.01549.x.

1593 98. Denton, D., Shravage, B., Simin, R., Mills, K., Berry, D.L., Baehrecke,
1594 E.H., and Kumar, S. (2009). Autophagy, not apoptosis, is essential for midgut cell
1595 death in *Drosophila*. *Curr. Biol.* 19, 1741. 10.1016/j.cub.2009.08.042.

1596 99. Hakim, R.S., Baldwin, K., and Smagghe, G. (2010). Regulation of midgut
1597 growth, development, and metamorphosis. *Annu. Rev. Entomol.* 55, 593–608.
1598 10.1146/annurev-ento-112408-085450.

1599 100. Marianes, A., and Spradling, A.C. (2013). Physiological and stem cell
1600 compartmentalization within the *Drosophila* midgut. *eLife*. 10.7554/eLife.00886.

1601 101. Buchon, N., Osman, D., David, F.P.A., Fang, H.Y., Boquete, J.-P.,
1602 Deplancke, B., and Lemaitre, B. (2013). Morphological and molecular
1603 characterization of adult midgut compartmentalization in *Drosophila*. *Cell Rep.* 3,
1604 1725–1738. 10.1016/j.celrep.2013.04.001.

1605 102. Overend, G., Luo, Y., Henderson, L., Douglas, A.E., Davies, S.A., and
1606 Dow, J.A.T. (2016). Molecular mechanism and functional significance of acid
1607 generation in the *Drosophila* midgut. *Sci. Rep.* 6, 27242. 10.1038/srep27242.

1608 103. Miguel-Aliaga, I., Jasper, H., and Lemaitre, B. (2018). Anatomy and
1609 Physiology of the Digestive Tract of *Drosophila melanogaster*. *Genetics* 210, 357–
1610 396. 10.1534/genetics.118.300224.

1611 104. Brown, S., and Castelli-Gair Hombría, J. (2000). *Drosophila* grain
1612 encodes a GATA transcription factor required for cell rearrangement during
1613 morphogenesis. *Dev. Camb. Engl.* 127, 4867–4876. 10.1242/dev.127.22.4867.

1614 105. Wurmbach, E., Wech, I., and Preiss, A. (1999). The Enhancer of split
1615 complex of *Drosophila melanogaster* harbors three classes of Notch responsive
1616 genes. *Mech. Dev.* 80, 171–180. 10.1016/S0925-4773(98)00212-3.

1617 106. Li, X., and Karpac, J. (2023). A distinct Acyl-CoA binding protein (ACBP6)
1618 shapes tissue plasticity during nutrient adaptation in *Drosophila*. *Nat. Commun.* 14,
1619 7599. 10.1038/s41467-023-43362-4.

1620 107. Burns, A.M., and Gräff, J. (2021). Cognitive epigenetic priming:
1621 leveraging histone acetylation for memory amelioration. *Curr. Opin. Neurobiol.* 67,
1622 75–84. 10.1016/j.conb.2020.08.011.

1623 108. Ernst, C., and Jefri, M. (2021). Epigenetic priming in neurodevelopmental
1624 disorders. *Trends Mol. Med.* 27, 1106–1114. 10.1016/j.molmed.2021.09.005.

1625 109. Malita, A., and Rewitz, K. (2021). Interorgan communication in the control
1626 of metamorphosis. *Curr. Opin. Insect Sci.* 43, 54–62. 10.1016/j.cois.2020.10.005.

1627 110. Boulan, L., Andersen, D., Colombani, J., Boone, E., and Léopold, P.
1628 (2019). Inter-Organ Growth Coordination Is Mediated by the Xrp1-Dilp8 Axis in
1629 *Drosophila*. *Dev. Cell* 49, 811-818.e4. 10.1016/j.devcel.2019.03.016.

1630 111. Boulanger, L., and Léopold, P. (2021). What determines organ size during
1631 development and regeneration? *Development* 148, dev196063.
1632 10.1242/dev.196063.

1633 112. Winding, M., Pedigo, B.D., Barnes, C.L., Patsolic, H.G., Park, Y.,
1634 Kazimiers, T., Fushiki, A., Andrade, I.V., Khandelwal, A., Valdes-Aleman, J., et al.
1635 (2023). The connectome of an insect brain. *Science* 379, eadd9330.
1636 10.1126/science.add9330.

1637 113. Kurmangaliyev, Y.Z., Yoo, J., LoCascio, S.A., and Zipursky, S.L. (2019).
1638 Modular transcriptional programs separately define axon and dendrite connectivity.
1639 *eLife* 8, e50822. 10.7554/eLife.50822.

1640 114. Yuan, Z., Pan, W., Zhao, X., Zhao, F., Xu, Z., Li, X., Zhao, Y., Zhang, M.Q.,
1641 and Yao, J. (2023). SODB facilitates comprehensive exploration of spatial omics
1642 data. *Nat. Methods* 20, 387–399. 10.1038/s41592-023-01773-7.

1643 115. Zheng, Y., Chen, Y., Ding, X., Wong, K.H., and Cheung, E. (2023). Aquila:
1644 a spatial omics database and analysis platform. *Nucleic Acids Res.* 51, D827–
1645 D834. 10.1093/nar/gkac874.

1646 116. Liu, X., Zeira, R., and Raphael, B.J. (2023). Partial alignment of multislice
1647 spatially resolved transcriptomics data. *Genome Res.* 33, 1124–1132.
1648 10.1101/gr.277670.123.

1649 117. Wang, G., Zhao, J., Yan, Y., Wang, Y., Wu, A.R., and Yang, C. (2023).
1650 Construction of a 3D whole organism spatial atlas by joint modelling of multiple
1651 slices with deep neural networks. *Nat. Mach. Intell.* 5, 1200–1213.
1652 10.1038/s42256-023-00734-1.

1653 118. Wu, H., Li, X., Jian, F., Yisimayi, A., Zheng, Y., Tan, L., Xing, D., and Xie,
1654 X.S. (2022). Highly sensitive single-cell chromatin accessibility assay and
1655 transcriptome coassay with METATAC. *Proc. Natl. Acad. Sci.* 119, e2206450119.
1656 10.1073/pnas.2206450119.

1657 119. Swanson, E., Lord, C., Reading, J., Heubeck, A.T., Genge, P.C.,
1658 Thomson, Z., Weiss, M.D., Li, X.-J., Savage, A.K., Green, R.R., et al. (2021).
1659 Simultaneous trimodal single-cell measurement of transcripts, epitopes, and
1660 chromatin accessibility using TEA-seq. *eLife* 10, e63632. 10.7554/eLife.63632.

1661 120. Alles, J., Karaiskos, N., Praktiknjo, S.D., Grosswendt, S., Wahle, P.,
1662 Ruffault, P.-L., Ayoub, S., Schreyer, L., Boltengagen, A., Birchmeier, C., et al.
1663 (2017). Cell fixation and preservation for droplet-based single-cell transcriptomics.
1664 *BMC Biol.* 15, 44. 10.1186/s12915-017-0383-5.

1665