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SUMMARY 29 

The development of a multicellular organism is a highly intricate process tightly 30 

regulated by numerous genes and pathways in both spatial and temporal manners. 31 

Here, we present Flysta3D, a comprehensive multi-omics atlas of the model organism 32 

Drosophila, spanning its developmental lifespan from embryo to pupa. Our datasets 33 

encompass 3D single-cell spatial transcriptomic, single-cell transcriptomic, and single-34 

cell chromatin accessibility information. By integrating these multi-dimensional data, 35 

we constructed cell state trajectories that uncover the detailed profiles of tissue 36 

development. With a focus on the central nervous system (CNS) and midgut, we 37 

dissected the spatiotemporal dynamics of gene regulatory networks, cell type diversity, 38 

and morphological changes from a multi-omics perspective. This extensive atlas 39 

provides an unprecedentedly rich resource and serves as a systematic platform for 40 

studying Drosophila development with integrated single-cell data at an ultra-high 41 

spatiotemporal resolution. 42 

Key words: Drosophila development, single-cell multi-omics, spatial 43 

transcriptomics, Stereo-seq, Flysta3D  44 
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INTRODUCTION 45 

The advances in single-cell multi-omics technologies have revolutionized our 46 

understanding of biological processes, revealing cell-specific functional 47 

heterogeneities that underlie the complex physiologies of development, aging, and 48 

diseases. To date, the functional profile of a single cell can be characterized across 49 

multiple dimensions, including its cell surface epitopes, transcriptome, epigenome, and 50 

proteome (reviewed in Ref1). The development of spatial multi-omics techniques 51 

further added spatial context to these dimensions of information (reviewed in Ref2), 52 

and progress has been made in integrating these multi-modal data to construct a 53 

panoramic profile of context-specific functions of single cells and their communications 54 

with one another (reviewed in Ref3). 55 

Drosophila melanogaster has long been a fundamental model organism for 56 

genetics and developmental biology research. Recent single-cell multi-omics studies 57 

have highlighted the versatility of Drosophila in characterizing transcriptomic and 58 

epigenomic dynamics of individual cells during embryogenesis4,5, tissue 59 

development6–8, tissue regeneration9, and systemic aging10. These studies generated 60 

rich resources for dissecting the multi-omics profiles of various tissues at single cell 61 

precision across developmental stages. Nevertheless, the spatial context of such 62 

single-cell omics data is crucial to understanding their biological relevance but is often 63 

lost during standard single-cell sequencing procedures. 64 

Embryogenesis is an intricately regulated process that transforms a totipotent 65 

zygote into a fully formed embryo with functional organs. Over the past several 66 

decades, research into Drosophila embryogenesis has yielded invaluable insights into 67 

this meticulous process and many of its features that are conserved in mammals 68 

(reviewed in Ref11). Recently, a few studies have addressed Drosophila 69 

embryogenesis from the perspective of single-cell multi-omics4,5, but focused only on 70 

a few developmental time points or are limited in genome coverage. Until recently, 71 

genome-wide spatial transcriptomic profiling of developing Drosophila was lacking due 72 

to the miniature sizes of Drosophila samples and resolution limit of spatial 73 

transcriptomic techniques. Previously, we utilized spatial enhanced resolution omics 74 

sequencing (Stereo-seq)12, a sequencing- and patterned DNA nanoball (DNB) array-75 

based spatial transcriptomic platform with high spatial resolution and sensitivity, to 76 

address this gap. Using Stereo-seq, we generated 3D spatiotemporal transcriptomic 77 

maps of Drosophila late-stage embryos and larvae and analyzed the development of 78 

tissues within their actual 3D spatial context13. 79 
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Here, we expanded our previous spatiotemporal transcriptomic atlas of Drosophila 80 

to cover its developmental lifespan from embryo to pupa. Using Stereo-seq and Spateo, 81 

a computational pipeline designed to analyze single-cell multi-modal spatial 82 

transcriptomic data14, we reconstructed 3D transcriptomes at single cell spatial 83 

resolution. We further complemented embryo single-cell Stereo-seq (scStereo-seq) 84 

data with single-cell RNA sequencing (scRNA-seq) and single-cell assay for 85 

transposase-accessible chromatin using sequencing (scATAC-seq) data to create a 86 

multi-omics atlas of Drosophila embryos that includes transcriptomic and epigenomic 87 

information within an ultra-high-resolution spatial context. The data in this single-cell 88 

spatiotemporal multi-omics atlas of Drosophila development are curated in our 89 

database, Flysta3D, for easy access. 90 

Based on the unprecedentedly rich data resource, we established multi-omics cell 91 

state trajectories of tissue development. Along these trajectories, we systematically 92 

characterized the spatiotemporal dynamics of cell differentiation potential, signaling 93 

pathways, and transcription factor (TF) regulatory networks. Focusing on two widely 94 

studied Drosophila tissues, central nervous system (CNS) and midgut, we delved into 95 

their cell type diversification, gene regulatory networks, and morphological changes 96 

from a multi-omics perspective. Given that we have produced extensive multi-omics 97 

datasets for the embryonic stages, the major focus of this paper will be the analysis of 98 

embryogenesis from a multi-omics perspective. The scStereo-seq data for the larval 99 

and pupal stages are not discussed extensively here but will be accessible via 100 

Flysta3D database. Flysta3D hosts all the datasets generated in this study and 101 

provides interactive 3D visualization of gene expression patterns, TF regulatory 102 

networks, signaling pathway activities, etc. in these datasets. Our database can 103 

facilitate systematic research on Drosophila development with its comprehensive 104 

information and broad range of applications. 105 

 106 

RESULTS 107 

Single-cell 3D spatial transcriptomes of Drosophila from 108 

embryogenesis to metamorphosis 109 

To construct multi-omics atlas of Drosophila development, we started off by 110 

expanding and enhancing the 3D spatial transcriptomes of Drosophila development 111 

based on our previous work. Developing embryos were collected at 0.5 to 2 h intervals 112 
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throughout the ~24 h course of embryogenesis (hereafter termed based on 113 

computationally inferred developmental age, see below). Larva samples were 114 

collected at early or late time points for each of the three larval stages (hereafter 115 

termed L1 to L3 early/late). Pupa samples were collected at 12 h intervals starting from 116 

pupation (hereafter termed P12 to P72) (Figure 1A and Table S1). Cryosection was 117 

performed for each sample to obtain their sagittal sections of 7 or 8 μm thickness, and 118 

all available sections of each sample were subjected to in situ mRNA capture, library 119 

preparation, and sequencing at the Stereo-seq platform. 120 

The subcellular spatial resolution achieved by Stereo-seq (~500 nm distance 121 

between DNBs) was not fully utilized in our previous dataset due to the lack of cell 122 

location information. Here, to address this, we attempted to achieve single-cell spatial 123 

resolution by nucleus staining and imaging of each Stereo-seq chip before library 124 

preparation. Cell segmentation was then performed based on the location of each 125 

nucleus. After sequencing and mapping, 2D spatial gene expression matrices were 126 

aligned with segmented images. Each DNB was then assigned to a cell bin, allowing 127 

for more precise single-cell transcriptome analysis (Figure S1A). We then combined 128 

cell bins from all sections of individual samples, performed unsupervised clustering 129 

based on both gene expression profiles and spatial locations (Data S1), and manually 130 

annotated the clusters according to marker gene expression and spatial morphology 131 

(Table S2). Utilizing the Stereo-seq platform, we generated organism-wide single-cell 132 

spatial transcriptomes for 43 embryo, 9 larva, and 5 pupa samples throughout 133 

Drosophila development, with a total of 3,812,505 cell bins (Table S1). 134 

With the 2D single-cell spatial transcriptomic datasets, we reconstructed the 135 

spatial transcriptomes in 3D leveraging point cloud-based modeling method in Spateo 136 

package, which were optimized for cell bins. This approach offered enhanced 137 

structural details compared to our previous 3D modeling results and allowed the 138 

alignment of 3D models from different time points for morphometric analysis (see 139 

below). The 3D modeling of cell bin spatial transcriptomic data effectively captured the 140 

anatomical morphology of tissues with finer details than our previous 3D models 141 

(Figure 1B and Figure S1B). In our previous study on limited embryo and larva 142 

samples, we demonstrated that Stereo-seq data reproducibly captured spatial gene 143 

expression patterns that largely overlapped with established in situ databases15,16, as 144 

well as those that were absent in these databases. Based on this more comprehensive 145 

spatiotemporal transcriptomic dataset, we further identified a list of 338 genes without 146 

reported spatial expression patterns in embryos and reconstructed their patterns in 3D 147 
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(Table S3). We selected 9 genes to validate their spatial expression patterns with 148 

fluorescence in situ hybridization (FISH) and found high consistency with scStereo-149 

seq data in terms of spatial gene expression patterns and tissue enrichment (Figure 150 

1C and Figure S1C). These results further substantiated the power of Stereo-seq in 151 

recapitulating spatial gene expression profiles and guiding in vivo validation. 152 

 153 

A single-cell spatiotemporal multi-omics atlas of Drosophila 154 

embryogenesis 155 

Despite its ability to provide a better representation of single-cell spatial 156 

transcriptomes, scStereo-seq had a higher dropout rate compared to droplet-based 157 

scRNA-seq due to a reduced number of DNBs assigned to each cell bin. This limitation 158 

curtailed the ability of scStereo-seq to detect genes that express at a lower level. To 159 

overcome this drawback and to augment our single-cell 3D spatial transcriptomic data 160 

with deeper transcriptomic and epigenomic information, we collected samples at 2-161 

hour intervals across embryogenesis and performed droplet-based scRNA-seq and 162 

scATAC-seq (Figure 1A). Following quality control, we obtained 238,242 single-cell 163 

transcriptomes with scRNA-seq, with a median of 6,841 unique molecular identifiers 164 

(UMIs) and 1,707 genes per cell (Table S1). These quality control statistics in our 165 

scRNA-seq data were comparable to or better than previous Drosophila embryo 166 

scRNA-seq studies4,5 (Figure 1D). Additionally, we obtained 240,573 single-cell 167 

chromatin accessibility profiles with scATAC-seq, with a median of 11,772 fragments 168 

per cell (Table S1). The number of fragments captured per cell and other quality control 169 

statistics in our scATAC-seq data were also comparable to or better than previous 170 

Drosophila scATAC-seq datasets5,17 (Figure 1E and Figure S1D-F) and achieved high 171 

coverage of previously reported scATAC-seq datasets5,17, DNase I hypersensitive sites 172 

(DHS)18, annotated transcription start sites (TSS)19, and known enhancer sites20–22 173 

(Figure 1F). 174 

With the aggregated scRNA-seq data collected across embryogenesis, we 175 

performed an initial round of coarse unsupervised clustering and generated 45 cell 176 

clusters in the uniform manifold approximation and projection (UMAP) plot (Figure 177 

S1G). We annotated these clusters and classified annotations at three levels (cell 178 

type/tissue substructure - tissue - germ layer, e.g., gastric caecum - midgut - endoderm) 179 

based on marker gene expression (Figure 1A and Table S2). Similarly, we performed 180 

coarse unsupervised clustering in aggregated scATAC-seq data, generating 40 distinct 181 
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clusters in the UMAP plot (Figure S1H). Each cluster was also annotated through 182 

inspection of marker genes (Figure 1A and Table S2). The data we collected achieved 183 

extensive coverage of major tissues, as reflected by the proportion of cells 184 

representing each tissue and their dynamics over developmental stages (Figure 1G). 185 

Given the deep genome coverage of our data, we further profiled tissue cell type 186 

heterogeneity by subclustering and annotating tissue clusters from scRNA-seq and 187 

scATAC-seq data. The resolution of subclustering for each tissue was determined 188 

based on previously reported cell type complexities. Detailed cell types were annotated 189 

based on marker gene expression and literature search (Table S4). Through 190 

subclustering of the scRNA-seq data, we were able to examine the specific 191 

composition of embryo tissue cell types. For example, the subclustering of the 192 

peripheral nervous system (PNS) cluster allowed for the distinct identification of 193 

neurons and glia from external sensory23 and chordotonal organs24,25 (Figure S2). 194 

These subclustering results indicated that we were able to extensively characterize the 195 

major cell types in the embryo and identify several rare ones, such as adult midgut 196 

progenitors (AMPs)26 and entero-endocrine cells (EEs)27 in the midgut (see below). We 197 

also identified subclusters representing most of these detailed cell types in the 198 

scATAC-seq data (Figure S3). While we annotated tissue subclusters to the best of 199 

our knowledge, there could still be instances where clusters were not assigned their 200 

optimal annotations. We annotated some of the ambiguous or unknown cell clusters 201 

with reference to cell types they resembled most based on marker genes, such as 202 

“neuron-like” (Figure S2 and S3). Therefore, community efforts are welcome to help 203 

further specify the annotations of tissue cell types. To verify the well annotated 204 

subclusters we identified in both datasets, we compiled a list of common tissue 205 

substructure/cell type markers, which are identified in both datasets (Table S5) and 206 

validated the expression specificity of 3 previously unreported cell type markers using 207 

FISH (Figure 2A). 208 

In summary, we generated a compendium of scStereo-seq, scRNA-seq, and 209 

scATAC-seq datasets throughout Drosophila embryogenesis. The high granularity and 210 

temporal continuity of our multi-omics data opened the possibility of cell type- and 211 

developmental age-dependent integration of these multi-omics data. 212 

 213 

Developmental age-matched integration of multi-omics data 214 

Integration of multi-omics data offers more comprehensive perspectives when 215 
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searching for key molecular factors regulating tissue development. Our multi-omics 216 

data were obtained from multiple batches of samples using different techniques. 217 

Considering the rapid spatiotemporal gene expression changes during embryogenesis, 218 

it is crucial to confirm that the developmental ages of samples were matched before 219 

integrating multi-omics data. Age matching was also necessitated by the fact that 220 

mated female flies might retain embryos in their reproductive tract for some time 221 

between fertilization and egg laying (“egg retention”)28, leading to possible deviations 222 

of the actual developmental age from the sample collection windows in individual 223 

scStereo-seq samples. 224 

To precisely stage our samples, we applied RAPToR, a predictive model inferring 225 

the developmental age of biological samples based on transcriptomic profiles29, on 226 

both embryo scStereo-seq and scRNA-seq data. The developmental age of embryo 227 

scStereo-seq samples was determined by RAPToR inference with the entire embryo 228 

as a pseudo-bulk input (Table S1). The ages inferred by RAPToR aligned well with the 229 

collection window for the majority of samples. However, in a few instances, there was 230 

a significant discrepancy, with RAPToR inferring an age notably older than that derived 231 

from the collection window, indicating the presence of female egg retention (Table S1). 232 

We further validated the age of these samples by inspecting their nuclear staining 233 

morphologies and found better agreement with RAPToR inference than collection 234 

window. Consequently, these samples are denoted by their RAPToR-inferred 235 

developmental age rather than the actual sample collection time window (e.g., E15.75 236 

refers to an embryo sample with the inferred developmental age of 15.75 h). The 237 

resulting set of 43 embryo scStereo-seq samples we collected comprehensively 238 

covered Drosophila embryogenesis (Figure S4A). The RAPToR-inferred 239 

developmental age of single cells from scRNA-seq data showed overall good 240 

agreement with their actual sample collection window (Figure 2B and Figure S4B), 241 

but with significant tissue-dependent variations within each stage (Figure S4C), likely 242 

because RAPToR, a model trained on bulk RNA-seq data, lacks cell type specificity 243 

for scRNA-seq data. Similar variations were also observed in age inference of 244 

individual cell bins of scStereo-seq samples (Figure S4D). To infer the developmental 245 

age of cells from scATAC-seq data, we employed a previously described neural 246 

network model5. The resulting cell developmental age was also largely consistent with 247 

the sample collection window (Figure 2C and Figure S4E). 248 

Subsequently, we selected cells in the scRNA-seq data with a RAPToR inferred 249 

developmental age difference of 1 hour for integration with scStereo-seq data using 250 
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NovoSpaRc30. The integrated data enabled the imputation of spatial gene expression 251 

patterns with higher genome coverage, yielding markedly reduced signal background, 252 

enhanced tissue enrichment, and improved spatial gene expression patterns that 253 

exhibited greater resemblance to FISH validation results (Figure 1C and Figure S1C). 254 

We acquired scRNA-seq and scATAC-seq data from several hundred embryos 255 

per sample batch. Sample developmental age matched collection window for the 256 

majority of embryos, and the substantial sample size mitigated the influence of female 257 

egg retention. This was reinforced by the consistency between the model-predicted 258 

age and the actual collection window in both datasets (Figure 2B-C). Additionally, the 259 

developmental ages of scRNA-seq and scATAC-seq were inferred with different 260 

models and might not be comparable. Consequently, we directly used sample 261 

collection window to integrate the scRNA-seq and scATAC-seq data for downstream 262 

analysis. 263 

Together, our three multi-omics datasets exhibited coherence during embryo 264 

stages and can be integrated in a developmental age-specific manner in downstream 265 

analyses. 266 

 267 

Construction of multi-omics tissue development trajectories 268 

To delve into the detailed dynamics of developing tissues, we aimed to 269 

chronologically organize the tissue cell types in scRNA-seq and scATAC-seq data into 270 

continuous tissue developmental trajectories. Upon examining the subclustered and 271 

annotated data, we noticed that certain developmentally transitional cell types were 272 

categorized into different tissue clusters between assays, possibly due to differences 273 

in assay techniques, genome coverage, or clustering resolution (e.g., "muscle 274 

primordium" was annotated in the "mesoderm" cluster of the scATAC-seq dataset but 275 

in the "muscle" cluster of the scRNA-seq dataset) (Figure S2 and Figure S3). To 276 

resolve this issue, instead of focusing on individual tissues, we included all cells of the 277 

same germ layer for collective and continuous analysis. 278 

We first integrated the scRNA-seq and scATAC-seq data by finding integrated 279 

anchors for label transfer, imputing gene expression matrix from peak matrix of 280 

scATAC-seq data, and co-embedding them in the same UMAP space (Figure 2D). 281 

Subsequently, unsupervised clustering was performed on the integrated germ layer 282 

data (Figure S4F). Notably, a substantial number of late-stage cells annotated as 283 

"muscle" and "epidermis" in the scATAC-seq data did not correspond to any cell 284 
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clusters in the scRNA-seq data (Figure 2D). This discrepancy likely stemmed from 285 

technical limitations in capturing late-stage muscle (possibly due to their syncytial 286 

characteristics) and epidermal cells with our droplet-based scRNA-seq procedure. This 287 

was supported by a significant decrease in the fraction of these two cell types in late-288 

stage scRNA-seq data (Figure 1G). 289 

To construct tissue developmental trajectories within a germ layer, we applied 290 

PhyloVelo31 to the integrated data to establish velocity vector fields for three germ 291 

layers and re-annotated cell clusters based on marker genes and their chronological 292 

order along the velocity trajectories (Figure 2E and Table S4). Due to their 293 

complexities, the trends of cell type differentiation are better visualized in 3D UMAP 294 

plots (Data S2). With these velocity vector fields, we delineated multi-omics tissue 295 

development trajectories for all three germ layers (Figure 2F). 296 

Multi-omics tissue development trajectories allowed continuous and systematic 297 

tracing of various aspects of tissue- and cell type-specific dynamics during embryo 298 

development. To assess the differentiation dynamics of single cells, we employed 299 

CytoTRACE32, which leveraged the number of detectably expressed genes as a robust 300 

indicator of differentiation potential. CytoTRACE analysis revealed diverse trends in 301 

differentiation dynamics across tissues during organ specification and maturation 302 

(Figure 3A-B and Figure S4G). In general, mesodermal and endodermal tissues 303 

exhibited a slower decrease in differentiation potential compared to ectodermal ones. 304 

As anticipated, gonad cells maintained a consistently high level of potential throughout 305 

embryogenesis. Notably, the nervous system displayed the most rapid decline in 306 

differentiation potential throughout development, indicating its relatively faster pace 307 

towards terminal differentiation (Figure 3A). Within each tissue, different cell types 308 

also exhibited varying rates of reduction in differentiation potential during development 309 

(Figure 3B and Figure S4G). Genes whose expression level showed the strongest 310 

positive correlation with CytoTRACE scores were enriched in cell differentiation-311 

related and ribosome protein genes (Figure S4H-I and Table S6). The latter has been 312 

previously reported as indicators of both differentiation potential (reviewed in Ref33) 313 

and aging10. Conversely, genes whose expression level most negatively correlated 314 

with CytoTRACE scores included specific markers of differentiated tissues (e.g., 315 

GABAergic neuron-specific marker Rdl34 and hemocyte-specific marker Ppn35) (Figure 316 

S4H). 317 

To characterize the activities of signaling pathways along tissue trajectories, we 318 

utilized 7 signaling pathway gene sets from FlyphoneDB36 and examined the 319 
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expression dynamics of core pathway component genes across tissue developmental 320 

trajectories (Figure S5A-B). Throughout the trajectories, we observed the up-321 

regulation of multiple tissue-specific signaling pathways that are well-documented in 322 

the literature. The BMP signaling pathway, known for its integral role in ectoderm 323 

dorsal-ventral patterning (reviewed in Ref37), and in the regulation of neuromuscular 324 

junctions (NMJ, reviewed in Ref38), demonstrated the highest level of activity in early 325 

ectoderm and muscles. Meanwhile, the FGFR signaling pathway, which has been 326 

widely recognized for its role in trachea branching morphogenesis (reviewed in Ref39), 327 

showed maximum activity during the early stages of tracheal development. Lastly, the 328 

Hippo signaling pathway, well-established for its contribution to myogenesis (reviewed 329 

in Ref40), was most active in early muscle clusters (Figure 3C). Thus, our multi-omics 330 

tissue developmental trajectories could serve as a systematic framework for exploring 331 

cell-cell communication networks. 332 

 333 

Spatiotemporal cell type succession during tissue development  334 

Next, we aimed to visualize the spatiotemporal dynamics of the identified cell 335 

types along the multi-omics tissue development trajectories. Using the marker genes 336 

associated with cell types as a reference, we applied the label transfer method from 337 

Seurat to annotate scStereo-seq cell bins with the cell types identified in the multi-338 

omics tissue development trajectories. At the tissue level, the transferred labels 339 

demonstrated good agreement with manually annotated scStereo-seq cell bin clusters 340 

(Figure 3D). Considering their relatively defined and regular morphology, we selected 341 

fat body and foregut/hindgut (both of ectodermal origin41) as models and aligned their 342 

cell types with embryo scStereo-seq samples. Within these tissues, the distribution of 343 

cell bins from label-transferred scStereo-seq and cells from scRNA-seq data exhibited 344 

a coherent pattern when plotted in the same UMAP space (Figure 3E). Additionally, 345 

the top marker genes of each label-transferred cell type in scStereo-seq data were 346 

consistent with their counterparts in the integrated scRNA-seq and scATAC-seq data 347 

(Figure S5C). These results suggested a precise mapping of cell types to their spatial 348 

locations in scStereo-seq data. 349 

Within tissues, at the cell type level, the succession of different stages of cell types 350 

can be traced through their proportional changes over development (Figure 3F). The 351 

spatial distribution of each cell type can be quantified by neighborhood enrichment, 352 

where a higher score indicates a greater level of spatial clustering (Figure 3G). We 353 
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observed significantly higher neighborhood enrichment in foregut/hindgut cell types 354 

compared to those in the fat body. When mapped to their spatial locations, different 355 

stages of foregut/hindgut cell types formed more aggregated clusters, while fat body 356 

cell types were more scattered and mixed (Figure 3H). These observations suggested 357 

that these two tissues employ different cell differentiation strategies. In the fat body, 358 

differentiating cells are dispersed across the entire tissue, resulting in the mixing of cell 359 

types at different stages. In the foregut/hindgut, spatially defined “differentiation hubs” 360 

exist to continuously give rise to new cells, while cells outside the hubs do not 361 

contribute much to differentiation and proliferation. Consequently, cell types at different 362 

developmental stages occupy more distinct spatial locations. This hypothesis was 363 

further supported by the spatial distribution of cell bin CytoTRACE scores of scStereo-364 

seq data. Cells with higher differentiation potential were more spatially aggregated in 365 

foregut/hindgut than in fat body (Figure 3I). It is established that fat body cells originate 366 

from precursors arranged in segments that extend throughout the entire tissue42. This 367 

arrangement could account for the widespread dispersion of differentiating cells we 368 

observed here. On the other hand, the role of spatially clustered potential 369 

foregut/hindgut differentiation hubs might be associated with previously identified 370 

niches of digestive tract stem cells, where two defined groups of stem cells give rise to 371 

the adult foregut and hindgut, respectively43. 372 

Therefore, through label transfer, we were able to map cell types along tissue 373 

development trajectories to their spatial locations in scStereo-seq samples, allowing 374 

us to track their spatiotemporal dynamics. In the following analyses, we extended this 375 

approach to more complex CNS and midgut cell types to uncover their dynamics during 376 

development. 377 

 378 

Transcription factor regulatory networks along tissue development 379 

trajectories 380 

Transcription factors (TFs) play a pivotal role in orchestrating the proper formation 381 

and growth of tissues. To unravel the regulatory networks governed by TFs during 382 

tissue development and differentiation, we scrutinized the top marker genes of each 383 

cell type and investigated the enrichment of TF binding motifs in their promoter/TSS 384 

regions in scATAC-seq data. Motif enrichment analysis unveiled the regulatory TFs 385 

guiding the differentiation paths from each germ layer (Table S7), encompassing both 386 

well-established cell type-specific regulators as well as potentially novel and 387 
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uncharacterized ones. 388 

Throughout the developmental trajectories, we pinpointed multiple well-389 

characterized TFs that exhibited stage- and tissue-specific regulatory functions. We 390 

then traced the temporal dynamics of their regulatory activities along tissue 391 

development trajectories. Exemplary findings include motif enrichment of GATAe in 392 

Malpighian tubules44, Rfx in both PNS and CNS45, and sage in the salivary gland46 393 

within the ectoderm. In the mesoderm, we identified motif enrichment of Mef2 in 394 

somatic muscle47, bin in visceral muscle48, and srp in fat body49 and hemocytes50. The 395 

endoderm displayed motif enrichment of CrebB in early endoderm formation51, along 396 

with fkh, GATAe52, and other GATA family TFs (reviewed in Ref53) regulating late-stage 397 

endoderm specification (Figure S6A-B). Additionally, we uncovered several previously 398 

uncharacterized TFs with potential spatiotemporally specific functions during 399 

embryogenesis. Notably, CG34367, a TF featuring a Homeobox (Hox) domain, 400 

exhibited significant and specific motif enrichment in the early primordium of all three 401 

germ layers, suggesting a ubiquitous role in early developmental regulation. 402 

Mammalian orthologs of CG34367, SHOX/SHOX2, are implicated in early 403 

organogenesis and their mutations are associated with genetic disorders including 404 

Turner syndrome54,55. The TF crp, ubiquitously expressed in multiple tissues and 405 

known for specifying terminal cells in tracheal tubes56, demonstrated potential 406 

regulatory functions in the mesodermal fat body and hemolymph, as indicated by our 407 

analysis. Moreover, we observed significant motif enrichment of CG9727 and 408 

CG12219 in nervous systems, CG7368 in cardiac mesoderm, and CG12236 and 409 

CG4360 in early endoderm (Figure 4A-B), indicating their specific functions in these 410 

tissues. 411 

To further explore the spatial regulon activities of these TFs, we applied SCENIC57 412 

to the integrated scStereo-seq and scRNA-seq data, revealing that the spatial patterns 413 

of regulon activities for both known and uncharacterized TFs were consistent with the 414 

motif enrichment analysis in terms of tissue specificity (Figure 4C). The spatial 415 

expression patterns of these less-characterized TFs were also probed by BDGP in situ 416 

database and all of them exhibited weak signal or ubiquitous expression patterns in 417 

stages of their inferred functions (Figure S6C). The lack of staining can be explained 418 

by poor probe efficiency or low expression levels of these TFs, while ubiquitously 419 

expressed TFs could perform regulatory functions in a tissue-specific manner. The 420 

ambiguous in situ staining results underscored the advantages of our multi-omics data 421 

in facilitating the elucidation of tissue-specific TF functions. 422 
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Subsequently, we employed Pando58 on the integrated scRNA-seq and scATAC-423 

seq data to delve into the detailed regulons of identified TFs. Notably, visceral muscles 424 

exhibited segregation into two distinct groups in our multi-omics trajectories (dashed 425 

rectangles in Figure 2E-F, also see Figure S6D and Data S2). Upon scrutinizing the 426 

regulons of bin in these two groups, we observed that gene modules that bin regulated 427 

varied between them (Figure 4D). In the visceral muscle 1 group, bin activity was 428 

positively correlated with expression levels of muscle assembly genes (Zasp52, sals, 429 

Zasp66, and kon). Conversely, in the visceral muscle 2 group, bin activity was 430 

negatively correlated with expression of genes with similar functions (Prm, Zasp52, 431 

slow, and CAP). Intriguingly, bin activity appeared to be partially opposite in regulating 432 

muscle structure assembly in these two groups. Supporting this result, the expression 433 

level of Zasp52, a core component of indirect flight muscles59, was significantly lower 434 

in scRNA-seq cells from visceral muscle 2 late cluster than those from visceral muscle 435 

1 late cluster (Figure S6E). It is known that bin is a cell fate determinant of 436 

transformation between somatic and visceral muscle through the BMP signaling 437 

pathway48,60. The contrasting effects bin exerted on some target genes in different 438 

visceral muscle cell groups may reflect its fine-tuning functions among muscle lineages. 439 

We further visualized the gene regulatory networks (GRNs) in which bin participated 440 

in these two groups (Figure 4E). Inspection of GRNs in two visceral muscle groups 441 

uncovered several shared known muscle co-regulators of bin, such as Mad, a BMP 442 

pathway regulating TF functional at NMJ61, and CHES-1-like, also a BMP pathway 443 

regulator62. bin also co-regulated with different nervous system-related TFs in the two 444 

lineages, including klu and pnr in visceral muscle 1, and slp2 and FoxP in visceral 445 

muscle 2. klu had reported functions in motor neurons63 while FoxP is important for 446 

motor coordination64. The organization of these GRNs highlighted the coordinated and 447 

cell type-specific co-regulation between nervous and muscle systems. 448 

To further characterize the fat body- and hemolymph-specific regulon activities of 449 

crp identified above, we visualized its GRN in early fat body and discovered that crp 450 

co-regulated with srp (Figure 4E). Upon inspecting their regulons, we found that srp 451 

activity was negatively correlated with lipid metabolism pathway genes (Apoltp, 452 

Aldh7A1, apolpp, Jheh1, and Echs1), while crp acted in a contrasting fashion. 453 

Additionally, srp positively regulated amino acid metabolism genes Mtap, Hn, and Gdh, 454 

while crp positively regulated glutathione metabolism genes GstE6, GstE7, GstE11, 455 

and GstE12 (Figure 4D). Target genes in the regulons of srp and crp largely 456 

overlapped in fat body and plasmatocytes, and this overlap increased along 457 

developmental trajectories of both tissues (Figure 4F). The regulons of srp we 458 
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identified were consistent with its role in inducing fat cell formation starting from early 459 

fat body development49,65 and crp is known to affect cell growth and tissue size control56. 460 

Our analysis suggested an increasingly coordinated role of crp and srp within the same 461 

GRN during fat body and plasmatocyte development. 462 

In tracing tissue development trajectories, we successfully identified both 463 

previously reported and potential TFs, uncovering their tissue specificity and regulatory 464 

networks. It is worth noting that TFs and their binding motifs were linked based on CIS-465 

BP database66. While the motifs we mentioned here were indeed enriched in specific 466 

cell types, it remained possible that their actual binding TFs differ from database 467 

inference, or there are additional unknown regulators that could bind these motifs. 468 

Algorithms like Pando used correlation between gene expression levels of TFs and 469 

their target genes to infer up- or down-regulation effects of these TFs, which could be 470 

susceptible to capture sensitivity of current single-cell sequencing techniques. Thus, 471 

additional experiment validation is required to elucidate these tissue-specific regulatory 472 

networks. 473 

 474 

Multi-omics dissection of gene regulation during embryonic CNS 475 

development 476 

The Drosophila nervous system serves as a prominent model for investigating 477 

neuron development and functions. Thus, we examined the development of CNS from 478 

a multi-omics perspective based on our data. The subclustering results of the CNS 479 

scRNA-seq data identified most major CNS cell types, including neuroblasts (marked 480 

by mira and wor), ganglion mother cells (GMC, marked by tap), neural progenitors 481 

(marked by insb and nerfin-1), glioblasts (marked by gcm and repo), and various types 482 

of glial cells (Table S4). The UMAP plot of CNS cells provided an intuitive 483 

representation of differentiation paths of neurons and glia (Figure 5A). Subclustering 484 

scATAC-seq data also identified most of these CNS cell types (Figure 5B). Integration 485 

of scRNA-seq and scATAC-seq data allowed detailed annotation of various mature 486 

neuron cell types by generating more distinct cell type specific markers (Figure 5C-D 487 

and Table S4). In light of the significantly higher complexity of mature neuron cell types, 488 

we chose a higher resolution for their clustering and annotation. Each mature neuron 489 

cell type was annotated based on expression of neurotransmitters (Figure 5D). Within 490 

mature neuron groups expressing the same neurotransmitters, cell subtypes were 491 

distinguished by a list of largely uncharacterized marker genes (Figure 5E and Table 492 
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S4). The complex trends of CNS cell differentiation are better visualized in 3D UMAP 493 

plots (Data S3). 494 

Remarkably, mature neurons displayed a significantly more striking diversity in the 495 

UMAP plot derived from scATAC-seq data compared to that from scRNA-seq data 496 

(Figure 5A-B and Data S3). This observation suggested the possibility that mature 497 

neurons appear similar in their transcriptomic profiles during late embryogenesis, but 498 

various types of neurons are under highly distinct epigenetic regulations, likely in 499 

preparation for more complex neural differentiation during larval stages. Notably, co-500 

embedding of scRNA-seq and scATAC-seq CNS cells in the same UMAP plot showed 501 

that mature neurons in scATAC-seq data displayed an overall distribution shift from 502 

those in scRNA-seq data (Figure 5C and S7A). This shift was not observed in non-503 

mature neuron cell types (Figure S7A). Similarly, we also noted a temporal mismatch 504 

in the distribution of mature neuron subtypes between scATAC-seq and scRNA-seq 505 

data (Figure S7B). This further reflected the potential divergence between 506 

transcriptomic and epigenomic profiles among mature neurons. 507 

Differentiation trajectories of mature neurons revealed by scATAC-seq 508 

To dissect the epigenetic regulation of mature neuron and identify potential 509 

regulators of cell subtype differentiation, we explored the 3D UMAP plot of scATAC-510 

seq data and focused on a cell subset, in which a cell cluster expressing sensory 511 

neuron markers (e.g., ct, lov, and robo3) appeared to differentiate into three mature 512 

neuron clusters: GABAergic (GABA) neurons 2 & 4 and tyraminergic (TA) neurons 1 513 

(Figure 5F and Data S3). We employed STREAM67 to map the differentiation 514 

trajectories of these cell clusters, which were then projected onto the 3D UMAP space. 515 

This enabled us to identify the branching events within the differentiation trajectories 516 

(Figure 5F). Leveraging these trajectories, we further subclustered sensory neurons 517 

into two distinct groups according to their chromatin accessibility and differentiation 518 

outcomes (Figure 5G). Focusing on the top DA peaks between sensory 1 & 2, as well 519 

as those among GABA 2, GABA 4, and TA 1, we conducted a TF motif enrichment 520 

analysis. This revealed Kr as a principal regulator of this differentiation process, with 521 

significant motif activity contrast between the differentiation branches (Figure 5G and 522 

Figure S7C). Kr is a well-established transcription repressor and temporal determinant 523 

of neuron fate68,69. The gene Kr itself exhibited significantly higher chromatin 524 

accessibility and expression level in GABA 2 compared to GABA 4/TA 1 (Figure S7D), 525 

suggesting a more active regulatory activity in GABA 2. On the contrary, the binding 526 

motifs of Kr are significantly less enriched in GABA 2 and most of its potential target 527 
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genes (nearest genes of Kr binding motifs) displayed reduced chromatin accessibility 528 

and expression level in GABA 2 compared to GABA 4/TA 1 (Figure 5G). This 529 

observation supports a working model based on previous knowledge that Kr performs 530 

its transcription repressor functions through local quenching of transcription 531 

activators70,71, likely through closing up the proximal chromatin. We carefully examined 532 

the genes that showed significant changes in both chromatin accessibility and 533 

expression level among the neuron subtypes. Pathway enrichment of these genes 534 

showed that these Kr target genes were functionally enriched in processes including 535 

axon guidance and glycosylation (Figure S7E). 536 

While most potential targets of Kr showed decreased chromatin accessibility, their 537 

expression changes varied across target genes. This variability could be due to the 538 

impact from transcriptional co-factors of Kr. To identify co-regulators that influenced 539 

the expression levels of genes repressed by Kr, we conducted a motif enrichment 540 

analysis within Kr peaks (Figure S7F). This revealed several previously characterized 541 

neuron differentiation regulators, including hb, grh, and opa, through the comparison 542 

between GABA 2 and TA 1. (Figure 5H). It is well established that the sequential 543 

activities of hb, Kr, and grh determine the temporal fate of several neuroblast lineages 544 

during differentiation (reviewed in Ref72). opa is previously reported as a regulator of 545 

Kr activity during early embryogenesis73, as well as a regulator of temporal patterning 546 

of neural progenitors that acts in coordination with grh74. Our observations suggested 547 

that the synergy of these regulators persist in more differentiated neuron subtypes. 548 

Both hb and grh are known to function as either transcription activators or repressors75–549 
77. In the differentiation process we investigated here, the motif activities of hb and grh 550 

were mostly in up-regulated Kr target genes, even in the presence of repressive effect 551 

of Kr. Conversely, the motif activities of opa were enriched in down-regulated Kr target 552 

genes (Figure 5H). We then examined the peaks around the binding motifs of these 553 

co-regulators in the chromosomal regions of their mutual target genes using the 554 

scATAC-seq data. We observed a dramatic overall increase in chromatin accessibility 555 

along the differentiation track from sensory 2 to GABA 4/TA 1, compared to the subtle 556 

changes during the transition from sensory 1 to GABA 2. This seems to be a general 557 

phenomenon regardless of the expression change between GABA 2 and GABA 4/TA 558 

1, suggesting diverse and complex regulatory consequences depending on the 559 

cooperating TFs and the targets. This was further supported by the long distance of 560 

Kr/co-regulator peaks from the TSS of the nearest genes, which could be a few kb in 561 

length and mostly downstream of gene targets. As examples, the peaks and 562 

chromosomal regions of two genes with the most significant expression level changes, 563 
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side-III (potentially co-regulated by Kr, hb, and grh) and fz (potentially co-regulated by 564 

Kr and opa), are plotted to demonstrate their coordinated regulatory roles outside of 565 

promoter regions (Figure S7G). 566 

Overall, we observed a high clustering resolution in scATAC-seq data when 567 

characterizing mature neuron subtypes, which was able to facilitate the discovery of 568 

transcription regulators and their co-factors that govern the refined developmental 569 

trajectories. 570 

Mutual and diverse GRNs among CNS cell subtypes 571 

In pursuit of potential regulators of the diverse neuron cell types, we conducted 572 

motif enrichment analysis and pinpointed TF regulators across various stages of neural 573 

development (Table S7). Among these, previously reported TFs, such as seq, 574 

governing dendrite and axon outgrowth78, exhibited the highest motif activity in neuron 575 

progenitors. Additionally, klu, known to specify the identity of a specific group of 576 

neuroblasts79, displayed sustained activity in several types of mature neurons (Figure 577 

S8A). Our analysis also revealed cell type-specific activity for several less 578 

characterized TFs, including BEAF-3280 and above-mentioned potential nervous 579 

system-specific regulator CG12219 (Figure S8A). Pando visualization of their 580 

regulons showed that in neuroblasts, BEAF-32 and seq co-regulated multiple cell cycle 581 

regulator genes (e.g., PolE2, fzy, mad2, and Mcm2) and neuroblast determinants (e.g., 582 

mira and CycE) (Figure S8B-C). In mature neuron clusters, CG12219 and klu 583 

displayed similar activity patterns across cell types (Figure S8A) and their regulons 584 

largely coincided in mature neuron cell types (Figure 5I). For example, in 585 

dopaminergic/serotonergic neurons 2, CG12219 and klu co-regulated the same group 586 

of signal transduction genes (e.g., Pkc53E, Oct1R, Syngr, Sytα, and CG34393) in the 587 

same GRN; In cholinergic neurons 3, klu and CG12219 co-regulated glucose 588 

metabolism (e.g., Pgi and Pgm1) gene groups in the same GRN (Figure S8B-C). 589 

Our findings strongly supported the existence of cell subtype-specific regulons for 590 

the same TF, as well as the cooperative actions of different TFs that are finely tuned 591 

for neuronal differentiation. These regulatory mechanisms may play a role in 592 

orchestrating the precise development of neurons. 593 

Refined spatiotemporal CNS cell subtypes during embryogenesis 594 

We subsequently applied label transfer to project identified CNS cell types onto 595 

scStereo-seq samples (Figure 5J). As expected, there was a discernible shift in cell 596 
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count fraction from undifferentiated neuroblasts and GMCs to differentiated neuron and 597 

glia cell types from early to late-stage samples (Figure S8D). Co-embedding embryo 598 

scStereo-seq data with scRNA-seq data in the same UMAP space demonstrated high 599 

coherence (Figure S8E). Among the transferred cell types, as expected from their 600 

anatomical distribution, neuroblasts and glia cell types exhibited the highest level of 601 

spatial aggregation, whereas mature neurons were largely dispersed (Figure S8F). 602 

Upon inspecting their spatial loci, the distribution of CNS cell types aligned well with 603 

their stratified anatomical structures in early-stage samples, with less differentiated cell 604 

types occupying the outer layers of the CNS and more differentiated ones in the inner 605 

layers (Figure 5J). These findings supported the precision of the label transfer method 606 

in identifying CNS cell subtypes in scStereo-seq samples, thereby facilitating the 607 

exploration of neuron functions within their spatial context. 608 

Gene expression dynamics during CNS morphometric changes 609 

The Drosophila CNS undergoes profound morphological transformations 610 

throughout embryogenesis, influenced by intrinsic factors such as cell proliferation and 611 

differentiation, as well as external cues like inter-organ communication (reviewed in 612 

Refs72,81,82). Leveraging our 3D spatial transcriptomes generated with scStereo-seq, 613 

we delved into transcriptomic dynamics during morphogenesis by simultaneously 614 

tracking changes in tissue morphology and gene expression. Employing morphometric 615 

analysis from the Spateo package, we were able to align the 3D point-cloud models of 616 

two time points in spatial coordinates. Subsequently, we linked cell bins between the 617 

two samples based on spatial adjacency and transcriptomic similarity (Figure S9A). 618 

This enabled the generation of 3D vectors, concurrently characterizing cell migration 619 

paths and transcriptomic changes over continuous developmental stages (Figure 5K). 620 

Finally, we computed morphometric parameters describing cell migration paths and 621 

correlated them with transcriptomic changes. 622 

We characterized the morphometric changes in the CNS across 3D models of 623 

seven scStereo-seq samples, spanning developmental ages from 7 to 18 h. These 624 

changes were represented by parameters such as the acceleration of cell migration 625 

(proportional to the distance cells migrated given the same migration time between two 626 

samples) (Figure 5K and Movie S1), curvature (bending of cell migration paths) 627 

(Figure S9B), curl (rotation of paths) (Figure S9C), and torsion (curve twisting of paths) 628 

(Figure S9D). Throughout CNS development, we observed a shift in regions with the 629 

highest acceleration from the posterior end of the ventral nerve cord (VNC) to the 630 

anterior end of the brain (Figure 5K). The decline in acceleration and curl scores in 631 
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the VNC was likely linked to the completion of germ band retraction, indicating that the 632 

shortening of the VNC during early development primarily relied on the migration of 633 

posterior cells toward the anterior end. Conversely, the increase in acceleration and 634 

curl scores in the anterior brain region might reflect active cell organization in brain 635 

lobes during late embryogenesis (Figure 5K and Figure S9C). As anticipated from 636 

CNS morphology, regions with the highest curvature and curl scores concentrated 637 

around the curved joint between the VNC and the brain (Figure S9B-C). 638 

The morphometric analysis yielded a set of genes exhibiting spatiotemporal 639 

expression changes relevant to CNS morphometric dynamics (Table S8). Gene 640 

ontology (GO) enrichment revealed that genes linked to CNS morphometric changes 641 

were highly enriched in cell fate specification and pattern formation (Figure S9E and 642 

Table S8). Additionally, gene group enrichment analysis highlighted the significance of 643 

Hox family transcription factors, such as Antp, Ubx, abd-A, and Abd-B, consistent with 644 

their critical roles in specifying CNS patterns and segment identity83. The spatial 645 

expression patterns of these Hox family genes in our 3D CNS models aligned with 646 

BDGP in situ results (Figure S9F). Notably, the expression levels of these Hox genes 647 

were mostly negatively correlated with acceleration scores across developmental 648 

stages (Figure S9G), suggesting that their expression is associated with the inhibition 649 

of CNS cell migration. It is reported that Hox genes’ roles include repressing neuroblast 650 

formation and entry into neuroblast quiescence in embryonic CNS (reviewed in Ref84). 651 

It is possible that Hox genes inhibit CNS cell migration through repression of neuroblast 652 

differentiation. 653 

Associations were also observed between CNS morphometric scores and known 654 

CNS development regulators (e.g., mira, tll, and toy) as well as several 655 

uncharacterized factors (Table S8). For example, the expression level of CG42394 656 

was negatively correlated with acceleration, while that of lncRNA:CR30009 displayed 657 

a positive correlation (Figure 5L). We validated the CNS-specific expression of these 658 

potential regulators with FISH (Figure 5M). Notably, this list includes multiple long non-659 

coding RNA (lncRNA) genes besides lncRNA:CR30009, which was previously 660 

reported to be enriched in glia and co-localize with the glia marker gene repo85. 661 

Examining these lncRNA genes in our scRNA-seq data, we observed that the 662 

expression of lncRNA:CR30009 and lncRNA:CR45388 showed the highest correlation 663 

with neuroblast and glioblast marker genes (Figure S9H). These observations implied 664 

that the two lncRNA genes may influence CNS morphometric changes through the 665 

regulation of neuroblasts. Therefore, by conducting morphometric analysis of the CNS, 666 
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we were able to identify both known and potential regulators of CNS cell migration. 667 

 668 

Cell type and functional diversity of developing midgut 669 

The Drosophila midgut, serving as the functional equivalent of the mammalian 670 

small intestine, fulfills versatile roles in food digestion, nutrient uptake, immunity, and 671 

endocrine regulation. The diverse functions of the midgut are carried out by distinct 672 

types of cells and the regions they form (reviewed in Refs86,87). Nevertheless, the timing 673 

of differentiation of these cell types remained elusive. Our prior investigations indicated 674 

that certain functional cell types began to emerge during late embryogenesis13. 675 

Here, we delved deeper into the diversity of midgut cell types using our multi-676 

omics data. The clustering resolution of our scRNA-seq data was adequate for 677 

distinguishing various midgut cell types. Consequently, we concentrated on the 678 

scRNA-seq data, combined endoderm and midgut cell clusters, and conducted high-679 

resolution subclustering and annotation (Figure 6A). The UMAP plot portrayed a 680 

multitude of intestinal cell types throughout the developmental and differentiation 681 

stages of the midgut (Figure 6A-B). These included endoderm (marked by Notch 682 

signaling pathway genes E(spl)m4-BFM and Brd), adult midgut progenitors (AMPs, 683 

marked by esg)26, 6 types of entero-endocrine cells [EEs, marked by pros and 684 

distinguished by specific expression endocrine genes (Figure 6C)], and 6 types of 685 

enterocytes (ECs, marked and distinguished by digestive enzyme and metabolism-686 

related genes)88. Cell clusters in transitional states between midgut primordium and 687 

functional ECs were denoted as "midgut chambers", with each cluster distinguished 688 

by its top markers. 689 

Differentiation and molecular characteristics of embryonic midgut cell types 690 

We further investigated the molecular markers of distinct midgut cell types. 691 

Pathway enrichment analysis of cluster marker genes revealed that embryonic midgut 692 

cells are regulated by distinct signaling pathways, reflecting their versatile functions. 693 

Of note, the Notch signaling pathway was enriched in early endoderm, AMP/EE 694 

progenitors, and AMPs clusters, consistent with previous reports27,89. Additionally, the 695 

Wnt signaling pathway was enriched in multiple EE clusters90 (Figure S10A). 696 

Interestingly, AMPs and several EE clusters showed high enrichment in pathways 697 

related to autophagy and apoptosis (Figure S10A). Indeed, the expression of 698 

autophagy-related genes Atg101 and Atg991, as well as apoptosis-related genes chrb 699 
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and scyl92 are specifically enriched in AMPs and EEs within midgut (Figure S10B). It 700 

is possible that AMPs and EEs employ cell death-related mechanisms to maintain 701 

homeostasis during embryogenesis. To further characterize the functions of these 702 

diverse midgut cells, we used Hotspot93 to identify 17 gene modules from midgut 703 

scRNA-seq data (Figure 6D), each with distinct functional GO and cell type-specific 704 

enrichment (Figure 6E). For example, module 1, enriched in neuropeptide signaling 705 

pathways, was concentrated in all 6 EE clusters, aligning with their role in sensing 706 

stimuli and secreting neural signals for physiological regulation; Module 6, enriched in 707 

Cytochrome P450 family enzymes, was concentrated in EC (Acbp3+), suggesting a 708 

significant role in metabolism; Module 14, functionally enriched in genes regulating 709 

nervous system development and the Notch signaling pathway, was concentrated in 710 

AMPs and EE (Mip+) (Figure S10C). 711 

It is established that during metamorphosis, larval midgut cells undergo apoptosis, 712 

and adult midgut cells arise from AMPs to reconstitute the adult midgut89,94. 713 

Interestingly, in the UMAP plot, the differentiation trajectory of endoderm cells 714 

branched early on towards adult cell types (AMP/EE) and larval ones, which implied 715 

that the fates of these cell types were predetermined upon their differentiation from the 716 

endoderm primordium (Figure 6A). We observed that AMPs and EEs originated from 717 

the same cluster of cells in the UMAP plot, marked by the expression of esg and pros. 718 

This is in line with previous reports indicating that AMPs and EEs derive from the same 719 

group of midgut cells27, which we denoted as “AMP/EE progenitors” in our data (Figure 720 

2E-F). To further track the kinetics of cell type emergence, we employed Dynamo95 to 721 

illustrate the transcriptomic vector fields of midgut development. Dynamo analysis 722 

revealed that the kinetics of cell state changes supported the notion that AMPs and 723 

EEs derived from the same group of progenitors (Figure 6F). As previously reported, 724 

the Notch signaling pathway extensively participated in this differentiation process27,89, 725 

along with stem cell differentiation factors such as esg, pros, ase, and Sox100B88. 726 

Notably, we observed highly specific dynamics of the innate immune signaling gene 727 

Sting96 in AMPs, suggesting its role in the specification of AMPs (Figure 6G). Dynamo 728 

analysis also facilitated the tracing of EC formation from their precursors in midgut 729 

chambers (Figure 6F) and suggested cell type-specific markers for their specification 730 

(Figure S10D). 731 

In summary, we categorized and examined the variety of cell types, each with 732 

unique functions, present in the embryonic midgut. This allowed us to reveal the 733 

differentiation trajectories of AMPs and EEs, as well as identify potential regulatory 734 
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processes that govern their development and maintenance.  735 

Spatial distribution of midgut cell types from embryonic to pupal stages 736 

Next, we sought to map the midgut cell types we identified to their spatial locations. 737 

Using the cell type marker genes from scRNA-seq data as a reference, we located 738 

their counterparts in scStereo-seq data through label transfer (Figure 6H). Co-739 

embedding scRNA-seq and label transferred scStereo-seq data in the same UMAP 740 

space demonstrated high coherence (Figure S10E). The top marker genes of label 741 

transferred scStereo-seq cell bins were also consistent with scRNA-seq cells (Figure 742 

S10F), indicating precise mapping of cell types to their spatial locations. In the label 743 

transferred scStereo-seq 3D models, we observed the dynamics of changes in cell 744 

fraction throughout development, reflecting the different timings of emergence of these 745 

cell types. For example, EC (Try29F+) appeared around 13 h of development, while 746 

EC (Acbp3+) did not form until around 17 h (Figure 6I). Neighborhood enrichment 747 

analysis suggested that although most cell types were sparse in their spatial 748 

distribution, EC (Jon99Cii+) and EC (Try29F+) were more aggregated compared to 749 

other cell types (Figure S10G). Indeed, these cell types and the expression patterns 750 

of their marker genes occupied distinct spatial loci consistently across embryo 751 

scStereo-seq samples (Figure 6J). Therefore, mapping cell types to our scStereo-seq 752 

data enabled the tracing of embryonic midgut cell type distribution within their 753 

spatiotemporal context. This approach provides a comprehensive understanding of 754 

how different cell types are spatially and temporally organized during embryonic midgut 755 

development. 756 

We subsequently endeavored to identify midgut cell types in the larva and pupa 757 

scStereo-seq samples. We performed subclustering for larval and pupal midgut cell 758 

bins and used label transfer results as a reference for annotation. Given the substantial 759 

developmental changes and technical differences, we opted to use label transferred 760 

and re-annotated embryo scStereo-seq cell bins as the reference for label transfer of 761 

larva and pupa scStereo-seq samples, rather than embryo scRNA-seq cells. Cell 762 

clusters that demonstrated low confidence in label transfer were annotated as new 763 

larval or pupal cell types based on top marker genes (Figure S11A-C and Table S4). 764 

Compared to embryos, larvae displayed a more diverse array of intestinal 765 

epithelial cell types over development (Figure 6K and Figure S11D). Notably, different 766 

ECs were densely clustered along the anterior-posterior axis of the midgut, as 767 

observed in the 3D models of their distribution (Figure 6K). To understand their roles, 768 
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we carried out Hotspot gene module analysis on each larva scStereo-seq sample. To 769 

fully leverage our scStereo-seq data, we took spatial location of cell bins into 770 

consideration during identification of gene modules. Examining the functional 771 

enrichment of gene modules, we noticed that various cell types performed unique 772 

functions, some of which were similar to those in the embryonic midgut, while others 773 

were new and specific to the larval midgut. For instance, the gene module 774 

concentrated in EC (CG7298+) in L1 early implied functional enrichment of chitin 775 

formation, suggesting that cell type specialized midgut chitinization (reviewed in Ref97) 776 

commenced in the early larval stages; the gene module concentrated in EC 777 

(CG13075+) in L3 late indicated functional enrichment of apoptosis and pattern 778 

specification, possibly related with midgut remodeling during late larval stages (Figure 779 

6L and Figure S11E). 780 

During the L3 stage, substantial changes occurred among midgut cell types. The 781 

anterior gastric caecum and the posterior EC (Acbp3+) in the midgut contracted and 782 

decreased in number in L3 early sample, eventually vanishing completely in L3 late 783 

sample (Figure 6K and Figure S11D). This suggested that significant remodeling and 784 

reorganization of the midgut takes place during the L3 stage, which coincided with the 785 

previously established timing of midgut cell death in this region before 786 

metamorphosis98. Accompanying this process, we observed a marked and widespread 787 

shift in the gene expression profiles of various cell types within the midgut, 788 

characterized by a considerable increase in the expression of ribosomal and 789 

mitochondrial genes and their representation in marker genes (Table S4). 790 

We subsequently examined the morphology of the midgut and the marker genes 791 

within the pupal midgut subclusters and identified a notable cluster of midgut cells that, 792 

rather than expressing digestion-related genes, exhibited strong expression of 793 

ecdysone-responsive genes, such as Eig71Ek, Eig71Ea, and Edg78E (Table S2). 794 

These cells, which we designated as "midgut outer" in manual annotation, formed a 795 

sheath-like structure that enveloped the rest of midgut cells, which we labeled as 796 

"midgut inner" (Figure S11F and Data S1). These structures, which receded after the 797 

P24 stage and re-emerged at the P72 stage, bore a strong resemblance to the yellow 798 

body and its surrounding midgut epithelium into which the midgut delaminates during 799 

metamorphosis26 (reviewed in Ref99). 800 

In conclusion, the use of label transfer-assisted spatial mapping and annotation 801 

unveiled spatially restricted and cell type-specific functions of larval and pupal midgut 802 

cell types. The spatial transcriptomic data from our pupa scStereo-seq samples also 803 
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offered valuable resources for studying the regulation of midgut morphogenesis. 804 

Emergence and layout of embryonic midgut regions 805 

The adult Drosophila midgut is conventionally divided into five regions (hereafter 806 

termed R1~R5) based on morphological constraints, with each region performing 807 

distinct functions100,101. While functional regionalization of the midgut has been 808 

extensively studied at larva and adult stages, the precise timing of subregion 809 

emergence during embryonic development remains to be elucidated. In our previous 810 

study utilizing 3D spatial transcriptomic models, we observed the emergence of 811 

subregions with distinct digestive functions during late embryogenesis13. 812 

Here, we further characterized the process of embryonic midgut regionalization. 813 

Referring to regional marker genes summarized in Ref101, we first identified 6 gene 814 

modules from adult midgut regional marker genes with Hotspot (Figure S12A) and 815 

established their correlation with expression profiles of adult midgut regions. Among 816 

them, modules 4 and 6 display similar correlation with both R1 and R2, so we denoted 817 

the two regions they corresponded to R1/R2-like 1 & 2, respectively (Figure S12B). 818 

With these regional markers as references, we identified cell groups exhibiting 819 

transcriptomic similarity to adult R1 to R5 in scStereo-seq midgut cell bins, which we 820 

termed R1-like to R5-like. Each regional cell groups displayed distinct marker gene 821 

expression (Figure S12C) and increasing levels of spatial clustering over development, 822 

suggesting that they occupied distinct areas in the midgut (Figure S12D). This allowed 823 

us to investigate the timing of their appearance and trace the spatial distribution of 824 

these regions. Upon inspecting the expression of gene modules in scStereo-seq 825 

samples, we noted that the expression of R1-like gene modules initiated at the very 826 

early stages of endoderm development and gradually declined over time. Modules 827 

corresponding to other regions began to actively express around 13 h of 828 

embryogenesis (Figure 6M). Simultaneously, the spatial distribution of regions started 829 

to crystallize around the same time point, mirroring the spatial order as observed in the 830 

adult midgut (R1 to R5 from anterior to posterior) (Figure 6N). This suggested that 831 

although midgut underwent lysis and reformation during metamorphosis, its regional 832 

organization was already patterned during embryogenesis. 833 

To profile the biological functions each region undertook, we examined GO 834 

enrichment of marker genes for the identified embryonic midgut regions. The R1-like 835 

region is functionally enriched in protein metabolism; the R1/R2-like regions are 836 

functionally enriched in fatty acid metabolism; the R3-like region is functionally 837 
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enriched in ion transport and pH regulation, consistent with the acidic nature of this 838 

region102; the R4-like region is functionally enriched in stimuli sensing, proteolysis, and 839 

nucleic acid metabolism; the R5-like region is functionally enriched in metal ion 840 

homeostasis (Figure S12E). These functions aligned well with their counterparts in 841 

adult midgut regions100,101. We analyzed the cell type composition of each region and 842 

observed that over development, each region acquired its major cell types. For 843 

instance, R1/R2-like 2 mainly composed of EC (Muc55B+) and R3-like mainly 844 

composed of copper cells and EC (Jon65Aiii+) (Figure S12F). 845 

Together, our scStereo-seq data demonstrated distinctive cell compositions in the 846 

embryonic midgut regions, which determined the spatially localized sub-organ 847 

functions maintained through adulthood.  848 

Morphometric regulators during embryonic midgut development 849 

The Drosophila midgut experiences significant morphological transformations 850 

during development. It forms from the fusion of two separate rudiments at the anterior 851 

and posterior ends of the embryo, evolves into a closed chamber, and eventually 852 

establishes a highly convoluted tube-like morphology (reviewed in Ref103). We used 853 

Spateo to model the morphological changes during the fusion of the anterior and 854 

posterior midgut around stage 12 (~8 h of development) and the convolution of midgut 855 

tubes during late embryogenesis (Figure 6O and Movie S2). Morphometric analysis 856 

of cell migration modeled the fusion of early midgut and the torsion of late midgut, 857 

which revealed an association between midgut cell acceleration and multiple 858 

previously reported morphogenesis regulators across stages, including the GATA 859 

family TF grn, which is known to regulate the process of midgut fusion104, and Notch 860 

signaling pathway component Kaz-m1, which displays a highly restricted expression 861 

pattern at the fusion site of the midgut and has a potential regulatory role105 (Table S8). 862 

The expression levels of both factors were negatively correlated with acceleration 863 

scores, suggesting that they were associated with inhibition of midgut cell migration 864 

(Figure 6P). Starting from E15.77, gastric caecum-specific marker genes Acbp4 and 865 

Pebp1 ranked top in genes associated with all aspects of morphometric changes 866 

(Table S8), in line with the timing of gastric caecum extrusion and formation from the 867 

midgut chamber (~15 h of development)41. In addition, multiple Acyl-CoA binding 868 

protein (Acbp) family genes demonstrated high correlation with morphometric scores 869 

in late-stage midgut, which aligned with their known function of linking nutrient sensing 870 

and shaping tissue plasticity106. We also observed several potential regulators or 871 

effectors of midgut morphological changes, such as CG32633, which consistently 872 
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displayed positive correlation with cell migration acceleration across samples (Figure 873 

6P). Thus, morphometric analysis provided clues for identifying potential regulators 874 

during the complex morphogenesis process of embryonic midgut. 875 

 876 

DISCUSSION 877 

After our initial proof-of-principle application of Stereo-seq on Drosophila, we 878 

present here a single-cell 3D spatiotemporal multi-omics atlas spanning 879 

developmental lifespan of Drosophila from embryogenesis to metamorphosis. The 880 

current study builds upon our previous work by enhancing the Stereo-seq spatial 881 

transcriptomic dataset in several ways. Firstly, the sample collection window was 882 

expanded to include development from embryo to pupa. While ISH databases like 883 

BDGP and Fly-FISH have extensively probed spatial gene expression patterns in 884 

embryonic stages, there are still missing genes in these databases. Additionally, similar 885 

systematic databases are notably absent for the larval and pupal stages. Our scStereo-886 

seq data effectively encapsulated the spatial gene expression patterns, unveiling the 887 

spatiotemporal gene expression dynamics for a list of over 300 genes in embryos, 888 

previously uncharted in ISH databases. Our data also serves as a valuable asset for 889 

delving into the spatial gene expression patterns in larvae and pupae. Secondly, our 890 

previous work using merged bins of a predetermined number of DNBs as units of 891 

analysis (e.g., bin 20 × 20 recognized 400 DNBs as a single "cell") did not accurately 892 

capture the transcriptomes of individual cells. Here, we incorporated imaging data from 893 

nucleus staining with Stereo-seq to enable cell segmentation and established single-894 

cell spatial transcriptomes. Finally, we integrated droplet-based scRNA-seq and 895 

scATAC-seq data with scStereo-seq data for embryo samples, which improved 896 

genome coverage and incorporated epigenomic information. The plethora of multi-897 

omics data generated in this study provided many unique angles for dissecting the 898 

molecular underpinnings of various aspects of tissue development, as we have shown 899 

in this study. 900 

The integration of multi-omics data has enriched our analysis, enabling a more 901 

nuanced portrayal of cell states. As an example, the transcriptomes of CNS mature 902 

neurons are remarkably uniform, as demonstrated by their intertwined distribution in 903 

the UMAP space of scRNA-seq data. However, the incorporation of scATAC-seq data, 904 

which shows a higher degree of heterogeneity among mature neurons, allowed us to 905 

identify detailed neuron subtypes and investigate the regulatory mechanisms driving 906 
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their differentiation. Leveraging the high heterogeneity of scATAC-seq data, we were 907 

able to dissect the differentiation process of a group of neuron subtypes in detail and 908 

identified the TF Kr as a key regulator. The wealth of chromatin accessibility 909 

information allowed us to further uncover TFs that co-regulated gene expression with 910 

Kr. We also mapped cell clusters, derived from the integration of scRNA-seq and 911 

scATAC-seq data, to their spatial positions in the scStereo-seq data. This mapping 912 

enabled us to model single-cell transcriptomic and epigenomic profiles within tissue- 913 

and developmental stage-specific contexts. Therefore, this multi-omics data 914 

integration offered an unprecedented high-resolution spatiotemporal framework for 915 

analyzing cell state dynamics, such as TF regulons and signaling pathways. 916 

There were also inconsistencies between data generated from different 917 

techniques. For example, late-stage epidermis and somatic muscle cells identified in 918 

the scATAC-seq data lacked corresponding scRNA-seq counterparts. We observed a 919 

similar lack of coherence in CNS mature neurons, which, in addition to missing scRNA-920 

seq data, could also resulted from a temporal mismatch between chromatin 921 

accessibility and actual gene expression in these neurons. In certain instances, the 922 

chromatin regions of neuron subtype-specific genes were open, but gene expression 923 

was delayed. This discrepancy resulted in inaccurately imputed gene expression when 924 

integrating scATAC-seq and scRNA-seq data and mismatches in the co-embedded 925 

UMAP space. Similar phenomena have been observed in the mammalian nervous 926 

system, such as the process of epigenetic priming during normal or pathological 927 

development (reviewed in Refs107,108). 928 

Compared to our previous study, the point cloud-based 3D modeling of developing 929 

tissues in this work provided significantly more detailed structural information that more 930 

accurately reflects organ anatomical features. Furthermore, by aligning 3D models 931 

between different time points with Spateo, we were able to simultaneously track cell 932 

migration paths and alterations in gene expression. This morphometric analysis 933 

provided a unique perspective, enabling the identification of potential regulators of cell 934 

migration and differentiation. It is recognized that the eventual shape and size of an 935 

organ can be influenced by physical interactions with neighboring organs and signaling 936 

molecules from distant organs during development109–111. In addition to the intra-organ 937 

morphometric analysis presented here, these models can also be used to investigate 938 

the impact of inter-organ physical or biochemical contact on local gene expression 939 

changes, which in turn affect the final boundaries of organs. With the establishment of 940 

a complete synapse-resolution connectome of the Drosophila larval brain112, our 3D 941 
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transcriptomes have the potential to be spatially aligned with these synapse 942 

connectivity maps. By integrating spatial transcriptome and connectome data, we can 943 

simultaneously pinpoint the spatial locations of known and yet-to-be-identified neurons 944 

and deconvolute their molecular nature, leading to a deeper understanding of their 945 

physiological functions. 946 

The extensive datasets we generated here can be leveraged in many ways. 947 

Drosophila larva and pupa have provided excellent models for studying the course of 948 

post-organogenesis development and metamorphosis, yet single-cell profiling of 949 

tissues at these stages remained scant. These stages of samples in our scStereo-seq 950 

data can be readily integrated with existing larva scRNA-seq datasets6,7,113 to 951 

complement them with spatial information or provide a spatial framework for future 952 

single-cell studies of larval or pupal tissues. The study of early stages of Drosophila 953 

pupal development has been challenging due to significant tissue lysis and reformation. 954 

Our pupa scStereo-seq data provided valuable insights for investigation of tissue-955 

specific transcriptomic changes during metamorphosis. 956 

Moreover, the unique organization of our datasets can serve as a source of 957 

inspiration for the development of multiple types of bioinformatic algorithms and 958 

methods and can serve as benchmarking resources for such algorithms. The 959 

organism-wide 3D high-resolution features of our previous Stereo-seq datasets have 960 

already facilitated the development of several approaches for various purposes, 961 

including quantitative spatiotemporal modeling of single-cell spatial transcriptomic 962 

datasets14, visualization and analysis of spatial omics data114, construction of 963 

databases and optimization of their accessibility115, alignment of 2D spatial 964 

transcriptomic sections for 3D modeling116,117, and more. The new dataset features in 965 

this study can further assist in the development of bioinformatic approaches in many 966 

other aspects, such as cell segmentation of spatial transcriptomic data, integration of 967 

multi-omics data, spatial mapping of cell types, machine learning-based cell type and 968 

age prediction, and cell lineage tracing, among others. With the rapid development of 969 

spatial transcriptomic techniques and consequently the mounting number of datasets, 970 

these methods will serve as invaluable tools to facilitate our interpretation of multi-971 

omics datasets. 972 

In order to make our data more accessible, we have incorporated our datasets 973 

into the Spateo Viewer platform. This platform is a versatile and scalable web 974 

application specifically designed for the exploration of spatial transcriptomics data. 975 

Accessible through our online data portal, Flysta3D, the Spateo Viewer provides user-976 
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friendly access to our 3D models. It enables interactive visualization of gene 977 

expression, activity of gene groups, and a variety of other customizable parameters 978 

within spatiotemporal contexts. We believe that our comprehensive multi-omics 979 

database will serve as a catalyst for systematic research into Drosophila development, 980 

facilitating a deeper understanding of organism-wide spatiotemporal dynamics. 981 

 982 

LIMITATIONS OF THIS STUDY 983 

Our multi-modal analysis of the dataset revealed a wealth of information and 984 

demonstrated its potential for systematic spatiotemporal analysis of Drosophila 985 

development. However, there are still some areas that require improvement in future 986 

studies. 987 

The scRNA-seq and scATAC-seq data in this study were obtained from separate 988 

samples. We aimed to align cells from the same tissues and same developmental 989 

stages between datasets for integrated multi-omics analysis through the control of 990 

collection window and inference of single cell developmental age. However, it is still 991 

possible that data used for integration were from different states of cells. Methods for 992 

simultaneous capture of transcriptomic and chromatin accessibility profiles from single 993 

cells have been developed lately118,119, which may provide better integration results, 994 

especially addressing the temporal mismatch issue between scRNA-seq and scATAC-995 

seq data. With future technical improvements, spatial information of cells may also be 996 

captured simultaneously to generate actual multi-omics profiles for each single cell. 997 

This multi-omics atlas was generated exclusively from the genetic background 998 

strain w1118. However, investigating developmental regulation or disease 999 

mechanisms often involves genetic perturbations, such as knockdown/knockout of key 1000 

regulator genes, or changes in environmental conditions, such as pathogen infection 1001 

and drug treatment. Therefore, in the future, we plan to expand our study to include 1002 

Drosophila models with various genetic mutations or subjected to different infection 1003 

and/or treatment conditions to establish organism-wide single-cell multi-omics atlases. 1004 

This approach will be particularly beneficial for studying complex physiological 1005 

processes that involve multiple tissues in response to genetic perturbations, such as 1006 

the progression of neurodegenerative diseases, gut-brain axis communication, and 1007 

multi-organ metabolic diseases. The pipeline established in this study can serve as a 1008 

basis for such investigations, enabling the generation of comprehensive datasets that 1009 

incorporate genetic and environmental variability. 1010 
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Figure 1 A single-cell spatiotemporal multi-omics atlas of developing 1044 

Drosophila.  1045 

(A) Samples covered in this study. The outer rim indicates sample collection 1046 

windows for three omics datasets, with each arc segment represents a collection 1047 

window. Time points indicate hours after egg laying in embryos and hours after 1048 

pupation in pupa. The inner panel shows UMAP plots of aggregated scRNA-seq and 1049 

scATAC-seq data, color coded by tissue annotation. We did not obtain quality P36 1050 

scStereo-seq and E6-8h scRNA-seq data. CNS: central nervous system; PNS: 1051 

peripheral nervous system. (B) 3D modeling of representative scStereo-seq samples 1052 

using Spateo, showing point cloud (left) and mesh (right) models for the entire animal 1053 

over developing stages. Models of epidermis, trachea, hemolymph, and muscle are 1054 

not displayed in some samples for better visualization of internal organs. Tissue color 1055 

codes are the same as (A). Samples are not on the same scale. (C) FISH validation of 1056 

representative genes from the list of genes without reported spatial expression 1057 

patterns (Table S3). For each gene, representative FISH images were obtained from 1058 

stage 11-16 embryos from lateral or near-lateral view. Cyan: gene-specific RNA probes; 1059 

grey: nuclei stained with DAPI. Arrowheads indicate structures with autofluorescence 1060 

(e.g., trachea). Scale bars = 50 μm. All scStereo-seq samples are shown in lateral or 1061 

near-lateral view. A-P: anterior-posterior; D-V: dorsal-ventral. Spatial expression 1062 

patterns generated from original scStereo-seq or integrated scStereo-seq and scRNA-1063 

seq data are also from representative stage 13-17 embryos, projected along the Z-1064 

axis. See additional examples in Figure S1C. (D) Quality benchmark of scRNA-seq 1065 

dataset in this study, showing cell number, median UMI number per cell, and median 1066 

gene number per cell in datasets from this study and previous Drosophila embryo 1067 

scRNA-seq studies. (E) Quality benchmark of scATAC-seq dataset in this study, 1068 

showing cell number and median fragment number per cell from this study and 1069 

previous Drosophila embryo scATAC-seq studies. (F) Heatmap showing proportion of 1070 

scATAC-seq peaks in this study overlapping peaks in two previous Drosophila embryo 1071 

scATAC-seq/scATAC-seq studies, bulk DHS peaks, and peaks in known TSSs and 1072 

enhancers. (G) Bar plot showing cell type composition of data from scStereo-seq 1073 

(some low-quality samples are filtered), scRNA-seq, and scATAC-seq over sample 1074 

collection time. The y-axes are fraction of cell types annotated in each dataset. The x-1075 

axes are sample collection time points/windows (RAPToR inferred developmental age 1076 

for embryo scStereo-seq data).  1077 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.06.577903doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.06.577903
http://creativecommons.org/licenses/by-nc-nd/4.0/


Collection
window (h)

2-4
4-6
8-10
10-12
12-14
14-16
16-18
18-20
20-22

Inferred
age (h)

20
15
10
5
0

UMAP 1

U
M

AP
 2

A

F

Collection
window (h)
0-2
2-4
4-6
6-8
8-10
10-12
12-14
14-16
16-18
18-20
20-22

U
M

AP
 1

UMAP 2

Inferred
age (h)

20
15
10
5
0

B

UMAP 1

U
M

AP
 2

scRNA-seq
scATAC-seq

All (down sampled) Ectoderm

Mesoderm Endoderm

Muscle

Epidermis

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

U
M

AP
 1

UMAP 2

Epidermal epithelium

Somatic muscle

D

U
M

AP
 1

UMAP 2 Endoderm
UMAP 1

U
M

AP
 2

Mesoderm

Amnioserosa
Anal pad
CNS primordium
Ectoderm anlage
Ectoderm AISN
Ectoderm primordium
Epidermis early
Epidermis late
Epidermis mid early
Epidermis mid late
Epidermis primordium
Foregut early
Foregut late
Foregut primordium
Foregut/ring gland
Ganglion mother cells
Glia
Hindgut early
Hindgut late
Hindgut mid
Hindgut primordium
Malpighian tubule
Malpighian tubule anlage
Malpighian tubule primordium

Mature neurons
Mesoderm primordium
Motor neurons
Muscle primordium
Mushroom body
Neural progenitors
Neuroblasts
Oenocytes
Posterior spiracle
Procephalic ectoderm
Procephalic ectoderm primordium
Proventriculus
Salivary gland
Salivary gland primordium
Sensory complexes
Sensory primordium
Tendon cells early
Tendon cells late
Tracheal anlage
Tracheal primordium
Tracheal system early
Tracheal system late
Tracheal system mid
Undifferentiated neurons

Adult midgut precursors

Copper cells early
Copper cells late
Endoderm anlage
Endoderm primordium
Entero−endocrine cells

Midgut chamber 3 late
Enterocytes 1 late
Enterocytes 1 mid
Enterocytes 2 late
Enterocytes 2 mid early

Enterocytes 2 mid late
Enterocytes early
Gastric caecum

Midgut chamber 2 late

Midgut chamber 1 early
Midgut chamber 1 late
Midgut chamber 2 early

Midgut chamber 3 early

Midgut primordium

AMP/EE progenitors

Cardial cell primordium
Cardial cells
Cardiogenic mesoderm
CNS primordium
Crystal cells
Dorsal vessel
Fat body
Fat body early
Fat body late
Fat body mid early
Fat body mid late
Fat body primordium
Garland cells
Gonad
Hemocyte primordium
Mesoderm anlage
Mesoderm AISN
Mesoderm primordium
Motor neurons

Muscle system
Plasmatocyte anlage
Plasmatocyte primordium
Plasmatocytes
Plasmatocytes early
Plasmatocytes late
Somatic mesoderm
Somatic muscle
Somatic muscle early
Somatic muscle late
Somatic muscle primordium
Unknown
Visceral mesoderm
Visceral muscle 1 early
Visceral muscle 1 late
Visceral muscle 2 early
Visceral muscle 2 late
Visceral muscle 2 mid
Visceral muscle primordium

Adult midgut precursors

Copper cells early

Copper cells late

Endoderm anlage

Endoderm primordium

Entero−endocrine cells

Midgut chamber 3 late

Enterocytes 1 late

Enterocytes 1 mid

Enterocytes 2 late

Enterocytes 2 mid early

Enterocytes 2 mid late

Enterocytes early

Gastric caecum

Midgut chamber 2 late

Midgut chamber 1 early

Midgut chamber 1 late

Midgut chamber 2 early

Midgut chamber 3 early

Midgut primordium

AMP/EE progenitors

Somatic muscle late

Cardial cell primordium

Cardial cells

Cardiogenic mesoderm
Crystal cells

Dorsal vessel

Fat body early

Fat body late

Fat body mid early

Fat body mid late

Fat body primordium

Hemocyte primordium
Mesoderm anlage

Mesoderm AISN

Mesoderm primordium

Plasmatocyte anlage
Plasmatocyte primordium

Plasmatocytes early
Plasmatocytes late

Somatic mesoderm

Somatic muscle early

Somatic muscle primordium

Visceral mesoderm

Visceral muscle 1 early

Visceral muscle 1 late
Visceral muscle 2 early

Visceral muscle 2 late

Visceral muscle 2 mid

Visceral muscle primordium

Ectoderm

Mesoderm

Endoderm

Hindgut mid

CNS primordium

Ectoderm anlage

Ectoderm AISN

Ectoderm primordium

Epidermis early

Epidermis lateEpidermis mid early
Epidermis mid late

Epidermis primordium

Foregut early

Foregut late

Foregut primordium

Ganglion mother cells

Glia

Hindgut early

Hindgut late

Hindgut primordium

Malpighian tubuleMalpighian tubule
anlage Malpighian tubule

primordium

Mature neurons

Neural progenitors

Neuroblasts

Procephalic ectoderm

Procephalic ectoderm
primordium

Salivary gland

Salivary gland primordium

Sensory complexes

Sensory primordium

Tendon cells early

Tendon cells late

Tracheal anlage

Tracheal primordium

Tracheal system early

Tracheal system late

Tracheal system mid

Undifferentiated
neurons

CG43338 (chordotonal neurons)

CG13465 (mesoderm anlage)

CG15546 (tendon cells) UMAP 1

U
M

AP
 2

U
M

AP
 1

UMAP 2

Lateral

Ventral

A P

D

V

Ventral-lateral

E

C

UMAP 1

U
M

AP
 2

Ectoderm

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.06.577903doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.06.577903
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 34 / 50 

 

Figure 2 Integration of scRNA-seq and scATAC-seq data for construction of 1078 

tissue development trajectories. 1079 

(A) FISH validation of representative genes in the list of common tissue 1080 

substructure/cell types (Table S5). Left: representative FISH images of corresponding 1081 

stages of gene expression enrichment, with sample viewpoints labeled. Cyan: gene-1082 

specific RNA probes; grey: nuclei stained with DAPI. Arrowheads indicate structures 1083 

with autofluorescence (e.g., trachea). A-P: anterior-posterior; D-V: dorsal-ventral. 1084 

Scale bars = 50 μm; Right: UMAP plots of marker gene expression specificity in 1085 

aggregated scRNA-seq and scATAC-seq data. Cells with enriched marker gene 1086 

expression/peak accessibility are highlighted in dashed rectangles. (B) UMAP plots of 1087 

aggregated scRNA-seq data, color coded with RAPToR inferred developmental age 1088 

(left) and actual sample collection window (right). (C) UMAP plots of aggregated 1089 

scATAC-seq data, color coded with neural network model inferred developmental age 1090 

(left) and actual sample collection window (right). (D) UMAP plots of co-embedded 1091 

scRNA-seq and scATAC-seq data of all cells (down sampled) and three germ layers. 1092 

Dashed lines mark cell clusters in scATAC-seq data that miss corresponding cells in 1093 

scRNA-seq data, with their scATAC-seq annotations labeled. (E) Velocity fields of co-1094 

embedded UMAP plots of three germ layers in (D), color coded with re-annotated cell 1095 

types based on clustering of integrated data. Velocity trajectories point backward from 1096 

chronologically older to younger cells. The dashed rectangle indicates visceral muscle 1097 

groups discussed in the following analyses. AISN: anlage in statu nascendi. (F) Tissue 1098 

development trajectories based on cluster phylogeny inferred from (E) for major 1099 

tissues of three germ layers. Within each germ layer, widths of lines connecting 1100 

subcluster annotations indicate gene expression similarities. Dashed rectangles 1101 

indicate visceral muscle trajectories discussed in GRN analysis and AMP/EE 1102 

trajectories discussed in midgut cell type identification.  1103 
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Figure 3 Spatiotemporal dynamics along multi-omics tissue developmental 1104 

trajectories. 1105 

(A) Heatmap showing median tissue CytoTRACE scores based on scRNA-seq 1106 

data along tissue development trajectories. CytoTRACE scores are scaled across all 1107 

cells. (B) UMAP plots of scRNA-seq cells in the co-embedded UMAP space in Figure 1108 

2E, color coded with CytoTRACE scores. CytoTRACE scores are scaled within each 1109 

germ layer. (C) Same as (B) but color coded with gene activity scores of core 1110 

components of signaling pathways. Representative tissues enriched in signaling 1111 

pathway activities are labeled. (D) Sankey plots showing agreement between 1112 

scStereo-seq tissue manual annotations and transferred labels from integrated 1113 

scRNA-seq and scATAC-seq data in representative scStereo-seq samples. (E) Co-1114 

embedding of fat body and foregut/hindgut cells from scRNA-seq and scStereo-seq 1115 

(pooled samples) data in the same UMAP plots, labeled with original scRNA-seq 1116 

annotations or transferred annotations. (F) Bar plots showing cell type composition of 1117 

fat body and foregut/hindgut in scStereo-seq samples. Cell types are label transferred 1118 

from scRNA-seq data. (G) Heatmaps showing neighborhood enrichment scores of fat 1119 

body and foregut/hindgut cell types across scStereo-seq samples. Blank cells indicate 1120 

absence of label transferred cell types or lack of enrichment in corresponding samples. 1121 

(H) 3D tissue models across representative embryo scStereo-seq samples, showing 1122 

spatial distribution of label transferred cell types, mesh models for fat body or 1123 

foregut/hindgut, and mesh models of the entire embryo. Due to high homology, some 1124 

hindgut cells are annotated as foregut ones by label transfer. (I) Spatial distribution of 1125 

cell bin CytoTRACE scores in representative fat body and foregut/hindgut models in 1126 

(H).  1127 
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Figure 4 Transcription factor regulatory networks along multi-omics tissue 1128 

development trajectories. 1129 

(A) The same UMAP plots as Figure 2E but only show scATAC-seq cells, color 1130 

coded with motif activities of less-characterized TFs. (B) TF motif enrichment along 1131 

tissue development trajectories, showing less-characterized TF genes in (A), their 1132 

binding motifs (left), motif enrichment heatmap (upper right), and enrichment p value 1133 

heatmap (lower right) across tissue types and developmental stages in cells from three 1134 

germ layers in scATAC-seq data. (C) Visualization of SCENIC regulon activity of some 1135 

of TFs in (A) in representative samples from integrated scStereo-seq and scRNA-seq 1136 

data, projected along the Z-axis. Previously reported tissue-specific TFs are in bold. 1137 

All scStereo-seq samples are shown in lateral or near-lateral view. A-P: anterior-1138 

posterior; D-V: dorsal-ventral. (D) Pando identified regulons of TF bin in visceral 1139 

muscle 1 late and visceral muscle 2 late, and those of TF srp and crp in fat body early. 1140 

Genes in bold are discussed in detail in the main text. (E) Pando identified GRNs of 1141 

TFs (highlighted in bold) and cell types in (D). Other TFs in bold are discussed in detail 1142 

in the main text. (F) Venn diagrams showing overlap between target genes in regulons 1143 

of srp and crp along developmental trajectories of fat body and plasmatocytes.  1144 
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Figure 5 Gene regulation and morphometric dynamics in embryonic CNS. 1145 

(A) UMAP plot showing subclustering and annotation of CNS cells from scRNA-1146 

seq data. (B) Same as (A), but for scATAC-seq data. Annotations with (R) or (A) 1147 

indicate clusters identified only in scRNA-seq data or only in scATAC-seq data, 1148 

respectively. (C) Co-embedding of CNS cells from scRNA-seq and scATAC-seq data 1149 

in the same UMAP plot. (D) Same as (C), but re-clustered and re-annotated. (E) Bubble 1150 

plots showing expression level and enrichment of top marker genes of mature neuron 1151 

cell types in (D). (F) Left: 3D UMAP plot of scATAC-seq data (also see Data S3) and 1152 

differentiation trajectories of selected cell clusters, with S0 through S15 denoting 1153 

branching points of differentiation. S8 was set as the origin of differentiation; right: 1154 

subway map plot showing differentiation trajectories and branching points of the same 1155 

cell clusters. Each dot represents one cell from scATAC-seq data subset. (G) Upper 1156 

left: UMAP plot showing subclustering of sensory neurons and their differentiation 1157 

paths; lower left: the same UMAP plot color coded with Kr motif activity. Kr has 5 known 1158 

motifs with highly similar sequence compositions. The composition and activity of 1159 

representative motif M03663 are shown; right: scatter plot showing the genes 1160 

associated with DA peaks and DE genes, comparing GABAergic neurons 2 with 1161 

GABAergic neurons 4, and GABAergic neurons 2 with tyraminergic neurons 1. Nearest 1162 

genes of Kr binding motifs are labeled. The size of each dot corresponds to the product 1163 

of p values for DA peaks and DE genes. (H) The same scatter plots as (G), comparing 1164 

GABAergic neurons 2 with tyraminergic neurons 1 and labeled with nearest genes of 1165 

binding motifs of hb, grh, and opa. (I) Venn diagrams showing overlap between target 1166 

genes in regulons of klu and CG12219 among representative mature neuron cell types. 1167 

(J) 3D CNS models across representative embryo scStereo-seq samples, showing 1168 

spatial distribution of cell types, mesh models of CNS, and mesh models of the entire 1169 

embryo. Cell type color codes are the same as (D). (K) 3D models of CNS, CNS cell 1170 

migration trajectories, and acceleration scores across 7 scStereo-seq samples of 1171 

developmental age between 7 and 18 h. (L) General linear model-based correlation 1172 

between acceleration scores and expression levels of CG42394 and lncRNA:CR30009 1173 

in transitions between representative scStereo-seq samples. Spatial gene expression 1174 

patterns in CNS 3D models are shown on the right of each plot. (M) FISH validation in 1175 

stage 11-16 embryos of gene candidates identified in CNS morphometric analysis. 1176 

Representative images of pan-neuronal marker gene elav and candidate genes 1177 

CG42394, lncRNA: CR30009, and lncRNA:CR45388 are shown. All samples are 1178 

shown in lateral view. A-P: anterior-posterior; D-V: dorsal-ventral. Scale bars = 50 μm.  1179 
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Figure 6 Cell type diversity and functional regionalization in midgut. 1180 

(A) UMAP plot showing subclustering and annotation of endoderm and midgut 1181 

cells from scRNA-seq data, derived from Dynamo analysis. (B) Bubble plot showing 1182 

expression level and enrichment of top marker genes of cell types in (A). (C) Same as 1183 

(B) but within entero-endocrine cells. (D) Heat map showing correlation of functional 1184 

gene modules identified by Hotspot in scRNA-seq data. Each row and each column 1185 

represent a module marker gene, and Z-score indicates their correlation. (E) Heat map 1186 

showing enrichment and clustering of Hotspot identified gene modules from (D) in 1187 

midgut cell types in scRNA-seq data. (F) RNA velocity flow projected in UMAP space 1188 

in (A). Cell type color codes are the same as (A). Dashed lines mark clusters 1189 

representing adult midgut progenitors (AMPs), entero-endocrine cells (EEs), and 1190 

enterocytes (ECs) discussed in the main text. (G) Dot plots showing relationship 1191 

between velocity derived pseudotime and expression levels of genes of interest during 1192 

differentiation of AMPs and EEs. Each dot represents one cell from midgut scRNA-seq 1193 

data. (H) 3D midgut models across representative embryo scStereo-seq samples, 1194 

showing spatial distribution of cell types, mesh models of midgut, and mesh models of 1195 

the entire embryo. Cell type color codes are the same as (A). (I) Bar plot showing cell 1196 

type composition of midgut in scStereo-seq samples. Cell types are label transferred 1197 

from scRNA-seq data. (J) Same as (H) but showing spatial distribution of copper cells, 1198 

EC (Jon99Cii+), and EC (Try29F+) and their cell type marker genes in representative 1199 

scStereo-seq samples. (K) Same as (H) but for larva scStereo-seq samples. Cell type 1200 

color codes are the same as Figure S11D. Samples are not on the same scale. (L) 3D 1201 

midgut models of L1 early and L3 late scStereo-seq samples, showing spatial 1202 

distribution of representative ECs and their corresponding functional gene modules. 1203 

(M) Heat map showing expression level of region-related gene modules across 1204 

scStereo-seq samples. (N) Same as (H) but showing spatial distribution of inferred 1205 

“adult midgut” regions. (O) 3D midgut cell migration trajectories and acceleration 1206 

scores across 7 scStereo-seq samples of developmental age between 7 and 18 h. 1207 

Sample viewpoints are different from (N) for better visualization of trajectories. (P) 1208 

General linear model-based correlation between acceleration scores and expression 1209 

levels of grn, Kaz-m1, and CG32633 in transitions between representative scStereo-1210 

seq samples.  1211 
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METHODS 1212 

RESOURCE AVAILABILITY 1213 

Lead contact 1214 

Further information and requests for the resources and reagents may be directed 1215 

to the corresponding author Yuhui Hu (huyh@sustech.edu.cn). 1216 

Materials availability 1217 

All materials used for Stereo-seq, MGI C4 scRNA-seq, and MGI C4 scATAC-seq 1218 

are commercially available. 1219 

Data and code availability 1220 

Raw data generated by Stereo-seq, scRNA-seq, and scATAC-seq in this study 1221 

and associated analysis protocols and software can be accessed in our online 1222 

database, Flysta3D. All data were analyzed with standard programs and packages, as 1223 

detailed in Method details. Processed matrices can be accessed through Mendeley 1224 

Data (https://doi.org/10.17632/tvvjfr3c6j.1, https://doi.org/10.17632/29695x8txs.1, and 1225 

https://doi.org/10.17632/4zf847bxcd.1). All custom codes using open-source software 1226 

to support this study are provided in a public GitHub repository. Any additional 1227 

information required to re-analyze the data reported in this study is available from the 1228 

lead contact upon request. 1229 

 1230 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 1231 

Fly strain maintenance 1232 

All Stereo-seq, scRNA-seq, and scATAC-seq samples were from Drosophila strain 1233 

w1118. Flies were maintained on cornmeal-sucrose-agar media in a 25 ℃ incubator 1234 

on a 12 h/12 h light/dark cycle. 1235 

Fly sample preparation 1236 

Samples were prepared and embedded for cryosection and Stereo-seq as 1237 

previously described13. Unless otherwise specified, the samples were sectioned along 1238 

the left-right axis to represent sagittal planes. 1239 

For scRNA-seq, single cells were isolated and fixed following protocols described 1240 
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in Ref120 and stored at -20 ℃ until further use. 1241 

For scATAC-seq, embryos at the desired stages were collected from a population 1242 

cage. The embryos were transferred to a 70 μm cell strainer, dechorionated in 1243 

commercial bleach for 3 min, rinsed with ddH2O, and dried on a Kimwipe. 1244 

Dechorionated embryos were then snap-frozen in liquid nitrogen and stored at -80 ℃ 1245 

until further use. 1246 

 1247 

METHOD DETAILS 1248 

See method details in Supplemental Information. 1249 

 1250 

SUPPLEMENTAL INFORMATION 1251 

Supplemental Figures, Tables, Movies, and Data can be found in the 1252 

Supplemental Information.  1253 
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