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SUMMARY

The development of a multicellular organism is a highly intricate process tightly
regulated by numerous genes and pathways in both spatial and temporal manners.
Here, we present Flysta3D, a comprehensive multi-omics atlas of the model organism
Drosophila, spanning its developmental lifespan from embryo to pupa. Our datasets
encompass 3D single-cell spatial transcriptomic, single-cell transcriptomic, and single-
cell chromatin accessibility information. By integrating these multi-dimensional data,
we constructed cell state trajectories that uncover the detailed profiles of tissue
development. With a focus on the central nervous system (CNS) and midgut, we
dissected the spatiotemporal dynamics of gene regulatory networks, cell type diversity,
and morphological changes from a multi-omics perspective. This extensive atlas
provides an unprecedentedly rich resource and serves as a systematic platform for
studying Drosophila development with integrated single-cell data at an ultra-high

spatiotemporal resolution.

Key words: Drosophila development, single-cell multi-omics, spatial

transcriptomics, Stereo-seq, Flysta3D
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INTRODUCTION

The advances in single-cell multi-omics technologies have revolutionized our
understanding of biological processes, revealing cell-specific functional
heterogeneities that underlie the complex physiologies of development, aging, and
diseases. To date, the functional profile of a single cell can be characterized across
multiple dimensions, including its cell surface epitopes, transcriptome, epigenome, and
proteome (reviewed in Ref'). The development of spatial multi-omics techniques
further added spatial context to these dimensions of information (reviewed in Ref?),
and progress has been made in integrating these multi-modal data to construct a
panoramic profile of context-specific functions of single cells and their communications

with one another (reviewed in Ref?).

Drosophila melanogaster has long been a fundamental model organism for
genetics and developmental biology research. Recent single-cell multi-omics studies
have highlighted the versatility of Drosophila in characterizing transcriptomic and
epigenomic dynamics of individual cells during embryogenesis*®, tissue
development®3, tissue regeneration®, and systemic aging'®. These studies generated
rich resources for dissecting the multi-omics profiles of various tissues at single cell
precision across developmental stages. Nevertheless, the spatial context of such
single-cell omics data is crucial to understanding their biological relevance but is often

lost during standard single-cell sequencing procedures.

Embryogenesis is an intricately regulated process that transforms a totipotent
zygote into a fully formed embryo with functional organs. Over the past several
decades, research into Drosophila embryogenesis has yielded invaluable insights into
this meticulous process and many of its features that are conserved in mammals
(reviewed in Ref'"). Recently, a few studies have addressed Drosophila
embryogenesis from the perspective of single-cell multi-omics*®, but focused only on
a few developmental time points or are limited in genome coverage. Until recently,
genome-wide spatial transcriptomic profiling of developing Drosophila was lacking due
to the miniature sizes of Drosophila samples and resolution limit of spatial
transcriptomic techniques. Previously, we utilized spatial enhanced resolution omics
sequencing (Stereo-seq)'?, a sequencing- and patterned DNA nanoball (DNB) array-
based spatial transcriptomic platform with high spatial resolution and sensitivity, to
address this gap. Using Stereo-seq, we generated 3D spatiotemporal transcriptomic
maps of Drosophila late-stage embryos and larvae and analyzed the development of

tissues within their actual 3D spatial context's.
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80 Here, we expanded our previous spatiotemporal transcriptomic atlas of Drosophila
81  to cover its developmental lifespan from embryo to pupa. Using Stereo-seq and Spateo,
82 a computational pipeline designed to analyze single-cell multi-modal spatial
83 transcriptomic data'#, we reconstructed 3D transcriptomes at single cell spatial
84  resolution. We further complemented embryo single-cell Stereo-seq (scStereo-seq)
85 data with single-cell RNA sequencing (scRNA-seq) and single-cell assay for
86 transposase-accessible chromatin using sequencing (scATAC-seq) data to create a
87  multi-omics atlas of Drosophila embryos that includes transcriptomic and epigenomic
88 information within an ultra-high-resolution spatial context. The data in this single-cell
89  spatiotemporal multi-omics atlas of Drosophila development are curated in our

90 database, Flysta3D, for easy access.

91 Based on the unprecedentedly rich data resource, we established multi-omics cell
92  state trajectories of tissue development. Along these trajectories, we systematically
93 characterized the spatiotemporal dynamics of cell differentiation potential, signaling
94  pathways, and transcription factor (TF) regulatory networks. Focusing on two widely
95  studied Drosophila tissues, central nervous system (CNS) and midgut, we delved into
96 their cell type diversification, gene regulatory networks, and morphological changes
97 from a multi-omics perspective. Given that we have produced extensive multi-omics
98 datasets for the embryonic stages, the major focus of this paper will be the analysis of
99 embryogenesis from a multi-omics perspective. The scStereo-seq data for the larval
100 and pupal stages are not discussed extensively here but will be accessible via
101 Flysta3D database. Flysta3D hosts all the datasets generated in this study and
102  provides interactive 3D visualization of gene expression patterns, TF regulatory
103  networks, signaling pathway activities, etc. in these datasets. Our database can
104  facilitate systematic research on Drosophila development with its comprehensive

105 information and broad range of applications.

106
107 RESULTS
108 Single-cell 3D spatial transcriptomes of Drosophila from

109 embryogenesis to metamorphosis

110 To construct multi-omics atlas of Drosophila development, we started off by
111 expanding and enhancing the 3D spatial transcriptomes of Drosophila development

112  based on our previous work. Developing embryos were collected at 0.5 to 2 h intervals
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113  throughout the ~24 h course of embryogenesis (hereafter termed based on
114  computationally inferred developmental age, see below). Larva samples were
115  collected at early or late time points for each of the three larval stages (hereafter
116  termed L1 to L3 early/late). Pupa samples were collected at 12 h intervals starting from
117  pupation (hereafter termed P12 to P72) (Figure 1A and Table S1). Cryosection was
118  performed for each sample to obtain their sagittal sections of 7 or 8 um thickness, and
119  all available sections of each sample were subjected to in situ mRNA capture, library

120  preparation, and sequencing at the Stereo-seq platform.

121 The subcellular spatial resolution achieved by Stereo-seq (~500 nm distance
122  between DNBs) was not fully utilized in our previous dataset due to the lack of cell
123  location information. Here, to address this, we attempted to achieve single-cell spatial
124  resolution by nucleus staining and imaging of each Stereo-seq chip before library
125  preparation. Cell segmentation was then performed based on the location of each
126  nucleus. After sequencing and mapping, 2D spatial gene expression matrices were
127  aligned with segmented images. Each DNB was then assigned to a cell bin, allowing
128  for more precise single-cell transcriptome analysis (Figure S1A). We then combined
129 cell bins from all sections of individual samples, performed unsupervised clustering
130 based on both gene expression profiles and spatial locations (Data $1), and manually
131 annotated the clusters according to marker gene expression and spatial morphology
132  (Table S2). Utilizing the Stereo-seq platform, we generated organism-wide single-cell
133  spatial transcriptomes for 43 embryo, 9 larva, and 5 pupa samples throughout
134  Drosophila development, with a total of 3,812,505 cell bins (Table S$1).

135 With the 2D single-cell spatial transcriptomic datasets, we reconstructed the
136  spatial transcriptomes in 3D leveraging point cloud-based modeling method in Spateo
137  package, which were optimized for cell bins. This approach offered enhanced
138  structural details compared to our previous 3D modeling results and allowed the
139 alignment of 3D models from different time points for morphometric analysis (see
140  below). The 3D modeling of cell bin spatial transcriptomic data effectively captured the
141 anatomical morphology of tissues with finer details than our previous 3D models
142  (Figure 1B and Figure S1B). In our previous study on limited embryo and larva
143  samples, we demonstrated that Stereo-seq data reproducibly captured spatial gene
144  expression patterns that largely overlapped with established in situ databases'¢, as
145  well as those that were absent in these databases. Based on this more comprehensive
146  spatiotemporal transcriptomic dataset, we further identified a list of 338 genes without

147  reported spatial expression patterns in embryos and reconstructed their patterns in 3D

5/50


https://doi.org/10.1101/2024.02.06.577903
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.06.577903; this version posted February 6, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

148 (Table S3). We selected 9 genes to validate their spatial expression patterns with
149  fluorescence in situ hybridization (FISH) and found high consistency with scStereo-
150 seq data in terms of spatial gene expression patterns and tissue enrichment (Figure
151  1C and Figure S1C). These results further substantiated the power of Stereo-seq in

152  recapitulating spatial gene expression profiles and guiding in vivo validation.

153

154 A single-cell spatiotemporal multi-omics atlas of Drosophila

155 embryogenesis

156 Despite its ability to provide a better representation of single-cell spatial
157  transcriptomes, scStereo-seq had a higher dropout rate compared to droplet-based
158 scRNA-seq due to a reduced number of DNBs assigned to each cell bin. This limitation
159 curtailed the ability of scStereo-seq to detect genes that express at a lower level. To
160  overcome this drawback and to augment our single-cell 3D spatial transcriptomic data
161  with deeper transcriptomic and epigenomic information, we collected samples at 2-
162  hour intervals across embryogenesis and performed droplet-based scRNA-seq and
163  scATAC-seq (Figure 1A). Following quality control, we obtained 238,242 single-cell
164  transcriptomes with scRNA-seq, with a median of 6,841 unique molecular identifiers
165 (UMIs) and 1,707 genes per cell (Table S1). These quality control statistics in our
166  scRNA-seq data were comparable to or better than previous Drosophila embryo
167  scRNA-seq studies*® (Figure 1D). Additionally, we obtained 240,573 single-cell
168  chromatin accessibility profiles with scATAC-seq, with a median of 11,772 fragments
169  percell (Table S1). The number of fragments captured per cell and other quality control
170  statistics in our scATAC-seq data were also comparable to or better than previous
171 Drosophila scATAC-seq datasets®'” (Figure 1E and Figure S1D-F) and achieved high
172  coverage of previously reported scATAC-seq datasets®'’, DNase | hypersensitive sites
173  (DHS)'®, annotated transcription start sites (TSS)'®, and known enhancer sites?°-22
174  (Figure 1F).

175 With the aggregated scRNA-seq data collected across embryogenesis, we
176  performed an initial round of coarse unsupervised clustering and generated 45 cell
177  clusters in the uniform manifold approximation and projection (UMAP) plot (Figure
178 S1G). We annotated these clusters and classified annotations at three levels (cell
179  typelftissue substructure - tissue - germ layer, e.g., gastric caecum - midgut - endoderm)
180  based on marker gene expression (Figure 1A and Table S2). Similarly, we performed

181  coarse unsupervised clustering in aggregated scATAC-seq data, generating 40 distinct
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182  clusters in the UMAP plot (Figure S1H). Each cluster was also annotated through
183  inspection of marker genes (Figure 1A and Table S2). The data we collected achieved
184  extensive coverage of major tissues, as reflected by the proportion of cells

185  representing each tissue and their dynamics over developmental stages (Figure 1G).

186 Given the deep genome coverage of our data, we further profiled tissue cell type
187  heterogeneity by subclustering and annotating tissue clusters from scRNA-seq and
188 scATAC-seq data. The resolution of subclustering for each tissue was determined
189  based on previously reported cell type complexities. Detailed cell types were annotated
190 based on marker gene expression and literature search (Table S4). Through
191  subclustering of the scRNA-seq data, we were able to examine the specific
192  composition of embryo tissue cell types. For example, the subclustering of the
193  peripheral nervous system (PNS) cluster allowed for the distinct identification of
194  neurons and glia from external sensory?® and chordotonal organs®2° (Figure S2).
195  These subclustering results indicated that we were able to extensively characterize the
196  major cell types in the embryo and identify several rare ones, such as adult midgut
197  progenitors (AMPs)? and entero-endocrine cells (EEs)?’ in the midgut (see below). We
198 also identified subclusters representing most of these detailed cell types in the
199  scATAC-seq data (Figure S3). While we annotated tissue subclusters to the best of
200 our knowledge, there could still be instances where clusters were not assigned their
201  optimal annotations. We annotated some of the ambiguous or unknown cell clusters
202  with reference to cell types they resembled most based on marker genes, such as
203  “neuron-like” (Figure S2 and S3). Therefore, community efforts are welcome to help
204  further specify the annotations of tissue cell types. To verify the well annotated
205  subclusters we identified in both datasets, we compiled a list of common tissue
206  substructure/cell type markers, which are identified in both datasets (Table S5) and
207  validated the expression specificity of 3 previously unreported cell type markers using
208 FISH (Figure 2A).

209 In summary, we generated a compendium of scStereo-seq, scRNA-seq, and
210  scATAC-seq datasets throughout Drosophila embryogenesis. The high granularity and
211 temporal continuity of our multi-omics data opened the possibility of cell type- and

212  developmental age-dependent integration of these multi-omics data.

213
214 Developmental age-matched integration of multi-omics data
215 Integration of multi-omics data offers more comprehensive perspectives when
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216  searching for key molecular factors regulating tissue development. Our multi-omics
217 data were obtained from multiple batches of samples using different techniques.
218  Considering the rapid spatiotemporal gene expression changes during embryogenesis,
219 it is crucial to confirm that the developmental ages of samples were matched before
220 integrating multi-omics data. Age matching was also necessitated by the fact that
221  mated female flies might retain embryos in their reproductive tract for some time
222  between fertilization and egg laying (“egg retention”)?, leading to possible deviations
223  of the actual developmental age from the sample collection windows in individual

224  scStereo-seq samples.

225 To precisely stage our samples, we applied RAPToR, a predictive model inferring
226 the developmental age of biological samples based on transcriptomic profiles?®, on
227  both embryo scStereo-seq and scRNA-seq data. The developmental age of embryo
228  scStereo-seq samples was determined by RAPToR inference with the entire embryo
229  as a pseudo-bulk input (Table S$1). The ages inferred by RAPToR aligned well with the
230  collection window for the majority of samples. However, in a few instances, there was
231  asignificant discrepancy, with RAPToR inferring an age notably older than that derived
232  from the collection window, indicating the presence of female egg retention (Table S1).
233  We further validated the age of these samples by inspecting their nuclear staining
234  morphologies and found better agreement with RAPTOR inference than collection
235 window. Consequently, these samples are denoted by their RAPToR-inferred
236  developmental age rather than the actual sample collection time window (e.g., E15.75
237 refers to an embryo sample with the inferred developmental age of 15.75 h). The
238 resulting set of 43 embryo scStereo-seq samples we collected comprehensively
239 covered Drosophila embryogenesis (Figure S4A). The RAPToR-inferred
240 developmental age of single cells from scRNA-seq data showed overall good
241  agreement with their actual sample collection window (Figure 2B and Figure S4B),
242  but with significant tissue-dependent variations within each stage (Figure S4C), likely
243  because RAPTOR, a model trained on bulk RNA-seq data, lacks cell type specificity
244  for scRNA-seq data. Similar variations were also observed in age inference of
245  individual cell bins of scStereo-seq samples (Figure S4D). To infer the developmental
246  age of cells from scATAC-seq data, we employed a previously described neural
247  network model®. The resulting cell developmental age was also largely consistent with

248  the sample collection window (Figure 2C and Figure S4E).

249 Subsequently, we selected cells in the scRNA-seq data with a RAPToR inferred

250 developmental age difference of 1 hour for integration with scStereo-seq data using
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251 NovoSpaRc™®. The integrated data enabled the imputation of spatial gene expression
252  patterns with higher genome coverage, yielding markedly reduced signal background,
253 enhanced tissue enrichment, and improved spatial gene expression patterns that

254  exhibited greater resemblance to FISH validation results (Figure 1C and Figure S1C).

255 We acquired scRNA-seq and scATAC-seq data from several hundred embryos
256  per sample batch. Sample developmental age matched collection window for the
257  majority of embryos, and the substantial sample size mitigated the influence of female
258  egg retention. This was reinforced by the consistency between the model-predicted
259 age and the actual collection window in both datasets (Figure 2B-C). Additionally, the
260 developmental ages of scRNA-seq and scATAC-seq were inferred with different
261 models and might not be comparable. Consequently, we directly used sample
262  collection window to integrate the scRNA-seq and scATAC-seq data for downstream

263  analysis.

264 Together, our three multi-omics datasets exhibited coherence during embryo
265 stages and can be integrated in a developmental age-specific manner in downstream

266  analyses.

267
268 Construction of multi-omics tissue development trajectories
269 To delve into the detailed dynamics of developing tissues, we aimed to

270  chronologically organize the tissue cell types in scRNA-seq and scATAC-seq data into
271  continuous tissue developmental trajectories. Upon examining the subclustered and
272  annotated data, we noticed that certain developmentally transitional cell types were
273  categorized into different tissue clusters between assays, possibly due to differences
274 in assay techniques, genome coverage, or clustering resolution (e.g., "muscle
275  primordium" was annotated in the "mesoderm" cluster of the scATAC-seq dataset but
276  in the "muscle" cluster of the scRNA-seq dataset) (Figure S2 and Figure S3). To
277  resolve this issue, instead of focusing on individual tissues, we included all cells of the

278  same germ layer for collective and continuous analysis.

279 We first integrated the scRNA-seq and scATAC-seq data by finding integrated
280 anchors for label transfer, imputing gene expression matrix from peak matrix of
281  scATAC-seq data, and co-embedding them in the same UMAP space (Figure 2D).
282  Subsequently, unsupervised clustering was performed on the integrated germ layer
283 data (Figure S4F). Notably, a substantial number of late-stage cells annotated as
284  "muscle" and "epidermis" in the scATAC-seq data did not correspond to any cell
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285 clusters in the scRNA-seq data (Figure 2D). This discrepancy likely stemmed from
286  technical limitations in capturing late-stage muscle (possibly due to their syncytial
287  characteristics) and epidermal cells with our droplet-based scRNA-seq procedure. This
288  was supported by a significant decrease in the fraction of these two cell types in late-
289  stage scRNA-seq data (Figure 1G).

290 To construct tissue developmental trajectories within a germ layer, we applied
291  PhyloVelo®' to the integrated data to establish velocity vector fields for three germ
292 layers and re-annotated cell clusters based on marker genes and their chronological
293 order along the velocity trajectories (Figure 2E and Table S4). Due to their
294  complexities, the trends of cell type differentiation are better visualized in 3D UMAP
295 plots (Data S2). With these velocity vector fields, we delineated multi-omics tissue

296  development trajectories for all three germ layers (Figure 2F).

297 Multi-omics tissue development trajectories allowed continuous and systematic
298 tracing of various aspects of tissue- and cell type-specific dynamics during embryo
299 development. To assess the differentiation dynamics of single cells, we employed
300 CytoTRACE®, which leveraged the number of detectably expressed genes as a robust
301 indicator of differentiation potential. CyfoTRACE analysis revealed diverse trends in
302 differentiation dynamics across tissues during organ specification and maturation
303 (Figure 3A-B and Figure S4G). In general, mesodermal and endodermal tissues
304 exhibited a slower decrease in differentiation potential compared to ectodermal ones.
305 As anticipated, gonad cells maintained a consistently high level of potential throughout
306 embryogenesis. Notably, the nervous system displayed the most rapid decline in
307  differentiation potential throughout development, indicating its relatively faster pace
308 towards terminal differentiation (Figure 3A). Within each tissue, different cell types
309 also exhibited varying rates of reduction in differentiation potential during development
310 (Figure 3B and Figure S4G). Genes whose expression level showed the strongest
311 positive correlation with CytoTRACE scores were enriched in cell differentiation-
312  related and ribosome protein genes (Figure S4H-I and Table S6). The latter has been
313  previously reported as indicators of both differentiation potential (reviewed in Ref*®)
314  and aging'®. Conversely, genes whose expression level most negatively correlated
315  with CytoTRACE scores included specific markers of differentiated tissues (e.g.,
316  GABAergic neuron-specific marker RdlP* and hemocyte-specific marker Ppn®®) (Figure
317  S4H).

318 To characterize the activities of signaling pathways along tissue trajectories, we

319 utilized 7 signaling pathway gene sets from FlyphoneDB* and examined the
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320 expression dynamics of core pathway component genes across tissue developmental
321  trajectories (Figure S5A-B). Throughout the trajectories, we observed the up-
322  regulation of multiple tissue-specific signaling pathways that are well-documented in
323  the literature. The BMP signaling pathway, known for its integral role in ectoderm
324  dorsal-ventral patterning (reviewed in Ref®’), and in the regulation of neuromuscular
325 junctions (NMJ, reviewed in Ref®), demonstrated the highest level of activity in early
326 ectoderm and muscles. Meanwhile, the FGFR signaling pathway, which has been
327  widely recognized for its role in trachea branching morphogenesis (reviewed in Ref?),
328 showed maximum activity during the early stages of tracheal development. Lastly, the
329  Hippo signaling pathway, well-established for its contribution to myogenesis (reviewed
330 in Ref*), was most active in early muscle clusters (Figure 3C). Thus, our multi-omics
331  tissue developmental trajectories could serve as a systematic framework for exploring

332 cell-cell communication networks.

333
334 Spatiotemporal cell type succession during tissue development
335 Next, we aimed to visualize the spatiotemporal dynamics of the identified cell

336 types along the multi-omics tissue development trajectories. Using the marker genes
337 associated with cell types as a reference, we applied the label transfer method from
338  Seurat to annotate scStereo-seq cell bins with the cell types identified in the multi-
339 omics tissue development trajectories. At the tissue level, the transferred labels
340 demonstrated good agreement with manually annotated scStereo-seq cell bin clusters
341  (Figure 3D). Considering their relatively defined and regular morphology, we selected
342 fat body and foregut/hindgut (both of ectodermal origin*') as models and aligned their
343  cell types with embryo scStereo-seq samples. Within these tissues, the distribution of
344  cell bins from label-transferred scStereo-seq and cells from scRNA-seq data exhibited
345  a coherent pattern when plotted in the same UMAP space (Figure 3E). Additionally,
346  the top marker genes of each label-transferred cell type in scStereo-seq data were
347  consistent with their counterparts in the integrated scRNA-seq and scATAC-seq data
348  (Figure S5C). These results suggested a precise mapping of cell types to their spatial

349 locations in scStereo-seq data.

350 Within tissues, at the cell type level, the succession of different stages of cell types
351  can be traced through their proportional changes over development (Figure 3F). The
352  spatial distribution of each cell type can be quantified by neighborhood enrichment,

353  where a higher score indicates a greater level of spatial clustering (Figure 3G). We
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354  observed significantly higher neighborhood enrichment in foregut/hindgut cell types
355 compared to those in the fat body. When mapped to their spatial locations, different
356  stages of foregut/hindgut cell types formed more aggregated clusters, while fat body
357  cell types were more scattered and mixed (Figure 3H). These observations suggested
358 that these two tissues employ different cell differentiation strategies. In the fat body,
359 differentiating cells are dispersed across the entire tissue, resulting in the mixing of cell
360 types at different stages. In the foregut/hindgut, spatially defined “differentiation hubs”
361 exist to continuously give rise to new cells, while cells outside the hubs do not
362  contribute much to differentiation and proliferation. Consequently, cell types at different
363 developmental stages occupy more distinct spatial locations. This hypothesis was
364  further supported by the spatial distribution of cell bin CytoTRACE scores of scStereo-
365 seq data. Cells with higher differentiation potential were more spatially aggregated in
366 foregut/hindgut than in fat body (Figure 3l). It is established that fat body cells originate
367 from precursors arranged in segments that extend throughout the entire tissue*?. This
368 arrangement could account for the widespread dispersion of differentiating cells we
369 observed here. On the other hand, the role of spatially clustered potential
370 foregut/hindgut differentiation hubs might be associated with previously identified
371  niches of digestive tract stem cells, where two defined groups of stem cells give rise to

372  the adult foregut and hindgut, respectively*?.

373 Therefore, through label transfer, we were able to map cell types along tissue
374  development trajectories to their spatial locations in scStereo-seq samples, allowing
375  us to track their spatiotemporal dynamics. In the following analyses, we extended this
376  approach to more complex CNS and midgut cell types to uncover their dynamics during

377  development.

378

379 Transcription factor regulatory networks along tissue development
380 trajectories

381 Transcription factors (TFs) play a pivotal role in orchestrating the proper formation
382 and growth of tissues. To unravel the regulatory networks governed by TFs during
383  tissue development and differentiation, we scrutinized the top marker genes of each
384  cell type and investigated the enrichment of TF binding motifs in their promoter/TSS
385 regions in scATAC-seq data. Motif enrichment analysis unveiled the regulatory TFs
386  guiding the differentiation paths from each germ layer (Table §7), encompassing both

387  well-established cell type-specific regulators as well as potentially novel and
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388 uncharacterized ones.

389 Throughout the developmental trajectories, we pinpointed multiple well-
390 characterized TFs that exhibited stage- and tissue-specific regulatory functions. We
391 then traced the temporal dynamics of their regulatory activities along tissue
392  development trajectories. Exemplary findings include motif enrichment of GATAe in
393  Malpighian tubules*, Rfx in both PNS and CNS*, and sage in the salivary gland*®
394  within the ectoderm. In the mesoderm, we identified motif enrichment of Mef2 in
395 somatic muscle*’, bin in visceral muscle*®, and srp in fat body*® and hemocytes®. The
396 endoderm displayed motif enrichment of CrebB in early endoderm formation®', along
397  with fkh, GATAe®, and other GATA family TFs (reviewed in Ref%®) regulating late-stage
398 endoderm specification (Figure S6A-B). Additionally, we uncovered several previously
399 uncharacterized TFs with potential spatiotemporally specific functions during
400 embryogenesis. Notably, CG34367, a TF featuring a Homeobox (Hox) domain,
401  exhibited significant and specific motif enrichment in the early primordium of all three
402 germ layers, suggesting a ubiquitous role in early developmental regulation.
403 Mammalian orthologs of CG34367, SHOX/SHOX2, are implicated in early
404  organogenesis and their mutations are associated with genetic disorders including
405  Turner syndrome®**°. The TF crp, ubiquitously expressed in multiple tissues and
406 known for specifying terminal cells in tracheal tubes®®, demonstrated potential
407  regulatory functions in the mesodermal fat body and hemolymph, as indicated by our
408 analysis. Moreover, we observed significant motif enrichment of CG9727 and
409 CG12219 in nervous systems, CG7368 in cardiac mesoderm, and CG712236 and
410 CGH4360 in early endoderm (Figure 4A-B), indicating their specific functions in these

411 tissues.

412 To further explore the spatial regulon activities of these TFs, we applied SCENIC®
413  to the integrated scStereo-seq and scRNA-seq data, revealing that the spatial patterns
414  of regulon activities for both known and uncharacterized TFs were consistent with the
415 motif enrichment analysis in terms of tissue specificity (Figure 4C). The spatial
416  expression patterns of these less-characterized TFs were also probed by BDGP in situ
417  database and all of them exhibited weak signal or ubiquitous expression patterns in
418  stages of their inferred functions (Figure S6C). The lack of staining can be explained
419 by poor probe efficiency or low expression levels of these TFs, while ubiquitously
420 expressed TFs could perform regulatory functions in a tissue-specific manner. The
421  ambiguous in situ staining results underscored the advantages of our multi-omics data

422  in facilitating the elucidation of tissue-specific TF functions.
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423 Subsequently, we employed Pando®® on the integrated scRNA-seq and scATAC-
424  seq data to delve into the detailed regulons of identified TFs. Notably, visceral muscles
425  exhibited segregation into two distinct groups in our multi-omics trajectories (dashed
426  rectangles in Figure 2E-F, also see Figure S6D and Data S2). Upon scrutinizing the
427  regulons of bin in these two groups, we observed that gene modules that bin regulated
428  varied between them (Figure 4D). In the visceral muscle 1 group, bin activity was
429  positively correlated with expression levels of muscle assembly genes (Zasp52, sals,
430 Zasp66, and kon). Conversely, in the visceral muscle 2 group, bin activity was
431  negatively correlated with expression of genes with similar functions (Prm, Zasp52,
432  slow, and CAP). Intriguingly, bin activity appeared to be partially opposite in regulating
433  muscle structure assembly in these two groups. Supporting this result, the expression
434  level of Zasp52, a core component of indirect flight muscles®®, was significantly lower
435 in scRNA-seq cells from visceral muscle 2 late cluster than those from visceral muscle
436 1 late cluster (Figure S6E). It is known that bin is a cell fate determinant of
437  transformation between somatic and visceral muscle through the BMP signaling
438 pathway**®°. The contrasting effects bin exerted on some target genes in different
439  visceral muscle cell groups may reflect its fine-tuning functions among muscle lineages.
440  We further visualized the gene regulatory networks (GRNs) in which bin participated
441  in these two groups (Figure 4E). Inspection of GRNs in two visceral muscle groups
442 uncovered several shared known muscle co-regulators of bin, such as Mad, a BMP
443  pathway regulating TF functional at NMJ®', and CHES-1-like, also a BMP pathway
444  regulator®?. bin also co-regulated with different nervous system-related TFs in the two
445 lineages, including klu and pnr in visceral muscle 1, and slp2 and FoxP in visceral
446  muscle 2. klu had reported functions in motor neurons®® while FoxP is important for
447  motor coordination®. The organization of these GRNs highlighted the coordinated and

448  cell type-specific co-regulation between nervous and muscle systems.

449 To further characterize the fat body- and hemolymph-specific regulon activities of
450 crp identified above, we visualized its GRN in early fat body and discovered that crp
451  co-regulated with srp (Figure 4E). Upon inspecting their regulons, we found that srp
452  activity was negatively correlated with lipid metabolism pathway genes (Apolip,
453  Aldh7A1, apolpp, Jheh1, and Echs1), while crp acted in a contrasting fashion.
454  Additionally, srp positively regulated amino acid metabolism genes Mtap, Hn, and Gdh,
455  while crp positively regulated glutathione metabolism genes GstE6, GstE7, GstE11,
456 and GstE12 (Figure 4D). Target genes in the regulons of srp and crp largely
457 overlapped in fat body and plasmatocytes, and this overlap increased along

458 developmental trajectories of both tissues (Figure 4F). The regulons of srp we
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459 identified were consistent with its role in inducing fat cell formation starting from early
460 fat body development*®®® and crp is known to affect cell growth and tissue size control®®.
461  Our analysis suggested an increasingly coordinated role of crp and srp within the same

462  GRN during fat body and plasmatocyte development.

463 In tracing tissue development trajectories, we successfully identified both
464  previously reported and potential TFs, uncovering their tissue specificity and regulatory
465 networks. It is worth noting that TFs and their binding motifs were linked based on CI/S-
466  BP database®. While the motifs we mentioned here were indeed enriched in specific
467  cell types, it remained possible that their actual binding TFs differ from database
468 inference, or there are additional unknown regulators that could bind these motifs.
469  Algorithms like Pando used correlation between gene expression levels of TFs and
470 their target genes to infer up- or down-regulation effects of these TFs, which could be
471  susceptible to capture sensitivity of current single-cell sequencing techniques. Thus,
472  additional experiment validation is required to elucidate these tissue-specific regulatory

473 networks.

474

475 Multi-omics dissection of gene regulation during embryonic CNS

476 development

477 The Drosophila nervous system serves as a prominent model for investigating
478  neuron development and functions. Thus, we examined the development of CNS from
479  a multi-omics perspective based on our data. The subclustering results of the CNS
480 scRNA-seq data identified most major CNS cell types, including neuroblasts (marked
481 by mira and wor), ganglion mother cells (GMC, marked by tap), neural progenitors
482  (marked by insb and nerfin-1), glioblasts (marked by gcm and repo), and various types
483 of glial cells (Table S4). The UMAP plot of CNS cells provided an intuitive
484  representation of differentiation paths of neurons and glia (Figure 5A). Subclustering
485  scATAC-seq data also identified most of these CNS cell types (Figure 5B). Integration
486  of scRNA-seq and scATAC-seq data allowed detailed annotation of various mature
487  neuron cell types by generating more distinct cell type specific markers (Figure 5C-D
488 and Table S4). In light of the significantly higher complexity of mature neuron cell types,
489  we chose a higher resolution for their clustering and annotation. Each mature neuron
490 cell type was annotated based on expression of neurotransmitters (Figure 5D). Within
491 mature neuron groups expressing the same neurotransmitters, cell subtypes were

492  distinguished by a list of largely uncharacterized marker genes (Figure 5E and Table
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493  S4). The complex trends of CNS cell differentiation are better visualized in 3D UMAP
494  plots (Data S3).

495 Remarkably, mature neurons displayed a significantly more striking diversity in the
496 UMAP plot derived from scATAC-seq data compared to that from scRNA-seq data
497  (Figure 5A-B and Data S3). This observation suggested the possibility that mature
498 neurons appear similar in their transcriptomic profiles during late embryogenesis, but
499 various types of neurons are under highly distinct epigenetic regulations, likely in
500 preparation for more complex neural differentiation during larval stages. Notably, co-
501 embedding of scRNA-seq and scATAC-seq CNS cells in the same UMAP plot showed
502 that mature neurons in scATAC-seq data displayed an overall distribution shift from
503 those in scRNA-seq data (Figure 5C and S7A). This shift was not observed in non-
504  mature neuron cell types (Figure S7A). Similarly, we also noted a temporal mismatch
505 in the distribution of mature neuron subtypes between scATAC-seq and scRNA-seq
506 data (Figure S7B). This further reflected the potential divergence between

507 transcriptomic and epigenomic profiles among mature neurons.

508 Differentiation trajectories of mature neurons revealed by scATAC-seq

509 To dissect the epigenetic regulation of mature neuron and identify potential
510 regulators of cell subtype differentiation, we explored the 3D UMAP plot of scATAC-
511 seq data and focused on a cell subset, in which a cell cluster expressing sensory
512  neuron markers (e.g., ct, lov, and robo3) appeared to differentiate into three mature
513  neuron clusters: GABAergic (GABA) neurons 2 & 4 and tyraminergic (TA) neurons 1
514 (Figure 5F and Data S3). We employed STREAM® to map the differentiation
515  trajectories of these cell clusters, which were then projected onto the 3D UMAP space.
516  This enabled us to identify the branching events within the differentiation trajectories
517  (Figure 5F). Leveraging these trajectories, we further subclustered sensory neurons
518 into two distinct groups according to their chromatin accessibility and differentiation
519  outcomes (Figure 5G). Focusing on the top DA peaks between sensory 1 & 2, as well
520 as those among GABA 2, GABA 4, and TA 1, we conducted a TF motif enrichment
521  analysis. This revealed Kr as a principal regulator of this differentiation process, with
522  significant motif activity contrast between the differentiation branches (Figure 5G and
523  Figure S7C). Kris a well-established transcription repressor and temporal determinant
524  of neuron fate®®. The gene Kr itself exhibited significantly higher chromatin
525  accessibility and expression level in GABA 2 compared to GABA 4/TA 1 (Figure S7D),
526  suggesting a more active regulatory activity in GABA 2. On the contrary, the binding

527  motifs of Kr are significantly less enriched in GABA 2 and most of its potential target
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528 genes (nearest genes of Kr binding motifs) displayed reduced chromatin accessibility
529 and expression level in GABA 2 compared to GABA 4/TA 1 (Figure 5G). This
530 observation supports a working model based on previous knowledge that Kr performs
531 its transcription repressor functions through local quenching of transcription
532 activators’®"", likely through closing up the proximal chromatin. We carefully examined
533 the genes that showed significant changes in both chromatin accessibility and
534  expression level among the neuron subtypes. Pathway enrichment of these genes
535 showed that these Kr target genes were functionally enriched in processes including

536  axon guidance and glycosylation (Figure S7E).

537 While most potential targets of Kr showed decreased chromatin accessibility, their
538 expression changes varied across target genes. This variability could be due to the
539 impact from transcriptional co-factors of Kr. To identify co-regulators that influenced
540 the expression levels of genes repressed by Kr, we conducted a motif enrichment
541  analysis within Kr peaks (Figure S7F). This revealed several previously characterized
542 neuron differentiation regulators, including hb, grh, and opa, through the comparison
543  between GABA 2 and TA 1. (Figure 5H). It is well established that the sequential
544  activities of hb, Kr, and grh determine the temporal fate of several neuroblast lineages
545  during differentiation (reviewed in Ref’?). opa is previously reported as a regulator of
546  Kr activity during early embryogenesis’®, as well as a regulator of temporal patterning
547  of neural progenitors that acts in coordination with grh™. Our observations suggested
548 that the synergy of these regulators persist in more differentiated neuron subtypes.
549  Both hb and grh are known to function as either transcription activators or repressors’>-
550 7. In the differentiation process we investigated here, the motif activities of hb and grh
551  were mostly in up-regulated Krtarget genes, even in the presence of repressive effect
552  of Kr. Conversely, the motif activities of opa were enriched in down-regulated Kr target
553 genes (Figure 5H). We then examined the peaks around the binding motifs of these
554  co-regulators in the chromosomal regions of their mutual target genes using the
555  scATAC-seq data. We observed a dramatic overall increase in chromatin accessibility
556  along the differentiation track from sensory 2 to GABA 4/TA 1, compared to the subtle
557  changes during the transition from sensory 1 to GABA 2. This seems to be a general
558 phenomenon regardless of the expression change between GABA 2 and GABA 4/TA
559 1, suggesting diverse and complex regulatory consequences depending on the
560 cooperating TFs and the targets. This was further supported by the long distance of
561  Krico-regulator peaks from the TSS of the nearest genes, which could be a few kb in
562 length and mostly downstream of gene targets. As examples, the peaks and

563 chromosomal regions of two genes with the most significant expression level changes,
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564  side-lll (potentially co-regulated by Kr, hb, and grh) and fz (potentially co-regulated by
565  Kr and opa), are plotted to demonstrate their coordinated regulatory roles outside of

566  promoter regions (Figure S7G).

567 Overall, we observed a high clustering resolution in scATAC-seq data when
568 characterizing mature neuron subtypes, which was able to facilitate the discovery of
569 transcription regulators and their co-factors that govern the refined developmental

570 trajectories.

571 Mutual and diverse GRNs among CNS cell subtypes

572 In pursuit of potential regulators of the diverse neuron cell types, we conducted
573  motif enrichment analysis and pinpointed TF regulators across various stages of neural
574  development (Table S7). Among these, previously reported TFs, such as segq,
575  governing dendrite and axon outgrowth’8, exhibited the highest motif activity in neuron
576  progenitors. Additionally, klu, known to specify the identity of a specific group of
577 neuroblasts’, displayed sustained activity in several types of mature neurons (Figure
578 S8A). Our analysis also revealed cell type-specific activity for several less
579 characterized TFs, including BEAF-32%° and above-mentioned potential nervous
580 system-specific regulator CG12279 (Figure S8A). Pando visualization of their
581  regulons showed that in neuroblasts, BEAF-32 and seq co-regulated multiple cell cycle
582  regulator genes (e.g., PolE2, fzy, mad2, and McmZ2) and neuroblast determinants (e.g.,
583 mira and CycE) (Figure S8B-C). In mature neuron clusters, CG72219 and klu
584  displayed similar activity patterns across cell types (Figure S8A) and their regulons
585 largely coincided in mature neuron cell types (Figure 5l). For example, in
586  dopaminergic/serotonergic neurons 2, CG12219 and klu co-regulated the same group
587  of signal transduction genes (e.g., Pkc53E, Oct1R, Syngr, Syta, and CG34393) in the

588 same GRN; In cholinergic neurons 3, klu and CG12219 co-regulated glucose
589  metabolism (e.g., Pgi and Pgm1) gene groups in the same GRN (Figure S8B-C).

590 Our findings strongly supported the existence of cell subtype-specific regulons for
591 the same TF, as well as the cooperative actions of different TFs that are finely tuned
592  for neuronal differentiation. These regulatory mechanisms may play a role in

593  orchestrating the precise development of neurons.

594 Refined spatiotemporal CNS cell subtypes during embryogenesis

595 We subsequently applied label transfer to project identified CNS cell types onto

596  scStereo-seq samples (Figure 5J). As expected, there was a discernible shift in cell
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597  count fraction from undifferentiated neuroblasts and GMCs to differentiated neuron and
598 glia cell types from early to late-stage samples (Figure S8D). Co-embedding embryo
599  scStereo-seq data with scRNA-seq data in the same UMAP space demonstrated high
600 coherence (Figure S8E). Among the transferred cell types, as expected from their
601  anatomical distribution, neuroblasts and glia cell types exhibited the highest level of
602 spatial aggregation, whereas mature neurons were largely dispersed (Figure S8F).
603  Upon inspecting their spatial loci, the distribution of CNS cell types aligned well with
604 their stratified anatomical structures in early-stage samples, with less differentiated cell
605 types occupying the outer layers of the CNS and more differentiated ones in the inner
606 layers (Figure 5J). These findings supported the precision of the label transfer method
607 in identifying CNS cell subtypes in scStereo-seq samples, thereby facilitating the

608 exploration of neuron functions within their spatial context.

609 Gene expression dynamics during CNS morphometric changes

610 The Drosophila CNS undergoes profound morphological transformations
611  throughout embryogenesis, influenced by intrinsic factors such as cell proliferation and
612  differentiation, as well as external cues like inter-organ communication (reviewed in
613  Refs’28182) | everaging our 3D spatial transcriptomes generated with scStereo-seq,
614  we delved into transcriptomic dynamics during morphogenesis by simultaneously
615 tracking changes in tissue morphology and gene expression. Employing morphometric
616  analysis from the Spateo package, we were able to align the 3D point-cloud models of
617  two time points in spatial coordinates. Subsequently, we linked cell bins between the
618 two samples based on spatial adjacency and transcriptomic similarity (Figure S9A).
619  This enabled the generation of 3D vectors, concurrently characterizing cell migration
620 paths and transcriptomic changes over continuous developmental stages (Figure 5K).
621 Finally, we computed morphometric parameters describing cell migration paths and

622  correlated them with transcriptomic changes.

623 We characterized the morphometric changes in the CNS across 3D models of
624  seven scStereo-seq samples, spanning developmental ages from 7 to 18 h. These
625 changes were represented by parameters such as the acceleration of cell migration
626  (proportional to the distance cells migrated given the same migration time between two
627 samples) (Figure 5K and Movie S1), curvature (bending of cell migration paths)
628 (Figure S9B), curl (rotation of paths) (Figure S9C), and torsion (curve twisting of paths)
629 (Figure S9D). Throughout CNS development, we observed a shift in regions with the
630 highest acceleration from the posterior end of the ventral nerve cord (VNC) to the

631 anterior end of the brain (Figure 5K). The decline in acceleration and curl scores in
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632 the VNC was likely linked to the completion of germ band retraction, indicating that the
633  shortening of the VNC during early development primarily relied on the migration of
634  posterior cells toward the anterior end. Conversely, the increase in acceleration and
635  curl scores in the anterior brain region might reflect active cell organization in brain
636 lobes during late embryogenesis (Figure 5K and Figure S9C). As anticipated from
637 CNS morphology, regions with the highest curvature and curl scores concentrated
638  around the curved joint between the VNC and the brain (Figure S9B-C).

639 The morphometric analysis yielded a set of genes exhibiting spatiotemporal
640 expression changes relevant to CNS morphometric dynamics (Table S$8). Gene
641  ontology (GO) enrichment revealed that genes linked to CNS morphometric changes
642  were highly enriched in cell fate specification and pattern formation (Figure S9E and
643 Table S$8). Additionally, gene group enrichment analysis highlighted the significance of
644  Hox family transcription factors, such as Antp, Ubx, abd-A, and Abd-B, consistent with
645 their critical roles in specifying CNS patterns and segment identity®3. The spatial
646  expression patterns of these Hox family genes in our 3D CNS models aligned with
647 BDGP in situ results (Figure S9F). Notably, the expression levels of these Hox genes
648 were mostly negatively correlated with acceleration scores across developmental
649  stages (Figure S9G), suggesting that their expression is associated with the inhibition
650  of CNS cell migration. It is reported that Hox genes’ roles include repressing neuroblast
651 formation and entry into neuroblast quiescence in embryonic CNS (reviewed in Ref4).
652 Itis possible that Hox genes inhibit CNS cell migration through repression of neuroblast
653 differentiation.

654 Associations were also observed between CNS morphometric scores and known
655 CNS development regulators (e.g., mira, tl, and toy) as well as several
656  uncharacterized factors (Table S$8). For example, the expression level of CG42394
657  was negatively correlated with acceleration, while that of IncRNA:CR30009 displayed
658  a positive correlation (Figure 5L). We validated the CNS-specific expression of these
659 potential regulators with FISH (Figure 5M). Notably, this list includes multiple long non-
660 coding RNA (IncRNA) genes besides IncRNA:CR30009, which was previously
661 reported to be enriched in glia and co-localize with the glia marker gene repo®.
662 Examining these IncRNA genes in our scRNA-seq data, we observed that the
663  expression of IncRNA:CR30009 and IncRNA:CR45388 showed the highest correlation
664  with neuroblast and glioblast marker genes (Figure S9H). These observations implied
665 that the two IncRNA genes may influence CNS morphometric changes through the

666  regulation of neuroblasts. Therefore, by conducting morphometric analysis of the CNS,
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667  we were able to identify both known and potential regulators of CNS cell migration.

668
669 Cell type and functional diversity of developing midgut
670 The Drosophila midgut, serving as the functional equivalent of the mammalian

671  small intestine, fulfills versatile roles in food digestion, nutrient uptake, immunity, and
672  endocrine regulation. The diverse functions of the midgut are carried out by distinct
673 types of cells and the regions they form (reviewed in Refs®87). Nevertheless, the timing
674  of differentiation of these cell types remained elusive. Our prior investigations indicated

675 that certain functional cell types began to emerge during late embryogenesis™?.

676 Here, we delved deeper into the diversity of midgut cell types using our multi-
677 omics data. The clustering resolution of our scRNA-seq data was adequate for
678  distinguishing various midgut cell types. Consequently, we concentrated on the
679 scRNA-seq data, combined endoderm and midgut cell clusters, and conducted high-
680 resolution subclustering and annotation (Figure 6A). The UMAP plot portrayed a
681  multitude of intestinal cell types throughout the developmental and differentiation
682  stages of the midgut (Figure 6A-B). These included endoderm (marked by Notch
683  signaling pathway genes E(sp/i/m4-BFM and Brd), adult midgut progenitors (AMPs,
684 marked by esg)®, 6 types of entero-endocrine cells [EEs, marked by pros and
685  distinguished by specific expression endocrine genes (Figure 6C)], and 6 types of
686  enterocytes (ECs, marked and distinguished by digestive enzyme and metabolism-
687 related genes)®. Cell clusters in transitional states between midgut primordium and
688 functional ECs were denoted as "midgut chambers", with each cluster distinguished

689 Dby its top markers.

690 Differentiation and molecular characteristics of embryonic midgut cell types

691 We further investigated the molecular markers of distinct midgut cell types.
692  Pathway enrichment analysis of cluster marker genes revealed that embryonic midgut
693 cells are regulated by distinct signaling pathways, reflecting their versatile functions.
694  Of note, the Notch signaling pathway was enriched in early endoderm, AMP/EE
695  progenitors, and AMPs clusters, consistent with previous reports?”8°. Additionally, the
696 Wnt signaling pathway was enriched in multiple EE clusters® (Figure S10A).
697 Interestingly, AMPs and several EE clusters showed high enrichment in pathways
698 related to autophagy and apoptosis (Figure S10A). Indeed, the expression of
699 autophagy-related genes Atg707 and Atg9°', as well as apoptosis-related genes chrb
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700  and scylP? are specifically enriched in AMPs and EEs within midgut (Figure S10B). It
701  is possible that AMPs and EEs employ cell death-related mechanisms to maintain
702  homeostasis during embryogenesis. To further characterize the functions of these
703  diverse midgut cells, we used Hotspot® to identify 17 gene modules from midgut
704  scRNA-seq data (Figure 6D), each with distinct functional GO and cell type-specific
705  enrichment (Figure 6E). For example, module 1, enriched in neuropeptide signaling
706  pathways, was concentrated in all 6 EE clusters, aligning with their role in sensing
707  stimuli and secreting neural signals for physiological regulation; Module 6, enriched in
708  Cytochrome P450 family enzymes, was concentrated in EC (Acbp3+), suggesting a
709  significant role in metabolism; Module 14, functionally enriched in genes regulating
710  nervous system development and the Notch signaling pathway, was concentrated in
711 AMPs and EE (Mip+) (Figure S10C).

712 Itis established that during metamorphosis, larval midgut cells undergo apoptosis,
713 and adult midgut cells arise from AMPs to reconstitute the adult midgut®®.
714  Interestingly, in the UMAP plot, the differentiation trajectory of endoderm cells
715  branched early on towards adult cell types (AMP/EE) and larval ones, which implied
716  that the fates of these cell types were predetermined upon their differentiation from the
717  endoderm primordium (Figure 6A). We observed that AMPs and EEs originated from
718  the same cluster of cells in the UMAP plot, marked by the expression of esg and pros.
719  Thisisin line with previous reports indicating that AMPs and EEs derive from the same
720  group of midgut cells?’, which we denoted as “AMP/EE progenitors” in our data (Figure
721  2E-F). To further track the kinetics of cell type emergence, we employed Dynamo® to
722 illustrate the transcriptomic vector fields of midgut development. Dynamo analysis
723  revealed that the kinetics of cell state changes supported the notion that AMPs and
724  EEs derived from the same group of progenitors (Figure 6F). As previously reported,
725  the Notch signaling pathway extensively participated in this differentiation process?”:#°,
726  along with stem cell differentiation factors such as esg, pros, ase, and Sox700B%.
727  Notably, we observed highly specific dynamics of the innate immune signaling gene
728  Sting® in AMPs, suggesting its role in the specification of AMPs (Figure 6G). Dynamo
729 analysis also facilitated the tracing of EC formation from their precursors in midgut
730 chambers (Figure 6F) and suggested cell type-specific markers for their specification
731  (Figure S10D).

732 In summary, we categorized and examined the variety of cell types, each with
733  unique functions, present in the embryonic midgut. This allowed us to reveal the

734  differentiation trajectories of AMPs and EEs, as well as identify potential regulatory
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735  processes that govern their development and maintenance.

736 Spatial distribution of midgut cell types from embryonic to pupal stages

737 Next, we sought to map the midgut cell types we identified to their spatial locations.
738  Using the cell type marker genes from scRNA-seq data as a reference, we located
739 their counterparts in scStereo-seq data through label transfer (Figure 6H). Co-
740 embedding scRNA-seq and label transferred scStereo-seq data in the same UMAP
741  space demonstrated high coherence (Figure S10E). The top marker genes of label
742  transferred scStereo-seq cell bins were also consistent with scRNA-seq cells (Figure
743  S10F), indicating precise mapping of cell types to their spatial locations. In the label
744  transferred scStereo-seq 3D models, we observed the dynamics of changes in cell
745  fraction throughout development, reflecting the different timings of emergence of these
746  cell types. For example, EC (Try29F+) appeared around 13 h of development, while
747  EC (Acbp3+) did not form until around 17 h (Figure 6l). Neighborhood enrichment
748  analysis suggested that although most cell types were sparse in their spatial
749  distribution, EC (Jon99Cii+) and EC (Try29F+) were more aggregated compared to
750  other cell types (Figure S10G). Indeed, these cell types and the expression patterns
751 of their marker genes occupied distinct spatial loci consistently across embryo
752  scStereo-seq samples (Figure 6J). Therefore, mapping cell types to our scStereo-seq
753 data enabled the tracing of embryonic midgut cell type distribution within their
754  spatiotemporal context. This approach provides a comprehensive understanding of
755  how different cell types are spatially and temporally organized during embryonic midgut

756  development.

757 We subsequently endeavored to identify midgut cell types in the larva and pupa
758  scStereo-seq samples. We performed subclustering for larval and pupal midgut cell
759  bins and used label transfer results as a reference for annotation. Given the substantial
760 developmental changes and technical differences, we opted to use label transferred
761  and re-annotated embryo scStereo-seq cell bins as the reference for label transfer of
762 larva and pupa scStereo-seq samples, rather than embryo scRNA-seq cells. Cell
763  clusters that demonstrated low confidence in label transfer were annotated as new

764  larval or pupal cell types based on top marker genes (Figure S11A-C and Table S4).

765 Compared to embryos, larvae displayed a more diverse array of intestinal
766  epithelial cell types over development (Figure 6K and Figure S11D). Notably, different
767 ECs were densely clustered along the anterior-posterior axis of the midgut, as

768  observed in the 3D models of their distribution (Figure 6K). To understand their roles,
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769  we carried out Hotspot gene module analysis on each larva scStereo-seq sample. To
770  fully leverage our scStereo-seq data, we took spatial location of cell bins into
771  consideration during identification of gene modules. Examining the functional
772  enrichment of gene modules, we noticed that various cell types performed unique
773  functions, some of which were similar to those in the embryonic midgut, while others
774 were new and specific to the larval midgut. For instance, the gene module
775 concentrated in EC (CG7298+) in L1 early implied functional enrichment of chitin
776  formation, suggesting that cell type specialized midgut chitinization (reviewed in Ref*")
777 commenced in the early larval stages; the gene module concentrated in EC
778 (CG13075+) in L3 late indicated functional enrichment of apoptosis and pattern
779  specification, possibly related with midgut remodeling during late larval stages (Figure
780 6L and Figure S11E).

781 During the L3 stage, substantial changes occurred among midgut cell types. The
782  anterior gastric caecum and the posterior EC (Acbp3+) in the midgut contracted and
783  decreased in number in L3 early sample, eventually vanishing completely in L3 late
784  sample (Figure 6K and Figure S11D). This suggested that significant remodeling and
785  reorganization of the midgut takes place during the L3 stage, which coincided with the
786  previously established timing of midgut cell death in this region before
787  metamorphosis®. Accompanying this process, we observed a marked and widespread
788 shift in the gene expression profiles of various cell types within the midgut,
789 characterized by a considerable increase in the expression of ribosomal and

790  mitochondrial genes and their representation in marker genes (Table S4).

791 We subsequently examined the morphology of the midgut and the marker genes
792  within the pupal midgut subclusters and identified a notable cluster of midgut cells that,
793 rather than expressing digestion-related genes, exhibited strong expression of
794  ecdysone-responsive genes, such as Eig71Ek, Eig71Ea, and Edg78E (Table S2).
795  These cells, which we designated as "midgut outer" in manual annotation, formed a
796  sheath-like structure that enveloped the rest of midgut cells, which we labeled as
797  "midgut inner" (Figure S11F and Data S1). These structures, which receded after the
798 P24 stage and re-emerged at the P72 stage, bore a strong resemblance to the yellow
799  body and its surrounding midgut epithelium into which the midgut delaminates during

800 metamorphosis?® (reviewed in Ref%).

801 In conclusion, the use of label transfer-assisted spatial mapping and annotation
802 unveiled spatially restricted and cell type-specific functions of larval and pupal midgut

803 cell types. The spatial transcriptomic data from our pupa scStereo-seq samples also
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804 offered valuable resources for studying the regulation of midgut morphogenesis.

805 Emergence and layout of embryonic midgut regions

806 The adult Drosophila midgut is conventionally divided into five regions (hereafter
807 termed R1~R5) based on morphological constraints, with each region performing
808  distinct functions''%" While functional regionalization of the midgut has been
809 extensively studied at larva and adult stages, the precise timing of subregion
810 emergence during embryonic development remains to be elucidated. In our previous
811  study utilizing 3D spatial transcriptomic models, we observed the emergence of

812  subregions with distinct digestive functions during late embryogenesis™.

813 Here, we further characterized the process of embryonic midgut regionalization.
814  Referring to regional marker genes summarized in Ref'”', we first identified 6 gene
815  modules from adult midgut regional marker genes with Hotspot (Figure S12A) and
816  established their correlation with expression profiles of adult midgut regions. Among
817  them, modules 4 and 6 display similar correlation with both R1 and R2, so we denoted
818  the two regions they corresponded to R1/R2-like 1 & 2, respectively (Figure S12B).
819  With these regional markers as references, we identified cell groups exhibiting
820 transcriptomic similarity to adult R1 to RS in scStereo-seq midgut cell bins, which we
821 termed R1-like to R5-like. Each regional cell groups displayed distinct marker gene
822  expression (Figure $12C) and increasing levels of spatial clustering over development,
823  suggesting that they occupied distinct areas in the midgut (Figure $S12D). This allowed
824  us to investigate the timing of their appearance and trace the spatial distribution of
825 these regions. Upon inspecting the expression of gene modules in scStereo-seq
826  samples, we noted that the expression of R1-like gene modules initiated at the very
827 early stages of endoderm development and gradually declined over time. Modules
828 corresponding to other regions began to actively express around 13 h of
829 embryogenesis (Figure 6M). Simultaneously, the spatial distribution of regions started
830 to crystallize around the same time point, mirroring the spatial order as observed in the
831  adult midgut (R1 to R5 from anterior to posterior) (Figure 6N). This suggested that
832  although midgut underwent lysis and reformation during metamorphosis, its regional

833  organization was already patterned during embryogenesis.

834 To profile the biological functions each region undertook, we examined GO
835 enrichment of marker genes for the identified embryonic midgut regions. The R1-like
836 region is functionally enriched in protein metabolism; the R1/R2-like regions are

837  functionally enriched in fatty acid metabolism; the R3-like region is functionally
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838 enriched in ion transport and pH regulation, consistent with the acidic nature of this
839  region'®; the R4-like region is functionally enriched in stimuli sensing, proteolysis, and
840 nucleic acid metabolism; the R5-like region is functionally enriched in metal ion
841  homeostasis (Figure S12E). These functions aligned well with their counterparts in
842  adult midgut regions'?1%1, We analyzed the cell type composition of each region and
843 observed that over development, each region acquired its major cell types. For
844  instance, R1/R2-like 2 mainly composed of EC (Muc55B+) and R3-like mainly
845  composed of copper cells and EC (Jon65Aiii+) (Figure S12F).

846 Together, our scStereo-seq data demonstrated distinctive cell compositions in the
847 embryonic midgut regions, which determined the spatially localized sub-organ

848  functions maintained through adulthood.

849 Morphometric regulators during embryonic midgut development

850 The Drosophila midgut experiences significant morphological transformations
851  during development. It forms from the fusion of two separate rudiments at the anterior
852 and posterior ends of the embryo, evolves into a closed chamber, and eventually
853  establishes a highly convoluted tube-like morphology (reviewed in Ref'%). We used
854  Spateo to model the morphological changes during the fusion of the anterior and
855  posterior midgut around stage 12 (~8 h of development) and the convolution of midgut
856  tubes during late embryogenesis (Figure 60 and Movie S2). Morphometric analysis
857  of cell migration modeled the fusion of early midgut and the torsion of late midgut,
858 which revealed an association between midgut cell acceleration and multiple
859  previously reported morphogenesis regulators across stages, including the GATA
860 family TF grn, which is known to regulate the process of midgut fusion'®, and Notch
861  signaling pathway component Kaz-m1, which displays a highly restricted expression
862  pattern at the fusion site of the midgut and has a potential regulatory role'% (Table S8).
863 The expression levels of both factors were negatively correlated with acceleration
864  scores, suggesting that they were associated with inhibition of midgut cell migration
865 (Figure 6P). Starting from E15.77, gastric caecum-specific marker genes Acbp4 and
866  Pebp1 ranked top in genes associated with all aspects of morphometric changes
867 (Table S8), in line with the timing of gastric caecum extrusion and formation from the
868 midgut chamber (~15 h of development)*'. In addition, multiple Acyl-CoA binding
869 protein (Acbp) family genes demonstrated high correlation with morphometric scores
870 in late-stage midgut, which aligned with their known function of linking nutrient sensing
871 and shaping tissue plasticity’®. We also observed several potential regulators or

872  effectors of midgut morphological changes, such as CG32633, which consistently
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873 displayed positive correlation with cell migration acceleration across samples (Figure
874  6P). Thus, morphometric analysis provided clues for identifying potential regulators

875  during the complex morphogenesis process of embryonic midgut.

876
877 DISCUSSION
878 After our initial proof-of-principle application of Stereo-seq on Drosophila, we

879 present here a single-cell 3D spatiotemporal multi-omics atlas spanning
880 developmental lifespan of Drosophila from embryogenesis to metamorphosis. The
881  current study builds upon our previous work by enhancing the Stereo-seq spatial
882 transcriptomic dataset in several ways. Firstly, the sample collection window was
883 expanded to include development from embryo to pupa. While ISH databases like
884 BDGP and Fly-FISH have extensively probed spatial gene expression patterns in
885 embryonic stages, there are still missing genes in these databases. Additionally, similar
886  systematic databases are notably absent for the larval and pupal stages. Our scStereo-
887  seq data effectively encapsulated the spatial gene expression patterns, unveiling the
888  spatiotemporal gene expression dynamics for a list of over 300 genes in embryos,
889  previously uncharted in ISH databases. Our data also serves as a valuable asset for
890 delving into the spatial gene expression patterns in larvae and pupae. Secondly, our
891 previous work using merged bins of a predetermined number of DNBs as units of
892  analysis (e.g., bin 20 x 20 recognized 400 DNBs as a single "cell") did not accurately
893  capture the transcriptomes of individual cells. Here, we incorporated imaging data from
894  nucleus staining with Stereo-seq to enable cell segmentation and established single-
895 cell spatial transcriptomes. Finally, we integrated droplet-based scRNA-seq and
896 scATAC-seq data with scStereo-seq data for embryo samples, which improved
897 genome coverage and incorporated epigenomic information. The plethora of multi-
898 omics data generated in this study provided many unique angles for dissecting the
899  molecular underpinnings of various aspects of tissue development, as we have shown
900 in this study.

901 The integration of multi-omics data has enriched our analysis, enabling a more
902 nuanced portrayal of cell states. As an example, the transcriptomes of CNS mature
903 neurons are remarkably uniform, as demonstrated by their intertwined distribution in
904 the UMAP space of scRNA-seq data. However, the incorporation of scATAC-seq data,
905 which shows a higher degree of heterogeneity among mature neurons, allowed us to

906 identify detailed neuron subtypes and investigate the regulatory mechanisms driving
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907 their differentiation. Leveraging the high heterogeneity of scATAC-seq data, we were
908 able to dissect the differentiation process of a group of neuron subtypes in detail and
909 identified the TF Kr as a key regulator. The wealth of chromatin accessibility
910 information allowed us to further uncover TFs that co-regulated gene expression with
911 Kr. We also mapped cell clusters, derived from the integration of scRNA-seq and
912  scATAC-seq data, to their spatial positions in the scStereo-seq data. This mapping
913  enabled us to model single-cell transcriptomic and epigenomic profiles within tissue-
914 and developmental stage-specific contexts. Therefore, this multi-omics data
915 integration offered an unprecedented high-resolution spatiotemporal framework for

916  analyzing cell state dynamics, such as TF regulons and signaling pathways.

917 There were also inconsistencies between data generated from different
918 techniques. For example, late-stage epidermis and somatic muscle cells identified in
919  the scATAC-seq data lacked corresponding scRNA-seq counterparts. We observed a
920 similar lack of coherence in CNS mature neurons, which, in addition to missing scRNA-
921 seq data, could also resulted from a temporal mismatch between chromatin
922  accessibility and actual gene expression in these neurons. In certain instances, the
923 chromatin regions of neuron subtype-specific genes were open, but gene expression
924  was delayed. This discrepancy resulted in inaccurately imputed gene expression when
925 integrating scATAC-seq and scRNA-seq data and mismatches in the co-embedded
926 UMAP space. Similar phenomena have been observed in the mammalian nervous
927  system, such as the process of epigenetic priming during normal or pathological

928 development (reviewed in Refs07:108),

929 Compared to our previous study, the point cloud-based 3D modeling of developing
930 tissues in this work provided significantly more detailed structural information that more
931  accurately reflects organ anatomical features. Furthermore, by aligning 3D models
932  between different time points with Spateo, we were able to simultaneously track cell
933 migration paths and alterations in gene expression. This morphometric analysis
934  provided a unique perspective, enabling the identification of potential regulators of cell
935 migration and differentiation. It is recognized that the eventual shape and size of an
936  organ can be influenced by physical interactions with neighboring organs and signaling
937  molecules from distant organs during development'®-""" In addition to the intra-organ
938 morphometric analysis presented here, these models can also be used to investigate
939 the impact of inter-organ physical or biochemical contact on local gene expression
940 changes, which in turn affect the final boundaries of organs. With the establishment of

941  a complete synapse-resolution connectome of the Drosophila larval brain''?, our 3D
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942  transcriptomes have the potential to be spatially aligned with these synapse
943  connectivity maps. By integrating spatial transcriptome and connectome data, we can
944  simultaneously pinpoint the spatial locations of known and yet-to-be-identified neurons
945  and deconvolute their molecular nature, leading to a deeper understanding of their

946  physiological functions.

947 The extensive datasets we generated here can be leveraged in many ways.
948  Drosophila larva and pupa have provided excellent models for studying the course of
949  post-organogenesis development and metamorphosis, yet single-cell profiling of
950 tissues at these stages remained scant. These stages of samples in our scStereo-seq
951 data can be readily integrated with existing larva scRNA-seq datasets®”'"® to
952  complement them with spatial information or provide a spatial framework for future
953  single-cell studies of larval or pupal tissues. The study of early stages of Drosophila
954  pupal development has been challenging due to significant tissue lysis and reformation.
955  Our pupa scStereo-seq data provided valuable insights for investigation of tissue-

956  specific transcriptomic changes during metamorphosis.

957 Moreover, the unique organization of our datasets can serve as a source of
958 inspiration for the development of multiple types of bioinformatic algorithms and
959 methods and can serve as benchmarking resources for such algorithms. The
960 organism-wide 3D high-resolution features of our previous Stereo-seq datasets have
961 already facilitated the development of several approaches for various purposes,
962 including quantitative spatiotemporal modeling of single-cell spatial transcriptomic
963 datasets', visualization and analysis of spatial omics data'*, construction of
964 databases and optimization of their accessibility’’, alignment of 2D spatial
965 transcriptomic sections for 3D modeling'®'"”, and more. The new dataset features in
966  this study can further assist in the development of bicinformatic approaches in many
967 other aspects, such as cell segmentation of spatial transcriptomic data, integration of
968 multi-omics data, spatial mapping of cell types, machine learning-based cell type and
969 age prediction, and cell lineage tracing, among others. With the rapid development of
970  spatial transcriptomic techniques and consequently the mounting number of datasets,
971  these methods will serve as invaluable tools to facilitate our interpretation of multi-

972  omics datasets.

973 In order to make our data more accessible, we have incorporated our datasets
974 into the Spateo Viewer platform. This platform is a versatile and scalable web
975  application specifically designed for the exploration of spatial transcriptomics data.

976  Accessible through our online data portal, Flysta3D, the Spateo Viewer provides user-
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977  friendly access to our 3D models. It enables interactive visualization of gene
978  expression, activity of gene groups, and a variety of other customizable parameters
979  within spatiotemporal contexts. We believe that our comprehensive multi-omics
980 database will serve as a catalyst for systematic research into Drosophila development,

981 facilitating a deeper understanding of organism-wide spatiotemporal dynamics.

982
983 LIMITATIONS OF THIS STUDY
984 Our multi-modal analysis of the dataset revealed a wealth of information and

985 demonstrated its potential for systematic spatiotemporal analysis of Drosophila
986 development. However, there are still some areas that require improvement in future
987  studies.

988 The scRNA-seq and scATAC-seq data in this study were obtained from separate
989 samples. We aimed to align cells from the same tissues and same developmental
990 stages between datasets for integrated multi-omics analysis through the control of
991  collection window and inference of single cell developmental age. However, it is still
992  possible that data used for integration were from different states of cells. Methods for
993  simultaneous capture of transcriptomic and chromatin accessibility profiles from single
994  cells have been developed lately''®''° which may provide better integration results,
995  especially addressing the temporal mismatch issue between scRNA-seq and scATAC-
996  seq data. With future technical improvements, spatial information of cells may also be

997  captured simultaneously to generate actual multi-omics profiles for each single cell.

998 This multi-omics atlas was generated exclusively from the genetic background

999 strain w17718. However, investigating developmental regulation or disease
1000 mechanisms often involves genetic perturbations, such as knockdown/knockout of key
1001  regulator genes, or changes in environmental conditions, such as pathogen infection
1002  and drug treatment. Therefore, in the future, we plan to expand our study to include
1003  Drosophila models with various genetic mutations or subjected to different infection
1004  and/or treatment conditions to establish organism-wide single-cell multi-omics atlases.
1005 This approach will be particularly beneficial for studying complex physiological
1006  processes that involve multiple tissues in response to genetic perturbations, such as
1007  the progression of neurodegenerative diseases, gut-brain axis communication, and
1008  multi-organ metabolic diseases. The pipeline established in this study can serve as a
1009 basis for such investigations, enabling the generation of comprehensive datasets that
1010  incorporate genetic and environmental variability.
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1044 Figure 1 A single-cell spatiotemporal multi-omics atlas of developing
1045  Drosophila.

1046 (A) Samples covered in this study. The outer rim indicates sample collection
1047  windows for three omics datasets, with each arc segment represents a collection
1048 window. Time points indicate hours after egg laying in embryos and hours after
1049  pupation in pupa. The inner panel shows UMAP plots of aggregated scRNA-seq and
1050 scATAC-seq data, color coded by tissue annotation. We did not obtain quality P36
1051  scStereo-seq and E6-8h scRNA-seq data. CNS: central nervous system; PNS:
1052  peripheral nervous system. (B) 3D modeling of representative scStereo-seq samples
1053  using Spateo, showing point cloud (left) and mesh (right) models for the entire animal
1054  over developing stages. Models of epidermis, trachea, hemolymph, and muscle are
1055 not displayed in some samples for better visualization of internal organs. Tissue color
1056 codes are the same as (A). Samples are not on the same scale. (C) FISH validation of
1057 representative genes from the list of genes without reported spatial expression
1058  patterns (Table S3). For each gene, representative FISH images were obtained from
1059  stage 11-16 embryos from lateral or near-lateral view. Cyan: gene-specific RNA probes;
1060 grey: nuclei stained with DAPI. Arrowheads indicate structures with autofluorescence
1061 (e.g., trachea). Scale bars = 50 uym. All scStereo-seq samples are shown in lateral or
1062 near-lateral view. A-P: anterior-posterior; D-V: dorsal-ventral. Spatial expression
1063  patterns generated from original scStereo-seq or integrated scStereo-seq and scRNA-
1064 seq data are also from representative stage 13-17 embryos, projected along the Z-
1065 axis. See additional examples in Figure S1C. (D) Quality benchmark of scRNA-seq
1066 dataset in this study, showing cell number, median UMI number per cell, and median
1067 gene number per cell in datasets from this study and previous Drosophila embryo
1068 scRNA-seq studies. (E) Quality benchmark of scATAC-seq dataset in this study,
1069 showing cell number and median fragment number per cell from this study and
1070  previous Drosophila embryo scATAC-seq studies. (F) Heatmap showing proportion of
1071 scATAC-seq peaks in this study overlapping peaks in two previous Drosophila embryo
1072  scATAC-seq/scATAC-seq studies, bulk DHS peaks, and peaks in known TSSs and
1073  enhancers. (G) Bar plot showing cell type composition of data from scStereo-seq
1074  (some low-quality samples are filtered), scRNA-seq, and scATAC-seq over sample
1075  collection time. The y-axes are fraction of cell types annotated in each dataset. The x-
1076  axes are sample collection time points/windows (RAPTOR inferred developmental age

1077  for embryo scStereo-seq data).
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1078 Figure 2 Integration of scRNA-seq and scATAC-seq data for construction of

1079 tissue development trajectories.

1080 (A) FISH validation of representative genes in the list of common tissue
1081  substructure/cell types (Table S5). Left: representative FISH images of corresponding
1082  stages of gene expression enrichment, with sample viewpoints labeled. Cyan: gene-
1083  specific RNA probes; grey: nuclei stained with DAPI. Arrowheads indicate structures
1084  with autofluorescence (e.g., trachea). A-P: anterior-posterior; D-V: dorsal-ventral.
1085 Scale bars = 50 ym; Right: UMAP plots of marker gene expression specificity in
1086 aggregated scRNA-seq and scATAC-seq data. Cells with enriched marker gene
1087  expression/peak accessibility are highlighted in dashed rectangles. (B) UMAP plots of
1088 aggregated scRNA-seq data, color coded with RAPToR inferred developmental age
1089 (left) and actual sample collection window (right). (C) UMAP plots of aggregated
1090 scATAC-seq data, color coded with neural network model inferred developmental age
1091  (left) and actual sample collection window (right). (D) UMAP plots of co-embedded
1092 scRNA-seq and scATAC-seq data of all cells (down sampled) and three germ layers.
1093 Dashed lines mark cell clusters in scCATAC-seq data that miss corresponding cells in
1094  scRNA-seq data, with their scATAC-seq annotations labeled. (E) Velocity fields of co-
1095 embedded UMAP plots of three germ layers in (D), color coded with re-annotated cell
1096 types based on clustering of integrated data. Velocity trajectories point backward from
1097  chronologically older to younger cells. The dashed rectangle indicates visceral muscle
1098  groups discussed in the following analyses. AISN: anlage in statu nascendi. (F) Tissue
1099 development trajectories based on cluster phylogeny inferred from (E) for major
1100 tissues of three germ layers. Within each germ layer, widths of lines connecting
1101  subcluster annotations indicate gene expression similarities. Dashed rectangles
1102 indicate visceral muscle trajectories discussed in GRN analysis and AMP/EE

1103 trajectories discussed in midgut cell type identification.
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1104 Figure 3 Spatiotemporal dynamics along multi-omics tissue developmental

1105 trajectories.

1106 (A) Heatmap showing median tissue CytoTRACE scores based on scRNA-seq
1107  data along tissue development trajectories. CytoTRACE scores are scaled across all
1108 cells. (B) UMAP plots of scRNA-seq cells in the co-embedded UMAP space in Figure
1109  2E, color coded with CytoTRACE scores. CytoTRACE scores are scaled within each
1110 germ layer. (C) Same as (B) but color coded with gene activity scores of core
1111 components of signaling pathways. Representative tissues enriched in signaling
1112  pathway activities are labeled. (D) Sankey plots showing agreement between
1113  scStereo-seq tissue manual annotations and transferred labels from integrated
1114  scRNA-seq and scATAC-seq data in representative scStereo-seq samples. (E) Co-
1115 embedding of fat body and foregut/hindgut cells from scRNA-seq and scStereo-seq
1116  (pooled samples) data in the same UMAP plots, labeled with original scRNA-seq
1117  annotations or transferred annotations. (F) Bar plots showing cell type composition of
1118  fat body and foregut/hindgut in scStereo-seq samples. Cell types are label transferred
1119  from scRNA-seq data. (G) Heatmaps showing neighborhood enrichment scores of fat
1120  body and foregut/hindgut cell types across scStereo-seq samples. Blank cells indicate
1121 absence of label transferred cell types or lack of enrichment in corresponding samples.
1122  (H) 3D tissue models across representative embryo scStereo-seq samples, showing
1123  spatial distribution of label transferred cell types, mesh models for fat body or
1124  foregut/hindgut, and mesh models of the entire embryo. Due to high homology, some
1125  hindgut cells are annotated as foregut ones by label transfer. (I) Spatial distribution of
1126  cell bin CytoTRACE scores in representative fat body and foregut/hindgut models in
1127  (H).
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1128 Figure 4 Transcription factor regulatory networks along multi-omics tissue

1129  development trajectories.

1130 (A) The same UMAP plots as Figure 2E but only show scATAC-seq cells, color
1131  coded with motif activities of less-characterized TFs. (B) TF motif enrichment along
1132  tissue development trajectories, showing less-characterized TF genes in (A), their
1133  binding motifs (left), motif enrichment heatmap (upper right), and enrichment p value
1134  heatmap (lower right) across tissue types and developmental stages in cells from three
1135 germ layers in scATAC-seq data. (C) Visualization of SCENIC regulon activity of some
1136  of TFsin (A) in representative samples from integrated scStereo-seq and scRNA-seq
1137  data, projected along the Z-axis. Previously reported tissue-specific TFs are in bold.
1138  All scStereo-seq samples are shown in lateral or near-lateral view. A-P: anterior-
1139  posterior; D-V: dorsal-ventral. (D) Pando identified regulons of TF bin in visceral
1140 muscle 1 late and visceral muscle 2 late, and those of TF srp and crp in fat body early.
1141  Genes in bold are discussed in detail in the main text. (E) Pando identified GRNs of
1142  TFs (highlighted in bold) and cell types in (D). Other TFs in bold are discussed in detail
1143  in the main text. (F) Venn diagrams showing overlap between target genes in regulons

1144  of srp and crp along developmental trajectories of fat body and plasmatocytes.
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1145 Figure 5 Gene regulation and morphometric dynamics in embryonic CNS.

1146 (A) UMAP plot showing subclustering and annotation of CNS cells from scRNA-
1147  seq data. (B) Same as (A), but for scATAC-seq data. Annotations with (R) or (A)
1148 indicate clusters identified only in scRNA-seq data or only in scATAC-seq data,
1149  respectively. (C) Co-embedding of CNS cells from scRNA-seq and scATAC-seq data
1150 inthe same UMAP plot. (D) Same as (C), but re-clustered and re-annotated. (E) Bubble
1151  plots showing expression level and enrichment of top marker genes of mature neuron
1152  cell types in (D). (F) Left: 3D UMAP plot of scATAC-seq data (also see Data S3) and
1153  differentiation trajectories of selected cell clusters, with SO through S15 denoting
1154  branching points of differentiation. S8 was set as the origin of differentiation; right:
1155  subway map plot showing differentiation trajectories and branching points of the same
1156  cell clusters. Each dot represents one cell from scATAC-seq data subset. (G) Upper
1157  left: UMAP plot showing subclustering of sensory neurons and their differentiation
1158 paths; lower left: the same UMAP plot color coded with Kr motif activity. Krhas 5 known
1159  motifs with highly similar sequence compositions. The composition and activity of
1160 representative motif M03663 are shown; right: scatter plot showing the genes
1161 associated with DA peaks and DE genes, comparing GABAergic neurons 2 with
1162  GABAergic neurons 4, and GABAergic neurons 2 with tyraminergic neurons 1. Nearest
1163  genes of Krbinding motifs are labeled. The size of each dot corresponds to the product
1164  of p values for DA peaks and DE genes. (H) The same scatter plots as (G), comparing
1165  GABAergic neurons 2 with tyraminergic neurons 1 and labeled with nearest genes of
1166  binding motifs of hb, grh, and opa. (I) Venn diagrams showing overlap between target
1167  genesinregulons of klu and CG 12219 among representative mature neuron cell types.
1168 (J) 3D CNS models across representative embryo scStereo-seq samples, showing
1169  spatial distribution of cell types, mesh models of CNS, and mesh models of the entire
1170  embryo. Cell type color codes are the same as (D). (K) 3D models of CNS, CNS cell
1171 migration trajectories, and acceleration scores across 7 scStereo-seq samples of
1172  developmental age between 7 and 18 h. (L) General linear model-based correlation
1173  between acceleration scores and expression levels of CG42394 and IncRNA:CR30009
1174  in transitions between representative scStereo-seq samples. Spatial gene expression
1175  patterns in CNS 3D models are shown on the right of each plot. (M) FISH validation in
1176  stage 11-16 embryos of gene candidates identified in CNS morphometric analysis.
1177  Representative images of pan-neuronal marker gene elav and candidate genes
1178 CG42394, IncRNA: CR30009, and IncRNA:CR45388 are shown. All samples are

1179  shown in lateral view. A-P: anterior-posterior; D-V: dorsal-ventral. Scale bars = 50 um.
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1180 Figure 6 Cell type diversity and functional regionalization in midgut.

1181 (A) UMAP plot showing subclustering and annotation of endoderm and midgut
1182  cells from scRNA-seq data, derived from Dynamo analysis. (B) Bubble plot showing
1183  expression level and enrichment of top marker genes of cell types in (A). (C) Same as
1184  (B) but within entero-endocrine cells. (D) Heat map showing correlation of functional
1185 gene modules identified by Hotspot in scRNA-seq data. Each row and each column
1186 represent a module marker gene, and Z-score indicates their correlation. (E) Heat map
1187  showing enrichment and clustering of Hotspot identified gene modules from (D) in
1188  midgut cell types in scRNA-seq data. (F) RNA velocity flow projected in UMAP space
1189 in (A). Cell type color codes are the same as (A). Dashed lines mark clusters
1190 representing adult midgut progenitors (AMPs), entero-endocrine cells (EEs), and
1191  enterocytes (ECs) discussed in the main text. (G) Dot plots showing relationship
1192  between velocity derived pseudotime and expression levels of genes of interest during
1193 differentiation of AMPs and EEs. Each dot represents one cell from midgut scRNA-seq
1194  data. (H) 3D midgut models across representative embryo scStereo-seq samples,
1195  showing spatial distribution of cell types, mesh models of midgut, and mesh models of
1196 the entire embryo. Cell type color codes are the same as (A). (1) Bar plot showing cell
1197  type composition of midgut in scStereo-seq samples. Cell types are label transferred
1198 from scRNA-seq data. (J) Same as (H) but showing spatial distribution of copper cells,
1199 EC (Jon99Cii+), and EC (Try29F+) and their cell type marker genes in representative
1200 scStereo-seq samples. (K) Same as (H) but for larva scStereo-seq samples. Cell type
1201  color codes are the same as Figure S11D. Samples are not on the same scale. (L) 3D
1202 midgut models of L1 early and L3 late scStereo-seq samples, showing spatial
1203  distribution of representative ECs and their corresponding functional gene modules.
1204 (M) Heat map showing expression level of region-related gene modules across
1205  scStereo-seq samples. (N) Same as (H) but showing spatial distribution of inferred
1206  “adult midgut” regions. (O) 3D midgut cell migration trajectories and acceleration
1207  scores across 7 scStereo-seq samples of developmental age between 7 and 18 h.
1208 Sample viewpoints are different from (N) for better visualization of trajectories. (P)
1209  General linear model-based correlation between acceleration scores and expression
1210 levels of grn, Kaz-m1, and CG32633 in transitions between representative scStereo-

1211 seq samples.
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1212 METHODS

1213 RESOURCE AVAILABILITY

1214 Lead contact

1215 Further information and requests for the resources and reagents may be directed

1216  to the corresponding author Yuhui Hu (huyh@sustech.edu.cn).

1217 Materials availability

1218 All materials used for Stereo-seq, MGl C4 scRNA-seq, and MGI C4 scATAC-seq

1219  are commercially available.

1220 Data and code availability

1221 Raw data generated by Stereo-seq, scRNA-seq, and scATAC-seq in this study
1222 and associated analysis protocols and software can be accessed in our online
1223  database, Flysta3D. All data were analyzed with standard programs and packages, as
1224  detailed in Method details. Processed matrices can be accessed through Mendeley
1225  Data (https://doi.org/10.17632/tvvifr3c6j.1, https://doi.org/10.17632/29695x8txs.1, and
1226  https://doi.org/10.17632/4zf847bxcd.1). All custom codes using open-source software

1227  to support this study are provided in a public GitHub repository. Any additional
1228 information required to re-analyze the data reported in this study is available from the

1229 lead contact upon request.

1230

1231 EXPERIMENTAL MODEL AND SUBJECT DETAILS

1232 Fly strain maintenance

1233 All Stereo-seq, scRNA-seq, and scATAC-seq samples were from Drosophila strain

1234  w1118. Flies were maintained on cornmeal-sucrose-agar media in a 25 °C incubator

1235 ona 12 h/12 h light/dark cycle.
1236 Fly sample preparation

1237 Samples were prepared and embedded for cryosection and Stereo-seq as
1238  previously described’. Unless otherwise specified, the samples were sectioned along

1239 the left-right axis to represent sagittal planes.
1240 For scRNA-seq, single cells were isolated and fixed following protocols described

39/50


mailto:huyh@sustech.edu.cn
https://doi.org/10.17632/tvvjfr3c6j.1
https://doi.org/10.17632/29695x8txs.1
https://doi.org/10.17632/4zf847bxcd.1
https://doi.org/10.1101/2024.02.06.577903
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.06.577903; this version posted February 6, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

1241

1242
1243
1244
1245

1246

1247

1248

1249

1250

1251

1252
1253

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

in Ref'?° and stored at -20 °C until further use.

For scATAC-seq, embryos at the desired stages were collected from a population
cage. The embryos were transferred to a 70 um cell strainer, dechorionated in
commercial bleach for 3 min, rinsed with ddH20, and dried on a Kimwipe.

Dechorionated embryos were then snap-frozen in liquid nitrogen and stored at -80 °C

until further use.

METHOD DETAILS

See method details in Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Figures, Tables, Movies, and Data can be found in the

Supplemental Information.
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