

1 Spatial transcriptomics elucidates medulla niche supporting 2 germinal center response in myasthenia gravis thymoma

3 Authors

4 Yoshiaki Yasumizu^{1,2,3,12,*}, Makoto Kinoshita¹, Martin Jinye Zhang^{4,5}, Daisuke Motooka^{3,6}, Koichiro
5 Suzuki^{7,8}, Daisuke Okuzaki^{3,6}, Satoshi Nojima⁹, Soichiro Funaki¹⁰, Yasushi Shintani¹⁰, Naganari
6 Ohkura^{2,11}, Eiichi Morii⁹, Tatsusada Okuno^{1,*}, Hideki Mochizuki^{1,3}

7 1. Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka,
8 Japan

9 2. Department of Experimental Immunology, Immunology Frontier Research Center, Osaka
10 University, Suita, Osaka, Japan

11 3. Integrated Frontier Research for Medical Science Division, Institute for Open and
12 Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan

13 4. Ray and Stephanie Lane Computational Biology Department, School of Computer Science,
14 Carnegie Mellon University, Pittsburgh, PA, USA

15 5. Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA

16 6. Genome Information Research Center, Research Institute for Microbial Diseases, Osaka
17 University, Suita, Osaka, Japan

18 7. BIKEN-RIMD NGS Laboratory, Research Institute for Microbial Diseases, Osaka University,
19 Suita, Japan

20 8. Biomedical Science Center, The Research Foundation for Microbial Diseases of Osaka
21 University (BIKEN), Suita, Japan

22 9. Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka,
23 Japan

24 10. Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University,
25 Suita, Osaka, Japan

26 11. Department of Frontier Research in Tumor Immunology, Graduate School of Medicine, Osaka
27 University, Suita, Osaka, Japan

28 12. Lead Contact

29 * Correspondence

30 **Correspondence:**

31 Yoshiaki Yasumizu: yyasumizu@ifrec.osaka-u.ac.jp

32 Tatsusada Okuno: okuno@neurol.med.osaka-u.ac.jp

33 **Summary**

34 Myasthenia gravis (MG) is known to be epidemiologically associated with abnormalities of the thymus,
35 an organ that maintains central tolerance. However, due to the complexity of the thymus, specific
36 characteristics related to the pathogenesis of MG remain elusive. In our study, we attempted to
37 narrow down the features associated with MG using spatial transcriptome analysis of thymoma and
38 thymic hyperplasia samples. We found that the majority of thymomas were constituted by the cortical
39 region, whereas the medullary region was localized in comparatively restricted areas. Moreover, the
40 medullary region contained polygenic enrichment, MG-specific germinal center structures, and a
41 supporting immune microenvironment. Additionally, neuromuscular medullary thymic epithelial cells
42 (nmTECs), previously identified as MG-specific autoantigen-producing cells, were situated at the
43 cortico-medullary junction. The immune microenvironment in the medulla was characterized by a
44 specific chemokine pattern and specific immune cells, such as $CCR7^+$ migratory dendritic cells
45 (migDCs) and effector regulatory T (Treg) cells. Furthermore, similar germinal center structures and
46 immune microenvironments were observed in the medulla during thymic hyperplasia. This study
47 indicates that the medulla and junction areas are related to the pathology of MG, suggesting that
48 these areas should be the focus of future studies on MG pathogenesis and drug targeting.

49 **Introduction**

50 Myasthenia gravis (MG) is an autoimmune disease that causes systemic muscle weakness
51 due to the production of autoantibodies that target the neuromuscular junction. Similar to other
52 autoimmune diseases, genome-wide association studies (GWAS) have identified MG as a polygenic
53 disease, with variants associated with T cell and B cell functions ^{1,2}. MG is also associated with
54 thymoma and thymic hyperplasia. Currently, a thymectomy is the first choice of treatment for MG with

55 thymoma, and the effectiveness of this treatment underscores the role of the thymus in disease
56 pathogenesis ^{3,4}. However, a thymectomy is an invasive surgical procedure that can adversely affect
57 the immune system ⁵. In addition to thymectomy, only symptomatic treatments targeting the immune
58 system or neuromuscular junctions are available, underscoring the need for the development of novel,
59 less-invasive treatments that act upstream of the disease pathway. Therefore, the identification of
60 thymic abnormalities related to MG is urgently needed.

61 The thymus is the primary lymphoid organ responsible for T cell education; it eliminates
62 autoreactive T cells and induces regulatory T cells (Tregs), which serve as the site of central
63 tolerance. However, due to the complexity of thymic function and anatomy, its physiological role and
64 involvement in MG remain unclear. We previously identified the abnormal expression of
65 neuromuscular-related antigen molecules in MG-specific medullary thymic epithelial cells (mTECs)
66 and germinal center (GC) formation in MG-associated thymomas using single-cell RNA sequencing
67 (scRNA-seq) analysis ⁶. However, spatial interpretation using scRNA-seq remains challenging.
68 Therefore, there has been no spatial prioritization to determine the areas within the complex thymic
69 tissue that are truly related to the disease thus far. Although our scRNA-seq results suggested
70 interactions between mTECs and immune cells, their spatial proximity was not confirmed.
71 Furthermore, a comprehensive understanding of the immune cells that form niches within the thymus
72 is lacking.

73 Additionally, MG is associated not only with thymomas but also with thymic hyperplasia in
74 younger patients ⁷. Thymic hyperplasia is a benign condition characterized by the enlargement of the
75 normal thymus and, similar to thymomas, is reported to involve the formation of lymphoid follicles with
76 GCs ⁸. Although both thymomas and thymic hyperplasia are thymic abnormalities associated with MG,
77 whether there is a pathogenic link between the two remains controversial.

78 In recent years, spatial transcriptomics technology has evolved, greatly advancing our spatial
79 understanding of disease analysis ⁹⁻¹¹. Spatial transcriptomics has enabled significant improvements
80 in the interpretation of cellular niches compared to observational methods with fewer parameters,
81 such as hematoxylin and eosin (H&E) staining or immunohistochemistry. However, despite the
82 significant amount of information it provides, assigning pathological significance and considering

83 causality using spatial transcriptomics alone has been challenging. By integrating scRNA-seq data
84 from the corresponding tissue, we can extract more information and estimate the cellular composition
85 of each spot for a more detailed interpretation ¹². Nonetheless, there is currently no consensus on
86 how to appropriately prioritize susceptible regions.

87 In this study, we conducted a spatial evaluation of MG thymomas using spatial transcriptome
88 analysis to identify disease-related niches and characterize distinctive gene expression. We
89 developed a new method, single-cell disease-relevance score (scDRS)-spatial, which leverages
90 polygenic enrichment to identify disease-relevant spatial locations by integrating single-cell spatial
91 transcriptomics with disease GWAS, extending an existing method, scDRS ¹³, that analyzes scRNA-
92 seq data. In particular, scDRS-spatial considers physical contact between multiple cells, in addition to
93 cell type-specific polygenic enrichment, by assessing spatial niches rather than single cells.
94 Furthermore, we reconstructed the largest single-cell atlas of thymomas by integrating data from
95 previous reports ^{6,14}. By integrating this atlas with spatial transcriptomic data, we were able to
96 estimate the detailed spatial interactions between cell populations. Through these integrated analyses,
97 we attempted to identify hotspots of MG pathology in MG thymomas and the immune responses at
98 these sites. Finally, we conducted a spatial transcriptome analysis of MG-associated thymic
99 hyperplasia and discussed the similarities between the immune microenvironments of MG thymomas
100 and hyperplasia.

101 Results

102 Spatial-transcriptome profiling of thymoma, hyperplasia, and normal thymus

103 To investigate the spatial characteristics of thymuses associated with MG, we conducted a
104 spatial transcriptome analysis. We previously reported a stronger association between thymomas and
105 the presence of anti-acetylcholine receptor antibodies (AChR-Abs) than with the presence of MG-
106 related symptoms. In this study, we primarily profiled thymomas (the World Health Organization
107 classification Type B1 or B2) in patients positive for AChR-Ab (seropositive) as MG-type thymomas.
108 We profiled the thymomas of four seropositive patients, two of whom exhibited MG symptoms,
109 yielding five samples. Additionally, three samples were obtained from three seronegative patients

110 (AChR-Ab-negative, WHO Type B1 or B2), and two thymic hyperplasia samples were obtained from
111 two seropositive patients with MG symptoms. Formalin-fixed and paraffin-embedded sections were
112 profiled using the 10x Visium platform (Figure 1A, Table S1). For comparison with normal thymuses,
113 we integrated the Visium data of 11 samples from 11 individuals with normal fetal and pediatric
114 thymuses. After quality control, 59,796 spots were retained for downstream analyses. Because each
115 Visium spot is estimated to contain approximately 1-10 cells, each spot can be considered to
116 represent a niche. Initially, the Leiden algorithm was used to define 18 clusters (Figures 1B, S1A, and
117 B). Based on these 18 Leiden clusters, we defined six annotated clusters: the cortex, medulla,
118 Junction, Stroma, and two medulla-specific clusters characterized by *FN1* expression (medulla_*FN1*)
119 and a high concentration of GCs (medulla_GC) (Figures 1B,C). For instance, the distinct expression
120 of chemokine-receptor pairs, such as *CCR9-CCL25* and *CCR7-CCL19*, significantly differentiated the
121 cortex from the medulla (Figures 1D and S1C). The transcriptome profiles of the medulla and cortex
122 were maintained, even in tumors (Figure 1D). Spatially, in normal thymuses, the cortex typically
123 formed an outer layer with the medulla inside, whereas in thymomas, small medullary structures (on
124 average, 9.77% in thymoma and 19.8% in normal thymus) were interspersed predominantly within
125 cortical structures (on average, 80.6% in thymoma and 73.9% in normal thymus) (Figures S1B and
126 S2), as previously suggested ¹⁵. The junction area was positioned both transcriptomically and
127 spatially between the medulla and cortex (Figures 1C and S1D-F). Examination of the regional
128 proportions of thymomas between seropositive and seronegative cases revealed no significant
129 differences at the Leiden cluster level. However, the cortical region exhibited a significant decrease in
130 seropositive cases (Figures 1E-G and S1G). The expression of an MG-specific gene set (termed as
131 “yellow module”)⁶ was highest in the junction (Figures S1H,I). Thus, by clustering the spatial
132 transcriptome data of the thymus, we identified the predominant cortical and interspersed medullary
133 structures in thymomas and revealed a reduction in the proportion of the cortex in MG-associated
134 thymomas.

135 Prioritization of pathogenic niche in MG thymoma

136 Similar to other autoimmune diseases, MG is polygenic. We hypothesized that identifying the
137 niches with genetic susceptibility to MG accumulation would allow us to prioritize these niches (Figure

138 S3A). To this end, we extended scDRS¹³ to spatial data, namely, the scDRS-spatial framework.
139 scDRS integrates scRNA-seq data with GWAS to identify cell types with polygenic enrichment.
140 scDRS-spatial goes beyond the cellular level by further assessing the polygenic enrichment of spatial
141 niches that are hotspots of physical intercellular contact. First, we conducted null simulations using
142 random gene sets and confirmed that scDRS-spatial was well calibrated for spatial transcriptome
143 data (Figure S3B). Specifically, an imputation using Markov Affinity-based Graph Imputation of Cells
144 (MAGIC)¹⁶ produced conservative estimates (Figure S3B). Based on these findings, we imputed
145 spatial data using MAGIC to reduce technical noise and estimated polygenic enrichment at each spot
146 using scDRS-spatial. Furthermore, we added Visium data from various tissues across the human
147 body as controls (Table S3). At the tissue level, the spots in the thymus were significantly associated
148 with MG (Figure S3C). At the level of Leiden clusters, niche 8 (corresponding to the medulla) was
149 significantly associated with a false discovery rate (FDR) of <0.2; Figure S3D). Across all regions, the
150 medulla was significantly associated with MG (FDR<0.2; Figure S3E). Moreover, when stratified by
151 condition, the proportion of associated niches and the heterogeneity in the medulla, especially niche 8,
152 were higher in seropositive thymomas than in seronegative thymomas and the normal thymus
153 (Figures 2A-C). These results suggest that genetic susceptibility accumulates in the medullary
154 regions of thymomas.

155 Cellular composition in MG-thymoma niche

156 To elucidate the cellular composition of MG-thymoma niches, we performed cell deconvolution
157 by integrating scRNA-seq data. For deconvolution, we created a new single-cell reference for
158 thymomas by adding our data to the single-cell data reported by Xin *et al.*¹⁴. After quality control,
159 113,948 cells were retained, defining 50 clusters, including immune, epithelial, and stromal cells
160 (Figures 3A,B and S4A-F). Notably, we achieved a higher-precision annotation of the TEC population,
161 which was less represented in our previous study⁶. The medullary TECs (mTECs) were
162 characterized by the expression of *CLDN4* (Figure S4A). Within the mTECs, several sub-clusters
163 were defined, including *AIRE*^{high} mTECs (mTEC *AIRE*), *KRT14*^{high} mTECs (mTEC *KRT14*), and
164 neuromuscular mTECs (nmTECs), which were characterized by a high yellow module and *GABRA5*
165 expression (Figure S4B). The DC fraction also included plasmacytoid DCs (pDC), conventional DCs

166 type 1 (cDC1), type 2 (cDC2), and migDCs, which were characterized by *CCR7* and *LAMP3*
167 expression. MigDCs expressed both *CD274* (PD-L1) and *CD80*, suggesting the involvement of T cell
168 activation¹⁷ (Figure S4G). We then assessed MG-specific features in the new references to confirm
169 their consistency. Deconvolution using bulk RNA-seq data of thymomas generated by The Cancer
170 Genome Atlas (TCGA)¹⁸ consortium revealed that the frequency of nmTECs was the most
171 significantly associated with MG (Figure S5A, *p*adj= 6×10^{-6}), similar to a previous result⁶. In addition,
172 the expression of yellow module genes was highest in nmTECs (Figure S5B). This observation
173 indicates that nmTECs were the most associated cell type at the single-cell level, even in the new
174 single-cell reference, which elaborated on the TEC populations.

175 Next, we leveraged a new single-cell reference to analyze the spatial transcriptome data at
176 cell-type resolution. By integrating the single-cell reference with Visium data using cell2location¹², we
177 estimated the cellular composition of each spot (Figures 3C,D). As in the normal thymus, immature T
178 cells, such as CD4⁻ CD8⁻ double-negative cells and CD4⁺ CD8⁺ double-positive T cells, were
179 concentrated in the cortical region, whereas mature T cells and mTECs were abundant in the
180 medullary region (Figures 3C,D). Germinal center B cells (B GC) and CXCL13-producing T follicular
181 helper cells (CD4 Tfh CXCL13) were also enriched in the medullary GC region (Figures 3C,D). The
182 stroma and medulla_FN1 regions were characterized by high numbers of endothelial cells, fibroblasts,
183 and vascular smooth muscle cells (VSMCs) (Figures 3C,S6A). In the seropositive cases, an increase
184 in nmTECs, immune cells, such as antigen-secreting cells (ASC), switched memory B cells (B SM), B
185 GC, migDCs, and effector T regulatory cells (Treg Eff), and reduced cTECs were confirmed (Figures
186 3E and S6B). Next, we explored the co-localization patterns of constituent cells using non-negative
187 matrix factorization (NMF), defining eight co-localization factors (factors 0–7) (Figures 3F-H,S6C). By
188 analyzing the cellular contributions and enriched regions of each factor, we found that certain factors
189 were predominantly associated with specific regions: factors 0, 2, and 4 with the cortex, factor 5 with
190 the medulla, factors 1 and 3 with the stroma, and factor 7 with both the junction and GCs. Factor 7,
191 composed of B GC, was localized within GCs, while CD4 Tfh CXCL13 was present both inside and
192 around GCs in the medullary region, forming the GC niche (Figures 3F-H,S6C). Factor 5, composed
193 of mature immune cells, such as Treg Eff, migDCs, and B SM, constituted an immune
194 microenvironment in the medulla (Figures 3F-H,S6C). Factor 6, comprising nmTECs, cDC1, and

195 migDCs, was particularly abundant at the junction area (Figures 3F-H,S6C). The ASC niche was not
196 identified within the cortex or medulla but was present in the stromal region (Figures 3C,S6A).
197 Endothelial cells were concentrated in the medulla and stroma, highlighting a lower vascular
198 presence in the cortex (Figures 3C,S6A). In summary, cell deconvolution identified eight co-localizing
199 communities and their constituent cells.

200 **Cell-cell interaction analysis reveals niche-specific chemokine profiles**

201 Next, we analyzed cell-cell interactions (CCIs) within the cell groups constituting the niches.
202 Using CellphoneDB ¹⁹, we explored CCIs by considering the co-localizing communities identified by
203 cell2location analysis. Numerous CCIs were identified, among which chemokines were particularly
204 cell-specific and appeared to be involved in niche-specific cell migration (Figure S7A,B). In both tumor
205 and normal tissues, *CCL25-CCR9* and *CCL19-CCR7* interactions were specific to the cortex and
206 medulla, respectively (Figures 4A,B). Previously, we reported that nmTECs have an intermediate
207 profile between that of mTECs and cTECs ⁶, and indeed, they expressed both *CCL25* and *CCL19*
208 (Figure 4A). Interestingly, in thymomas, both single-positive T cells and migratory DCs (migDCs)
209 expressed *CCR7*, suggesting that the medullary characteristics of thymomas facilitate the
210 mobilization of migDCs. Ligands for *CCR4* specific to Treg Eff, such as *CCL17* and *CCL22*, were
211 expressed by migDCs in thymomas, suggesting their role in maintaining Treg Eff in the medulla ²⁰
212 (Figures 4A,B). Similarly, *CXCL16*, the ligand for *CXCR6* specific to Treg Eff, was expressed in cDC1,
213 cDC2, and migDCs (Figures 4A,B). MigDCs also expressed *CXCL10*, which potentially interacts with
214 *CXCR3⁺* effector T cells (Figures 4A,B). We previously demonstrated that mature infiltrating T/B cells
215 in the thymus specifically express *CXCR4* ⁶. The *CXCL12* ligand was expressed by nmTECs ⁶,
216 suggesting its role in maintaining the medullary niche (Figures 4A,B). Finally, *CXCL13*, a key
217 chemokine for the maintenance of the GC, was expressed by CD4 Tfh *CXCL13* (Figure 4A). The
218 expression of *CCR4*, *CXCL16*, and *CXCR5-CXCL13* was lower in the normal thymus than in the
219 thymoma, suggesting their thymoma-specific roles in maintaining niches (Figure 4A). In contrast,
220 chemokines such as *CCL25*, *CCL19*, *CXCL12* and their receptors were expressed in both the normal
221 thymus and thymoma, suggesting that some factors might be synchronized with normal conditions
222 and MG thymoma (Figure 4A). Taken together, we identified spatially characteristic chemokine

223 ligand-receptor pairs in thymomas, supporting the involvement of these niches in the pathogenesis of
224 thymoma-associated MG.

225 Extrapolation of thymoma niche to thymic hyperplasia

226 Finally, we verified whether our findings were consistent with those in thymic hyperplasia.
227 Anatomically similar to the normal thymus, the structure with the cortex on the outside and the
228 medulla on the inside was maintained (Figure 5A). GCs are present in the medulla, similar to
229 thymomas, suggesting that the microenvironment supporting GC formation is common in both
230 thymomas and thymic hyperplasia. (Figure 5A). Polygenic signals identified by scDRS-spatial
231 analysis were generally more enriched in thymoma samples and were particularly observed in the
232 medulla, similar to our findings in thymomas (Figures 5B,C, S9A,B). Although there is no single-cell
233 RNA-seq reference for thymic hyperplasia, application of the thymoma reference revealed that the
234 eight-cell communities identified in thymomas were consistently formed in accordance with
235 anatomical features (Figure 5D). Furthermore, the expression of chemokines and their receptors was
236 consistent with thymomas, and *CCR4*, *CXCL16*, and *CXCR5-CXCL13*, which had lower expressions
237 in the normal thymus, were abundantly expressed in hyperplasia (Figures 5E,F). These findings
238 indicate that an immune microenvironment supporting GCs is present in the medulla in thymic
239 hyperplasia, which is similar to thymoma.

240 Discussion

241 In this study, spatial transcriptomics was used to identify the niche involved in the
242 pathogenesis of MG thymoma and to explore its molecular characteristics. We successfully identified
243 the MG-associated niche and its constituents in both thymomas and thymic hyperplasia (Figure 6).
244 Our analysis revealed that cortical-like areas, medullary-like areas, and immune hotspots coexisted
245 within a single patient, highlighting the heterogeneity of the tumor environment within an individual.
246 Genetic and phenotypic associations of the medulla were also suggested. Furthermore, we identified
247 the formation of ectopic lymphoid structures (ELS) in the MG thymus and the chemokines that
248 support these structures.

249 The significance of the medulla has been frequently discussed, including in our previous
250 single-cell analyses^{6,21-23}. mTECs play a crucial role in negative selection by eliminating autoreactive
251 T cells through self-antigen production²⁴⁻²⁶. The abnormalities in this process in MG highlight that
252 negative selection has a potential risk of inducing autoimmunity. In particular, the expression of
253 neuromuscular-related antigens by nmTECs in MG thymomas has been suggested to feed on
254 autoreactive T cells⁶. These nmTECs were localized at the junction of the medulla and cortex,
255 suggesting that the origin of these nmTECs in tumor development was at this junction. Additionally,
256 our analysis demonstrated the accumulation of migDCs in the medulla. MigDCs expressing CCR7
257 migrate to tertiary lymphoid structures or lymph nodes with high concentrations of CCL19 and play an
258 important role in T cell priming^{27,28}. The medulla, due to mTEC-induced CCL19 expression, may
259 physiologically trap migDCs and mediate T-cell help. Furthermore, CCI between migDCs and mTECs
260 has been noted, even in the normal thymus²³, and this collaboration may be attributed to normal
261 thymic function.

262 Furthermore, our analysis provides new insights into the role of specific immune cells in the
263 pathogenesis of MG. A concurrent abundance of CXCL13⁺ IL21⁺ Tfh cells within the lymphoid follicles
264 and accumulation of migDCs in the medulla were observed. These findings suggest that follicle
265 formation in the thymus induces potent affinity maturation and B-cell proliferation, possibly
266 contributing to the pathogenesis of MG^{29,30}. However, CXCR5 PDCD1⁺ T peripheral helper (Tph)
267 cells, observed at inflammatory sites in rheumatoid arthritis, systemic lupus erythematosus, and
268 Sjögren's syndrome³¹⁻³³, were not clearly identified as distinct cell populations in our single-cell
269 analysis. While our study and others have reported an increase in circulating Tph cells in MG, these
270 results were contrary to our expectation^{2,34}. Additionally, effector Tregs were also observed to be
271 abundant in the medulla of MG thymoma. Although the accumulation of GWAS signals in Tregs^{2,6}
272 and their dysfunction in MG patients³⁵ have been suggested, whether normalizing their function could
273 lead to therapeutic effects remains an important question for future research.

274 Notably, as MG is an antibody-mediated disease, it has been reported that ASCs are
275 increased in MG thymoma³⁶. However, the niche for ASCs was not found within the thymic cortex or
276 medulla but was rather abundant in the stromal region. Even after thymectomy, the circulation of
277 autoreactive B-cell clones in the periphery has been reported³⁷, suggesting that extrathymic niches,

278 such as the bone marrow ³⁸, may harbor ASCs. Nevertheless, it was suggested that the immune
279 microenvironment within the medulla primarily contributes to B cell maturation.

280 This study also profiled MG-associated thymic hyperplasia. Because there are no single-cell
281 datasets specific to thymic hyperplasia, a detailed comparison of thymic epithelial cell profiles was not
282 possible. Nonetheless, our analysis revealed notable similarities in immune cells, chemokine profiles,
283 and polygenic signals in the medulla of MG thymomas. Consequently, this study offers an invaluable
284 resource for understanding the pathogenesis of MG by presenting a comprehensive overview of
285 thymomas and thymic hyperplasia.

286 In summary, using spatial transcriptomic analysis, we successfully identified the immune
287 microenvironment in the medulla, revealing that many of its characteristics resonate with the
288 physiological features of the thymus. Current treatments for MG, aside from thymectomy, are mainly
289 supportive and target the immune system and neuromuscular junctions. We hope that this study will
290 contribute to a complete understanding of MG pathogenesis and the development of novel treatments
291 targeting upstream pathological processes.

292 STAR Methods

293 Human samples

294 This study was reviewed and approved by the Research Ethics Committee of Osaka
295 University and was conducted in accordance with the guidelines and regulations. Human samples
296 were collected with the approval of Osaka University's review board (protocol: ID 10038-13. Detailed
297 information on the participants is provided in Table S1.

298 Spatial Transcriptomics (CytAssist Visium)

299 Formalin-fixed, paraffin-embedded (FFPE) thymoma samples were used. The samples were
300 sliced into 8-μm-thick sections using a microtome. RNA quality was examined using DV200, and
301 samples with DV200 > 25% were used for all subsequent analyses. Libraries were then constructed
302 using the Visium workflow with CytAssist, according to the manufacturer's guidelines (CG000518,

303 10x Genomics, Pleasanton, CA, USA). Sequencing was performed at the Research Institute for
304 Microbial Diseases, Osaka University. Libraries were sequenced using an MGI DNBSEQ-G400RS
305 (MGI Tech Co., Shenzhen, China) system. The generated data were processed using Space Ranger
306 v2.0.1 software, using GRCh38-2020-A as a reference.

307 Visium data analysis

308 For the assessment of normal thymus tissues, data from eight pediatric thymuses ³⁹ and three
309 fetal thymuses ⁴⁰ were downloaded (GSE207205 and <https://developmental.cellatlas.io/fetal-immune>)
310 and processed using Scanpy (1.9.5) ⁴¹. Briefly, the data were loaded as anndata objects and
311 concatenated. Spots classified as “in tissue” were retained. Thereafter, we performed normalization
312 (sc.pp.normalize_total), log transformation (sc.pp.log1p) and extraction of HVGs
313 (sc.pp.highly_variable_genes with the options, n_top_genes=3000, flavor='seurat_v3',
314 batch_key='sample_id'). We then applied the variational inference model implemented in the scvi-tool
315 (1.0.4) ⁴². Sample IDs and Projects were specified as categorical covariates and total counts per cell
316 were used as continuous covariates. The model (n_layers=2, n_latent=30) was trained using the
317 default parameters and latent space for the UMAP embeddings and Leiden clustering using Scanpy.
318 Marker genes were extracted using the scvi.model.differential_expression function. Gene scores
319 were calculated using the sc.tl.score_genes function implemented in Scanpy with default parameters.
320 Spatial neighborhood enrichment analysis was performed using the sq.gr.spatial_neighbors function
321 implemented in Squidpy (1.3.1) ⁴³. Cell proportions were compared using the Bayesian framework
322 implemented in scCODA ⁴⁴. The mixed effect model was implemented using the Python package,
323 statsmodels (v0.14.0).

324 scDRS-spatial

325 The GWAS summary statistics deposited at GCST90093061 ¹ were used for analysis. These
326 summary statistics describe the meta-analysis results for MG. The cohort included 1,873 cases and
327 36,370 controls from the US and Italy, respectively. Gene scores were computed using MAGMA ⁴⁵
328 (v1.10) software as described by Zhang *et al.* ¹³. First, we performed single nucleotide polymorphism
329 (SNP) annotation with gene locations (NCBI37.3,

330 https://ctg.cnrc.nl/software/MAGMA/aux_files/NCBI37.3.zip) and the reference data created from
331 1000 genomics Phase3 (g1000_eur, https://ctg.cnrc.nl/software/MAGMA/ref_data/g1000_eur.zip)
332 using magma --annotate (with the option, window=10,10). Next, we calculated the gene scores from
333 the p-values using MAGMA. To include a variety of cell types in the dataset, we downloaded public
334 Visium data (Table S3) and created a Visium control dataset. We then combined these with the
335 thymus datasets. We pre-processed the dataset by normalizing the total counts to the median of the
336 total counts (scipy.pp.normalize_total), log transformation (scipy.pp.log1p), and imputing gene
337 expression using MAGIC ¹⁶ (scipy.external.pp.magic). Thereafter, the polygenic enrichment for
338 each cell was evaluated using scdrs compute-score (v1.0.3, options: --flag-filter-data True --flag-raw-
339 count False --n-ctrl 1000); the number of genes for each cell was used as the covariate. Group-level
340 statistics were calculated using scdrs perform-downstream and visualized using
341 scdrs.util.plot_group_stats.

342 A null simulation was performed as described by Zhang *et al.* ¹³. We randomly selected 1000
343 genes 100 times, and the enrichment for the Visium control dataset was evaluated using scdrs
344 compute-score (--flag-filter-data True --flag-raw-count False --n-ctrl 1000 for imputed data, --flag-filter-
345 data True --flag-raw-count True --n-ctrl 1000 for raw data).

346 Single-cell RNA-seq analysis

347 We pre-processed the scRNA-seq data of thymomas generated by Xin *et al.* ¹⁴. First, doublets
348 were removed using Scrublet ⁴⁶ with default parameters, and cells with > 200 and < 8000 genes and
349 < 20% mitochondrial RNA were retained. The data were then merged with the thymoma and PBMC
350 datasets generated by Yasumizu *et al.* ⁶ To remove the effect of immune receptors on highly variable
351 genes, genes related to T cell receptors and B cell receptors were removed. The retained expression
352 was normalized (sc.pp.normalize_total with the option target_sum=1e4) and transformed
353 (sc.pp.log1p), and highly variable genes were assessed (sc.pp.highly_variable_genes with the
354 options flavor='seurat_v3', batch_key='project'). Cell cycle was inferred using the
355 sc.tl.score_genes_cell_cycle function following a tutorial
356 (https://nbviewer.jupyter.org/github/theislab/scipy_usage/blob/master/180209_cell_cycle/cell_cycle.ipynb). The total UMI counts, percentage of mitochondrial genes, S score, and G2M score were

358 regressed using sc.tl.regress_out and scaled using sc.tl.scale. The principal components were then
359 computed using sc.tl.pca. The batch effect of the samples was eliminated using the Harmony
360 algorithm ⁴⁷. Neighbors were calculated using sc.pp.neighbors with the options n_neighbors=30
361 n_pcs=50. Cells were embedded in UMAP using sc.tl.umap (spread = 2) and clustered using
362 sc.tl.leiden. The initial layer clusters (cluster L1) were manually defined based on Leiden clusters. For
363 Layer 2 clustering, we recursively extracted cells from a population and performed the same
364 procedures with manually optimized parameters (number of highly variable genes: 1000-3000,
365 number of neighbors: 15-30, n_pcs: 10-50, spread of UMAP: 1). Doublets assigned in subcluster
366 analysis were removed, and the final embedding was generated following the same procedures. For
367 marker gene detections, sc.tl.rank_genes_groups(method='wilcoxon') were used.

368 Cell deconvolution of Visium samples using Cell2location

369 Cell deconvolution of the Visium samples using Cell2location ¹² was performed according to
370 the tutorial guidelines
371 (https://cell2location.readthedocs.io/en/latest/notebooks/cell2location_tutorial.html). The combined
372 scRNA-seq reference without doublets (described below) was filtered
373 (cell2location.util.filtering.filter_genes with the options cell_count_cutoff=5,
374 cell_percentage_cutoff2=0.03, nonz_mean_cutoff=1.12) and prepared
375 (cell2location.models.RegressionModel.setup_anndata with the options batch_key='sample',
376 labels_key='clusterL2'). A regression model was created using cell2location.models.RegressionModel
377 and trained (model training with max_epochs=250). Cell proportions were inferred for each Visium
378 sample at each time point. In the inference step, a model for the Visium sample was created using
379 cell2location.models.Cell2location(N_cells_per_location=30, detection_alpha=20) and trained
380 (max_epochs=30000). Co-localization analysis was performed using
381 cell2location.run_colocation(model_name='CoLocatedGroupsSklearnNMF'), and the optimal number
382 of factors was manually selected.

383 Cell deconvolution of TCGA bulk RNA-seq samples using Scaden

384 Cell deconvolution of TCGA samples was performed using a neural-net-based algorithm,
385 Scaden (v1.1.1), as described by Yasumizu *et al.*⁶. We created 30,000 simulation datasets using a
386 scaden simulate. The count matrices of our single-cell dataset and the TCGA thymoma dataset
387 quantified by HTseq and downloaded from TCGAbiilkinks were pre-processed using the scaden
388 process command. Thereafter, the network was trained using the command, scaden train with the
389 option, --steps 5000. Finally, the bulk RNA-seq matrix was deconvoluted using scaden predict. The
390 deconvoluted cell proportion was tested using a multiple linear regression provided as the
391 formula.api.ols function using the Python package statsmodels (0.12.0) with a model,
392 cells ~ MG + WHO + days_to_birth + Gender + 1.

393 Cell-cell interaction analysis by CellphoneDB

394 CCI inference was performed using the CellphoneDB¹⁹ framework. Cells with a loading of 0.1
395 or higher in the NMF-based cell co-localization analysis of Cell2location were used as the
396 microenvironments. CCI inference was performed using the
397 cellphonedb.src.core.methods.cpdb_statistical_analysis_method.call (score_interactions=True,
398 threshold=0.1) function. The results were visualized using ktpotspy and Scanpy software.

399 Data and material availability

400 Datasets and codes will be available upon publication.

401 Acknowledgments

402 This work was supported by the Grants-in-Aid for Scientific Research Grant 23H02826 from
403 the Ministry of Education, Culture, Sports, Science, and Technology of Japan. Y. Y. was supported by
404 the Takeda Science Foundation. We acknowledge the NGS core facility of the Genome Information
405 Research Center at the Research Institute for Microbial Diseases of Osaka University for its support
406 in Sequencing as well as the BIKEN Foundation for preparing tissue sections for visual analysis. This

407 work was partly achieved through the use of SQUID at the Cybermedia Center, Osaka University.
408 The illustrations were generated using BioRender.com.

409 Author contributions

410 Y.Y., M.K., and T.O. designed all experiments; Y.Y. performed the bioinformatics analysis,
411 prepared the figures, and drafted the manuscript; T.O. and Z.M. reviewed and edited the manuscript;
412 D.M., K.S., and D.O. performed the experiments; S.N., S.F., Y.S., and E.M. provided samples for
413 analysis; M.Z., S.N., and E.M. provided expert advice; and all authors critically reviewed and edited
414 the final version of the manuscript.

415 Declaration of interests

416 The authors declare no competing interests.

417 Declaration of generative AI and AI-assisted technologies in the 418 writing process

419 During the preparation of this study, the authors used ChatGPT4 to improve language and
420 readability. After using this service, the authors reviewed and edited the content as needed and take
421 full responsibility for the content of the publication.

422 Figure legends

423 **Figure 1 Spatial transcriptomic analysis revealed histological structures in myasthenia gravis 424 (MG) thymoma.**

425 (A) Schematic representation of the spatial transcriptomic analysis and enrolled sample numbers. (B)
426 Unsupervised clusters (Leiden) and annotation (Annotated Niche) of spots on UMAP plots. (C)
427 Heatmap showing mean expression of marker genes in Annotated Niche groups. Also see Figure
428 S1A for automatically-extracted marker genes. (D) Representative spatial gene expression of normal
429 thymus and thymoma samples. (E) Distribution of disease status on UMAP plots. (F) Comparison of

430 the proportion of annotated niches in thymoma samples. Statistical analysis was performed using
431 scCODA ⁴⁴. (G) Hematoxylin and eosin (H&E) staining, Leiden clusters, and annotated niche groups
432 of representative samples. The arrowheads indicate a lymphoid follicle. The scale bars indicate 100
433 μ m.

434 **Figure 2 single-cell disease-relevance score (scDRS)-spatial unveiled polygenic enrichment in**
435 **the medulla in MG thymoma.**

436 (A and B) Heatmaps show disease association in Leiden clusters (A) and annotated niche (B).
437 Samples were stratified with disease conditions. Heatmap colors depict the proportion of significant
438 cells (False Discovery Rate (FDR) < 0.2) evaluated using scDRS ¹³. Squares denote significant
439 disease associations ($FDR < 0.05$), and cross symbols denote significant heterogeneity in
440 association ($FDR < 0.05$). (C) scDRS scores on representative Visium slides.

441 **Figure 3 Cell deconvolution analysis revealed cellular composition in MG thymoma.**

442 (A) Schematic of single-cell RNA-seq (scRNA-seq) reference construction and cell deconvolution
443 analysis. (B) Cell clusters of the reference scRNAseq data on UMAP plot. (C) Cellular decomposition
444 in each annotated niche group. Deconvolution was performed using Cell2location ¹². (D) Normalized
445 cellular decomposition and H&E staining of representative Visium slides. The scale bars indicate 100
446 μ m. (E) Normalized cellular decomposition in each disease condition. (F) Cell compartments
447 identified using non-negative matrix factorization (NMF). The normalized NMF weights of cell types
448 across NMF components are shown. (G and H) Distributions of cell compartments across Leiden
449 clusters (G) and annotated niche groups (H). The abundance was normalized for each column.

450 **Figure 4 Niche-specific cytokine organization identified by cell-cell interaction analysis.**

451 (A) Dot plot showing cytokine expressions across annotated niche groups in the normal thymus (top)
452 and thymoma (middle), and across major cell types (bottom). Gene expressions for annotated niche
453 groups were from the Visium dataset, and those for the cell types were from scRNAseq. (B)
454 Representative cytokine expression of a thymoma sample. Ligands (left) and receptors (right) are
455 shown correspondingly per line.

456 **Figure 5 Spatial characteristics of thymic hyperplasia**

457 (A) H&E staining and annotated niche groups of a thymic hyperplasia sample. The arrowhead
458 indicates a lymphoid follicle. The scale bar indicates 100 μ m. (B) scDRS scores of representative
459 Visium slides. (C) Heatmap shows disease association in annotated niches stratified by disease
460 conditions. Heatmap colors depict the proportion of significant cells (FDR < 0.2) evaluated using
461 scDRS ¹³. Squares denote significant disease associations (FDR < 0.05), and cross symbols
462 denote significant heterogeneity in association (FDR < 0.05). (D) Distributions of cell compartments
463 defined by NMF. (E) Dot plot showing cytokine expressions across annotated niche groups in thymic
464 hyperplasia. (F) Representative cytokine expression of a thymoma sample. Ligands (left) and
465 receptors (right) are shown correspondingly per line.

466 **Figure 6 Spatial features of MG thymoma.**

467 **Figure S1 Spatial characteristics of thymoma samples**

468 (A) Dot plot showing marker gene expression for Leiden clusters. Three genes with Bayes_factor > 2
469 and non_zeros_proportion > 0.1 are shown for each cluster. Also see Table S2 for detailed statistics.
470 (B) Distribution of disease status (top) and data sources (bottom) of UMAP plots. (C) Marker gene
471 expression of UMAP plots. (D and E) Heatmap showing Pearson's correlation of mean expression
472 across Leiden clusters (D) and annotated niche groups (E). (F) Heatmap showing spatial
473 neighborhood enrichment of annotated niche groups. The calculation was performed using Squidpy ⁴³.
474 (G) Comparison of the proportion of Leiden groups in thymoma samples. Statistical analysis was
475 performed using scCODA ⁴⁴. (H and I) Dot plots showing changes in yellow module expression (MG
476 signature genes) ⁶ across annotated niche groups (H) and Leiden groups (I) in thymoma. A
477 generalized linear mixed model was applied (fixed effect: niche_annot or leiden, mixed effect:
478 sample).

479 **Figure S2 Annotated niche clusters of tissue sections.**

480 Annotated niche clusters for all samples enrolled in this study.

481 **Figure S3 scDRS-spatial framework to investigate the association between disease and spatial
482 niche.**

483 (A) Concept of scDRS-spatial. (B) Quantile-quantile plot of null simulations for scDRS ¹³ and scDRS
484 with imputation by MAGIC ¹⁶. Approximately 1,000 randomly selected genes were assessed using

485 control tissue sections (Table S3). Error bars denote 95% confidence intervals around the mean of
486 100 simulation replicates. (C - E) Heatmaps show disease association in tissues (C), Leiden clusters
487 (D), and annotated niches (E). Heatmap colors depict the proportion of significant cells (FDR < 0.2)
488 evaluated using scDRS ¹³. Squares denote significant disease associations (FDR < 0.05), and
489 cross symbols denote significant heterogeneity in association (FDR < 0.05).

490 **Figure S4 Single-cell atlas of thymoma.**

491 (A) Overview of single-cell RNA-seq (scRNA-seq) atlas. Cluster layer 1 (L1) categories are shown on
492 the UMAP plot (left), and the manually selected marker genes are shown in a dot plot. (B-F) Detailed
493 features of cell types. Each subcluster was extracted, annotated (cluster L2), and re-embedded using
494 UMAP (left). Marker genes are shown for each cluster as dot plots (right). (G) Dot plot showing the
495 expression of migratory dendritic cell (migDC)-related genes of myeloid populations.

496 **Figure S5 MG thymoma-specific features assessed using TCGA bulk RNA-seq data.**

497 (A) Volcano plot showing the association between MG and deconvoluted cell proportions, which were
498 calculated using The Cancer Genome Atlas (TCGA) ¹⁸ bulk RNA-seq dataset (n=116) with the
499 reference defined in our scRNAseq analysis. Coefficients and p-values were calculated with multiple
500 regression (Methods). Red dots represent FDR < 0.05, and orange dots represent FDR < 0.2. (B)
501 Enrichment analysis of gene modules using TCGA thymoma samples defined in Yasumizu *et al.* ⁶
502 using the scRNAseq reference. The yellow module is the MG-specific genes, as shown in the original
503 article.

504 **Figure S6 Additional information for Cell2location analysis.**

505 (A) Normalized cellular decomposition in each annotated niche group. Deconvolution was performed
506 using Cell2location ¹². (B) Associations of cell proportions with MG in thymoma samples. (C)
507 Distributions of cell compartments defined by NMF. MG thymoma (upper panel) and non-MG
508 thymoma (lower panel) are shown.

509 **Figure S7 Additional information for cell-cell interaction analysis.**

510 (A) Heatmap showing a number of significant interactions assessed by CellPhoneDB ¹⁹. (B)
511 Interactome of cytokines among immune cells.

512 **Figure S8 Representative cytokine expressions.**

513 (A and B) Representative cytokine expression of a non-MG thymoma sample (A) and a normal
514 thymus sample (B). Ligands (left) and receptors (right) are shown correspondingly per line.

515 **Figure S9 Additional information for scDRS-spatial analysis for thymic hyperplasia.**

516 (A) Violin plot showing scDRS score in annotated niche groups in thymic hyperplasia samples. (B)
517 Heatmaps show disease association in Leiden clusters stratified by disease conditions. Heatmap
518 colors depict the proportion of significant cells (FDR < 0.2) evaluated using scDRS¹³. Squares denote
519 significant disease associations (FDR < 0.05), and cross symbols denote significant heterogeneity
520 in association (FDR < 0.05).

521 **References**

- 522 1. Chia, R., Saez-Atienzar, S., Murphy, N., Chiò, A., Blauwendraat, C., International Myasthenia
523 Gravis Genomics Consortium, Roda, R.H., Tienari, P.J., Kaminski, H.J., Ricciardi, R., et al.
524 (2022). Identification of genetic risk loci and prioritization of genes and pathways for myasthenia
525 gravis: a genome-wide association study. *Proc. Natl. Acad. Sci. U. S. A.* 119,
526 10.1073/pnas.2108672119.
- 527 2. Yasumizu, Y., Takeuchi, D., Morimoto, R., Takeshima, Y., Okuno, T., Kinoshita, M., Morita, T.,
528 Kato, Y., Wang, M., Motooka, D., et al. (2024). Single-cell transcriptome landscape of circulating
529 CD4+ T cell populations in autoimmune diseases. *Cell Genomics* 0,
530 10.1016/j.xgen.2023.100473.
- 531 3. Wolfe, G.I., Kaminski, H.J., Aban, I.B., Minisman, G., Kuo, H.-C., Marx, A., Ströbel, P., Mazia, C.,
532 Oger, J., Cea, J.G., et al. (2016). Randomized Trial of Thymectomy in Myasthenia Gravis. N.
533 Engl. J. Med. 375, 511–522.
- 534 4. Masaoka, A., Yamakawa, Y., Niwa, H., Fukai, I., Kondo, S., Kobayashi, M., Fujii, Y., and
535 Monden, Y. (1996). Extended thymectomy for myasthenia gravis patients: a 20-year review. *Ann.*
536 *Thorac. Surg.* 62, 853–859.
- 537 5. Kooshesh, K.A., Foy, B.H., Sykes, D.B., Gustafsson, K., and Scadden, D.T. (2023). Health
538 Consequences of Thymus Removal in Adults. *N. Engl. J. Med.* 389, 406–417.
- 539 6. Yasumizu, Y., Ohkura, N., Murata, H., Kinoshita, M., Funaki, S., Nojima, S., Kido, K., Kohara, M.,
540 Motooka, D., Okuzaki, D., et al. (2022). Myasthenia gravis-specific aberrant neuromuscular gene
541 expression by medullary thymic epithelial cells in thymoma. *Nat. Commun.* 13, 4230.
- 542 7. Cron, M.A., Maillard, S., Villegas, J., Truffault, F., Sudres, M., Dragin, N., Berrih-Aknin, S., and
543 Le Panse, R. (2018). Thymus involvement in early-onset myasthenia gravis. *Ann. N. Y. Acad.*
544 *Sci.* 1412, 137–145.
- 545 8. Levine, G.D., and Rosai, J. (1978). Thymic hyperplasia and neoplasia: a review of current
546 concepts. *Hum. Pathol.* 9, 495–515.
- 547 9. Kanemaru, K., Cranley, J., Muraro, D., Miranda, A.M.A., Ho, S.Y., Wilbrey-Clark, A., Patrick Pett,
548 J., Polanski, K., Richardson, L., Litvinukova, M., et al. (2023). Spatially resolved multiomics of

549 human cardiac niches. *Nature* 619, 801–810.

550 10. Lerma-Martin, C., Badia-i-Mompel, P., Ramirez Flores, R.O., Sekol, P., Hofmann, A., Thäwel, T.,
551 Riedl, C.J., Wünnemann, F., Ibarra-Arellano, M.A., Trobisch, T., et al. (2022). Spatial cell type
552 mapping of multiple sclerosis lesions. *bioRxiv*, 2022.11.03.514906. 10.1101/2022.11.03.514906.

553 11. Rao, A., Barkley, D., França, G.S., and Yanai, I. (2021). Exploring tissue architecture using
554 spatial transcriptomics. *Nature* 596, 211–220.

555 12. Kleshchevnikov, V., Shmatko, A., Dann, E., Aivazidis, A., King, H.W., Li, T., Elmentait, R.,
556 Lomakin, A., Kedlian, V., Gayoso, A., et al. (2022). Cell2location maps fine-grained cell types in
557 spatial transcriptomics. *Nat. Biotechnol.* 40, 661–671.

558 13. Zhang, M.J., Hou, K., Dey, K.K., Sakaue, S., Jagadeesh, K.A., Weinand, K., Taychameekiatchai,
559 A., Rao, P., Pisco, A.O., Zou, J., et al. (2022). Polygenic enrichment distinguishes disease
560 associations of individual cells in single-cell RNA-seq data. *Nat. Genet.*, 1–9.

561 14. Xin, Z., Lin, M., Hao, Z., Chen, D., Chen, Y., Chen, X., Xu, X., Li, J., Wu, D., Chai, Y., et al.
562 (2022). The immune landscape of human thymic epithelial tumors. *Nat. Commun.* 13, 5463.

563 15. Marx, A., Ströbel, P., and Weis, C.-A. (2018). The pathology of the thymus in myasthenia gravis.
564 *Mediastinum* 2, 66–66.

565 16. van Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A.J., Burdziak, C., Moon, K.R.,
566 Chaffer, C.L., Pattabiraman, D., et al. (2018). Recovering Gene Interactions from Single-Cell
567 Data Using Data Diffusion. *Cell* 174, 716–729.e27.

568 17. Sugiura, D., Maruhashi, T., Okazaki, I.-M., Shimizu, K., Maeda, T.K., Takemoto, T., and Okazaki,
569 T. (2019). Restriction of PD-1 function by *cis*-PD-L1/CD80 interactions is required for optimal T
570 cell responses. *Science* 364, 558–566.

571 18. Hoadley, K.A., Yau, C., Hinoue, T., Wolf, D.M., Lazar, A.J., Drill, E., Shen, R., Taylor, A.M.,
572 Cherniack, A.D., Thorsson, V., et al. (2018). Cell-of-Origin Patterns Dominate the Molecular
573 Classification of 10,000 Tumors from 33 Types of Cancer. *Cell* 173, 291–304.e6.

574 19. Garcia-Alonso, L., Handfield, L.-F., Roberts, K., Nikolakopoulou, K., Fernando, R.C., Gardner, L.,
575 Woodhams, B., Arutyunyan, A., Polanski, K., Hoo, R., et al. (2021). Mapping the temporal and
576 spatial dynamics of the human endometrium *in vivo* and *in vitro*. *Nat. Genet.* 53, 1698–1711.

577 20. Nakandakari-Higa, S., Canesso, M.C.C., Walker, S., Chudnovskiy, A., Jacobsen, J.T., Bilanovic,
578 J., Parigi, S.M., Fiedorczuk, K., Fuchs, E., Bilate, A.M., et al. (2023). Universal recording of cell-
579 cell contacts *in vivo* for interaction-based transcriptomics. *bioRxiv*. 10.1101/2023.03.16.533003.

580 21. Yamada, Y. (2023). Histogenetic and disease-relevant phenotypes in thymic epithelial tumors
581 (TETs): The potential significance for future TET classification. *Pathol. Int.* 73, 265–280.

582 22. Marx, A., Yamada, Y., Simon-Keller, K., Schalke, B., Willcox, N., Ströbel, P., and Weis, C.-A.
583 (2021). Thymus and autoimmunity. *Semin. Immunopathol.* 43, 45–64.

584 23. Park, J.-E., Botting, R.A., Domínguez Conde, C., Popescu, D.-M., Lavaert, M., Kunz, D.J., Goh,
585 I., Stephenson, E., Ragazzini, R., Tuck, E., et al. (2020). A cell atlas of human thymic
586 development defines T cell repertoire formation. *Science* 367, 2020.01.28.911115.

587 24. Kadouri, N., Nevo, S., Goldfarb, Y., and Abramson, J. (2020). Thymic epithelial cell
588 heterogeneity: TEC by TEC. *Nat. Rev. Immunol.* 20, 239–253.

589 25. Anderson, M.S., Venanzi, E.S., Klein, L., Chen, Z., Berzins, S.P., Turley, S.J., von Boehmer, H.,
590 Bronson, R., Dierich, A., Benoist, C., et al. (2002). Projection of an immunological self shadow
591 within the thymus by the aire protein. *Science* 298, 1395–1401.

592 26. Aschenbrenner, K., D'Cruz, L.M., Vollmann, E.H., Hinterberger, M., Emmerich, J., Swee, L.K.,
593 Rolink, A., and Klein, L. (2007). Selection of Foxp3+ regulatory T cells specific for self antigen
594 expressed and presented by Aire+ medullary thymic epithelial cells. *Nat. Immunol.* 8, 351–358.

595 27. Li, J., Zhou, J., Huang, H., Jiang, J., Zhang, T., and Ni, C. (2023). Mature dendritic cells enriched
596 in immunoregulatory molecules (mregDCs): A novel population in the tumour microenvironment
597 and immunotherapy target. *Clin. Transl. Med.* 13, e1199.

598 28. Magen, A., Hamon, P., Fiaschi, N., Soong, B.Y., Park, M.D., Mattiuz, R., Humblin, E., Troncoso,
599 L., D'souza, D., Dawson, T., et al. (2023). Intratumoral dendritic cell-CD4+ T helper cell niches
600 enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma. *Nat.*
601 *Med.* 29, 1389–1399.

602 29. Zuckerman, N.S., Howard, W.A., Bismuth, J., Gibson, K., Edelman, H., Berrih-Aknin, S., Dunn-
603 Walters, D., and Mehr, R. (2010). Ectopic GC in the thymus of myasthenia gravis patients show
604 characteristics of normal GC. *Eur. J. Immunol.* 40, 1150–1161.

605 30. Sims, G.P., Shiono, H., Willcox, N., and Stott, D.I. (2001). Somatic hypermutation and selection
606 of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis.
607 *J. Immunol.* 167, 1935–1944.

608 31. Bocharnikov, A.V., Keegan, J., Wacleche, V.S., Cao, Y., Fonseka, C.Y., Wang, G., Muise, E.S.,
609 Zhang, K.X., Arazi, A., Keras, G., et al. (2019). PD-1hiCXCR5- T peripheral helper cells promote
610 B cell responses in lupus via MAF and IL-21. *JCI Insight* 4. 10.1172/jci.insight.130062.

611 32. Pontarini, E., Murray-Brown, W.J., Croia, C., Lucchesi, D., Conway, J., Rivelles, F., Fossati-
612 Jimack, L., Astorri, E., Prediletto, E., Corsiero, E., et al. (2020). Unique expansion of IL-21+ Tfh
613 and Tph cells under control of ICOS identifies Sjögren's syndrome with ectopic germinal centres
614 and MALT lymphoma. *Ann. Rheum. Dis.* 79, 1588–1599.

615 33. Rao, D.A., Gurish, M.F., Marshall, J.L., Slowikowski, K., Fonseka, C.Y., Liu, Y., Donlin, L.T.,
616 Henderson, L.A., Wei, K., Mizoguchi, F., et al. (2017). Pathologically expanded peripheral T
617 helper cell subset drives B cells in rheumatoid arthritis. *Nature* 542, 110–114.

618 34. Çebi, M., Durmus, H., Aysal, F., Özkan, B., Gül, G.E., Çakar, A., Hocaoglu, M., Mercan, M.,
619 Yentür, S.P., Tütüncü, M., et al. (2020). CD4+ T Cells of Myasthenia Gravis Patients Are
620 Characterized by Increased IL-21, IL-4, and IL-17A Productions and Higher Presence of PD-1
621 and ICOS. *Front. Immunol.* 11, 809.

622 35. Gradolatto, A., Nazzal, D., Truffault, F., Bismuth, J., Fadel, E., Foti, M., and Berrih-Aknin, S.
623 (2014). Both Treg cells and Tconv cells are defective in the Myasthenia gravis thymus: roles of
624 IL-17 and TNF- α . *J. Autoimmun.* 52, 53–63.

625 36. Yamamoto, Y., Matsui, N., Uzawa, A., Ozawa, Y., Kanai, T., Oda, F., Kondo, H., Ohigashi, I.,
626 Takizawa, H., Kondo, K., et al. (2021). Intrathymic Plasmablasts Are Affected in Patients With
627 Myasthenia Gravis With Active Disease. *Neurol Neuroimmunol Neuroinflamm* 8.
628 10.1212/NXI.0000000000001087.

629 37. Jiang, R., Hoehn, K.B., Lee, C.S., Pham, M.C., Homer, R.J., Detterbeck, F.C., Aban, I.,
630 Jacobson, L., Vincent, A., Nowak, R.J., et al. (2020). Thymus-derived B cell clones persist in the
631 circulation after thymectomy in myasthenia gravis. *Proc. Natl. Acad. Sci. U. S. A.* 117, 30649–
632 30660.

633 38. Fujii, Y., Monden, Y., Hashimoto, J., Nakahara, K., and Kawashima, Y. (1985). Acetylcholine
634 receptor antibody production by bone marrow cells in a patient with myasthenia gravis.
635 *Neurology* 35, 577–579.

636 39. Heimli, M., Flåm, S.T., Hjorthaug, H.S., Trinh, D., Frisk, M., Dumont, K.-A., Ribarska, T., Tekpli,
637 X., Saare, M., and Lie, B.A. (2022). Multimodal human thymic profiling reveals trajectories and
638 cellular milieu for T agonist selection. *Front. Immunol.* 13, 1092028.

639 40. Suo, C., Dann, E., Goh, I., Jardine, L., Kleshchevnikov, V., Park, J.-E., Botting, R.A.,
640 Stephenson, E., Engelbert, J., Tuong, Z.K., et al. (2022). Mapping the developing human
641 immune system across organs. *Science* 376, eabo0510.

642 41. Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale single-cell gene expression
643 data analysis. *Genome Biol.* 19, 15.

644 42. Lopez, R., Regier, J., Cole, M., Jordan, M., and Yosef, N. (2018). Bayesian Inference for a
645 Generative Model of Transcriptome Profiles from Single-cell RNA Sequencing. 10.1101/292037.

646 43. Palla, G., Spitzer, H., Klein, M., Fischer, D., Schaar, A.C., Kuemmerle, L.B., Rybakov, S., Ibarra,
647 I.L., Holmberg, O., Virshup, I., et al. (2022). Squidpy: a scalable framework for spatial omics
648 analysis. *Nat. Methods* 19, 171–178.

649 44. Büttner, M., Ostner, J., Müller, C.L., Theis, F.J., and Schubert, B. (2021). scCODA is a Bayesian
650 model for compositional single-cell data analysis. *Nat. Commun.* 12, 6876.

651 45. de Leeuw, C.A., Mooij, J.M., Heskes, T., and Posthuma, D. (2015). MAGMA: generalized gene-
652 set analysis of GWAS data. *PLoS Comput. Biol.* 11, e1004219.

653 46. Wolock, S.L., Lopez, R., and Klein, A.M. (2019). Scrublet: Computational Identification of Cell
654 Doublets in Single-Cell Transcriptomic Data. *Cell Systems* 8, 281–291.e9.

655 47. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner,
656 M., Loh, P. ru, and Raychaudhuri, S. (2019). Fast, sensitive and accurate integration of single-
657 cell data with Harmony. *Nat. Methods* 16, 1289–1296.

658

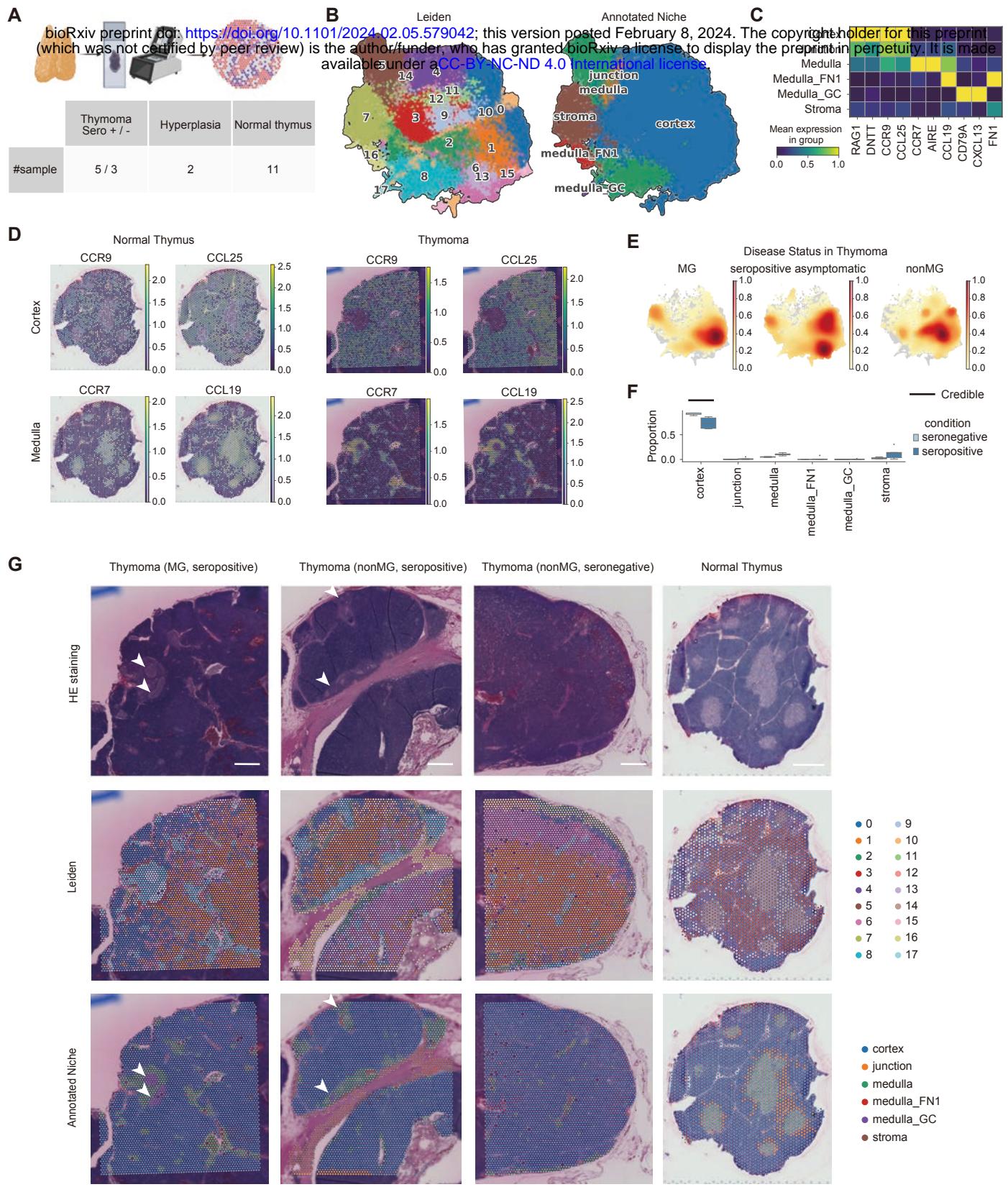
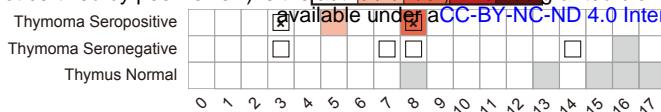


Figure 1

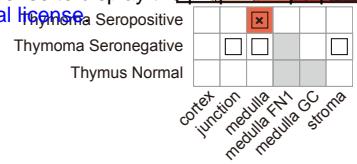
A

Prop. of sig. cells (FDR < 0.2)

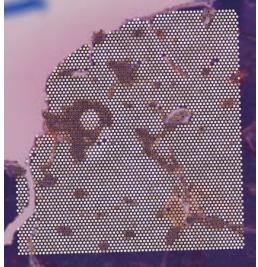
bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.08.579042>; this version posted February 8, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

**B**

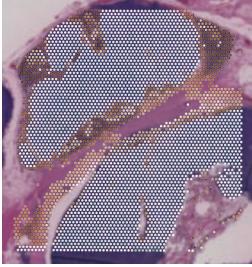
Prop. of sig. cells (FDR < 0.2)

**C**

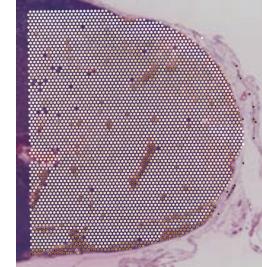
Thymoma (MG, seropositive)



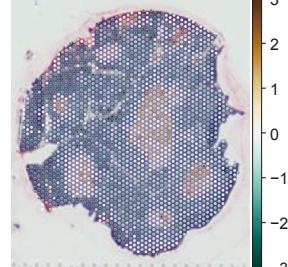
Thymoma (nonMG, seropositive)



Thymoma (nonMG, seronegative)



Normal Thymus

**Figure 2**

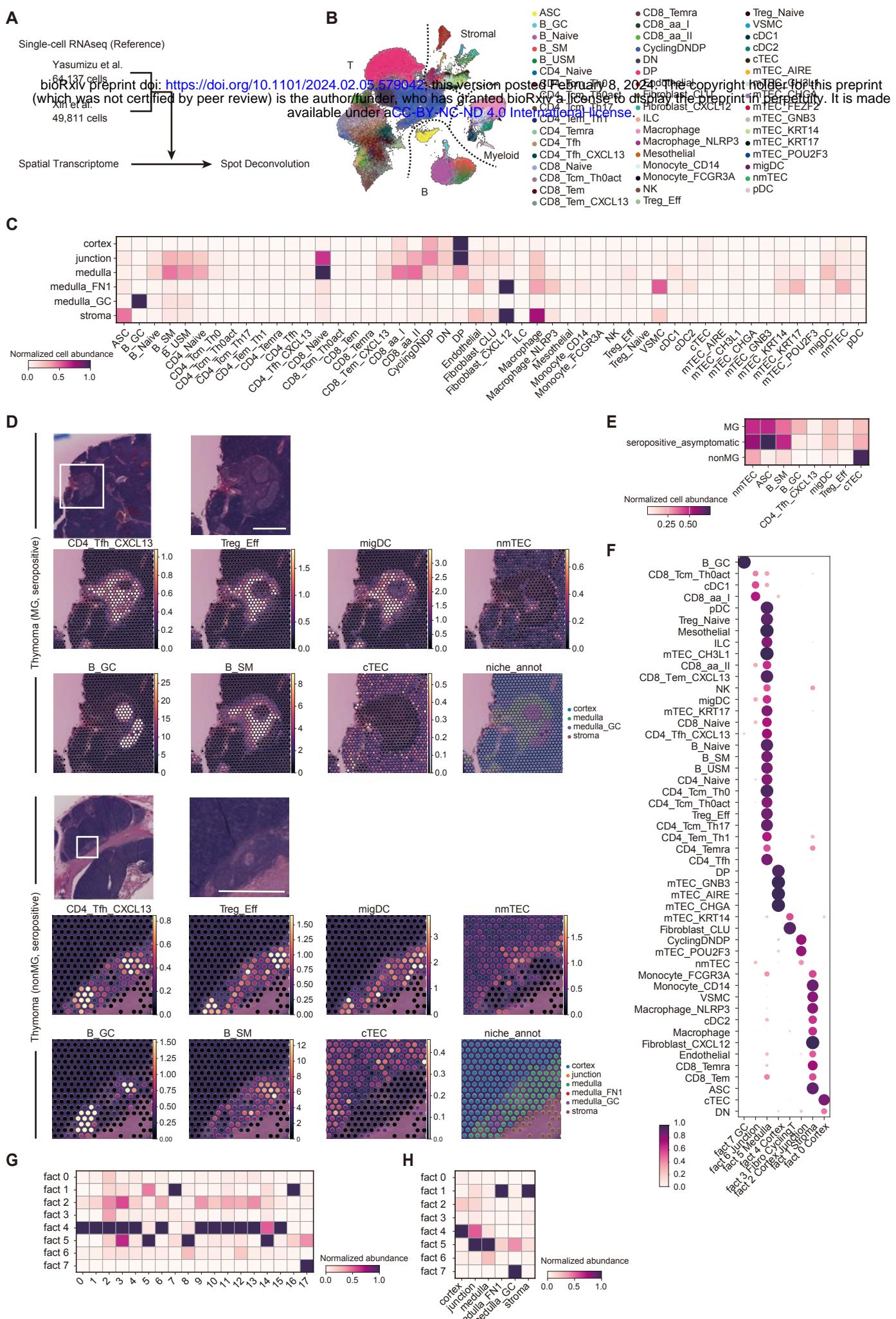
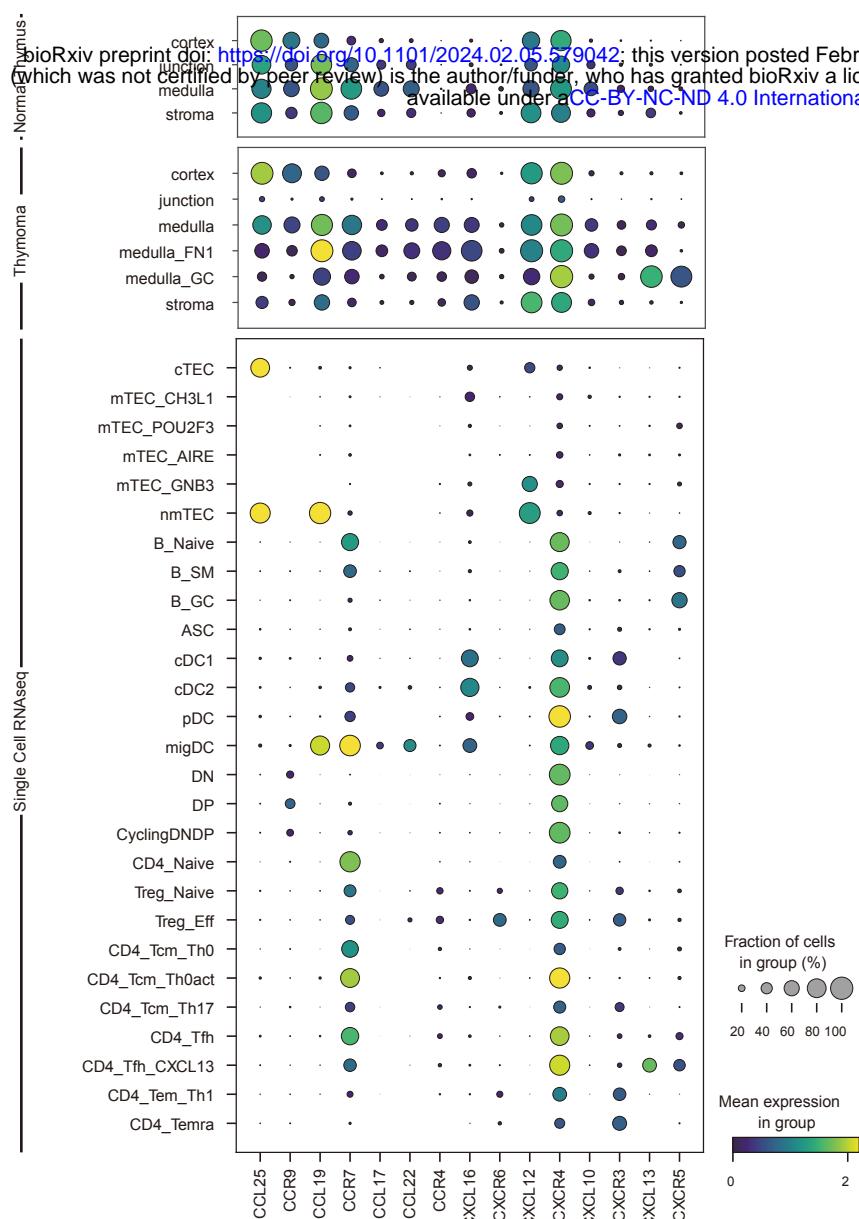
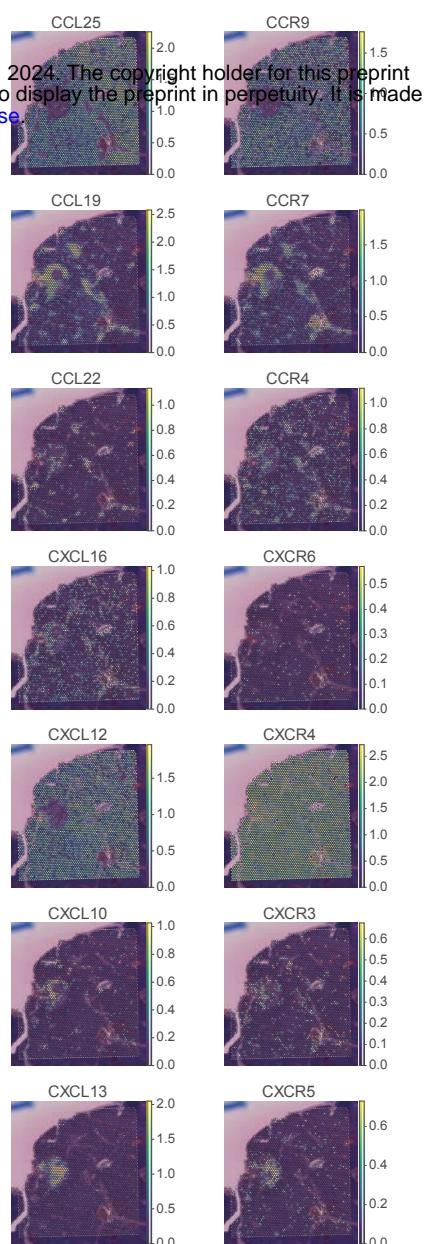


Figure 3

A**B****Figure 4**

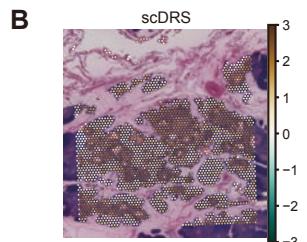
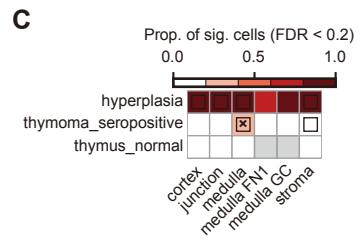
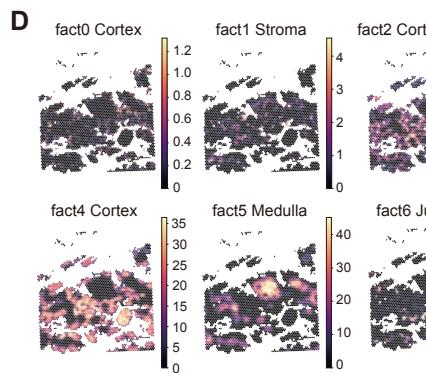
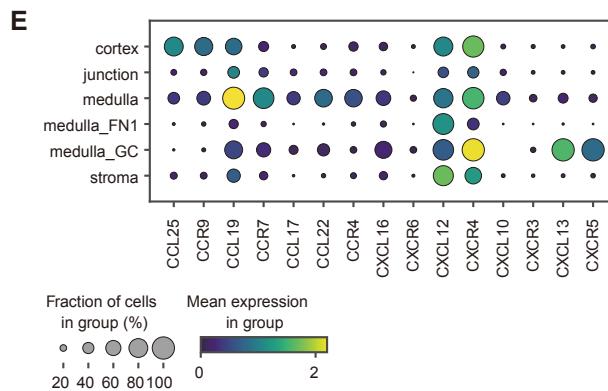
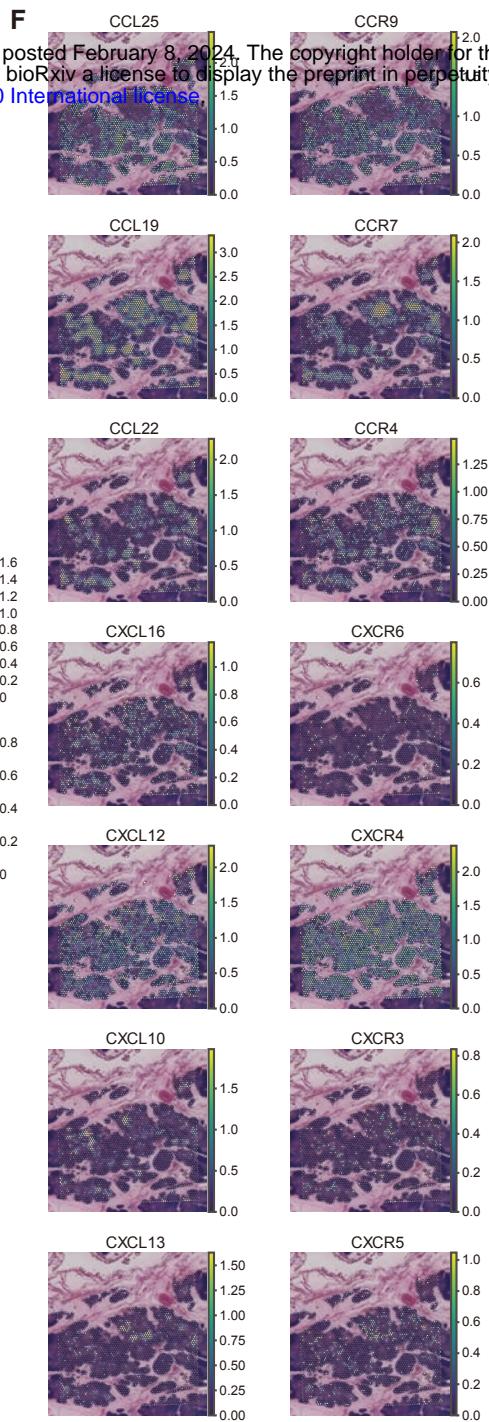


Figure 5

MG Thymoma

bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.05.579042>; this version posted February 8, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

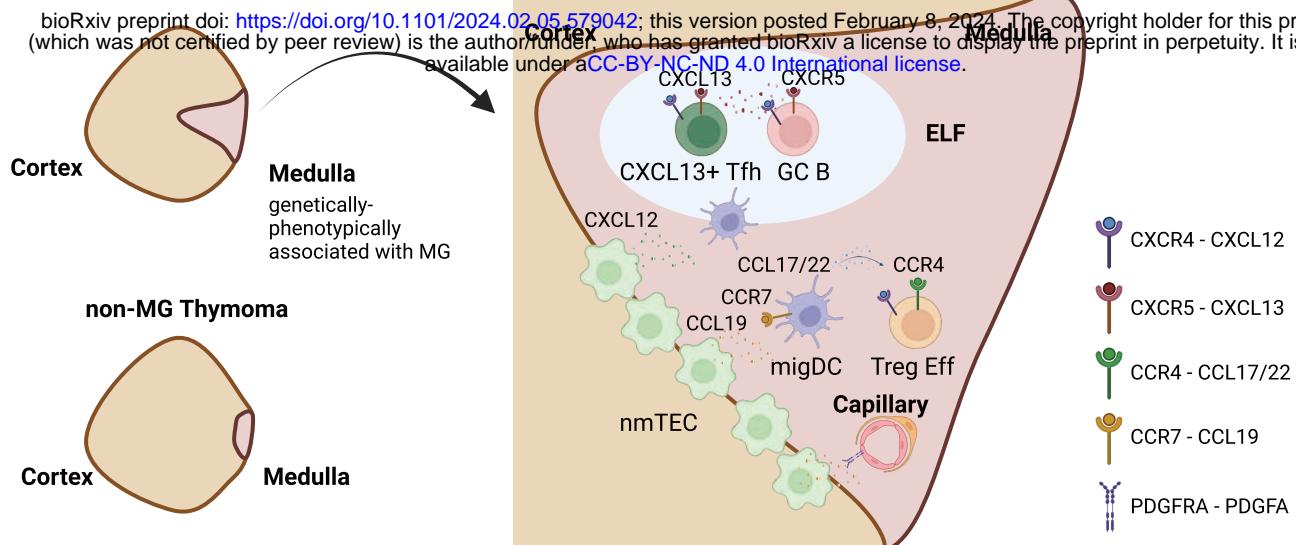
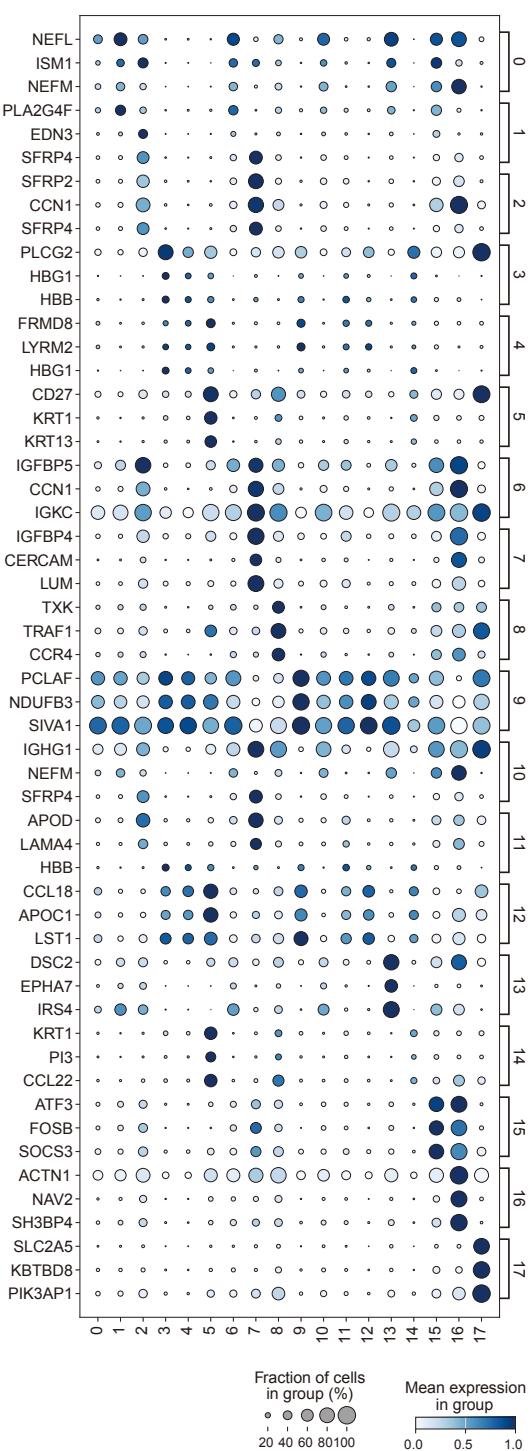


Figure 6

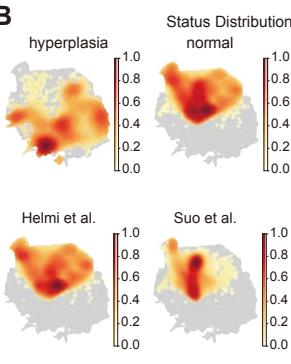
Figure S1

bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.05.579042>; this version posted February 8, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

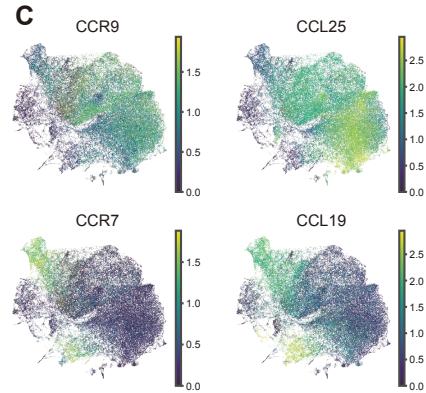
A



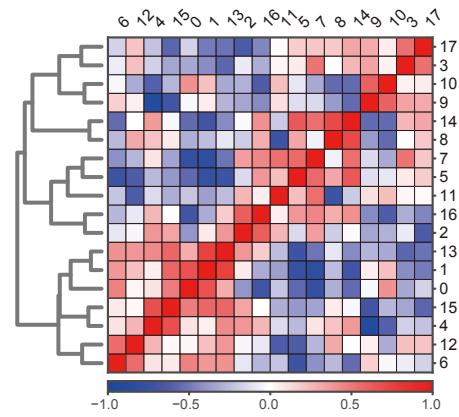
B



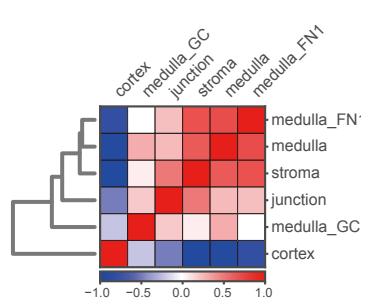
C



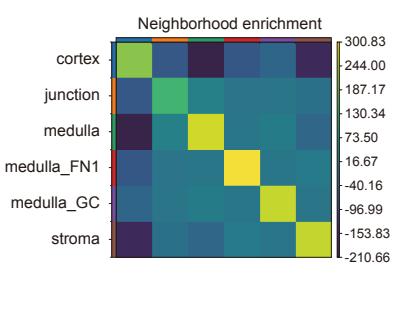
D



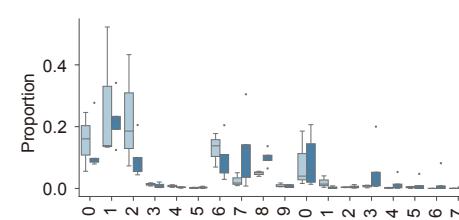
E



F



G



H

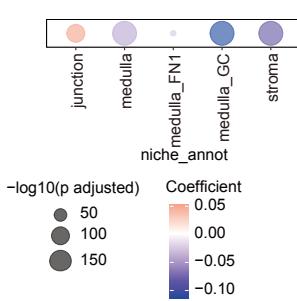
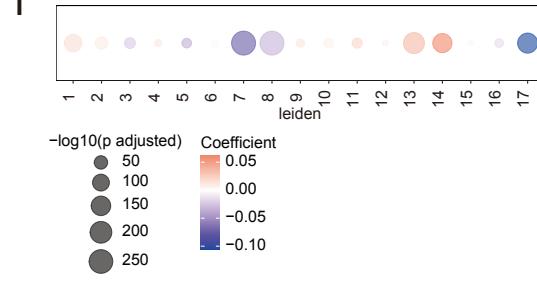


Figure S2

bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.05.579042>; this version posted February 8, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Normal Thymus — Seropositive Thymoma (with MG) — Seropositive Thymoma (without MG) — Seronegative Thymoma (without MG) — Seropositive Hyperplasia (with MG)

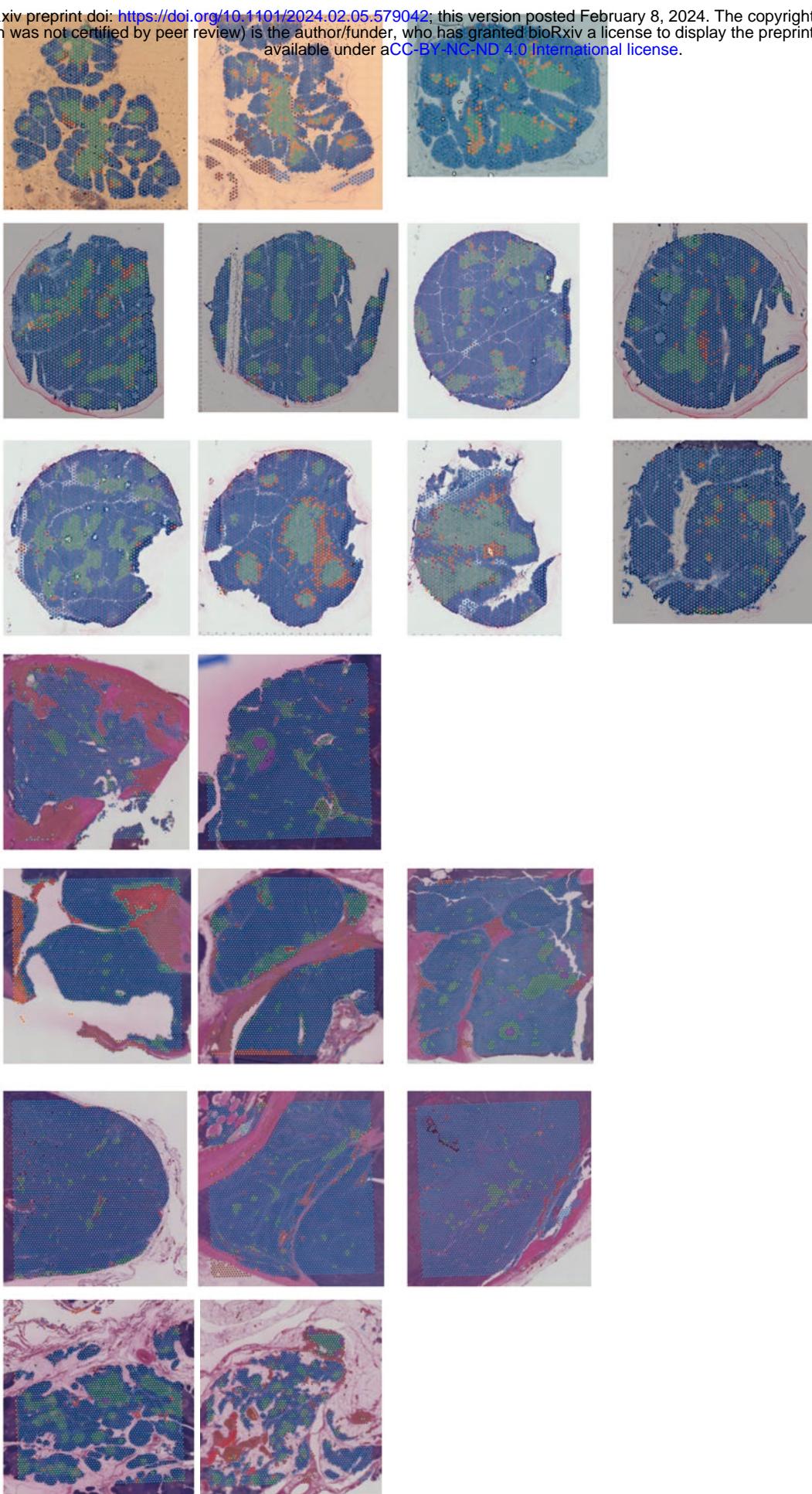
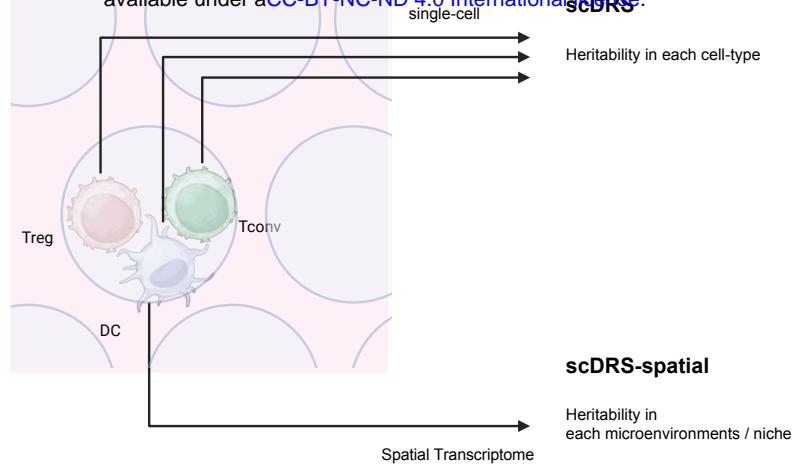


Figure S3

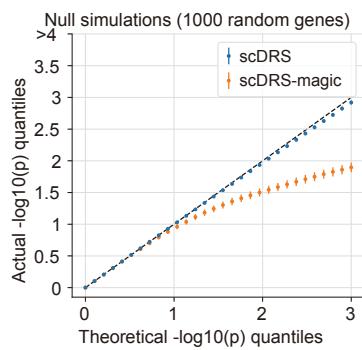
A

bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.05.579042>; this version posted February 8, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

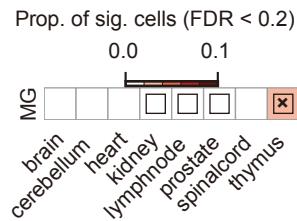


Physically interacting cells can be assessed as shared spots.

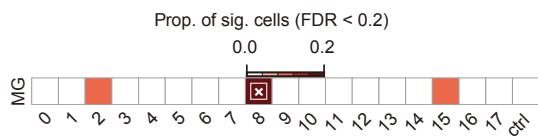
B



C



D



E

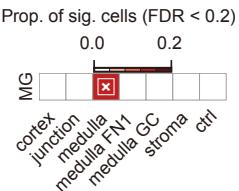


Figure S4

bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.05.579042>; this version posted February 8, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

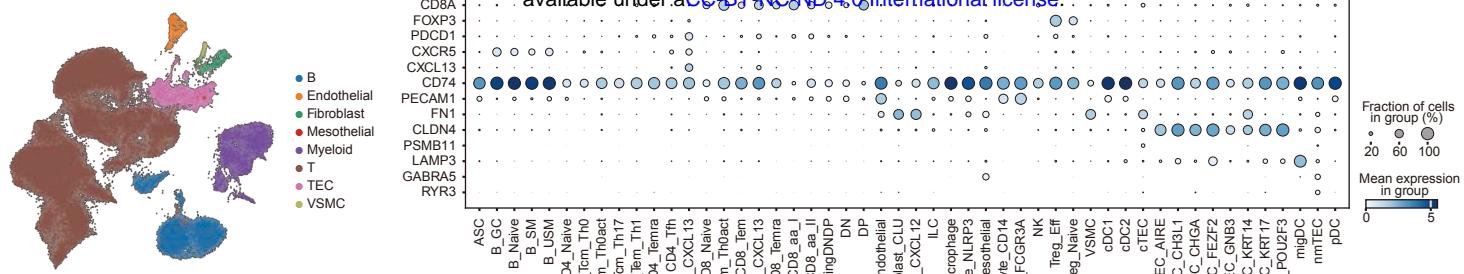
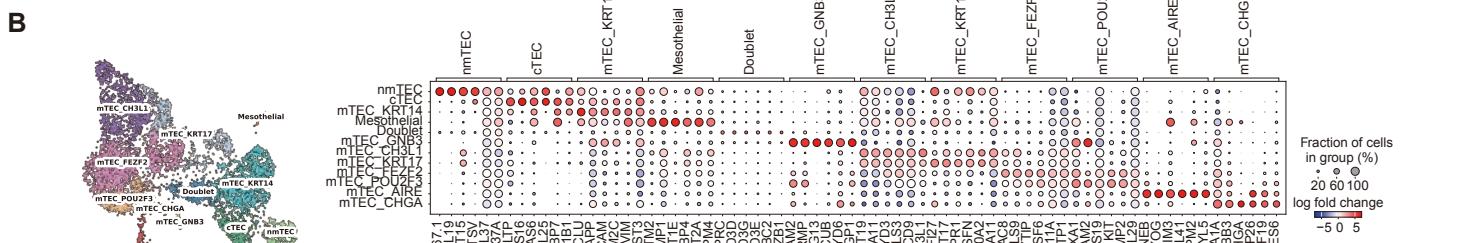
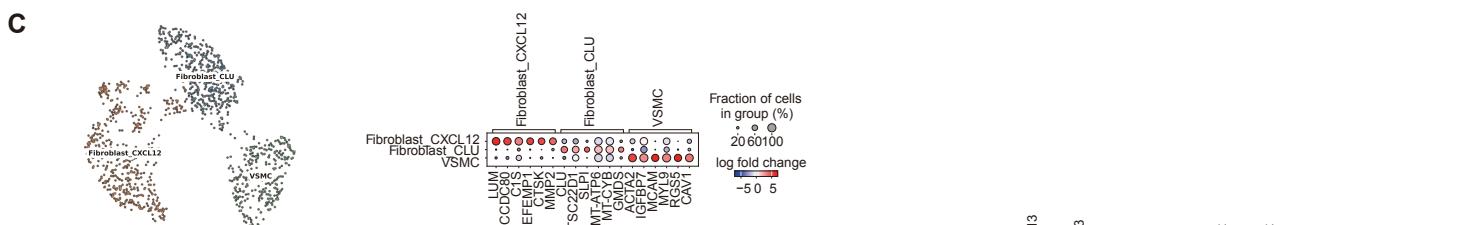
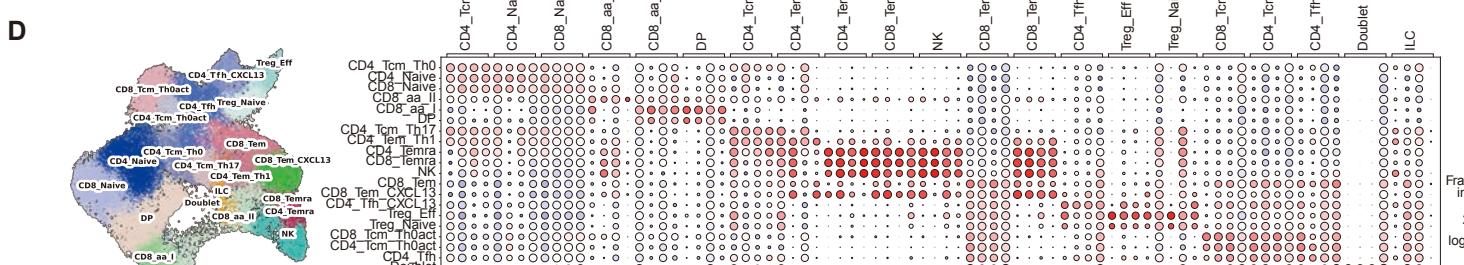
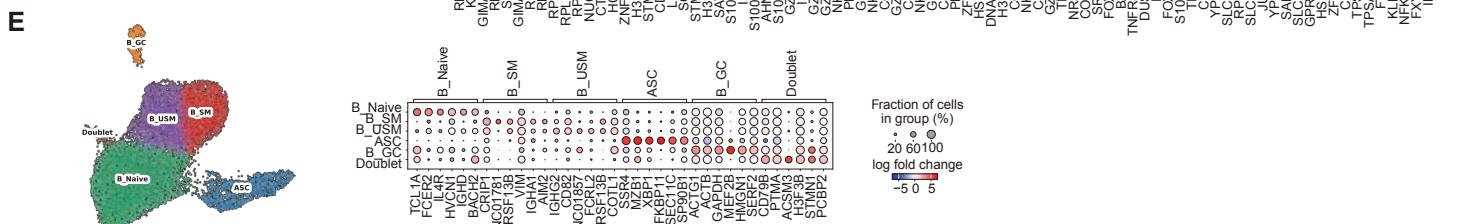
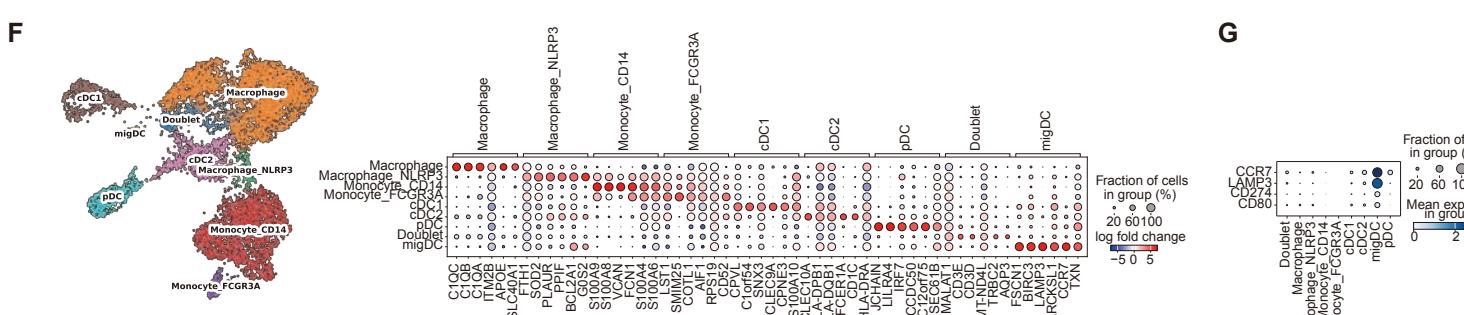


Figure S5

A bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.05.579042>; this version posted February 8, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

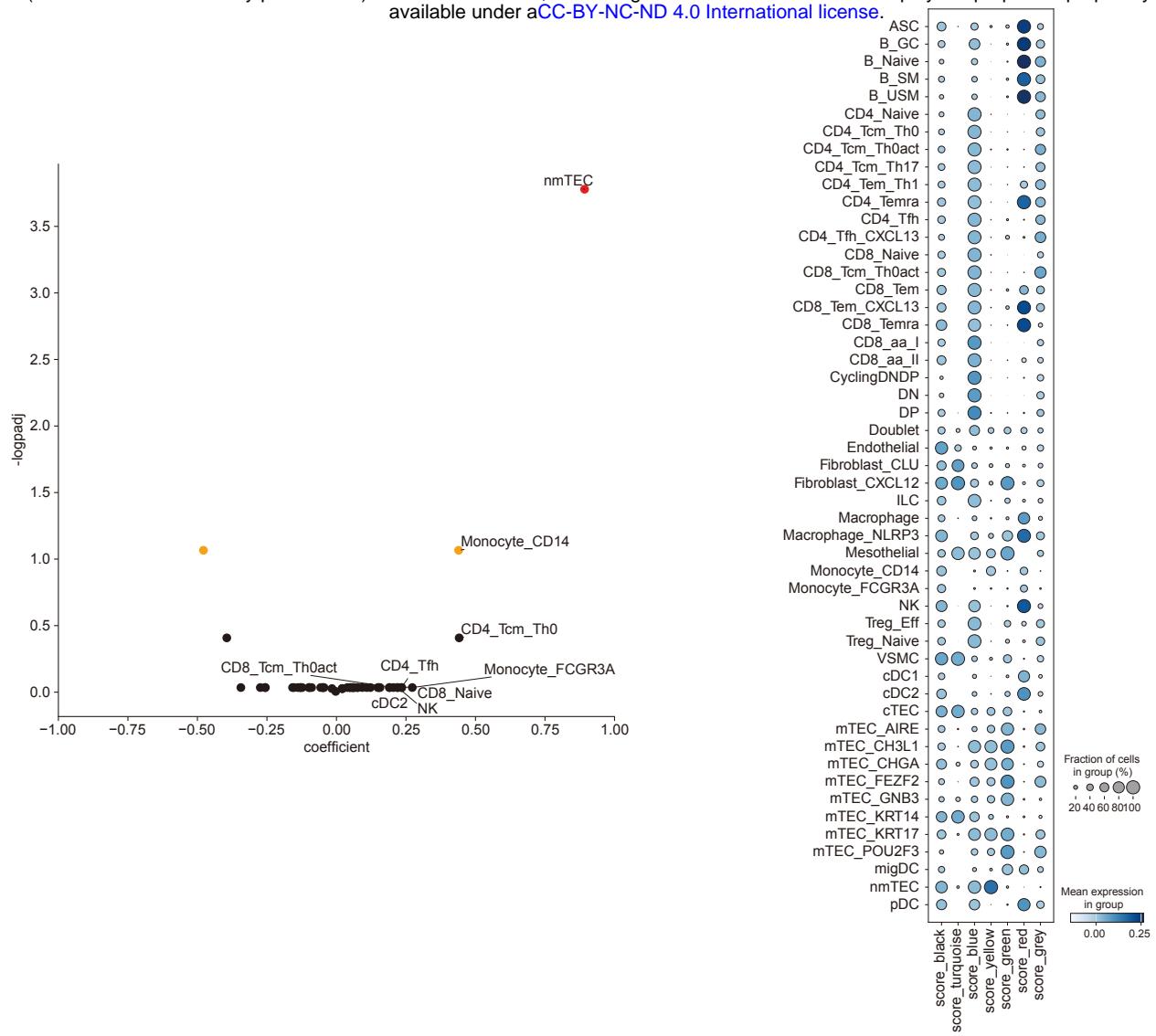
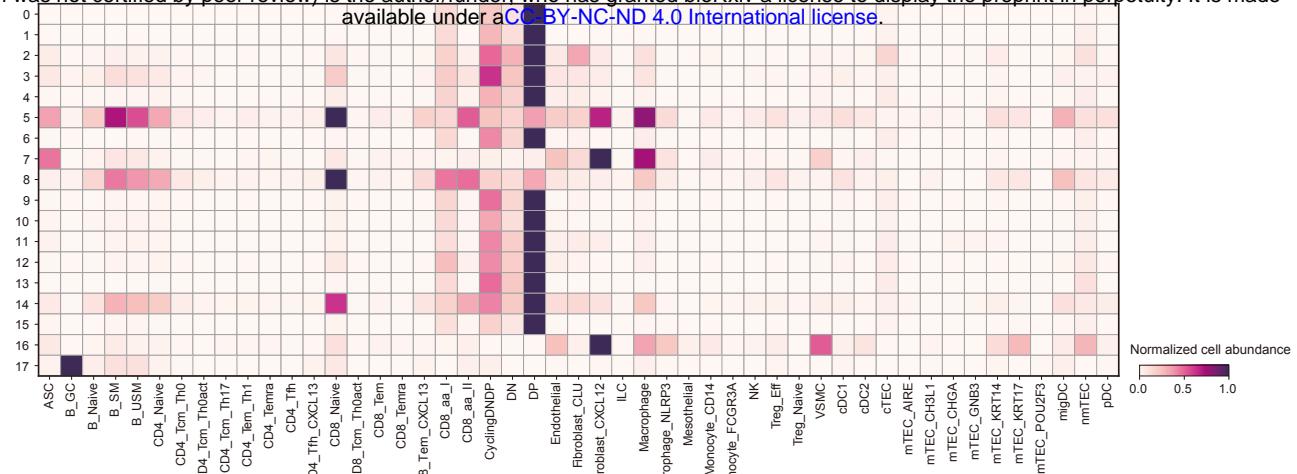
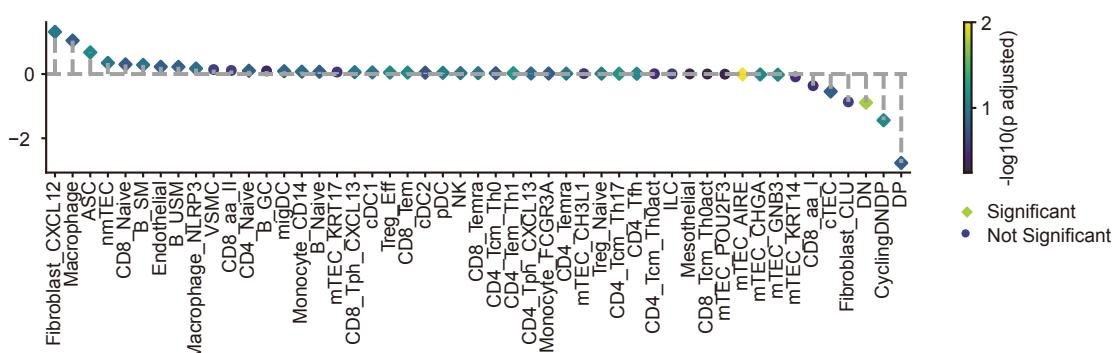


Figure S6

A bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.05.579042>; this version posted February 8, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



B



C

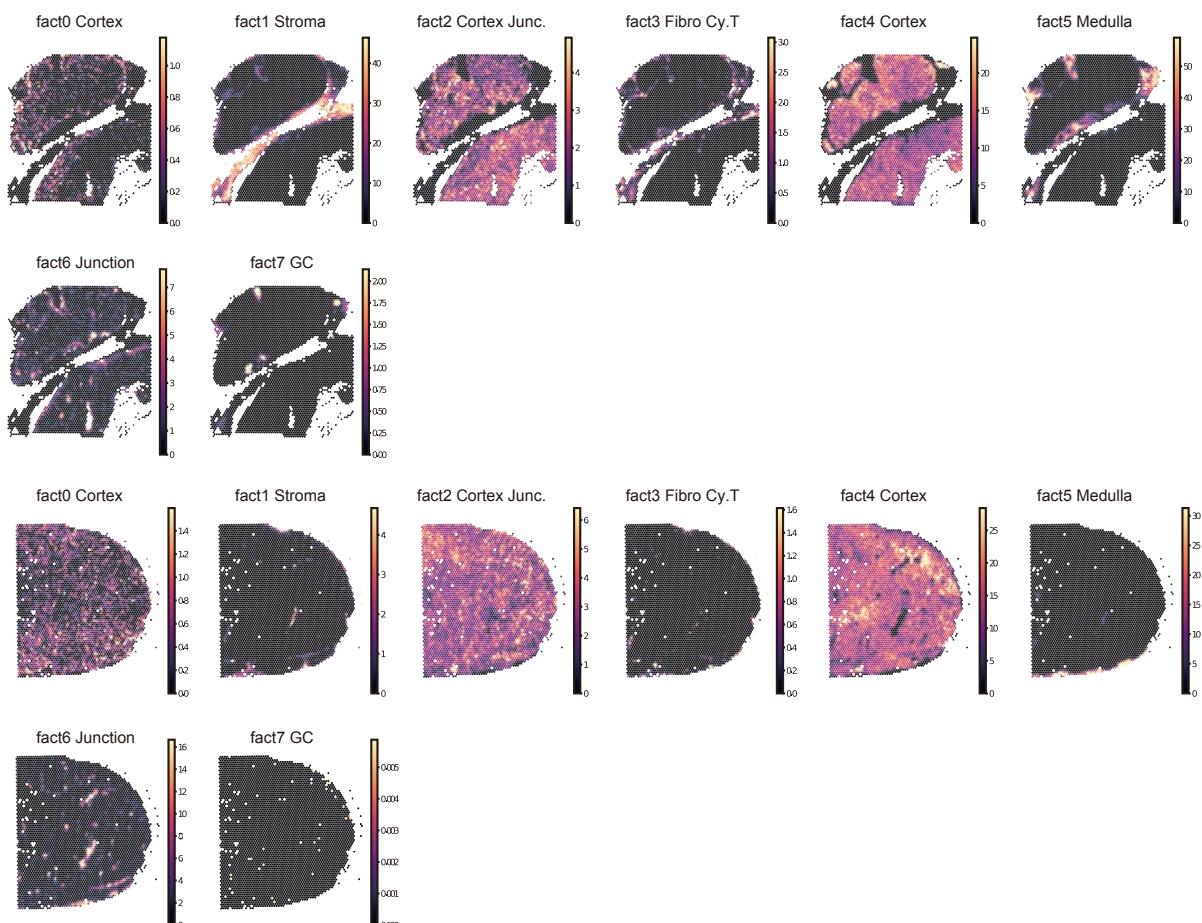
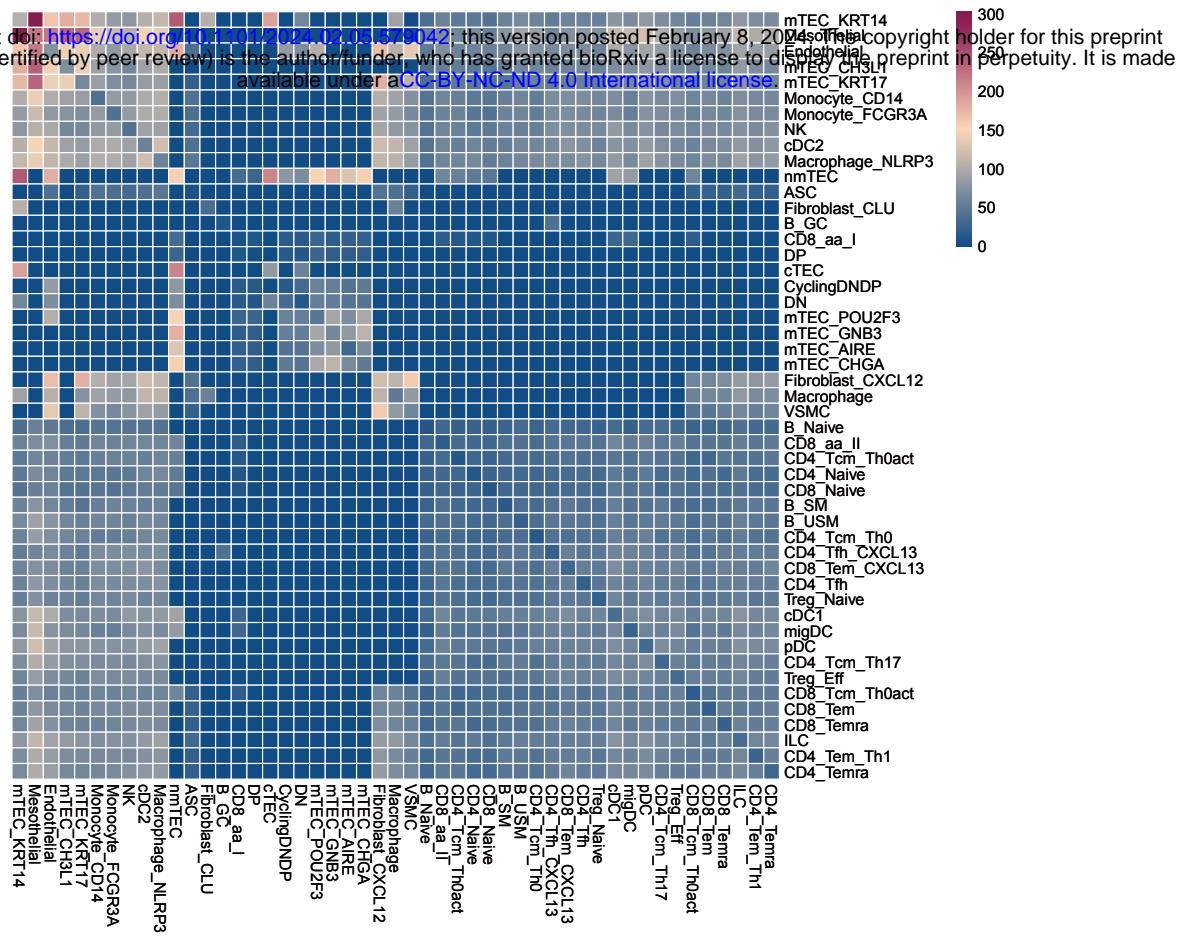


Figure S7

A

bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.28.55042>; this version posted February 8, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



B

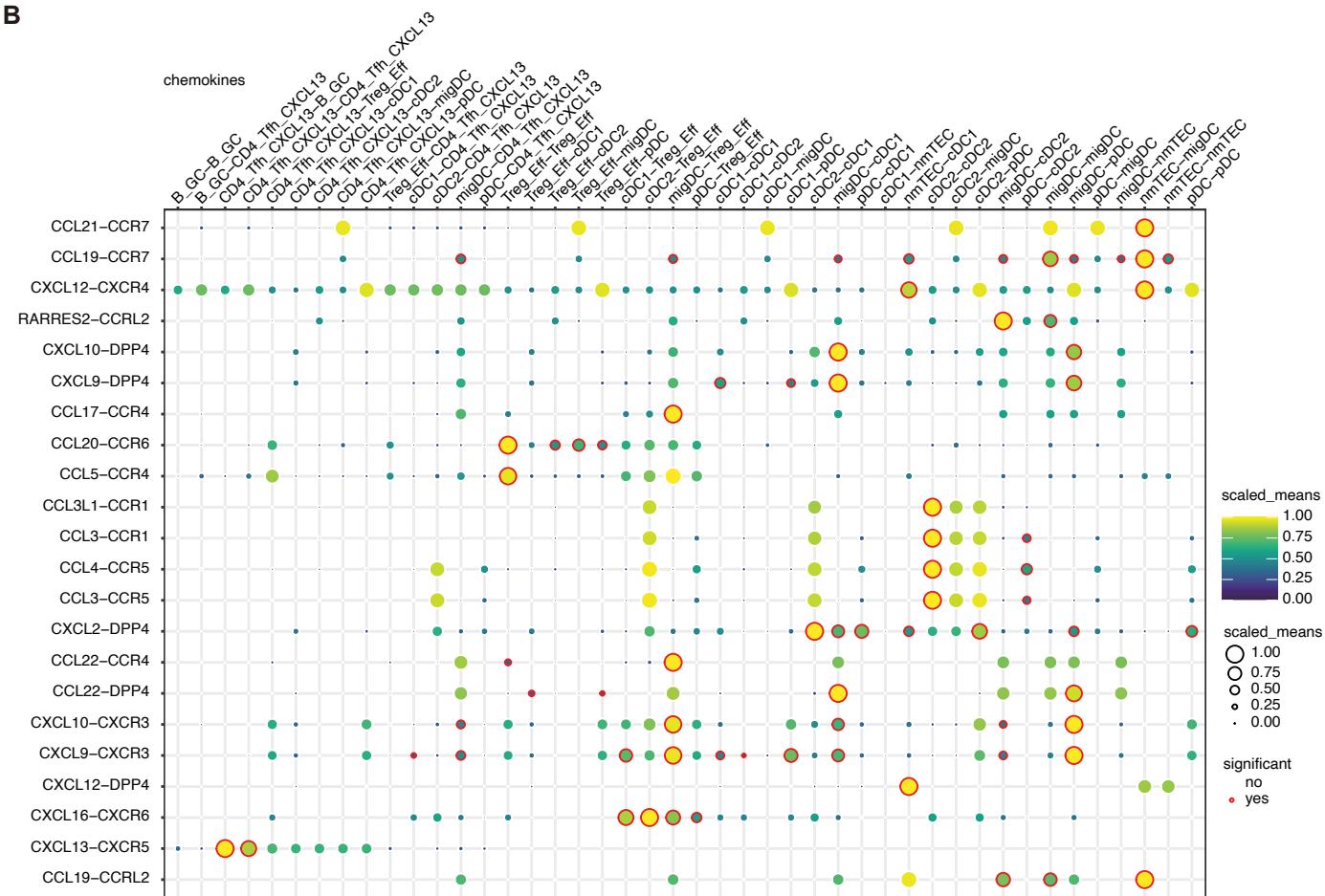


Figure S8

A bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.05.579042>; this version posted February 8, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

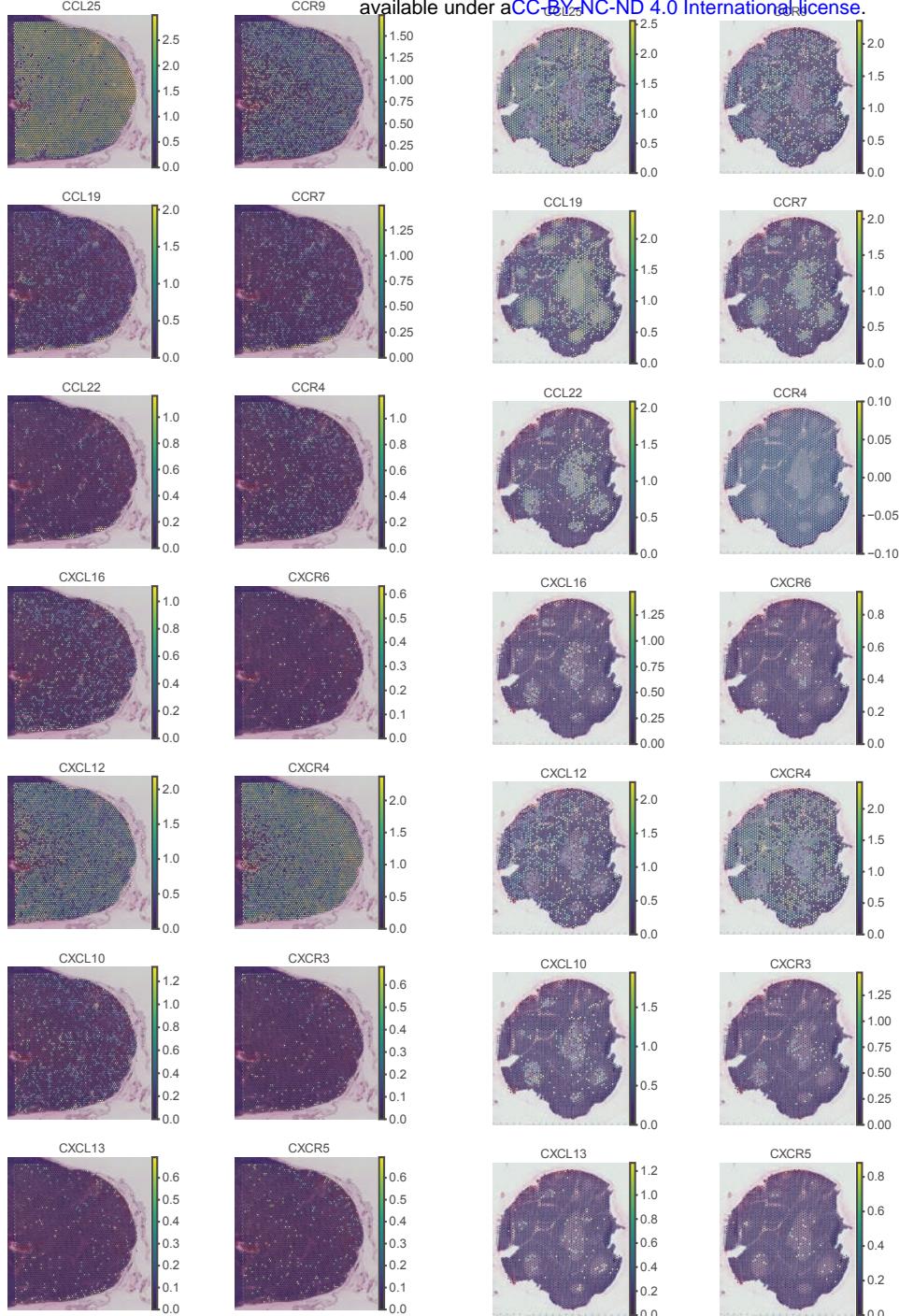
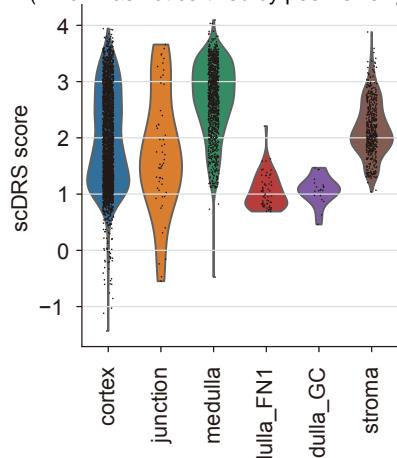


Figure S9

bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.05.579042>; this version posted February 8, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A



B

