

1 Limit of detection of *Salmonella* ser. Enteritidis 2 using culture-based versus 3 culture-independent diagnostic approaches

4 L.M. Bradford,¹ L. Yao,² C. Anastasiadis,² A.L. Cooper², B. Blais², A. Deckert⁶, R.
5 Reid-Smith⁴, C. Lau², M.S. Diarra⁵, C. Carrillo², A. Wong^{1,3*}

6 ¹Department of Biology, Carleton University, Ottawa, Ontario, Canada

7 ²Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection
8 Agency, Ottawa, Ontario, Canada

9 ³Institute for Advancing Health Through Agriculture, Texas A&M University, College
10 Station, Dallas-Fort Worth, Texas, United States

11 ⁴Public Health Agency of Canada, Ottawa, Ontario, Canada

12 ⁵Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph,
13 Ontario, Canada

14 ⁶Centre for Foodborne Environmental and Zoonotic Diseases, Public Health Agency of
15 Canada, Guelph, Ontario, Canada

16 *Address correspondence to Alex Wong, alex.wong@carleton.ca, and Catherine Carrillo,
17 catherine.carrillo@inspection.gc.ca.

18 Present address: L.M. Bradford, Environmental Health Science and Research Bureau,
19 Health Canada, Ottawa, Ontario, Canada.

20 ABSTRACT

21 In order to prevent the spread of foodborne illnesses, the presence of pathogens in the
22 food chain is monitored by government agencies and food producers. The culture-based
23 methods currently employed are sensitive but time- and labour- intensive, leading to
24 increasing interest in exploring culture-independent diagnostic tests (CIDTs) for pathogen
25 detection. However, sensitivity and reliability of these CIDTs relative to current
26 approaches has not been well established. To address this issue, we conducted a
27 comparison of the limit of detection (LOD_{50}) for *Salmonella* between a culture-based
28 method and three CIDT methods: qPCR (targeting *invA* and *stn*), metabarcode (16S)
29 sequencing, and shotgun metagenomic sequencing. Samples of chicken feed and chicken
30 caecal contents were spiked with *Salmonella* serovar Enteritidis and subjected to culture-
31 and DNA-based detection methods. To explore the impact of non-selective enrichment on
32 LOD_{50} , all samples underwent both immediate DNA extraction and an overnight
33 enrichment prior to gDNA extraction. In addition to this spike-in experiment, feed and
34 caecal samples acquired from the field were tested with culturing, qPCR, and
35 metabarcoding. In general, LOD_{50} was comparable between qPCR and shotgun
36 sequencing methods. Overnight microbiological enrichment resulted in an improvement
37 in LOD_{50} with up to a three log decrease, comparable to culture-based detection.
38 However, *Salmonella* reads were detected in some unspiked feed samples, suggesting
39 false-positive detection of *Salmonella*. Additionally, the LOD_{50} in feeds was three logs
40 lower than in caecal contents, underscoring the impact of background microbiota on
41 *Salmonella* detection using all methods.

42 IMPORTANCE

43 The appeal of CIDTs is increased speed with lowered cost, as well as the potential to
44 detect multiple pathogen species in a single analysis and to monitor other areas of
45 concern such as antimicrobial resistance genes or virulence factors. Understanding the
46 sensitivity of CIDTs relative to current approaches will help determine the feasibility of
47 implementing these methods in pathogen surveillance programs.

48 INTRODUCTION

49 Foodborne pathogens inflict a serious health and economic toll worldwide. In Canada,
50 4 million cases of foodborne illness are thought to be domestically acquired annually, with
51 norovirus, *Clostridium perfringens*, *Campylobacter* spp, and non-typhoidal *Salmonella* the
52 most prevalent causes of disease [1]. Detection of food pathogens throughout the food
53 supply chain is thus critical to reduce the incidence of foodborne illness. Typically, the
54 detection of food pathogens for surveillance and for outbreak investigation relies on
55 isolating viable organisms using highly sensitive, culture-based methods. Since most
56 foodborne pathogenic bacteria such as salmonellae can cause illness at very low numbers
57 (e.g., 7 CFU) [2], methods for their detection in foods should be able to determine their
58 presence at similarly low numbers in an analytical unit (e.g., 1-10 CFU per 25 g sample)
59 [3]. These highly sensitive approaches are also appropriate for commodities such as feeds,
60 where even low doses of *Salmonella* can result in poultry colonization [4]. Unfortunately,
61 culture-based approaches can be laborious and time-consuming. For example, the time
62 from sample collection to positive culture for *Salmonella* is up to 7 days, involving 48-72
63 hours of enrichment culture, and 48-72 hours of growth on selective agar followed by
64 biochemical testing to confirm presumptive *Salmonella* colonies [3]. In recent years, there
65 has been increasing interest in exploring culture-independent diagnostic tests (CIDTs)
66 such as quantitative PCR (qPCR), metabarcode sequencing, and metagenome sequencing
67 for detecting pathogens in food [5, 6, 7] and environmental samples [8, 9], and for
68 infectious disease diagnostics in clinical settings [10, 11, 12, 13]. These methods could
69 offer lower costs, increased speed, and the potential to detect multiple pathogens in a
70 single analysis. In addition, metagenome sequencing can offer insights into the presence
71 of virulence factors [14] and antimicrobial resistance genes [15]. However, pivoting to use
72 such methods is only possible if the sensitivity and reliability of CIDTs is proven to be
73 comparable to current approaches.

74 The poultry production chain is a good model for evaluating novel detection and
75 surveillance methods, such as CIDTs. A large proportion of foodborne illnesses are
76 associated with consumption of contaminated poultry meat [16]. In the USA, over 25% of
77 foodborne outbreaks with known sources were attributed to poultry products [17].

78 Worldwide, a majority of the cases of salmonellosis and campylobacteriosis have been
79 associated with poultry [17, 16]. Poultry products are also commonly contaminated with
80 *Staphylococcus aureus*, *Listeria monocytogenes*, *Clostridium perfringens* and pathogenic
81 *Escherichia coli* [18]. *Salmonella* can be introduced into poultry through feeds and persist
82 throughout the food chain, resulting in contamination of animals and subsequent fecal
83 contamination of retail poultry products [19, 20]. Given the importance of poultry as a
84 protein source in the global food supply, pathogen reduction in this commodity could
85 have important human health implications.

86 To address the question of whether CIDTs are adequately sensitive for detection of
87 pathogens in food-relevant matrices, we conducted a comparison of the limit of detection
88 (LOD₅₀) for the current culture-based *Salmonella* detection method in use at the Canadian
89 Food Inspection Agency (CFIA) and for three CIDTs (qPCR, metabarcoding sequencing, and
90 metagenomic sequencing) in samples of chicken feed and chicken caecal contents spiked
91 with known quantities of *Salmonella*. We further assessed the use of qPCR and 16S
92 sequencing for *Salmonella* detection in naturally contaminated caeca and feed.

93 MATERIALS AND METHODS

94 Caecal and feed samples

95 Caeca from freshly sacrificed 35 day old Ross 708 broiler chickens were from an
96 ongoing study at Agriculture and Agri-Food Canada (Guelph, Ontario). All experimental
97 procedures were approved (Protocol number # No. 3521) by the institutional ethics
98 committees on animal experimentation according to guidelines of the Canadian Council
99 on Animal Care. Samples of the broiler finisher feed which included corn as the principal
100 cereal, and soya and soybean cake as protein concentrates (Aviagen, Huntsville, United
101 States) were used for the feed experiments. Caeca were transported on ice and stored at 4
102 °C overnight. Feed was stored at 4 °C until use. Starting materials were confirmed to be
103 *Salmonella*-free by subjecting a subset to overnight incubation in buffered peptone water
104 (BPW), DNA extraction, and marker-gene qPCR as described below.

105 **Overnight *Salmonella* cultures**

106 *Salmonella enterica* ser. Enteritidis isolate CFIAFB20140150 previously isolated from
107 raw retail poultry (accession CP133565-CP133567; Cooper et al. [21]) was used for spiking.
108 Bacteria were revived from a glycerol stock and plated on non-selective agar. A single
109 isolated colony was selected and inoculated into 5mL buffered peptone water (BPW;
110 Oxoid), and incubated for 24 hr at 37 °C with 150 rpm shaking. Previous tests of overnight
111 cultures suggested this should result in growth to 2.5×10^9 CFU/mL. Overnight cultures
112 were diluted in a 10X series in glucose-free M9 minimal medium (see supplementary
113 methods), and these dilutions were used for spiking and for enumeration via either
114 dropping or spreading on non-selective agar followed by overnight incubation at 37 °C.
115 Expected vs. actual CFU spiked in are shown in Table S6 and Table S7.

116 **Spiking procedure**

117 **Caecal contents**

118 Chicken caecal contents were "milked" into petri dishes using sterile gloves. Sterile
119 scoops were used to transfer 0.25 g to screw-cap tubes and 1 g to pre-dispensed 9 mL
120 falcon tubes of BPW. Screw-cap and falcon tubes containing caecal content were spiked
121 with between 4 and 10 μ L of the appropriate dilution of the *Salmonella* ser. Enteritidis
122 culture. Spiked caecal contents in screw-cap tubes were stored at -80 °C prior to DNA
123 extraction. For microbiological enrichment according to MFHPB-20 [3], spiked caecal
124 contents in BPW were incubated for 21 hr at 35 °C with 100 rpm shaking.

125 **Feed**

126 For direct extractions, 10 g portions of feed were added to a filtered stomach bag
127 (Nasco Sampling/Whirl-Pak, United States), to which 20 mL BPW was added. The
128 sample was homogenized using a stomacher (Interscience Laboratories, United States) for
129 1 minute at 230 rpm. Approximately 10 mL of liquid was recovered from each sample.
130 Samples were subjected to a low speed spin (500 x g for 5 min) to remove eukaryotic cells.

131 After transfer of supernatant to a new falcon tube, samples were subjected to a high speed
132 spin (11000 x g for 5 min) to pellet bacterial cells. Supernatants were discarded and the
133 pellet was resuspended in 0.1 mL of BPW. The appropriate number of *Salmonella* cells
134 were then added (Table S7).

135 For microbiological enrichments, 10 g portions of feed were added to a filtered
136 stomacher bag, to which 90 mL of BPW was added. The sample was homogenized as
137 described above, then spiked with 1 mL containing the appropriate dilution of *Salmonella*
138 cells (Table S7). Samples were incubated for 20 hr at 37 °C.

139 **Growth in selective broths and agar**

140 Recovery of *Salmonella* through secondary enrichment and growth on
141 differential/selective agars was conducted as described in MFHPB-20 [3]. From the BPW
142 enrichment, 1 mL was added to 9 mL of Tetrathionate Brilliant Green (TBG; Becton,
143 Dickinson and Company, New Jersey, USA) broth and 0.1 mL to 9 mL of
144 Rappaport-Vassiliadis Soya Peptone (RVS; Oxoid) broth. Inoculated TBG and RVS were
145 incubated for 24 hr at 42.5 °C with 100 rpm shaking. Broths were then vortexed briefly
146 and streaked onto Brilliant Green Sulfa (BGS; Becton, Dickinson and Company) agar and
147 Brilliance™ *Salmonella* agar (Becton, Dickinson and Company) plates using 10 µL loops.
148 Plates were incubated for 24 hr at 35 °C, then examined for colonies indicative of
149 *Salmonella*.

150 Suspected *Salmonella* colonies were confirmed using colony PCR. For caecal content
151 samples, colonies were picked into 100 µL TE buffer, which was heated to 100 °C for 10
152 minutes then cooled to 20 °C. Boiling prep material was used as a template for qPCR
153 reactions. Reaction and temperature profiles are described in the qPCR section below. For
154 feed samples, presumptive *Salmonella* colonies were confirmed by PCR amplification of
155 the *invA* gene (Table S1). Each 25 µL reaction contained 1x GoTaq Colourless Master Mix
156 (Promega, United States) and 0.3 µM Primers (invA_1869F, invA_1999R). Colony material
157 was transferred directly into the PCR mix, and was patched onto brain-heart infusion agar.
158 PCR cycling conditions were as follows: denaturation at 95°C for 2 min, followed by 40

159 cycles of 95 °C for 30 s, 60 °C for 30 s, 72 °C for 30 s, followed by a final extension at 72°C
160 for 5 min. PCR products were visualized by capillary electrophoresis using a QIAxcel
161 DNA high-resolution gel cartridge on a QIAxcel instrument (Qiagen, Toronto, Canada),
162 according to manufacturer's instructions.

163 **DNA extraction**

164 DNA extraction was performed using the DNeasy PowerSoil Pro Kit (Qiagen, Toronto,
165 Canada) according to kit protocols. For extraction from enriched caecal samples, the
166 remaining volume of BPW enrichments were centrifuged at 500 xg for 5 min to pellet
167 solids. Two mL of supernatant were centrifuged at 14000 xg for 5 min and the cell pellet
168 was transferred to a PowerBead pro tube. For directly extracted samples, frozen spiked
169 caecal content was thawed and beads from a PowerBead pro tube were added to the
170 screw-cap tubes. For enriched feed samples, 10 mL of enrichments were centrifuged at
171 500 xg for 5 min to pellet solids. The supernatant was transferred to a new tube and
172 centrifuged at 14000 xg for 5 min and the cell pellet was transferred to a PowerBead pro
173 tube. For direct extractions from feed, the spiked cell pellets were transferred to
174 PowerBead pro tubes. DNA was eluted in 100 µL of elution buffer and quantified with
175 PicoGreen (Thermo Fisher Scientific, Canada) according to the manufacturers'
176 recommendations.

177 **Detection of marker genes by quantitative PCR**

178 Detection of *Salmonella* based on the presence of marker genes *invA* and *stn* was
179 performed by multiplex qPCR. Each reaction contained 12.5 µL of Roche FastStart
180 Essential DNA Probes Master (Sigma-Aldrich, Oakville, Canada), 0.4 µM each *invA*
181 primers, 0.3 µM each *stn* primers, 0.2 µM each probe (Table S1), 2.5 µL of DNA template,
182 and water to a total volume of 50 µL. Cycling conditions are given in Table S2. The DNA
183 template per reaction was 935 ng for caecal content samples, 3.75 ng for enriched feed
184 samples, and 24 ng for unenriched feed samples. DNA concentrations were chosen based
185 on standardization to the lowest sample concentration within a given group, and DNA

186 input for enriched feed samples was further diluted to prevent overloaded reactions.
187 Non-template controls received 2.5 µL PCR-grade water instead of DNA template. qPCR
188 reactions were performed in triplicate. Duplicate standard curves in 10X dilution series
189 from 10⁶ to 1 genome copies per µL were run on each qPCR plate. The qPCR was
190 performed on a Bio-Rad CFX Opus 96 Real-Time PCR System (Bio-Rad Laboratories Ltd.,
191 Mississauga, Canada) using the following temperature program: 95 °C for 5 min,
192 followed by 45 cycles of 95 °C denaturing for 10 s, 58 °C annealing for 15 s, 72 °C
193 extension for 10 s, and a final cooling step of 37 °C for 30 s. Two different cycle thresholds
194 were established for determining positivity for *Salmonella*: 40 cycles, based on the lack of
195 any amplifications in no-template controls, and a more stringent setting of 35 cycles as is
196 commonly used in food safety monitoring programs.

197 **Sequencing**

198 The 16S-V4 and shotgun sequencing was performed at the McGill Genome Centre,
199 and 16S-V3-V4 sequencing was performed at the CFIA Ottawa (Carling) laboratory.
200 Samples were selected for 16S and shotgun sequencing based on results of
201 culture-dependent and qPCR tests (Table S6 and Table S7).

202 Primers 16S-F_515F and 16S-R_806R (Table S1, Caporaso et al. [22]) were used to
203 amplify the 16S V4 variable region in PCR reactions using Kapa HiFi Hotstart ready mix
204 (Sigma-Aldrich, Oakville, Canada) (Tables S2, S3). Amplicon sequencing libraries were
205 prepared according to the 16S Metagenomic Sequencing Library Preparation protocol [23]
206 and sequenced with PE150 on an Illumina NovaSeq6000.

207 Primers 16S-F_341F and 16S-R_785R (Table S1, Klindworth et al. [24]) were used to
208 amplify the 16S V3-V4 variable region (Tables S2, S3). Amplicon sequencing libraries were
209 prepared according to the 16S Metagenomic Sequencing Library Preparation protocol [23]
210 and sequenced with PE300 on an Illumina MiSeq.

211 Shotgun sequencing libraries were prepared using the Lucigen NxSeq AmpFREE Low
212 DNA Library Kit (VWR International, Radnor, USA), and sequenced with PE150 on an
213 Illumina NovaSeq6000.

214 **Bioinformatic analysis**

215 **16S**

216 Analysis of 16S sequence data (both V4 and V3-V4 regions) was performed in QIIME2
217 v2022.11 [25]. Primers were removed with cutadapt using anchored forward and reverse
218 sequences, with –p-match-read-wildcards –p-match-adapter-wildcards to account for
219 variations in degenerate primer sequences. Untrimmed reads were discarded. Trimmed
220 reads were denoised with DADA2 [26]. V4 amplicons were denoised with no truncation
221 then merged with a minimum overlap of 4 nt. Representative reads were classified using
222 the q2-feature-classifier plugin [27] and the pre-trained Naive Bayes classifier
223 silva-138-99-515-806-nb-classifier.qza [28] [29], available from the QIIME2 data resources
224 site. V3-V4 amplicons were denoised with truncation at base 260 on the forward read and
225 190 on the reverse read, then merged with a minimum overlap of 12 nt. Representative
226 reads were classified using the q2-feature-classifier plugin and a Naive Bayes classifier
227 trained on the 341-785 region of the silva 138 database [29]. Following classification,
228 mitochondria and chloroplast ASVs were removed using the filter-table plugin. QIIME2
229 output files were imported into R 4.2.3 [30] using the qiime2r package [31] and results
230 were visualized using the phyloseq package [32].

231 **Shotgun**

232 Shotgun sequencing datasets were analyzed according to the pipeline established in
233 Bradford et al. [33]. Custom workflows were made in snakemake [34]. Briefly, reads were
234 trimmed and quality-selected with Trimmomatic [35] using the parameters minlength 36,
235 sliding window 4:20. All passing reads, whether paired and unpaired (forward or
236 reverse), were retained for the best chance of *Salmonella* detection. For caecal content
237 samples, host reads were removed by classifying passing reads with Kraken 2 [36] against
238 a custom-made Kraken 2 database made using the *Gallus gallus* reference genome from
239 NCBI (GRCg6a; GenBank accession GCA_000002315.5). For feed samples, reads were
240 classified against the Kraken 2 plant database. Details on these databases can be found in
241 the supplementary material. Reads matching the host database were removed using the

242 filterbyname function of BBMAP [37], producing quality-controlled, host-free datasets.
243 These reads were then classified using Kraken 2, with confidence set at 0.25, using a
244 bacteria database downloaded using the kraken2-build command on Oct 28, 2021. All
245 reads classified as members of the *Salmonella* genus were extracted using the filterbyname
246 function of BBMAP. The blastx function from the Blast suite [38, 39] was used to compare
247 putative *Salmonella* reads against a blast-formatted database of *Salmonella*
248 "species"-specific regions from [40]. Samples with reads that were called as *Salmonella* by
249 Kraken 2 and then passed this confirmation step are considered to be positive for
250 *Salmonella*.

251 Reads in the unspiked (negative control) feed samples which were identified as
252 *Salmonella*-derived via this pipeline were tested against the NCBI-nt database via the web
253 interface. Megablast was used with default settings, excluding results from *Salmonella*
254 (taxid:590), using the nt database posted on April 23, 2023.

255 **Enrichment broth dilution test**

256 It is possible that the carrying capacity of BPW was quickly reached in caecal spiking
257 experiments due to the high bacterial load. This would limit the possible number of
258 divisions of *Salmonella* spiked into the broth. To determine if dilution of the caecal
259 contents can decrease the LOD₅₀ of *Salmonella*, a dilution series was conducted using 10
260 additional caeca obtained from Agriculture and Agri-Food Canada (Guelph, Ontario).
261 Contents from 10 caeca were mixed and split amongst 16 tubes (Fig. S4). Tubes were
262 spiked with 0 (unspiked control), 3.5, 35, or 3.5×10^6 (positive control) CFU of *Salmonella*
263 enterica ser. Enteritidis isolate CFIAFB20140150 grown in BPW, as above. Each tube was
264 then diluted 1:10 until the 10^3 dilution was reached (Figure S4). After an overnight
265 incubation, DNA was extracted using the DNeasy PowerSoil Pro Kit (Qiagen, Toronto,
266 Canada) according to kit protocols, as above. Detection of *Salmonella* based on the
267 presence of marker gene *invA* was performed as described above.

268 **Limit of detection calculations**

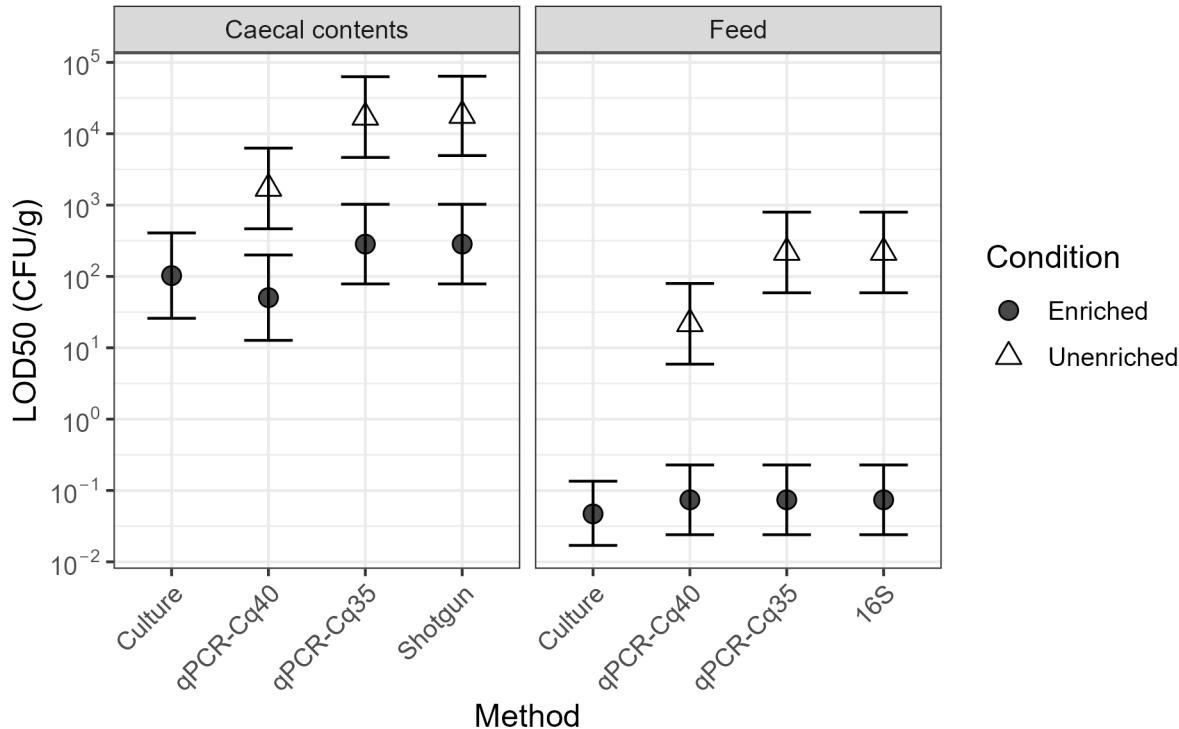
269 LOD₅₀ of each method and condition combination was calculated according to Wilrich
270 and Wilrich [41] using the tool provided at
271 <https://www.wiwiss.fu-berlin.de/fachbereich/vwl/iso/ehemalige/wilrich/index.html>.

272 **Plotting and statistical analyses**

273 Plotting and statistical analyses were performed in R v4.2.3 [30]. A full list of packages
274 used can be found in the Supplementary Methods (subsection R packages).

275 **Proof of concept experiment**

276 Feed and chicken caeca were sent to labs at the CFIA and the Public Health Agency of
277 Canada (PHAC) for *Salmonella* testing as part of their ongoing monitoring programs.
278 These samples underwent culture-based detection following the MFHPB-20 protocol, and
279 aliquots of the non-selectively-enriched material were provided to us for DNA extraction
280 and testing via CIDTs. DNA extraction, multiplex qPCR, and sequencing of the V3-V4
281 regions of the 16S rRNA gene were performed as described above. In total, 56 caeca
282 samples and 48 feed samples were tested.


283 **Data availability**

284 The data have been deposited to NCBI with links to BioProject accession number
285 PRJNA1035945. Code can be found at <https://github.com/LMBradford/SalmLOD-paper>

286 **RESULTS**

287 We compared the limit of detection (LOD₅₀) of enrichment-culture based *Salmonella*
288 detection methodology against three culture-independent diagnostic tests (CIDTs): qPCR,
289 16S sequencing, and metagenomic sequencing. We spiked two matrix types (chicken

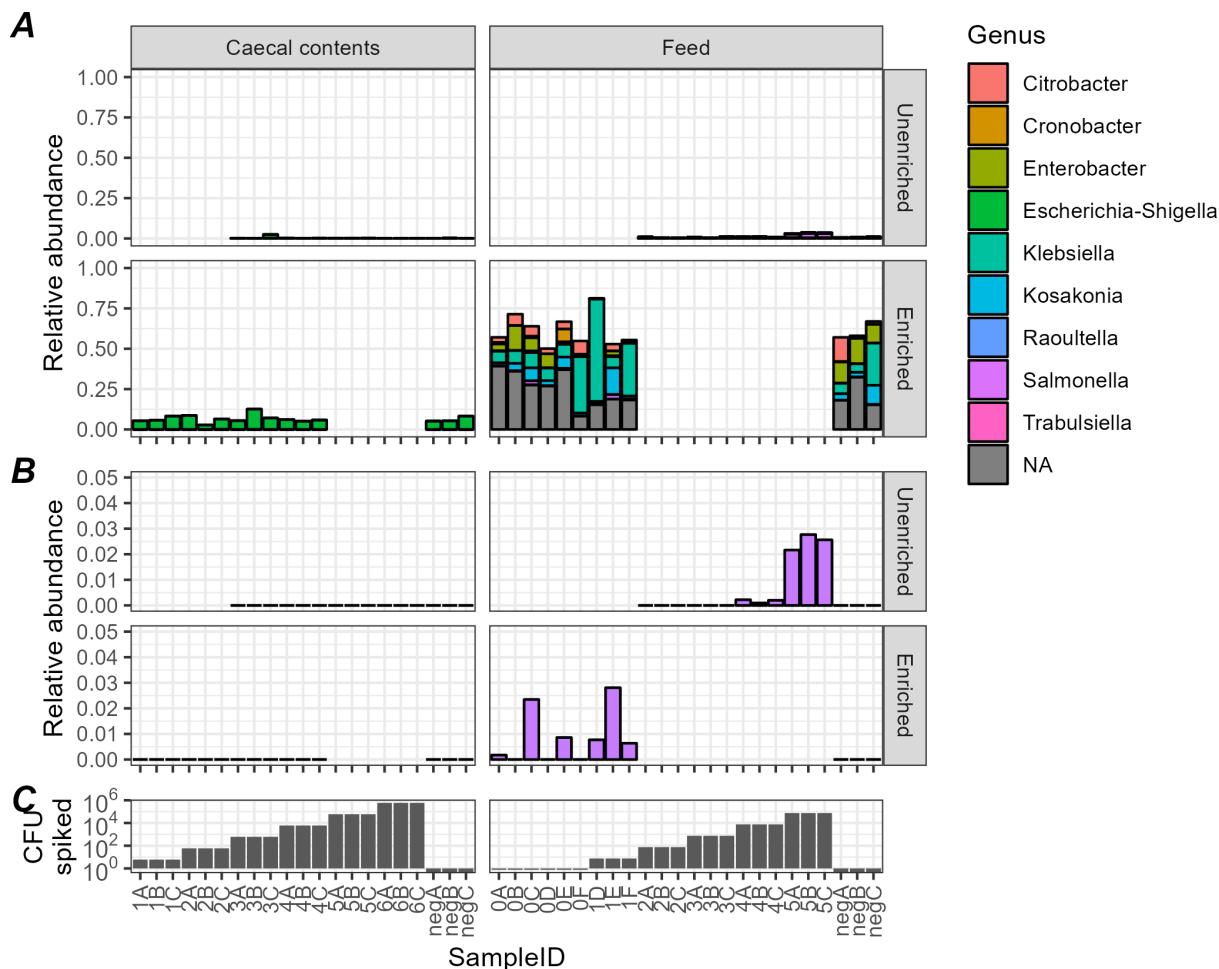
290 caecal contents and chicken feed) with known quantities of *S. Enteriditis*. For the CIDTs,
291 all samples underwent both immediate DNA extraction and an overnight enrichment
292 incubation in non-selective media to investigate the impact of this enrichment step.

293

FIG 1 Limits of detection for the methods and conditions tested according to the log-log model by Wilrich and Wilrich [41]. Note that no *Salmonella* was detected in caecal contents by 16S sequencing, and LOD₅₀ could not be calculated for shotgun sequencing analysis of feed samples because all samples were positive. Calculations assume no *Salmonella* was detected in negative controls. 16S represents V3-V4 amplicon sequencing. qPCR-Cq40 and -Cq35 represent qPCR with Cq cutoffs of 40 and 35 cycles, respectively. Error bars show 95 % confidence intervals.

294 **Detection is strongly influenced by matrix**

295 Across all methods and enrichment conditions, *Salmonella* could be detected at much
296 lower spike-in levels in feed samples, which have low microbial abundance, than in caecal
297 contents. The lowest LOD₅₀ in feed samples was 0.047 CFU/g (via culturing), compared


298 to 50 CFU/g for caecal contents (via post-enrichment qPCR) (Fig. 1). *Salmonella* could not
299 be detected in caecal contents via 16S sequencing, regardless of enrichment condition.

300 **Enrichment enhances detection**

301 In the absence of enrichment, CIDTs had considerably worse LOD₅₀ than traditional,
302 culture-based testing (Fig. 1). In caeca, shotgun metagenomics and qPCR with a Cq cutoff
303 of 40 had LOD₅₀ approximately 2-log higher than culture-based detection; use of a Cq
304 cutoff of 35 provided an improvement of 1-log. Lack of sensitivity was more pronounced
305 in feed, where 16S, qPCR-35, and metagenomics had LOD₅₀ 3-log higher than culturing.

306 The first step of the culture-dependent method is an overnight incubation in BPW. In
307 order to evaluate the impact of this initial incubation on test sensitivity, DNA was
308 extracted directly from spiked samples ("unenriched") and from the BPW post-incubation
309 ("enriched"), and these DNA extracts were used for CIDTs. The majority of reads within
310 the shotgun sequencing datasets from unenriched feed came from plants, reducing the
311 usable data; in contrast, plant-derived reads were a tiny proportion in the enriched feed
312 datasets (Fig. S3). Although BPW is not selective for *Salmonella*, enrichment lowered the
313 LOD₅₀ in all methods in which both conditions were tested. The LOD₅₀ of CIDTs using
314 DNA extracted directly from caecal contents was particularly high, at 1.7×10^3 CFU/g for
315 qPCR (40 cycle threshold) and 1.8×10^4 CFU/g for metagenomics via shotgun sequencing.
316 With enrichment, the LOD₅₀ of these methods dropped to 50 and 283 CFU/g, respectively.
317 The effect was even more pronounced in feed samples, where, for example, LOD₅₀ of
318 qPCR was 21.7 CFU/g without enrichment but 0.074 CFU/g with enrichment (Fig. 1).

319 Enrichment was performed with 9 mL of BPW to 1 g of material as described in the
320 culture-detection protocol [3]. Diluting caecal contents to raise the BPW:material ratio
321 improved detection, as shown with qPCR-based detection of the *invA* gene (Fig. S4). Of
322 the six replicate samples spiked with 10 CFU/g *Salmonella* in this dilution experiment,
323 *invA* could be detected in just one at the 9:1 ratio, in three replicates after a 10X dilution,
324 and in all six replicates after a 100X dilution (Fig. S4).

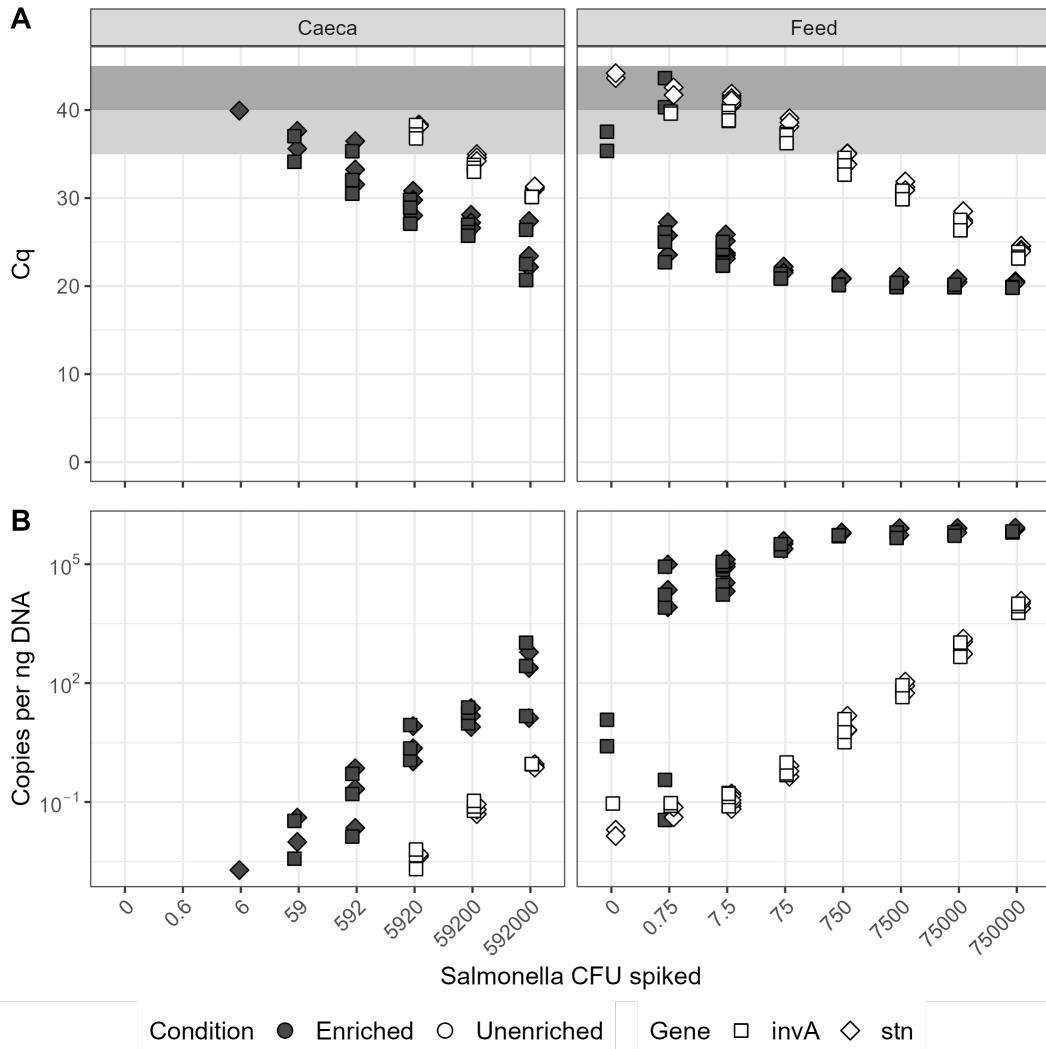

325

FIG 2 (A) Relative abundance of genera in the Enterobacteriaceae family according to sequencing of the 16S V3-V4 region. Colours indicate assigned genus, with "NA" indicating sequences that could not be assigned below the family level. (B) Zoomed-in view showing only the *Salmonella* genus abundance from V3-V4 sequencing. Note the scale of the y-axis. Blank areas are shown for samples that were not sequenced. (C) Number of *Salmonella* Enteritidis CFU spiked into samples in above panels.

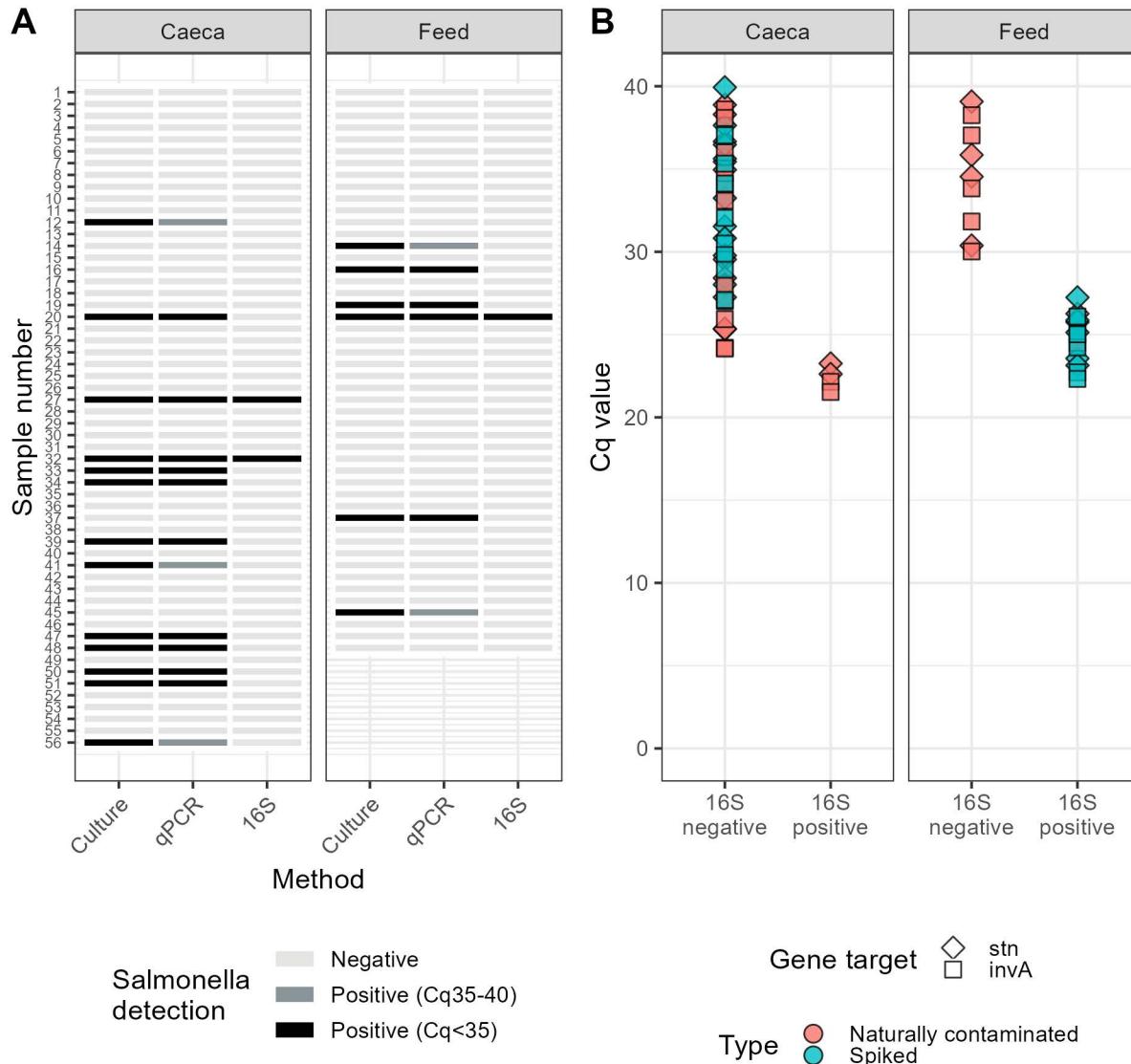
326 **Enrichment has varying effects on community composition**

327 Sequencing of 16S rRNA shows that overnight enrichment in BPW had a noticeable
328 effect on the community composition of feed samples (Figs. 2, S1). The Enterobacteriaceae
329 family, to which *Salmonella* belongs, was only a small proportion of the community prior

330 to enrichment but rose to >50 % post-enrichment, concurrent with a drop in alpha
331 diversity (Fig. S2). Multiple genera within the Enterobacteriaceae greatly increased their
332 proportion of the community during enrichment, including potentially pathogenic
333 *Citrobacter*, *Klebsiella*, *Escherichia-Shigella*, and *Salmonella* (Fig. 2). The Actinobacter and
334 Bacilli classes decreased in abundance, and Clostridia sequences appeared in a few feed
335 samples following enrichment. Conversely, the overall community composition in caecal
336 content samples showed little change (Fig. S1), and diversity dropped only slightly in
337 enriched vs. unenriched samples (Fig. S2). Enterobacteriaceae were <= 2.5 % of the
338 unenriched community and rose to 5-13 % of communities post-enrichment, but the
339 majority of Enterobacteriaceae sequences belonged to the *Escherichia-Shigella* genus, as
340 defined by the Silva v138.1 database [29]. Sequences representing *Salmonella* were not
341 found in any of the caecal samples selected for 16S sequencing. The most abundant class
342 in the caecal contents was Clostridia, which comprised 89-97 % of unenriched and 77-93 %
343 of enriched caecal communities (Fig. S1). Clostridia families Lachnospiraceae and
344 Ruminococcaceae were 3-28 % and 4-14 % of the total communities, respectively.

345

FIG 3 Detection of *Salmonella* marker genes via multiplex quantitative PCR. (A) Cq values. Samples with data points in the dark grey zone above 40 cycles are considered negative; samples with data points in the light grey zone between 35 and 40 cycles may be interpreted as positive; samples with data points below 35 are definitely positive. (B) Gene copies per ng of input DNA, as calculated using standard curves. Y-axis is in log scale.


346 Possible false positives for *Salmonella* in feed

347 Evidence of *Salmonella* was not found in unspiked feed samples via culturing or 16S
348 rRNA analysis. However, one gene targeted by the multiplex qPCR (*invA*) amplified with

349 high Cq values in two of the three enriched unspiked feed samples (Fig. 3). According to
350 the draft protocol, amplification of either target indicates that a sample may be positive
351 for *Salmonella*. All three enriched unspiked feed samples, as well as two of three
352 unenriched unspiked feed samples, were found to contain shotgun sequencing reads
353 classified as *Salmonella*-derived according to our analytical pipeline (Table S8). We carried
354 out further investigations to determine whether these samples were in fact contaminated
355 with *Salmonella*, or if they represent false positives. We were able to isolate and sequence
356 colonies of *Citrobacter* species from additional feed samples and found that some
357 sequencing reads were considered to have come from *Salmonella* when tested with our
358 shotgun sequencing pipeline (see Supplementary Methods). These *Citrobacter* isolates,
359 however, do not contain the *invA* gene that is tested for with qPCR.

360 **qPCR-based detection is comparable to culturing in naturally contaminated samples**

361 Following the spike-in experiments, a proof-of-concept experiment was performed on
362 chicken feed and caecal contents acquired by the Canadian Food Inspection Agency and
363 the Public Health Agency of Canada as part of their food safety monitoring programs.
364 Culture-based testing was performed by these government agencies, and the
365 post-enrichment material was sent to us for DNA extraction and testing by CIDTs. There
366 was very strong concordance between detection by culturing and by multiplex qPCR.
367 When qPCR positivity is defined as Cq values < 40, detection results were identical. If
368 qPCR positivity is set more stringently with a 35 Cq threshold, 14 of the 19
369 culture-positive samples were found to be positive by qPCR. Detection via sequencing of
370 the 16S rRNA V3-V4 regions was much less sensitive in these samples, with only one feed
371 and two caecal samples determined to be positive for *Salmonella* via this method (Fig. 4).
372 The samples found to be positive by 16S sequencing had low Cq values in the multiplex
373 qPCR assay (Fig. 4).

374

FIG 4 (A) Results of *Salmonella* detection by culturing and CIDTs on enriched natural samples. (B) Comparison of Cq values from qPCR against positive/negative detection of *Salmonella* via sequencing of the 16S V3-V4 variable regions. Separate Cq values are plotted for the two gene targets in the multiplex qPCR assay. Results shown are from enriched samples which showed amplification in qPCR reactions and which underwent 16S sequencing.

375 DISCUSSION

376 The primary question driving this investigation was whether various CIDTs have
377 sufficient sensitivity and reliability to be used in food safety applications. To answer this,
378 we systematically compared limits of detection (LOD_{50}) for current enrichment-culture
379 based methodology against three culture-independent diagnostic tests (CIDTs). We
380 focused on *Salmonella* as a model pathogen, and on matrices relevant to poultry
381 production: chicken feed (low bacterial load) and chicken caecal contents (high bacterial
382 load). Within each matrix, we found the LOD_{50} for CIDTs to be equivalent to that of the
383 culture-dependent method when using DNA from material that underwent an overnight
384 enrichment in non-selective broth (Fig. 1). Testing DNA extracted directly from
385 *Salmonella*-spiked matrices yielded a higher LOD_{50} in every case. Although enrichment is
386 time-consuming, it is essential for detection sensitivity using CIDTs, as has been found for
387 *Salmonella* [42, 43] and other bacterial pathogens in food matrices [44].

388 There was good concordance between detection via culturing and multiplex qPCR on
389 enriched materials, as has been seen with various qPCR methods [45, 46, 47, 48].
390 Although culturing, qPCR, and sequencing of the 16S rRNA V3-V4 region had equivalent
391 LODs when tested on spiked enriched feed samples, only qPCR was able to match
392 culturing results when used on naturally contaminated samples. Sequencing depth and
393 quality were well-matched between these two investigations. Samples in which 16S
394 sequencing could detect *Salmonella* were those with lower Cq values in qPCR analysis,
395 indicating that a higher proportion of *Salmonella* DNA within the samples was needed for
396 16S detection with the method and sequencing depth we used. Reduced relative
397 proportions of *Salmonella* in enrichment cultures derived from naturally-contaminated
398 samples are likely indicative of an extended lag time for *Salmonella* growth, attributed to
399 damage to the organism due to environmental stress conditions. Additionally, only one
400 strain of *Salmonella* ser. Enteritidis was used in the spike-in portion of this study. Different
401 strains and serovars may have variable growth kinetics in enrichment culture [49].

402 Metabarcoding was undertaken using both the V4 and V3-V4 variable regions of the
403 16S rRNA gene. Amplicons of the V4 region are an appropriate length (approx. 291 nt) for

404 sequencing on Illumina HiSeq or NovaSeq, which can produce millions of reads per
405 sample, providing comprehensive information on bacterial community compositions.
406 However, *Salmonella* sequences in this region are not unique and reads cannot be
407 distinguished between *Salmonella* and other genera within the Enterobacteriaceae [50].
408 Amplicons of the V3-V4 region are longer (approx. 464 nt), and can be used to specifically
409 detect *Salmonella*. The read length required was best suited to an Illumina MiSeq, yielding
410 much lower read depths per sample. Though targeted read depths per sample exhibit
411 significant variation among different studies, 100 million reads represent a reasonable
412 quantity, and it is unlikely that laboratories engaged in routine monitoring would surpass
413 this threshold. Some of the positive results obtained from the *Salmonella* qPCR assays had
414 Cq values that were higher than 35 cycles. Interpretation of high Cq values may be
415 complicated as these may represent false-positive results [51]. High Cq values could be
416 generated by degradation of probes, contamination, or by non-specific amplification of
417 nucleic acids present in complex samples. In a diagnostic lab, enrichments that were
418 qPCR positive, but with high Cq values may be further investigated by increasing the
419 amount of sample (e.g. gDNA) loaded, or by trying to recover target organisms, but these
420 results on their own would not be conclusive. In this study we observed “true positives”
421 with Cq values of 40 cycles, however, some of the unspiked feed samples had a signal at
422 this threshold. Ultimately, further evaluation of the method is needed to empirically
423 determine reliable Cq cutoffs in a variety of matrices. In our study we tried to maximize
424 the amount of the gDNA sample loaded in the PCR assay to increase the relative
425 proportion of the sample being used in the assay, particularly for the direct extraction
426 from spiked samples. Genomic DNA from the samples was eluted into 100 μ L of liquid,
427 therefore each qPCR assay included about 2.5 % of the total sample. Total gDNA
428 extracted from caecal contents was much higher than for feed, resulting in use of almost 1
429 μ g gDNA/assay for caecal samples. Further dilution to normalize feed and caecal
430 concentrations would have significantly decreased the proportion of the sample loaded in
431 the assay, which would have consequently impacted LOD₅₀.

432 All methods had very low LOD₅₀ (0.047 – 0.074 CFU/g) in enriched feed samples,
433 although unenriched LOD₅₀ varied. This can likely be attributed to the fact that *Salmonella*

434 cells spiked into feed were unstressed and readily viable, having just been grown in an
435 overnight culture in rich broth. Other microorganisms on the feed had, conversely, been
436 subsisting on dry feed material at cool (4 °C) temperatures. The goal of non-selective
437 enrichment is to allow recovery of stressed or injured cells, but it is easy to imagine that
438 healthy *Salmonella* enjoyed a competitive advantage over the feed microbiome in this
439 environment, thus artificially decreasing post-enrichment LODs. For this study we elected
440 to forgo the stressing procedures that would typically be used in a method validation
441 study to avoid complications associated with variability introduced by this procedure.
442 The LOD₅₀ for stressed cells would likely be somewhat higher than observed here. Caecal
443 contents, on the other hand, were freshly harvested from chickens and processed after a
444 single night of storage at 4 °C, thus minimizing stress on the resident microbiota. The
445 majority of the caecal content community, both with and without enrichment, belongs to
446 the Clostridia class (Fig. S1), which are common constituents of the gastrointestinal tracts
447 of omnivorous, warm-blooded animals [52]. The abundance of members of this class is
448 consistent with surveys of chicken caecal communities [52]. All Clostridia are obligate
449 anaerobes [53], which would not be expected to maintain an overwhelming presence after
450 enrichment in an oxic environment. One possible explanation is that, due to the high
451 biomass in caecal content, the carrying capacity of the broth was quickly reached with
452 very little opportunity for growth of aerobes. Results of an experiment in which caecal
453 contents were serially diluted in BPW before overnight enrichment support this
454 hypothesis, with improved qPCR-based detection in samples with higher BPW:caecal
455 content ratios during enrichment (Fig. S4).

456 The relatively high LOD₅₀ for *Salmonella* in caecal contents have implications for
457 monitoring schemes that rely on testing these materials, notably the National
458 Microbiological Baseline Study in Broiler Chicken December 2012 [54]. That study
459 suspended chicken caecal contents in a 1:4 (w/w) ratio with BPW, then screened using the
460 BAX PCR system (Hygenia, Mississauga, Canada), with presumptive positives
461 enumerated by Most Probably Number (MPN) culturing. They found that 25.6 % of the
462 caecal samples tested were positive for *Salmonella*, with 65 % of those positives
463 enumerated at > 110 MPN/g. However, our results suggest that the positivity rate may

464 have been higher, but hidden by the inability of *Salmonella* to grow sufficiently during
465 enrichment. Our findings may also have implications for other studies and monitoring
466 schemes that test for pathogens in high biomass backgrounds such as probiotic
467 preparations and fermented consumable products [55, 56].

468 While buffered peptone water (BPW) is considered a non-selective medium, we found
469 clear evidence that overnight growth in BPW favours the growth of some taxa to the
470 exclusion of others. Non-selective enrichment of feed caused profound changes in the
471 bacterial community compositions. Previous studies on non-selective enrichment (using
472 BPW or Universal Pre-enrichment Broth, UPB) of various food products saw a decrease in
473 proportion of Proteobacteria (which includes *Salmonella*) and an increase in Firmicutes,
474 with varying results for Actinobacteriota [57, 58, 59]. Conversely, non-selective
475 enrichment in our experiment caused an increased proportion of Proteobacteria, decrease
476 in Firmicutes, and the near-disappearance of the Actinobacteriota phylum. The
477 Proteobacteria phylum consisted mostly of members of the Enterobacteriaceae family,
478 including *Citrobacter*, *Klebsiella*, *Escherichia-Shigella*, and *Salmonella* genera. There is thus a
479 need for further work on the effects of enrichment on the microbial communities of
480 different commodities.

481 Amplification of the *invA* gene during qPCR and detection of putatively
482 *Salmonella*-derived shotgun sequencing reads in unspiked feed sample controls suggest
483 that *Salmonella* DNA may have been present. This does not guarantee the presence of
484 viable cells; indeed, the inability of CIDTs to distinguish between viable cells and lingering
485 DNA is a known downfall of these methods [60, 61]. It is also possible that signals were
486 generated from nonspecific products generated in these complex samples [62]. The
487 number of reads identified as coming from *Salmonella* was higher in enriched samples
488 than in their unenriched counterparts, which could indicate growth of viable cells. The
489 more likely explanation is that these reads are false positives due to presence of related
490 organisms. We previously isolated a *Citrobacter werkmanii* from the feed used in this
491 experiment which contains sequences matching those found in the unspiked feed controls,
492 and have since isolated multiple *Citrobacter* colonies from feed with sequences that are
493 attributed to *Salmonella* in our bioinformatic pipeline. Characterization of these isolates is

494 ongoing. *Citrobacter* spp. are closely related to *Salmonella* [63] and have been shown to
495 cause false positives during food testing [64, 65]. The genome of the previously isolated
496 *Citrobacter* has not been uploaded to NCBI or other databases, so it was not available
497 during determination of the *Salmonella* species-specific regions used during bioinformatic
498 analysis [40], although shotgun reads simulated from its genome were tested during
499 pipeline development and did not result in false *Salmonella* hits [33]. Read classification in
500 metagenomic analysis relies on matching sequences to curated databases [66].
501 Over-representation of pathogenic species in public repositories relative to commensal
502 organisms commonly found in food and environmental species has the potential to lead
503 to false-positive detection of pathogens as observed in this study [67]. This emphasizes
504 the need for caution when using CIDTs for food safety or in health diagnostics.

505 CIDTs are promising tools for pathogen surveillance and detection in agriculture, food
506 safety, and medicine. However, the performance of CIDTs must be systematically
507 investigated to guide their appropriate use. Here, we show that the CIDTs tested have
508 equivalent sensitivity to culture-based detection methods when an overnight incubation
509 is employed, but much higher limits of detection (that is, lower sensitivity) without this
510 enrichment. Detection limits of all methods are clearly influenced by the matrix
511 background, which must be considered when interpreting results from varied matrices.
512 We also show the major downside of CIDTs, i.e., the potential for false positives and lack
513 of cultured isolates on which to perform further tests.

514 **ACKNOWLEDGMENTS**

515 Thank you to the personnel at the Public Health Agency of Canada and the Canada
516 Food Inspection Agency who provided samples for the proof of concept portion of this
517 research.

518 **DATA AVAILABILITY STATEMENT**

519 The data have been deposited to NCBI with links to BioProject accession number
520 PRJNA1035945. Code can be found at <https://github.com/LMBradford/SalmLOD-paper>

521 **CLINICAL TRIALS**

522 Not applicable.

523 **ETHICS APPROVAL**

524 All experimental procedures were approved (Protocol number # No. 3521) by the
525 institutional ethics committees on animal experimentation according to guidelines of the
526 Canadian Council on Animal Care.

527 **FUNDING**

528 Funding for this project was provided by the Ontario Ministry of Agriculture, Food,
529 and Rural Affairs (OMAFRA project number OAF-2020-101088).

530 **CONFLICTS OF INTEREST**

531 The authors declare no conflict of interest.

532 **Supplemental material**

533 A supplementary file containing supplementary methods, figures, and tables is
534 provided as a separate PDF.

535 REFERENCES

536 References

537 [1] M Kate Thomas, Regan Murray, Logan Flockhart, Katarina Pintar, Frank Pollari,
538 Aamir Fazil, Andrea Nesbitt, and Barbara Marshall. Estimates of the burden of
539 foodborne illness in canada for 30 specified pathogens and unspecified agents, circa
540 2006. *Foodborne pathogens and disease*, 10(7):639–648, 2013.

541 [2] Peter FM Teunis, Fumiko Kasuga, Aamir Fazil, Iain D Ogden, Ovidiu Rotariu, and
542 Norval JC Strachan. Dose–response modeling of *Salmonella* using outbreak data.
543 *International journal of food microbiology*, 144(2):243–249, 2010.

544 [3] Microbiological Methods Committee. *Compendium of Analytical Methods, Volume 2*.
545 Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1S 0K9, May
546 2023.

547 [4] Peter S Holt and Robert E Porter Jr. Effect of induced molting on the recurrence of a
548 previous *Salmonella enteritidis* infection. *Poultry Science*, 72(11):2069–2078, 1993.

549 [5] Rebecca L Bell, Karen G Jarvis, Andrea R Ottesen, Melinda A McFarland, and Eric W
550 Brown. Recent and emerging innovations in *Salmonella* detection: a food and
551 environmental perspective. *Microbial biotechnology*, 9(3):279–292, 2016.

552 [6] Balamurugan Jagadeesan, Peter Gerner-Smidt, Marc W Allard, Sébastien Leuillet,
553 Anett Winkler, Yinghua Xiao, Samuel Chaffron, Jos Van Der Vossen, Silin Tang,
554 Mitsuru Katase, et al. The use of next generation sequencing for improving food
555 safety: translation into practice. *Food microbiology*, 79:96–115, 2019.

556 [7] Goutam Banerjee, Saumya Agarwal, Austin Marshall, Daleniece Higgins Jones,
557 Irshad M Sulaiman, Shantanu Sur, and Pratik Banerjee. Application of advanced
558 genomic tools in food safety rapid diagnostics: challenges and opportunities. *Current
559 Opinion in Food Science*, page 100886, 2022.

560 [8] Shuxin Zhang, Xuan Li, Jiangping Wu, Lachlan Coin, Jake O'Brien, Faisal Hai, and
561 Guangming Jiang. Molecular methods for pathogenic bacteria detection and recent
562 advances in wastewater analysis. *Water*, 13(24):3551, 2021.

563 [9] Georgia C Titcomb, Christopher L Jerde, and Hillary S Young. High-throughput
564 sequencing for understanding the ecology of emerging infectious diseases at the
565 wildlife-human interface. *Frontiers in Ecology and Evolution*, 7:126, 2019.

566 [10] Matthew Dixon, Sybil Sha, Maria Stefil, and Michael McDonald. Is it time to say
567 goodbye to culture and sensitivity? the case for culture-independent urology.
568 *Urology*, 136:112–118, 2020.

569 [11] Alec Szlachta-McGinn, K Marie Douglass, Un Young Rebecca Chung, Nicholas James
570 Jackson, J Curtis Nickel, and A Lenore Ackerman. Molecular diagnostic methods
571 versus conventional urine culture for diagnosis and treatment of urinary tract
572 infection: a systematic review and meta-analysis. *European Urology Open Science*, 44:
573 113–124, 2022.

574 [12] Stefan A Boers, Ruud Jansen, and John P Hays. Understanding and overcoming the
575 pitfalls and biases of next-generation sequencing (NGS) methods for use in the
576 routine clinical microbiological diagnostic laboratory. *European Journal of Clinical
577 Microbiology & Infectious Diseases*, 38:1059–1070, 2019.

578 [13] Kumeren N Govender, Teresa L Street, Nicholas D Sanderson, and David W Eyre.
579 Metagenomic sequencing as a pathogen-agnostic clinical diagnostic tool for
580 infectious diseases: a systematic review and meta-analysis of diagnostic test accuracy
581 studies. *Journal of clinical microbiology*, 59(9):10–1128, 2021.

582 [14] Xiang Yang, Noelle R Noyes, Enrique Doster, Jennifer N Martin, Lyndsey M Linke,
583 Roberta J Magnuson, Hua Yang, Ifigenia Geornaras, Dale R Woerner, Kenneth L
584 Jones, et al. Use of metagenomic shotgun sequencing technology to detect foodborne
585 pathogens within the microbiome of the beef production chain. *Applied and
586 environmental microbiology*, 82(8):2433–2443, 2016.

587 [15] Ana Sofia Ribeiro Duarte, Timo Röder, Liese Van Gompel, Thomas Nordahl Petersen,
588 Rasmus Borup Hansen, Inge Marianne Hansen, Alex Bossers, Frank M Aarestrup,
589 Jaap A Wagenaar, and Tine Hald. Metagenomics-based approach to
590 source-attribution of antimicrobial resistance determinants–identification of reservoir
591 resistome signatures. *Frontiers in microbiology*, 11:601407, 2021.

592 [16] Norma Heredia and Santos García. Animals as sources of food-borne pathogens: A
593 review. *Animal nutrition*, 4(3):250–255, 2018.

594 [17] SJ Chai, Douglas Cole, Amine Nisler, and Barbara E Mahon. Poultry: The most
595 common food in outbreaks with known pathogens, united states, 1998–2012.
596 *Epidemiology & Infection*, 145(2):316–325, 2017.

597 [18] Andiara Gonçalves-Tenório, Beatriz Nunes Silva, Vânia Rodrigues, Vasco Cadavez,
598 and Ursula Gonzales-Barron. Prevalence of pathogens in poultry meat: a
599 meta-analysis of european published surveys. *Foods*, 7(5):69, 2018.

600 [19] Luma Akil and H Anwar Ahmad. Quantitative risk assessment model of human
601 salmonellosis resulting from consumption of broiler chicken. *Diseases*, 7(1):19, 2019.

602 [20] John A Crump, Patricia M Griffin, and Frederick J Angulo. Bacterial contamination
603 of animal feed and its relationship to human foodborne illness. *Clinical Infectious
604 Diseases*, 35(7):859–865, 2002.

605 [21] Ashley L Cooper, Andrew J Low, Adam G Koziol, Matthew C Thomas, Daniel Leclair,
606 Sandeep Tamber, Alex Wong, Burton W Blais, and Catherine D Carrillo. Systematic
607 evaluation of whole genome sequence-based predictions of *Salmonella* serotype and
608 antimicrobial resistance. *Frontiers in microbiology*, 11:549, 2020.

609 [22] J Gregory Caporaso, Christian L Lauber, William A Walters, Donna Berg-Lyons,
610 Catherine A Lozupone, Peter J Turnbaugh, Noah Fierer, and Rob Knight. Global
611 patterns of 16S rRNA diversity at a depth of millions of sequences per sample.
612 *Proceedings of the national academy of sciences*, 108(Supplement 1):4516–4522, 2011.

613 [23] Illumina Inc. 16S metagenomic sequencing library preparation. preparing 16S
614 ribosomal rna gene amplicons for the Illumina MiSeq System. *16S Metagenomic
615 Sequencing Library Preparation Manual*, 2013.

616 [24] Anna Klindworth, Elmar Pruesse, Timmy Schweer, Jörg Peplies, Christian Quast,
617 Matthias Horn, and Frank Oliver Glöckner. Evaluation of general 16S ribosomal
618 RNA gene PCR primers for classical and next-generation sequencing-based diversity
619 studies. *Nucleic acids research*, 41(1):e1–e1, 2013.

620 [25] Evan Bolyen, Jai Ram Rideout, Matthew R Dillon, Nicholas A Bokulich, Christian C
621 Abnet, Gabriel A Al-Ghalith, Harriet Alexander, Eric J Alm, Manimozhiyan
622 Arumugam, Francesco Asnicar, et al. Reproducible, interactive, scalable and
623 extensible microbiome data science using QIIME 2. *Nature biotechnology*, 37(8):
624 852–857, 2019.

625 [26] Benjamin J Callahan, Paul J McMurdie, Michael J Rosen, Andrew W Han, Amy Jo A
626 Johnson, and Susan P Holmes. DADA2: High-resolution sample inference from
627 illumina amplicon data. *Nature methods*, 13(7):581–583, 2016.

628 [27] Nicholas A Bokulich, Benjamin D Kaehler, Jai Ram Rideout, Matthew Dillon, Evan
629 Bolyen, Rob Knight, Gavin A Huttley, and J Gregory Caporaso. Optimizing
630 taxonomic classification of marker-gene amplicon sequences with QIIME 2’s
631 q2-feature-classifier plugin. *Microbiome*, 6(1):1–17, 2018.

632 [28] Michael S Robeson, Devon R O’Rourke, Benjamin D Kaehler, Michal Ziemski,
633 Matthew R Dillon, Jeffrey T Foster, and Nicholas A Bokulich. RESCRIPt:
634 Reproducible sequence taxonomy reference database management. *PLoS
635 computational biology*, 17(11):e1009581, 2021.

636 [29] Christian Quast, Elmar Pruesse, Pelin Yilmaz, Jan Gerken, Timmy Schweer, Pablo
637 Yarza, Jörg Peplies, and Frank Oliver Glöckner. The SILVA ribosomal RNA gene
638 database project: improved data processing and web-based tools. *Nucleic acids
639 research*, 41(D1):D590–D596, 2012.

640 [30] R Core Team. *R: A Language and Environment for Statistical Computing*. R Foundation
641 for Statistical Computing, Vienna, Austria, 2021. URL <https://www.R-project.org/>.

642 [31] Jordan E Bisanz. qiime2r: Importing QIIME2 artifacts and associated data into r
643 sessions. v0.99, 2018. URL <https://github.com/jbisanz/qiime2R>.

644 [32] Paul J McMurdie and Susan Holmes. phyloseq: an R package for reproducible
645 interactive analysis and graphics of microbiome census data. *PloS one*, 8(4):e61217,
646 2013.

647 [33] Lauren M Bradford, Catherine Carrillo, and Alex Wong. An optimized pipeline for
648 detection of *Salmonella* sequences in shotgun metagenomics datasets. *bioRxiv*, 2023.

649 doi: 10.1101/2023.07.27.550528. URL
650 <https://www.biorxiv.org/content/early/2023/07/30/2023.07.27.550528>.

651 [34] Felix Mölder, Kim Philipp Jablonski, Brice Letcher, Michael B Hall, Christopher H
652 Tomkins-Tinch, Vanessa Sochat, Jan Forster, Soohyun Lee, Sven O Twardziok,
653 Alexander Kanitz, et al. Sustainable data analysis with snakemake. *F1000Research*, 10,
654 2021.

655 [35] Anthony M Bolger, Marc Lohse, and Bjoern Usadel. Trimmomatic: a flexible trimmer
656 for Illumina sequence data. *Bioinformatics*, 30(15):2114–2120, 2014.

657 [36] Derrick E Wood, Jennifer Lu, and Ben Langmead. Improved metagenomic analysis
658 with Kraken 2. *Genome biology*, 20(1):1–13, 2019.

659 [37] Brian Bushnell. BBMap: a fast, accurate, splice-aware aligner. Technical report,
660 Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2014.

661 [38] National Center for Biotechnology Information (US). *BLAST Command Line*
662 *Applications User Manual*, 2008.

663 [39] Tom Madden. The BLAST sequence analysis tool. *The NCBI handbook*, 2003.

664 [40] Chad R Laing, Matthew D Whiteside, and Victor PJ Gannon. Pan-genome analyses of
665 the species *Salmonella enterica*, and identification of genomic markers predictive for
666 species, subspecies, and serovar. *Frontiers in microbiology*, 8:1345, 2017.

667 [41] Cordula Wilrich and Peter-Theodor Wilrich. Estimation of the POD function and the
668 LOD of a qualitative microbiological measurement method. *Journal of AOAC*
669 *International*, 92(6):1763–1772, 2009.

670 [42] SH Park and SC Ricke. Development of multiplex PCR assay for simultaneous
671 detection of *Salmonella* genus, *Salmonella* subspecies i, *Salm. Enteritidis*, *Salm.*
672 *Heidelberg* and *Salm. Typhimurium*. *Journal of applied microbiology*, 118(1):152–160,
673 2015.

674 [43] Chayapa Techathuvanan, Frances Ann Draughon, and Doris Helen D’souza.
675 Real-time reverse transcriptase PCR for the rapid and sensitive detection of
676 *Salmonella typhimurium* from pork. *Journal of food protection*, 73(3):507–514, 2010.

677 [44] Susan R Leonard, Mark K Mammel, David W Lacher, and Christopher A Elkins.

678 Application of metagenomic sequencing to food safety: detection of shiga

679 toxin-producing *Escherichia coli* on fresh bagged spinach. *Applied and environmental*

680 *microbiology*, 81(23):8183–8191, 2015.

681 [45] Enrique Doster, Pablo Rovira, Noelle R Noyes, Brandy A Burgess, Xiang Yang,

682 Margaret D Weinroth, Lyndsey Linke, Roberta Magnuson, Christina Boucher, Keith E

683 Belk, et al. A cautionary report for pathogen identification using shotgun

684 metagenomics; a comparison to aerobic culture and polymerase chain reaction for

685 *Salmonella enterica* identification. *Frontiers in microbiology*, 10:2499, 2019.

686 [46] Sven Maurischat, Beatrice Baumann, Annett Martin, and Burkhard Malorny. Rapid

687 detection and specific differentiation of *Salmonella enterica* subsp. *enterica*

688 *Enteritidis*, *Typhimurium* and its monophasic variant 4,[5], 12: i:- by real-time

689 multiplex PCR. *International journal of food microbiology*, 193:8–14, 2015.

690 [47] MN Souza, FKM Lehmann, S De Carli, D Kipper, ASK Fonseca, N Ikuta, and

691 VR Lunge. Molecular detection of *Salmonella* serovars *Enteritidis*, *Heidelberg* and

692 *Typhimurium* directly from pre-enriched poultry samples. *British poultry science*, 60

693 (4):388–394, 2019.

694 [48] Kaiping Deng, Shizhen Steven Wang, Shannon Kiener, Emily Smith, Kai-Shun Chen,

695 Ruiqing Pamboukian, Anna Laasri, Catalina Pelaez, Jodie Ulaszek, Matthew Kmet,

696 et al. Multi-laboratory validation study of a real-time PCR method for detection of

697 *Salmonella* in baby spinach. *Food Microbiology*, 114:104299, 2023.

698 [49] Hannah V Pye, Gaëtan Thilliez, Luke Acton, Rafał Kolenda, Haider Al-Khanaq,

699 Stephen Grove, and Robert A Kingsley. Strain and serovar variants of *Salmonella*

700 *enterica* exhibit diverse tolerance to food chain-related stress. *Food Microbiology*, 112:

701 104237, 2023.

702 [50] Telleasha L Greay, Alexander W Gofton, Alireza Zahedi, Andrea Paparini, Kathryn L

703 Linge, Cynthia A Joll, and Una M Ryan. Evaluation of 16S next-generation

704 sequencing of hypervariable region 4 in wastewater samples: An unsuitable

705 approach for bacterial enteric pathogen identification. *Science of the total environment*,
706 670:1111–1124, 2019.

707 [51] Charles GB Caraguel, Henrik Stryhn, Nellie Gagné, Ian R Dohoo, and K Larry
708 Hammell. Selection of a cutoff value for real-time polymerase chain reaction results
709 to fit a diagnostic purpose: analytical and epidemiologic approaches. *Journal of*
710 *Veterinary Diagnostic Investigation*, 23(1):2–15, 2011.

711 [52] Ivan Rychlik. Composition and function of chicken gut microbiota. *Animals*, 10(1):
712 103, 2020.

713 [53] Claire Morvan, Filipe Folgosa, Nicolas Kint, Miguel Teixeira, and Isabelle
714 Martin-Verstraete. Responses of clostridia to oxygen: from detoxification to adaptive
715 strategies. *Environmental Microbiology*, 23(8):4112–4125, 2021.

716 [54] Canadian Poultry and Egg Processors Council. National microbiological baseline
717 study in broiler chicken December 2012–december 2013, 2016. URL
718 https://inspection.canada.ca/DAM/DAM-food-aliments/STAGING/text-texte/chem_testing_report_2012-2013_broiler_chicken_1471382238248_eng.pdf.

720 [55] Anna Zawistowska-Rojek, Tomasz Zaręba, and Stefan Tyski. Microbiological testing
721 of probiotic preparations. *International Journal of Environmental Research and Public*
722 *Health*, 19(9):5701, 2022.

723 [56] Canadian Food Inspection Agency. Bacterial pathogens in fermented tea (kombucha)
724 - April 1, 2018 to March 31, 2019. Technical report, Canadian Food Inspection Agency,
725 2019.

726 [57] James B Pettengill, Eugene McAvoy, James R White, Marc Allard, Eric Brown, and
727 Andrea Ottesen. Using metagenomic analyses to estimate the consequences of
728 enrichment bias for pathogen detection. *BMC research notes*, 5(1):1–7, 2012.

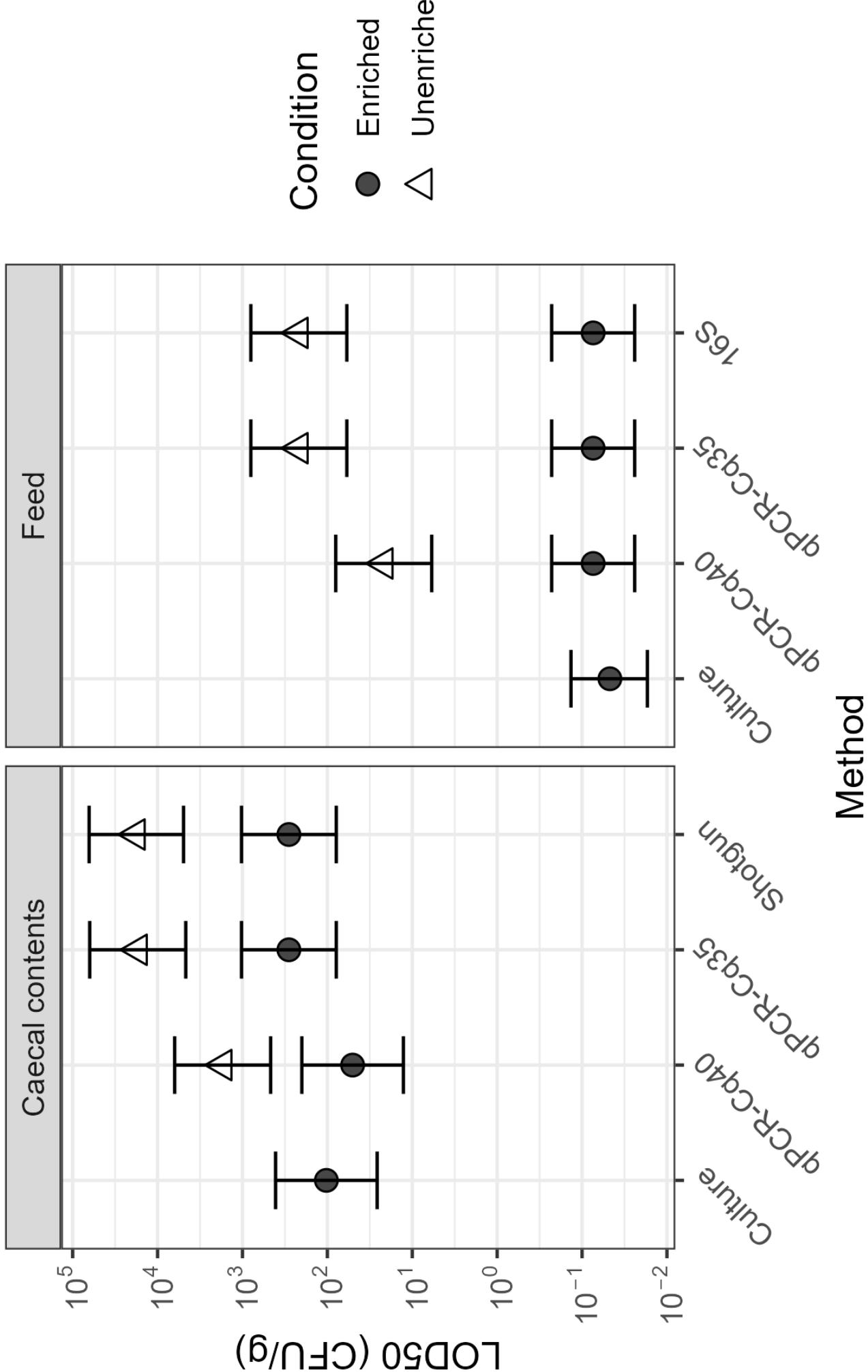
729 [58] Karen G Jarvis, James R White, Christopher J Grim, Laura Ewing, Andrea R Ottesen,
730 Junia Jean-Gilles Beaubrun, James B Pettengill, Eric Brown, and Darcy E Hanes.
731 Cilantro microbiome before and after nonselective pre-enrichment for *Salmonella*
732 using 16S rrna and metagenomic sequencing. *BMC microbiology*, 15(1):1–13, 2015.

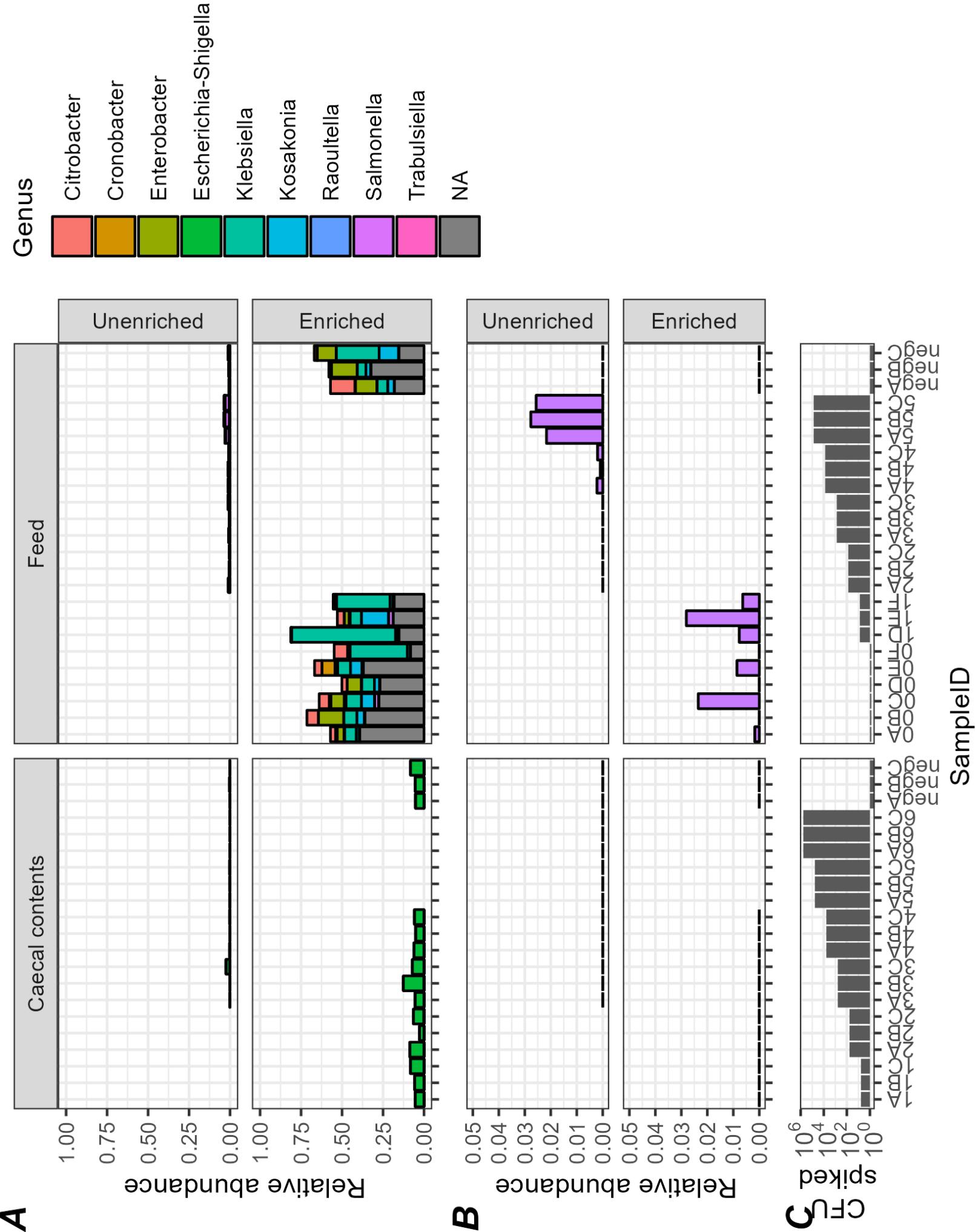
733 [59] Andrea R Ottesen, Antonio Gonzalez, Rebecca Bell, Caroline Arce, Steven Rideout,
734 Marc Allard, Peter Evans, Errol Strain, Steven Musser, Rob Knight, et al.
735 Co-enriching microflora associated with culture based methods to detect *Salmonella*
736 from tomato phyllosphere. *PLoS one*, 8(9):e73079, 2013.

737 [60] Jodi Woan-Fei Law, Nurul-Syakima Ab Mutalib, Kok-Gan Chan, and Learn-Han Lee.
738 Rapid methods for the detection of foodborne bacterial pathogens: principles,
739 applications, advantages and limitations. *Frontiers in microbiology*, 5:770, 2015.

740 [61] Petr Kralik and Matteo Ricchi. A basic guide to real time PCR in microbial
741 diagnostics: definitions, parameters, and everything. *Frontiers in microbiology*, 8:108,
742 2017.

743 [62] Adrián Ruiz-Villalba, Elizabeth van Pelt-Verkuil, Quinn D Gunst, Jan M Ruijter, and
744 Maurice JB van den Hoff. Amplification of nonspecific products in quantitative
745 polymerase chain reactions (qPCR). *Biomolecular detection and quantification*, 14:7–18,
746 2017.

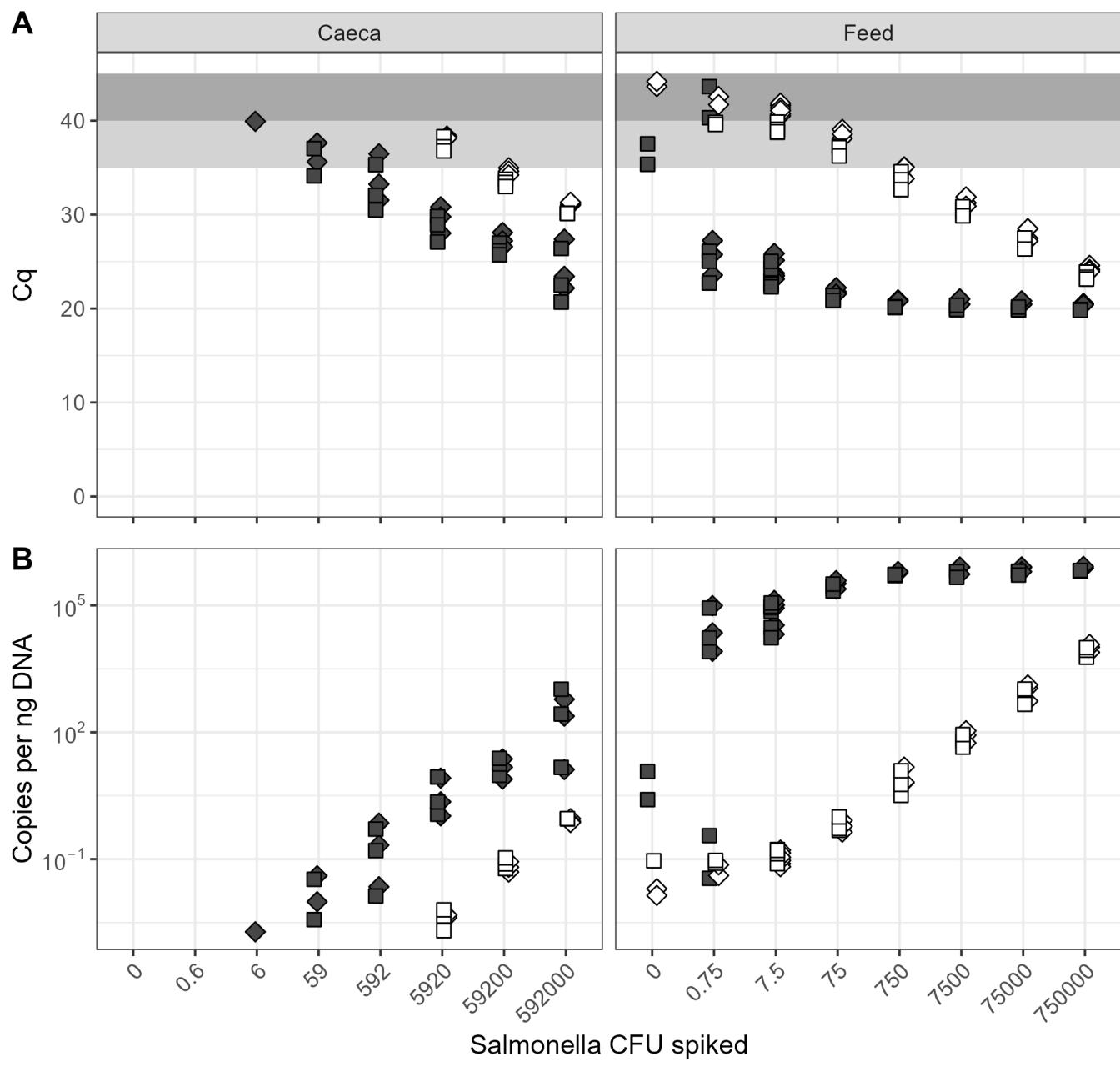

747 [63] Gabriela Delgado, Valeria Souza, Rosario Morales, Rene Cerritos, Andrea
748 Gonzalez-Gonzalez, José Luis Méndez, Virginia Vazquez, and Alejandro Cravioto.
749 Genetic characterization of atypical *Citrobacter freundii*. *PLoS One*, 8(9):e74120, 2013.


750 [64] Ana Victoria C Pilar, Nicholas Petronella, Forest M Dussault, Adrian J Verster, Sadjia
751 Bekal, Roger C Levesque, Lawrence Goodridge, and Sandeep Tamber. Similar yet
752 different: phylogenomic analysis to delineate *Salmonella* and *Citrobacter* species
753 boundaries. *BMC genomics*, 21:1–13, 2020.

754 [65] Joanna Pławińska-Czarnak, Karolina Wódz, Magdalena Kizerwetter-Świda, Tomasz
755 Nowak, Janusz Bogdan, Piotr Kwieciński, Adam Kwieciński, and Krzysztof Anusz.
756 *Citrobacter braakii* yield false-positive identification as *Salmonella*, a note of caution.
757 *Foods*, 10(9):2177, 2021.

758 [66] H Ye Simon, Katherine J Siddle, Daniel J Park, and Pardis C Sabeti. Benchmarking
759 metagenomics tools for taxonomic classification. *Cell*, 178(4):779–794, 2019.

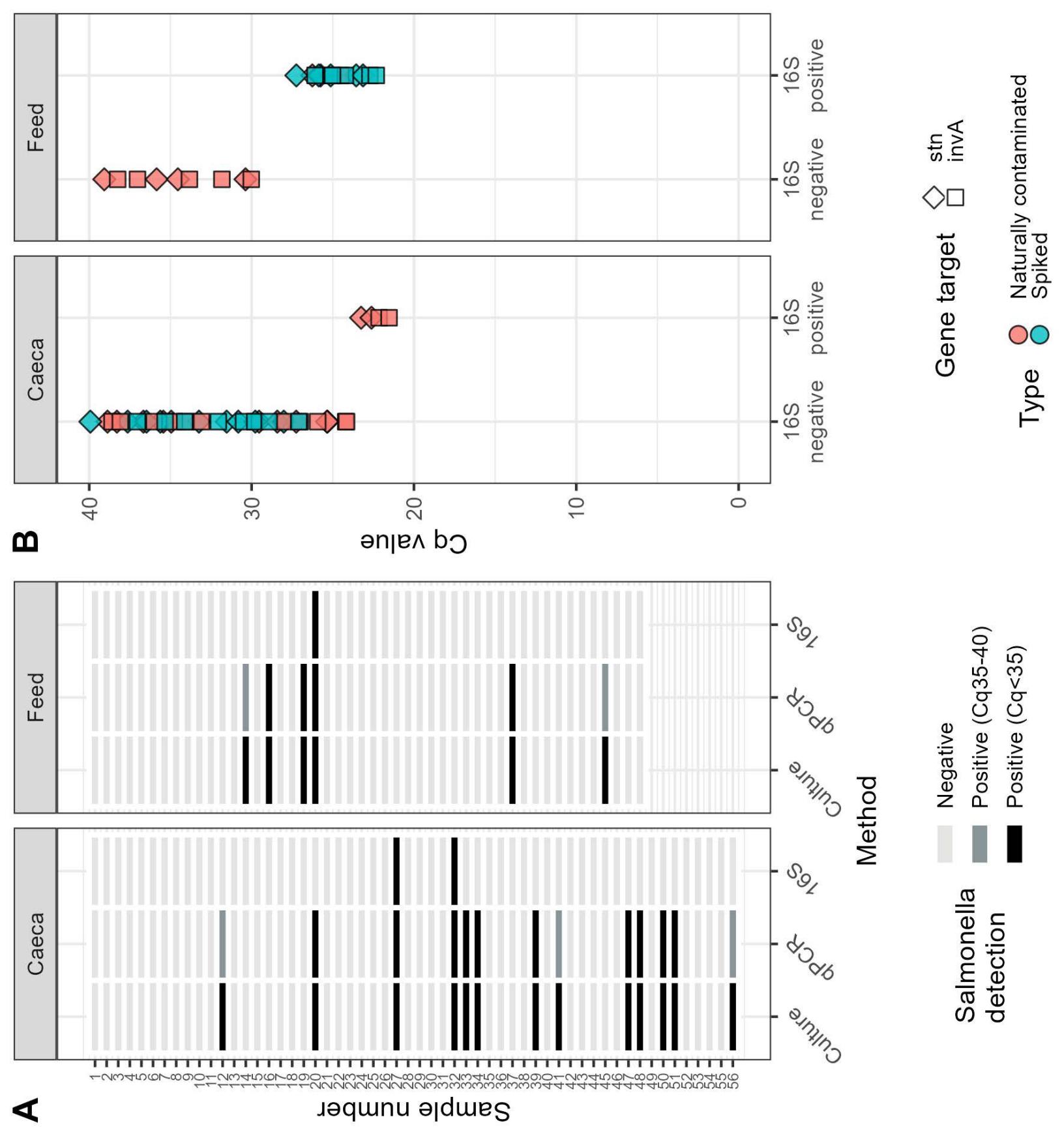
760 [67] James Johnson, Shan Sun, and Anthony A Fodor. Systematic classification error
761 profoundly impacts inference in high-depth whole genome shotgun sequencing
762 datasets. *bioRxiv*, pages 2022–04, 2022.



A

B

C



Condition ● Enriched

○ Unenriched

Gene □ invA

◇ stn

