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Abstract 

Cells are the fundamental structural and functional units of life. Studying the definition and 

composition of different cell types can help us understand the complex mechanisms 

underlying biological diversity and functionality. The increasing volume of extensive 

single-cell omics data makes it possible to provide detailed characterisations of cell types. 

Recently, there has been a rise in deep learning-based approaches that generate cell type 

labels solely through mapping query data to reference data. However, these approaches 

lack multi-scale descriptions and interpretations of identified cell types. Here, we propose 

Cell Decoder, a biological prior knowledge informed model to achieve multi-scale 

representation of cells. We implemented automated machine learning and post-hoc analysis 

techniques to decode cell identity. We have shown that Cell Decoder compares favourably 

to existing methods, offering multi-view interpretability for decoding cell identity and data 

integration. Furthermore, we have showcased its applicability in uncovering novel cell 

types and states in both human bone and mouse embryonic contexts, thereby revealing the 

multi-scale heterogeneity inherent in cell identities. 
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Introduction 

Cells are the basic structural and functional units of life1. The complex functions of 

different tissues and organs are rooted in cellular composition, and studying the 

organisation and function of various cells can help understand how organisms achieve 

normal life functions. Cell types have been defined according to their structures and 

functions for centuries. Usually, the same kind of cells exhibit similar characteristics and 

functions. Classifying and annotating cells can significantly aid in understanding their 

organisation and functions2. The increasing application of single-cell transcriptomic 

technologies in biological research has greatly advanced the study of cell types3-6. 

However, the varying properties exhibited in different cell types at multiple scales present 

substantial challenges for precise cell-type definition and annotation. 

The identification of cell types in single-cell transcriptomics data is usually reliant on a 

multi-step process. It includes the preprocessing of transcriptomics profiles, dimensionality 

reduction, and unsupervised clustering. Subsequently, category annotation is conducted 

based on manually curated differentially expressed marker genes7,8. Cell identification 

based on the traditional approach is time-consuming and laborious, and the selection of 

marker genes heavily relies on researchers' domain knowledge, which is empirical and 

easily biased. As the accumulation of annotated single-cell transcriptomics data provides a 

large number of reference datasets for cell type identification, some representative deep 

learning models, including fully connected neural networks, autoencoders and 

transformers, are applied for mapping and migrating from reference datasets to new 

datasets for cell-type identification9-12. While the aforementioned methods have achieved 

commendable performances across different datasets, their ‘black box’ nature renders them 

largely unexplainable. The essence of the model learning process and human reasoning is 

significantly different, making it difficult to understand how deep learning models learn13 

from single-cell data. However, for biological research, the transparency of the model is as 

important as its accuracy. A clear understanding of a model’s workings is indispensable for 

interpreting the biological significance of its findings. 

A significant trend in machine learning is the development of explainable deep 

learning methods (XAI)14. For instance, the incorporation of domain knowledge into the 

model for drug response prediction, tumour typing and biomarker discovery15-19. However, 

these methods do not fully leverage biological domain knowledge, particularly the 

interactions between proteins and the interdependencies among biological pathways. 

Therefore, constructing a multi-scale interpretable model for cell-type identification 

remains a challenge. 

Here, we propose an interpretable deep learning model called Cell Decoder, which 

embeds multi-scale biological knowledge into the graph neural network, enabling the 

decoding of distinct cell identity features. Cell Decoder constructs a hierarchical graph 

structure based on the interactions between genes, the mapping relationships between 

genes and pathways, and the hierarchical pathway information. Through the application of 

automated machine learning techniques, the model's representation power is enhanced, 

facilitating precise and robust cell-type identification and multi-scale data integration. 

Moreover, we have developed a multi-view posterior probability interpretation method, 

elucidating the model's learning and decision-making processes and mapping them to 

biological explanations. Cell Decoder facilitates the understanding of the interactions, 

pathways and biological processes that distinguish different cell types, providing 

significant implications for deeper exploration of cell identity and function. 
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Results 

Overview of Cell Decoder 

Traditional deep neural networks exhibit heightened capacity at the cost of reduced model 

interpretability. Here, we aim to design a model that can maintain robust representational 

power while offering biologically interpretable insights for identifying cell identity 

features. Cell Decoder designs an explainable graph neural network to model the multi-

scale biological interactions and gene expressions for cell-type identification. 

First, Cell Decoder leverages biological domain knowledge from curated databases 

and gene expressions as inputs. This biological domain knowledge includes protein-protein 

interaction (PPI) networks, gene-pathway maps and pathway-hierarchy relationships 

(Fig.1a). Cell Decoder processes these relationships to construct multi-scale interactions, 

including the gene-gene graph, gene-pathway graph, pathway-pathway graph, pathway-

biology process (BP) graph and BP-BP graph (Fig.1b), represented as graph structures and 

fed into the model as inputs. Concurrently, gene expressions are used as features for each 

node. 

To integrate information within the same resolution or across different scales 

effectively, Cell Decoder designs intra-scale and inter-scale message passing layers 

respectively (Fig.1b). The former shares messages within homogeneous biological entities 

such as different genes, pathways or BPs while the latter aggregates information from a 

fine-grained resolution to a coarse-grained one, i.e. from genes to pathways or from 

pathways to BPs. Then, Cell Decoder utilises mean pooling to summarise the node 

representations of the BPs in the last graph layer into cell representations and adopts a 

multi-layer perceptron classifier for cell-type identification. Cell Decoder is trained end-to-

end by minimising the cross-entropy loss between predicted and ground-truth cell labels. 

To adapt to various intricate cell-type identification scenarios, Cell Decoder utilises an 

automated machine learning (AutoML) module to search the model design automatically, 

encompassing the choices of intra-scale and inter-scale layers, hyper-parameters and 

architecture modifications. The searched Cell Decoder instantiation is specifically tailored 

to fit the targeted cell-type identification scenario, consequently leading to improved 

results. 

Lastly, to provide model interpretability and gain insights into the identified cell types, 

Cell Decoder incorporates post-hoc interpretability modules (Fig.1c). Through hierarchical 

Gradient-weighted Class Activation Mapping (Grad-CAM)20 analysis of the fitted model, a 

diverse set of biological features can be identified, including pathways and biological 

processes crucial for predicting different cell types. This provides a multi-view biological 

characterisation that enhances our ability to decode cell identity. Moreover, leveraging 

attention scores can further differentiate cell types based on the PPI network within cells 

(Methods). 

 

Cell Decoder achieves superior performances and robustness for cell-type 

identification 

We benchmarked Cell Decoder using 7 different datasets, including human blood 

(HU_Blood)21, human bone marrow (HU_Bone)6, human liver (HU_Liver)22,23, human 

kidney (HU_Kidney)24, human pancreas (HU_Pancreas)25-27, mouse lung (MU_Lung) and 

mouse pancreas (MU_Pancreas)28 (Supplementary Data 1) against 9 popular cell 

identification methods9,11,12,29-34 on its prediction accuracy and Macro F1 score. Macro F1 

score here is defined as the Macro average of the F1 scores for each cell type. Considering 

the prevalence of a few cell types within the entirety of a single-cell dataset, the Macro F1 
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score is more suitable than mere accuracy for evaluating the model’s capability in 

recognising various cell types. 

Cell Decoder ranked first for the average of both Macro F1 score (Fig. 2a) and 

accuracy across all datasets (Supplementary Fig. 1a and Supplementary Data 2). Compared 

to the second-best deep learning method (ACTINN Macro F1 score at 0.72), Cell Decoder 

showed a 12.5% improvement in Macro F1 score. In each dataset, Cell Decoder has 

achieved the best performance in terms of the Macro F1 metric. Considering the inherent 

noise in single-cell datasets, the feasibility of model transfer has been limited. To gauge the 

capacity of fitted model transferring across diverse datasets, we conducted feature 

perturbation experiments (Methods). These experiments introduced random noise with 

varying rates of perturbations into the test data. As the level of data perturbation increases, 

all models exhibit a certain degree of decline in prediction performance. Compared to other 

models with transfer capabilities, Cell Decoder has demonstrated remarkable 

improvements in robustness across all 7 datasets (Fig. 2b). This indicates that Cell Decoder 

can recognise the efficient identity of different cell types and has strong resistance to data 

noise. 

For cell identification, dealing with imbalanced cell-type proportions within datasets 

and distribution shifts between reference and query datasets are common challenges. 

Therefore, evaluating the performance of models under these two scenarios is significantly 

important. Imbalanced distribution of epithelial cell types in the MU_Lung. AT2 cells make 

up 82% of the reference data, while AT1 cells, Ciliated cells, and Club cells account for 

8%, 8%, and 2%, respectively (Fig. 2c). Cell Decoder outperforms other deep learning 

models in predicting accuracy for the four imbalanced cell types (Fig. 2d). In scenarios 

with imbalanced cell types of Endothelial cells, Immune cells and Mesenchymal cells in 

MU_Lung, Cell Decoder also achieves the highest prediction accuracy for the minority cell 

types (Supplementary Fig. 1b-g). In the HU_Liver dataset, there is a clear data shift, with 

the proportions of cell types in the reference and query datasets exhibiting opposite trends 

(Fig. 2e). Hepatocyte, Plasma, Mono/Macro and Portal endothelial (highlighted in red in 

Fig. 2f) have a higher proportion in the query dataset compared to the reference dataset. 

Cell Decoder achieves a recall of 0.88 on the query dataset, marking a 14.3% improvement 

over the second-best method, ACTINN, which achieves a recall of 0.77. In comparison, 

Cell BLAST and TOSICA have recalls of 0.69 and 0.68, respectively. We also evaluated 

the performance of the deep learning models in terms of precision and Macro F1 scores. 

Cell Decoder achieves a precision of 0.86 and a Macro F1 score of 0.85, demonstrating 

significant improvements of 11.7% and 23.2% over the second-best model (Supplementary 

Fig. 1h-i). 

We then conducted ablation experiments on the model by randomly removing 

biological prior knowledge (nodes and edges in the graph) and testing the retrained model 

(Methods). When the perturbation rate is 100%, it implies that the edges of the model are 

fully removed, with the exception of self-loop. As the rate of graph node perturbation 

increases, model performance decreases in almost all datasets, except HU_Pancreas and 

MU_Lung, where it remains relatively stable (Supplementary Fig. 2a). When randomly 

perturbing the edges of the model, there is also a noticeable decrease in prediction 

performance. In the case of the MU_Lung dataset, the Macro F1 score and accuracy 

slightly decrease. For both HU_Blood and HU_Bone, the Macro F1 score and accuracy 

initially decline but eventually exhibit a modest recovery (Supplementary Fig. 2b). This 

suggests that biologically informed modelling improves deep learning performance of 

predicting cell type. 
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Cell Decoder enables multi-scale data integration without batch labels 

In-depth cell identification requires integration across multiple datasets. However, batch 

effects can arise in different datasets due to factors such as varying experimental protocols. 

Cell Decoder can effectively identify cell types, enabling the integration of diverse datasets 

without the requirement of batch labels. By incorporating multi-scale biological prior 

knowledge into Cell Decoder (Fig. 1a), we can obtain low-dimensional embedding of cells 

at pathway and biological process layers. We evaluated the multi-scale data integration 

capability of Cell Decoder on the human immune cell dataset35-39 with 10 different batches 

provided by scIB40 in comparison with Harmony41, Scanorama (embedding)42, and scVI43. 

The data integration performance of Cell Decoder is illustrated by the pathway embedding 

and biological process (BP) embedding (Fig. 3a, b and Supplementary Fig. 3). Cell 

Decoder effectively removed batch effects between individuals and platforms, while 

preserving biological variations. We evaluated the performance of these methods using a 

total of eight metrics, divided into two categories: batch correction and biological variation 

preservation. The embedding at pathway layer, i.e., Cell Decoder (Pathway) achieved the 

best results on batch ASW, kBET and graph iLISI metrics, indicating its superior batch 

correction performance. Moreover, the embedding at BP layer, i.e., Cell Decoder (BP) 

demonstrated significant improvements over other methods in preserving biological 

variation at NMI cluster, ARI cluster, cell type ASW and isolated label F1 metrics 

(Supplementary Data 3). On an overall basis (the average of all metrics), Cell Decoder 

(BP) achieved a 20.5% improvement (Fig. 3c) compared with existing methods. 

Similar to domain generalization techniques44, Cell Decoder can generalize to a new 

batch that it has never seen during training. Namely, with a pre-trained model, all data can 

be embedded into the same low-dimensional space without any finetune process, which 

significantly enhances the efficiency and the usability of the tool for further application. 

Furthermore, Cell Decoder can extract generalizable representations from a single batch. 

The MU_Lung dataset comprises five batches (Reference, Endothelial cells, Epithelial 

cells, Immune cells, and Mesenchymal cells), among which Reference (ref) was used as the 

training set, while Endothelial cells (endo), Epithelial cells (epi), Immune cells (immu), 

and Mesenchymal cells (mes) were employed as the test sets. The UMAP visualisation 

highlighted the batch effects in the MU_Lung raw data. Meanwhile, the integration results 

in a low-dimensional space showed the ability of Cell Decoder to remove these batch 

effects (Fig. 3d-f). Compared to the other three data integration methods, Cell Decoder, 

pre-trained on only one batch of data, outperformed in batch effect correction but exhibits 

slightly weaker performance in biological variation preservation (Fig. 3g). However, Cell 

Decoder retains the unique capability of providing cell-type identification results, which 

sets it apart from the other methods. 

 

Discovery of novel cell types and cell states using Cell Decoder 

One significant challenge in cell identification tasks is discovering cell types within the 

query dataset that are absent from the reference dataset. The majority of existing methods 

tend to categorise novel classes by forcefully aligning them with the closest known class. 

Such approaches are not able to discover novel cell types or cell states in the query dataset. 

Benefiting from biologically informed modelling, Cell Decoder possesses significant 

potential for capturing subtle differences between novel and known cell types. By 

predicting the probabilities of different cell types, it can automatically uncover potential 
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new cell types. Moreover, it can decode the identity features of new cell types based on 

prior knowledge and post-hoc analysis (Methods).  

To verify Cell Decoder’s ability to discover novel cell types, we masked 'Mono/Macro 

cells' in the training dataset HU_Kidney, while this cell type exists in the test set, thus 

simulating the scenario of encountering new cell types in the query dataset (Fig. 4a). Cell 

Decoder provides the predicted probabilities for each cell. If the highest probability falls 

below a threshold (0.95), the cell is classified as 'Novel', suggesting it is likely a new cell 

type not included in the training set (Fig. 4a right). Despite their high predictive accuracies, 

the methods such as Seurat, SingleR, and ACTINN (Fig. 2a) are unable to automatically 

identify newly emerged cell types in the query dataset. Instead, they forcibly categorise 

them as existing cell types in the reference. TOSICA (cutoff=0.95) and Cell BLAST 

(P<=0.05) also identify novel cells in the query dataset by predicting the probabilities of 

different cells. On the masked Mono/Macro cell type, Cell BLAST achieves a recall of 

0.20, while the remaining Mono/Macro cells are predicted as CD4T, CD8T cells, with a 

small portion being labeled as ambiguous (Fig. 4b middle). TOSICA correctly labels 37% 

of Mono/Macro cells but predicts a larger portion of cells as B cells (Fig. 4b right). In 

contrast, Cell Decoder achieves a recall of 0.94 for Mono/Macro cells, correctly identifying 

the vast majority of Mono/Macro cells in the query dataset. This represents a significant 

improvement compared to the other two methods (Fig. 4b left). 

Identifying different cell states is also crucial, as a cell type may exist in various 

states45. Transcriptomic changes during cell state transitions are often more continuous than 

cell types. Consequently, in low-dimensional embedding spaces, these cells tend not to 

form distinct clusters but rather exhibit a continuous distribution. Manual identification 

methods relying solely on marker genes often face the challenges in identifying different 

cell states within the same cell type. However, Cell Decoder, as an automated cell 

identification method, is not dependent on specific marker genes. Instead, it is built upon 

biological prior knowledge, facilitating the extraction of cell identity features. This presents 

a promising potential for uncovering various cell states. In the HU_Bone dataset, some 

multipotent hematopoietic stem and progenitor cells (HSPC) cells were predicted as 

Erythrocytes by Cell Decoder (Fig. 4c). We re-labelled this cell type as HSPC_Er. Cells 

predicted to be consistent with the original labels of HSPC and Erythrocytes were marked 

as HSPC_HSPC and Er_Er, respectively. HSPC_HSP, HSPC_Er, and Er_Er exhibited a 

continuous change trend in the UMAP, with HSPC_Er positioned in an intermediate state 

between the two (Supplementary Fig. 4). We calculated the differential genes for the three 

cell types and performed hierarchical clustering (Fig. 4d). The differentially expressed 

genes showed that HSPC_Er cells were more similar to Er_Er cells and Er_Er cells 

exhibited the highest activation level in immunological processes, whereas HSPC_HSPC 

cells showed a more pronounced activation in the metabolism of RNA process. HSPC_Er 

cells showed the highest activation score in the integrin signalling pathway (Fig. 4e). 

 

Cell Decoder reveals cellular dynamic changes in mouse embryogenesis 

Understanding the lineage relationships between cells and cell types, as well as the 

molecular programs governing the emergence of each cell type, constitutes a fundamental 

goal in developmental biology. For the mouse embryogenesis dataset46-49, the entire 

embryo has been profiled using scRNA-seq. However, systematically integrating the 

associated data remains a challenge. This challenge is attributed to technical issues such as 

varying technologies and batch effects, as well as the complexity of mouse development50. 

We integrated data from three stages of mouse embryo development at E6.25, E6.5, and 
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E6.75, obtained from different technologies (Supplementary Data 4). In the mouse 

embryogenesis dataset, there are a total of seven cell types, namely epiblast (3302 cells), 

extraembryonic ectoderm (1220 cells), primitive streak and adjacent ectoderm (1214 cells), 

extraembryonic visceral endoderm (606 cells), embryonic visceral endoderm (295 cells), 

nascent mesoderm (159 cells) and parietal endoderm (44 cells). 

Cell Decoder successfully integrated data from different developmental stages and 

demonstrated its batch correction capability through UMAP visualisation computed on the 

biological process embeddings (Fig. 5a). We randomly partitioned the data, allocating 80% 

to the training set and 20% to the validation set for model fitting. Furthermore, in the 

UMAP plot, we annotated the cell-type predictions both by Cell Decoder and the original 

labels from the data (Fig. 5b). The visceral endoderm encompasses the extraembryonic 

visceral endoderm (ExVE) and the embryonic visceral endoderm (EmVE). We learned the 

differences between ExVE and EmVE (E6.5 and E6.75) across various biological 

processes using Cell Decoder. The notably higher Grad-CAM scores of EmVE in cell-cell 

communication and extracellular matrix categories, as opposed to ExVE, suggested a 

heightened activity in these biological processes. Furthermore, EmVE at the E6.75 stage 

exhibited a significant level of programmed cell death, while ExVE showed pronounced 

activity in the immune system (Fig. 5c). Cell Decoder learns representations of EmVE and 

ExVE in the BP embedding, enabling further clustering into four subtypes (Fig. 5d). At 

E6.5, C0 is the predominant subtype, followed by C1 and C3, while C2 is the smallest 

subtype. However, at E6.75, the highest proportion is observed for C1, followed by C2 

cells (Fig. 5e). The different subtypes showed distinct differences in the expression of 

marker genes in EmVE and ExVE. Cer1 and Lefty1 are highly expressed in C3 and C2, 

while Nodal exhibits the highest expression in C3, and Fgf8 exhibits the highest expression 

in C2 (Fig. 5f). Cell Decoder elucidates the different activation levels of the four cell 

subtypes across various biological pathways using Grad-CAM scores. For example, C2 

showed a high activation in the NODAL, MTOR, WNT and MAPK signalling pathways 

(Fig. 5g). Cell Decoder also provides interaction analysis based on attention mechanisms, 

revealing that the interactions related to anterior-posterior axis formation. For example, 

Lefty1-Nodal and Fgf8-Otx2 exhibited the highest scores in the C2 subtype (Fig. 5h). Cell 

Decoder reveals the dynamic changes of different cells during mouse embryonic 

development and identifies distinct subtypes of cells with diverse developmental functions. 

 

Multi-view interpretability in Cell Decoder for cell identification 

Due to the diverse properties exhibited by different cell types at multiple scales, defining, 

categorising, and understanding them pose significant challenges45. Probabilistic statistical 

and traditional deep learning-based cell identification methods can classify different cell 

types. However, most of these methods9-12,31 lack interpretability. While TOSICA9 explains 

the mapping from gene to pathway through an attention mechanism, it falls short in 

decoding the identity features of a cell type. A cell type is generally considered to express 

an assemblage of cellular modules (protein complexes, pathways, and molecular machines 

constitute the structure and function of the cell) responsible for discrete subfunctions51. 

Cell Decoder leverages biological prior knowledge (protein-protein interactions, gene-

pathways, biological process) to enhance the transparency of its network structure (Fig. 

1a). Additionally, we have developed a multi-view post-hoc analysis (Methods) method to 

uncover the decision-making process of the model, thereby decoding different cell-type 

identities. In HU_Bone, Cell Decoder is capable of identifying differential biological 

process activations among different cell states (Fig. 4e). For HSPC, autophagy is crucial 
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for maintaining their self-renewal capacity. Conversely, Erythrocytes play a role in 

immunity, acting as immune sentinels52. Beyond the hierarchical interpretation of gene-

pathway-biological process relationships, Cell Decoder is also capable of explaining 

differences in protein-protein interaction pairs across different cell types through an 

attention mechanism (Fig. 1c). During mouse embryonic development, Cell Decoder learns 

a critical interaction pair (Lefty1-Nodal), revealing multi-level biological differences in the 

ExVM and EmVE cells (Fig. 5h). Cell Decoder provides a more comprehensive and in-

depth perspective for defining and understanding different cell types or states. 

 

Discussion 

We propose a novel biologically informed graph neural network architecture that integrates 

protein-protein interactions, gene-pathway mappings and hierarchical pathway information 

into a hierarchical graph neural network for decoding cell identity. This approach aims to 

simulate the intracellular gene/protein interactions and aggregate information from genes to 

pathways, then to biological processes. We utilised automated machine learning techniques 

to enhance model performance and streamline the cumbersome process of deep learning 

parameter tuning. Cell Decoder exhibits strong transparency and interpretability. Through 

multi-view posterior probability analysis of the fitted model, we gained deeper insights into 

different cell types across scales and interactions.  

Cell Decoder has outperformed existing advanced methods across diverse benchmarks. 

In human and mouse cell identification tasks, Cell Decoder achieves accurate and stable 

knowledge transfer, demonstrating strong resilience against data noise and data shift. By 

learning cell-type-specific features, Cell Decoder achieves accurate data integration at 

different scales (pathways embedding and biological process embedding) without batch 

labels. We also explored a novel data integration approach, i.e., pretraining on one batch 

and transferring the model to others. This method not only accomplishes cell identification 

but also enables cross-batch data integration. Biologically informed modelling has 

effectively boosted the ability to discover new cell types or states. 

Despite having the above advantages in decoding cell identity, Cell Decoder may face 

potential limitations in selecting biological knowledge for modelling. Our model leverages 

domain knowledge from multiple databases53-55 to enhance the interpretability of deep 

learning. However, the effectiveness of prior knowledge varies across different datasets. 

The results of knowledge ablation experiments on 7 datasets indicated that different tissues 

and organs required varying biological knowledge, demonstrating that the choice of 

biological knowledge modelling has a certain impact on the model's performance. Another 

limitation involves the interpretation and validation of newly learned cell type identity 

features. While Cell Decoder captures novel changes in the query data, the validation of 

these changes at different scales requires additional domain expertise. Additionally, Cell 

Decoder relies on supervised training with labelled data, and its performance is constrained 

by the availability and quality of limited annotated data. 

Meanwhile, with the development of single-cell multi-omics56 technologies that can 

capture protein expression levels within individual cells, Cell Decoder can naturally extend 

to multimodal datasets, thereby gaining more insights into cell-type regulation. Due to the 

incorporation of gene/protein interaction information, Cell Decoder opens up the 

possibility of predicting cell responses to genetic perturbations57. We believe this can bring 

new interpretability and biological insights to define and understand the identity features of 

different cell types. 
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Methods  

Biologically informed matrix  

We integrated STRING V11.5 (https://string-db.org), MSigDB (https://www.gsea-

msigdb.org/gsea/msigdb) and Reactome (https://reactome.org) database to build the 

biologically informed hierarchy graph. We filtered the protein-protein interactions  with 

high confidence (combinations score>=850) from STRING to construct the graph 𝐺 =
(𝑉, 𝐸) where 𝑉 is the set of protein nodes in graph 𝐺, and E is the set of edges between 

any two nodes in graph 𝐺. The adjacency matrix 𝐴 is in the form a binary matrix with 

𝐴𝑖,𝑗 = 1 if the i-th protein interact with jth protein and 0 otherwise. We use depth-first 

search (DFS) to covert the pathway-directed acyclic graph (DAG) to a scalable hierarchy 

network with parameter n layers. Then, we map the graph 𝐺 to hierarchy pathways using 

Reactome and MsigDB. The mask matrix 𝑀 with columns corresponding to pathways and 

rows corresponding to genes, with 𝑀𝑖,𝑗 = 1 if the ith gene is in the 𝑗𝑡ℎ pathway and 0 

otherwise. 

 

The architecture of Cell Decoder 

Cell Decoder aims to identify cell types from gene expressions by explicitly modelling the 

multi-scale biological interactions, i.e., genes, pathways and biological processes. 

Specifically, Cell Decoder designs intra-scale and inter-scale graph neural network (GNN) 

layers to learn the complex patterns of multi-scale structures and properties through message 

passing58. Additionally, Cell Decoder incorporates AutoML techniques to automatically 

design the intra-scale and inter-scale GNN layers as well as the hyper-parameters, thereby 

enhancing the adaptivity of the model in handling different application scenarios. To further 

improve the interpretability, Cell Decoder adds post-hoc interpretability modules to provide 

explainable analyses for both features and multi-scale interactions (Supplementary Fig. 5). 

 

Multi-scale Graph Cell Decoder captures the interactions among genes, pathways and 

biological processes using a multi-scale graph. The gene expressions and interactions 

between genes are represented as an undirected graph with an adjacency matrix 𝐀gn ∈
{0,1}𝑛×𝑛and a feature matrix 𝐗 ∈ ℝ𝑛×𝑓, where 𝑛 denotes the number of genes and 𝐀𝑖,𝑗

gn
 

indicates whether the 𝑖-th gene interacts with the 𝑗-th gene. Cell Decoder also considers 

the gene-pathway relationship 𝐀gn→pw, where 𝐀𝑖,𝑗
gn→pw

 indicates whether the 𝑖-th gene 

belongs to the 𝑗 -th pathway. Similarly, the pathway-biological process relationship is taken 

into account and denoted as 𝐀pw→bp. Then, Cell Decoder constructs the pathway 

adjacency matrix by utilising the multi-scale biological knowledge: 

𝐀pw = min(𝐀pw→gn × 𝐀gn × 𝐀gn→pw, 1), 
where the operator × is the matrix multiplication, and 𝐀pw→gn is the transpose of 

𝐀gn→pw. The biological process adjacency matrix is similarly constructed, i.e., 

𝐀bp = min(𝐀bp→pw × 𝐀pw × 𝐀pw→bp, 1). 

 

Multi-scale Message Passing The objective of the multi-scale message-passing layers in 

Cell Decoder is to effectively aggregate information from genes, pathways, and biological 

processes. To incorporate multi-scale information, Cell Decoder consists of two types of 

GNN layers: intra-scale layers and inter-scale layers. For intra-scale layers, Cell Decoder 

aggregates messages from the neighborhoods within each scale and subsequently updates 

the node representations as follows: 
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𝐇gn ← GNNIntra(𝐇gn, 𝐀gn), 𝐇pw ← GNNIntra(𝐇pw, 𝐀pw), 𝐇bp ← GNNIntra(𝐇bp, 𝐀bp), 

where 𝐇 ∈ ℝ𝑛×𝑑 is the node representation, and 𝑑 denotes the dimensionality. For inter-

scale layers, Cell Decoder updates the node representations by aggregating the 

neighborhood messages from preceding scales, i.e., 

𝐇pw ← GNNInter(𝐇gn, 𝐀gn→pw), 𝐇bp ← GNNInter(𝐇pw, 𝐀pw→bp). 

The execution of intra-scale layers and inter-scale layers follows an alternating pattern, 

starting from genes, then pathways, and finally biological processes. Finally, Cell Decoder 

utilises mean pooling to summarise the node representations into cell representations, 

which are subsequently employed for cell-type identification, i.e., 

g ← MEAN(𝐇bp), 𝒚̂ ← MLP(g), 

where g ∈ ℝ1×𝑑 represents the cell representation, MLP denotes a multi-layer perceptron 

classifier, MEAN(⋅) is the mean pooling operator, 𝒚̂ ∈ ℝ𝐶×1 represents the predicted 

probability distribution of the cell types, and 𝐶 is the number of the cell types. To learn the 

model parameters, Cell Decoder adopts the cross-entropy loss function:   

ℓ(𝒚, 𝒚̂) = − ∑ 𝒚𝑐 log 𝒚̂𝑐 + (1 − 𝒚𝑐) log(1 − 𝒚̂𝑐)

𝐶

𝑐=1

, 

where 𝒚 denotes the ground-truth cell types. 

 

Automated Model Design Given that biological mechanisms in various cells could show 

intricate patterns, it becomes crucial to identify optimal hyper-parameters and GNN layers 

for improved cell-type identification. In this regard, we employ AutoML techniques to 

automate the process of architecture design and hyper-parameter selection. To maintain 

simplicity, we adopt a classical grid search method59, which systematically enumerates and 

selects the best architectures and hyper-parameters from the entire set of possibilities. The 

search space of Cell Decoder encompasses intra-scale layers, inter-scale layers, hyper-

parameters, and other architectural modifications, defining the feasible ranges for 

exploration and selection. 

 

Intra-scale Layers Our search space includes two types of intra-scale layers: Graph 

Attention Networks (GAT)60 and Graph Isomorphism Networks (GIN)61 . 

GAT employs an attention mechanism for neighborhood aggregation, and its formulation is 

as follows: 

 𝐇 ← 𝜎(𝛼𝐇𝐖⊺), 𝛼𝑖,𝑗 =
𝐀𝑖,𝑗 exp (𝜎(𝒂⊺[𝐖𝐡𝑖||𝐖𝐡𝑗])) 

∑ 𝐀𝑖,𝑘 exp(𝜎(𝒂⊺[𝐖𝐡𝑖||𝐖𝐡𝑘]))𝑘=1

, 

where 𝐖 represents a learnable parameter matrix used to transform the node 

representations, 𝒂 is a learnable vector for calculating the attention weights 𝛼 for each 

edge, (⋅)⊺denotes the transpose operation, 𝐡𝑖 denotes the feature vector of the 𝑖 -th node, 

|| denotes the concatenation operation, and 𝜎 represents the LeakyReLU activation 

function. Multi-head attention mechanism is also utilised to stabilise the training process 

and improve performance. 

On the other hand, GIN, which adopts a sum aggregation, can be formulated as follows: 

𝐇 ← MLP((𝐀 + (1 + 𝜖) ⋅ 𝐈)𝐇), 

where 𝜖 is a learnable parameter, 𝐈 denotes the identity matrix, and MLP represents a 

multi-layer perceptron with learnable parameters. 
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Inter-scale Layers For inter-scale layers, our search space contains two operations: mean 

pooling62 and attention pooling63. 

The mean pooling computes the average of the neighbour representations from the 

previous layers to obtain the node representation in the current layer. For instance, to 

obtain the representation of the i-th pathway in gene-pathway message-passing, the model 

aggregates all of its related gene representations and calculates the average as follows: 

𝐡𝑖
pw

= MEAN ({𝐡𝑗
gn

: 𝐀𝑖,𝑗
gn→pw

= 1}). 

In the case of attention pooling, the calculation is similar to Eq. (7), with the difference that 

we first employ mean pooling to obtain the node representation used in calculating attention, 

and then utilise the inter-scale adjacency matrix to calculate and aggregate the messages. 

For example, the hidden representation for the pathways is calculated as: 

𝐡𝑖
pw

← ∑ 𝛼𝑖,𝑗

𝑗

𝐖𝐡𝑗
gn

, 𝛼𝑖,𝑗 =
𝐀𝑗,𝑖

gn→pw
exp (𝜎 (𝒂⊺[𝐖𝐡𝑗

gn
||𝐖𝐡𝑖,mean

pw
])) 

∑ 𝐀𝑘,𝑖
gn→pw

exp (𝜎(𝒂⊺[𝐖𝐡𝑘
gn

||𝐖𝐡𝑖,mean
pw

]))𝑘=1

, 

where 𝐡𝑖,mean
pw

 is calculated by the mean pooling. 

 

Hyper-parameters Additionally, our search space encompasses commonly used hyper-

parameters, including the dimensionality of the node representation, the learning rate, and 

the number of samples per class utilised for training. If there exist some classes that have 

fewer or more training samples than 𝐾, we conduct over-sampling or down-sampling 

techniques to obtain exact 𝐾 training samples for each class. 

 

Architecture Modification Lastly, our search space includes two architecture 

modification techniques to facilitate more flexible architecture design: one-hot encoding of 

genes and jumping connections. 

For the one-hot encoding, we introduce a learnable embedding matrix for each gene node, 

which is concatenated with the node features as follows: 

𝐗 ← [𝐗, 𝐗para], 

where 𝐗para denotes the trainable embedding matrix. This enables the model to effectively 

capture specific information pertaining to each gene, enhancing its ability to learn gene-

specific characteristics. Regarding the jumping connections, we allow the model to 

concatenate the raw node features with the final node representation learned by the GNN 

layers. The concatenated features are then fed into the classifier as follows: 

𝒚̂ ← MLP([𝐠, 𝐠′]). 
where 𝐠′ is obtained by flattening the raw features 𝐗 for each graph into a vector. This 

strategy draws inspiration from the widely employed residual connections in deep 

learning64 and the jumping knowledge network in GNNs65. By incorporating jumping 

connections, we aim to improve the expressiveness of the model and enhance training 

stability. 

 

Multi-view Model Interpretability 

In order to interpret the model, we employ three types of post-hoc analysis to assess the 

importance of features, edges, and cross-edges, respectively. 

 

Feature Importance We utilise two methods to measure the feature importance: gradient-

based methods (referred to as Grad) and Gradient-weighted Class Activation Mapping 
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(GradCAM)20. For Grad, we calculate the L2 norm of the feature gradients with respect to 

the loss, which quantifies the model’s sensitivity to the features. GradCAM extends this 

analysis by incorporating the feature maps prior to graph convolutions, taking into account 

the influence of features on the classifiers. 

 

Edge Importance Similar to GNNExplainer66, we utilise learnable edge masks to 

evaluate the importance of edges between genes in the model. These masks are learned by 

optimising the following objective: 

min
𝐌𝑐

ℓ(𝒚, 𝒚̂|𝐀𝑐) , 𝐀𝑐 = 𝐀gn ⊙ 𝜎(𝐌𝑐), 

where 𝐌𝑐 denotes the mask for class 𝑐, 𝜎(⋅) is the sigmoid activation function, ⊙ 

denotes the element-wise matrix product, and 𝒚̂|𝐀𝑐 is the cell type prediction when using 

the masked adjacency matrix 𝐀𝑐. The rationale behind this approach is that if certain 

masked edges have minimal impact on cell type prediction, their importance to the model 

is relatively low, and vice versa. 
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Cross-edge Importance  

When Cell Decoder utilises attention pooling in the inter-scale layers, we leverage the 

attention weights in pooling functions to directly assess the importance of cross-

edges. If the attention weight 𝛼𝑖,𝑗 is large, it indicates that the edge connecting the 𝑖-th 

node in the preceding layer and the 𝑗-th node in the current layer holds significance, 

since a considerable weight is assigned to this edge during the aggregation of 

neighbourhood messages. 

 

Robustness Evaluation 

We evaluate the robustness of our model through three perturbation strategies, which 

involve perturbation on features, nodes and structures. We focus on the robustness of 

model 67, where all perturbation occur during test time by manipulating the input data. 

 

Feature perturbation. To perturb a feature 𝑥, we denote its mean and standard 

deviation as 𝜇 and 𝜎, respectively. The feature is modified as 𝑥 ← max(𝑥 + 𝜆 ⋅ 𝜖, 0), 

where the noise 𝜖 is sampled from a Gaussian distribution 𝒩(𝜇, 𝜎), and 𝜆 ∈ ℝ is a 

hyper-parameter that controls the perturbation rate. 

 

Node perturbation. In this perturbation, we randomly remove nodes and denote 𝑝 ∈

[0,100] as a hyper-parameter to control the perturbation rate. We randomly select 𝑝% 

of the gene nodes and remove all their edges from the graph, except for the self-loops. 

 

Structure perturbation. In this perturbation, we randomly remove edges and denote 

𝑝 ∈ [0,100] as a hyper-parameter to control the perturbation rate. We randomly select 

𝑝% of the edges from the adjacency matrices 𝐀gn, 𝐀gn→pw, 𝐀pw→bp, and remove 

these edges from the graph. 

 

Datasets and Pre-processing 

All datasets utilised in this study are obtained from public data repositories 

(Supplementary Data 1). All datasets used for cell-type identification benchmarking 

were computed with 3000 highly variable genes (HVGs) using scanpy68. 

 

Baselines for cell identification and data integration 

All methods used for cell-type identification comparison were trained on the same 

training set with default recommended parameters. In the data integration task, 

integrations were evaluated with methods implemented in scIB using default 

recommended parameters. 

 

Metrics for cell identification evaluation and integration 

We use accuracy and Macro F1 to evaluate the performance and robustness of models 

in predicting cell types. For the data integration task, we employ average silhouette 

width (ASW), Batch ASW, kBET, Graph Connectivity and Graph iLISI to assess the 

model's batch correction capability. Additionally, we utilise normalised mutual 

information (NMI), adjusted Rand index (ARI), Cell Type ASW, and Isolated Label 
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F1 to evaluate the model's ability to preserve biological differences using scIB. The 

overall score was computed as the average of all scores. 

 

Statistics and Reproducibility 

The details for data pre-processing of datasets are provided in the section ‘Datasets 

and pre-processing’. Unless otherwise specified in the respective section or figure 

legends, all data were included in the training and analysis. The architecture and 

hyperparameters for model training are provided in Supplementary Data 5. 

 

Data Availability 

Datasets used for cell identification benchmarking are available from GEO 

(GSE171555, GSE134355, GSE136103, GSE115469, GSE145927, GSE81608, 

GSE84133, GSE132188, GSE252225) and ArrayExpress (E-MTAB-5061). The 

human immune cell datasets used for integration analysis are downloaded from 10X 

Genomics website (https://support.10xgenomics.com/single-cell-gene-

expression/datasets/3.0.0/pbmc_10k_v3 ) and GEO (GSE120221, GSE107727, 

GSE115189, GSE128066, GSE94820). The mouse embryo datasets are from GEO 

(GSE109071, GSE100597) and ArrayExpress (E-MTAB-6967). More detailed 

information can be found in the supplementary data. 
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Figure Legends 

 

Fig. 1| An overview of Cell Decoder. a. Cell Decoder explicitly leverages biological 

domain knowledge in cell-type identification, which consists of protein-protein-

interaction networks, gene-pathway maps, and pathway-hierarchy relationships. These 

networks are represented as graphs (adjacency matrices) that serve as inputs to Cell 

Decoder. b. In addition, Cell Decoder incorporates gene expressions as features for 

each cell. Cell Decoder employs intra-scale and inter-scale messaging passing layers 

to integrate information across different scales, thereby obtaining the representations 

of genes, pathways, and biological processes. The specific layers, as well as other 

hyper-parameters and architecture modifications, are automatically designed using 

AutoML techniques to adapt to various cell-type identification scenarios. GAT: Graph 

Attention Networks; GIN: Graph Isomorphism Networks. c. The output of Cell 

Decoder can be applied for cell annotation, reference mapping and incorporates post-

hoc interpretability modules to provide explainable multi-view cell identity. Grad-

CAM: Gradient-weighted Class Activation Mapping. 
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Fig. 2 | Systematic benchmarks and robustness evaluation of Cell Decoder for 

cell identification. a Macro F1 score for different cell identification methods on 

human and mouse datasets. Columns are sorted by the mean Macro F1 of each 

method on all datasets (top). b Robustness evaluation for cell identification based 

deep learning methods at 10 different feature perturbation rates (0, 0.01, 0.05, 0.1, 0.5, 
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0.6, 0.7, 0.8, 0.9, and 1). The average improvement ratio for Cell Decoder compared 

to the second-best method was shown in each dataset. (𝑛 = 3 repeats with different 

feature noise random seeds, 𝜆: the weight of injected noise. See Methods). c 

Imbalanced epithelial cell type ratio in mouse lung. d Confusion matrix of different 

cell identification methods for predicting imbalanced epithelial cell type (c). Values 

are normalised within each row, and values greater than 0.5 are noted. e Data shifted 

between reference and query in human liver dataset. f Recall score of each cell type 

(indicated in red if its proportion in the query is greater than that in the reference), and 

the average recall scores for each method are labelled on the upper right corner. 
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Fig. 3 | Multi-scale biologically informed data integration. a, b UMAP 

visualisation of the multi-scale integrated cell embeddings for pathway (left) and 

biological process (right) by cell identity (a) and batch annotation (b). c Comparison 

of data integration accuracy across different models without batch labels. The metrics 

measure bio-conservation and batch correction. Overall scores (the last line) are 

computed on the basis of the mean of all metrics. d-g Pretrain on reference batch then 
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integrate query batches using the fitted model. UMAP visualisation of unintegrated 

batch (d), integrated batch (e) and integrated cell type (f). Scatter plot of the mean 

overall batch correction against mean overall bio-conservation score for the different 

methods, and the red dotted lines indicated unintegrated score (g). 
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Fig. 4 | Identification of novel cell states and cell type. a, b Performance of 

different methods on the human liver for predicting novel cell type by masking 

Mono/Macro cell during model training (a). The recall of prediction novel cell type 

(b). Sankey plots comparing predictions on known and novel cell types across 

different methods (Left: original labels. Right: predicted labels). c-e Identification of 

novel cell state in the human bone dataset. UMAP visualisation of some labelled 

HSPC cells which are predicted as erythrocyte by Cell Decoder (Re-label as 

HSPC_Er in the left). Er_Er label indicates that both the original cell label and the 

predicted label are erythrocyte and the same applies to HSPC_HSPC (c). DEGs 

heatmap of HSPC_HSPC, HSPC_Er and Er_Er is hierarchically clustered (d). Violin 
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Plots show the Grad-CAM score of three representative biology processes (immune 

system, integrin signaling and metabolism of RNA) in different cell states (e). 
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Fig. 5 | Decoding cellular dynamic change of mouse embryogenesis using Cell 

Decoder. a, b UMAP visualisation of the mouse embryo dataset based on Cell 

Decoder embedding coloured by stage (a) and cell type (b). c The activity of the 

biology processes across different stages for ExVE and EmVE based on Grad-CAM 

score. d, e Subtypes clustering of ExVE and EmVE based on Cell Decoder 

embedding (d) and its proportion of different stages (e). f Visualisation different 

marker genes distribution in ExVE and EmVE (d) of mouse embryo dataset. g UMAP 

representation subtypes of ExVE and EmVE (d) coloured by signaling pathways 

Grad-CAM score. h Violin Plots visualisation subtypes (d) for different interaction 

scores. 
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