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Abstract

Cells are the fundamental structural and functional units of life. Studying the definition and
composition of different cell types can help us understand the complex mechanisms
underlying biological diversity and functionality. The increasing volume of extensive
single-cell omics data makes it possible to provide detailed characterisations of cell types.
Recently, there has been a rise in deep learning-based approaches that generate cell type
labels solely through mapping query data to reference data. However, these approaches
lack multi-scale descriptions and interpretations of identified cell types. Here, we propose
Cell Decoder, a biological prior knowledge informed model to achieve multi-scale
representation of cells. We implemented automated machine learning and post-hoc analysis
techniques to decode cell identity. We have shown that Cell Decoder compares favourably
to existing methods, offering multi-view interpretability for decoding cell identity and data
integration. Furthermore, we have showcased its applicability in uncovering novel cell
types and states in both human bone and mouse embryonic contexts, thereby revealing the
multi-scale heterogeneity inherent in cell identities.
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Introduction

Cells are the basic structural and functional units of life'. The complex functions of
different tissues and organs are rooted in cellular composition, and studying the
organisation and function of various cells can help understand how organisms achieve
normal life functions. Cell types have been defined according to their structures and
functions for centuries. Usually, the same kind of cells exhibit similar characteristics and
functions. Classifying and annotating cells can significantly aid in understanding their
organisation and functions®. The increasing application of single-cell transcriptomic
technologies in biological research has greatly advanced the study of cell types>.
However, the varying properties exhibited in different cell types at multiple scales present
substantial challenges for precise cell-type definition and annotation.

The identification of cell types in single-cell transcriptomics data is usually reliant on a
multi-step process. It includes the preprocessing of transcriptomics profiles, dimensionality
reduction, and unsupervised clustering. Subsequently, category annotation is conducted
based on manually curated differentially expressed marker genes’®. Cell identification
based on the traditional approach is time-consuming and laborious, and the selection of
marker genes heavily relies on researchers' domain knowledge, which is empirical and
easily biased. As the accumulation of annotated single-cell transcriptomics data provides a
large number of reference datasets for cell type identification, some representative deep
learning models, including fully connected neural networks, autoencoders and
transformers, are applied for mapping and migrating from reference datasets to new
datasets for cell-type identification’'?. While the aforementioned methods have achieved
commendable performances across different datasets, their ‘black box’ nature renders them
largely unexplainable. The essence of the model learning process and human reasoning is
significantly different, making it difficult to understand how deep learning models learn'?
from single-cell data. However, for biological research, the transparency of the model is as
important as its accuracy. A clear understanding of a model’s workings is indispensable for
interpreting the biological significance of its findings.

A significant trend in machine learning is the development of explainable deep
learning methods (XAI)'*. For instance, the incorporation of domain knowledge into the
model for drug response prediction, tumour typing and biomarker discovery'*!?. However,
these methods do not fully leverage biological domain knowledge, particularly the
interactions between proteins and the interdependencies among biological pathways.
Therefore, constructing a multi-scale interpretable model for cell-type identification
remains a challenge.

Here, we propose an interpretable deep learning model called Cell Decoder, which
embeds multi-scale biological knowledge into the graph neural network, enabling the
decoding of distinct cell identity features. Cell Decoder constructs a hierarchical graph
structure based on the interactions between genes, the mapping relationships between
genes and pathways, and the hierarchical pathway information. Through the application of
automated machine learning techniques, the model's representation power is enhanced,
facilitating precise and robust cell-type identification and multi-scale data integration.
Moreover, we have developed a multi-view posterior probability interpretation method,
elucidating the model's learning and decision-making processes and mapping them to
biological explanations. Cell Decoder facilitates the understanding of the interactions,
pathways and biological processes that distinguish different cell types, providing
significant implications for deeper exploration of cell identity and function.
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Results

Overview of Cell Decoder

Traditional deep neural networks exhibit heightened capacity at the cost of reduced model
interpretability. Here, we aim to design a model that can maintain robust representational
power while offering biologically interpretable insights for identifying cell identity
features. Cell Decoder designs an explainable graph neural network to model the multi-
scale biological interactions and gene expressions for cell-type identification.

First, Cell Decoder leverages biological domain knowledge from curated databases
and gene expressions as inputs. This biological domain knowledge includes protein-protein
interaction (PPI) networks, gene-pathway maps and pathway-hierarchy relationships
(Fig.1a). Cell Decoder processes these relationships to construct multi-scale interactions,
including the gene-gene graph, gene-pathway graph, pathway-pathway graph, pathway-
biology process (BP) graph and BP-BP graph (Fig.1b), represented as graph structures and
fed into the model as inputs. Concurrently, gene expressions are used as features for each
node.

To integrate information within the same resolution or across different scales
effectively, Cell Decoder designs intra-scale and inter-scale message passing layers
respectively (Fig.1b). The former shares messages within homogeneous biological entities
such as different genes, pathways or BPs while the latter aggregates information from a
fine-grained resolution to a coarse-grained one, i.e. from genes to pathways or from
pathways to BPs. Then, Cell Decoder utilises mean pooling to summarise the node
representations of the BPs in the last graph layer into cell representations and adopts a
multi-layer perceptron classifier for cell-type identification. Cell Decoder is trained end-to-
end by minimising the cross-entropy loss between predicted and ground-truth cell labels.

To adapt to various intricate cell-type identification scenarios, Cell Decoder utilises an
automated machine learning (AutoML) module to search the model design automatically,
encompassing the choices of intra-scale and inter-scale layers, hyper-parameters and
architecture modifications. The searched Cell Decoder instantiation is specifically tailored
to fit the targeted cell-type identification scenario, consequently leading to improved
results.

Lastly, to provide model interpretability and gain insights into the identified cell types,
Cell Decoder incorporates post-hoc interpretability modules (Fig.1c). Through hierarchical
Gradient-weighted Class Activation Mapping (Grad-CAM)? analysis of the fitted model, a
diverse set of biological features can be identified, including pathways and biological
processes crucial for predicting different cell types. This provides a multi-view biological
characterisation that enhances our ability to decode cell identity. Moreover, leveraging
attention scores can further differentiate cell types based on the PPI network within cells
(Methods).

Cell Decoder achieves superior performances and robustness for cell-type
identification

We benchmarked Cell Decoder using 7 different datasets, including human blood

(HU Blood)?!, human bone marrow (HU Bone)®, human liver (HU Liver)*>?, human
kidney (HU Kidney)**, human pancreas (HU_Pancreas)*>’, mouse lung (MU _Lung) and
mouse pancreas (MU_Pancreas)® (Supplementary Data 1) against 9 popular cell
identification methods®!!"122-3 on its prediction accuracy and Macro F1 score. Macro F1
score here is defined as the Macro average of the F1 scores for each cell type. Considering

the prevalence of a few cell types within the entirety of a single-cell dataset, the Macro F1
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score is more suitable than mere accuracy for evaluating the model’s capability in
recognising various cell types.

Cell Decoder ranked first for the average of both Macro F1 score (Fig. 2a) and
accuracy across all datasets (Supplementary Fig. 1a and Supplementary Data 2). Compared
to the second-best deep learning method (ACTINN Macro F1 score at 0.72), Cell Decoder
showed a 12.5% improvement in Macro F1 score. In each dataset, Cell Decoder has
achieved the best performance in terms of the Macro F1 metric. Considering the inherent
noise in single-cell datasets, the feasibility of model transfer has been limited. To gauge the
capacity of fitted model transferring across diverse datasets, we conducted feature
perturbation experiments (Methods). These experiments introduced random noise with
varying rates of perturbations into the test data. As the level of data perturbation increases,
all models exhibit a certain degree of decline in prediction performance. Compared to other
models with transfer capabilities, Cell Decoder has demonstrated remarkable
improvements in robustness across all 7 datasets (Fig. 2b). This indicates that Cell Decoder
can recognise the efficient identity of different cell types and has strong resistance to data
noise.

For cell identification, dealing with imbalanced cell-type proportions within datasets
and distribution shifts between reference and query datasets are common challenges.
Therefore, evaluating the performance of models under these two scenarios is significantly
important. Imbalanced distribution of epithelial cell types in the MU Lung. AT2 cells make
up 82% of the reference data, while AT1 cells, Ciliated cells, and Club cells account for
8%, 8%, and 2%, respectively (Fig. 2c). Cell Decoder outperforms other deep learning
models in predicting accuracy for the four imbalanced cell types (Fig. 2d). In scenarios
with imbalanced cell types of Endothelial cells, Immune cells and Mesenchymal cells in
MU _Lung, Cell Decoder also achieves the highest prediction accuracy for the minority cell
types (Supplementary Fig. 1b-g). In the HU Liver dataset, there is a clear data shift, with
the proportions of cell types in the reference and query datasets exhibiting opposite trends
(Fig. 2e). Hepatocyte, Plasma, Mono/Macro and Portal endothelial (highlighted in red in
Fig. 2f) have a higher proportion in the query dataset compared to the reference dataset.
Cell Decoder achieves a recall of 0.88 on the query dataset, marking a 14.3% improvement
over the second-best method, ACTINN, which achieves a recall of 0.77. In comparison,
Cell BLAST and TOSICA have recalls of 0.69 and 0.68, respectively. We also evaluated
the performance of the deep learning models in terms of precision and Macro F1 scores.
Cell Decoder achieves a precision of 0.86 and a Macro F1 score of 0.85, demonstrating
significant improvements of 11.7% and 23.2% over the second-best model (Supplementary
Fig. 1h-i).

We then conducted ablation experiments on the model by randomly removing
biological prior knowledge (nodes and edges in the graph) and testing the retrained model
(Methods). When the perturbation rate is 100%, it implies that the edges of the model are
fully removed, with the exception of selt-loop. As the rate of graph node perturbation
increases, model performance decreases in almost all datasets, except HU Pancreas and
MU _Lung, where it remains relatively stable (Supplementary Fig. 2a). When randomly
perturbing the edges of the model, there is also a noticeable decrease in prediction
performance. In the case of the MU Lung dataset, the Macro F1 score and accuracy
slightly decrease. For both HU Blood and HU Bone, the Macro F1 score and accuracy
initially decline but eventually exhibit a modest recovery (Supplementary Fig. 2b). This
suggests that biologically informed modelling improves deep learning performance of
predicting cell type.
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Cell Decoder enables multi-scale data integration without batch labels

In-depth cell identification requires integration across multiple datasets. However, batch
effects can arise in different datasets due to factors such as varying experimental protocols.
Cell Decoder can effectively identify cell types, enabling the integration of diverse datasets
without the requirement of batch labels. By incorporating multi-scale biological prior
knowledge into Cell Decoder (Fig. 1a), we can obtain low-dimensional embedding of cells
at pathway and biological process layers. We evaluated the multi-scale data integration
capability of Cell Decoder on the human immune cell dataset®> with 10 different batches
provided by scIB*’ in comparison with Harmony*!, Scanorama (embedding)*, and scVI*.
The data integration performance of Cell Decoder is illustrated by the pathway embedding
and biological process (BP) embedding (Fig. 3a, b and Supplementary Fig. 3). Cell
Decoder effectively removed batch effects between individuals and platforms, while
preserving biological variations. We evaluated the performance of these methods using a
total of eight metrics, divided into two categories: batch correction and biological variation
preservation. The embedding at pathway layer, i.e., Cell Decoder (Pathway) achieved the
best results on batch ASW, kBET and graph iLISI metrics, indicating its superior batch
correction performance. Moreover, the embedding at BP layer, i.e., Cell Decoder (BP)
demonstrated significant improvements over other methods in preserving biological
variation at NMI cluster, ARI cluster, cell type ASW and isolated label F1 metrics
(Supplementary Data 3). On an overall basis (the average of all metrics), Cell Decoder
(BP) achieved a 20.5% improvement (Fig. 3c) compared with existing methods.

Similar to domain generalization techniques**, Cell Decoder can generalize to a new
batch that it has never seen during training. Namely, with a pre-trained model, all data can
be embedded into the same low-dimensional space without any finetune process, which
significantly enhances the efficiency and the usability of the tool for further application.
Furthermore, Cell Decoder can extract generalizable representations from a single batch.
The MU_Lung dataset comprises five batches (Reference, Endothelial cells, Epithelial
cells, Immune cells, and Mesenchymal cells), among which Reference (ref) was used as the
training set, while Endothelial cells (endo), Epithelial cells (ep1), Immune cells (immu),
and Mesenchymal cells (mes) were employed as the test sets. The UMAP visualisation
highlighted the batch effects in the MU Lung raw data. Meanwhile, the integration results
in a low-dimensional space showed the ability of Cell Decoder to remove these batch
effects (Fig. 3d-f). Compared to the other three data integration methods, Cell Decoder,
pre-trained on only one batch of data, outperformed in batch effect correction but exhibits
slightly weaker performance in biological variation preservation (Fig. 3g). However, Cell
Decoder retains the unique capability of providing cell-type identification results, which
sets it apart from the other methods.

Discovery of novel cell types and cell states using Cell Decoder

One significant challenge in cell identification tasks is discovering cell types within the
query dataset that are absent from the reference dataset. The majority of existing methods
tend to categorise novel classes by forcefully aligning them with the closest known class.
Such approaches are not able to discover novel cell types or cell states in the query dataset.
Benefiting from biologically informed modelling, Cell Decoder possesses significant
potential for capturing subtle differences between novel and known cell types. By
predicting the probabilities of different cell types, it can automatically uncover potential
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new cell types. Moreover, it can decode the identity features of new cell types based on
prior knowledge and post-hoc analysis (Methods).

To verify Cell Decoder’s ability to discover novel cell types, we masked '"Mono/Macro
cells' in the training dataset HU Kidney, while this cell type exists in the test set, thus
simulating the scenario of encountering new cell types in the query dataset (Fig. 4a). Cell
Decoder provides the predicted probabilities for each cell. If the highest probability falls
below a threshold (0.95), the cell is classified as 'Novel', suggesting it is likely a new cell
type not included in the training set (Fig. 4a right). Despite their high predictive accuracies,
the methods such as Seurat, SingleR, and ACTINN (Fig. 2a) are unable to automatically
identify newly emerged cell types in the query dataset. Instead, they forcibly categorise
them as existing cell types in the reference. TOSICA (cutoff=0.95) and Cell BLAST
(P<=0.05) also identify novel cells in the query dataset by predicting the probabilities of
different cells. On the masked Mono/Macro cell type, Cell BLAST achieves a recall of
0.20, while the remaining Mono/Macro cells are predicted as CD4T, CD8T cells, with a
small portion being labeled as ambiguous (Fig. 4b middle). TOSICA correctly labels 37%
of Mono/Macro cells but predicts a larger portion of cells as B cells (Fig. 4b right). In
contrast, Cell Decoder achieves a recall of 0.94 for Mono/Macro cells, correctly identifying
the vast majority of Mono/Macro cells in the query dataset. This represents a significant
improvement compared to the other two methods (Fig. 4b left).

Identifying different cell states is also crucial, as a cell type may exist in various
states*. Transcriptomic changes during cell state transitions are often more continuous than
cell types. Consequently, in low-dimensional embedding spaces, these cells tend not to
form distinct clusters but rather exhibit a continuous distribution. Manual identification
methods relying solely on marker genes often face the challenges in identifying different
cell states within the same cell type. However, Cell Decoder, as an automated cell
identification method, is not dependent on specific marker genes. Instead, it is built upon
biological prior knowledge, facilitating the extraction of cell identity features. This presents
a promising potential for uncovering various cell states. In the HU Bone dataset, some
multipotent hematopoietic stem and progenitor cells (HSPC) cells were predicted as
Erythrocytes by Cell Decoder (Fig. 4c). We re-labelled this cell type as HSPC_Er. Cells
predicted to be consistent with the original labels of HSPC and Erythrocytes were marked
as HSPC_HSPC and Er_Er, respectively. HSPC_HSP, HSPC Er, and Er_ Er exhibited a
continuous change trend in the UMAP, with HSPC _Er positioned in an intermediate state
between the two (Supplementary Fig. 4). We calculated the differential genes for the three
cell types and performed hierarchical clustering (Fig. 4d). The differentially expressed
genes showed that HSPC_Er cells were more similar to Er_Er cells and Er_Er cells
exhibited the highest activation level in immunological processes, whereas HSPC_HSPC
cells showed a more pronounced activation in the metabolism of RNA process. HSPC _Er
cells showed the highest activation score in the integrin signalling pathway (Fig. 4e).

Cell Decoder reveals cellular dynamic changes in mouse embryogenesis
Understanding the lineage relationships between cells and cell types, as well as the
molecular programs governing the emergence of each cell type, constitutes a fundamental
goal in developmental biology. For the mouse embryogenesis dataset*¢*°, the entire
embryo has been profiled using scRNA-seq. However, systematically integrating the
associated data remains a challenge. This challenge is attributed to technical issues such as
varying technologies and batch effects, as well as the complexity of mouse development?”.
We integrated data from three stages of mouse embryo development at E6.25, E6.5, and
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E6.75, obtained from different technologies (Supplementary Data 4). In the mouse
embryogenesis dataset, there are a total of seven cell types, namely epiblast (3302 cells),
extraembryonic ectoderm (1220 cells), primitive streak and adjacent ectoderm (1214 cells),
extraembryonic visceral endoderm (606 cells), embryonic visceral endoderm (295 cells),
nascent mesoderm (159 cells) and parietal endoderm (44 cells).

Cell Decoder successfully integrated data from different developmental stages and
demonstrated its batch correction capability through UMAP visualisation computed on the
biological process embeddings (Fig. 5a). We randomly partitioned the data, allocating 80%
to the training set and 20% to the validation set for model fitting. Furthermore, in the
UMAP plot, we annotated the cell-type predictions both by Cell Decoder and the original
labels from the data (Fig. 5b). The visceral endoderm encompasses the extraembryonic
visceral endoderm (ExVE) and the embryonic visceral endoderm (EmVE). We learned the
differences between ExVE and EmVE (E6.5 and E6.75) across various biological
processes using Cell Decoder. The notably higher Grad-CAM scores of EmVE in cell-cell
communication and extracellular matrix categories, as opposed to ExVE, suggested a
heightened activity in these biological processes. Furthermore, EmVE at the E6.75 stage
exhibited a significant level of programmed cell death, while ExVE showed pronounced
activity in the immune system (Fig. 5¢). Cell Decoder learns representations of EmVE and
ExVE in the BP embedding, enabling further clustering into four subtypes (Fig. 5d). At
E6.5, CO is the predominant subtype, followed by C1 and C3, while C2 is the smallest
subtype. However, at E6.75, the highest proportion is observed for C1, followed by C2
cells (Fig. 5e). The different subtypes showed distinct differences in the expression of
marker genes in EmVE and ExVE. Cer! and Lefty!I are highly expressed in C3 and C2,
while Nodal exhibits the highest expression in C3, and Fgf8 exhibits the highest expression
in C2 (Fig. 5f). Cell Decoder elucidates the different activation levels of the four cell
subtypes across various biological pathways using Grad-CAM scores. For example, C2
showed a high activation in the NODAL, MTOR, WNT and MAPK signalling pathways
(Fig. 5g). Cell Decoder also provides interaction analysis based on attention mechanisms,
revealing that the interactions related to anterior-posterior axis formation. For example,
Leftyl-Nodal and Fgf8-Otx2 exhibited the highest scores in the C2 subtype (Fig. 5h). Cell
Decoder reveals the dynamic changes of different cells during mouse embryonic
development and identifies distinct subtypes of cells with diverse developmental functions.

Multi-view interpretability in Cell Decoder for cell identification

Due to the diverse properties exhibited by different cell types at multiple scales, defining,
categorising, and understanding them pose significant challenges*. Probabilistic statistical
and traditional deep learning-based cell identification methods can classify different cell
types. However, most of these methods®!>*! lack interpretability. While TOSICA® explains
the mapping from gene to pathway through an attention mechanism, it falls short in
decoding the identity features of a cell type. A cell type is generally considered to express
an assemblage of cellular modules (protein complexes, pathways, and molecular machines
constitute the structure and function of the cell) responsible for discrete subfunctions’'.
Cell Decoder leverages biological prior knowledge (protein-protein interactions, gene-
pathways, biological process) to enhance the transparency of its network structure (Fig.
la). Additionally, we have developed a multi-view post-hoc analysis (Methods) method to
uncover the decision-making process of the model, thereby decoding different cell-type
identities. In HU Bone, Cell Decoder is capable of identifying differential biological
process activations among different cell states (Fig. 4e). For HSPC, autophagy is crucial
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for maintaining their self-renewal capacity. Conversely, Erythrocytes play a role in
immunity, acting as immune sentinels®?. Beyond the hierarchical interpretation of gene-
pathway-biological process relationships, Cell Decoder is also capable of explaining
differences in protein-protein interaction pairs across different cell types through an
attention mechanism (Fig. 1¢). During mouse embryonic development, Cell Decoder learns
a critical interaction pair (Lefty1-Nodal), revealing multi-level biological differences in the
ExVM and EmVE cells (Fig. S5h). Cell Decoder provides a more comprehensive and in-
depth perspective for defining and understanding different cell types or states.

Discussion

We propose a novel biologically informed graph neural network architecture that integrates
protein-protein interactions, gene-pathway mappings and hierarchical pathway information
into a hierarchical graph neural network for decoding cell identity. This approach aims to
simulate the intracellular gene/protein interactions and aggregate information from genes to
pathways, then to biological processes. We utilised automated machine learning techniques
to enhance model performance and streamline the cumbersome process of deep learning
parameter tuning. Cell Decoder exhibits strong transparency and interpretability. Through
multi-view posterior probability analysis of the fitted model, we gained deeper insights into
different cell types across scales and interactions.

Cell Decoder has outperformed existing advanced methods across diverse benchmarks.
In human and mouse cell identification tasks, Cell Decoder achieves accurate and stable
knowledge transfer, demonstrating strong resilience against data noise and data shift. By
learning cell-type-specific features, Cell Decoder achieves accurate data integration at
different scales (pathways embedding and biological process embedding) without batch
labels. We also explored a novel data integration approach, i.e., pretraining on one batch
and transferring the model to others. This method not only accomplishes cell identification
but also enables cross-batch data integration. Biologically informed modelling has
effectively boosted the ability to discover new cell types or states.

Despite having the above advantages in decoding cell identity, Cell Decoder may face
potential limitations in selecting biological knowledge for modelling. Our model leverages
domain knowledge from multiple databases®*>’ to enhance the interpretability of deep
learning. However, the effectiveness of prior knowledge varies across different datasets.
The results of knowledge ablation experiments on 7 datasets indicated that different tissues
and organs required varying biological knowledge, demonstrating that the choice of
biological knowledge modelling has a certain impact on the model's performance. Another
limitation involves the interpretation and validation of newly learned cell type identity
features. While Cell Decoder captures novel changes in the query data, the validation of
these changes at different scales requires additional domain expertise. Additionally, Cell
Decoder relies on supervised training with labelled data, and its performance is constrained
by the availability and quality of limited annotated data.

Meanwhile, with the development of single-cell multi-omics>® technologies that can
capture protein expression levels within individual cells, Cell Decoder can naturally extend
to multimodal datasets, thereby gaining more insights into cell-type regulation. Due to the
incorporation of gene/protein interaction information, Cell Decoder opens up the
possibility of predicting cell responses to genetic perturbations®’. We believe this can bring
new interpretability and biological insights to define and understand the identity features of
different cell types.
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Methods

Biologically informed matrix

We integrated STRING V11.5 (https://string-db.org), MSigDB (https://www.gsea-
msigdb.org/gsea/msigdb) and Reactome (https://reactome.org) database to build the
biologically informed hierarchy graph. We filtered the protein-protein interactions with
high confidence (combinations score>=850) from STRING to construct the graph G =
(V,E) where V is the set of protein nodes in graph G, and E is the set of edges between
any two nodes in graph G. The adjacency matrix A is in the form a binary matrix with
A; j = 1 if the i-th protein interact with jth protein and 0 otherwise. We use depth-first
search (DFS) to covert the pathway-directed acyclic graph (DAG) to a scalable hierarchy
network with parameter n layers. Then, we map the graph G to hierarchy pathways using
Reactome and MsigDB. The mask matrix M with columns corresponding to pathways and
rows corresponding to genes, with M; ; = 1 if the ith gene is in the j., pathway and 0
otherwise.

The architecture of Cell Decoder

Cell Decoder aims to identify cell types from gene expressions by explicitly modelling the
multi-scale biological interactions, i.e., genes, pathways and biological processes.
Specifically, Cell Decoder designs intra-scale and inter-scale graph neural network (GNN)
layers to learn the complex patterns of multi-scale structures and properties through message
passing®®. Additionally, Cell Decoder incorporates AutoML techniques to automatically
design the intra-scale and inter-scale GNN layers as well as the hyper-parameters, thereby
enhancing the adaptivity of the model in handling different application scenarios. To further
improve the interpretability, Cell Decoder adds post-hoc interpretability modules to provide
explainable analyses for both features and multi-scale interactions (Supplementary Fig. 5).

Multi-scale Graph Cell Decoder captures the interactions among genes, pathways and
biological processes using a multi-scale graph. The gene expressions and interactions
between genes are represented as an undirected graph with an adjacency matrix A&" €
{0,1}"and a feature matrix X € R™*/, where n denotes the number of genes and A’;?”‘;‘.

indicates whether the i-th gene interacts with the j-th gene. Cell Decoder also considers

the gene-pathway relationship A8"~P", where A7) """ indicates whether the i-th gene

belongs to the j -th pathway. Similarly, the pathway-biological process relationship is taken
into account and denoted as APW~PP_ Then, Cell Decoder constructs the pathway
adjacency matrix by utilising the multi-scale biological knowledge:

APY = min(APW~8" x ASM x ABNTPW 1)
where the operator X is the matrix multiplication, and APY~8" s the transpose of
A8"”PW The biological process adjacency matrix is similarly constructed, i.e.,

APP = min(APP~PW x APW x APWZDP 1),

Multi-scale Message Passing The objective of the multi-scale message-passing layers in
Cell Decoder is to effectively aggregate information from genes, pathways, and biological
processes. To incorporate multi-scale information, Cell Decoder consists of two types of
GNN layers: intra-scale layers and inter-scale layers. For intra-scale layers, Cell Decoder
aggregates messages from the neighborhoods within each scale and subsequently updates
the node representations as follows:
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HE" « GNNIntra(Hgn: Agn)’ HPY « GNNIntra(HpW' pr)’ pr < GNNIntra(pr: Abp):
where H € R™¢ is the node representation, and d denotes the dimensionality. For inter-
scale layers, Cell Decoder updates the node representations by aggregating the
neighborhood messages from preceding scales, i.e.,

HPY « GNNj,e, (HE", A8 7PW) HPP  GNNj, (e (HPY, APW7PP),
The execution of intra-scale layers and inter-scale layers follows an alternating pattern,
starting from genes, then pathways, and finally biological processes. Finally, Cell Decoder
utilises mean pooling to summarise the node representations into cell representations,
which are subsequently employed for cell-type identification, i.e.,

g « MEAN(HPP),y « MLP(g),

where g € R represents the cell representation, MLP denotes a multi-layer perceptron
classifier, MEAN(-) is the mean pooling operator, € R“** represents the predicted
probability distribution of the cell types, and C is the number of the cell types. To learn the
model parameters, Cell Decoder adopts the cross-entropy loss function:

Cc
£(.9) == ) yelogde + (1 -y log(1 - 30),
c=1
where y denotes the ground-truth cell types.

Automated Model Design Given that biological mechanisms in various cells could show
intricate patterns, it becomes crucial to identify optimal hyper-parameters and GNN layers
for improved cell-type identification. In this regard, we employ AutoML techniques to
automate the process of architecture design and hyper-parameter selection. To maintain
simplicity, we adopt a classical grid search method>’, which systematically enumerates and
selects the best architectures and hyper-parameters from the entire set of possibilities. The
search space of Cell Decoder encompasses intra-scale layers, inter-scale layers, hyper-
parameters, and other architectural modifications, defining the feasible ranges for
exploration and selection.

Intra-scale Layers Our search space includes two types of intra-scale layers: Graph
Attention Networks (GAT)® and Graph Isomorphism Networks (GIN)®! .

GAT employs an attention mechanism for neighborhood aggregation, and its formulation is
as follows:

A;jexp (G(aT [Whi“Wth)

Yk=1Aix exp(o(a’[Why|[Wh,]))

where W represents a learnable parameter matrix used to transform the node

representations, a is a learnable vector for calculating the attention weights a for each

edge, (-)'denotes the transpose operation, h; denotes the feature vector of the i -th node,

|| denotes the concatenation operation, and ¢ represents the LeakyReL U activation

function. Multi-head attention mechanism is also utilised to stabilise the training process

and improve performance.

On the other hand, GIN, which adopts a sum aggregation, can be formulated as follows:
H < MLP((A+ (1 +¢€) - DH),

where € is a learnable parameter, I denotes the identity matrix, and MLP represents a

multi-layer perceptron with learnable parameters.

H < o(aHW"), q; ; =
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Inter-scale Layers For inter-scale layers, our search space contains two operations: mean
pooling® and attention pooling®.
The mean pooling computes the average of the neighbour representations from the
previous layers to obtain the node representation in the current layer. For instance, to
obtain the representation of the i-th pathway in gene-pathway message-passing, the model
aggregates all of its related gene representations and calculates the average as follows:
h" = MEAN ({n$": A% """ = 1}).
In the case of attention pooling, the calculation is similar to Eq. (7), with the difference that
we first employ mean pooling to obtain the node representation used in calculating attention,
and then utilise the inter-scale adjacency matrix to calculate and aggregate the messages.
For example, the hidden representation for the pathways is calculated as:

o Z —— ASYPY exp (a (a [Wh§“||Wh§jnvean])>
l R AT exp (a(aT [WhE" | |[WhP" ]))

r,mean
pw . .
where h; ... is calculated by the mean pooling.

Hyper-parameters Additionally, our search space encompasses commonly used hyper-
parameters, including the dimensionality of the node representation, the learning rate, and
the number of samples per class utilised for training. If there exist some classes that have
fewer or more training samples than K, we conduct over-sampling or down-sampling
techniques to obtain exact K training samples for each class.

Architecture Modification Lastly, our search space includes two architecture
modification techniques to facilitate more flexible architecture design: one-hot encoding of
genes and jumping connections.
For the one-hot encoding, we introduce a learnable embedding matrix for each gene node,
which is concatenated with the node features as follows:
X « [X: Xpara]r

where X,.., denotes the trainable embedding matrix. This enables the model to effectively
capture specific information pertaining to each gene, enhancing its ability to learn gene-
specific characteristics. Regarding the jumping connections, we allow the model to
concatenate the raw node features with the final node representation learned by the GNN
layers. The concatenated features are then fed into the classifier as follows:

y < MLP([g g'D.
where g’ is obtained by flattening the raw features X for each graph into a vector. This
strategy draws inspiration from the widely employed residual connections in deep
learning® and the jumping knowledge network in GNNs®®. By incorporating jumping
connections, we aim to improve the expressiveness of the model and enhance training
stability.

Multi-view Model Interpretability
In order to interpret the model, we employ three types of post-hoc analysis to assess the
importance of features, edges, and cross-edges, respectively.

Feature Importance We utilise two methods to measure the feature importance: gradient-
based methods (referred to as Grad) and Gradient-weighted Class Activation Mapping
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(GradCAM)?. For Grad, we calculate the L2 norm of the feature gradients with respect to
the loss, which quantifies the model’s sensitivity to the features. GradCAM extends this
analysis by incorporating the feature maps prior to graph convolutions, taking into account
the influence of features on the classifiers.

Edge Importance Similar to GNNExplainer®, we utilise learnable edge masks to
evaluate the importance of edges between genes in the model. These masks are learned by
optimising the following objective:

rrl&[in{’(y, YA, A, = AR O a(M,),

where M, denotes the mask for class ¢, a(+) is the sigmoid activation function, ©
denotes the element-wise matrix product, and y|A. is the cell type prediction when using
the masked adjacency matrix A.. The rationale behind this approach is that if certain
masked edges have minimal impact on cell type prediction, their importance to the model
is relatively low, and vice versa.
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Cross-edge Importanc®®

When Cell Decoder utilises attention pooling in the inter-scale layers, we leverage the
attention weights in pooling functions to directly assess the importance of cross-
edges. If the attention weight a; ; is large, it indicates that the edge connecting the i-th
node in the preceding layer and the j-th node in the current layer holds significance,
since a considerable weight is assigned to this edge during the aggregation of
neighbourhood messages.

Robustness Evaluation

We evaluate the robustness of our model through three perturbation strategies, which

involve perturbation on features, nodes and structures. We focus on the robustness of
model ¢, where all perturbation occur during test time by manipulating the input data.

Feature perturbation. To perturb a feature x, we denote its mean and standard
deviation as u and o, respectively. The feature is modified as x « max(x + 1 - ¢,0),
where the noise e is sampled from a Gaussian distribution N (u,0),and 1 € R isa
hyper-parameter that controls the perturbation rate.

Node perturbation. In this perturbation, we randomly remove nodes and denote p €
[0,100] as a hyper-parameter to control the perturbation rate. We randomly select p%
of the gene nodes and remove all their edges from the graph, except for the self-loops.

Structure perturbation. In this perturbation, we randomly remove edges and denote

p € [0,100] as a hyper-parameter to control the perturbation rate. We randomly select
p% of the edges from the adjacency matrices A8", AB"~PW APW=bP and remove
these edges from the graph.

Datasets and Pre-processing

All datasets utilised in this study are obtained from public data repositories
(Supplementary Data 1). All datasets used for cell-type identification benchmarking
were computed with 3000 highly variable genes (HVGs) using scanpy®®.

Baselines for cell identification and data integration

All methods used for cell-type identification comparison were trained on the same
training set with default recommended parameters. In the data integration task,
integrations were evaluated with methods implemented in scIB using default
recommended parameters.

Metrics for cell identification evaluation and integration

We use accuracy and Macro F1 to evaluate the performance and robustness of models
in predicting cell types. For the data integration task, we employ average silhouette
width (ASW), Batch ASW, kBET, Graph Connectivity and Graph iLISI to assess the
model's batch correction capability. Additionally, we utilise normalised mutual
information (NMI), adjusted Rand index (ARI), Cell Type ASW, and Isolated Label
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F1 to evaluate the modd&l‘s"ability s preserve'\f)lologlcafl differénces using scIB. The

overall score was computed as the average of all scores.

Statistics and Reproducibility

The details for data pre-processing of datasets are provided in the section ‘Datasets
and pre-processing’. Unless otherwise specified in the respective section or figure
legends, all data were included in the training and analysis. The architecture and
hyperparameters for model training are provided in Supplementary Data 5.

Data Availability

Datasets used for cell identification benchmarking are available from GEO
(GSE171555, GSE134355, GSE136103, GSE115469, GSE145927, GSE81608,
GSES84133, GSE132188, GSE252225) and ArrayExpress (E-MTAB-5061). The
human immune cell datasets used for integration analysis are downloaded from 10X
Genomics website (https://support.10xgenomics.com/single-cell-gene-
expression/datasets/3.0.0/pbmc_10k v3 ) and GEO (GSE120221, GSE107727,
GSE115189, GSE128066, GSE94820). The mouse embryo datasets are from GEO
(GSE109071, GSE100597) and ArrayExpress (E-MTAB-6967). More detailed
information can be found in the supplementary data.
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Fig. 1| An overview of Cell Decoder. a. Cell Decoder explicitly leverages biological
domain knowledge in cell-type identification, which consists of protein-protein-
interaction networks, gene-pathway maps, and pathway-hierarchy relationships. These
networks are represented as graphs (adjacency matrices) that serve as inputs to Cell
Decoder. b. In addition, Cell Decoder incorporates gene expressions as features for
each cell. Cell Decoder employs intra-scale and inter-scale messaging passing layers
to integrate information across different scales, thereby obtaining the representations
of genes, pathways, and biological processes. The specific layers, as well as other
hyper-parameters and architecture modifications, are automatically designed using
AutoML techniques to adapt to various cell-type identification scenarios. GAT: Graph
Attention Networks; GIN: Graph Isomorphism Networks. c¢. The output of Cell
Decoder can be applied for cell annotation, reference mapping and incorporates post-
hoc interpretability modules to provide explainable multi-view cell identity. Grad-
CAM: Gradient-weighted Class Activation Mapping.


https://doi.org/10.1101/2024.02.05.578922
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.05.578922; this version posted February 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a > o A © @ ~ © A
& K & K3 & & I & X ®
R rrcan
_—-H‘LBIOOd
HU_Bone
— HU_Liver
L
F1 of Method Mean of F1
E HU_Kidney g1 1
o 08 Fos
© 06 06
E HU_Pancreas 04 0.4
02 02
MU_Lung
MU_Pancreas
& A N > S X g > ¢
A S <& & o O \a ¥ Sy
& ¥ 3 N O < S &
& 2 s & © © N \\o"f&b
(&) & ®
b HU_Blood HU_Bone HU_Liver HU_Kidney
+385% +462%
. 7l
}
e <
\@ OQ B& Q"p /\‘0 \‘9
~
L
o HU_Pancreas MU_Lung MU_Pancreas Methods
(]
‘§° 1.00 -8~ Cell Decoder
075 +324% +5559%
A A -8~ ACTINN
050{ % \
as| A g -~ Cell BLAST
0.00 . o o o2 ’ -8~ TOSICA
0@ qu’ Q“s Q”\g Q@
Perturbation rate
c d
Cell Decoder ACTINN Cell BLAST TOSICA
Eplthellal cells oy 4, Ty, O ) oy P, G oy A, Ty, O ) wy Ay Yoy, G
g 2 . B - 3 an2 . a2 .
= -~ H 2 T A - |
m .
82% | W] “
i~ M |- m w w
= ® - -~
Ciliated e}
- b .
Predicted label
Hepatocyte = Cell Decoder 0 88
e Reference f Periportal LSEC _——7——a._ Plasma ;:s:L:gv’Sss
s OSICA0.68
cpat [ ; e, \
Cholangiocyte NK ‘/\\,\/Y X Mono/Macro
B 7 [ S ) \\
Portal Endothelial 7 "“ \
Central Venous LSEC ’ ‘y‘
Periportal LSEC Kup!le( [ / \ | Portal Endothelial
Kupffer \ |
Plasma
Mono/Macro
NK Cholangmcy(e B
cDsT
Hepatocyte
= % = = 5 s e = - Central Venous LSEC \ s cuaT

Cell type percent (%) Racal
ecal

Fig. 2 | Systematic benchmarks and robustness evaluation of Cell Decoder for
cell identification. a Macro F1 score for different cell identification methods on
human and mouse datasets. Columns are sorted by the mean Macro F1 of each
method on all datasets (top). b Robustness evaluation for cell identification based
deep learning methods at 10 different feature perturbation rates (0, 0.01, 0.05, 0.1, 0.5,
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0.6,0.7,0.8, 0.9, and 1fvfﬁtélea%éjreéégclﬁl\firl\‘g{}\é%fe%ltn}% TSt €8t Decoder compared
to the second-best method was shown in each dataset. (n = 3 repeats with different
feature noise random seeds, A: the weight of injected noise. See Methods). ¢
Imbalanced epithelial cell type ratio in mouse lung. d Confusion matrix of different
cell identification methods for predicting imbalanced epithelial cell type (c). Values
are normalised within each row, and values greater than 0.5 are noted. e Data shifted
between reference and query in human liver dataset. f Recall score of each cell type
(indicated in red if its proportion in the query is greater than that in the reference), and
the average recall scores for each method are labelled on the upper right corner.
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Fig. 3 | Multi-scale biologically informed data integration. a, b UMAP
visualisation of the multi-scale integrated cell embeddings for pathway (left) and
biological process (right) by cell identity (a) and batch annotation (b). ¢ Comparison
of data integration accuracy across different models without batch labels. The metrics
measure bio-conservation and batch correction. Overall scores (the last line) are
computed on the basis of the mean of all metrics. d-g Pretrain on reference batch then
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integrate query batches %’g‘ilﬁtéetflnéj fiaed MGl U RAP SR FSARfon of unintegrated
batch (d), integrated batch (e) and integrated cell type (f). Scatter plot of the mean
overall batch correction against mean overall bio-conservation score for the different
methods, and the red dotted lines indicated unintegrated score (g).
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Fig. 4 | Identification of novel cell states and cell type. a, b Performance of
different methods on the human liver for predicting novel cell type by masking
Mono/Macro cell during model training (a). The recall of prediction novel cell type
(b). Sankey plots comparing predictions on known and novel cell types across
different methods (Left: original labels. Right: predicted labels). c-e Identification of
novel cell state in the human bone dataset. UMAP visualisation of some labelled
HSPC cells which are predicted as erythrocyte by Cell Decoder (Re-label as
HSPC_Er in the left). Er_Er label indicates that both the original cell label and the
predicted label are erythrocyte and the same applies to HSPC_HSPC (c¢). DEGs
heatmap of HSPC_HSPC, HSPC Er and Er_Er is hierarchically clustered (d). Violin
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system, integrin signaling and metabolism of RNA) in different cell states (e).
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Fig. 5 | Decoding cellular dynamic change of mouse embryogenesis using Cell
Decoder. a, b UMAP visualisation of the mouse embryo dataset based on Cell
Decoder embedding coloured by stage (a) and cell type (b). ¢ The activity of the
biology processes across different stages for ExXVE and EmVE based on Grad-CAM
score. d, e Subtypes clustering of ExXVE and EmVE based on Cell Decoder
embedding (d) and its proportion of different stages (e). f Visualisation different
marker genes distribution in EXVE and EmVE (d) of mouse embryo dataset. g UMAP
representation subtypes of ExXVE and EmVE (d) coloured by signaling pathways
Grad-CAM score. h Violin Plots visualisation subtypes (d) for different interaction
scores.
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