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Abstract

Accurate prediction of antibody-antigen complex structures holds significant
potential for advancing biomedical research and the design of therapeutic
antibodies. Currently, structure prediction for protein monomers has achieved
considerable success, and promising progress has been made in extending this
achievement to the prediction of protein complexes. However, despite these
advancements, fast and accurate prediction of antibody-antigen complex struc-
tures remains a challenging and unresolved issue. Existing end-to-end prediction
methods, which rely on homology and templates, exhibit sub-optimal accu-
racy due to the absence of co-evolutionary constraints. Meanwhile, conventional
docking-based methods face difficulties in identifying the contact interface
between the antigen and antibody and require known structures of individual
components as inputs. In this study, we present a fully end-to-end approach
for three-dimensional (3D) atomic-level structure predictions of antibodies and
antibody-antigen complexes, referred to as tFold-Ab and tFold-Ag, respectively.
tFold leverages a large protein language model to extract both intra-chain and
inter-chain residue-residue contact information, as well as evolutionary relation-
ships, avoiding the time-consuming multiple sequence alignment (MSA) search.
Combined with specially designed modules such as the AI-driven flexible dock-
ing module, it achieves superior performance and significantly enhanced speed in
predicting both antibody (1.6% RMSD reduction in the CDR-H3 region, thou-
sand times faster) and antibody-antigen complex structures (37% increase in
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DockQ score, over 10 times faster), compared to AlphaFold-Multimer. Given the
performance and speed advantages, we further extend the capability of tFold
for structure-based virtual screening of binding antibodies, as well as de novo
co-design of both structure and sequence for therapeutic antibodies. The exper-
iment results demonstrate the potential of tFold as a high-throughput tool to
enhance processes involved in these tasks. To facilitate public access, we release
code and offer a web service for antibody and antigen-antibody complex structure
prediction, which is available at https://drug.ai.tencent.com/en.

Keywords: Protein structure prediction, Antibody-antigen complex, Virtual
screening, Antibody design

1 Introduction

Antibodies, generated by clonal B cells, serve a pivotal function in the human adap-
tive immune system by specifically recognizing and responding to foreign molecules or
antigens [1]. They contribute to immunity through three primary strategies: neutral-
ization, which entails binding to pathogens and inhibiting their entry or damage to
host cells; opsonization, which involves coating the pathogen to promote the pathogen
elimination by macrophages and other immune cells; the initiation of pathogen destruc-
tion by activating supplementary immune responses, such as the complement pathway.
The high specificity and affinity of antibodies in antigen recognition also render
them highly promising therapeutic agents, garnering extensive research attention in
recent years [2, 3]. Modelling the antibody-antigen complex structures can pave the
foundation for elucidating the structural principles that regulate antibody–antigen
interactions, which is therefore essential for enhancing our knowledge of the immune
system’s properties in terms of molecular structures and advancing our capacity to
design efficient biological drugs [1–3].

The high-throughput B-cell sequencing has generated vast amount of data needed
to investigate complex mechanisms underlying the adaptive immune response, thus
paving the way for data-driven investigations of antibodies [4]. Nevertheless, the
high-throughput production of precise antibody-antigen complex structures remains
a major challenge in both structural and computational biology [5, 6]. On one hand,
experimental techniques such as X-ray crystallography, cryo-electron microscopy,
nuclear magnetic resonance (NMR), and mutagenesis analysis for investigating
antibody-antigen complex structures are usually expensive, time-consuming, and
exhibit a low success rate, hindering their potential as high-throughput approaches [7].
On the other hand, computational methods like molecular docking for modelling
antibody-antigen structures often result in high false-positive rates and seldom
yield unique solutions, necessitating known structures of individual components as
inputs [8–13]. Moreover, docking-based methods struggle to identify epitopes when
protein binding sites are ambiguous and substantial conformational changes occur dur-
ing binding, a common issue in antibody-antigen interactions. Recently, advanced deep
learning-based methods, such as AlphaFold-multimer [5], have significantly advanced
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structure prediction for multi-chain protein-protein complexes. However, their perfor-
mance on antibody-antigen complexes is sub-optimal, primarily because antibodies
and antigens often originate from different species, precluding the acquisition of
effective co-evolutionary signals [14]. Additionally, the substantial time consumption
associated with these methods hinders their potential to serve as high-throughput
tools.

In this study, we present a fast and accurate method for predicting the structure of
the antibody and antibody-antigen complex, which leverages advanced deep-learning
technologies to support research in immunology and the development of therapeutic
antibodies. The proposed method equipped with a pre-trained large protein sequence
model and transformer-based structure prediction modules, termed tFold, enables fast
end-to-end atomic-resolution antibody (hereafter denoted as tFold-Ab) and antibody-
antigen complex (hereafter denoted as tFold-Ag) structure prediction directly from
the sequence, which has the potential to be a high-throughput tool. Moreover, the
high speed and accuracy of tFold’s structure prediction capabilities offer the potential
to improve various processes involved in the design and development of therapeutic
antibodies. This study exemplifies the capability of using tFold for structure-based
virtual screening of binding antibodies, as well as the advantage of using tFold for de
novo co-design of structure and sequence for therapeutic antibodies, as two examples
to illustrate its extensive potential applications.

2 Results

In overview, this section firstly presents the performance of tFold for antibody and
nanobody structure prediction (tFold-Ab) in Section 2.1. Subsequently, it intro-
duces the performance of tFold for antibody-antigen and nanobody-antigen complex
structure prediction (tFold-Ag) in Section 2.2. Based on the high performance and
computational speed of tFold-Ag in structure prediction, we further highlight two
applications of tFold-Ag, namely, structure-based virtual screening of binding anti-
bodies and de novo co-design of structure and sequence for therapeutic antibodies, in
Section 2.3 and Section 2.4, respectively. To thoroughly evaluate the performance of
tFold in the aforementioned tasks, we have curated a total of ten datasets from three
data sources (Table B1).

2.1 Fast and accurate prediction of antibody structures

The accurate prediction of antibody structures is crucial for examining their function,
which serves as a prerequisite stage for tFold in generating predictions of antibody-
antigen complex structures. Besides the ability for structure prediction of antibody-
antigen complex, tFold is also capable of independently generating antibody structure
predictions. The component of tFold responsible for predicting antibody structures is
referred to as tFold-Ab, which is specifically designed as a high-throughput, end-to-
end approach that directly produces high-resolution, atomic-level three-dimensional
(3D) structures of antibodies, accompanied by a per-residue confidence score, utilizing
their amino acid sequences as input.
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The tFold-Ab consists of four main modules including a pre-trained large protein
language model: ESM-PPI, a feature updating module: Evoformer-Single, a structure
module and a recycling module (Fig. 1a). The ESM-PPI module works to extract
both the intra-chain and inter-chain information of the protein complex to gener-
ate features for the down-streaming structure prediction task. We develop ESM-PPI
by extending the current ESM-2 model [15] through further pre-training using both
monomers and, more importantly, multimers curated from four large databases, includ-
ing UniRef50 [16], Protein Data Bank (PDB), Protein-Protein Interaction (PPI), and
the Antibody database (refer to Appendix C.3 for details). This enhancement enables
the model to extract inter-chain information effectively. The Evoformer-Single module
updates and refines the input protein features from the language model, iteratively if
using the recycling mechanism, to produce the informative sequence and pairwise rep-
resentations. The structure module, which performs SE(3)-equivariant updates using
invariant point attention [17], then maps the obtained representation to predicted
atomic-level 3D structures. Finally, the recycling module allows tFold-ab to reuse the
features and structure predictions of the previous iteration to improve the quality of
the final structure prediction. To conduct a comprehensive evaluation of tFold-Ab’s
performance, we have curated a test set, held out from the training and validation
data, based on a cutoff date of 01 July 2022. It comprises two non-redundant bench-
mark subsets, namely SAbDab-22H2-Ab and SAbDab-22H2-Nano, which include 170
paired antibodies and 73 single-chain nanobodies respectively. We utilize the widely
adopted temporally separated approach [17, 18] during data preparation to guarantee
fair comparisons between tFold-Ab and other existing methods [5, 15, 18–24].

As illustrated in Fig. 1c and supplementary Table B2, tFold-Ab results in high per-
formance in antibody structure prediction with average root-mean-squared-deviation
(RMSD) values of 0.61 Å and 0.57 Å for the framework regions(FR) in the heavy
chains and light chains, respectively. In the more complex task of predicting the
complementarity-determining regions (CDRs), tFold-Ab achieves average RMSD of
0.92, 0.84, and 3.04 Å in the CDR-1, CDR-2, and CDR-3 regions of the heavy chains
(denoted as H1, H2, and H3 regions), along with RMSD of 0.87, 0.73, and 1.12 Å in
the corresponding CDRs of the light chains (denoted as L1, L2, and L3 regions). All
RMSD scores are calculated over the backbone heavy atoms, following the alignment
of the respective framework residues. We compared tFold-Ab with the currently exist-
ing general protein structure prediction methods including AlphaFold-Multimer [5],
EquiFold [20], Uni-Fold MuSSe [23], ESMFold [15], OmegaFold [24], HelixFold-
Single [21] as well as antibody-specific methods including IgFold [18], DeepAb [19],
ImmuneBuilder [22]. It should be noted that ESMFold [15], OmegaFold [24] and
HelixFold-Single [21] are single-sequence (monomer) structure prediction methods.
The heavy and light chains are separately predicted when compared with other meth-
ods that directly predicted the paired chain complexes. In the framework regions, all
the examined methods consistently exhibited the highest performance compared to
other regions. The CDR-H3 and CDR-L3, however, are the most challenging compo-
nents for prediction, due to the significant sequence and structural diversities in these
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regions. Overall, tFold-Ab demonstrates superior performance compared to both gen-
eral protein structure prediction methods and antibody-specific methods across all
framework regions and CDRs of both chains (Fig. 1c and supplementary Table B2).

The anticipated orientation between the heavy and light chains plays a crucial
role in determining the overall binding surface. To assess the accuracy of the inter-
chain orientation, we measured the orientational coordinate distance (OCD)[25]. Our
findings indicate that, in general, tFold-Ab achieves significantly better OCD values
compared to the other methods evaluated, with a substantial margin. Specifically,
tFold-Ab yields an OCD of 4.74, while the competing methods range from 5.20 to
5.88. To further evaluate the accuracy of the predicted antibody complex structure
of paired chains, we include four metrics including the DockQ, fraction of native
contacts (Fnat), ligand root-mean-square deviation (LRMS), and the interface root-
mean-square deviation (iRMS). tFold-Ab and AlphaFold-Multimer achieve the best
performance among the evaluated methods, demonstrating comparable results with
average DockQ scores of 0.766 and 0.769, respectively. In particular, tFold-Ab achieves
the lowest average LRMS (1.889 Å vs a range of 2.077 to 2.332 Å) and iRMS (1.339 Å
vs a range of 1.416 to 1.622 Å) scores, indicating its exceptional accuracy in predicting
both ligand and interface positions, while AlphaFold-Multimer obtains the best Fnat
score of 0.786 among all evaluated methods (Supplementary Table B3).

Nanobodies, as a promising format for therapeutic development, have gained
considerable attention currently. Different from the paired antibodies, nanobodies
lack the second immunoglobulin chain [18, 26]. This characteristic, coupled with the
increased length of the nanobody CDR-3 loop, results in a wide range of CDR-
3 loop conformations that are not typically observed in paired antibodies [18, 26].
The performance of tFold-Ab and other existing general and antibody-specific meth-
ods [5, 15, 18, 19, 21, 22, 24] are compared in Fig. 1d and supplementary Table B4,
where we omit EquiFold [20] and Uni-Fold MuSSe [23] from the comparison since
they are only suitable for paired antibody structures. All evaluated methods exhibit
their highest accuracy within the framework regions, underscoring the predictability
of these conserved areas. However, the CDR-3 loop region pose the greatest challenge,
reflecting the complexity and variability of these loops. Generally, tFold-Ab results in
superior performance in most regions including the framework region (RMSD=0.67 Å
vs RMSDs ranging from 0.71 to 0.93 Å), CDR-2 region (RMSD=1.20 Å vs RMSDs
ranging from 1.20 to 1.51 Å), and CDR-3 region (RMSD=3.57 Å vs RMSDs ranging
from the 3.63 to 9.03 Å).

Fig. 1f and 1g present example predicted structures of antibodies and nanobod-
ies, offering an intuitive visualization of the prediction results. It is observed that
tFold-Ab is capable of providing highly accurate predictions for CDR-H3 and CDR-
3, which are the most challenging regions in the structure prediction of antibodies
and nanobodies respectively. In addition to its superior prediction accuracy, tFold-Ab
also achieves state-of-the-art computational speed in antibody structure prediction.
This efficiency is primarily obtained through the employment of a pre-trained pro-
tein language model (ESM-PPI) rather than traditional MSA-based approaches for
extracting co-evolutionary information. Moreover, tFold-Ab employs a specially opti-
mized Evoformer-Single module and structure module to predict both backbone and
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side-chain conformations in an end-to-end fashion. In contrast, existing methods such
as DeepAb [19] and IgFold [18] rely on Rosetta-based energy minimization for side-
chain structure prediction, which is time-consuming. We compare the inference time of
tFold-Ab and existing methods in Fig. 1b. As observed, tFold-Ab is 5,367 times faster
than AlphaFold-Multimer [5], owing to the use of ESM-PPI and the Evoformer-Single
module. We also compared tFold-Ab with an AlphaFold-Multimer variant without
employing the MSA and template search procedures, the superior speed of tFold-Ab
suggests the computational efficiency of the Evoformer-Single module compared to
the conventional Evoformer in the AlphaFold-Multimer. EquiFold [20], which employs
geometrical structure representations instead of representations extracted from a pre-
trained protein language model, achieves a marginally faster computational speed
than tFold-Ab (1.02 vs 1.15 second). However, its performance is significantly infe-
rior (P-value=0.049) compared to tFold-Ab. (Inference times are measured on a single
NVIDIA A100 GPU with 21 CPU cores for all methods, and more details can be found
in Appendix section C.4.9).

2.2 Fast and accurate prediction of antibody-antigen complex
structures

The structure of the constructed antibody-antigen complex prediction model, termed
tFold-Ag for ease of differentiation from tFold-Ab, is depicted in Fig. 2a. It mainly con-
sists of three modules, i.e. the antibody feature generation module, the antigen feature
generation module and the AI-driven flexible docking module. The antibody feature
generation module reuses the previously trained tFold-Ab to extract the sequence and
pair representations as well as the initial structures (atom coordinates) of the antibod-
ies. During the training of tFold-Ag, the antibody feature generation module remains
fixed to facilitate the convergence and optimization of the entire model. The anti-
gen feature generation module employs the pre-trained AlphaFold2 [17] to extract the
sequence and pair representations together with initial structures (atom coordinates)
of the antigens. This design considers the extensive diversity of antigens, which may
originate from a variety of sources, including bacteria, viruses, cancer cells, and so on.
As AlphaFold2 was pre-trained on a considerably broad range of proteins, this strategy
enables tFold-Ag to exhibit enhanced generalizability to diverse antigens. The AI-
driven flexible docking module comprises two main components: a specially designed
feature fusion module and a complex structure prediction module. Upon obtaining the
sequence and pair representations as well as the initial coordinates of the antibody
and antigen from the aforementioned feature generation modules, the innovative fea-
ture fusion module is subsequently employed to effectively integrate this information,
thereby generating the initial sequence and pair representations of the antibody-
antigen complex. Following this, the proposed complex structure prediction module,
which includes an Evoformer-Single stack with 32 blocks and a structure module with
8 blocks, updates the representations (via the Evoformer-Single blocks) and subse-
quently maps these representations to the predicted complex structure and provides
the predicted confidences (via the structure blocks). In the AI-driven flexible docking
module, tFold-Ag not only calculates the conformation of the antibody-antigen com-
plex but also updates the structures of the antibody and antigen themselves, which
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allows tFold-Ag to refine the initially extracted structures (refer to the method section
and Appendix C.5 for details). For instance, the antibody structure prediction accu-
racy of the most variable CDR-H3 region is further improved in tFold-Ag (when the
prediction of the epitope is accurate or when additional epitope information is avail-
able), with the RMSD decreasing from 3.21Å to 3.07Å compared to the predicted
conformation in tFold-Ab. It is worth noting that, in addition to the complex struc-
ture prediction-related modules mentioned above, there is an extra sequence recovery
module between the Evoformer-Single stack and structure module in the complex
structure prediction module, which is employed for novel antibody design (Details
are provided in sections 2.4 and 4.5). During the training phase, we simultaneously
train the shared and specific modules for complex structure prediction and antibody
design, which makes tFold-Ag a multi-task model. The optimization of the model for
each task can be considered as a regularization task that benefits the training of its
counterpart task (structure prediction and antibody design).

Similar to the data preparation process in antibody structure prediction, we curate
a hold-out test set to evaluate the performance of structure prediction methods on
antibody-antigen complexes from the SAbDab database [27], employing a temporally
separated approach [17, 18]. To ensure a fair comparison with existing methods such as
AlphaFold-Multimer [5], we make sure that none of the evaluated methods have been
exposed to the structures included in the test set by setting the cutoff date to July 1,
2022. The finalized test set comprises two non-redundant benchmark subsets, namely
SAbDab-22H2-AbAg and SAbDab-22H2-NanoAg, which include 99 antibody-antigen
complexes and 43 nanobody-antigen complexes, respectively.

We compare tFold-Ag with currently available end-to-end methods, including
AlphaFold-Multimer [5], Uni-Fold MuSSe [23], and RoseTTAFold2 [28], as well as
docking-based methods such as conventional docking methods like ZDock [9], Clus-
Pro [8], HDock [10], and deep-neural-network-involved docking methods such as
EquiDock [11], dyMEAN [12], and ColabDock [13]. tFold-Ag and other end-to-end
methods (sequences-to-complex structure) can directly predict the complex structure
using input sequences, whereas docking-based methods (structures-to-complex struc-
ture) necessitate the structures of individual components to predict the final structure
of the complex. To make a fair comparison, we utilized the currently available best
predictor to generate the structures of antibodies (AlphaFold-Multimer [5]), nanobod-
ies, and antigens (AlphaFold2 [17]) as initial inputs for the docking-based methods.
As illustrated in Fig. 2b, Fig. 2c and supplementary Table B5, the proposed tFold-
Ag outperforms existing end-to-end and docking-based methods in predicting the
structure of the antibody-antigen complex, achieving a DockQ score of 0.217 and a
TM-score of 0.708. The most recently updated AlphaFold-Multimer (v2.3.2) ranks
second, yielding a DockQ score of 0.158 and a TM-score of 0.665. Compared to the
AlphaFold-Multimer, tFold-Ag demonstrates a more robust performance achieving
a higher successful rate (SR) of 0.283 versus 0.182 (SR denotes the proportion of
predicted structures that meet the acceptable criterion (DockQ > 0.23)). A similar
conclusion can be drawn in the structure prediction of the nanobody-antigen complex.
tFold-Ag and AlphaFold-Multimer perform best with DockQ scores of 0.136 and 0.149
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as well as TM-scores of 0.678 and 0.692, respectively (Fig. 2b, Fig. 2c and supple-
mentary Table B6). Fewer experimental structures for nanobody-antigen complexes
increase reliance on general protein prediction models, possibly explaining tFold-Ag’s
slightly lower performance compared to AlphaFold-Multimer. In terms of performance
robustness, tFold-Ag achieves 32% SR score enhancement compared to the AlphaFold-
Multimer. Comparing the overall performance of involved methods employed in the
structure prediction of nanobody-antigen and antibody-antigen complexes, it was
observed that all methods demonstrated inferior performance for nanobody-antigen
complexes. This can be primarily attributed to the previously mentioned factor that
there exist fewer experimental nanobody-antigen structures available for training
the models. Fig. 2f and 2g illustrate examples of predicted antibody-antigen and
nanobody-antigen complexes, along with the corresponding experimental structures,
demonstrating that tFold-Ag can provide high-quality predictions of the interaction
interfaces between antibodies or nanobodies and antigens.

In structural biology practice, aside from experimental direct structure determi-
nation methods such as cryo-electron microscopy, there are relatively cost-effective
and more accessible experimental approaches capable of providing interaction inter-
face information. This information can be employed as structural constraints in the
prediction of protein complex structures. For example, chemical cross-linking (XL)
technology provides the distance between two residues connected by fixed-length
reagents, which can be transformed into contacts between the antibody and antigen.
Concurrently, Deep Mutation Scanning (DMS) can offer protein-protein interaction
(PPI) information, including antigen epitopes and antibody paratopes. Although these
experimental constraints are sparse and insufficient to fully determine the protein
complex structure, they can offer crucial insights into the interaction interface of
the components. In tFold-Ag, we propose to integrate inter-chain feature for better
protein complex structure prediction via utilizing a specially designed inter-chain fea-
ture embedding module, which synthesizes the interface information into the sequence
and pair representations obtained after the feature fusion module of tFold-Ag (Refer-
ring to section 4.4.2 and Appendix C.5.3 for more details). We employ the terms
tFold-Ag-ppi and tFold-Ag-contact to represent tFold-Ag utilizing PPI) information
(antigen epitope sites or both antigen epitope and antibody paratope sites), as well
as more detailed contact information (contact map between epitope and paratope
sites), respectively. Our findings suggest that tFold-Ag can significantly benefit from
incorporating additional structural constraints, and the more detailed the interaction
interface information is, the greater the enhancement in performance (Supplementary
Table B5 and Table B6). For example, when given information on both antigen epi-
tope and antibody paratope sites, tFold-Ag achieves a DockQ score of 0.416 in the
prediction of antibody-antigen structures and a DockQ score of 0.316 in the prediction
of nanobody-antigen structures (supplementary Table B5 and Table B6).

Furthermore, we have examined the correlation between the prediction confidence
score and the structure prediction accuracy of tFold-Ag, using the interface pTM
(ipTM) and DockQ as metrics, respectively. We observed considerable positive cor-
relations between ipTM and DockQ on antibody-antigen data (Pearson correlation
coefficient r=0.77), and relatively strong positive correlations on nanobody-antigen
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data (r=0.49). The primary factor leading to the correlation difference between
antibody-antigen and nanobody-antigen is assumed to be the lesser amount of data
available for training the model in the case of nanobodies compared to antibodies.
These positive correlations consistently exist when incorporating interface information
into tFold-Ag, such as tFold-Ag-ppi using epitope information or both epitope and
paratope information (Fig. 2e, refer to Appendix section C.5.8 for details).

As representative methods of without and with using the MSA of antibodies, it is
worth noting that employing both tFold-Ag and AlphaFold-Multimer cooperatively
in an ensemble manner can lead to improved antibody-antigen and nanobody-antigen
complex structure predictions. This observation is derived from a point-to-point perfor-
mance comparison analysis between tFold-Ag and AlphaFold-Multimer on the involved
test sets, where we discovered that these two methods produce highly complementary
results. Specifically, tFold-Ag and AlphaFold-Multimer exhibited superior performance
in different cases and a higher prediction confidence score obtained from these two
models mostly indicates the better obtained prediction structure (additional informa-
tion can be found in Section C.5.9). Consequently, we design an ensemble strategy
utilizing a selection mechanism referring to the prediction confidence scores obtained
from the two involved models, i.e. the prediction with a higher prediction confidence
score is selected as the ensembled prediction. With using this strategy, the DockQ
and Success Rate (SR) can be enhanced from 0.217 and 0.283 (when using tFold-
Ag independently) to 0.288 and 0.404 for antibody-antigen complexes (Table B5 and
Table C19). In the case of nanobody-antigen complexes, the DockQ can reach 0.218
(from 0.136), and the SR can be enhanced to 0.279 (from 0.186) when employing the
ensemble strategy.

In addition to providing state-of-the-art accuracy in predicting antibody-antigen
and nanobody-antigen complex structures, another advantage of tFold-Ag is its opti-
mized computational speed. tFold-Ag is over 10 times faster than AlphaFold-Multimer
in the structure prediction of protein complexes with different overall sequence lengths
(Supplementary Fig. C9). The enhancement in computational speed primarily results
from two factors. The first is our design strategy that employs the pre-trained large
protein language model ESM-PPI to extract both intra-chain and inter-chain residue-
residue contact information, as well as evolutionary relationships, instead of relying
on the time-consuming multiple sequence alignment (MSA) strategy. The second fac-
tor is our optimization and simplification of the remaining model architecture, such as
the AI-driven flexible docking component. The speed enhancement of tFold-Ag, com-
pared to AlphaFold-Multimer, is less pronounced than that of tFold-Ab. This is due
to the retention of the MSA in the antigen feature generation module of tFold-Ag to
ensure better accuracy and generalizability. Therefore, the speed advantage of tFold-
Ag will become increasingly significant when predicting the complex structures of a set
of antibodies and a specific target antigen in a high throughput manner. Considering
that the antigen feature generation module is the most time-consuming component in
tFold-Ag, owing to the employment of MSA, the average time required for predicting
each antibody-antigen complex will decrease correspondingly with an increase in the
number of antibodies screened against the particular antigen.
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2.3 Structure-based virtual screening of binding antibodies

In the early discovery phase of therapeutic antibody development, the primary task
is to select high-affinity binding antibodies, also known as binders, from candidate
antibodies obtained through animal immunization or phage display technologies. Tra-
ditional wet-lab techniques such as ELISA, FACS, or more recently emerged optofluidic
systems, can filter out part of non-binding antibodies, but these methods are not as
accurate as high-precision macromolecular interaction measurements like Surface Plas-
mon Resonance (SPR) or Bio-Layer Interferometry (BLI) [29]. However subjecting
thousands of antibodies to expression and purification followed by SPR or BLI, would
entail considerable time and experimental costs. To address this, we have explored
the potential of the tFold-Ag model to predict the structure of antibody-antigen com-
plexes. This computational approach aims to assess an antibody’s binding potential by
evaluating the predicted confidence scores, which reflect the likelihood of strong bind-
ing interactions. The tFold-Ag model, trained exclusively on binding antibody-antigen
pairs, assigns lower confidence scores to unstable, non-binding complexes, reflecting
their reduced likelihood of forming stable structures. Informed by previous work [30],
we expect that the confidence scores will serve as a reliable metric to distinguish
between binding and non-binding antibody-antigen pairs.

We conduct virtual screening experiments on two target antigens, including the
programmed cell death protein 1 (PD-1, ligand: PD-L1), and the receptor-binding
domain (RBD, receptor: ACE2) of the spike protein in SARS-CoV-2, to evaluate the
performance of tFold-Ag in virtual screening, i.e., identifying binding antibodies from
a pool of candidate antibody sequences.

As illustrated in Fig. 3a, tFold-Ag demonstrates a remarkable ability to differenti-
ate PD-1-binding antibodies from non-binding antibodies (AUC = 0.76), based on the
computed confidence scores. Remarkably, within the top 1% of the antibody ranking
list, as determined by the tFold-Ag confidence score, we observe an enrichment factor
(EF1%) of 7.41. This means that out of 7 antibodies identified by the model as high-
confidence binders, 2 are positive samples, as confirmed in Supplementary Table B7.
Consequently, for PD-1, a strong correlation exists between the tFold-Ag confidence
score and the antibodies’ antigen-binding capability, which indicates the availability
of tFold-Ag in virtual screening. Subsequently, we assess the validity of our predicted
PD-1-antibody complex structures. All the anti-PD1 antibodies used in the evaluation
are sourced from Thera-SAbDab and are either in clinical use or approved. Therefore,
these antibodies are supposed to be capable of inhibiting the PD1-PDL1 interaction,
serving as their pharmacological function. Using tFold-Ag, we predict the structure
of Lipustobart, the top-ranked antibody, and confirm the similarity of its binding
site to PDL1 and its potential for competitive binding with PD1 through structural
superimposition with the PD-1/PD-L1 complex (PDB ID: 4zqk [31]), shown in Fig. 3b.

In evaluating the virtual screening performance for the SARS-CoV-2 RBD, we
employ antibodies from a dataset of single-B cell repertoire sequencing, distinct from
the donors of the antibodies in the training set. This approach enables us to assess the
model’s predictive accuracy on novel data distributions, thereby confirming its gener-
alizability. The normalized number of effective sequences (Neff) for the MSA of the
SARS-CoV-2 RBD is 4.9, as opposed to 8.3 for PD-1. This indicates that the RBD
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has fewer diverse homologous sequences than PD-1, making the prediction more chal-
lenging. Moreover, the cutoff date for tFold-Ag’s training set is 31 December 2021,
and the majority of antibody structures capable of binding with the SARS-CoV-2
RBD are released in 2022 or later. This situation heightens the prediction difficulty
due to the limited samples encountered by the model during the training stage. In this
context, tFold-Ag achieves an AUC of 0.70 (Fig. 3d) and an EF1% of 2.35, suggest-
ing moderate success in discriminating binding from non-binding antibodies, despite
the prediction challenges posed by the novel antigen and its limited homologous
sequences. By applying the Kabsch algorithm, we superimpose a high-confidence pre-
dicted antibody-antigen structure with the RBD/ACE2 complex (PDB ID: 6m0j [32]),
revealing overlapping epitopes and spatial clashes (Fig.3e) indicative of competitive
binding, which was experimentally validated. However, due to the relatively low con-
fidence scores of tFold-Ag’s predictions for the antibody-RBD complex, the predicted
epitopes are close, which complicates the assessment of competitive potential based
solely on structural data. This means that while the predicted structures can provide
some insights, they may not be entirely accurate, and this uncertainty can make it dif-
ficult to definitively determine whether an antibody is competitive or not based solely
on these predictions. More details of our analysis are given in the appendix. C.6.

In summary, the evaluation results validate tFold-Ag’s proficiency in identify-
ing binding antibodies by accurately reconstructing antibody-antigen complexes. It
is important to note that while MSAs of antigens are still required and play a cru-
cial role in this process, the MSAs of antibodies are not necessary, which offers a
significant speed advantage in high-throughput virtual screening. For a specific anti-
gen, this structure-based screening approach, distinct from Ligand-Based Drug Design
(LBDD), can identify binding antibodies to novel antigens unseen in the training set.
This broadens its applicability for single B-cell receptor repertoire sequencing data
and supports de novo antibody design in complex pharmaceutical scenarios.

2.4 Co-design of structure and sequence for therapeutic
antibodies with tFold

As previously mentioned in section 2.2, tFold-Ag is a multitask model that incor-
porates two heads i.e. with a structure module for protein complex conformation
prediction (complex conformation prediction head) and a sequence recovery module
for antibody design (antibody design head). In the antibody design phase, tFold-Ag
is capable of predicting the structure of antigen-antibody complexes while designing
antibody sequences due to the two-head design, making it a structure and sequence
co-design approach. During the training phase, tFold-Ag is optimized to perform both
tasks simultaneously. The training mechanism for complex structure prediction fol-
lows the similar approach as existing methods [5, 17], utilizing sequences as input
and experimentally determined structures as the ground truth for supervision. The
training mechanism for antibody design is specially designed. To enable the model to
acquire the ability to design novel functional antibodies, we note the expected design
regions of input antibody sequences (for instance CDRs on the heavy and light chains)
by using the mask token. These masked antibody sequences, along with the antigen
sequence, are then used as input. The original unmasked antibody sequences serve
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as supervision for the antibody design head, while the corresponding experimentally
determined structures are used as supervision for the complex conformation predic-
tion head. Through this training mechanism, tFold-Ag is capable of considering the
interaction between antibodies and antigens during prediction, which is compelled to
learn to generate novel antibodies with reasonable sequences and similar structures to
their natural references.

To jointly optimize tFold-Ag for both complex structure prediction and antibody
design tasks, we implemented a three-stage training process. In the initial training
stage, the focus is on training the model for structure prediction, hence the sequence-
masking process is not included. However, in the subsequent two fine-tuning stages
with different parameters such as the learning rate and sequence crop size, we introduce
a random masking process on the CDRs of antibodies with a 30% probability of
masking an amino acid (70% probability of keeping its original) within the regions to
co-train the model for both tasks (Referring to the Appendix section C.5.6 for details).

Figure 4a depicts the tFold-Ag process during the antibody design phase. It
involves antibody sequences with masked regions and the sequence of the targeted
antigen as input and outputs designed novel antibody sequences and the struc-
ture prediction of the antibody-target antigen complex. As previously stated in
section 2.2, tFold-Ag permits the integration of interaction interface information to
enhance its performance in structure prediction, such as tFold-Ag-ppi employing the
Protein-Protein Interaction (PPI) information and tFold-Ag-contact utilizing the com-
prehensive contact information. Similarly, tFold-Ag allows for the incorporation of
this information as an additional feature to benefit antibody design.(Referring to
the method section 4.5 for details). The advantages of tFold-Ag for antibody design
are twofold. Firstly, it is a sequence and structure co-design method, which compre-
hensively ensures the suitability of the generated antibody from both sequence and
structure perspectives, whereas conventional methods typically focus on only one of
these aspects. More importantly, tFold-Ag does not require any prior information
for inference, unlike existing methods that rely on prior knowledge such as experi-
mentally determined antibody-antigen complex structures [33], the structure of the
antibody [34, 35], or the structure of antigen along with the binding epitope [12, 36].

We assess the performance of tFold-Ag in designing CDR loops for both chains of
the antibody through in silico evaluation. For this purpose, we curated two test sets,
termed SAbDab-22-DesignAb (including 50 antibody-antigen pairs) and Cov-AbDab-
DesignAb (77 antibody-antigen pairs), respectively. We assessed the generalization
ability of tFold-Ag to generate binding antibodies for unseen antigens on the SAbDab-
22-DesignAb set and novel antibodies for target antigens on the Cov-AbDab-DesignAb
set. The performance of tFold-Ag to generate binding antibodies for unseen antigens is
illustrated in Fig. 4b and supplementary Table B8, where it is also compared with other
existing methods that require prior knowledge, including DiffAb [34], RefineGNN [37],
MEAN [35], HERN [36], and dyMEAN [12]. We employ the Amino Acid Recovery
(AAR) and Contact Amino Acid Recovery (CAAR) metrics for in silico evaluation. It
is worth noting that a higher AAR/CAAR is not necessarily better, and a sequence
that doesn’t match the original one doesn’t automatically imply an ineffective anti-
body design. We observed that tFold-Ag, without utilizing any prior information,
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achieves the CDR-H3 AAR of 0.309 and 0.267 in SAbDab-22-DesignAb and Cov-
AbDab-DesignAb, respectively. This recovery rate is comparable to the performance
of the current leading method, dyMEAN, which, however, necessitates the inclusion
of prior epitope information. When evaluating the recovery rate of residues in contact,
tFold-Ag yields a CAAR of 0.212. We then evaluate the benefit of utilizing inter-
chain features for tFold-Ag in antibody design. As illustrated in Table B8, we observe
that incorporating the PPI information can dramatically improve the design perfor-
mance (tFold-Ag-ppi vs tFold-Ag). When epitope information is input into the model,
the CDR-H3 AAR and CAAR for SAbDab-22-DesignAb are enhanced to 0.347 and
0.251 respectively, outperforming dyMEAN (AAR=0.310, CAAR=0.244). This result
highlights the importance of the epitope for CDR-H3 design. The recovery rates of
tFold-Ag in CDR-H2 and CDR-H1 are not as good as dyMEAN [12]. This is because
CDR-H2 and CDR-H1 are both encoded by the V gene, and a decent performance
(AAR=0.726 for CDR-H1 and 0.427 for CDR-H2) can be achieved merely by using
the sequence-based model ESM-PPI (Table B8). When tFold-Ag incorporates antigen
structure information for these regions, it often introduces interference, as CDR-H1
and CDR-H2 do not always bind with the antigen. The specific details are discussed
in the Appendix section C.7.2. In addition to designing paired antibodies, tFold-Ag
is also suitable for nanobody design, more details of our proof-of-concept results are
given in section C.7.1.

In Fig. 4c, we investigate the correlation between the confidence score of structure
prediction and the quality of the antibody design (evaluated by AAR). Our in silico
experiment results suggest that although the confidence score evaluated by ipTM is not
related to the quality of the design, the residue-level confidence score of our designed
region, which we call iplddt, is correlated with the quality of the antibody design.
Predictions with better iplddt usually lead to better-designed antibodies (Refer to
Appendix section C.7.3 for detailed analysis). This allows us to use the iplddt score
as a metric to assess the performance of the antibody CDR-H3 sequences designed by
tFold-Ag.

In Fig. 4d, we showcase the designed antibodies generated from tFold-Ag and
tFold-Ag-ppi (epitope). It’s noteworthy that tFold is capable of producing innova-
tive antibody sequences (CDRs) with multiple amino acid modifications compared to
existing sequences in an end-to-end manner, while still preserving a high structural
resemblance to naturally functioning counterparts. This technique is more effective
than the existing artificial-evolution methods, which necessitates multiple rounds of
mutation suggesting and sequence optimization [38, 39].

3 Conclusion and discussion

In conclusion, tFold transcends its role as a efficient tool for fast and accurate struc-
ture prediction and shows the potential as a platform technology advancing innovation
in the field of antibody design. It enables the exploration of the extensive landscape
of potential antibody-antigen interactions, thereby facilitating the design of effec-
tive antibodies. By enhancing the accuracy and speed of antibody-antigen complex
structure predictions and leveraging these advantages to enable applications such as
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virtual screening and therapeutic antibody design, we expect that tFold will provide
biologists with a comprehensive tool to accelerate recent advancements in structural
bioinformatics. This could potentially lead to insightful revelations in the fields of
molecular biology and immunology, and foster significant breakthroughs in therapeutic
applications.

3.1 Jointly modeling antibody and antigen jointly improve
antibody structure prediction

In our study, we explored the benefits of jointly modelling the antibody and antigen
during complex structure prediction. While tFold-Ag employs the modules of tFold-Ab
to extract the initial sequence and pair representations of antibodies, these representa-
tions can be refined and adjusted in the subsequent AI-driven flexible docking module
of tFold-Ag, taking into account the interaction between the antibody and antigen. In
addition to refining the representations, the AI-driven flexible docking module plays
a crucial role in contemporaneously updating the structure prediction of both the
antibody and antigen. This module accepts the pre-computed Cα coordinates of both
the antibody and antigen as input and employs Evoformer-Single stack and structure
modules to identify the optimal docking conformation and refine the binding site.
This process is similar to the conventionally defined protein docking process but with
the added feature of allowing initial input conformation updating during docking,
essentially constituting a form of flexible docking.

The proposed joint modelling approach is particularly beneficial for modelling the
CDR-H3 region of the antibody, which is often disordered and heavily influenced by
its interaction with the antigen. Our evaluations on the SAbDab-22H2-AbAg dataset
compared the structure prediction accuracy of tFold-Ag against tFold-Ab, focusing
on the antibody’s CDR-H3 region that usually contacts with the antigen (evaluation
using the backbone RMSD). The results, as summarized in Table B11, initially sug-
gested that tFold-Ag did not significantly outperform tFold-Ab in terms of CDR-H3
prediction accuracy (3.21 to 3.20Å). This was attributed to the challenges in accurately
identifying the antigen’s epitope, which is crucial for the correct modelling of the anti-
body structure. Misidentification can lead to inaccurate predictions, as the antibody
may bind to an incorrect epitope. However, when we incorporated PPI information
(epitope and paratope) as an additional feature, the accuracy of tFold-Ag’s predic-
tions improved, with a decrease in RMSD for CDR-H3 (3.07 compared to 3.21Å). This
improvement was more pronounced when analyzing the subset of 28 antigen-antibody
complexes that tFold-Ag successfully predicted, where the RMSD of CDR-H3 was
significantly lower than that predicted by tFold-Ab (2.75 vs 3.10Å), as depicted in
Fig. A1a.

Furthermore, we observed a correlation between the confidence score of tFold-Ag,
measured with ipTM, and the structure prediction accuracy of the antibody CDR-H3
region. Higher ipTM scores generally indicated more accurate predictions (Spear-
manr’s ρ of 0.22, P-value=0.03), as shown in Fig. A1b. Conversely, predictions obtained
with lower ipTM scores, which may suggest incorrect epitope binding, did not demon-
strate significant improvements in the accuracy of the CDR-H3 region compared to
the predictions made by tFold-Ab.
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These findings highlight the advantage of using tFold-Ag’s AI-driven flexible dock-
ing module to jointly model the antibody and antigen. This approach not only
considers the dynamic nature of the CDR-H3 region but also enhances the overall
prediction accuracy of the antibody structure, as demonstrated by both ground-truth
evaluations and prediction confidence scores. The obtained results support the hypoth-
esis that when the prediction of the epitope is accurate (or when additional epitope
information is available), the joint modelling of antibody and antigen structures can
lead to more precise antibody predictions, especially in the context of highly variable
and complex regions such as the CDR-H3.

3.2 Potential approach to de novo design of antigen-binding
antibody design with tFold

The successful de novo design of the CDR-H3 region suggests the potential for
designing antigen-binding antibodies from scratch. The antigen-binding property of
antibodies is determined by the antigen-binding fragment (Fab) domain which is com-
posed of both the variable and constant domains from each heavy and light chain.
The variable domain confers antigen specificity to the antibodies, while the constant
domain provides a structural scaffold. The variable domain, also known as the vari-
able fragment (Fv) region, contains three CDRs interspersed among four relatively
conserved FRs.

The de novo design of antigen-binding antibodies aims to create novel functional
variable domains for antibodies. This process entails the simultaneous selection of FR
templates from a vast template space (determining the sequences of the FR1, FR2,
FR3, and FR4 regions) and the previously described CDRs loop design (determining
the sequences of the CDR1, CDR2, and CDR3 regions). To facilitate this, a repre-
sentative FR template library can be constructed and curated using the Observed
Antibody Space (OAS) database [40]. From this database, all unique FR region pairs
of both heavy and light chains that appear more than five times can be collected.

During the de novo design process, the entire FR template library can be screened,
and CDRs loop design can be performed to generate the sequences of CDRs on top of
each candidate FR template. Subsequently, the designed antibodies with the highest
prediction confidence scores can be selected as final outputs. These confidence scores
can be calculated by tFold-Ag during the prediction of candidate antibody-target
antigen complex structures.

The de novo design of antigen-binding antibodies offers the opportunity to create
highly specific and efficient antibodies from scratch, bypassing the need for traditional
hybridoma technology or phage display techniques. This could significantly expedite
the process of antibody discovery and development, reducing costs and increasing the
speed at which new therapies can be brought to market.

Moreover, the use of tFold in predicting candidate antibody-target antigen complex
structures may enhance the accuracy and reliability of antibody design. This could
lead to the creation of antibodies with improved specificity and affinity for their target
antigens, potentially increasing the efficacy of antibody-based therapies.
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Most importantly, the ability to design antibodies de novo could also facilitate the
development of antibodies against novel or difficult-to-target antigens, broadening the
range of diseases that can be treated with antibody-based therapies.

3.3 Limitations

While tFold has demonstrated exceptional performance in antibody-antigen complex
structure prediction and antibody design, there are still several limitations to address.
Firstly, tFold-Ag relies on pre-trained structural prediction models to provide the
initial representations and structure of the antigen. However, antigens are diverse,
ranging from monomers to short peptides and protein complexes. In cases where
the antigen is not a monomeric protein, tFold-Ag’s ability to accurately model the
antibody-antigen complex structure is restricted by the performance limitation of the
pre-trained structural models.

Furthermore, as shown in Appendix section C.5.9, tFold-Ag and AlphaFold-
Multimer exhibit strong complementarity in performance, with the confidence score
serving as a criterion to select the better-performing model. This highlights that,
despite the scarcity of co-evolutionary information between antigens and antibodies,
valuable insights can still be extracted from paired MSAs. However, the use of anti-
body MSAs incurs a significant computational cost. Balancing the trade-off between
time expenditure and performance loss presents a challenge that needs to be addressed.

Additionally, in Section 2.3, we demonstrated that the structural prediction confi-
dence score of tFold-Ag (ipTM) could be utilized for structure-based virtual screening
of binding antibodies. However, this approach is accompanied by a high rate of false
positives. Since the functionality of antibodies is closely related to their binding affinity
with antigens, incorporating an additional prediction head to estimate affinity could
be a possible solution that brings valuable enhancement.

Beyond these limitations, there is considerable room for improvement within the
tFold framework. tFold-Ab has shown that pre-training with general proteins can
enhance the accuracy of antibody predictions. Theoretically, this approach could also
improve the predictive performance of tFold-Ag, especially for Nanobody-Antigen
complexes, which are often underrepresented in data. Besides, self-distillation has been
proven to be an effective strategy in the field of structural prediction [17]. We have not
yet implemented self-distillation for tFold. Given that the OAS [40] database contains
a vast array of antibody sequences without experimentally determined structures, and
PLAbDab [41] includes over 150,000 pairs of antibodies and antigens known to bind,
there is substantial potential for future accuracy improvements if incorporating the
self-distillation strategy.

4 Methods

4.1 Data

4.1.1 Datasets for the prediction of antibody structures

We construct the training, validation and test sets from the SAbDab database [27]
based on the widely applied temporally separated protocol [17, 18]. Specifically,
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we curate all the experimentally determined antibody structures released before 31
December 2021, to constitute the samples in the training set. The resulting training
set consists of 8,264 antibody complexes containing both heavy and light chains, 1,693
antibody samples with only heavy chain information, and 376 antibody samples with
only light chain information. In the training phase, we grouped the training samples
into various clusters referring to the sequence similarity calculated by the CD-Hit [42].
Each cluster is composed of antibodies exhibiting greater than 95% sequence iden-
tity, resulting in a total of 2,873 clusters. During each training epoch, we randomly
select one antibody sample from each cluster Data to form the training samples for
the current epoch. The validation set consists of antibody structures released between
01 January 2022 and 30 Jun 2022, on which we perform hyper-parameter tuning and
model selection. Sequences in the validation set with high similarity to those in the
training set (sequence identity greater than 95%) are removed. The test set consists
of two non-redundant benchmark subsets (sequence identity lower than 99% among
included samples), i.e, SAbDab-22H2-Ab and SAbDab-22H2-Nano, which include 170
antibodies and 73 nanobodies released between 01 July 2022 and 31 December 2022
respectively. Similarly, we eliminate redundant samples in the test set that have 100%
sequence identity to those in the training set, as a larger sequence identity threshold
is advantageous in investigating the model’s sensitivity to mutations.

4.1.2 Datasets for antibody-antigen complex prediction

With a similar protocol, we create the training, validation, and test sets of
antibody-antigen complex structures based on the SAbDab database [27]. The train-
ing set consists of experimentally determined antibody-antigen complex structures
(4,834 samples) and nanobody-antigen complex structures (1,319 samples, including
instances of single domain antibody-antigen complexes) released before 31 December
2021. During the training phase, we grouped training samples into clusters based on
antigen sequence similarity (samples with over 95% sequence identity of the antigen
are assigned to a cluster), resulting in a total of 2,459 clusters. In each training epoch,
a single sample is randomly chosen from each cluster to constitute the training samples
for the current epoch. The validation set comprises antibody-antigen and nanobody-
antigen complexes released between 01 January 2022 and 30 Jun 2022, comprises 99
antibody-antigen complexes and 40 nanobody-antigen complexes. The curated test set,
comprising a total of 99 antibody-antigen complexes and 43 nanobody-antigen com-
plexes, is composed of antibody-antigen complexes and nanobody-antigen complexes
released between 01 July 2022 and 31 December 2022. It is organized into two non-
redundant benchmarks, dubbed SAbDab-22H2-AbAg and SAbDab-22H2-NanoAg,
representing antibody-antigen and nanobody-antigen sets, respectively (sequence iden-
tity lower than 95% among included samples). To ensure a fair comparison with
existing methods such as AlphaFold-Multimer [5], we excluded all structures of the
test set for the training phase of all evaluated methods. Additional data pre-processing
steps for the test set include (1) removing samples that share 95% sequence identity
with those in the training set, (2) excluding antibody-antigen and nanobody-antigen
samples without contact, and (3) eliminating samples with antigen sequence lengths
exceeding 600.
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MSA generation. For each antigen chain in SAbDab, we produced its multiple
sequence alignment (MSA) by executing MMseqs2 following the default ColabFold
pipeline. This was performed on the UniRef30 [16] library of March 2021, and the
colabfold envdb [43] as of August, 2021.

4.1.3 Datasets for virtual screening of binding antibodies

In order to evaluate the efficacy of tFold-Ag in the high-throughput screening of bind-
ing antibodies, we constructed two test datasets to perform in silico virtual screening,
with each targeting a different antigen to assess the efficacy of our approach. One test
dataset focuses on the PD-1 antigen, while the other is dedicated to the wild-type
strain of the SARS-CoV-2 virus.

PD-1 set. To evaluate the capability of tFold-Ag in distinguishing authentic anti-
body therapeutics from non-therapeutic antibodies, an assessment was conducted with
a dataset that included 27 anti-PD-1 therapeutic antibodies and 718 random anti-
bodies from healthy human donors. The therapeutic antibodies were obtained from
Thera-SAbDab [44], a database that curates all antibody therapeutics recorded by the
World Health Organization (WHO) with sequences available to the public. To ensure
the integrity of the evaluation, 9 antibodies with existing experimental structures were
excluded to prevent potential bias, as tFold-Ag may have used these structures dur-
ing training. The 718 random antibodies, which are paired in heavy and light chains,
were obtained from the OAS database [45], which were originally derived from the
healthy human donors in an earlier study of human rhinovirus infection [46]. In this
evaluation, tFold-Ag was utilized to identify the 27 anti-PD-1 therapeutic antibodies
from the set of 745 antibodies, given their sequence data only.

SARS-CoV-2 set. To simulate real-world scenarios in drug development, we con-
structed a test set using a single-B repertoire sequencing dataset obtained from the
OAS database [40]. This dataset was initially derived from mice immunized with the
SARS-CoV-2 spike protein [47], encompassing 11,388 antibodies with paired heavy and
light chains. We excluded 125 antibodies with incomplete VH/VL domains, likely due
to sequencing errors, from the analysis. The subsequent deduplication process yielded
a set of 1,595 distinct antibodies with unique VH and VL sequences. Notably, none of
these antibody sequences had corresponding structures in the SAbDab database. In the
original study [47], functional characterization was conducted on 26 antibodies, specif-
ically evaluating their binding to the SARS-CoV-2 receptor-binding domain (RBD)
using ELISA (enzyme-linked immunosorbent assay) and their competitive inhibition
of the angiotensin-converting enzyme 2 (ACE2) using BLI (Biolayer interferometry).
In the present analysis, 85 antibodies were identified as RBD binders and 72 as ACE2
blockers. These antibodies were determined to be clonally related to the previously
characterized antibodies through the alignment of their germline gene identifiers and
the sequences of the heavy/light chain CDR3. In this evaluation, tFold-Ag was tested
to distinguish RBD binder from the set of 1,595 antibodies, given their sequence data
only.
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4.1.4 Datasets for antibody design

To evaluate the generalizability of our model across different antibodies and antigens,
we constructed two distinct test sets: one aimed at antigen generalization, and the
other focused on antibody generalization.

The first, named SAbDab-22-DesignAb, was derived from the SAbDab
database, by selecting antigen sequences that cluster at a 70% sequence identity thresh-
old. SAbDab-22-DesignAb contains antibody-antigen complex structures in SAbDab
that were released from 01 January 2022, through 31 December 2022. We excluded
antibody-antigen pairs in SAbDab-22-DesignAb that any antigen sequences shared
more than 70% identity with sequences in our training set to avoid redundancy. Addi-
tionally, we omitted complex structures with an experimental resolution larger 2.5 Å
to maintain the accuracy of prior features. To ensure the design task was relevant,
we selected only those CDR-H3 regions requiring design that were in contact with
the antigen, defined as being within a 10 Å distance. These criteria yielded a total of
50 antibody-antigen structures. Given the availability of actual structures within the
dataset, we were able to extract additional input information such as protein-protein
interaction (PPI), antigen epitope, and contact details from these real structures. We
utilized this set of 50 structures to evaluate the model’s design performance across
various inputs.

The second test set, namedCov-AbDab-DesignAb, was extracted from the Cov-
AbDab [48] database. This set included all antibodies from Cov-AbDab capable of
binding to the antigen, excluding those with 100% sequence identity to antigen in the
training set. By clustering antibody sequence pairs based on a 70% sequence identity
threshold, a total of 77 antibody-antigen pairs were obtained. It should be noted
that Cov-AbDab exclusively collects antibodies with the ability to bind (or nonbind)
to coronaviruses, implying that the antigen sequences in Cov-AbDab-DesignAb are
similar. The clustering of these antibody sequences provides a valuable method to
evaluate the proficiency of our design model in engineering antibodies across a variety
of antibody frameworks. A majority of the antibody-antigen pairs in Cov-AbDab
lack experimental structures, which means we cannot extract additional input from
these structures. To address this, we employed AlphaFold2 [17] to generate predicted
structures of the antigens for those design methods requiring antigen structure.

We refrained from utilizing the previously commonly employed benchmark
RAbD [49], as the antigen-antibody complex structures contained within it have
already been represented in our training set.

Our model can also be applied to design nanobody using the same approach.
However, due to the lack of suitable methods for comparison, we constructed a test
set called SAbDab-22-DesignNano and demonstrated the performance of our model
on this test set. The test set and the results are presented in Appendix C.7.

4.2 Evaluation criteria

For antibody structure prediction, we present the backbone root-mean-square devia-
tion (RMSD) for various framework and CDRs. We use Chothia [50], a structure-based
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numbering scheme for antibody variable regions. Additionally, we compare OCD (ori-
entational coordinate distance) [25] and DockQ score to verify how well the relative
position between heavy and light chains is estimated.

For antibody-antigen complex prediction, we report DockQ score and success rate
(SR) as determined by DockQ algorithm [51]. Further, we employ the TM-Score to
evaluate the overall prediction. Moreover, we analyze the correlation between the con-
fidence scores provided by different prediction methods and their respective prediction
accuracy using the coefficient of determination (R2). For the prediction-based model,
we use the same genetic databases to build a multiple sequence alignment (MSA)
and the same template databases to extract template features. For the docking-based
model, the antibody structure is generated by AlphaFold-Multimer while the antigen
structure is generated by AlphaFold2. When prior information such as protein-protein
interactions (PPIs), antigen epitope and inter-chain contact are specified, the extra
features are calculated from the native complex. In methods that yield energy as an
output, the results are organized according to their respective energy levels. The model
demonstrating the lowest energy is subsequently chosen for evaluation. On the other
hand, for methods that generate a confidence score, the optimal output is discerned
from a plethora of model predictions. For instance, in the case of AlphaFold-Multimer,
which generates 25 predictions, the selection is made based on the confidence scores,
as the confidence score measures the level of certainty associated with each predicted
conformation.

For the task of antibody design, we employ the following metrics for in silico
evaluation: Amino Acid Recovery (AAR), defined as the overlap ratio between the
generated sequence and the known binding antibody; Contact Amino Acid Recovery
(CAAR) [52], which calculates the AAR specifically for binding residues located within
6.6Å of epitope residues.

4.3 Antibody structure prediction using tFold-Ab

As illustrated in Fig. 1a and Algorithm 1, the proposed antibody structure predic-
tion pipeline mainly consists of four components: 1) initial antibody feature extractor
using pre-trained language models; 2) Evoformer-Single stack for iterative update of
sequence embedding; 3) structure module using invariant point attention (IPA) [17]
for structure prediction; and 4) additional refinement with recycling iterations.

4.3.1 Extract multimer inter-chain information using language
model

Pre-trained language models (PLM) for protein sequences have been widely demon-
strated to effectively capture the dependency among residues and thus provide
meaningful feature embeddings [15, 53–56]. These models are typically trained with a
masked language modeling (MLM) loss, where randomly masked amino-acid sequences
are fed into the network and it is tasked with recovering the original ones via self-
attention. The attention weights in these models reflect how different residues interact
with each other, and can therefore be naturally used as initial pair features between
residues.

20

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 8, 2024. ; https://doi.org/10.1101/2024.02.05.578892doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.05.578892
http://creativecommons.org/licenses/by/4.0/


A recent study [23] has confirmed that the integrating chain relative positional
encoding with pre-trained language models, and further pre-training the language
model using group sequences derived from PPIs and complexes in PDB, enables the
language model to extract inter-chain information. We modified the architecture of
ESM-2 [15] to accommodate both single sequence and pair sequence inputs, ensuring
the preservation of the efficacy of the pre-trained parameters. The ESM-2 model, which
comprises 650 million parameters, has been selected as the base model. During the
further pre-training phase, only self-attention with chain relative position embedding,
adding no more than 1 million parameters, has been incorporated.

Our PLM model, named ESM-PPI (ESM base model with protein-protein inter-
action preservation), uses the algorithm proposed in [23] to distinguish different
chains for further pre-training. We have also adapted the masking strategy of pro-
tein language models, tailoring it to pair antibody sequences and homomer sequences.
Additionally, we have developed a novel cropping method to ensure that the cropped
sequences maintain their interaction. The data and detailed information for ESM-PPI
are introduced in Appendix C.3.

4.3.2 Sequence-based antibody prediction

In our approach, we begin by extracting the final sequence embeddings and all-layer
pairwise attention weights for each heavy and light chain from the pre-trained ESM-
PPI model, keeping the parameters fixed. To distinguish clearly between heavy and
light chains, we employ three distinct positional encoders: the multimer positional
encoder, the relative positional encoder, and the chain relative positional encoder. The
specifics of the sequence embedding module for tFold-Ab are detailed in Algorithm 2.
These encoders are designed to incorporate additional positional information into the
initial sequence embedding and pairwise representation, enriching the model’s input
data.

The advanced structure prediction [15, 17] consists of two stages: iterative updates
of single or MSA features and pair features, followed by a structure module for 3D
structure prediction. As illustrated in Fig. 1a, our architecture is inspired by the
design of AlphaFold [17]. We introduce a nuanced alteration where the standard Evo-
former stack, responsible for updating MSA and pair features, is substituted with a
simplified Evoformer-Single stack tailored for single sequence inputs (please refer to
Appendix C.4.3 for details).

Both antibodies and nanobodies are processed using the same model parameters
within the Evoformer-Single and structure modules, as we have empirically discovered
that this approach is effective due to two reasons: 1) the antibody and nanobody
features are derived from the same pre-trained language model, ensuring consistency
in the feature distribution; and 2) the independent positional encodings provide chain-
type specific information that is crucial for accurate antibody structure prediction.
This allows us to treat the input of antibodies and nanobodies as a single chain for
the purposes of our model. Additionally, we have incorporated a recycling strategy,
as outlined in Algorithm 7 and Appendix C.4.4. This strategy effectively deepens the
network, enhancing the sequence and pairwise representations within the Evoformer-
Single stacks without necessitating an increase in the number of parameters.
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4.3.3 Improve the generalizability of models through pre-training

Antibodies and nanobodies, while differing in their CDRs, share considerable struc-
tural similarities in other areas. Besides, the number of these entities with experimental
structures in the PDB is relatively small. This poses a risk of overfitting when mod-
els are trained exclusively on datasets comprising only antibodies and nanobodies. To
mitigate this risk, we have adopted a pre-training strategy that utilizes a diverse array
of general monomers and multimers sourced from the PDB. Given that an antibody
is a complex protein comprising two entities and a nanobody is a monomeric protein,
this strategy significantly expands the breadth of the training dataset. Consequently,
it enhances the model’s ability to generalize and reduces the likelihood of overfitting.
The details of pre-training on general proteins are presented in Appendix C.4.6.

Our ablation studies, detailed in Appendix C.4.8, provide empirical evidence sup-
porting this approach. The results demonstrate that pre-training on general proteins
markedly improves prediction accuracy across different regions. This improvement is
particularly notable in the SAbDab-22H2-Nano test set, underscoring the efficacy of
our methodology in producing robust and accurate structural predictions.

4.4 Antibody-antigen complex prediction using tFold-Ag

The overall network architecture of tFold-Ag is shown in Fig. 2a, which consists of
three modules: the antibody feature generation module, the antigen feature genera-
tion module, and the AI-driven flexible docking module. As shown in Algorithm 8, the
antigen and antibody sequences are fed into dedicated modules designed to extract
sequence features, MSA features and the initial coordinates of antibody and anti-
gen. Subsequently, these features are integrated within the AI-driven flexible docking
module to predict the structure of the antigen-antibody complex. Additionally, the
predicted structures are accompanied by a series of confidence scores, which serve as
an indicator of the reliability of the prediction.

4.4.1 Generate features of antibodies and antigens using
pre-trained structure prediction models

In the tFold-Ag, the antibody feature generation module takes antibody sequences as
input and utilizes the pre-trained tFold-Ab model to produce sequence embeddings,
pair representations, and initial coordinates.

Conversely, our antigen feature generation module faces a distinct challenge, as
highlighted by our experiments detailed in Table B10. We observed that sequence-
based prediction models, despite their rapid processing time, fall short in accurately
predicting antigen structures when compared to MSA-based models. This discrepancy
is likely attributable to the vast diversity inherent to antigens. To address this issue and
improve the model’s generalizability, we opted to employ structure prediction models
pre-trained on a wide array of general proteins for extracting antigen features. Recent
works [57, 58] have demonstrated the Evoformer’s capability to encode both structural
and functional properties of proteins from MSA data. Leveraging this insight, we
construct an MSA by querying genetic databases, then extract MSA embeddings and
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pair representations from the final layer of the Evoformer stack within the pre-trained
AlphaFold2 model. We also gather the predicted coordinates for the antigens.

Furthermore, as indicated in Table B10, disabling the recycling strategy in
AlphaFold does not significantly impact the performance of antigen monomer structure
prediction (with TM-scores of 0.817 vs 0.864). Our ablation study in Section C.5.7,
corroborates this finding, showing that the use of antigen features extracted by
the recycling model does not substantially improve the performance of predicting
antibody-antigen complexes. Consequently, we have chosen to disable the recycling
strategy in the pre-trained AlphaFold2 when extracting antigen features.

4.4.2 AI-driven flexible docking module

In the docking module of our tFold-Ag method, we hypothesized that neural networks
are capable of accurately reconstructing the 3D coordinates of antibodies and antigens
from their respective features. To better capture the intricate correlation between the
antigen and antibody, we have devised a feature fusion module. For the latest multimer
prediction method [5, 28], the pairing MSAs are used to generate the multimer initial
features for Evoformer stack’s input. For the multimer prediction of the antibody-
antigen complex specifically, we concatenate their amino acid sequences without any
delimiters. This is mirrored in the feature space, where each chain’s single features are
also concatenated along the sequence dimension to serve as the initial single features for
multimer structure prediction. By considering the antibody as a single entity (whether
it is in a paired state or not) and by incorporating positional encoding, we ensure that
the model is informed of the chain type and position of each residue.

As illustrated in Fig. C4 and detailed in Algorithm 9, we partition the pair features
for multimer structure prediction into four segments. The diagonal blocks are popu-
lated with pair features and initial coordinates from the antibody and antigen chains.
For the off-diagonal segments, we employ the ‘Outer product mean’ from Algorithm 10
to transform the antigen MSA representation and antibody sequence representation
into an inter-chain pair feature. Additionally, for the initial sequence feature, we utilize
cross attention mechanisms [59] to generate sequence embeddings for the antibody-
antigen complex. This enables each residue in one sequence to attend to all residues
in the other sequence.

Following the feature fusion module, we feed the initial single and pair features
into a subsequent sub-network. This sub-network is composed of 32 Evoformer-Single
blocks and 8 structure modules, which share parameters, for the prediction of mul-
timer structures. Although utilizing the same subnetwork architecture as tFold-Ab,
the task of identifying binding epitopes in antibodies and antigens presents a signif-
icantly greater challenge than differentiating between the light and heavy chains of
antibodies. To address this complexity, tFold-Ag is equipped with a larger number of
model parameters, enabling it to effectively model the complex interactions between
antibodies and antigens. This design choice is pivotal, as it allows the model to refine
feature embeddings within the global conformational context of the antibody-antigen
complex.
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4.4.3 Improving accuracy using extra structure restraints

tFold-Ag has demonstrated commendable proficiency, with a success rate approach-
ing 30%, in the prediction of antibody-antigen complexes, even in the absence of
prior knowledge. However, the integration of structural restraints, sourced from exper-
imental techniques, can significantly amplify its predictive accuracy. These additional
restraints, encompassing the protein-protein interactions (PPI) (including the anti-
gen epitope site and the antibody paratope site), and inter-chain contacts, have been
shown to be highly advantageous.

For example, chemical cross-linking (XL) offers the distance between two residues
connected by fixed-length reagents, which can be interpreted as a contact between the
antibody and antigen. Additionally, the PPI information, including antigen epitopes
and antibody paratopes, which could be obtained by Deep Mutation Scan (DMS),
is also important. Despite these experimental restraints being sparse and unable to
fully determine the protein complex structure, they can offer critical insights into the
interaction interface of the components.

In the field of protein docking and structure prediction, the use of additional struc-
tural restraints has been investigated. Previous studies [8, 60] have included them
during the conformation search phase to guide the docking towards more feasible struc-
tures. Other works [7, 61] have applied these restraints to sift through and select the
most plausible structures from a pool of candidates. More recently, with the advent of
AlphaFold, researchers [13] have been exploring how to combine these restraints with
pre-trained models to enhance prediction accuracy.

For tFold-Ag, we’ve taken this concept a step further by developing a new inter-
chain feature embedding module. This module is designed to seamlessly integrate
various inter-chain structural features, including both sequential and pairwise features,
into the model. By adding the feature embeddings through a residual connection to
the original sequence representations, we ensure that the core training of the model
remains unaffected. This allows the model to benefit from the additional information
provided by the structural restraints without disrupting the learning process that has
already been established. The details are elaborated in the Appendix C.5.3.

4.5 Co-design of antibody structure and sequence

To facilitate the co-design of antibody structure and sequence, we have expanded the
model’s input requirements by accommodating both complete sequences and sequences
with masked regions. During the design phase, the masked region signifies the location
where we aim to generate new amino acids. Specifically, in our pre-trained protein lan-
guage model ESM-PPI, we represent amino acids of different types as distinct tokens
(N=20) and note the expected designed regions in the sequence with special <Mask>
tokens. This design makes tFold-Ag suitable not only for structure prediction but also
for antibody design. Subsequently, tFold-Ag integrates the features of masked anti-
body and unmasked antigen sequences within the feature fusion module (see Appendix
section C.5.2 for details). This fusion takes into account the interaction between the
masked antibody and antigen, which is crucial for effective antibody design. After
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processing through the Evoformer-Single Stack in the antigen-antibody complex pre-
diction module, tFold-Ag incorporates an additional auxiliary head (implemented as
feed-forward layers) to generate novel antibodies by imputing different amino acids
with high predicted likelihood into the masked regions. Upon obtaining the designed
complete sequence, tFold-Ag can then predict the structure of the antibody-antigen
complex and provide an antibody design score. This score, referred to as iplddt, is
based on the predicted local distance difference test (lddt) of the masked region,
indicating the confidence level of the predictions for sequence imputation. By consid-
ering both the structural confidence score and the sequence confidence score, we can
effectively evaluate our designs, with the details described in Appendix C.7.3.

To enable the model to incorporate structural information during the sequence
design, we have modified our training strategy (see Appendix section C.5.6 for details).
As a result, tFold-Ag is extended to be a structure and sequence co-design method for
antibodies.

Considering the CDRs are the most crucial regions determining the antigen-binding
specificity of antibodies, we initially utilize tFold’s co-design capability to create novel
antibodies by generating new functional CDRs for those antibodies (referred to as
CDRs loop design in this paper). Most current methods for structure-based antibody
CDRs loop design rely on the availability of a known antibody-antigen complex struc-
ture [33], incorporate additional docking software [34, 35], or necessitate knowledge
of the antigen’s epitope [12, 36]. In contrast, our approach uniquely enables the gen-
eration of the complete antibody complex using only the partial antibody sequence
and antigen MSA, employing an end-to-end, full-atom framework. To the best of our
knowledge, our method is the only one that doesn’t require any prior information and
solely starts from the sequence data for antibody CDR design.

In the CDRs loop design task, we primarily focus on the generation of heavy
chain CDR H1-H3 within antibodies. For instance, in the task of CDR-H3 design, as
illustrated in Fig. 4a, we mask the entire CDR-H3 region within the known antibody
sequences. These sequences, along with the antigen MSA, are then input into our
tFold-Ag system, which aims to accurately predict the amino acid composition of
the CDR-H3 region and compare it to that of actual antibodies. Our predictions
extend beyond the amino acid types of the CDR-H3 sequence; we also provide the
predicted antibody structure, a structure prediction confidence score, and an antibody
design confidence score. These metrics are crucial for assessing the accuracy of our
antibody-antigen complex predictions and the efficacy of our antibody design process.

It is important to note that when additional structural constraints are applied,
our model does not utilize inter-chain features for the masked residues. While our
methodology is equally capable of designing light chain CDRs, we have chosen to
exclude these details to maintain focus and conciseness.

5 Data Availability

All input data are freely available from public sources. At prediction stage, for each
antigen chain, we produced antigen’s MSA following the default ColabFold pipeline,
against the UniRef30 [16] library of March 2021, and the colabfold envdb [43] as of
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Augest, 2021. Experimental structures are drawn from the same copy of the PDB;
we show structures of 7OX3[62], 7RPT, 7WD1[63], 7OCJ[64], 7WSL[65], 8DF5[66],
7SAI[67], 7X2M[68], 7URF[69] and 7W71[70] for evaluation.

6 Code Availability

The source code, weights and inference scripts for the tFold models are available at
https://github.com/TencentAI4S/tfold
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Fig. 1: tFold-Ab method and result. (a) Overview of the tFold-Ab architecture, with
arrows indicating the direction of information flow. Gradient backpropagation is only
enabled for dark arrows, but not for light arrows. (b) Runtime analysis for tFold-Ab
on 170 antibodies in SAbDab-22H2-Ab. Comparison to DeepAb, IgFold, AlphaFold-
Multimer and EquiFold. All runtime are measured on a single NVIDIA A100 GPU
with 21 CPU cores. (c-d) Performance comparison of tFold-Ab with other antibody
structure prediction method on SAbDab-22H2-Ab and SAbDab-22H2-Nano test sets,
evaluated by backbone RMSD in CDR-H3 for antibody and CDR-3 for nanobody,
represented as mean data with a 95% confidence interval. (e) DockQ evaluation per-
formance on the SAbDab-22H2-Ab. (f) Comparison of our predicted structures for
antibody targets (PDB 7ox3 and 7rpt, blue for the heavy chain, purple for light chain)
with their respective experimental structures (gray). The accurate prediction of the
CDR-H3 region by tFold-Ab for both side and main chains is particularly notewor-
thy. (g) Comparison of our predicted structures for nanobody targets (PDB 7wd1 and
7ocj, blue for heavy chain) with their respective experimental structures (gray). The
accurate prediction of the CDR-H3 region by tFold-Ab for both side and main chains
is particularly noteworthy.
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Fig. 2: tFold-Ag method and result. (a) Overview of the tFold-Ag architecture.
Arrows show the information flow direction. The dark arrows indicate gradient is used
while the light arrows gradient is not used. Here, repr. denotes representation. (b-d)
The antibody-antigen interaction accuracy, success rate and running time comparison
of tFold-Ag and AlphaFold-Multimer on SAbDab-22H2-AbAg and SAbDab-22H2-
NanoAg test set. (e) Correlation between ipTM and DockQ. Least-squares linear fit
DockQ = 0.80 × ipTM - 0.14 (Pearson’s r = 0.77, P-value = 1.2 × 10−20). n = 99
protein chains in SAbDab-22H2-Ab. (f) Comparison of our predicted prediction for
antibody-antigen complex targets 7wsl and 8df5 (blue for heavy chain, purple for light
chain and green for antigen chain) with their respective experimental structure (gray).
The interface of antigen and antibody is well predicted. (g) Comparison of our pre-
dicted prediction for nanobody-antigen complex targets 7sai and 7x2m (blue for heavy
chain and green for antigen chain) with their respective experimental structure (gray).
The interface of nanobody and antibody is well predicted.
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Fig. 3: Structure-based virtual screening of binding antibodies using tFold-Ag. (a)
ROC curve for PD-1 set in distinguishing between binding and non-binding antibod-
ies. (b) Spatial analysis of binding antibodies (Lipustobart, ranked 1st by confidence
predicted by tFold-Ag, blue for heavy chain, purple for light chain and green for anti-
gen chain) with PD-L1 (PDB ID: 4zqk, orange for ligand and green for antigen chain).
The antibody-antigen structure is superimposed with the antigen-receptor structure
by applying the Kabsch algorithm to the shared antigen component in both complex
structures. The competing antibodies exhibit spatial clashes (highlighted in red) and
their antigenic epitopes overlap with the binding interface between the antigen and its
ligand (shown in purple). (c) tFold-Ag predicted structures of PD-1 in complex with
anti-PD-1 antibodies. The selected antibodies were the top 5 positive sample antibod-
ies of our method, all with confidence scores greater than 0.8. The ribbon models (top)
and surface models (bottom) of PD-L1 are displayed in the same orientation, and the
antibody heavy and light chains are colored blue and purple, respectively. The epitope
on the surface of the PD-1 is colored yellow while the shared regions on the epitopes
of the five antibodies and the PD-L1 binding site are colored purple. (d) ROC curve
for SARS-CoV-2 set in distinguishing between binding and non-binding antibodies.
(e) Spatial analysis of a competitive antibody (ranked 4th with true competitive label
by confidence predicted by tFold-Ag, blue for heavy chain, purple for light chain and
green for antigen chain) with ACE2 (PDB ID 6m0j, orange for receptor and green for
antigen chain). The competing antibodies exhibit spatial clashes (highlighted in red)
and their antigenic epitopes overlap with the binding interface between the antigen
and its ligand (shown in purple).
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Fig. 4: Antibody structure and sequence co-design using tFold-Ag. (a) The workflow
of structure-based antibody CDRs design using tFold-Ag. The grey X denotes the
masked amino acid. (a) Performance of antibody amino acid recovery for CDR-H3
of tFold-Ag and other antibody design methods on SAbDab-22-Design-Ab test set.
(c) Correlation between iplddt and AAR of CDR-H3. Least-squares linear fit AAR
= 0.67 × iplddt - 0.13 (Pearson’s r = 0.41, P-value = 0.003). n = 50 protein chains
in SAbDab-22-Deisng-Ab. (b) Comparison of our predicted structures and CDR-H3
amino acid type for an antibody target for 7urf and 7w71 (blue for heavy chain, purple
for light chain) with their respective experimental structures (gray).
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Appendix A Supplementary Figures

(a) (b)

(c)

Fig. A1: (a) Comparison of the antibody predictive performance of tFold-Ag and
tFold-Ab within CDR-H3 based on SAbDab-22H2-AbAg subset, where tFold-Ag accu-
rately predicts the epitope without prior information. The positive y-axis indicates
the RMSD reduction from tFold-Ab to tFold-Ag. (b) Correlation between ipTM and
RMSD reduction in antibody CDR-H3 from tFold-Ab to tFold-Ag with a Spearmanr’s
ρ of 0.22 and a P-value of 0.03, across n = 99 protein chains in SAbDab-22H2-AbAg.
(c) left: Comparison of tFold-Ab predicted structures for an antibody target (PDB
7wo7, blue for heavy chain with chain ID ‘A’, purple for light chain with chain ID
‘B’) with respective experimental structures (gray). The backbone RMSD of CDR-H3
prediction by tFold-Ab is 4.62 Å. right: Comparison of tFold-Ag predicted structures
for an antibody-antigen complex (PDB 7wo7, blue for heavy chain with chain ID ‘A’ ,
purple for light chain with chain ID ‘B’ and green for antigen chain with chain ID ‘C’)
with respective experimental structures (gray). The backbone RMSD of the antibody’s
CDR-H3 prediction by tFold-Ag is 1.82 Å, the DockQ of antibody-antigen interaction
is 0.71.
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Appendix B Supplementary Tables

Name Description of Datasets Samples

SAbDab-22H2-Ab For antibody structures prediction. 170 antibodies
SAbDab-22H2-Nano For nanobody structures prediction. 73 nanobodies
SAbDab-22H2-AbAg For antibody-antigen complex prediction. 99 antibody-antigen
SAbDab-22H2-NanoAg For antibody-antigen complex prediction. 43 nanobody-antigen
SAbDab-22H2-DesignAb For antibody CDRs loop design. 50 antibodies
SAbDab-22H2-DesignNano For nanobody CDRs loop design. 26 nanobodies
SAbDab-22-Ag For antigen structure prediction. 112 antigens
Cov-AbDab-DesignAb For antibody CDRs loop design. 77 antibodies
SARS-CoV-2 set For virtual screening of competitive func-

tional antibodies for RBD antigen of
SARS-CoV-2 virus .

1595 antibodies

PD-1 set For virtual screening of competitive func-
tional antibodies for PD1.

745 antibodies

Table B1: Summary of test set used in this paper.

Method OCD H-Fr H1 H2 H3 L-Fr L1 L2 L3

AlphaFold-Multimer [5] 5.64 0.66 0.94 0.90 3.09 0.62 0.96 0.76 1.27
EquiFold [20] 5.62 0.69 1.06 0.95 3.42 0.66 1.09 0.84 1.37
Uni-Fold MuSSe [23] 5.48 0.65 1.00 0.95 3.43 0.62 0.97 0.76 1.30
ESMFold [15] - 0.70 1.09 1.10 4.51 0.65 1.19 0.80 1.66
OmegaFold [24] - 0.68 1.00 0.94 4.12 0.63 1.02 0.76 1.48
HelixFold-Single [21] - 0.77 1.05 1.16 5.30 0.71 1.19 0.87 1.79
IgFold [18] 5.88 0.69 1.00 1.01 3.40 0.65 1.02 0.79 1.34
DeepAb [19] 5.20 0.67 1.04 0.99 3.77 0.61 1.02 0.79 1.35
ImmuneBuilder [22] 5.71 0.69 1.03 1.00 3.49 0.65 1.01 0.83 1.25
tFold-Ab 4.74 0.61 0.92 0.84 3.04 0.57 0.87 0.73 1.12

Table B2: Antibody structure prediction performance on the SAbDab-22H2-Ab
benchmark. OCD, backbone RMSD in different framework and CDR regions are
reported. For monomer structure prediction methods, the heavy and light chains are
predicted separately, and the OCD metric is not evaluated (denoted by ’-’). The anti-
body numbering scheme we use is Chothia. H-Fr indicates the Fr of H chain and H1-H3
indicate the CDRs of H chain. L-Fr indicates the Fr of L chain and L1-L3 indicate the
CDRs of L chain.

36

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 8, 2024. ; https://doi.org/10.1101/2024.02.05.578892doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.05.578892
http://creativecommons.org/licenses/by/4.0/


Method DockQ ↑ Fnat ↑ LRMS ↓ iRMS ↓
DeepAb [19] 0.718 0.708 2.293 1.622
EquiFold [20] 0.746 0.752 2.248 1.521
IgFold [18] 0.711 0.689 2.332 1.599
ImmuneBuilder [22] 0.745 0.749 2.133 1.508
Uni-Fold MuSSe [23] 0.752 0.771 2.199 1.515
AlphaFold-Multimer [5] 0.769 0.786 2.077 1.416
tFold-Ab 0.766 0.746 1.889 1.339

Table B3: DockQ evalution performance on the SAbDab-22H2-Ab benchmark.

Method Fr CDR-1 CDR-2 CDR-3

AlphaFold [17] 0.71 1.96 1.20 3.96
DeepAb [19] 0.93 2.36 1.51 9.03
IgFold [18] 0.73 1.97 1.29 4.64
HelixFold-Single [21] 0.76 1.92 1.27 4.16
ESMFold [15] 0.70 1.87 1.34 3.80
ImmuneBuilder [22] 0.75 1.91 1.23 3.79
OmegaFold [24] 0.73 1.77 1.34 3.63
tFold-Ab 0.67 1.95 1.20 3.57

Table B4: Nanobody structure prediction performance on the SAbDab-22H2-Nano
benchmark. Backbone RMSD in different framework and CDR regions are reported.
The antibody numbering scheme we use is Chothia.

Method Extra Features DockQ ↑ SR ↑ TM-Score ↑ R2 ↑
AlphaFold-Multimer [5] (v2.3) - 0.158 0.182 0.665 0.600
AlphaFold-Multimer (v2.2) - 0.108 0.121 0.649 0.375
Uni-Fold MuSSe [23] - 0.048 0.030 0.590 -
RoseTTAFold2 [28] - 0.030 0.000 0.501 -
ZDock [9] - 0.031 0.000 0.599 -
ClusPro [8] - 0.038 0.000 0.607 -
HDock [10] - 0.034 0.020 0.607 -
EquiDock [11] - 0.004 0.000 0.586 -
DyMEAN [12] epitope 0.160 0.283 0.700 -
ColabDock [13] contact 0.266 0.414 0.722 0.387
tFold-Ag - 0.217 0.283 0.708 0.593
tFold-Ag-ppi epitope 0.303 0.465 0.761 0.346
tFold-Ag-ppi epitope and paratope 0.416 0.626 0.814 0.407
tFold-Ag-contact contact 0.703 0.970 0.918 0.561

Table B5: Antibody-antigen complex prediction performance on the SAbDab-22H2-
AbAg benchmark. SR denotes DockQ success rate defined by DockQ algorithm.
TM-score denotes the accuracy of the prediction in comparison to the ground truth
structure, with a range from 0 to 1 and a threshold of 0.5 denoting the correct pre-
diction. R2 is correlation of determination between the confidence score and DockQ.
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Method Extra Features DockQ ↑ SR ↑ TM-Score ↑ R2 ↑
AlphaFold-Multimer [5] (v2.3) - 0.149 0.140 0.692 0.545
AlphaFold-Multimer (v2.2) - 0.113 0.116 0.680 0.241
Uni-Fold MuSSe [23] - 0.048 0.047 0.590 -
RoseTTAFold2 [28] - 0.022 0.000 0.501 -
ZDock [9] - 0.028 0.000 0.599 -
ClusPro [8] - 0.026 0.000 0.607 -
HDock [10] - 0.029 0.000 0.607 -
EquiDock [11] - 0.010 0.000 0.586 -
ColabDock [13] contact 0.267 0.419 0.760 0.429
tFold-Ag - 0.136 0.186 0.678 0.237
tFold-Ag-ppi epitope 0.227 0.349 0.733 0.182
tFold-Ag-ppi epitope and paratope 0.316 0.628 0.761 0.229
tFold-Ag-contact contact 0.731 1.000 0.918 0.595

Table B6: Nanobody-antigen complex prediction performance on the SAbDab-22H2-
NanoAg benchmark. SR denotes DockQ success rate defined by DockQ algorithm.
TM-score denotes the accuracy of the prediction in comparison to the ground truth
structure, with a range from 0 to 1 and a threshold of 0.5 denoting the correct pre-
diction. R2 is correlation of determination between the confidence score and DockQ.

rank antibody id label score

1 Lipustobart 1 0.883
2 Healthy donor antibody 0 0.867
3 Cemiplimab 1 0.861
4 Healthy donor antibody 0 0.860
5 Healthy donor antibody 0 0.859
6 Healthy donor antibody 0 0.858
7 Healthy donor antibody 0 0.855

Table B7: Performance of virtual screening for binding antibodies on a set of 745
antibodies targeting PD-1, including 27 positive samples. Our method yielded 2 posi-
tive samples within the top 1% of the ranking, resulting in an EF (1%) of 7.41.
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Method Extra Features H1 H2 H3
AAR CAAR AAR CAAR AAR CAAR

DiffAb[34]a - 0.686 0.545 0.395 0.322 0.290 0.190
RefineGNN[37]ab - - - - - 0.251 -
MEAN[35]a - - - - - 0.311 0.243
HERN[36] epitope - - - - 0.310 0.141
DyMEAN[12]c epitope 0.731 0.615 0.596 0.519 0.310 0.244
ESM-PPIb - 0.726 - 0.427 - 0.240 -
tFold-Ag - 0.651 0.531 0.422 0.331 0.309 0.212
tFold-Ag-ppi epitope 0.696 0.550 0.509 0.390 0.347 0.251
tFold-Ag-ppi epitope and paratope 0.691 0.551 0.524 0.400 0.358 0.265

Table B8: CDRs loop deisgn performance on the SAbDab-22-DesingAb benchmark.

aAdope the pipline: Antibody use ground truth, Antigen use AlphaFold2, dock with HDock[10]
bDoes not use antigen structure as input, so there is no need to calculate CAAR
cMore than 70% of the test set in SAbDab-22-Design was in the training set for dyMean. This overlap

could potentially lead to an overestimation of its performance

Method H1 H2 H3
AAR AAR AAR

DiffAb [34]a 0.634 0.331 0.239
RefineGNN [37]a - - 0.232
MEAN [35]a - - 0.261
ESM-PPI 0.690 0.370 0.192
tFold-Ag 0.532 0.416 0.267

Table B9: CDRs loop deisgn performance on the Cov-AbDab-DesignAb benchmark.

aAdope the pipline: Antibody use tFold-Ab, Antigen use AlphaFold2, dock with HDock[10]
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Method TM-Scr GDT-TS LDDT

AlphaFold [17]a 0.864 81.6 0.812
AlphaFold (no recycle)a 0.817 76.0 0.761
ESMFold [15] 0.739 67.9 0.696
OmegaFold [24] 0.694 63.7 0.659

Table B10: Antigen structure prediction performance on the SAbDab-22-Ag bench-
mark. We have collected all antigen sequences and structures released in the SAbDab
database in 2022. Using mmseqs with 40% sequence consistency for clustering, we
obtained a total of 112 sequences. We then compared the performance of the currently
leading MSA-based structure prediction algorithm, AlphaFold2, with famous single-
sequence-based structure prediction methods, ESMFold and OmegaFold, on this test
set. We also evaluated the performance of alphafold2 when the recycle strategy was
disabled.

aConsider that other methods do not employ ensembles, we used only the AlphaFold2 param model 4 ptm
to predict structures for a fair comparison. This model does not utilize any template information.

Dataset tFold-Ab tFold-Ag tFold-Ag-ppi

SAbDab-22H2-AbAg 3.21 3.20 3.07
SAbDab-22H2-AbAg(DockQ ≥ 0.23) a 3.10 2.75 2.54

Table B11: Antibody structure prediction performance on SAbDab-22H2-AbAg when
antigen is consider or not. Backbone RMSD in CDR-H3 are reported. tFold-Ag’s AI-
based docking module refine the prediction of CDR-H3 loop.

aConsidering the difficulty in identifying the epitope of the antigen and the paratope of the antibody,
in order to correctly evaluate the simultaneous modeling of antibody and antigen structures by tFold-Ag,
compared to tFold-Ab’s independent prediction of antibodies, we want to see if it can improve the predictive
performance of the antibody CDR-H3. We selected 28 successful antigen-antibody pairs predicted by tFold-
Ag from SAbDab-22H2-AbAg (DockQ ≥ 0.23). For these data points, tFold-Ag can correctly predict the
antigen epitope without using prior epitope information.
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Appendix C Supplementary Methods

C.1 Overview

In this section, we provide a detailed account of our methods and results. We begin
with an introduction to the notations and conventions used throughout our work in
the Section C.2. Following this, we present the data used by our pre-trained language
model along with the detail of the training process in Section C.3. Subsequently,
we introduce the algorithms, loss functions, training details and additional results
of tFold-Ab and tFold-Ag that are introduced in the main text in Section C.4 and
Section C.5. Finally, we showcase some of our research on two applications of our
models, structure-based virtual screening and antibody design in Section C.6 and
Section C.7. These applications demonstrate the practical utility of our models and
their potential to contribute significantly to the field of bioinformatics.

C.2 Notation

We summarize all algorithms in Table C12, covering the main algorithms of this paper,
tFold-Ab and tFold-Ag as well as the algorithms that these two algorithms call. In
detail, we provide hyperlinks to the 12 algorithms proposed in this paper so that the
reader can learn their details. For the remaining algorithms proposed by existing works
(e.g., AlphaFold2), we provide the algorithm names and references so that readers can
refer to the literature for details. For some well-known algorithms, e.g., ‘Linear’, we
provide their synopses.
In Table C13, we provide a brief introduction to symbols and operators used in the
algorithms and equations.
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Notation Description

Inference tFold-Ab Algorithm 1
Embedding Algorithm 2
EvoformerSingleStack Algorithm 3
SeqAttentionWithPairBias Algorithm 4
SeqTransition Algorithm 5
OuterProduct Algorithm 6
RecycleEmbed Algorithm 7
Inference tFold-Ag Algorithm 8
FeatureFusion Algorithm 9
OuterProductMean Algorithm 10
CrossAttention Algorithm 11
IcfEmbedding Algorithm 12
MultiHeadAttention Multi-head attention algorithm [71]. The three inputs are

query, key, and value for the attention.
StructureModule StructureModule (Algorithm 20) in AlphaFold2 [17].
Inference AlphaFold2 AlphaFold Model Inference (Algorithm 2) in AlphaFold2 [17]
SinPosEnc Sinusoidal positional encoding [71].
concat Concatenation of two inputs along the feature dimension.
Linear Linear projection with weight and bias.
LinearNoBias Linear projection with weight but no bias
relpos Relative position encoding (Algorithm 4) in AlphaFold2

[17].
chn relpos Chain Relative Positional Encoding (Algorithm 5) pro-

posed in AlphaFold-Multimer [5]. We omit the entity id and
sym id when calling it in Algorithm 2.

TriangleMultiplicationOutgoing Triangular multiplicative update using ‘outgoing’ edges.
That is the Algorithm 11 proposed in AlphaFold2 [17].

TriangleMultiplicationIngoing Triangular multiplicative update using ‘incoming’ edges.
That is the Algorithm 12 proposed in AlphaFold2 [17].

TriangleAttentionStartingNode Triangular gated self-attention around starting node. That
is the Algorithm 13 proposed in AlphaFold2 [17].

TriangleAttentionEndingNode Triangular gated self-attention around ending node. That is
the Algorithm 14 proposed in AlphaFold2 [17].

PairTransition Transition layer in the pair stack. That is the Algorithm 15
proposed in AlphaFold2 [17].

LayerNorm Layer normalization [72]
GetCbAtom Return the coordinate of the carbon atom.
digitize Return the index of the bin to which the input value belongs.
Contact2PPI Generate PPI using inter-chain contact. Refer to Section

C.5.3 for details.
PPI2Contact Generate pseudo contact using PPI. Refer to Section C.5.3

for details.
GenContact Calculate intra-chain contact with pre-computed atom coor-

dinates. Refer to Section C.5.3 for details.

Table C12: Summary of algorithms used in this paper.
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Notation Description

Indices i, j Indices on the residue dimension
Indices k, l Indices on the antibody dimension
Indices s, t Indices the sequence dimension
Index h Index on the attention heads dimension
Superscripts H, L, A Superscripts H, and L represent the heavy chain and light

chain of antibody, respectively. Superscript A represents the
antigen. Superscript H-L represents the concatenation of
heavy and light chains. Superscript H-L-A represents the
concatenation of antibody and antigen.

Superscripts ab, ag Superscripts ab and ag represent antibody and antigen,
respectively. They are mainly used in Algorithm 9: Feature
Fusion. In Algorithm 9, the superscript ab also represents
nanobody if applicable.

Superscript pre, init, prev Superscripts ‘pre’, ‘init’, and ‘prev’ represent ‘pre-trained’,
‘initial’, and ‘previous’, respectively.

Superscript plddt, iptm Superscripts ‘plddt’, ‘iptm’ in rplddti and riptm are used to
identify pLDDT and ipTM confidence scores.

fi Feature. fHi , fLi are the sequence feature of heavy and light
chain of antibody. fAi is the MSA feature of antigen.

si Single representation.
zij Pair representation.
msi MSA representation.
xi Structure representation, i,e. the coordinates of each atom

in the protein.

r Confidence score. rplddti is the pLDDT confidence score for
each residue and riptm is the ipTM confidence score for each
antibody.

Fs
i PPI feature.

Fz
ij Inter-chain feature.
{·} Set of vectors. For example, {si} denotes the set of single

represents.

Table C13: Summary of notations used in this paper.
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C.3 ESM-PPI

C.3.1 Dataset

A combination of four datasets is used in the further pre-training for ESM-PPI:

• UniRef50 [16], March 2023 version, approximately 60 million monomeric sequences
in it. To ensure the validity of our validation set, we randomly selected 4,000
sequences that have never appeared in the training and validation sets of ESM2.
These sequences were obtained by taking the difference set between UniRef50 and
UniRef100 released in September 2021, and were used to construct the validation
and test set.

• PDB, January 2023 version, a total of 188k of sequences of solved protein multimers
in the Protein Data Bank. We selected 4,000 pairs of interacting chains from 4,000
complex structures that were released after 2022 from the PDB to serve as the
validation and test set.

• PPI, the dataset compiles 1.3 million pairs of protein sequences that are known
to potentially interact, gathered from various existing databases. we amalgamated
pairs of interacting proteins from the following sources: HINT [73], intACT [74],
HIPPIE [75], prePPI [76], BioGRID [77], comPPI [78] and huMAP [79]. Given that
these data come from various sources, redundancy is inevitable. To address this, we
employed MMseqs2 [80] to filter out duplicated PPI based on 100 sequence identities.
In addition, we filter the interactions with low confidence scores in intACT (score
lower than 0.3), comPPI (score lower than 0.3), HIPPIE (quality lower than 0.63)
for higher data quality. After that, we select 4,000 pairs for validation and test.

• Antibody, This dataset includes 1.5 million paired antibody sequences collected
from the OAS [40]. Considering that the antibody’s CDR3 region can be affected
by the antigen, and the OAS data does not take it into account, we did not select
any paired antibody as a validation or test set.

Ultimately, we obtained a total of 12,000 monomeric sequences and interaction pairs,
which were designated for validation and testing. These were evenly split, with half
being selected as the validation set and the remaining half assigned to the test set.
This balanced division ensures a comprehensive and rigorous assessment of our model’s
performance.
In order to partially prevent overfitting and to avoid data leakage, we have reduced the
redundancy in the training data. For monomeric sequence in UniRef50, we removed
some sequences from the training set via the procedure described in [81]. MMseqs2
search (-min-seq-id 0.5 -alignment-mode 3 -max-seqs 1000 -s 7 -c 0.8 -cov-mode 0 ) is
run using the training set as query database and the validation & test set (including
monomeric sequences and each single chain from multimer) as target database. All
train sequences that match a validation & test sequence with 50% sequence identity
under this search are removed from the training set. For multimeric sequence from
PPI and PDB, we calculate the length-weighted sequence similarity using MMseqs2
search (-min-seq-id 0.9 -alignment-mode 3 -max-seqs 1000 -s 7 -c 0.8 -cov-mode 0 ).
Considering the small number of PPI and PDB data, we only chose 90% identity
threshold for multimer.
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C.3.2 Training detail of ESM-PPI

To optimize the training of ESM-PPI for handling the large number of residues in
multimeric sequences, which can be a challenge for GPU memory and efficiency, we
adapted the ContiguousCropping algorithm from AlphaFold-Multimer [5]. Specifically,
for multimeric structures from the PDB, we randomly select two interacting chains
and proportionally crop them according to their lengths, ensuring the preservation of
structural contacts. In the absence of structural data for PPI sequence pairs, cropping
is based solely on length. For homomers, we employ a uniform cropping method across
all chains to maintain consistency. Antibody sequence pairs, typically shorter, do not
require this cropping step.
For monomeric sequences and PPI pairs without structural data, we implement a
masking strategy akin to that used in traditional masked language models. During
training, 15% of amino acids are randomly chosen: 80% of these are masked, 10% are
substituted with a random residue, and 10% are left as is. To avoid data leakage in
homomers, we ensure that the masking is uniform across all chains.
When dealing with protein sequences that have experimental structures, we increase
the likelihood to 30% that residues at the contact interface between two chains are
masked. This approach improves the model’s proficiency in learning protein interac-
tions from sequence data. For antibodies, given the predictability of amino acid types
in the framework regions, we adopt a strategy where residues in the CDRs loop have a
30% higher chance of being selected for masking, emulating tactics used in specialized
antibody language models [45], while the framework regions remain unchanged.
In the further pre-training phase, we executed a comprehensive 128,000 training steps,
with each step comprising a batch of 128 samples. These samples varied, including
individual sequences from UniRef50, pairs from multimeric PDB structures, PPI inter-
action pairs, and paired antibody sequences. The selection probability for these sample
types followed a ratio of 2:3:3:2.
The AdamW [82] optimizer was employed with hyperparameters set to β1 = 0.9, β2 =
0.999. We adopted a learning rate schedule that began with a linear warm-up from
3e−6 to 3e−5 over the initial 12,800 steps, after which the rate was held constant at
3e−5 for the remainder of the training period.
To efficiently manage the model across multiple GPUs, we utilized Fully Sharded
Data Parallelism (FSDP) [83], which shards both model weights and optimization
states. This enabled us to increase the sequence crop size to 1024. For the validation
and testing stages, we applied an Exponential Moving Average (EMA) [84] to the
model parameters with a decay rate of 0.995, ensuring smoother parameter updates.
The model selection was based on achieving the lowest average loss on a combined
validation subset.
The entire further pre-training was conducted on a cluster of 8 NVIDIA A100 GPUs,
completing in around 30 hours. This setup allowed us to efficiently scale our training
process while managing computational resources effectively.
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(a) (b) (c)

(d)

Fig. C2: Analysis of ESM-PPI. (a-c) ESM-PPI masked language modeling loss curves
on three validation sets. Models are trained to 128k updates. The curves in different
colors represent the model trained using different learning rates. ‘base’ refers to the
original model, while ‘target’ refers to the model after the parameters have been
updated using EMA. (d) ESM-PPI perplexity in different test subsets with respect to
varying learning rates. ‘mono’ and ‘mult’ refer to the evaluation of paired sequences
either as monomer proteins or as a multimer during assessment.

C.3.3 Validation & test analysis

Fig. C2 shows the ESM-PPI validation loss curves on three validation sets. Since ESM-
2 has already been well-trained on monomers using UniRef50, the further pretraining
stage did not yield any performance improvement. However, for datasets with mul-
timer, the loss gradually decreased with model updates and converged after 100,000
iterations. A learning rate of 3e−5 proved to be the most suitable for ESM-PPI. Fur-
thermore, the model updated using EMA showed a slight performance improvement
compared to the original model, although the difference was not significant.
We evaluate the performance of ESM-PPI on the test set using perplexity, a metric that
measures the model’s ability to predict amino acids based on their context within a
sequence. The perplexity score can range from 1, which would indicate a perfect model,
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to 20, which would suggest a model making random predictions. Essentially, perplex-
ity provides insight into the number of amino acids the model is uncertain about
during prediction. In addition, we report perplexity scores for multimer sequences in
the ‘mono’ and ‘mult’ modes, respectively. The major difference between these two
modes lies in that when recovering the sequence of the first masked chain, whether the
second chain is taken as inputs (‘mult’ mode) or not (‘mono’ mode). The reduction
in perplexity scores from the ‘mono’ to ‘mult’ mode reflects how well the ESM-PPI
model captures cross-chain dependencies for sequence recovery. For the original ESM2
model, which does not accept multimer inputs, we concatenate two sequences with a
short linker to evaluate its performance in the ‘mult’ mode.
Fig. C2d indeed shows that compared to ESM2, the perplexity of ESM-PPI on
UniRef50 has decreased, indicating an improvement in the model’s predictive ability.
When PPI and PDB data are input into the model as monomeric proteins, the per-
formance of ESM-PPI markedly outperforms that of ESM2. This can be attributed
to the fact that multimeric protein data is less abundant and diverse than monomeric
protein data, making it easier for the model to learn the individual features of the
protein, rather than the cross-chain features. When the entire protein complex is used
as input, the model’s perplexity decreases relative to when only a monomeric chain
is inputted. For example, the perplexity for the PDB validation set drops from 2.11
to 1.91. This suggests that ESM-PPI has successfully learned to interpret cross-chain
information, and is not merely relying on the individual chain’s information for amino
acids prediction. This showcases the model’s capability to comprehend and predict
complex protein interactions.
Fig. C2d indeed shows that the perplexity of ESM-PPI on UniRef50 has slightly
increased over ESM2, indicating minor performance degradation in the model’s ability
of recovering monomer sequences. This is as expected since ESM2 is solely pre-
trained on UniRef50, while ESM-PPI is jointly optimized on UniRef50, PDB, and
PPI datasets. As for multimer sequences in PDB and PPI validation sets, the perfor-
mance of ESM-PPI markedly outperforms that of ESM2 in both ‘mono’ and ‘mult’
modes. For ESM-PPI models, the performance gain in the ‘mono’ mode can be par-
tially explained by the over-sampling of PDB and PPI sequences than their original
proportion in UniRef50. However, all the ESM-PPI models consistently achieve a lower
perplexity in the ‘mult’ mode than that in the ‘mono’ mode, implying that these mod-
els indeed exploit cross-chain information to more accurate sequence recovery. It is
worth noting that simple concatenation of multimer sequences does not always yields a
lower perplexity. For the PPI validation set, ESM2 with concatenated sequences leads
to an increased perplexity (from 4.93 to 5.10), in contrast with ESM-PPI models. In
summary, this showcases the model’s capability to comprehend and predict complex
protein interactions.
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C.4 tFold-Ab

C.4.1 tFold-Ab inference

Algorithm 1 shows the inference pipeline of tFold-Ab. The tFold-Ab takes the anti-
body’s amino-acid sequence as input and generates outputs that include sequence
embedding, pairwise representations, atom coordinates and confidence scores.
The entire network is primarily composed of four components. The first part of the
network initializes antibody feature using pre-trained ESM-PPI (refer to Appendix
section C.3 for details.). This is followed by the Embedding Module (Appendix
section C.4.2), which generates the initial sequence embedding. The sequence embed-
ding is then updated iteratively with the second part of the network, Evoformer-Single
stack (Appendix section C.4.3), creating the inputs for the structure module and recy-
cling. The structure module uses invariant point attention (IPA) [17] for structure
prediction, which is the third part of the network. Finally, the outputs from the pre-
vious execution are recycled as inputs for the next execution for additional refinement
(Appendix section C.4.4). This recycling process forms the fourth and final part of
the network. This iterative refinement process helps to improve the accuracy of the
predicted structures.

Algorithm 1 Model inference with recycling iterations for tFold-Ab

def Inference tFold-Ab
({

fHi
}
,
{
fLi

})
:

Input: Number of Iteration T
1: ▷ extract initial feature using pre-trained ESM-PPI

2:

{
sH-L,pre
i

}
,
{
zH-L,pre
ij

}
= ESM-PPI

({
fHi

}
,
{
fLi

})
3: ▷ generate initial sequence embedding

4:

{
sH-L,init
i

}
,
{
zH-L,init
ij

}
= Embedding

({
sH-L,pre
i

}
,
{
zH-L,pre
ij

}
,
{
fHi

}
,
{
fLi

})
5: sprevi , zprevij ,xprev

i = 0,0, 0⃗
6: for t = 0 to T − 1 do
7: ▷ initialize features
8:

{
sH-L
i

}
,
{
zH-L
ij

}
←

{
sH-L,init
i

}
,
{
zH-L,init
ij

}
9: if t > 0 then

10:
{
sH-L
ij

}
,
{
zH-L
ij

}
+= RecycleEmbed

(
{sprevi } ,

{
zprevij

}
, {xprev

i }
)

11: end if
12: ▷ update sequence embedding with the Evoformer-Single stack
13:

{
sH-L
i

}
,
{
zH-L
ij

}
= EvoformerSingleStack

({
sH-L
i

}
,
{
zH-L
ij

})
14: ▷ predict structure and confidence using StructureModule in Alphafold2 [17]

15:
{
xH-L
i

}
,
{
rplddti

}
= StructureModule

({
sH-L
i

}
,
{
zH-L
ij

})
16: {sprevi } ,

{
zprevij

}
, {xprev

i } ←
{
sH-L
i

}
,
{
zH-L
ij

}
,
{
xH-L
i

}
17: end for
18: return

{
sH-L
i

}
,
{
zH-L
ij

}
,
{
xH-L
i

}
,
{
rplddti

}
,
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C.4.2 Embedding module

Algorithm 2 illustrates the use of three distinct positional encoders. These encoders
not only provide the network with information about the positions of residues in the
chain, but also help distinguishing between heavy and light chains in antibodies, which
is crucial for accurate protein folding prediction.
The multimer positional encoder uses a shared sinusoidal positional encoder for differ-
ent chains. This type of encoder helps the model understand the relative positions of
residues within each chain. The relative positional encoder is a version adapted from
AlphaFold2. This encoder provides information about the relative positions of residues
to each other, which is important for understanding the 3D structure of the pro-
tein. The chain relative positional encoder is a simplified version of the chain relative
positional encoding used by AlphaFold-Multimer. This encoder provides information
about the relative positions of different chains to each other.
Given the differences between antibody heavy and light chains, we have omitted the
entity id and sym id, which were previously used by AlphaFold-Multimer. These iden-
tifiers were used to distinguish between different entities and symmetries in the protein
structure, but in the context of antibodies, distinguishing between heavy and light
chains is more relevant.

Algorithm 2 Embedding Module for tFold-Ab

def Embedding
({

sH-L,pre
i

}
,
{
zH-L,pre
ij

}
,
{
fHi

}
,
{
fLi

})
:

1: fH
i = SinPosEnc

(
fH

)
2: fL

i = SinPosEnc
(
fL

)
3: fH−L

i = Concat
(
fH
i , fL

i

)
4: ▷ Update single feature with sinusoidal positional encoding
5: s̃i = Linear

(
Concat

(
sH−L
0 , fH−L

i

))
6: z̃ij = Linear

(
zH−L
0

)
7: ▷ Update pair feature with relative positional encoding
8: z̃ij = z̃ij + relpos

(
fH , fL

)
9: ▷ Update pair feature with chain relative positional encoding

10: z̃ij = z̃ij + chn relpos
(
fH , fL

)
11: return {s̃i} , {z̃ij}

C.4.3 Evoformer-Single stack

As mentioned earlier, our method only takes the amino-acid sequence itself as
inputs, without any sequence homologs. Therefore, we simplify AlphaFold’s Evoformer
stack [17] (originally designed for updating MSA and pair features) to handle sin-
gle sequence inputs for iterative updates of single and pair features, as illustrated in
Algorithm 3.
Specifically, ‘MSAColumnAttention’ in the original Evoformer block is removed since
calculating attention weights among sequence homologs is no longer applicable for
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Algorithm 3 Evoformer-Single stack

def EvoformerSingleStack ({si} , {zij}) ▷ si ∈ Rcs , zij ∈ Rcz

Input: Number of blocks Nblock.
1: for n = 1 to Nblock do
2: {si} += SeqAttentionWithPairBias ({si} , {zij})
3: {si} += SeqTransition ({si})
4: {zij} += OuterProduct ({si})
5: {zij} += TriangleMultiplicationOutgoing ({zij})
6: {zij} += TriangleMultiplicationIngoing ({zij})
7: {zij} += TriangleAttentionStartingNode ({zij})
8: {zij} += TriangleAttentionEndingNode ({zij})
9: {zij} += PairTransition ({zij})

10: end for
11: return {si} , {zij}

single sequence inputs. Other MSA-related modules are correspondingly simplified,
while modules involving only pair features remain unchanged. It is worth noting that
we employ Nblock = 16 blocks for antibody-only input and Nblock = 32 blocks for
antibodies with antigen.
In Algorithm 4, single features are updated via the gated self-attention mechanism
along the sequence dimension to formulate the inter-residue interaction. Additionally,
pair features are linearly projected into bias terms, which are then imposed onto
attention weights. This allows updating single features under the guidance of inter-
residue pair features.

Algorithm 4 Sequence gated self-attention with pair bias

def SeqAttentionWithPairBias ({si} , {zij}) ▷ si ∈ Rcs , zij ∈ Rcz

Input: number of dimensions in query/key/value embeddings c
Input: number of attention heads H ▷ h ∈ {1, . . . ,H}
1: si = LayerNorm (si)
2: zij = LayerNorm (zij)
3: qh

i ,k
h
i ,v

h
i = LinearNoBias (si) ▷ qh

i ,k
h
i ,v

h
i ∈ Rc

4: gh
i = sigmoid (Linear (si)) ▷ gh

i ∈ Rc

5: bhij = LinearNoBias (zij) ▷ bhij ∈ R
6: ahij = softmaxj

(
1√
c
⟨qh

i ,k
h
j ⟩+ bhij

)
▷ ahij ∈ R

7: oh
i = gh

i ⊙
∑

j a
h
ijv

h
j ▷ oh

i ∈ Rc

8: si = Linear
(
concath

(
oh
i

))
9: return {si}

In Algorithm 5, single features are updated via a two-layer feed-forward network. We
set the number of dimensions in hidden embeddings as c = 4cs, the same as AlphaFold.
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Afterwards, pair features are updated based on the outer-product of single features,
as described in Algorithm 6.

Algorithm 5 Transition layer in the Evoformer-Single stack

def SeqTransition ({si}) ▷ si ∈ Rcs

Input: number of dimensions in hidden embeddings c
1: si = LayerNorm (si)
2: ŝi = Linear (si) ▷ ŝi ∈ Rc

3: si = Linear (relu (̂si)) ▷ s̃i ∈ Rcs

4: return {si}

Algorithm 6 Outer product

def OuterProduct ({si}) ▷ si ∈ Rcs

Input: number of dimensions in hidden embeddings c
1: si = LayerNorm (si)
2: ai,bi = Linear (si) ▷ ai,bi ∈ Rc

3: zij = Linear (flatten (ai ⊗ bj)) ▷ zij ∈ Rcz

4: return {zij}

C.4.4 Recycling embedding

In order to utilize feature embeddings and structure predictions from the previous iter-
ation (as in Algorithm 1), we slightly modify the original ‘RecyclingEmbedder’ module
in AlphaFold2 [17] for single sequence inputs. The modified recycling embeddings
module is as described in Algorithm 7.
Specifically, single and pair features from the previous iteration are normalized to
produce residue update terms for the current iteration. Atomic coordinates of Cβ (Cα

for glycines) atoms are extracted from the predicted structure, from which pairwise
Euclidean distance is computed. Such distance is then discretized into histogram bins
to generate one-hot encodings for the final linear projection.

C.4.5 Loss function

The proposed model is designed to be trained with both single-chain and double-
chain antibody structures. To balance the weights of the monomer and multimer
loss functions, we use a mixture of monomer and multimer structure prediction loss
functions by

Ltotal = wmono ·
(
LH + LL

)
+ wmult · LH−L (C1)

where LH , LL, and LH−L are loss functions for heavy chain, light chain, and heavy-
light chain complex, respectively. We introduce wmono and wmult to balance these loss
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Algorithm 7 RecycleEmbed

def RecycleEmbed ({si} , {zij} , {xi}) ▷ si ∈ Rcs , zij ∈ Rcz ,xi ∈ Rni×3

Input: ni: number of atoms in the i-th residue
Input: inter-residue Cβ-Cβ distance bins v ∈ Rcv

1: x
Cβ

i = GetCbAtom (xk) ▷ Cα atoms for glycines

2: dij =
∥∥∥xCβ

i − x
Cβ

j

∥∥∥
2

▷ dij ∈ R
3: ▷ Return the one-hot embedding of the index of the bin to which the distance

belongs
4: dij = one-hot (digitize (dij ,v)) ▷ dij ∈ Rcv

5: s̃i = LayerNorm (si) ▷ s̃i ∈ Rcs

6: z̃ij = LayerNorm (zij) + Linear (dij) ▷ z̃ij ∈ Rcz

7: return {s̃i} , {z̃ij}

functions: if both chains exist, then wmono = 0.25 and wmult = 0.5; otherwise, we
have wmono = 1 and wmult = 0. This ensures that the model doesn’t overly favor one
type of structure over the other, leading to a more balanced and accurate prediction
of both heavy and light chain structures.
Each loss term is defined on the predicted monomer/multimer structure and auxiliary
predictions (e.g., inter-residue distance), sharing the same form:

LH = L
(
sH , zH ,xH

)
,LL = L

(
sL, zL,xL

)
,LH−L = L (s, z,x) (C2)

Therefore, we take the multimer loss function LH−L as an example, and describe its
detailed loss terms. Concretely, this loss function constitutes of the following terms:

LH−L = Lgeo + Lfape + Lifape + Lrmsd + 0.1Lconf + 0.01Lviol (C3)

Inter-residue geometric loss Lgeo: To provide more direct supervision in the
Evoformer-Single stack, we add four auxiliary heads (implemented as feed-forward lay-
ers) on the top of final pair features for predicting inter-residue distance and angles,
as defined in trRosetta [85]. This includes:

• dij : Cβ-C
′
β distance

• ωij : Cα-Cβ-C
′
β-C

′
α dihedral angle

• θij : N -Cα-Cβ-C
′
β dihedral angle

• φij : Cα-Cβ-C
′
β planar angle

Each prediction head outputs probabilistic estimations of the above distance and
angles, denoted as pd

ij , p
ω
ij , p

θ
ij , and pφ

ij . We then calculate the cross-entropy loss for
each term and sum them up to as the final inter-residue geometric loss:

Lgeo =
∑

ij
CE

(
pd
ij ; dij

)
+CE

(
pω
ij ;ωij

)
+CE

(
pθ
ij ; θij

)
+CE

(
pφ
ij ;φij

)
(C4)
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Frame aligned point error Lfape: This is identical to the FAPE loss used in
AlphaFold [17]. After reconstructing full-atom 3D coordinates from per-residue back-
bone frame and torsion angle predictions, each atom is projected into all the local
frames (both backbone and side-chain) in the ground-truth and predicted structures
for comparison.
Interface frame aligned point error Lifape: This is identical to the second part
of FAPE loss used in AlphaFold-Multimer [5], which is applied to inter-chain residue
pairs and clamped at 30Å. Please note that this loss is only computed over multimer
structure predictions.
Coordinate RMSD loss Lrmsd: In order to better estimate the overall conformation,
we calculate the coordinate RMSD (root-of-mean-squared-deviation) loss between
ground-truth and predicted structures after alignment. The optimal alignment is deter-
mined by the Kabsch algorithm [86] for finding the optimal rotation and translation
between two sets of point clouds. The Lrmsd resulting are penalized with a clamped L1-
loss with a length scale Z = 10Å to make the loss unitless. For the i-th residue’s j-th
atom, we denote its 3D coordinate in the ground-truth structure as xtrue

ij , and 3D coor-

dinate in the aligned predicted structures as xpred
ij . T represents SE(3)-transformation

from the prediction frame to the ground-truth reference frame. The coordinate RMSD
loss is defined as:

Lrmsd =
∑

ij

∥∥∥xtrue
ij − T ◦ xpred

ij

∥∥∥
2

(C5)

Confidence loss Lconf : This includes loss functions for pLDDT and pTM predic-
tions, same as AlphaFold [17]. We detach single and pair features before estimating
pLDDT and pTM scores, similar to IgFold [18], to prevent the model from generating
problematic structures whose lDDT and TM-score can be accurately predicted.
Structure violation loss Lviol: Similar to AlphaFold [17], we introduce penalty
terms for incorrect peptide bond length and angles, as well as steric clashes between
non-bonded atoms. For multimer structure prediction, we do not penalize the bond
length and angle between the last residue in the heavy chain and the first residue in
the light chain, since there is no peptide bond between them. Besides, we normalize
the steric clash loss by the number of non-bonded atom pairs in clash to stabilize the
model optimization, as suggested in AlphaFold-Multimer [5].

Lviol = Lbond−length + Lbond−angle + Lclash (C6)

C.4.6 Pre-training on PDB

A recent study [87] shows that pre-training on regular protein monomers followed by
fine-tuning on antibody monomers can improve the accuracy of antibody prediction.
This finding is consistent with the capabilities of our language model, which is adept
at extracting features from both monomeric proteins and protein complexes. Given
that the antibodies our model predicts may be either single-chain monomers or double-
chain complexes, it is reasonable to broaden the scope of our pre-training for the
tFold-Ab model to include both regular monomeric proteins and protein complexes.
We collected all structures from the PDB released before January 1, 2022. Structures
with a resolution lower than 9Å, or those with a proportion of missing residues greater
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than 0.8 are filtered out. Initially, we separated each chain from every PDB complex
and employed MMseqs2 [80] to cluster them with 40% sequence identity. We then
mapped each chain back to its corresponding PDB complex based on the clustering
result, ensuring that each complex was represented only once within each cluster. This
means that the probability of sampling a specific PDB entry is proportional to the
aggregate probabilities of the individual chain clusters within the file.
Following the clustering process, we identified approximately 48,000 clusters. From this
extensive collection, we selected 1,000 representative families randomly and excluded
any remaining families that contained these selected representatives. This resulted
in a final training set comprising 45,000 unique clusters, each chosen to maximize
the diversity and coverage of the structural space relevant to our model’s training
objectives.
During each training epoch, our protocol involves the random selection of a protein
complex from each cluster. From the chosen PDB complex, we then randomly select
two chains that in contact, defined by having Cα atom pairs within a distance of
less than 10Å) to form training samples for the current epoch. If the PDB complex
does not contain any interacting chains, a single chain is chosen at random. Addition-
ally, in accordance with methodologies employed in other protein structure prediction
research [5, 17], we have compiled a distillation dataset comprising 408,000 structures
predicted by AlphaFold2, all with a mean predicted Local Distance Difference Test
(pLDDT) score exceeding 70. During the training process, there is an equal probabil-
ity of selecting a training example from either the distillation set or the experimentally
determined structures from the PDB. The ratio of multimeric to monomeric structures
in the training set is maintained at 1:1.
Each model was trained on 64 NVIDIA A100 GPUs for approximately 210,000 steps,
equivalent to 150 epochs, and was completed within roughly 15 days. The batch size for
the training was consistently maintained at 64. The sequence crop size was set to 256
in the first 100 epochs and subsequently increased to 450 for the remaining 50 epochs.
When cropping the complexes, we ensured that essential contacts with a distance less
than 10 Å between different chains were preserved, even after cropping the protein
complexes. This is crucial for accurate modeling of protein-protein interactions. We
used Adam [88] as the optimizer with β1 = 0.9, β2 = 0.99. The learning rate was
warmed up in the first 10 epochs from the initial value of 1e−4 to a peak value of
1e−3. After the initial 100 epochs of training, we employed two distinct fine-tuning
strategies to train two different models. One model without recycling iterations while
the other with the number of recycling iterations (T ) set to 2.
To evaluate the performance of our tFold-Ab model on regular protein multimers
after the pre-training phase, we have meticulously curated a test set, which we refer
to as PDB-22H2-Multimer. This dataset comprises a collection of protein structures
that were publicly available in the PDB from July 1, 2022, to December 31, 2022.
Our selection process was guided by several criteria: Initially, we focused exclusively
on complexes that encompassed between 2 to 9 chains. From these, we selected two
interacting chains for sampling. Additionally, we ensured that the combined length
of these two chains did not exceed 800. We also confirmed that the length-weighted
sequence similarity of this two-chain complex, when compared to the training set, was
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below 40%. Subsequently, we performed clustering based on a 40% sequence identity
threshold and selected a representative from each cluster. By adhering to these steps,
we successfully compiled 324 complex proteins, including 101 heteromers and 223
homomers, to form our test set.

Method DockQ SR TM-Score R2

AlphaFold-Multimer [5] 0.362 48.2% 0.711 0.415
Uni-Fold MuSSe [23] 0.238 32.7% 0.617 -
tFold-Ab (Pre-training) 0.195 29.6% 0.583 0.579
tFold-Ab-Recycle (Pre-training) 0.217 31.6% 0.605 0.479

Table C14: Multimer structure prediction performance on the PDB-22H2-Multimer
benchmark. SR denote DockQ success rate defined by DockQ algorithm. TM-score
denotes the accuracy of the prediction in comparison to the ground truth structure,
with a range from 0 to 1 and a threshold of 0.5 denoting the correct prediction. R2 is
correlation of determination between the confidence score and DockQ.

We compared our pre-training phase tFold-Ab with Uni-Fold MuSSe [23], a method
for single-sequence complex prediction, and AlphaFold-Multimer [5], the current state-
of-art complex structure prediction method based on MSA and templates, using
the PDB-22H2-Multimer dataset. As illustrated in Table C14, AlphaFold-Multimer
demonstrates superior performance across all evaluated metrics, attributable to its uti-
lization of paired MSAs that provide ancillary co-evolutionary insights. Our method,
tFold-Ab, exhibits a performance marginally inferior to that of Uni-Fold MuSSe. The
latter employs a larger language model to extract sequence pair features (using ESM-
3B for further pre-training) and utilizes more network model parameters. However,
Given that tFold-Ab primarily focuses on antibody structure prediction, it does not
require as many parameters. In addition, we found that the recycling process can
lead to a minor improvement in the performance of tFold-Ab. However, it also results
in a decrease in the correlation between the confidence scores and the prediction
performance.
Pre-training on PDB allows the model to learn a broader range of protein features,
which could potentially improve its ability to predict the properties and structure
of antibodies, especially for CDRs. The importance of this pre-training is confirmed
by the ablation studies presented in Appendix C.4.8, which highlight its relative
importance in enhancing the model’s predictive capabilities.

C.4.7 Training detail of tFold-Ab

We employ the Adam [88] optimizer and set the batch size to 32 for our training
process. To initialize our model, we use a model that has been pre-trained for 150
epochs on regular protein complexes from the PDB, as detailed in Appendix C.4.6. For
the first 50 epochs, we set the learning rate to 1e−3. For the subsequent 150 epochs,
we adjust the learning rate to 3e−4. Based on the results from our ablation study,
which are documented in Appendix C.4.8, we decided not to incorporate additional
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recycling iterations into our training protocol, as they did not provide a significant
improvement in performance. We also maintain the EMA of the model parameters
with a decay of 0.999, and we use this model for evaluation. The model that yields the
best full-atom RMSD scores on the validation subset is selected as the optimal model.

C.4.8 Ablation study of tFold-Ab

We estimate the relative importance of key components of the tFold-Ab architecture
by training and evaluating a number of ablation models:
Baseline. Baseline model as described in the paper without pre-training using general
proteins. All subsequent ablation studies should be interpreted in relation to this
foundational model.
No ESM-PPI. We replace our ESM-PPI with two other models: the original
ESM-2 [15], which has 650M parameters, and ProtTrans-XLNet [56], which has
409M parameters. Given that these two language models are pre-trained on protein
monomers and are incapable of handling multi-chain inputs, we follow the approach
described in the previous work [15]. We construct an extended antibody sequence
where the heavy and light chains are connected by a linker composed of 25 glycines.
The embeddings and attention weights from corresponding positions in the antibody
are then used to initialize the sequence features and pair features, which serve as the
inputs to the model.
No one-stage prediction. In our initial version [89], tFold-Ab employed a two-stage
architecture. It utilized a language model (e.g.,ProtTrans-XLNet) to independently
predict the structures of the heavy and light chains, followed by a heavy-light chain
feature fusion model to integrate the features, which then served as inputs for the
multimer structure prediction module. However, given that our language model is
capable of extracting features from either single or multiple chains, we have since
adopted a one-stage architecture.
With pre-training on general protein. Full tFold-Ab model as described in the
paper with pre-training using general protein, as described in C.4.6. We also evaluated
the performance of the pre-trained initial model without fine-tuning on antibody data,
and compared it with the model that was fine-tuned on antibody data.
With recycling. employs a recycling strategy during both training and inference
phases (refer to Algorithm 7 for details). Specifically, the recycling iterations are set
to either 1 or 3 for further refinement. All the recycling models are fine-tuned based
on the models that have undergone pre-training on general protein data.
For all ablations, we kept the hyperparameters from the main model configuration,
which we have not re-tuned. For each ablation, we trained the model with the same
random seeds, all proteins used the same validation set, and we selected the model
using the same metrics. Although we would have preferred a larger test set for ablation
analysis, the quantity and diversity of antibodies are relatively poor compared to
general proteins. Therefore, we used two test sets described earlier, SAbDab-22H2-Ab
and SAbDab-22H2-Nano, for ablation analysis.
Ablation results are presented in Table C15 and Table C16. The adoption of a one-
stage model architecture simplifies the prediction process of the model and improves
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Method OCD H-Fr H1 H2 H3 L-Fr L1 L2 L3

baseline 5.36 0.64 0.93 0.89 3.07 0.60 0.94 0.77 1.17
-ESM-PPI (ESM2) 5.18 0.64 0.97 0.90 3.30 0.59 0.93 0.75 1.19
-ESM-PPI (ProtTrans) 5.54 0.65 0.96 0.89 3.11 0.61 0.93 0.77 1.23

-one-stage prediction 5.55 0.70 1.07 0.97 3.27 0.66 1.03 0.79 1.35

pre-training only 6.08 0.66 1.00 0.96 3.44 0.61 1.05 0.78 1.37
+fine-tuning 4.74 0.61 0.92 0.84 3.04 0.57 0.87 0.73 1.12

with Recycling T=2 4.99 0.61 0.94 0.84 3.03 0.57 0.89 0.73 1.10
with Recycling T=4 4.88 0.60 0.93 0.83 3.03 0.57 0.87 0.72 1.11

Table C15: Ablations performance for tFold-Ab on the SAbDab-22H2-Ab benchmark.
OCD, backbone RMSD in different framework and CDRs are reported. The antibody
numbering scheme we use is Chothia. H-Fr indicates the Fr of H chain and H1-H3
indicate the CDRs of H chain. L-Fr indicates the Fr of L chain and L1-L3 indicate the
CDRs of L chain.

Method Fr CDR-1 CDR-2 CDR-3

baseline 0.68 1.96 1.18 4.14
-ESM-PPI (ESM2) 0.70 1.98 1.21 4.55
-ESM-PPI (ProtTrans) 0.68 2.00 1.18 4.12

-one-stage prediction 0.77 2.02 1.31 4.35

pre-training only 0.70 1.88 1.24 4.09
+fine-tuning 0.67 1.95 1.20 3.57

with Recycling T=1 0.66 1.90 1.16 3.64
with Recycling T=3 0.67 1.86 1.18 3.61

Table C16: Ablations performance for tFold-Ab on the SAbDab-22H2-Nano bench-
mark. Backbone RMSD in different framework and CDR regions are reported. The
antibody numbering scheme we use is Chothia.

performance, reducing the RMSD of CDR-H3 from 3.27 Å to 3.11 Å. Further pre-
training of the pre-trained model can improve the performance of antibody structure
prediction. Thanks to the use of ESM-PPI, the model can extract features of both
monomeric proteins and multimeric proteins, eliminating the need for a glycine linker.
The CDR-H3 RMSD of model using ESM-PPI is reduced from 3.30 Å to 3.07 Å
compared to the model using ESM2.
Pretraining on general proteins and then fine-tuning on antibody data greatly improves
antibody structure prediction. Although the model pretrained on general proteins
does not have good antibody structure prediction performance, after fine-tuning with
antibody structure data, the performance in any region of Antibody and Nanobody has
been improved. For nanobodies, the improvement is most noticeable, with the RMSD
of CDR-3 in SAbDab-22H2-Nano reduced from 4.14 Å to 3.57 Å. This is because the
CDR-3 of nanobodies is longer and more flexible, and the generalization of models
trained only on antibodies is poor. The use of Recycle can improve the accuracy of
Antibody and Nanobody structure prediction, but the improvement is not significant.
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Considering that the use of the Recycle strategy will increase additional computational
overhead, in tFold-Ag, the tFold-Ab we does not use the Recycle strategy.

C.4.9 Inference speed

Fig. C3: Runtime analysis for tFold-Ab on 170 antibodies in SAbDab-22H2-Ab.
Comparison to DeepAb, IgFold, AlphaFold-Multimer and EquiFold. All runtime are
measured on a single NVIDIA A100 GPU with 21 CPU cores.

One of the major advantages of tFold-Ab is its elimination of the time-consuming
MSA search procedure. This efficiency is achieved through the integration of pre-
trained language models that obviate the need for traditional MSA-based approaches.
Additionally, our model formulates both backbone and side-chain conformations with
a unified neural network, while previous antibody structure prediction methods, e.g.,
DeepAb [19] and IgFold [18], rely on Rosetta-based energy minimization to predict
side-chain structures. AlphaFold-Multimer [5] predicts full-atom structures in a single
forward pass, its computational complexity, due to the Evoformer stack, is significantly
higher than ours.
In Fig. C3, we report the time consumption of various antibody structure prediction
methods on the SAbDab-22H2-Ab benchmark. All run times are measured on a single
NVIDIA A100 GPU with 21 CPU cores. For AlphaFold-Multimer, all the sequence
and template databases are stored on a distributed file system (Ceph), thus the time
consumption may be further reduced if local SSD disks are used instead. Consequently,
we also report its execution time excluding MSA and template search procedures,
denoted as ‘AF-Multimer (NN-only)’.
tFold-Ab is able to predict full-atom antibody structures in 1.15 seconds, only slower
than ‘IgFold (w/o PyRosetta)’ which only produces backbone structure predictions
and ‘EquiFold’ which replaces pre-trained language models with geometrical structure
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representation. It is noteworthy that the pre-trained language models do not constitute
a significant computational bottleneck within our framework. Although marginally
slower than EquiFold, tFold-Ab demonstrates better prediction accuracy.

C.5 tFold-Ag

C.5.1 tFold-Ag inference

Algorithm 8 outlines the inference pipeline of tFold-Ag. The tFold-Ag receives input
features derived from the antibody sequence, antigen MSA and outputs including atom
coordinates and confidence scores.
The entire network is composed of three components. The first part of the network
generates antibody features from the sequence using the pre-trained tFold-Ab model
(see Appendix section C.4 for details). The second part generates antigen features
from the MSA using the pre-trained AlphaFold2 model [17]. It’s important to note
that both of these models are used with their parameters frozen. This approach allows
us to leverage the knowledge these models have already learned without overfitting
to the new data. Following these initial steps, the AI-driven flexible docking module
comes into play as the third component. This module employs a FeatureFusion module
(Appendix section C.5.2) to integrate the features of the antibody and antigen. This
integration generates an embedding of the antibody-antigen complex, which is then
updated iteratively through the EvoformerSingle Stack. Finally, the structure module
uses this embedding to predict the final structure of the antibody-antigen complex.
This comprehensive approach allows us to accurately model the complex interactions
between antibodies and antigens, leading to more precise predictions.

Algorithm 8 Model inference for tFold-Ag

def Inference tFold-Ag
({

fHi
}
,
{
fLi

}
,
{
fAi

})
:

1: ▷ extract antibody feature using pre-trained tFold-Ab
2:

{
sH-L
i

}
,
{
zH-L
ij

}
,
{
xH-L
i

}
, = Inference tFold-Ab

({
fHi

}
,
{
fLi

})
3: ▷ extract antigen feature using pre-trained AlphaFold2a

4:
{
mA

si

}
,
{
zAij

}
,
{
xA
i

}
= Inference AlphaFold2

({
fAi

})
5: ▷ AI-driven flexible docking module
6:

{
sH-L-A
i

}
,
{
zH-L-A
ij

}
= FeatureFusion

({
sH-L
i

}
,
{
zH-L
ij

}
,
{
xH-L
i

}
,
{
mA

si

}
,
{
zAij

}
,
{
xA
i

})
7:

{
sH-L-A
i

}
,
{
zH-L-A
ij

}
= EvoformerSingleStack

({
sH-L-A
i

}
,
{
zH-L-A
ij

})
8:

{
xH-L-A
i

}
,
{
riptm

}
= StructureModule

({
sH-L-A
i

}
,
{
zH-L-A
ij

})
9: return

{
xH-L-A
i

}
,
{
riptm

}
aThe original prediction outputs of the inference (Algorithm 2) in AlphaFold2 are the structure and

the confidence scores. Here we slightly modify its algorithm to return two additional outputs: the MSA

embedding
{
mA

si

}
, where s denotes the s-th MSA samples and i denotes the i-th amino in the input

antigen. We ignore the output confidence scores. We omit the input to Inference AlphaFold2 except for the
MSA feature of the antigen {fAi } for simplicity.
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Once additional inter-chain features are available, tFold-Ag can incorporate these
features to improve prediction accuracy using the Inter-chain feature embedding mod-
ule (Appendix section C.5.3). This module is designed to capture the interactions
between different chains in the antibody-antigen complex, providing a more accurate
representation of the antibody-antigen pair.
In addition to this, if the antibody sequence contains amino acids that need to be
designed, tFold-Ag employs a sequence prediction head to determine the amino acid
types for the targeted design region. This means that tFold-Ag is capable of predicting
the structure and simultaneously recovering the sequence. (Appendix section C.5.4).
This dual functionality makes tFold-Ag a versatile tool that can be used for antibody
design tasks without any fine-tuning. This is a significant advantage, as it allows
researchers to not only use the model directly for their design tasks, but also to
infer the function of the designed antibodies based on their predicted structures. This
capability can greatly expedite the process of antibody design and validation, saving
both time and computational resources.

C.5.2 Feature fusion module

As mentioned earlier, we transform the docking task into a complex prediction task
based on the given monomer feature. In order to enable the model to predict structures
using a paradigm similar to the ‘Evoformer-Single stack+structure module’ employed
by tFold-Ab, we have designed a Feature Fusion Module to generate the initial features
for antibody-antigen pairs.

Fig. C4: Feature fusion module for tFold-Ag.

As shown in Fig. C4 and Algorithm 9, the diagonal blocks (zab and zag) of pair features
are initialized by the pair features of the antibody and antigen chains and the initial
coordinates. The predicted coordinates of the beta carbon atoms (or alpha carbon for
glycine) are used to compute pairwise distances. These distances are then discretized
into 20 bins of equal width 1.25Å, spanning a range up to approximately 20Å. The
resulting one-hot distogram is linearly projected and added to the pair representation
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Algorithm 9 Feature Fusion Module for tFold-Ag

def FeatureFusion
({

sabi
}
,
{
zabij

}
,
{
xab
i

}
, {mag

si } ,
{
zagij

}
, {xag

i }
)

▷
si ∈ Rcs ,mi ∈ Rcm

Input: number of dimensions in hidden embeddings c
1: xab

i ,xag
i = GetCbAtom

(
xab
i

)
,GetCbAtom (xag

i ) ▷ Cα atoms for glycines

2: dabij , d
ag
ij =

∥∥xab
i − xab

j

∥∥
2
,
∥∥xag

i − xag
j

∥∥
2

▷ dij ∈ R
3: dab

ij = one-hot
(
digitize

(
dabij ,v

))
▷ dij ∈ Rcv

4: dag
ij = one-hot

(
digitize

(
dagij ,v

))
5: ▷ Calculate the top left matrix block by adding the projections of the one-hot

embedding of distance and the pairwise representation.
6: ▷ The block size is Lab × Lab, where Lab is the sequence length of xab.
7: z̃

[
: Lab, : Lab

]
= Linear

(
zabij

)
+ Linear

(
dab
ij

)
▷ z̃ij ∈ Rcz

8: ▷ Calculate the bottom right matrix block by adding the projections of the one-
hot embedding of distance and the pairwise representation.

9: z̃
[
Lab :, Lab :

]
= Linear

(
zagij

)
+ Linear

(
dag
ij

)
10: ▷ Calculate the top right matrix block using OuterProductMean between the single

representation sabi and bmag
si .

11: z̃
[
: Lab, Lab :

]
= OuterProductMean

({
sabi

}
, {mag

si }
)

12: ▷ Assign the bottom left matrix block using the symmetric property of z̃

13: z̃
[
Lab :, : Lab

]
= z̃

[
: Lab, Lab :

]T
14: sabi = Linear

(
sabi

)
15: sagi = Linear (mag

1i ) ▷ mag
1i is the first row of mag

si

16: s̃i = CrossAttention
(
sabi , sagi

)
▷ s̃i ∈ Rcs

17: ▷ If additional inter-chain feature provided, update s̃i z̃ij via residual connection
18: if {Fs

i} is not None Or {Fz
ij} is not None then

19: {s̃′i} ,
{
z̃′ij

}
= IcfEmbedding

({
xab
i

}
{xag

i } , {Fs
i} ,

{
Fz

ij

})
20: {s̃i} = {s̃i}+ Linear({s̃′i})
21: {z̃ij} = {z̃ij}+ Linear(

{
z̃′ij

}
)

22: end if
23: return {s̃i} , {z̃ij}

update, similar to the recycle embedding algorithm described in 7. For off-diagonal
ones, we use ‘OuterProductMean’ in Algorithm 10 to transform the antigen MSA
representation and antibody sequence representation into inter chain pair feature.
Our ‘OuterProductMean’ algorithm is adapted from the AlphaFold ‘Outer product
mean’ algorithm (Algorithm 10 in [17]). While the algorithm in AlphaFold is an MSA-
based prediction method with paired antibody-antigen MSA input, our algorithm is
specifically designed for the antibody’s sequence feature and antigen MSA feature.
For each position i in the antibody sequence and each column j in the antigen MSA,
we linearly project their sequence features into a lower-dimensional space using two
separate linear transformations. We then calculate the outer products of these lower-
dimensional vectors from the two columns, average them across the sequences, and
subsequently project them into aRc dimensional space. This process yields an updated
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Fig. C5: OuterProductMean Module

Algorithm 10 Outer product Mean for tFold-Ag

def OuterProductMean ({si} , {msi}) ▷ si ∈ Rcs ,mi ∈ Rcm

Input: number of dimensions in hidden embeddings c
1: si = LayerNorm (si)
2: ssi = unflatten (si)
3: msi = LayerNorm (msi)
4: asi,bsi = Linear (ssi) ,Linear (msi) ▷ ai,bi ∈ Rc

5: oij = flatten (means ((asi ⊗ bsj))) ▷ oij ∈ Rcc−c

6: zij = Linear (oij)
7: return {zij}

value for the (i, j) entry in the pair representation’s off-diagonal block. Given the
symmetric nature of the interactions and distance map, the values in the two off-
diagonal regions, (i, j) and (j, i), are equal. This algorithm simulates the ’pairing’
between antibody and antigen sequences. By doing so, it allows us to discern the
nuanced interactions between them, enhancing the accuracy of our predictions.
Regarding the initial sequence feature, we employ cross attention [59] to generate
sequence embedding for the antibody-antigen complex, with the specifics outlined in
Algorithm 11. Cross-attention permits each residue within one sequence to focus on
every other residue within the counterpart sequence. By using cross-attention, the
output embeds the sequence features of both the antibody and antigen into a unified
distribution, facilitating faster convergence of the model.

Algorithm 11 Cross attention for tFold-Ag

def CrossAttention ({si} , {msi}) ▷ si ∈ Rcs ,mi ∈ Rcm

1: ai,bi = Linear (si) ,Linear (m1i) ▷ ai,bi ∈ Rsi

2: ãi = MultiHeadAttention (ai,bi,bi)
3: b̃i = MultiHeadAttention (bi,ai,ai)

4: s̃i = concat
(
ãi, b̃i

)
5: return {s̃i}

62

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 8, 2024. ; https://doi.org/10.1101/2024.02.05.578892doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.05.578892
http://creativecommons.org/licenses/by/4.0/


C.5.3 Inter-chain feature embedding module

Once additional inter-chain features are available, an Inter-chain feature embedding
module embeds these features and adds them via a residual connection to the output
of the feature fusion module.
PPI and inter-chain contact are used to encode the additional inter-chain feature.
PPI feature Fs

i ∈ {0, 1} is an optional binary flag indicating whether the Cα atom
of residue i is within 10 Å of a Cα atom belonging to a residue in a different chain.
This flag is set to 0 if this criterion is not met. Inter-Chain Contact Fz

ij ∈ {0, 1}
indicates whether two residues in separate chains are in contact. This is determined
when the distance between xCα

i and xCα
j is less than 10 Å. This flag is set to 0 if this

criterion is not met.

(a) (b) (c)

Fig. C6: (a) Contact map of chain F and chain A in 7q3r; (b) Inter-chain contact
map of chain F and chain A in 7q3r; (c) Pesudo contact map of chain F and chain A in
7q3r. All inter-chain positions are generated based on PPI while intra-chain positions
are initialized by structures of monomer.

In real-world applications, PPI and Inter-Chain Contact are typically calculated
through different experimental methods and cannot be obtained simultaneously. How-
ever, they can be converted into each other. Simply put, Inter-Chain Contact can be
used to compute PPI, while PPI can be used to generate a ‘pseudo contact’. Fig. C6
presents the maps of three features: contact, inter-chain contact, and pseudo contact.
When inter-chain contact is provided, the intra-chain contact is extracted from the
antibody structure coordinates predicted by tFold-Ab and the antigen structure coor-
dinates predicted by AlphaFold to complete the entire contact map. Given the high
prediction accuracy of tFold-Ab for antibodies and AlphaFold for antigens, the gen-
erated contact map is accurate. We denote the process to generate the entire contact
map as an algorithm GenContact, which takes the structure coordinates of antibody
and antigen and the inter-chain contact as input.
If inter-chain contact is not provided, we generate the pseudo inter-chain contact using
the PPI features as input by the algorithm PPI2Contact. Based on the PPI features,
PPI2Contact returns an inter-chain contact where all rows and columns on the contact
map with any positive PPI are set to 1. This, integrated with intra-chain contact,
results in a complete contact map, which we refer to as pseudo-contact. The actual
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inter-chain contact is a subset of the inter-chain contact of the pseudo contact. This
feature construction approach allows both types of features to have the same data
format, enabling a single model to be trained to accommodate multiple input types.
If the PPI features are not available, we generate the PPI features using inter-chain
contact by the algorithm Contact2PPI. Concretely, Contact2PPI returns a PPI fea-
ture whose i-th entry is set to 1 if there exists any positive entry in the i-th column
of the inter-chain contact.
At the beginning of training, we introduce no additional features, PPI, or contact
features in a probabilistic manner for each input. Specifically, we allocate a probability
of 40% for including no additional features, 30% for incorporating PPI features, and
30% for integrating contact features. This approach ensures a balance to various types
of input data, enhancing the model’s ability to generalize across different scenarios.
Furthermore, we fine-tune three models, each tailored to one of the three distinct
input types, to address specific application contexts and optimize performance in each
respective input data.

Algorithm 12 Inter-chain feature embedding for tFold-Ag

def IcfEmbedding
({

x1
i

}{
x2
i

}
, {Fs

i} ,
{
Fz

ij

})
1: if Fs

i is not None then ▷ Generate PPI using inter-chain contact
2: F̃s

i = Contact2PPI
({

Fz
ij

})
3: else
4: F̃s

i = Fs
i

5: end if
6: if Fs

ij is not None then ▷ Generate pseudo contact using PPI

7: F̃z
ij = PPI2Contact ({Fs

i})
8: else
9: F̃z

ij = Fz
ij

10: end if
11: F̃z

ij = GenContact
({

x1
i

}{
x2
i

}
,
{
F̃z

ij

})
▷ Generate the entire contact map

12: si = Linear
(
F̃s

i

)
▷ si ∈ Rsi

13: s̃i = Linear (si)

14: zi = Linear
(
F̃z

ij

)
▷ zi ∈ Rzi

15: z̃i = Linear (zi)
16: return {s̃i} , {z̃i}

Algorithm 12 shows the inter-chain feature embedding module for tFold-Ag. Note
that exactly one of the inputs from {Fs

i} ,
{
Fz

ij

}
will be provided to the algorithm.

To accommodate various inter-chain features, we transform the inter-chain feature
into uniformly formatted sequential and pairwise features. These are subsequently
processed through two distinct linear layers, generating inter-chain sequence and pair
representations respectively. The outputs of the Inter-chain embedding module are
integrated with the output of the Feature Fusion module via a residual connection.
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This approach ensures that the model’s training process remains undisturbed, making
it a robust method for handling diverse input types.
In real-world applications, information regarding the epitope, paratope, or contact
map may be limited or even unknown. Acknowledging this, our approach involves
providing only a select number of contacts or binding residues, sampled randomly for
each training example. Specifically, when an antibody-antigen complex requires the
incorporation of PPI features as input, we adopt a random subsampling strategy. A
designated number of interface residues are selected with a probability of 50%. This
approach ensures that only half of the interface residues are chosen, thereby providing
a diverse and representative sample for model training. Similarly, only half of inter-
chain contacts are selected when this feature is used, further bolstering the robustness
of the methodology, and making it suitable for real-world application.

C.5.4 Sequence recovery for antibody design

Due to the complexity of antigen-antibody structure prediction, the reverse process,
antibody design based on an antigen, has not been well resolved. Existing antibody
design methodologies predominantly depend on the availability of known antibody-
antigen complex structures, predefined epitopes, and antigen conformations, or they
fail to consider the intrinsic interactions within the antigen. We have integrated the
tasks of structure prediction and sequence design into a single challenge, structure
and sequence co-design. For areas requiring design (e.g.,CDR-H3 loop), amino acids
are substituted with a <Mask> placeholder, which is then processed by ESM-PPI to
extract antibody characteristics. Given that tFold-Ab solely utilizes features gener-
ated by ESM-PPI as input, and the Feature Fusion Module only requires the sequence
embedding, pairwise representation and predicted coordinates of the beta carbon
atoms, there is no need for additional fine-tuning for tFold-Ab. After the Evoformer-
Stack module within the Docking module, we append a sequence prediction head to
determine the amino acid types for the targeted design region. These predicted amino
acid types are then fed into the Structure Module, thereby facilitating the prediction
of the antibody-antigen complex structure, inclusive of the side chains. In our sequence
recovery model, we consider not only sequence information but also structural infor-
mation. As a result, the model is capable of generating more rational sequences based
on the complex structures of antigens and antibodies. Furthermore, as ESM-PPI uti-
lizes antibody sequences for pre-training, our model has not only learned from the
antibody sequences with known structures in the SAbDab database, but also to some
extent from the antibody sequences without known structures in the OAS dataset.
This knowledge aids in the improved design of the CDRs of antibodies.

C.5.5 Loss function

Given the architectural similarities between tFold-Ab and tFold-Ag, they share similar
loss functions. As tFold-Ab is capable of predicting features of both antibody and
nanobody, and the Feature fusion module treats the antibody as a whole component
(whether paired or unpaired), the loss function is identical for both antibody-antigen
complexes and nanobody-antigen complexes. The loss term for the antigen-antibody
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complex is similar to the antibody loss term shown in Equation C2, following the same
format:

LH-L-A = L (s, z,x) (C7)

Concretely, this loss function constitutes of the following terms:

LH-L-A =Lgeo + Lfape + Lifape + Lrmsd

+ 0.1LlRMS + 0.1LiRMS + 0.1Lconf + 0.1Lsrcv + 0.01Lviol

(C8)

Among these, the Inter-residue geometric loss Lgeo, Frame aligned point error Lfape,
Interface frame aligned point error Lifape, Coordinate RMSD loss Lrmsd, Confidence
loss Lconf , and Structure violation loss Lviol are identical as used by tFold-Ab, which
are described in Section C.4.5. We will mainly introduce the remaining loss terms.
Ligand RMSD loss LLRMS and interface RMSD loss LiRMS: DockQ com-
bines three different evaluation criteria: the contact surface (Fnat), the ligand RMSD
(lRMSD), and the interface RMSD (iRMS). To better optimize the docking accuracy
of the antibody and antigen, in addition to the coordinate RMSD loss, we calculated
the lRMS Loss and iRMS Loss by aligning different regions. For lRMS, we use the Kab-
sch algorithm to find the optimal rotation and translation between the point clouds
corresponding to the longest chain in the real and predicted structures of the antigen
and antibody. We then calculate the lRMS loss in the other chain with the predicted
and real structures. For iRMS, we align two sets of point clouds of the whole complex
by Kabsch algorithm. We then calculate the iRMS loss at the interface of with the
predicted and real structures. The interface is defined by residues with contact cut-off
of 10 Å. The LLRMS and LiRMS resulting are penalized with a clamped L1-loss with
a length scale Z = 30Å to make the loss unitless.
For the i-th residue’s j-th atom, we denote its 3D coordinate in the ground-truth
structure as xtrue

ij , and 3D coordinate in the aligned predicted structures as xpred
ij . C1

refers to the longer chain in the antibody and antigen, while C2 refers to the shorter
one. TC represents SE(3)-transformation from the prediction frame to the ground-
truth reference frame of given chain C, if the chain is not specific, the whole complex
will be employed. The lRMS loss is defined as:

LlRMS =
∑

i∈C2,j

∥∥∥xtrue
ij − T∈C1 ◦ x

pred
ij

∥∥∥
2

(C9)

If Ri refers to the region of the interface, the iRMS loss is defined as:

LiRMS =
∑

i∈Ri,j

∥∥∥xtrue
ij − T ◦ xpred

ij

∥∥∥
2

(C10)

Sequence recovery loss Lsrcv: As illustrated in Section C.5.4, we use the sequence
representation to predict amino acid types that have been previously masked out. A
total 20 classes for common amino acid types are considered. sequence embedding {si}
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are linearly projected into the output classes and scored with the cross-entropy loss:

Lsrcv = − 1

Nmask

∑
i∈mask

20∑
c=1

yci logp
c
i (C11)

where pci are predicted class probabilities, yci are one-hot encoded ground-truth values,
and averaging across the masked positions.

C.5.6 Training detail of tFold-Ag

initial training first fine-tuning second fine-tuning

Model 1 1.1 1.1.1 1.1.2 1.1.3

Parameters initialized from Random Model 1 Model 1.1 ··· ···
Additional feature Mix ··· - PPI Contact
Sequence crop size 384 480 600 ··· ···
Initial learning rate 10−3 ··· 5 · 10−4 ··· ···
Warm-up samples ·103 25 0 ··· ··· ···
Sequence recovery loss weight 0 0.1 ··· ··· ···
Structural violation loss weight 0 ··· 0.01 ··· ···
Training samples ·103 540 270 ··· ··· ···
Training times 8d 5d 7d ··· ···

Table C17: Training protocol for tFold-Ag models. The model in bold (i.e 1.1.1 -
1.1.3 were be released. We report the number of training samples and the training
time of whole training stages. Three dots (···) indicate the same value as in the former
column. Hyphen (-) means that do not input any additional feature.

In order to enable tFold-Ag for the co-design of antibody structure and sequence, we
have integrated a masked language model (MLM) training strategy. During the train-
ing process, all amino acid sequences in the antibody’s CDRs loop are selected with
30% probability, aligning to the strategy used to train ESM-PPI. Unlike traditional
Mask language models [15, 54, 55, 90] (mask all residues with 15% probability), our
focus is primarily on the CDRs of the antibody, making this task more challenging.
Beyond just sequence information, we aim to improve antibody design performance
by incorporating structural information from both the antigen and the antibody.
For the training regimen, we utilize the AdamW [82] optimizer with a batch size of
32. We also maintain an EMA of the model parameters, applying a decay factor of
0.999, and employ this EMA model for evaluation purposes. The model iteration that
achieves the highest DockQ scores on the validation subset is selected as the optimal
model.
We adopt the training procedure of AlphaFold2, with the specific details of the three-
stage training process outlined in Table. C17. Initially, Model 1 is trained with a
smaller crop size and a mixture of inter-chain features for approximately one week.
Subsequently, this model is then fine-tuned by enlarging the crop size and integrat-
ing MLM objectives alongside sequence recovery losses, the latter of which enhances
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training stability. Subsequent fine-tuning involves an expanded sequence crop size, the
incorporation of violation losses, and a diminished learning rate. During this phase, we
refine three distinct models: Model 1.1.1, which forgoes inter-chain features (exclud-
ing the corresponding parameters from the inter-chain feature embedding module);
Model 1.1.2, which incorporates the Protein-Protein Interaction (PPI) feature; and
Model 1.1.3, which utilizes the contact feature.
All tFold-Ag models employ a pre-trained tFold-Ab model for antibody feature extrac-
tion and a pre-trained AlphaFold2 model (specifically, we use params model 4 ptm as
it demonstrates the best performance in antigen structure prediction when template
features are not used). Attempts were made to update the tFold-Ab parameters dur-
ing training and to apply a mixed loss function akin to that described in C.4.5 for
tFold-Ag training. However, this method proved to be excessively time-consuming and
did not significantly enhance performance.

C.5.7 Ablation study of tFold-Ag

We estimate the relative importance of key components of the tFold-Ag architecture
by training and evaluating a number of ablation models:
Baseline. The baseline model, as described in the paper, does not include the Inter-
chain feature embedding module. In other words, it corresponds to the version of the
tFold-Ag model.
Simplified feature fusion module. We simplified the Feature fusion module in
tFold-Ag in the following ways: For sequence embedding, we directly concatenated
the antibody’s sequence embedding and the antigen’s sequence embedding, with-
out using cross attention as described in Algorithm 11. For pairwise representation,
instead of using OuterProductMean as described in Algorithm 10 to initialize the off-
diagonal area of the antibody-antigen complex, we directly used zero initialization.
This approach does not make full use of the antigen’s MSA features and relies solely
on the subsequent Evoformer-Single Stack to optimize the inter-chain information of
the antibody-antigen pairs.
No iRMS & LRMS Loss. We did not use iRMS Loss and LRMS Loss to guide the
training of tFold-Ag. During the training phase, the weights of these two losses were
set to zero.
With recycling for the pre-training structure prediction model. We set the
recycling iteration of AlphaFold to 3, which matches the design of AlphaFold. As
shown in Table B10, this can make the initial structure of the antigen more accurate
and the features better. Consistent with training strategy for AlphaFold, we uniformly
sample the number of recycling iterations between 1 and 3 during training. Every
batch element trains the same iteration on each step. We take the feature input from
the last recycling iteration as the input for the Feature Fusion module. During the
evaluation, we set the recycling iteration of AlphaFold to 3.
With recycling in AI-driven flexible docking module. We employ a recycling
strategy similar to tFold-Ab during both the training and inference phases (refer to
Algorithm 7 for details). The difference is that the recycling strategy of tFold-Ag
integrates the single and pair features from the previous iteration, as well as the
embedding of coordinates of Cb, into the initial antibody-antigen complex features
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produced by the Feature Fusion. Specifically, the recycling iterations are set to 3 for
further refinement. The recycling models are fine-tuned based on model 1 described
in Table C17.
For all ablations, we kept the hyperparameters from the main model configuration,
which we have not re-tuned. All models did not use any extra structure restraints,
in other words, none of the models had an Inter-chain feature embedding module. In
addition, except for the baseline model, no other models used the Mask language model
for sequence recovery. For each ablation, we trained the model with the same random
seeds, all proteins used the same validation set, and we selected the model using the
same metrics. Except for the models specifically mentioned as fine-tuned, all other
models were trained from scratch. Due to the high cost of training, we did not conduct
many ablation experiments. Because the number of Nanobody-Antigen complexes is
too small, we only used the test sets described in Section 4.1.2, SAbDab-22H2-AbAg,
for ablation analysis.

Method DockQ ↑ SR ↑ TM-Score ↑ R2 ↑
baseline 0.217 0.283 0.708 0.593
-Simplified Feature fusion module 0.195 0.263 0.694 0.595
-iRMS & LRMS Loss 0.208 0.263 0.696 0.520
+Recycling for pre-training AlphaFold 0.208 0.283 0.712 0.514
+Recycling in docking module T=3 0.200 0.263 0.700 0.537

Table C18: Ablations performance for tFold-Ag on the SAbDab-22H2-AbAg bench-
mark.

Ablation results are presented in Table C18. The Feature Fusion module we designed
has improved the prediction accuracy of the antibody-antigen complex, with the aver-
age DockQ on the SAbDab-22H2-AbAg test set increasing from 0.195 to 0.217. This
module simulates the pairing between antibody and antigen sequences and allows the
model to find the rare co-evolution information from the antigen MSA and antibody
sequence features, enhancing the accuracy of our predictions. The use of iRMS and
LRMS Loss slightly improved the DockQ by 0.01, which makes the model pay more
attention to the binding area of the antigen and antibody.
Using the AlphaFold Recycling strategy to generate superior antigen feature inputs for
the docking module did not enhance the performance of the antibody-antigen complex
prediction. Despite the fact that the features input to the Docking module would be
improved when there are already sufficiently high-quality monomer antigen features,
an increase in the accuracy of monomer antigen structure prediction does not impact
the performance of antibody-antigen docking. Therefore, in this scenario, we disabled
AlphaFold Recycling to boost computational efficiency.
Using Recycling in the Docking module also did not enhance the model’s performance.
This could be because the initial sequence embedding and pairwise representation
obtained from the Feature Fusion module are already good enough. Alternatively, it
could be because the volume of antibody structure data is too limited, meaning that
increasing the network depth does not yield any additional information.
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C.5.8 Confidence score for complex prediction

AlphaFold-Multimer [5] has designed ipTM (Interface pTM) and employs a weighted
combination of pTM and ipTM as model confidence metric. For tFold-Ag, we utilize
the antibody features extracted by tFold-Ab along with the antigen features extracted
by AlphaFold. In this scenario, both the initial structure of the antibody and the
antigen are relatively accurate. Since TM-Score always aligns the longer chain in the
antibody and antigen, the TM-Score will be greater than 0.5 even if the predicted
antigen and antibody are arbitrarily arranged. Therefore, pTM is not a suitable metric
for tFold-Ag, and we solely use ipTM as the confidence score. We treat the two chains
of the antibody as a single entity, thereby enabling a unified approach for calculating
the ipTM of both antibodies and nanobodies.
Fig. C7 illustrates the correlation between ipTM and DockQ for tFold-Ag. We eval-
uated three types of inputs: without using any Inter-Chain feature, antigen epitope,
and PPI features. Regardless of the scenario, the confidence score of tFold-Ag has a
strong correlation with DockQ, especially for the Antibody-Antigen data. The con-
fidence scores for the predictions of the three models, which include those without
any Inter-Chain feature, with antigen epitope, and with antigen epitope & antibody
paratope features, have Pearson correlations of 0.77, 0.59, and 0.64, respectively. How-
ever, for the Nanobody-Antigen data, the correlation of the confidence score is less
robust than that of the Antibody-Antigen data, with values of 0.49, 0.43, and 0.48
respectively. The primary reason for this is that in SAbDab, there is less data available
for nanobodies compared to antibodies.

(a) (b) (c)

Fig. C7: Correlation between ipTM and DockQ scores for various tFold-Ag predic-
tions (base, epitope and ppi) on the SAbDab-22H2-AbAg and SAbDab-22H2-NanoAg
datasets, with a least-squares linear fit applied to the data. (a) tFold-Ag. (b) tFold-
Ag-ppi (epitope). (c) tFold-Ag-ppi (epitope and paratope).

Given the strong correlation between ipTM scores and prediction accuracy, we consider
using ipTM for model ensembling, which will be discussed in section C.5.9.
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C.5.9 Ensemble analysis

Fig. C8 presents a point-to-point comparison between tFold-Ag and AlphaFold-
Multimer, The boundary for determining successful predictions (DockQ ≥ 0.23) is
indicated in the figure. Although tFold-Ag exhibits a higher success rate, its advan-
tage in structural prediction performance is relatively minor when compared to
AlphaFold-Multimer on average. In a test set comprising 99 Antibody-Antigen com-
plexes, tFold-Ag demonstrated superior performance in 49 cases. Similarly, within a
test set of 43 Nanobody-Antigen complexes, tFold-Ag outperformed in 21 cases. tFold-
Ag does not use MSAs for antibodies, whereas AlphaFold-Multimer employs paired
MSAs to extract co-evolutionary information between antigens and antibodies. Even
for antigen-antibody pairs, this co-evolutionary information provides limited assis-
tance. The distinct inputs used by tFold-Ag and AlphaFold-Multimer result in highly
complementary outcomes, which are shown in Fig. C8a and Fig. C8b.

Antibody-Antigen Nanobody-Antigen
Method DockQ SR R2 DockQ SR R2

AF 0.158 0.182 0.600 0.149 0.140 0.545
tF 0.217 0.283 0.593 0.136 0.186 0.237
tF & AF (ensemble) 0.288 0.404 0.548 0.218 0.279 0.407
tF & AF (best) 0.307 0.414 - 0.246 0.279 -

Table C19: Ensemble analysis on the SAbDab-22H2-AbAg (99 complexs) and
SAbDab-22H2-NanoAg benchmark (43 complexs). tF refers to tFold-Ag, and AF refers
to AlphaFold-Multimer.

Both tFold-Ag and AlphaFold-Multimer can output a confidence score while predicting
structures, and this score is highly correlated with prediction accuracy. Therefore,
we applied a common ensemble strategy in machine learning, using the confidence
score to select the higher-scoring prediction from AlphaFold-Multimer and tFold-Ag
as the final result. Table C19 demonstrates the performance of this ensemble approach.
Although AlphaFold-Multimer and tFold-Ag have different definitions for confidence
scores, using the higher-scoring model from the two methods as the prediction result
significantly improves the overall prediction accuracy.
Fig. C8c shows that for most of the test proteins, the better model can always be
selected by comparing confidence scores. Therefore, AlphaFold-Multimer and tFold-Ag
can be used together to further improve the prediction accuracy of antigen-antibody
complexes.

C.5.10 Inference speed

We conducted a comparative analysis of the runtime between tFold-Ag and AlphaFold-
Multimer in two distinct scenarios. Firstly, we evaluated the time efficiency of both
methods in predicting the complete structure of antigen-antibody pairs of varying
lengths. This scenario corresponds to the conventional task of antigen-antibody com-
plex structure prediction. Secondly, we assessed the time required by both tFold-Ag
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(a) (b) (c)

Fig. C8: Ensemble analysis of tFold-Ag and AlphaFold-Multimer. (a) The head-to-
head comparison between tFold-Ag and AlphaFold-Multimer on the SAbDab-22H2-
AbAg and SAbDab-22H2-NanoAg. The model is evaluated by DockQ. (b) The head-
to-head comparison between tFold-Ag and AlphaFold-Multimer on the SAbDab-22H2-
AbAg and SAbDab-22H2-NanoAg. The model is evaluated by TM-Score. (c) The head-
to-head comparison between the best model generated by tFold-Ag and AlphaFold-
Multimer and the ensemble model selected by confidence score.

and AlphaFold-Multimer to predict a varying number of antibodies for a given antigen.
This scenario is representative of the structure-based virtual screening of antibodies.

(a) (b)

Fig. C9: Runtime for tFold-Ag. (a) The runtime of tFold-Ag compared to AlphaFold-
Multimer with different sequence length. (b) The runtime of tFold-Ag compared to
AlphaFold-Multimer with different sequence number.

In Fig. C9, we report the time consumption of tFold-Ag and AlphaFold-Multimer on
two scenarios. All run times are measured on a single NVIDIA A100 GPU with 21
CPU cores. For both AlphaFold-Multimer and tFold-Ag, sequence database searches
are required to construct the MSA. Therefore, in addition to the total runtime, we
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also report their execution times excluding the MSA and template search processes.
These are denoted as AlphaFold-Multimer(NN-only) and tFold-Ag(NN-only).
tFold-Ag employs a pre-trained protein language model to extract antibody fea-
tures. For the antibody component, it eliminates the time-consuming process of MSA
(Multiple Sequence Alignment) search.
In the task of predicting antigen-antibody complex structures shown in Fig. C9a, tFold-
Ag, despite requiring approximately 1000 seconds per antigen to search for homologous
sequences and construct an MSA, still achieves a time-saving of nearly two-thirds
compared to AlphaFold-Multimer. The latter necessitates the search and construction
of MSAs for three distinct sequences: the heavy chain, light chain, and antigen. This
time discrepancy is further amplified considering that AlphaFold-Multimer conducts
searches across multiple sequence databases, including UniRef90 [16], Uniprot [91],
MGnify [92], and BFD [93], and requires the extraction of template features. Con-
versely, tFold-Ag’s MSA construction process follows the procedure utilized by
ColabFold [43], which is more time-efficient. On average, tFold-Ag is 10 times faster
than AlphaFold-Multimer in predicting antigen-antibody complex structures.
For structure-based antibody virtual screening tasks, the antigen sequence is fixed, so
the sequence database only needs to be searched once for the antigen. In this case, the
advantage of tFold-Ag becomes even more pronounced. Taking the receptor binding
domain (RBD) of the spike protein as an example (with a length of 223), we evaluated
the time required to predict different numbers of antigen-antibody complex struc-
tures, as shown in Fig. C9b. Given the comparable lengths of antibody sequences, the
time required for tFold-Ag to predict the structures of antigen-antibody complexes
exhibits a linear increase when the antigen is held constant, averaging approximately
4.7 seconds per antibody prediction. Conversely, AlphaFold-Multimer necessitates
additional time for sequence database searches and constructing MSAs for antibody
sequences, which can be considerably time-consuming. The disparity in time require-
ments between tFold-Ag and AlphaFold-Multimer becomes more pronounced with an
increasing number of antibodies to be screened. For instance, when predicting 1000
antibodies, tFold-Ag outperforms AlphaFold-Multimer by a factor of 1000. This sub-
stantial time efficiency of tFold-Ag over AlphaFold-Multimer offers significant time
savings and computational cost reductions for virtual screening tasks

C.6 Structure-based virtual screening

C.6.1 Confidence analysis of binding antibodies

Fig. C10 illustrates the distribution of confidence scores for both binding and non-
binding antibodies across different test sets as predicted by tFold-Ag. For PD-1 shown
in Fig. C10a, the overall confidence scores for the predicted structures are high. Specif-
ically, the median confidence score for the structures of binding antibodies is 0.78,
indicating that tFold-Ag is capable of assigning high confidence ratings to the majority
of binding structures. This is particularly noteworthy given that none of the antibod-
ies in the test set were included in the training set, yet tFold-Ag demonstrates high
prediction performance.
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Non-binding antibodies have a median confidence score of 0.48, as predicted by tFold-
Ag, suggesting that the confidence scores can serve as a useful metric for distinguishing
antibodies that can bind to PD-1 from those that cannot. This distinction in confidence
scores is a strong indicator of tFold-Ag’s utility in screening a wide array of candidate
antibodies to identify those capable of binding to PD-1.

(a)

(b)

Fig. C10: Distribution of confidence scores for binding and non-binding antibodies in
different test sets as predicted by tFold-Ag. The red dashed line indicates the mean,
while the green dashed line represents the median. (a) PD-1 set. (b) SARS-CoV-2 set.

Regarding the SARS-CoV-2 dataset, Fig. C10b shows that the overall structural pre-
diction confidence score of tFold-Ag is relatively low, which could be due to the
following two reasons. Firstly, The RBD (Receptor Binding Domain) is a relatively
conserved part of the S protein in the newly discovered antigen SARS-CoV-2 virus,
and there is a scarcity of homologous sequence data available in colabfold envdb [43].
This is reflected in the Neff of the RBD’s Multiple Sequence Alignment (MSA), which
is 4.9. In contrast, the Neff of the MSA for PD-1, a well-studied protein, is 8.3. This
limitation affects the ability of tFold-Ag to extract antigenic features effectively, result-
ing in the docking module’s inability to fully utilize the antigen’s characteristics for
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accurate prediction. The diversity and quantity of homologous sequences are crucial
for deep learning-based structural prediction models, as these models rely on exten-
sive data to learn how to predict protein structures accurately. Secondly, The RBD
is a part of the spike protein, which typically exists as a trimer in biological systems.
Modeling the RBD domain in complex with an antibody in isolation may not ade-
quately capture the structural dynamics and epitope integrity when the entire spike
protein interacts with an antibody. This means that the model might not accurately
predict the binding between an antibody and the full spike protein because it does
not consider the spatial constraints and interactions of the trimeric structure.
Despite the lower prediction accuracy of tFold-Ag for the SARS-CoV-2 set, its con-
fidence scores can still somewhat differentiate between binding and non-binding
antibodies. For binding antibodies, the average confidence score is 0.34, while for
non-binding antibodies, the average confidence score is 0.27.

C.6.2 Epitope analysis of binding antibodies

As shown in Fig. C11, for the experimental structures (PDB ID: 4zqk [31]), the binding
epitopes for the interaction between PD-1 and PD-L1 are located at the 30th amino
acid, between the 40th and 60th amino acids, and between the 90th and 100th amino
acids. For the known PD-1 antibodies in the PDB, their antigenic epitopes overlap
significantly with PD-L1, indicating that they have the pharmacological function of
inhibiting the PD-1/PD-L1 interaction. For the antibodies in our virtual screening
task’s PD-1 set, although these antibodies lack corresponding structures, since they
are either in clinical stages or approved, we assume they all have the pharmacological
function of blocking the interaction between the antigen and its ligand. The struc-
tures predicted by tFold-Ag also have similar antigenic epitopes, suggesting that the
predicted structures can correctly reflect the function of these PD-1 antibodies.
Figure C12 shows noticeable differences between antibodies with known competitive-
or-not labels in the antigen-receptor binding process for known experimental structures
in PDB. For the competitive antibody 2G1 (PDB ID: 7X08) [94], the overlap between
the antibody-antigen epitope and the antigen-receptor epitope indicates that 2G1 is
indeed capable of blocking the antigen-receptor binding process. In contrast, for the
non-competitive antibody S309 (PDB ID: 6WPS) [95], we do not observe any epitope
overlap between S309 and the ACE2 receptor.
Although the structure prediction confidence of tFold-Ag in the SARS-CoV-2 set is
relatively low (with mean 0.34, median 0.28), we hope that the predicted epitopes may
still help to determine whether the antibody competes with ACE2. Fig.C12a shows
that for competitive antibodies, the antibody epitopes predicted by tFold-Ag have
two patterns, one located between residues 125th to 130th and 175th to 185th, and
the other located between residues 150th to 185th, both of which overlap with the
RBD and ACE2 epitopes. However, we observed similar patterns in non-competitive
antibodies as shown in Fig.C12b. This suggests that the low confidence and accu-
racy of the predicted structures may offer little assistance in determining competitive
antibodies. Besides that, another explanation for the above phenomenon is that the
non-competitive antibodies may have low RBD binding affinity that fails to compete
with ACE2. This is evidenced by non-competitive antibodies, such as 6zdh and 7JW0,
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Fig. C11: Spatial analysis of binding antibodies for the PD-1 set. A residue is consid-
ered part of the binding site if there are Cα atoms in another chain within a distance
of less than 10 Å from the residue on the antigen. Top: Binding epitope of PD-1 in
complex with PD-L1. Middle: Epitope of PD-1 in the antibody-antigen complexes
capable of binding as predicted by tFold-Ag within the PD-1 set. Bottom: Epitope of
PD-1 in the experimental structure of the antibody-antigen complex with PD-1 from
the PDB. Areas of overlap are highlighted with a blue box.

which share similar experimental validated binding epitope patterns with competitive
antibody 7e5r [96].

C.7 Antibody Design

C.7.1 Apply our method to nanobody design

tFold-Ag is capable of predicting both antibody-antigen and nanobody-antigen com-
plex structures. However, due to the limited presence of nanobody-antigen complexes
in the training data, the prediction accuracy for these complexes is somewhat lower
compared to that for antibody-antigen complexes. The design of nanobodies has
received less attention in the field due to this data scarcity. Nevertheless, tFold-Ag can
be effectively utilized for nanobody design. To demonstrate this, we have constructed
a test set and employed metrics such as the Amino Acid Recovery (AAR) and Con-
tact Amino Acid Recovery (CAAR) to evaluate the nanobody design performance of
tFold-Ag.
SAbDab-22-DesignNano. Following a similar process to the construction of
SAbDab-22-DesignAb, SAbDab-22-DesignNano contains nanobody-antigen complex
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(a)

(b)

Fig. C12: Spatial analysis of binding antibodies for the SARS-CoV-2 set. (a) Anti-
bodies capable of competing with ACE2 for SARS-CoV-2 binding. (b) Antibodies
that bind to the RBD domain of SARS-CoV-2 but do not compete with ACE2. Top:
Binding epitope of the RBD in complex with ACE2. Middle: Predicted binding epi-
tope of the RBD in antibody-antigen complexes as determined by tFold-Ag within
the SARS-CoV-2 set. Bottom: Experimental structure of the RBD epitope in the
antibody-antigen complex with RBD from the PDB.
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structures in SAbDab that were released from January 1, 2022, through December 31,
2022. We excluded any nanobody-antigen pairs in SAbDab-22-DesignNano where the
antigen sequences shared more than 70% identity with sequences in our training set to
avoid redundancy. Only those CDR-H3 regions that were in contact with the antigen
were selected to ensure the design task was relevant. Due to the significantly fewer
nanobody data in SAbDab compared to antibody data, this test set only contains 26
nanobody-antigen complexes.

Method Extra Features H1 H2 H3

AAR CAAR AAR CAAR AAR CAAR

tFold-Ag - 0.506 0.135 0.503 0.181 0.221 0.195
tFold-Ag-ppi epitope 0.509 0.173 0.548 0.131 0.181 0.113
tFold-Ag-ppi epitope and paratope 0.509 0.147 0.568 0.183 0.204 0.08
tFold-Ag-contact contact 0.462 0.173 0.490 0.117 0.188 0.132

Table C20: CDR loop deisgn accuracy on the SAbDab-22-DesingNano benchmark.

As shown in Table C20, tFold-Ag achieves higher AARs in the CDR-H1 and CDR-H2
regions compared to the CDR-H3 region, which can be attributed to the higher vari-
ability of this particular region. In terms of the contact interface, the performance, as
indicated by the CAAR scores, remains relatively consistent. However, when we uti-
lized additional prior information (epitope, paratope, contact) as input, although the
prediction accuracy of the Nanobody antigen complex improved, we did not observe
further performance enhancement in the AAR for Nanobody Design, except on CDR-
H2. Upon comparing to antigen-binding antibody design, it becomes evident that the
design of antigen-binding nanobodies poses greater challenges (refer to Table B8 and
Table C20 for comparison). This could potentially be attributed to the limited avail-
ablity of training samples and the extended sequence length of the CDR-H3 region of
nanobodies. Nevertheless, current proof-of-concept results suggest that our developed
tFold-Ag, the first AI-driven model as far as we know, is appropriate for the design of
antigen-binding nanobodies.

C.7.2 CDRs loop design using pre-trained ESM-PPI

In our antibody CDRs design experiments, in addition to structure-based methods, we
also evaluated the ESM-PPI, the sequence language model component in tFold-Ag, to
recover the amino acid of the CDRs. This method does not take antigen information
into account, which means that the ESM-PPI method focuses on predicting the CDRs
by analyzing patterns and regularities in the antibody sequence itself, rather than
relying on interaction information between the antibody and the antigen. Table. B8
and Table. B9 illustrate that, in comparison to the structure-based method, tFold-Ag,
the ESM-PPI method, which relies on antibody sequences, presents distinct patterns
in the AAR of the CDRs: there is an improvement in CDR-H1, slight alterations in
CDR-H2, and a significant reduction in the recovery rate of CDR-H3.
The primary reasons for these observations can be summarized are as follows: (1) V
Gene Encoding and Correspondence: Both the CDR1 and CDR2 regions, along with
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the FR1, FR2, and FR3 regions, are encoded by the V gene, creating a strong cor-
relation between the FR and CDRs [97]. This inherent linkage enables the language
model to more effectively capture and utilize such dependency information. (2) Anti-
gen Binding and CDR Diversity: CDR1 and CDR2 are less involved in antigen binding
compared to CDR3 [98] [99]. Therefore, incorporating structural or antigen-binding
information might not substantially benefit the recovery rates of CDR1 and CDR2.
However, the scenario with CDR3 is markedly different. CDR3 is the most diverse
region, with its diversity arising from random nucleotide insertions and the introduc-
tion of D genes. Apart from a few amino acids at its beginning and end, CDR3 is not
encoded by VJ genes. Consequently, its correlation with the framework regions is min-
imal. Furthermore, CDR3 is the primary region for antigen contact, suggesting that
information derived from antigens could be more advantageous for the recovery and
design of this region. Our findings highlight the nuanced role of sequence-based mod-
els in antibody design. While they are effective in capturing dependencies in certain
regions, their limitations become apparent in highly variable and antigen-interactive
segments like CDR3. This underscores the need for integrative approaches that com-
bine sequence information with structural and antigenic data to optimize antibody
design.

C.7.3 Confidence score for antibody design

Evaluating the efficacy of antibody design presents a significant challenge. Ideally,
a well-designed antibody would exhibit strong affinity; however, due to the lack of
sufficient affinity data, predicting antibody affinity is extremely difficult. It is hard
to assess the quality of antibody design without conducting wet lab experiments.
This lack of a rapid evaluation method further complicates the task of designing
confidence scores. Recent advancements [17, 28] in structure prediction methodologies
have introduced confidence measures to assess the quality of predictions. In contrast,
most antibody design method [36, 37] employ sequence perplexity (PPL) to establish
a correlation between confidence and antibody design.
Given that tFold-Ag is an end-to-end antibody sequence-structure co-design method,
we attempt to establish a relationship between the quality of antibody design and the
confidence scores of structure prediction. We use the amino acid recovery (AAR) as a
metric to evaluate the quality of antibody design. Theoretically, the closer the design
is to a natural antibody, the superior the quality of the designed antibody.
In our model, the ipTM score is used to measure the confidence in predicted antibody-
antigen interface. Considering the interaction between the antibody’s CDR3 region
and the antigen, we evaluate the correlation between ipTM and the AAR of CDR-H3
under three different scenarios. As illustrated in Fig. C13a to Fig. C13c, when not
using any Inter-Chain feature, antigen epitope, or PPI features, the Pearson scores
for ipTM and AAR are -0.23, -0.07, and 0.10, respectively. This indicates that the
confidence score ipTM, used to measure docking accuracy, has no correlation with
sequence recovery. That is because AAR is a residue-level metric, while ipTM is a
protein-level metric, making it difficult to establish a mapping relationship between
the two.
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(a) (b) (c)

(d) (e) (f)

Fig. C13: Confidence score analysis for antibody design. (a-c) Correlation between
ipTM and AAR of CDR-H3 for various tFold-Ag predictions (base, epitope and ppi)
on the SAbDab-22-Design-Ab, with a least-squares linear fit applied to the data. (d-
f) Correlation between iplddt and AAR of CDR-H3 for various tFold-Ag predictions
(base, epitope and ppi) on the SAbDab-22-Design-Ab, with a least-squares linear fit
applied to the data.

Given that the CDR-H3 region are predominantly situated at the interface between
the antibody and antigen, we denote the pLDDT of the designed CDR-H3 region as
iplddt (interface pLDDT). We explored the correlation between the iplddt of CDR-H3
as predicted by tFold-Ag and the AAR of CDR-H3 designed by tFold-Ag. As depicted
in Fig. C13d to Fig. C13f, the Pearson correlation between iplddt and the AAR of
different feature is 0.41, 0.48, 0.48, respectively. iplddt reflects the confidence score of
the structure of the designed CDR-H3 region as predicted by tFold-Ag. This score has
a certain correlation with AAR, especially when the antigen epitope is determined,
this correlation is stronger.
This allows us to use the iplddt score as a metric to assess the performance of the
antibody CDR-H3 sequences designed by tFold-Ag. We also evaluated the correlation
between the iplddt scores for CDR-H1 and CDR-H2 and the AAR of their respective
regions. Since CDR-H1 and CDR-H2 are not always part of the antibody’s paratope,
this correlation is generally weaker.
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