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Abstract 50 

Marine bacterioplankton communities are dominated by cells equipped with small genomes. 51 

Streamlining selection has been accepted as the main force driving their genome reduction. Here, 52 

we report that a neutral evolutionary mechanism governs genome reduction in the Roseobacter 53 

group that represents 5-20% of the bacterioplankton cells in coastal waters. Using representative 54 

strains that fall into three genome size groups (2-3, 3-4, and 4-5 Mbp), we measured their 55 

genomic mutation rates (μ) through long-term mutation accumulation experiments followed by 56 

genome sequencing the resulting 437 mutant lines. We further calculated their effective 57 

population sizes (Ne) based on μ and the neutral genetic diversity of the studied species, the latter 58 

estimated based on multiple genome sequences of natural isolates collected from global oceans 59 

with their population structure considered. A surprising finding is that Ne scales positively with 60 

genome size, which is the opposite of the expectation from the streamlining selection theory. As 61 

the strength of random genetic drift is the inverse of Ne, this result instead suggests drift as the 62 

primary driver of genome reduction. Additionally, we report a negative scaling between μ and 63 

genome size, which is the first experimental evidence for the long-lasting hypothesis that 64 

mutation rate increases play a part in marine bacterial genome reduction. As μ scales inversely 65 

with Ne, genetic drift appears to be the ultimate cause of genome reduction in these Roseobacters. 66 

Our finding discounts, but is insufficient to reject, the streamlining theory because streamlining 67 

process is expected to be more effective in oligotrophic open ocean waters.   68 

  69 
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Introduction 70 

Bacterioplankton in the surface ocean is dominated by genome-reduced lineages, which are 71 

characterized by an average genome size of less than 2 Mbp 1–3. Among these, the most abundant 72 

genome-reduced lineages are the SAR11 clade (Pelagibacteriales) of Alphaproteobacteria, the 73 

SAR86 clade of Gammaproteobacteria, and the genus Prochlorococcus of Cyanobacteria 4. 74 

Streamlining selection is believed to drive the genome reduction of these free-living bacteria 5,6. 75 

According to this theory, selection favors smaller genome size in nutrient-limited surface oceans 76 

because i) removal of non-essential DNA provides a metabolic advantage for bacteria, and ii) a 77 

concomitant increased surface-to-volume ratio (correlated with a decreased genome size) 78 

promotes nutrient uptake through enhanced diffusive delivery of nutrients to cell surface 6–8. The 79 

key concept of streamlining selection theory hinges on the effective population size (Ne), which 80 

describes how many individuals in a bacterial population are contributing to the observed neutral 81 

genetic diversity of the population 9. The underlying hypothesis is that free-living marine 82 

bacteria with reduced genomes have larger Ne than their relatives carrying larger genomes, 83 

thereby increasing the efficiency of natural selection acting to eliminate superfluous genomic 84 

DNA in oligotrophic environments. By comparing the Ne of related lineages with very different 85 

genome sizes, we can start to assess the definitive role of selection to downsize the genomes of 86 

free-living bacterioplankton cells in surface oceans. 87 

However, this hypothesis has never been tested experimentally. The Ne can be calculated if 88 

�
�
 (the neutral genetic diversity of a population) and � (unbiased genomic mutation rate) are 89 

available according to the equation �
�

� 2 � �
�

� � 10. Here, �
�
 is approximated by the 90 

diversity at four-fold degenerate sites of a population whose members recombine more 91 

frequently than those involving other populations. As a gold standard, � is measured using a 92 
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long-term mutation accumulation (MA) experiment, which requires the experimental populations 93 

to repeatedly go through single-colony bottlenecks to eliminate the effect of natural selection 11. 94 

This is commonly achieved by growing bacterial cells to single colonies in many parallel lines 95 

and propagating them for hundreds of generations. By whole genome sequencing (WGS) the 96 

mutant lines and comparing the mutant genomes with the ancestor’s genome, the unbiased 97 

genomic mutation rate and spectrum can be calculated. However, genome-reduced 98 

bacterioplankton lineages inhabiting surface oceans typically do not grow on solid media or do 99 

not form single colonies on solid media, thus posing a significant challenge for their genomic 100 

mutation rate measurements and Ne estimation. A genome-reduced member of Prochlorococcus 101 

in the high-light-adapted clade II (Prochlorococcus marinus AS9601, ~1.7 Mbp) is the only 102 

genome-reduced surface ocean bacterioplankton lineage that was subjected to MA/WGS 103 

procedure 12.  104 

The Roseobacter group (Roseobacteraceae, Alphaproteobacteria) is globally abundant, 105 

comprising up to 20% of the bacterial cells in coastal waters and 5% in the open ocean 13–15. 106 

Cultured members of the Roseobacter group exhibit a wide range of genome size spanning from 107 

2.5-2.6 Mbp (CHUG, NAC11-7) to 6.5-8.1 Mbp (Salipiger, Poseidonocella) (with the 25%, 50%, 108 

and 75% percentile being 3.83, 4.36, and 4.69 Mbp, respectively, Fig. S1). Most cultured 109 

lineages thrive on nutrient-rich solid media, but they are generally not representative in the 110 

oligotrophic pelagic ocean environments 16. Early community structure analyses based on 16S 111 

rRNA gene revealed that marine Roseobacter communities are dominated by a few uncultivated 112 

lineages 17, whose genomes are becoming increasingly available through sequencing novel 113 

cultured members and sequencing uncultured members by single-cell genomics and 114 

metagenomic binning. Classical examples are DC5-80-3 (also named RCA or Planktomarina) 18–115 
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21, CHAB-I-5 15,22, ChesI-A/B (also named SAG-O19) 23, NAC11-7 24, and more recently CHUG 116 

25,26. These lineages constitute a polyphyletic group in the phylogenomic tree but form a tight 117 

pelagic Roseobacter cluster (PRC) in a dendrogram clustered from the presence and absence of 118 

gene families, reflecting their convergent evolution towards shared genome content and reduced 119 

genome sizes 22,26.  120 

Unlike other PRC lineages, some CHUG isolates grow in single colonies and can be stably 121 

propagated on agar plates, thus rendering themselves appropriate for genomic mutation rate 122 

measurement through the classical MA/WGS procedure. Since other members of the 123 

Roseobacter group that carry larger and variable genomes and co-inhabit surface oceans are more 124 

readily available for � determination, CHUG and its Roseobacter relatives commonly found in 125 

surface oceans create a unique opportunity to test the streamlining selection hypothesis.  126 

Here, we report the µ of CHUG to be (7.86 ± 5.31) × 10-10 base substitutions per nucleotide 127 

site per cell division, which, to date, represents the free-living bacterial species with the highest 128 

mutation rate measured by MA/WGS. Additionally, we report the Ne of CHUG to be 1.78 � 107, 129 

which, together with Prochlorococcus high light-adapted clade II (1.68 � 107) 12, represent the 130 

free-living bacterial species with the smallest Ne. We also determined µ and Ne of two other 131 

Roseobacter species, namely Sulfitobacter pontiacus and Dinoroseobacter shibae, and included 132 

the published Ruegeria pomeroyi data 20 for comparison. These four Roseobacter species are all 133 

commonly found in surface ocean habitats but have overall very different genome sizes (2.6, 3.5, 134 

4.4, 4.6 Mbp). Remarkably, the assayed Roseobacter species that carry lower genome sizes have 135 

higher µ and smaller Ne. These scaling relationships imply that both genetic drift (i.e., the 136 

strength of drift is the inverse of Ne) and mutation rate increases play important roles in genome 137 

reduction of this bacterioplankton group. That Ne scales inversely with µ further implies that 138 
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genetic drift is the ultimate force that governs genome reduction. This is the first experimental 139 

test of the prevailing streamlining selection theory and the finding is surprising because it 140 

reverses the trend predicted by the streamlining theory in which streamlined marine 141 

bacterioplankton lineages should have very large Ne such that genetic drift is negligible.  142 

  143 

Results 144 

Genome sizes of the Roseobacter group members from surface oceans scale negatively with their 145 

genomic mutation rates 146 

Here, we report the genomic mutation rate (μ) of three important members of the 147 

Roseobacter group: CHUG, Sulfitobacter pontiacus, and Dinoroseobacter shibae. Along with μ 148 

of Ruegeria pomeroyi we published earlier 20, we have four representative Roseobacter lineages 149 

commonly found in surface ocean habitats and varying substantively in genome sizes (2.6, 3.5, 150 

4.4 and 4.6 Mbp, respectively). For CHUG, a total of 200 mutation accumulation (MA) lines 151 

were initiated from a single ancestral cell of strain HKCCA1288, 192 of which survived after 64 152 

transfers with each line undergoing 1,472 cell divisions (corrected with death rate) and 180 of 153 

which had over 50x coverage in WGS. Mutations were accumulated in 172 out of the 180 MA 154 

lines, and a total of 596 base-pair substitution mutations (BPSs), 121 deletions and 29 insertions 155 

were identified (Table S1).  156 

In general, mutations are randomly distributed along the genomic regions of CHUG, though 157 

clustered mutations were identified in two ribosomal RNA (rRNA) genes and 17 protein-coding 158 

genes across multiple MA lines (Fig. 1A). In the former, 25 and 15 BPSs are clustered within 159 

23S rRNA and 16S rRNA genes, respectively. Among these, 28 BPSs are contributed by a single 160 

MA line and the remaining 12 are distributed across another 12 MA lines (Table S2). We 161 
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validated a randomly chosen BPS located in the 23S rRNA gene using PCR (Table S2). For the 162 

latter, 43 BPSs, three deletions, and 72 insertions fell into 17 genes across 72 MA lines, which 163 

represents a significant excess of mutations (bootstrap test; p < 0.05 for each gene, Fig. 1A). 164 

Most of the insertional mutations (66 of the 72) fall into three genes (I3V23_07740, 165 

I3V23_09110, and I3V23_11715), and most of them (60 of the 66) are frameshift mutations 166 

(Table S2), potentially leading to pseudogenization. Gene I3V23_07740 encodes the SLAC1 167 

anion channel family protein linked to tellurite resistance, I3V23_09110 produces the 168 

DeoR/GlpR transcriptional regulator associated with fructose and glucose metabolism, and 169 

I3V23_11715 codes for the sarcosine oxidase subunit beta family protein (Table S2). Mutation 170 

clustering is a common phenomenon in mutation rate determination with the MA/WGS strategy 171 

12,27–29, and it may be either caused by mutational hotspots or a result of positive selection as they 172 

likely increase fitness under experimental conditions. In the case of CHUG, frameshift mutations 173 

are enriched in the three genes, tentatively suggesting that deleting these genes likely confer 174 

benefits to the bacteria during the MA process. Thus, BPSs occurring in the above genes or 175 

intergenic region were excluded when calculating the genomic base-substitution mutation rate, 176 

and the remaining 505 BPSs translate to a μ of (7.31 ± 4.92) × 10-10 (95% confidence interval 177 

[CI]: 6.69 × 10-10 – 7.97 × 10-10) base substitutions per site per cell division.  178 

If the mutations clustered in the above genomic regions are indeed under selection, they 179 

may hitchhike mutations in linked genomic regions 30,31, thus inflating the mutation rate estimate. 180 

They may also have epistatic interactions with mutations in other genomic regions 32,33, likely 181 

delaying the fixation of other mutations and thus reducing the mutation rate estimate. To 182 

eliminate any such confounding factors in mutation rate estimation, we discarded the 83 MA 183 

lines with mutations accumulated in any of the 17 genes or the two ribosomal RNA genes with 184 
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excess mutations. The remaining 97 MA lines accumulated 270 BPSs, 19 deletions and 28 185 

insertions (Table S1), translating to a μ of (7.14 ± 4.82) × 10-10 (95% CI: 6.32 × 10-10 – 8.05 × 186 

10-10), which is not significantly different from the mutation rate (7.51 ± 5.03) × 10-10 (95% CI: 187 

6.60 × 10-10 – 8.52 × 10-10) derived from the remaining 83 MA lines mutated at aforementioned 188 

genes but with these mutations excluded from the calculation (Wilcoxon–Mann–Whitney test, p 189 

= 0.930). 190 

Additional analyses were performed to evaluate the effect of selective pressure in the 97 191 

MA lines where mutations are randomly distributed across the entire genomes. We found the 192 

ratio of accumulated mutations in protein-coding sites to those in intergenic sites (233 vs 1) is 193 

significantly larger than the ratio of the number of protein-coding sites to intergenic sites 194 

(2,432,502 vs 214,229) (Fisher’s exact test, p < 0.001). A similar pattern has also been reported 195 

in MA experiments with other bacteria 34,35, and the increased mutation rate in coding regions 196 

may be linked to transcription-induced mutations, considering that coding regions are transcribed 197 

whereas most intergenic regions are not 36,37. In terms of the protein-coding sites, the ratio of 198 

accumulated nonsynonymous to synonymous mutations (171 vs 62) does not differ significantly 199 

from that of nonsynonymous to synonymous sites (1,766,993 vs 665,509) (χ2 test, p = 0.85), 200 

supporting that selection did not play an important role during the MA process.  201 

For the Sulfitobacter and Dinoroseobacter, MA experiments were conducted using two 202 

strains, S. pontiacus EE-36 (=DSM 11700) and D. shibae DFL-12 (=DSM 16493T), and the same 203 

mutation calling method was implemented to calculate the spontaneous mutation rates. For EE-204 

36, an analysis of 58 MA lines with high-quality reads revealed 284 BPSs, 22 deletions and 14 205 

insertions (Table S3&S4 and SI Results). Among the 51 MA lines without the potential effect of 206 

the three mutation-enriched genes found here (Fig. 1C and SI Text 1.1), 243 BPSs, 11 insertions 207 
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and 18 deletions (Table S3) were kept, and the 243 BPSs translate to a μ of (3.57 ± 1.89) × 10-10 208 

(95% CI: 3.13 × 10-10 – 4.03 × 10-10). No selection was detected in the MA experiment of EE-36 209 

(SI Text 1.1). For DFL-12, 149 MA lines with high quality reads yield 296 BPSs, 34 deletions 210 

and 82 insertions (Table S5&S6). After ignoring 87 MA lines potentially affected by the eight 211 

genes with an excess of mutations, the remaining 62 MA lines with 80 BPS lead to a μ of (1.81 ± 212 

2.25) × 10-10 (95% CI 1.44 × 10-10 – 2.26 × 10-10), along with seven insertions and nine deletions 213 

(Table S5). Significantly reduced BPSs were found in protein-coding genes and nonsynonymous 214 

sites than expected, suggesting a possible role of purifying selection in preventing the fixation of 215 

strong deleterious mutations during the MA process 38 of D. shibae DFL-12. For R. pomeroyi 216 

DSS-3 (=DSM 15171T), the mutation rate was reported in our previous study 20, but its 217 

generation time was not corrected with its death rate. Here, we measured its death rate and 218 

updated its μ to be (1.38 ± 0.85) × 10-10 (95% CI 1.17 × 10-10 – 1.61 × 10-10). In summary, the 219 

genomic mutation data of CHUG, S. pontiacus and R. pomeroyi are unbiased, whereas that of D. 220 

shibae may be slightly biased owing to a significant deficit in nonsynonymous mutations than 221 

expected (SI Results). 222 

Among the four Roseobacter species (Fig. 2A), CHUG shows a significantly higher μ than 223 

the other three species (Wilcoxon–Mann–Whitney test, p < 0.001 in all three comparisons). 224 

Among the remaining species, S. pontiacus shows a significantly higher mutation rate than D. 225 

shibae and R. pomeroyi (p < 0.001 in both comparisons). No significant difference was found 226 

between D. shibae and R. pomeroyi. Our results show a negative correlation between genome 227 

size and μ among the Roseobacter lineages (dashed gray line in Fig. 2B [r2 = 0.992, slope = 228 

−2.895, s.e.m. = 0.019, p = 0.004]) according to a generalized linear model (GLM) regression. 229 

This relationship is not caused by shared ancestry, as confirmed by phylogenetic generalized 230 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.04.578831doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.04.578831
http://creativecommons.org/licenses/by-nc-nd/4.0/


least square (PGLS) regression analysis (solid blue line in Fig. 2B [r2 = 0.991, slope = −2.894, 231 

s.e.m. = 0.159, p = 0.003]). This conclusion remains robust by leaving out D. shibae.  232 

 233 

Genome sizes of the Roseobacter group members from surface oceans scale positively with 234 

effective population sizes 235 

We calculated the Ne of CHUG according to the aforementioned equation �
�

� 2 � �
�

� �. 236 

Here, �
�
 estimation requires the delineation of the population boundary. In many previous 237 

studies involving bacterial Ne estimates, �
�
 was estimated based on a nominal bacterial species 238 

39,40. However, Ne should be estimated based on neutral genetic diversity of a well-mixed 239 

population, whereas a nominal bacterial species is commonly comprised of structured 240 

populations 9,41. The recently available tool PopCOGenT defines a bacterial population whose 241 

members recombine more frequently than bacteria involving different populations 42, thereby 242 

rendering itself a powerful method for bacterial Ne estimation. It was shown to outperform earlier 243 

methods and was used to delineate population boundaries of many prokaryotic species for Ne 244 

estimation 12. We therefore used PopCOGenT to delineate populations for CHUG based on the 245 

published genomes of 39 isolates we sampled mostly from brown algae ambient seawater 25,26 as 246 

well as newly sequenced genomes of seven isolates from more diverse marine ecosystems such 247 

as regular coastal seawater and coral ambient seawater (Fig. S2). This approach led to the 248 

identification of two populations, one containing 21 non-redundant members (CHUG_MC0) 249 

with a genomic median �
�
 of 0.043 translated to Ne of 2.74 � 107, and the other containing four 250 

members (CHUG_MC1) with a median �
�
 of 0.013 and Ne of 8.27 � 106. This gave an average 251 

Ne of (1.78 ±1.35) � 107.  252 
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Using the same method, we estimated the mean Ne of the two populations of S. pontiacus 253 

(Fig. S3 and Table S9) and median Ne of five populations related to R. pomeroyi (Fig. S4 and 254 

Table S9) as (4.01 ± 3.73) � 107 and 1.51 � 108, respectively. There were only four 255 

Dinoroseobacter genomes publicly available, two (D. shibae DSM 112351 and D. shibae DFL-256 

12 (= DSM 16493)) of which were derived from the same strain, and we extended the dataset by 257 

sequencing four additional strains. However, seven of them fall into a clonal complex (see 258 

Method) and are thus redundant. As a result, Ne of this species was estimated by using only two 259 

non-redundant genomes (D. shibae PD6 and D. shibae DFL-12), which gave 7.35 � 107 (Fig. S5) 260 

and remains to be updated in the future when more non-redundant strains become available.  261 

The differences of Ne across the three genome size categories (2-3, 3-4, 4-5 Mbp) of these 262 

surface ocean Roseobacter lineages are statistically significant. Specifically, CHUG has a 263 

significantly lower Ne than the other three lineages (Wilcoxon–Mann–Whitney test, p < 0.001 in 264 

all cases), and S. pontiacus has a significantly lower Ne than Ruegeria sp. and D. shibae 265 

(Wilcoxon–Mann–Whitney test, p < 0.001 in all cases). Our results show that genome size 266 

correlates positively with Ne among these Roseobacter lineages (Fig. 2C). At first glance, this 267 

correlation is not significant according to the generalized linear model (GLM) regression 268 

analysis (dashed gray line in Fig. 2C [r2 = 0.890, slope = 0.253, s.e.m. = 0.063, p = 0.057]. 269 

However, GLM is not appropriate in this case because there is a strong phylogenetic effect on the 270 

relationship between these two traits (indicated by the λ value of 1 in blue box of Fig. 2C). By 271 

controlling for the phylogenetic signal, the phylogenetic generalized least square (PGLS) 272 

supports significantly positive relationship (solid blue line in Fig. 2C [r2 = 0.871, slope = 0.241, 273 

s.e.m. = 0.052, p = 0.044]).  274 

 275 
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Increased mutation rate correlates with increased power of genetic drift among the Roseobacters 276 

According to the GLM regression, we found a significantly negative relationship between μ 277 

and Ne across the four Roseobacter lineages (dashed gray line in Fig. 2D [r2 = 0.935, slope = 278 

−0.743, s.e.m. = 0.139, p = 0.033]). Although the observed relationship was impacted by 279 

phylogenetic effect (indicated by λ value at 1), it remains robust after controlling for shared 280 

ancestry, as shown by PGLS regression analysis (solid blue line in Fig. 2D [r2 = 0.920, slope = 281 

−0.713, s.e.m. = 0.120, p = 0.027]).  282 

 283 

The scaling relationships between genome size, mutation rate, and effective population size are 284 

robust across prokaryotes 285 

Based on 31 prokaryotic species (mostly bacteria, mostly from non-marine habitats) with � 286 

determined with the MA/WGS strategy (Table S10) and Ne calculated with the same approach as 287 

presented here, Chen et al. (2022) reported that both μ and the genome-wide mutation rate (UP, a 288 

proxy for deleterious mutation load of a genome 11) scales negatively with Ne. They also reported 289 

a negative scaling relationship between genome size and μ, but they found the negative 290 

correlation between genome size and Ne was not significant by both GLM and PGLS regression 291 

analyses 12. By including the new data of the three Roseobacter lineages determined here, we 292 

confirmed the first three correlations (Fig. S6A&B&C). Intriguingly, we found a significant 293 

positive scaling relationship between genome size and Ne after controlling for the common 294 

ancestry (PGLS, solid blue line in Fig. S6D [r2 = 0.251, slope = 0.147, s.e.m. = 0.048, p = 295 

0.005]). 296 

 297 
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Discussion 298 

The accepted genome streamlining theory attributes the process of genome reduction to 299 

selection for efficient use of limited nutrients 5. For this reductive process to be visible to natural 300 

selection, the lineages undergoing genome streamlining must have greater Ne than their co-301 

occurring sister lineages that carry larger genomes 6. To study streamlining process in surface 302 

ocean bacterioplankton cells, Ne is the key parameter and bacterioplankton lineages found in 303 

surface oceans should be compared. The marine Roseobacter group provides a unique 304 

opportunity to test it. On one hand, group members that co-exist in surface oceans span a wide 305 

range of genome sizes. On the other hand, many Roseobacter populations are primarily 306 

associated with nutrient-rich marine habitats such as coral holobionts 43 and benthic 307 

environments 44. These species are not appropriate targets to study the streamlining process 308 

because their growths are less limited by nutrients and their genome sizes are additionally shaped 309 

by characteristics of their habitats (e.g., host immune responses for host-associated Roseobacters) 310 

that are very different from those of surface oceans. In the case of the four Roseobacter lineages 311 

studied here, CHUG is featured by decoupling itself from marine eukaryotic phytoplankton 312 

groups 26, whereas Dinoroseobacter shibae is found to be primarily associated with marine 313 

phytoplankton 45. Commonly found in between the two oceanic niches is Ruegeria pomeroyi 46. 314 

Less is known for Sulfitobacter pontiacus, though other Sulfitobacter species are commonly 315 

associated with phytoplankton 47,48. Although the difference in their ecological strategies 316 

(phytoplankton-associated versus free-living) are relevant to the difference in their genome sizes, 317 

these lineages remain valuable for testing the streamlining theory because they are all commonly 318 

found in surface ocean habitats and are generally subjected to nutrient limitation. Simulations 319 
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with an agent-based model showed that carbon limitation at geological timescales is the primary 320 

force that shapes the high genomic G+C content of R. pomeroyi DSS-3 49.  321 

A surprising result from the present study is that the Ne of the surface ocean Roseobacter 322 

lineages scales positively with their genome sizes (Fig. 2C). This is unexpected because it 323 

reverses the trend predicted by the streamlining selection theory. As the strength of genetic drift 324 

is the inverse of Ne, this finding means that genetic drift becomes increasingly powerful in 325 

bacterioplankton species that carry increasingly small genomes. For selection to eliminate a 326 

deleterious mutation and promote a beneficial mutation, the mutation needs to be sufficiently 327 

deleterious or beneficial (i.e., the absolute value of selection coefficient s, |s|, is large enough) to 328 

overcome the power of genetic drift (1/Ne), or the condition |s| > 1/Ne needs to be fulfilled. For a 329 

population with a decreased Ne, more deleterious mutants are expected to be fixed and more 330 

beneficial variants will be lost by chance, rendering natural selection less effective. Therefore, 331 

our finding suggests that natural selection becomes less effective for the surface ocean 332 

Roseobacter populations with decreasing genome sizes. 333 

For genetic drift to play a role in bacterial genome reduction, it needs to work with certain 334 

mutational processes. Most mutations are deleterious and purged primarily by purifying selection 335 

and recombination 50,51. In a small population with limited opportunities for recombination, 336 

deleterious mutations are accumulated by random and irreversible loss of genotypes that are 337 

depleted with deleterious mutations and by random fixation (i.e., 100% in frequency) of 338 

genotypes that are loaded with abundant deleterious mutations. This process is known as 339 

“Muller’s ratchet” 52. A direct effect of Muller’s ratchet in bacteria is genome reduction due to 340 

accumulation of irreversible disabling mutations that lead to pseudogenization and gene loss. 341 

Because obligate endosymbiotic bacteria are featured by very small population sizes with 342 
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extremely low recombination rates, their reductive evolution is generally driven by Muller’s 343 

ratchet 53,54.  344 

As marine bacterioplankton lineages have much higher recombination rates than obligate 345 

endosymbionts, their evolution was thought to be unlikely to be driven by Muller’s ratchet 55. 346 

Although this is true in the overall well-connected oceans, recombination may be restricted in a 347 

frozen ocean of the globe in some unusual geological periods of the Earth. A prominent example 348 

is that in the global icehouse climate conditions during the Neoproterozoic Snowball Earth that 349 

comprises Sturtian (approx. 717–659 Ma) and Marinoan (approx. 645–635 Ma) glaciations, 350 

Prochlorococcus cells were likely restricted to a few biotic refugia such as cryoconite holes and 351 

sea-ice brine channels 56. Such highly patchy and disconnected habitats likely created little 352 

opportunity for recombination, which was evidenced by extremely few gene acquisitions at that 353 

stage 57. Additionally, Prochlorococcus at that time experienced severe population bottlenecks, 354 

bringing its Ne down to 104-105 or even lower according to simulations by an agent-based model 355 

57. The very small Ne and the very rare recombination support an escalated role of Muller’s 356 

ratchet as a driver of the Prochlorococcus evolution at that time. As the Prochlorococcus major 357 

genome reduction event, where ~30% of the genomic DNA was eliminated, also occurred at that 358 

time, it is natural to come up with a new theory that Muller’s ratchet likely acted as a main 359 

mechanism of the historical genome reduction in Prochlorococcus 57.  360 

Unlike Prochlorococcus that are found exclusively between 40° N and 40° S and thus 361 

vulnerable to global icehouse climate, oceanic members of the Roseobacter group are globally 362 

distributed and generally enriched in ocean regions at middle and high latitudes 14,15, thereby 363 

more resistant to glaciation events and less likely to undergo severe population bottlenecks 364 
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during historical glaciation events. For this reason, genome reduction in the oceanic members of 365 

the Roseobacter group is less likely to be driven by Muller’s ratchet.  366 

Alternatively, genetic drift may lead to genome reduction through mutation rate increases. 367 

This theory further builds on two population genetic processes: increased strength of genetic drift 368 

leads to increased mutation rate, and mutation rate increase leads to genome reduction. If 369 

mutation rate exceeds selection coefficient of a gene, purifying selection may not be able to keep 370 

the gene 58,59. With increasing mutation rates, more non-essential genes are lost and genome 371 

reduction occurs. This explains why mutation rate increase leads to genome reduction. In fact, a 372 

potential role of mutation rate increases in marine bacterial genome reduction has been 373 

repeatedly hypothesized for Prochlorococcus and SAR11 8,59–61. The present study is the first that 374 

experimentally validated this long-lasting hypothesis, though genome-reduced Roseobacters, 375 

rather than Prochlorococcus and SAR11, were used in the analysis. A theoretical model predicts 376 

that bacterial genome size is reduced by 30% in response to mutation rate increase by 10 times 59. 377 

It seems that our empirical data from natural Roseobacter lineages is broadly consistent with this 378 

prediction.  379 

However, the population genetic process giving rise to increased mutation rate in bacteria 380 

has been more disputable. On one hand, the “mutator theory” 62–64 favors natural selection as the 381 

primary force to boost mutation rate; it posits that a high mutation rate may provide transient 382 

advantages for prokaryotes in a changing environment as it increases the opportunity to gain 383 

beneficial mutations. On the other hand, the “drift-barrier” model posits that natural selection 384 

favors low mutation rates and acts to increase replication fidelity to a threshold beyond which 385 

genetic drift can overcome the effects of natural selection and thus fitness advantages start to 386 

decrease. The drift-barrier model favors a primary role of genetic drift in increasing mutation 387 
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rates and predicts an inverse relationship between Ne and μ 11,40. It gained a great success in 388 

explaining why eukaryotes (generally having small Ne) have higher mutation rates than 389 

prokaryotes (generally having large Ne) 
11,40. From within bacteria, the model was originally 390 

skeptical when genome-reduced marine bacterioplankton lineages were concerned. These marine 391 

bacteria, especially Prochlorococcus and SAR11, were believed to have unusually large Ne 
6,65 392 

and assumed to have high μ (because of losses of important repair systems) 8,59–61. Not until 393 

recently when the Ne and μ of a genome-reduced Prochlorococcus strain became available, the 394 

drift-barrier model received stronger support from within bacteria 12. The inclusion of the three 395 

Roseobacter species determined here, especially the CHUG, continues to support the negative 396 

scaling relationship between Ne and � (Fig. S6C), thus strengthening the drift-barrier theory. A 397 

gross relationship across deeply-branching bacterial lineages means that genetic drift is a 398 

universal rule dictating the evolution of mutation rates in bacteria. However, it does not mean 399 

that this rule is necessarily manifested by an analysis of bacterial species from a certain habitat 400 

because the pattern could be shadowed by selective pressure imposed by the particular 401 

environment. It is therefore remarkable to observe the inverse scaling relationship between Ne 402 

and � holds when only the four Roseobacter species were compared (Fig. 2D), supporting the 403 

idea that genetic drift drives mutation rate increases in the studied Roseobacters.  404 

Our study shows that genetic drift and mutation rate increases are the two primary 405 

population genetic mechanisms that mediate genome reduction in surface ocean Roseobacter 406 

lineages. We also show that mutation rate increase itself is driven by genetic drift. Taken together, 407 

we are able to conclude that genetic drift is the ultimate mechanism for genome reduction in the 408 

studied marine bacteria. Our new result contributes to the ongoing discussion on the population 409 

genetic mechanisms giving rise to the small genomes in marine bacterial cells that dominate the 410 
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marine bacterioplankton communities. It provides an alternative view to the prevailing 411 

streamlining selection theory, but the presented evidence from the studied surface ocean 412 

Roseobacter lineages, several of which are commonly associated with phytoplankton where 413 

nutrients are more available than in the bulk seawater, is not sufficient to reject the streamlining 414 

selection theory. The genome streamlining process is deemed to be more efficient in 415 

bacterioplankton cells that are found in highly oligotrophic and stratified oceans such as the 416 

ocean gyres where nutrients are extremely depleted, and thus the streamlining selection theory is 417 

believed to work best in explaining the genome reduction process in those bacterioplankton 418 

lineages. Future work should be focused on comparing lineages that dominate the 419 

bacterioplankton communities in oligotrophic oceans.  420 
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 452 

Figure legends 453 

Fig. 1.  Distribution of genomic mutations in three Roseobacter species determined in this 454 

study by mutation accumulation (MA) experiments followed by whole genome sequencing 455 

of 437 MA lines in total. (A) Base-substitution mutations and insertion/deletion mutations 456 
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across the whole genome of CHUG HKCCA1288 determined by 180 MA lines. The height of 457 

each bar represents the number of base substitutions (black), insertions (red) and deletions 458 

(yellow) across all MA lines within each protein-coding gene. Black diamonds and red triangles 459 

denote base substitutions and insertions that occurred on the remaining genomic regions 460 

(intergenic regions and non-protein-coding genes), respectively; both diamonds and triangles are 461 

shown with transparence, thus genomic regions with more mutations show deeper color than 462 

those with less mutations. The genomic position of insertion/deletion mutation refers to the 463 

position of the first mutated site. The locus tag of the 17 genes with statistical enrichment of 464 

mutations is shown in purple arrows. (B) Base-substitution mutations and insertion/deletion 465 

mutations across the whole genome of Sulfitobacter pontiacus EE-36 determined by 58 MA lines. 466 

Different types of mutations are illustrated with the same symbols as those in (A). The locus tag 467 

of the three genes with statistical enrichment of mutations is shown in purple arrows. 468 

Chromosome and plasmid are separated with the vertical dash line. (C) Base-substitution 469 

mutations and insertion/deletion mutations across the whole genome of Dinoroseobacter shibae 470 

DFL-12 determined by 149 MA lines. Different types of mutations are illustrated with the same 471 

symbols as those in (A). The locus tag of the eight genes with statistical enrichment of mutations 472 

is shown in purple arrows.  Chromosome, chromids, and plasmids are separated with the vertical 473 

dash line. 474 

 475 

Fig. 2. Phylogenomic tree of the Roseobacter group and scaling relationships between 476 

genome size, genomic mutation rate (base-substitution mutation rate per cell division per 477 

nucleotide site; μ) and effective population size (Ne) for the studied Roseobacter species. All 478 

trait values were logarithmically transformed. (A) The maximum likelihood phylogenomic tree 479 
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of representative Roseobacter genomes based on 120 conserved bacterial genes, with the four 480 

studied Roseobacter species marked in red. (B-D) Scaling relationships involving μ, Ne, and 481 

genome size across four phylogenetically diverse lineages within the marine Roseobacter group, 482 

with all trait values logarithmically transformed. The dashed grey lines and solid blue lines 483 

represent the generalized linear model (GLM) and phylogenetic generalized least square (PGLS) 484 

regression, respectively.   485 
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