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ABSTRACT

The role of splicing dysregulation in cancer is underscored by splicing factor mutations; however, its
impact in the absence of such rare mutations is poorly understood. To reveal complex patient subtypes
and putative regulators of pathogenic splicing in Acute Myeloid Leukemia (AML), we developed a new
approach called OncoSplice. Among diverse new subtypes, OncoSplice identified a biphasic poor
prognosis signature that partially phenocopies U2AF1-mutant splicing, impacting thousands of genes in
over 40% of adult and pediatric AML cases. U2AF1-like splicing co-opted a healthy circadian splicing
program, was stable over time and induced a leukemia stem cell (LSC) program. Pharmacological
inhibition of the implicated U2AF1-like splicing regulator, PRMT5, rescued leukemia mis-splicing and
inhibited leukemic cell growth. Genetic deletion of IRAK4, a common target of U2AF1-like and PRMT5
treated cells, blocked leukemia development in xenograft models and induced differentiation. These
analyses reveal a new prognostic aternative-splicing mechanism in malignancy, independent of splicing-

factor mutations.

Statement of significance

Using a new in silico strategy we reveal counteracting determinants of patient survival in Acute Myeloid
Leukemia that co-opt well-defined mutation-dependent splicing programs. Broad poor-prognosis splicing
and leukemia stem cell survival could be rescued through pharmacological inhibition (PRMT5) or target
deletion (IRAK4), opening the door for new precision therapies.
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INTRODUCTION
Alternative splicing is a primary mechanism used to achieve mRNA transcript and proteomic diversity in
higher eukaryotes *. In cancer, altered mRNA splicing can lead to aberrant protein products that promote

oncogenic transformation and metastasis and confer chemotherapy resistance #®. In the absence of direct


https://doi.org/10.1101/2024.02.04.578798
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.04.578798; this version posted February 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

86  gplicing mutations, other mechanisms exist to modify splicing pathways in diverse cancers including
87  modulation of splicing factor gene expression and the mutation of splicing-factor-interacting proteins **2.
88  One such example is the pathogenic splicing of the gene IRAK4 in myelodysplastic syndromes (MDS)
89  and AML, in which IRAK4 exon-inclusion resulting in the expression of a hypermorphic IRAK4 isoform
90 occursin alarge subset of these malignancies in the absence of its primary regulator (U2AF1 mutations)
91 ™. Thus, atypical, coordinated splicing may in general be a significant mediator of cancer and other
92  complex diseases.
93 While alternative splicing is a recognized oncogenic driver in a small percentage of adult acute
94  mydoid leukemia (AML) (~10-15%), splicing factor mutations are rarely found in pediatric AML. These
95  datasuggest that pathogenic splicing is not a primary mediator of pediatric cancer survival or therapeutic
96 response. Current approaches to assess the role of splicing in complex diseases rely on the focused
97 analysis of prior-defined genetic, epigenetic or gene-expression subtypes '**°. While in principle, the
98  discovery of splicing-defined cancer subtypes should be comparable to gene expression, such analyses are
99  hindered by the variable detection of isoform expression from RNA-Seq, complex overlapping genetics,
100  tumor cellular heterogeneity and redundant events. Further, methods to predict likely causal splicing
101  regulators from aternative splicing remain in their relative infancy, focused principally on the co-
102  occurrence of alternative splicing with predicted cis-regulatory binding sites 22,
103
104 RESULTS
105 Unsupervised classification and regulatory prediction of cancer splicing subtypes
106  To characterize the splicing landscape of adult and pediatric AML we processed two available adult AML
107  RNA-Seq datasets - Leucegene (437 adult) %?, and the Cancer Genome Atlas (TCGA, 179 adult) * and
108  compared them to the pediatric AML dataset TARGET (390 pediatric patients with 257 at diagnosis)
109  which lacks splicing-factor mutations **. The genetics of the AM L samples were determined from existing
110  cancer databases and de novo RNA-Seq variant analysis (ED Fig. 1a,b). As expected, supervised analysis
111  of cancer RNA-Seq data, identified distinct genomic lesions that result in highly-specific gene-expression
112 and splicing signatures, including those in common adult and pediatric oncofusions (Fig. 1a,b and ED
113  Fig. 1c,d). While such signatures enable highly accurate supervised classification, such subtypes could
114  not be resolved by existing conventional unsupervised analyses (Fig. 1c and ED Fig. 1€). Such difficulty
115  stemsfrom overlapping signatures due to the presence of multiple genomic lesions per sample, as well as
116  unknown splicing signatures that confound subtype identification.
117 To resolve complex overlapping splicing patterns and their mode of regulation, we developed a
118  novel automated computational workflow termed OncoSplice (Fig. 1€). OncoSplice implements multiple

119  dgorithms, including: @ a highly accurate Percent-Spliced-In (y) agorithm (MultiPath-PSI) %, b)
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120  unsupervised patient splicing-subtype detection (splice-ICGS), ¢) supervised mutation and subtype
121  predictions (Bridger) and d) RNA-Binding Protein (RBP) regulatory prediction (RBP-Finder).

122 The principal innovation in OncoSplice is splice-ICGS, designed to identify novel patient
123  subtypes defined uniquely by their splicing profiles. This workflow initially identifies variable
124  coordinated splicing events using an adaptation of our single-cell RNA-Seq (scRNA-Seq) pipeline ICGS2
125  (lterative Clustering and Guide-gene Selection) to enable multiclass assignments for all samples ® (ED
126  Fig. 1f). Because large-broad splicing patterns can confound the identification of rare splicing-defined
127  patient subtypes (termed herein as splice-archetypes), splice-ICGS iterates its analysis, excluding all
128  gplicing events correlated to signatures identified in the prior round, to comprehensively define all
129  gplicing programs. This approach allows the same patients to occur in independent splice-archetypes,
130  associated with distinct genetic drivers. Broad splicing signatures can represent novel splicing regulatory
131  pathway differences, cell lineage differences or batch effects. When applied to a subset of AML patients
132 with defined splicing factor mutations and oncofusions, splice-ICGS recovers nearly al known subtypes
133 (8 out 9), whereas as cutting-edge scRNA-Seq or bi/fuzzy-clustering approaches capture only a few at
134  most (ED Fig. 19).

135 To identify additional splice-archetypes, OncoSplice finds genomic variants associated with distinct
136  PSI programs, de novo PSI signatures correlated to RBP gene expression and associates tumor samples
137  with specific disrupted RBPs based on their correlation to RBP-knockdown PSI profiles (Bridger
138  module). Finadly, the RBP-Finder module of OncoSplice associates regulatory RBP for each identified
139  gplice-archetype from PSI enrichment of RBP motifs, CLIP-Seq and RBP differential gene expression.
140  This algorithm is a modification of our previous developed RELI agorithm for transcriptional regulation
141 *in combination with aweighted logistic regression model (Supplemental M ethods).

142

143  OncoSplice identifies the spectrum of splicing-defined disease ar chetypesin AML

144  Application of OncoSplice to the mgjority of Leucegene AML samples identified a total of 25 splicing
145  subtypes, of which 15 were previously defined in AML and 10 were novel subtypes (Fig. 2a, ED Table
146  1). The large majority of these subtypes (n=19) were specifically identified by splice-ICGS. One such
147  subtype revealed SRSF2 point mutations and in frame P95 to R102 8AA deletion % as a single related
148  subtype . Only one of the OncoSplice subtypes was identified from comparison to RBP knockdown
149  gplicing profiles (Bridger) - 11 patients with confirmed heterogenous HNRNPK insertions/deletions,
150 partid chromosomal deletions (partial 9q), or splicing defects in HNRNPK itself (intron retention). This
151 HNRNPK subtype would not be identified through conventional genotype-based analyses, as it is
152  produced by heterogenous genetic and non-genetic impacts. Frequently co-occurring variants among all

153  subtypes were reported by OncoSplice, including enrichment of KIT mutations with CBFB-MYH11,
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154  IDH2-R140Q with SRSF2-P95, and EVI fusions with SF3B1 variants. In addition, several of the most
155  frequent and novel detected splicing-subtypes were enriched for known cancer variants, the most
156  significant of which included TP53 mutations (15%) or combined FLT3 internal tandem duplications
157  (FLT3-ITD) and NPM1 mutations (19%). Among these novel subtypes, two separate clusters were highly
158 enriched for TP53 mutations, with one of these specifically enriched for TCGA subtype annotations for
159  acute erythroid leukemias (M6 subtype, R2-C3 cluster — Table 1). Likewise, two NPM1-FLT3 enriched
160  subtypes were found with coincident enrichment in either TET2 (9%) or DNMT3A (10%). Among these
161  mutation-enriched splicing subtypes, NPM1-FLT3- DNMT3A uniquely predicted poor overall survival in
162  TCGA (Table 1). While such genetically defined subtypes have been previously defined 2%, the unique
163  combination of these mutations results in novel splicing subtypes that are distinct from each other and
164  suggest anove role for divergent epigenetic modulation of aternative splicing (TET2 or DNMT3A).

165 OncoSplice further associated each of the novel splicing subtypes with possible splicing regulators by
166 RBP-Finder (ED Table 2) or RBP-knockdown correlation. Similar to splice-ICGS, we tested the
167 predictive power of RBP-Finder to identify regulatory RBPs. These predictions include recently
168  experimentally validated regulators, such as MNBL1 as a central regulator of splicing in MLL leukemias
169  *. We were able to further obtain strong independent evidence for these predicted regulatory RBPs in
170  65% of these signatures based on patient genetics (5 out 6) or existing RBP knockdown profiles (8 out
171 14) (Supplementary Methods). Among the novel splicing archetypes detected, nine were also identified
172  inthe TCGA AML cohort and six in the TARGET pediatric AML cohort, from independent splice-ICGS
173  analyses (ED Fig. 2a,b). We identified dozens of additional known and novel splice architypes in a
174  second large adult AML cohort, BEAT AML, confirming broad and discrete splicing impacts (ED Fig.
175 20) %

176 Strikingly, the two most prominent novel splicing subtypes describe 79% of al AML patients.
177  These subtypes correspond to a single broad splicing-signature, observed when we perform naive
178 unsupervised clustering of splicing events (Fig. 1d and ED Fig. 1le ). We herein refer to these two
179  opposing subtypes as U2AF1-like and SRSF2-like, based on their OncoSplice RBP regulatory predictions
180  and the overlap of these patients with U2AF1-S34 and SRSF2-P95/8AA mutations, respectively (Table 1,
181 ED Table 2). Strikingly, this splicing signature was associated with almost 2/3 of all detected splice-
182  eventsin the entire dataset (~88,000 events, 66%) and could not be described by any known technical
183  effects (e.g., batch, sequence depth), sex or patient age (ED Table 1). Notably, however, the incidence of
184  U2AF1-like cases was increased (17%) in bone marrow versus peripheral blood, suggesting it may be
185 more indicative of a leukemic stem cell (LSC) signature (ED Table 1). When all identified splicing
186  subtypes are directly compared (Fig. 2b), our predicted subtypes overlap considerably with several
187  previously established subtypes, suggesting this signature is dominant and can confound the detection of
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188  unique splicing in distinct subtypes (Supplemental M ethods — Section 1). Suprisingly, U2AF1-like and
189  SRSF2-like splicing account for the large majority of mis-splicing in AML (Fig. 2c). We were able to
190 readily confirm these splicing events using read-level visudization (SashimiPlot), including several
191  examples that have been previously reported in unrelated cancer contexts (Fig. 2d). A comparative
192 andlysis of the frequency of splice-event types from OncoSplice (e.g., cassette-exon versus intron
193  retention) associated with all observed AML subtypes suggests that U2AF1-like and SRSF2-like have a
194  preference for cassette-exon splicing, similar to that of the majority of RBP mutations, with predictions
195  for other RBPs matching prior literature (e.g., SF3B1, ZRSR2) **3 (Fig. 2e). To understand the global
196  protein- and domain-level impacts of these splicing event signatures, MultiPath-PS| applies a previously
197  described protein compositional prediction method in the software AltAnalyze *%. This prediction
198  workflow suggests a significant difference in the potential outcomes of AS, with U2AF1-like events
199  shifting isoforms towards full length products that preserve protein-domain integrity while SRSF2-like
200  events shift predominantly towards protein truncation or nonsense mediated decay and protein domain
201  disruption (Fig. 2f).

202

203  U2AF1-likeand SRSF2-like signaturesresolve splicing-factor -mutation specific events

204  Malignancy associated mutations in SRSF2 and U2AF1 result in gain of function splicing changes,
205  resulting in the selection of atypical splice sites that should not be observed by the wild-type proteoform
206  *"*. However, visualization of the most enriched U2AF1-S34 and SRSF2-P95 splicing events across all
207  AML indicate that U2AF1-like and SRSF2-like partially phenocopy mutant-specific splice profiles,
208  respectively (Fig. 3a,b). Indeed, approximately half of all alternative splicing events enriched in U2AF1-
209  S34 or SRS2-P95 are shared with the respective U2AF1-like and SRSF2-like signatures when compared
210 to other AMLs (Fig. 3c). As previously described, U2AF1-S34 has increased specificity for
211  cytosine/adenosine when mediating alternative cassette exon-inclusion at the -3 position of the 3" splice-
212  site, and a preference for uracil (UAG versus CAG motif) in alternative cassette exon-exclusion (Fig. 3d)
213 ¥, To determine whether U2AF1-like splicing events where characteristic of wild-type (reference) or
214  mutant U2AF1-S34 binding 3 splice-site sequence recognizition preferences, we performed an
215  enrichment analysis with the software HOMER for unique U2AF1-like splicing events (exclusive of
216  U2AF1-S34). This analysis finds that while hundreds of atypical 3' splice-sites are selected in U2AF1-like
217  splice events (UAG motif), these represent a fraction of conventional (CAG) events, unlike U2AF1-S34
218 (Fig. 3d, €). Thus, while U2AF1-like induces a greater number of atypical 3' splice-sites than U2AF1-
219  S34, the pattern of U2AF1-like binding remains most similar to wild-type U2AF1, due to the higher
220  number of impacted events (5,193 versus 1,920, respectively). These data support a promiscuous model
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221  (over-activation) of U2AFL1 directed splicing rather than altered splicing factor specificity in U2AF1-like
222  patients.

223

224  U2AF1-like splicing is associated with poor survival and leukemic growth

225  Although no U2AF1 or SRSF2 mutants were observed in pediatric AML, we find the same splicing
226  signature with splice-ICGS in TARGET AML patients (ED Fig. 3a). Strikingly, in both TCGA and
227  TARGET, U2AF1-like splicing events are associated with poor overall survival (cox proportional hazard
228  (coxph) p = 0.01 and 0.04, respectively), while SRS-2-like splicing events are associated with improved
229  survival in TCGA but not in TARGET (coxph p-value = 0.02 and 0.08, respectfully) (Fig. 3f). U2AF1-
230  like was further associated with decreased time to relapse in adult but not pediatric AML (coxph p=0.02).
231  To determine whether U2AF1-like and SRSF2-like biology can be modelled in vitro, we analyzed bulk
232 RNA-Seq on pediatric AML patient blasts at the time of diagnosis and upon cell culture (ED Fig. 3b) “.
233  While diagnostic cells were a mix of U2AF1-like, SRS-2-like and intermediate cells based on RNA-Seq,
234  dl cells upon culturing transitioned to a U2AF1-like profile. Further projecting these splicing signatures
235  across all leukemic cell lines with RNA-seq in the CCLE project* also finds strongly skewed splicing
236  towardsthe U2AF1-like (ED Fig. 3c). Hence, U2AF1-like (but not SRSF2-like) liabilities can be assessed
237  in immortalized cells, with the splicing choice in these cells likely to be mediated by extrinsic factors
238  (eg., stromal niche, cytokines).

239 Given that U2AF1-like impacts can be assessed in vitro, to understand the functional consequences of
240  genes mis-spliced in U2AF1-like patients, we restricted events to those U2AF1-like splicing events both
241  associated with poor overall survival (n=287 genes, TARGET coxph p<0.05) and shared in pediatric and
242  adult patients and assessed these in a prior broad CRISPR dependency screen in 13 CRISPR AML cell
243 lines *. Among these 287 genes, 42 were required for leukemic growth in >6 cell lines, greater than
244  expected by chance (Wilcoxon rank test p<0.005, two-sided) (Fig. 3g). Thus, U2AF1-like splicing events
245  correlated with patient survival are enriched for genes required for leukemic growth.

246 To understand the broader significance of these observed splicing events, we compared U2AF1-like
247  gplicing events to prior-described cancer-associated splice isoforms and genes likely to impact key cancer
248  pathways. Notably, multiple well-characterized cancer associated splicing events were found that have a
249  graded response in the mutants and “like” patient subsets (APAF1, BID, CASP9, FAS) in addition to well-
250 defined therapeutic cancer targets (MTOR, KDM2A, MAPK14, IL6R, TLE4, IRAK4) (Fig. 3h,i and ED
251  Fig. 3d-f). This data further agree with our prior observation that the highest inclusion of exon 4 IRAK4
252  iscoincident with the U2AF1-S34 mutation, but with many patients exhibiting a similar graded pattern in
253  exon 4 splicing. Many of the identified U2AF1-like regulated splicing events also include prior annotated
254  targets of mutant U2AF1 and SRSF2 in AML and MDS, with important well-documented exceptions for
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255  SRSF2-P95 (e.g., EZH2) and U2AF1-S34 (e.g., PICALM) targets ****% which are not found within the
256  “like” signatures (Fig. 3j). Thus, consideration of U2AF1-like splicing informs the specificity of mutant-
257  gpecific events.

258

259  U2AF1-likeisstable overtime and derivesfrom a circadian splicing program

260  To confirm that U2AF1-like splicing is durable and contributes to prognosis over time, we re-analyzed an
261  independent set of serid diagnosis and relapse AML RNA-Seq of 19 patients *. Patients with annotated
262  U2AF1-like or SRSF2-like AML showed the same pattern at diagnosis and relapse when considering
263  (Fig. 4a). U2AF1-like and SRSF2-like patterns were independent from prior-defined cytosine-methylation
264  profiling-defined subtypes in this cohort, suggesting that mis-splicing is not a biproduct of broader
265  epigenetic alternations *°. We confirmed the overall stability of U2AF1-like splicing from 41 patients with
266  2-3 samples at independent timepoints of therapy or relapse in BEAT-AML (Fig. 4b).

267 To determine if U2AF1-like splicing is simply indicative of distinct progenitor populations, we
268  evaluated RNA-Seq from different sorted cord blood CD34+ cells (HSC, MPP, CMP, GMP, CLP, MEP,
269  Multi-Lin)*. Surprisingly, these analyses find that U2AF1-like splicing differs by donor rather than by
270  progenitor cell-type (Fig. 4c,d and ED Fig. 4a). Indeed, comparison of U2AF1-like splicing in healthy
271  donor bone marrow CD34+ progenitors finds a separation of U2AF1-like and SRSF2-like splicing
272  patterns in healthy donors, athough for a fewer subset (1/6"™) of the AML splicing events (1139/6769)
273  (ED Fig. 4b,c) “’. While only asmall proportion of U2AF1-like splicing events from AML are present in
274 healthy donors, concordance in the gene expression profiles of AML and healthy CD34+ cells were high
275  between AML and healthy bone morrow associated U2AF1-like architypes (97% agreement). Comparing
276  AML and hedlthy progenitors, MYC was among the most consistent induced gene in U2AF1- versus
277  SRS2-like patient/donors, along with multiple splicing regulators (e.g., WDR77, PRMT5, WTAP, CLK1)
278  (Fig. 4e). These shared differentially expressed genes were notably enriched in core regulators of
279  circadian rhythm (e.g., ARNTL, PER1, PER2, CRY2, NCOR1, PRMT5) (ED Table 3). To determine
280  whether U2AF1-like splicing in AML mimics a normal circadian splicing signature, we applied the
281  machine learning program CY CLOPS (cyclic ordering by periodic structure) *® to the AML RNA-Seq
282  gene expression data. When visualizing both circadian predicted phase ordering and splicing-defined
283  patient groups, we find U2AF1-like and SRSF2-like samples can be predicted from circadian phase aone
284  (ED Fig. 4€). These two magjor circadian orded phases were primarily associated with extracellular
285  signading/inflammatory (SRSF2-like) versus proliferative/metabolic (U2AF1-like). Thus, U2AF1-like is
286  associated with physiological circadian splicing, which is predictive of patient overall survival.

287

288  U2AF1-like splicing isregulated by a MY C driven WDR77/PRM T5 splicing program
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289  While the association with circadian rhythm is intriguing, it does not explain what the drivers of mis-
290  gplicing arein AML. We find MYC to be among the most significantly upregulated genes in U2AF1-like
291  patients (p=1e-13) along with several previously validated MY C * and PRMT5/WDR77 *°** dependent
292  gplicing events, based on re-analysis of these published data (ED Fig. 4f,g). MYC has been shown to
293 regulate PRMT5 and WDR77 expression as well as the splicing of several pro-oncogenic splicing events
294  * In both Leucegene and TARGET, OncoSplice consistently identified correlated or anti-correlated
295  expression and significant differential expression of multiple splicing factors with U2AF1-like splicing,
296  notably the cancer splicing modulators WDR77, PRMT5 and WTAP 249! (Fig. 4f). WDR77 and PRMT5
297  form a coactivator complex that dimethylates specific arginines in several spliceosomal Sm proteins,
298  resulting in alternative splicing . In the AML CRISPR dependency data, the U2AF1-like associated
299 RBPs, U2AF1, SRSF2, WDR77 and PRMT5, were predicted to be essential in AML compared to al
300 targeted genes (p=0.011) (Fig. 4g and ED. Fig. 4i). To independently assess splicing factor regulatory
301  potential for U2AF1-like splicing, we analyzed a large repository of RBP KDs from ENCODE and prior
302  and diverse published studies. Consistent to our differential expression and CLIP-Seq analyses, U2AF1
303 and WDR77 knockdown effectively reversed U2AF1-like splicing (>80% negative concordance), aong
304  with SRSF3 (Fig. 4h,i and ED Fig. 4h). Knockdown of SRSF8 and HNRNPF had the opposite impact,
305  resulting in a shift towards U2AF1-like spliced isoforms. Expression of WDR77 alone was found to be a
306  novel independent predictor of patient survival when considering both TCGA and TARGET (ED. Fig.
307 4.

308 Our gene expression and CRISPR screen comparative analyses, suggest U2AF1-like and
309  associated upstream RBPs mediate a proliferative and stem cell maintenance program, while SRSF2-like
310 lacks this program, but is associated with inflammation. To initially understand this relationship, we
311  extended our splicing signature comparisons to previously described cell-type specific and LSC splicing
312  comparison RNA-Seq datasets **. This analysis finds that U2AF1-like strongly phenocopies splicing in
313  LSC versus HSC (Fig. 4j). This finding was unique to LSC comparisons, versus alternative hematopoietic
314  cell-type comparisons, suggesting that U2AF1-like drives a core stem cell program which is lacking in
315  SRSF2-like.

316 PRMTS5 inhibition using selective small molecule inhibitors have emerged as a promising strategy
317  to inhibit leukemic cell growth in some hematological malignancies **. To determine whether PRMT5
318 inhibition specifically impacts U2AF1-like as opposed to SRSF2-like splicing, we next performed RNA-
319 Seqginthe AML cell line, MDSL * treated with a specific PRMT5 inhibitor. While the PRMT5 inhibitor
320  primarily induced intron retention (474/720 unique PSI events), PRMT5 blockade reversed the U2AF1-
321  like splicing for 90% of exonic splicing events (Fig. 4k). The previously identified IRAK4 exon 4
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322  inclusion (associated with hypermorphic IRAK4-Long) was among the top rescued U2AF1-like splicing
323  events (Fig 4l). These findings implicate PRMT5 as aregulator of IRAK4 isoformsin MDSAML.

324

325

326 PRMTS5 inhibition suppresses IRAK4-L expression and leads to increased myeloid differentiation
327 andimpaired MDS/AML progenitor cell function

328  Based of these data, we hypothesized that PRMT5 regulation of the IRAK4-Long(L) isoform promotes a
329 LSC maintenance program in U2AF1-like MDS/AML that blocks differentiation. In MDS-L cdlls,
330 PRMTS5 inhibition led to reduced expression of IRAK4-L as seen by immunoblotting, suggesting that the
331  exclusion of IRAK4 exon 4 by PRMTS5 results in reduced IRAK4-L protein expression (Fig 5a).
332  Consistent with this reduction in IRAK4-L protein, PRM TS5 inhibition led to decreased activity of NF-kB
333 inamyeloid leukemia cell line reporter assay (Fig. 5b). Suppression of IRAK4-L and NF-kB coincided
334  with asignificant dose-dependent decrease in viability of PRMTS5 inhibitor-treated MDSL cells (Fig. 5¢).
335 Theloss of viability was pronounced with longer duration of treatment and was accompanied by myeloid
336  differentiation as evident from cytomorphology and increased expression of CD14 and CD11b in FACS
337  analysis(Fig. 5d,e).

338 Myeloid differentiation blocks are a hallmark of MDS/AML and IRAK4-L has been shown to be
339  expressed preferentialy in MDS patient blasts . To understand the effects of PRMT5 inhibition in MDS
340  samples we cultured primary patient bone marrow samples with the PRMT5 inhibitor (PRT543) to assess
341  for functional activity. Supporting our hypothesis, treatment with PRT543 led to increased myeloid
342  differentiation of primary MDS samples (Fig. 5f-h). These data demonstrate the preclinical efficacy of
343  targeting PRMT5 in myeloid malignancies. Recent studies have implicated the IRAK paralogs, IRAK1
344  and IRAK4, in MDS/AML by preserving the undifferentiated state of LSCs *°. To confirm whether the
345  expression of IRAKA4-L is critical to the maintenance of LSC fitness, we evaluated a panel of isogenic
346  AML cdl linesin which the IRAK4 was deleted using CRISPR/Cas9 editing. In agreement with induced
347  expression of IRAK4-L in U2AF1-like AML, deletion of IRAK4 in MDS/AML cells (IRAK4"C) resulted
348  in reduced colony formation in vitro (Fig. 5i) and leukemia development in xenografted mice (Fig. 5j).
349  To determine whether IRAK4 is required for preserving an undifferentiated LSC state, we examined
350 morphological changes of MDS/AML cells upon deletion of IRAKA4. In contrast to WT cells, IRAK4<°
351 AML cells exhibited increased expression of differentiation markers (Fig. 5k), which is congruent with
352 myeloid differentiation. These findings suggest that PRMT5 mediates IRAK4-L expression and that
353 IRAKA4 function isimportant for preserving an immature cell state of LSCs.

354

355 DISCUSSION
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356

357  While the genetic evaluation of cancers has significantly improved cancer risk stratification and
358  treatment, patients with a similar constellation of mutations frequently have widely varying outcomes.
359  Unsupervised evauation of molecular subtypes in diverse diseases, particularly in cancer, has revealed
360 novel disease states and therapeutic targets **°’. Using an iterative unsupervised approach for splicing-
361  archetype discovery (splice-ICGS), we find clinically significant archetypes that occur independently of
362  observed tumor genetics and predominant tumor gene expression patterns. In addition to finding over a
363  dozen genetically-defined subtypes of AML, OncoSplice identified two major AML populations defined
364  selectively by aternative splicing, U2AF1-like and SRSF2-like, which together describe close to 80% of
365  al adult and pediatric AMLs. Our analyses further suggest that non-pathogenic U2AF1-like splicing in
366  healthy bone marrow, which comprises only 16% of the events found in AML, predisposes hyper-active
367  U2AF1 signaling upon leukemic cell transformation and poor survival. Finally, we show that the core
368  splicing program of U2AF1-like patients can be rescued pharmacological inhibition of its implicated
369  regulator PRMT5 and implicate itstarget, IRAK4, as mediator LSC maintenance.

370 The identification of novel splicing subtypes has additiona important implications for the
371  understanding of complex diseases, such as cancer. In this study, U2AF1-like and SRSF2-like splicing
372  clarifies highly specific splicing events associated with mutant versions of those proteins. Notably,
373  dternative splicing of IRAK4 was recently proven to be a therapeutic vulnerability in MDS and AML,;
374  however, while U2AF1-S34 expression induced IRAK4 exon-inclusion, AML without U2AF1 mutations
375  aso showed the therapy-relevant splice event 2. In both scenarios, IRAK4 exon-inclusion resulted in the
376  expression of a hypermorphic isoform that is capable of signaling in the absence of upstream receptor
377  activation *. We find that the same long isoform of IRAK4 is among the most enriched U2AF1-like
378  enriched splicing-events, repositioning IRAK4 as a therapeutic target for the U2AF1-like-defined AML
379  patient population. Importantly, the IRAK4-Long isoform is expressed at lower levelsin normal HSCs *°.
380 Given the emerging role of IRAK4 signaling in human diseases, IRAK4 inhibitors and proteolysis
381 targeting chimeric (PROTAC) small molecule degraders are being assessed in pre-clinical studies and
382  clinicd trias for hematologic malignancies and inflammatory conditions. Additionally, using splicing as
383  areadout enables the separation of patients with a similar spectrum of mutations (NMP1, TP53, FLT3-
384 ITD) or the unification of patients with diverse mutations within the same genes that have a common
385  gplicing profile (SRSF2, HNRPNK, ZRSR2, SF3B1). Differential splicing observed in both adult and
386  pediatric AMLswas highly concordant, suggesting common therapeutic vulnerabilities. The identification
387  of these new subtypes provides opportunities for identifying patients likely resistant to therapy and
388 proposes selective strategies for emerging therapeutic targeting (i.e., PRMTS5/WDR77 or IRAK4) %,
389  Application of these unsupervised computational approaches beyond leukemia and even beyond splicing
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390 (ED Fig 3c-d) is likely to shed new light on tumor heterogeneity and the pathways that underlie
391  therapeutic response.

392

393 METHODS

394

395 RNA-Sequencing. RNA-Seq of non-diseased bone marrow was performed from donors who have been
396  consented under the IRB-approved Normal Donor Repository (Cincinnati Children’s Hospital Medical
397 Center). RNA was processed from young adult healthy CD34+ bone marrow. The total RNA was
398  extracted by using mirVana miRNA Isolation Kit (Lifetech, Grand Island, NY) with total RNA extraction
399  protocol. In brief, freshly prepared cells were immediately lyzed by Lysis/Binding Buffer, treated with
400 Homogenate Additive, and followed by Acid-Phenol:Chloroform extraction according to the standard
401  protocol. The supernatant was mixed with ethanol and passed through Filter Cartridge. The bound RNA
402  was then washed and eluted. The RNA concentration was measured by Nanodrop (Thermo Scientific,
403  Wilmington, DE) and itsintegrity was determined by Bioanalyzer (Agilent, Santa Clara, CA). Sequencing
404  was performed on an Illumina HiSeq 1000 using single-end sequencing at a target depth of 20 million
405  reads per sample. The RNA-Seq data were processed using the same alignment workflow applied to the
406  primary AML samples. These data have been deposited in the Gene Expression Omnibus (GSE118944).
407

408 RNA-Seq Quantification and Variant Analysis. Primary adult AML RNA-Seq FASTQ files were
409 obtained from the Leucegene consortium (GSE67040, GSE62190, GSE49642) and re-processed using
410 STAR to hgl9, alowing for the identification of known (UCSC mRNAS) and de novo junctions for the
411 same samples. STAR was used in concert to identify predicted sequence deletions (SRSF2-8AA del).
412 TCGA tier-1 and BEAT-AML adult AML and TARGET pediatric AML RNA-Seq samples were
413  obtained from the Genome Data Commons following controlled access approval from dbGaP and
414  processed using the same alignment options. Normal donor bone marrow progenitor RNA-Seq was
415  obtained from GSE63569 *°. ENCODE knockdown raw RNA-Seq FASTQ files were obtained from the
416 ENCODE project
417  (https.//www.encodeproject.org/matrix/2ype=Experiment& status=released& assay _title=shRNA+RNA-

418  seg&assembly=hgl9&target.investigated as=RNA-+binding+protein& biosample ontology.organ slims=

419  blood). Gene expression was quantified with AltAnalyze version 2.1.1 default RPKM analysis pipeline.
420  Spliced exon-exon and exon-intron junction reads were quantified in AltAnalyze using the MultiPath-PSI
421  method in conjunction with AltAnalyze's BAM file intron quantification module (BAMtoExonBED).
422  MultiPath-PS| examines each known and novel exon-exon or known exon-intron junction in a sample and

423  computes its relative detection compared to the local background of all genomic overlapping junctions
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424 that can be directly associated with the given gene. This agorithm employs the same statistical approach
425  toidentify high confidence intron retention events but evidenced by pairs of exon-intron and intron-only
426  mapping paired-end reads, sufficiently detected at both ends of a given intron (5" and 3’). Additional
427  details can be found in the Supplemental Methods. Splicing-event annotation types (e.g., cassette-exon,
428 dternative 5 splice-site, intron retention) and domain-level functional consequences were automatically
429  supplied by AltAnalyze. Conventional gene-set enrichment analyses were performed using the GO-Elite
430  algorithmin AltAnalyze .

431

432  OncoSplice algorithm. Full details regarding methods implemented, validation and background
433  information in the full OncoSplice pipeline can be found in Supplemental Methods.

434

435 Ildentification of Cancer Genomic Variants. For the Leucegene dataset, genome variants were detected
436  using the GATK RNA-Seq analysis workflow ®* and annotated through STAR insertions/deletions %,
437  COSMIC ® and Ensembl Variant Effect Predictor ® (Fig. Slb). Oncofusions were detected with the
438  rigorous FusionCatcher pipeline ®. Additional variant and clinical annotations were obtained from the
439 TCGA and TARGET consortiums and where available from previously described Leucegene subsets or
440  from the MISTIQ database where available (initially blinded from our anaysis) ?*%%". Variant and
441 oncofusion enrichment analyses were performed using a Chi-squared test (p<0.05) aggregating variants at
442  the genelevel. Disease free and overall survival analyses were performed in R using the multivariate cox
443  proportional hazard (coxph) tests for each splicing subtype. The R packages gimnet and coxph were used
444 to test for other clinical covariates such as subtype/grade, cytogenetic abnormalities, relapse, induction
445  failure or secondary site of metastasis, while accounting for potential confounding variables such as age,
446  gender, ethnicity, smoking, drug therapy or subtype/grade. Co-occurring genomic variant or common
447  splicing events between subtypes were visualized using Circos plots with the circos package ®. Using
448 GATK pipdine, KM analyses and literature data were integrated to identify patients with common
449  mutationsin AML. Enrichment analyses were assessed using Fisher’s Exact Test p-values following FDR
450  correction. In addition, z-scores, sensitivity and specificity were also calculated for each mutation and the
451  different splicing subtypes to find any associations. Further, these analyses were extended to identifying
452  co-occurring mutation enrichments.

453

454  Human Patient Samples, Cell lines and Reagents. Patients diagnosed with MDS were obtained after
455  IRB approval by the Albert Einstein College of Medicine. The AML cell line MDS-L was provided by Dr
456  Starczynowski ** and was cultured with the addition of 10ng/ml human recombinant IL-3. THP1 were
457  purchased from the American Type Culture Collection. THP1 were cultured in RPMI-1640 medium with
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458  10% FBS and 1% penicillin—streptomycin. The THP1 IRAK4“® and MDSL IRAK4X® clones were
459  previously described *°. PRMT5 inhibitor PRT543 was obtained from Prelude Therapeutics.

460

461  NF-kB Reporter Assays. The reporter cell line- THP1-Blue (TM) NF-kB SEAP reporter (Invivogen,
462  Cat# thp-nfkb) derived from the human THP1 monocytes cell line was obtained. This assay used Heat
463  Killed Listeria Monocytogenes (HKLM), a TLR2 agonist that triggers the NF-kB pathway. THP1-Blue
464 NF-kB cells were seeded in a 96 well plate at a density of 2 x 10 cells /well for the following conditions
465 1) Celsdone control 2) HKLM aone control 3) PRT543 - 50nM 4) PRT543 - 300nM and 5) PRT543 -
466  1000nM. Following 24 hour incubations, cell supernatants were assayed with Quanti-Blue medium for
467  4-6 hours according to the manufacturer's instructions and the levels of NF-kB induced SEAP were
468  detected at 650 nM using the Fluostar Omega Microplate reader.

469

470 Cell Viability assays. Cell viahility assay was performed using Cell titer blue (Promega, Madison, WI).
471  MDS-L cells were seeded in a 96 well plate at a density of 5000 cells / well and treated with different
472 concentrations of PRT543 ranging from 50nM, 100nM to 300nM. Dosing was done starting from Day O
473  and continued on every third day. Day 7 plate receiving a total of 3 doses and Day 21 plate a total of 7
474  doses, were assessed for cell viability by the addition of cell titer blue (Promega). Fluorescence was
475  measured using the Fluostar Omega Microplate reader (BM G lab tech).

476

477  Flow cytometry analysis for Myeloid differentiation markers. MDS-L cells were seeded in a 6 well
478  plate at a density of 100,000 cells and treated with PRT543 at a concentration of 300nM. Dosing was
479  done starting at Day 0 and continued every third day (total of 7 doses). On Day 21, cells were stained with
480 Human CD11b-APC conjugate ( Thermo Fisher Scientific, Waltham, MA, USA, Catalogue No
481 CD11BO05, clone VIM12), Human CD14- Pecific blue TM ( Thermo Fisher Scientific, Catalogue No
482 MHCD1428, clone Tuk 4). Using a BD FACS LSRII instrument ( BD Biosciences, Franklin Lakes, NJ,
483  USA) datawas acquired and analyzed using Flow Jo software version 10.6.1 (BD Biosciences).

484

485  Clonogenic Progenitor assays. Primary patient MDS samples were plated in Methylcellulose ( Stem cell
486  technologies, H4435, Vancouver, CA) with PRT543 at different concentrations and control and colonies
487  were counted after 14 -17 days. This was followed by staining and processing by Flow cytometry (BD
488 FACS LSRII instrument) for Erythroid and Myeloid differentiation. Antibodies used were Human CD45
489  PE-Cy7; Human CD34 PE; Human Gly-A PerCP-Cy5.5; Human CD14 Pacific blue; Human CD71 FITC
490 and Human CD11lb APC. For THP1 and MDSL clonogenic assays, clonogenic frequencies were
491  determined by plating cell lines in Methocult H4434 (StemCell Technologies) in SmartDish meniscus-


https://doi.org/10.1101/2024.02.04.578798
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.04.578798; this version posted February 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

492  free 6-well plates (StemCell Technologies). Plates were kept in humidified chambers and colonies were
493  imaged and manually scored after 9-14 days using the STEMvision counter (StemCell Technologies).

494

495 GIEMSA staining. MDS-L cells control and PRT543 treated (3 doses) were cytospun on slides and
496  stained with Giemsa solution.

497

498 Western blot analysis. MDS-L cells control and PRT543 treated were harvested and protein lysates
499  incubated for 30 minutes with western lysis buffer, containing cocktail phosphatase inhibitors and
500 proteases. Immunoblotting was performed by LI-COR western blotting using IRAK-4 antibody to
501 demonstrate reduction of the oncogenic IRAK-4 signaling pathway and confirm a decrease in IRAK-4
502  Longisoform.

503

504  Xenografts. Animals were bred and housed in the Association for Assessment and Accreditation of
505  Laboratory Animal Care-accredited animal facility of Cincinnati Children’s Hospital Medica Center
506  (IACUC2019-0072). For the xenograft using isogenic THP1 or MDSL cells, WT or IRAK4® cells were
507 suspended in PBS and injected via tail vein into NOD.Cg-Prkdc®® [12rg™" Tg(CMV-
508 IL3,CSF2,KITLG)1Eav/MloySzJ (NSGS) mice at a dose of 2.5 x 10° cells per mouse. Moribund mice
509  were sacrificed and assessed for leukemic burden measurements. Briefly, mice were euthanized with
510 carbon dioxide following the AVMA Guidelines for the Euthanasia of Animals and BM cells were
511 immediately extracted by breaking the femurs with a mortar and pestle. BM cells were frozen in FBS with
512  10% DMSO until the time of analysis. BM was analyzed for huCD45 (BDPharmingen, Cat#555485) and
513 huCD33 (BDPharmingen, Cat#555450) expression by flow cytometry using a BD LSRFortessa (BD
514  Biosciences). For staining, 1x10° cells from each BM sample were incubated with antibodies diluted
515  1:100 in a solution of PBS, 0.2% FBS for 30 minutes on ice in the dark. Cells were washed once with
516  PBS, resuspended in PBS with 0.2% FBS, and immediately analyzed by flow cytometry.

517

518  Statistical analysis. For non-genomic analyses, differences among multiple groups were assessed by one-
519 way analysis of variance (ANOVA) followed by Tukey’'s multiple comparison posttest for al possible
520 combinations. Comparison of two group was performed using the Mann-Whitney test or the Student’s t
521  test (unpaired, two tailed) when sample size allowed. Unless otherwise specified, results are depicted as
522  the mean + standard deviation or standard error of the mean. A normal distribution of data was assessed
523  for data sets >30.

524
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544  FIGURE LEGENDS

545

546  Figure 1. Mutation-defined splicing is largely obscured in leukemia. a,b) Heatmap of top marker
547  splicing events (@) and differentialy expressed genes (b) in AML (Leucegene RNA-Seq) for a subset of
548  patients and common splicing factor mutations/fusions (n=142, traininig). ¢) Relative ability of splicing
549  versus gene expression to accurately classify AML patient genetics (n=200), based on 3-fold cross-
550 validation (SVM, one vs. rest). Columns=patients, Rows=events/genes. Delta PSI=relative difference in
551  Percent Spliced In (PSI) values. d) Heatmap of alternative splicing-patternsidentified in Leucegene RNA-
552  Seq, identified using a single-cell analysis clustering algorithm (ICGS). &) Cartoon of the OncoSplice
553  computational workflow to define new splicing subtypes and mechanisms of gene regulation from RNA-
554  Seq. These steps consist of: 1) splicing quantification, 2) unsupervised subtype discovery, 3) supervised
555  subtype identification (genetics, multi-factor splicing event correlation) and 4) RNA-regulatory splicing-
556  subtype prediction based on RBP expression, binding sites and CLIP-Seq data.

557

558  Figure 2. OncoSplice uncovers genetically heter ogenous subtypes AML. a) OncoSplice-defined AML

559  subtypes with coincident cancer genomic variants in 367 adult AML samples (yellow=subtype assigned
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560 patient) (ED Table 1). Previously-defined AML subtypes (top panel) and novel OncoSplice-defined
561  subtypes (bottom panel), annotated for RNA-Seg-detected genomic variants, oncofusions, deletions or
562  structura rearrangements (bold=splice-ICGS reported). For the top panel, final subtypes were revised
563  according to known patient genetics (Supplementary Methods — Section 7). Note that U2AF1-like and
564  SRSF2-like splicing subtypes co-occur with other splicing subtypes. b) Heatmap of concordant splicing
565  events between OncoSplice-defined subtypes. Hierarchical clustering of the percentage of overlapping
566  splicing events between al pairs of AML subtypes (regulated in the same direction) are shown
567  (black=high percentage, white=low). Clusters of samples dominated by U2AF1 (U2AF1-like or U2AF1
568  mutation), SRSF2 (SRSF2-like or SRSF2 mutation) or NPM1/FLT3-ITD are labeled (right). ¢) For major
569  OncoSplice-defined subtypes the number of differentialy-expressed genes (DEGs) and unique
570 dternative-splicing events (AS) are shown. Subtypes are grouped into those principally defined by AS
571  (left), AS and DEGs (middle) or DEGs (right). The potentially confounding effect of U2AF1-like and
572  SRSF2-like splicing events has been removed from the other subtypes. d) Splicing example: SashimiPlot
573 of CASP9 splicing in a U2AF1-like and an SRS-2-like patient sample (top). SashimiPlot lines between
574  exonsindicate junctions and numbers indicate junction-read counts. The aternative splice event resultsin
575  predicted CASP9 protein isoforms (bottom) including the pro-apoptotic long CASP9a isoform and the
576  short CASP9b isoform, which lacks the peptidase domain (ExonPlot view AltAnayze). €) Annotation of
577  the frequency of MultiPath-PS|-defined splice-event types (defined below) associated with each AML
578  subtype (denoted to the left). f) Annotation of the AltAnayze-predicted impact of splice events on protein
579  domain and protein length in each AML subtype (denoted to the left).

580

581  Figure 3. U2AF1-like splicing partially phenocopies mutation engendered splicing dysfunction. a)
582  splice-ICGS reveals broadly-deregulated splicing in the majority of AML patients. The white boxes
583 indicate 1) RNA-Seq samples with U2AF1-S34 mutations and U2AF1-like splicing and 2) samples with
584  SRSF2-P95 mutations and SRSF2-like splicing. b). Heatmap showing splicing events enriched (p-value
585  <0.05, FDR adjusted and oPS| =0.1) in adult AML with splicing factor mutations (U2AF1-S34, SRSF2-
586 P95, SF3B1, U2AF1-Q157). This supervised analysis identifies the coincidence of U2AF1-S34 and
587  SRSF2-P95 splicing events with U2AF1-like and SRSF2-like, respectively (white boxes). ¢) Venn
588  diagram displaying AML-subtype-associated splicing events (MultiPath-PSl) reveals the partial overlap
589  between broadly deregulated and mutation-associated splicing patterns (U2AF1-S34 and U2AF1-like;
590  SRSF2-P95 and SRSF2-like). d) Weblogo analysis of U2AF1 binding-site preferences at the e-3 splice-
591  site position for cassette-exon splicing events. U2AF1-S34-specific spliced cassette-exons are those not
592  aso significant in U2AF1-like, while U2AF1-like cassette-exons are the inverse. €) The number of
593  cassette exon events included and excluded for al U2AF1-S34 and all U2AF1-like events are shown for
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594  each binding site preference. f) Kaplan-Meier curves for overall surviva in patients from TCGA AML
595  (top) and TARGET AML (bottom) with associated coxph p-values (left: al splice-ICGS stringently
596 classified U2AF1-like versus al other considered AMLs. Anaysis of TCGA was restricted to
597  cytogenetically normal AMLs with no RNA binding protein (RBP) mutations and under 60 years of age.
598 ) Distribution of AML cell-line aggregate CRISPR-screen scores (CSS) of 287 genes corresponding to
599  U2AF1-like splicing events (common pediatric and adult) that are significantly associated with poor
600  overal survival compared to all CSS genes. A Wilcoxon rank sum p-value (two-sided) was computed for
601 the comparison of CSS between these two groups. h,i) Select poor-survival associated splicing events in
602 U2AF1-like patients and mutation-associated splicing. Example sample SashimiPlots (h) and violin plots
603  of PSI values for al patients (i). j) Violin plot displaying the PSI distribution for previously identified
604 U2AF1-S34 or SRS-2-P95 splicing events in U2AF1- and SRSF2-like patients. in=inclusion exon,
605  ex=exclusion exon.

606

607  Figure 4. U2AF1-like splicing is mediated by PRMT5 and WDR77 expression. a) U2AF1-like
608  splicing statusin aprior relapse cohort of matched AML samples at diagnosis (blue dot) and relapse (pink
609 triangle)®™. The U2AF1-score is calculated from the aggregate of 364 poor survival-associated U2AF1-
610 like inclusion versus exclusion APSI splicing event values for each patient. Classification of AML
611  samples as U2AF1-like, SRS-2-like, or Other are based on the range of scores produced for Leucegene
612  patients assigned by splice-ICGS. Prior annotated epigenetic subtypes (eloci) are indicated (below). b)
613  U2AF1-like splicing status in AML patients from with multi-timepoint sampling in the BEAT-AML
614  RNA-Seq cohort. ¢) Heatmap of the top marker genes (MarkerFinder) distinct human hematopeoitc stem
615 and progenitor populations isolated by Fluorescence-Activated Cell Sorting (FACS) (BluePrint
616  consortium). d) U2AF1-like scores in the BluePrint RNA-Seq segregate by donor rather than cell-type. €)
617  Scatter plot comparing gene expression for 3,574 commonly differentially expressed genes between
618 U2AF1-like and SRSF2-like samples matched in the AML and healthy donor datasets (eBayes t-test
619  p<0.05 (two-sided)). Select transcription factor, splicing regulator and circadian regulators are denoted. f)
620 Top-associated U2AF1-like splicing factors, by comparing gene expression and splicing (Pearson
621  correlation). Correlation values are shown in the upper right quadrants. Scatter plots (lower left quadrants)
622 illustrate the pairwise expression value of the indicated factors. g) AML cell-line CRISPR-screen scores
623  (CSS) for RBPs associated with U2AF1-like or SRSF2-like splicing from gene expression or knockdown
624  signature analyses compared to al RBPs. h) The extent of splicing concordance (similarity index)
625  between Leucgene AML U2AF1-like splice events to RBP knockdown (KD) or over-expression (OE)
626 (n=77) in the indicated cell lines. i) Heatmap of al AML U2AF1-like significant splicing events
627  overlaping to shRNA KD of U2AF1 in K562 cells (ENCODE). j) Concordance between AML U2AF1-
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628  like splice events with cell-type and hematological malignancy specific splicing programs. k) Heatmap of
629 al AML U2AF1-like significant splicing events overlapping with PRMT5 inhibitor treated MDS-L cell
630 RNA-Seqg. |) SashimiPlot of the IRAK4 gene locus in PRMTS5 inhibitor treated and control MDS-L cell
631 RNA-Seq (prior annotated Exon 4 (denoted E6 in AltAnalyze)).

632

633  Figure 5: Treatment with PRMT5 inhibitor PRT543 via targeting of IRAK4 leads to increased
634 myeoid differentiation and impaired MDS/AML progenitor cell function. a) Western blot of IRAK4-
635 L (longisoform) in MDSL cells following 72 hours of treatment with the PRMT5 inhibitor (PRT543) at
636  30nM, 100nM and 300nM. b) NF-kB reporter activity in THP1-Blue NF-kB cells with increasing doses
637  of the PRMTS5 inhibitor (PRT543). ¢) Cell viability in MDSL cells with increasing concentrations of
638 PRT543 50nM, 100nM and 300nM as compared to control. d) MDSL were treated with PRT543 300nM
639 every 72 hours as compared to control and myeloid differentiation assessed on days 21. Statistically
640  significant differentiation occurred in the treated cell population as compared to control at day 21 for
641 CD14 + CD11b. (N=3, P<0.01). e) Representative images of Giemsa stained MDSL cells aone and those
642  treated with PRMTS5 inhibitor (PRT543) at 300nM treatment for 72 hours. The red arrow identifies
643  evidence of differentiated myeloid cells with red arrowhead showing evidence of increased vacuolization,
644  consistent with myeloid maturation/differentiation. f-h) MDS patient samples treated with PRMT5i and
645  control for 14 days in clonogenic assays and then assessed for myeloid and erythroid differentiation by
646 FACS. i) Colony formation in isogenic WT and IRAK4“° THP1 and MDSL cell lines (two independent
647  experiments). j) Kaplan Meier survival analysis of NSGS mice (n = 5 mice/group) engrafted with WT or
648  IRAK4"C THP1 or MDSL cells (Data represent one of two independent experiments with similar trends).
649 k) Immunophenotyping of the indicated cells for CD38 and CD14 expression, respectively.

650

651 Table 1. Broad characterization of novel adult and pediatric AML subtypes. All Leucegene
652 identified splicing subtypes are shown with patient statistics for Leucegene and corresponding subtypes
653 from TCGA and TARGET RNA-Seq (splice-ICGS supervised classification). Red = novel causal variants
654  for known AML subtypes. RBP-Finder predicted regulatory RBPs are indicated for representative top
655  scoring predictions. Asterisk = previously annotated cancer-associated splicing events. Survival is
656  calculated based on the coxph test for each subtype and AML subtype associations for overall survival in
657  patients under 60 years of age compared to cytogenetically normal AMLSs. Blue = poor prognosis.
658  Subtypes without a p-value are either not associated with survival (p<0.05) or have too few samples in
659 TCGA to calculate the coxph. AML subtype associations are based on z-score enrichment.

660

661 SUPPLEMENTAL FIGURE LEGENDS
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662 ED Figure 1. In silico detect and evaluation of splicing- versus gene-expression defined molecular
663  subtypes. a) Schematic of the computational workflow to define genomic variants (GATK), oncofusions
664  (Fusion Catcher), insertions and tandem duplications (KM), small gene deletions (STAR) and variant
665  annotation (COSMIC, TCGA, EnsVarPredict, MISTIQ) in the Leucegene cohort. b) Circos plot depicting
666 the relative frequency and pairwise co-occurrence of splicing factor mutations implicated in AML and
667 MDS that were detected in RNA-Seq (Leucegene). c¢,d) Heatmap of the top marker alternative splicing
668  events (c) or differentially expressed genes (d) using the MarkerFinder algorithm for common pediatric
669  onocofusions (TARGET AML cohort). €) Heatmap of predominant splicing patterns in TARGET AML
670 RNA-Seq using the software ICGS. Colored bars indicate patients with known mutations or oncofusions
671  (below). f) Prinicipal algorithm steps in the interative splice-lCGS workflow to identify partially
672 overlapping splicing-defind molecular subtypes. g) Performance of splice-ICGS compared to well-
673  described approaches for unsupervised molecular subtype identification for bulk and single-cell
674  transcriptomics data. Performance is measured according to F-score (harmonic mean of precision and
675 recall) for each genetically defined subtype of AML evaluated in Leucegene (PSl).

676

677 ED Figure 2. Reproducible AML subtypes identified in independent adult and pediatric AML
678 cohorts. a-c) Splicing subtype predictions from splice-ICGS applied to TCGA (n=178),TARGET
679 (n=257) and BEAT-AML (n=462). RNA-Seq samples. Subtype enriched mutations and labels are derived
680  from OncoSplice (Supplemental Methods).

681

682 ED Figure 3. U2AF1-like splicing is associated with poor survival. a) Overlap (Venn diagram) of
683  significant U2AF1-like alternative splicing events from distinct adult and pediatric AML datasets. b)
684  U2AF1-like splicing status assigned to RNA-Seq data from primary pediatric AML patient bone marrow
685 samples and matched cultured AML blasts. ¢) Heatmap of AML U2AF1-CV splice events in
686  representative AML Leucegene samples compared to a panel of CCLE leukemia cell lines. d,e) Violin
687 plots of selected U2AF1-CV splicing events in  therapeutic cancer targets (d) and splicing event
688  associated with poor overall survival in TCGA and TARGET (e). Splicing events predicted to result in
689 loss of function (LOF) in SRSF2-CV (AltAnalyze and in silico translation) or genes that drop-out from
690 the AML CRISPR screen (at least hdf of cell lines), are denoted with the indicated symbols. f)
691  SashimiPlotsfor splicing evenetsin panel e.

692

693 ED Figure 4. U2AF1-like predicts overall survival in adult and pediatric AML. a) Heatmap of the
694  top 1,000 U2AF1-CV splicing events in sorted donor CD34+ progenitors (EGAD00001000745) indicates
695  separation of samples (columns) by donor splicing pattern rather than capture gate (cell-types). b)
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696  Heatmap of 12 healthy-donor bone-marrow CD34+ cell RNA-Seq splicing profiles, HOPACH clustered
697  based on the top differential 1,000 U2AF1-like AML splicing events. ¢) Heatmap of 23 healthy-donor
698  bone-marrow CD34+ cell RNA-Seq splicing profiles (GSE111085). d) Violin plots displaying the PSI
699 values for example U2AF1-like splicing events in AML (Leucegene) and healthy bone marrow
700 progenitors of the 12 healthy donors. €) Heatmap of circadian ordered Leucegene AML samples
701  according to estimated phase from the software CY CLOPS, filtered for genes with an FDR corrected
702  p<0.5, relative amplitude >0.1 and R-squared >0.1 (ordered by acrophase). Top enriched Gene Ontology
703  gene sets (GO-Elite) are shown on the left of the two circadian phase ordered gene clusters (GO-Elite
704  Fisher Exact p-vaue shown). f,g) Viaolin plots displaying the PSI distribution for U2AF1-CV splicing
705  events, previously reported to be regulated as aresult of perturbation of PRMT5/WDR77 (f) or MY C (g).
706 h) Heatmap of AML U2AF1-like significant splicing events overlapping with to shRNA of WDR77 in
707  MDA-MB-231 . i) Heatmap of individua AML cell-line CRISPR-screen scores (CSS) for RBPs
708  associated with U2AF1-like or SRSF2-like splicing from gene expression or knockdown signature
709 analyses. Red and blue labels indicate KD screen implicated RBPs whose expression is significantly
710  correlated to either U2AF1-like or SRSF2-like splicing groups, respectively. j) Kaplan-Meier curves of
711  WDR77 expression vaues 2+SD from mean in patients with AML from TCGA (top) or TARGET
712 (bottom) with associated coxph p-values. Analysis of TCGA was restricted to cytogenetically normal
713  AMLswith no RNA binding protein (RBP) mutations and under 60 years of age.

714
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