

1 **Title** Functional Analysis of the Zinc Finger Modules of the *S. cerevisiae* Splicing Factor Luc7

2

3 **Authors:** Tucker J. Carrocci¹, Samuel DeMario^{2,3}, Kevin He^{2,3}, Natalie J. Zeps¹, Cade T.

4 Harkner⁴, Guillaume Chanfreau^{2,3}, and Aaron A. Hoskins^{1,4*}

5

6 **AFFILIATIONS:**

7 ¹ Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA

8 ² Department of Chemistry and Biochemistry, University of California, Los Angeles, Los

9 Angeles, CA 90095, USA

10 ³ Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095,

11 USA

12 ⁴ Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA

13

14 *To whom correspondence should be addressed: ahoskins@wisc.edu, (608) 890-3101

15

16 **KEYWORDS:** Splicing, Spliceosome, snRNP, RNA, Luc7

17 **ABSTRACT**

18 Identification of splice sites is a critical step in pre-mRNA splicing since definition of the exon/intron
19 boundaries controls what nucleotides are incorporated into mature mRNAs. The intron boundary
20 with the upstream exon is initially identified through interactions with the U1 snRNP. This involves
21 both base pairing between the U1 snRNA and the pre-mRNA as well as snRNP proteins
22 interacting with the 5' splice site/snRNA duplex. In yeast, this duplex is buttressed by two
23 conserved protein factors, Yhc1 and Luc7. Luc7 has three human paralogs (LUC7L, LUC7L2,
24 and LUC7L3) which play roles in alternative splicing. What domains of these paralogs promote
25 splicing at particular sites is not yet clear. Here, we humanized the zinc finger domains of the
26 yeast Luc7 protein in order to understand their roles in splice site selection using reporter assays,
27 transcriptome analysis, and genetic interactions. While we were unable to determine a function
28 for the first zinc finger domain, humanization of the second zinc finger domain to mirror that found
29 in LUC7L or LUC7L2 resulted in altered usage of nonconsensus 5' splice sites. In contrast, the
30 corresponding zinc finger domain of LUC7L3 could not support yeast viability. Further,
31 humanization of Luc7 can suppress mutation of the ATPase Prp28, which is involved in U1
32 release and exchange for U6 at the 5' splice site. Our work reveals a role for the second zinc
33 finger of Luc7 in splice site selection and suggests that different zinc finger domains may have
34 different ATPase requirements for release by Prp28.

35 **INTRODUCTION**

36 Eukaryotic pre-messenger RNA (pre-mRNA) is modified to remove internal sequences
37 called introns by pre-mRNA splicing. Splicing is a highly conserved process across eukaryotes,
38 and it is carried out by the large macromolecular machine known as the spliceosome.
39 Spliceosomes are composed of five U-rich small nuclear ribonucleoprotein (snRNP) complexes
40 (U1, U2, U4, U5, U6) and dozens of auxiliary proteins (Wilkinson et al. 2020). These factors
41 assemble *de novo* on every intron through the recognition of splice sites in order to form active
42 spliceosomes and catalyze intron removal. Defects in this process often lead to aberrantly spliced
43 RNA products and can be causative for human disease (Love et al. 2023).

44 Splicing often begins with base pairing of the 5' end of the U1 snRNA to the intron 5' splice
45 site (5'ss) at the exon-intron boundary to form the spliceosome E complex (Ruby and Abelson
46 1988; Shcherbakova et al. 2013; Fica 2020). U1 remains associated with the 5'ss during
47 spliceosome assembly but must be released by the ATPase Prp28 during the pre-B to B complex
48 transition to allow for U6 snRNA pairing to the 5'ss (Staley and Guthrie 1999). The sequence of
49 the 5'ss is highly conserved in *Saccharomyces cerevisiae* (hereafter yeast) whereas human 5'ss
50 are more divergent (Spingola et al. 1999; Roca et al. 2013). In addition, human splicing often
51 requires auxiliary splicing factors to direct U1 recruitment and stabilize U1 on the pre-mRNA
52 (Matlin et al. 2005; Espinosa et al. 2022). In addition to RNA base pairing, the U1 snRNA:5'ss
53 duplex is also stabilized by protein components of the U1 snRNP. In yeast, the U1 snRNP proteins
54 Yhc1 and Luc7 flank the duplex (**Fig. 1a**). These proteins are conserved in humans; however, the
55 human homolog of Yhc1 (U1-C) is considered to be a core component of the U1 snRNP while the
56 human homologs of Luc7 are auxiliary splicing factors. Cryo-electron microscopy has revealed
57 the architecture of both isolated yeast U1 snRNP and of the spliceosome A complex (which
58 contains the U1 and U2 snRNPs) and indicated that Yhc1 and Luc7 interact with U1 snRNA:5'ss
59 duplex through their zinc finger (ZnF) domains (Li et al. 2017; Plaschka et al. 2018; Li et al. 2019).

60 Alterations in the Yhc1 and Luc7 ZnF domains have been shown to impair splicing *in vivo* and
61 can be lethal (Schwer and Shuman 2014; Agarwal et al. 2016).

62 Luc7 is highly conserved among eukaryotes, and vertebrates have three Luc7 paralogs:
63 LUC7L, LUC7L2, and LUC7L3 (Fortes et al. 1999) (**Fig. 1b**). Each paralog is proposed to control
64 a distinct subset of alternative splicing events (Daniels et al. 2021; Jourdain et al. 2021). Loss of
65 LUC7L2 has been implicated in myelodysplastic syndromes and related neoplasms and can lead
66 to changes in glycolysis and metabolic reprogramming (Daniels et al. 2021; Jourdain et al. 2021).
67 Specificities of the LUC7L paralogs for different 5'ss have been proposed to be due to differential
68 recruitment to target RNAs and/or different sequence preferences (Daniels et al. 2021; Kenny et
69 al. 2022). Understanding the molecular basis for specificity and function of the LUC7L proteins is
70 important to establish how their loss can lead to disease or changes in metabolism.

71 Here, we examine differences among human LUC7L paralogs using a yeast model
72 system. We generated yeast and human chimeric Luc7 proteins, focusing on the ZnF domains
73 (ZnF1 and ZnF2), and assayed them for differences in splicing and splice site usage. We were
74 unable to detect changes in splicing of a reporter pre-mRNA due to changes in Luc7 ZnF1. In
75 contrast, we find that humanization of yeast Luc7 ZnF2 to mirror that in human LUC7L and
76 LUC7L2 improves growth of yeast expressing splicing reporters containing non-consensus 5'ss,
77 but yeast are inviable if ZnF2 is humanized to resemble LUC7L3 ZnF2. Consistent with reporter
78 substrate data, we identify a subset of yeast transcripts that show altered processing upon
79 humanization of Luc7 *in vivo*. Finally, we show that humanized Luc7 does not bypass the
80 requirement for Prp28 in splicing but does suppress cold-sensitive (cs) phenotypes observed with
81 Prp28 mutants. Taken together, these data show that the Luc7 ZnF2 domain facilitates 5'ss
82 selection.

83

84 **RESULTS**

85 **Humanized Luc7 ZnF Proteins Support Yeast Viability Except for LUC7L3 ZnF2**

86 To investigate the human Luc7 homologs, we generated a yeast “shuffle” system to
87 introduce Luc7 mutants in yeast. We deleted the chromosomal *LUC7* gene while maintaining
88 yeast viability by expression of wild type (WT) Luc7 from a low-copy, *URA3/CEN6*-containing
89 plasmid. Plasmid expression of Luc7 had no effect on yeast viability in standard growth conditions
90 (**Fig. S1A**). To introduce human Luc7 homologs in yeast, we inserted yeast codon-optimized gene
91 fragments encoding truncations of the open reading frames of *LUC7L*, *LUC7L2*, or *LUC7L3* into
92 a low-copy, *TRP1/CEN6*-containing plasmid containing the native *LUC7* promoter and terminator
93 sequences. These truncations coded for the predicted structured regions of the proteins but did
94 not include the C-terminal RS domains. Each of the constructs also included a 3×HA epitope tag
95 at the protein C-terminus.

96 After transformation of yeast with these plasmids and subsequent 5-FOA selection, we
97 found that none of the human homologs were able to support yeast growth as the sole copy of
98 Luc7 (**Fig. S1B**). We confirmed expression of the proteins by western blotting. While each protein
99 was expressed, *LUC7L* and *LUC7L2* were less abundant than either Luc7 or *LUC7L3* (**Fig. S1C**).
100 In addition, we were unable to rescue viability when these proteins were expressed under control
101 of a strong *TDH3* promoter (OE, **Fig. S1B**). The inability of the human *LUC7L* proteins to fully
102 compensate for yeast Luc7L has also been recently reported by Chalivendra *et al* (Chalivendra
103 *et al.* 2023). Based on these results, we instead focused on targeted mutations to humanize Luc7.

104 We analyzed the cryo-EM structure of the yeast spliceosome A complex to identify Luc7
105 amino acids located within 6 Å of the U1 snRNA/5'ss duplex (**Fig. 1a, c**) (Plaschka *et al.* 2018).
106 The amino acids predominantly come from ZnF2; however, we also decided to study ZnF1 (which
107 is likely located further from the RNA duplex) since previous work showed genetic interactions
108 between ZnF1 mutations and a number of splicing factors (Agarwal *et al.* 2016). We identified the
109 corresponding amino acids in ZnF1 and ZnF2 of the human *LUC7L* paralogs based on a multiple
110 sequence alignment generated by Clustal Omega (Sievers and Higgins 2014) (**Fig. 1b**) and
111 humanized yeast Luc7 accordingly by site-directed mutagenesis of the non-conserved amino

112 acids (**Table S1**). We then expressed the humanized, C-terminally 3×HA-tagged Luc7 variants in
113 yeast on plasmids and under control of the native Luc7 promoter. We refer to mutants of ZnF1 as
114 ZnF1_L, L2, or L3 corresponding to ZnF1 from LUC7L, LUC7L2, or LUC7L3. The mutations
115 needed to humanize ZnF2 for LUC7L and LUC7L2 are identical. We refer to mutants of ZnF2 as
116 ZnF2_L/L2 or L3.

117 Luc7 chimeric proteins containing one or both ZnFs from LUC7L or LUC7L2 were viable
118 (**Fig. 2**). While a Luc7 chimera of ZnF1_L3 was also viable, a chimera containing ZnF2_L3 was
119 not even though it was well-expressed in yeast (**Fig. S1d**). ZnF2_L3 did not support viability even
120 if ZnF1 was also humanized to that from LUC7L3 or any other LUC7L paralog. From these
121 experiments we conclude that while most ZnF modules from human Luc7 homologs can support
122 yeast splicing, ZnF2_L3 is not functionally equivalent to either ZnF2 from Luc7 or LUC7L/L2.

123

124 **ZnF2 but not ZnF1 Changes 5'ss Usage of a Yeast Splicing Reporter**

125 We next used the ACT1-CUP1 reporter assay to probe how humanization of the Luc7 ZnF
126 domains influences 5'ss selection. In this assay, yeast growth in the presence of various
127 concentrations of Cu²⁺ is correlated with splicing of the reporter and mRNA production (**Fig. 3a**)
128 (Lesser and Guthrie 1993a). In the case of ZnF1, we used ACT1-CUP1 reporters with
129 substitutions from -3 to -1 on the exonic side of the 5'ss since this region is closest to the binding
130 site of ZnF1 (**Fig. 1, 3a**). The WT ACT1-CUP1 substrate normally only contains a single potential
131 base pair with the U1 snRNA within the -3 to -1 region (-1G could pair with U1 snRNA C9, **Fig.**
132 **1c**). G-1A and G-1C substitutions in the ACT1-CUP1 should therefore disrupt all pairing within
133 this region, while a U-2A or C-3A should strengthen the interaction by allowing pairing with either
134 U10 or U11. To increase sensitivity of the assay, we also incorporated mutations at the +2 (U2A)
135 or +5 (G5A) positions since substitutions at -3 to -1 have no discernible effect on the splicing of a
136 substrate with a consensus 5'ss.

137 None of the ZnF1 chimeras changed yeast tolerance to Cu²⁺ for any of the ACT1-CUP1
138 reporters harboring substitutions at -3 to -1 (**Fig. 3b, c**). No changes were observed even when
139 ZnF2 was also modified to that from LUC7L/L2 (**Fig. S2**). As expected, we also did not observe
140 changes in splicing due to ZnF1 substitutions with reporters carrying substitutions at the +1 to +6
141 positions, likely because these substitutions are located distal to the ZnF1 interaction site (**Fig.**
142 **S3**). From these results, we conclude that paralog-specific contacts of ZnF1 made by these
143 humanized Luc7 variants are unlikely to significantly influence splicing of the ACT1-CUP1 reporter
144 in this assay.

145 For studies of ZnF2, we focused on using ACT1-CUP1 reporters harboring substitutions
146 within the intronic portion of the 5'ss (+1 to +6) since ZnF2 contacts this region (**Fig. 1c**). When
147 ZnF2 was replaced by ZnF2_L/L2, we observed increased Cu²⁺ tolerance of yeast with ACT1-
148 CUP1 reporters containing substitutions at the +3 (A3U) and +5 positions (G5A, C, U) (**Fig. 3d**),
149 in agreement with contacts between Luc7 and the snRNA/5'ss duplex. Since the high levels of
150 Cu²⁺ tolerance observed with some reporters precluded analysis (*i.e.*, U4 and U6 substitutions),
151 we also carried out assays in which a second mutation was incorporated at the +2 position (U2A).
152 We were unable to find any effect of ZnF2_L/L2 with these doubly substituted reporters for
153 changes at the +4 or +6 positions (**Fig. S4**). These results suggest that a function of ZnF2 in
154 human LUC7L and LUC7L2 could be to promote splicing at weak 5'ss containing mismatches to
155 the U1 snRNA at the +3 and +5 positions of the 5'ss.

156

157 **Deletion of a Luc7/Sm Ring Interaction Decreases Usage of Nonconsensus Splice Sites**

158 We wondered if other Luc7 mutants, not confined to the ZnF domains, would also show
159 changes in splicing at +3 and +5. The Luc7 NΔ31 mutation abolishes contact between Luc7 and
160 the U1 snRNP Sm protein ring and was previously shown to impair splicing of some pre-mRNAs,
161 cause synthetic lethality with a number of other mutations, and bypass the need for Prp28

162 (Agarwal et al. 2016). Since this mutant was previously well-characterized, we carried out ACT1-
163 CUP1 assays with Luc7 NΔ31-expressing yeast.

164 Unlike the ZnF2_L/L2 substitution, Luc7 NΔ31 caused a loss of yeast tolerance to Cu²⁺
165 using reporters with multiple substitutions at the +2 to +6 positions (Figs. 3e, S4). The only
166 position that was unaffected was +1. This suggests that pairing at this position and enforcing
167 selection of the nearly invariant +1G at the 5'ss may be due to other snRNP components, likely
168 Yhc1/U1-C which makes extensive contacts with the duplex at this position (Fig. 1c) (Kondo et
169 al. 2015; Hansen et al. 2022). Surprisingly, Luc7 NΔ31 even decreased Cu²⁺ tolerance in yeast
170 with U4A and U4G substitutions which should result in increased pairing to Ψ5 in the snRNA. This
171 would seem to indicate that WT Luc7 has evolved to function preferentially on substrates
172 containing mismatches (i.e., a U) at the +4 position of the 5'ss. Interestingly, the +4 nucleotide is
173 ultimately juxtaposed with A49 in the U6 snRNA during splicing catalysis, and +4U could form a
174 canonical base pair with A49 (Kandels-Lewis and Seraphin 1993; Lesser and Guthrie 1993b).
175 Luc7 may help the snRNP to tolerate a 5'ss/U1 snRNA mismatch that ultimately increases 5'ss
176 base pairing to U6.

177

178 **Luc7 Variants Perturb Splicing of Endogenous Yeast pre-mRNAs**

179 5'ss sequences found in endogenous yeast introns are less diverse than the reporters we
180 used in the ACT1-CUP1 assays. For example, we do not believe there are any naturally-used
181 5'ss with an adenosine located at the +5 position even though we observed increased Cu²⁺
182 tolerance with the G5A reporter and ZnF2_L/L2. We first tested two endogenous transcripts,
183 *SUS1* and *RPL22B*, for changes in splicing due to Luc7 ZnF2_L/L2 or Luc7 NΔ31. We chose
184 these transcripts because changes in *SUS1* splicing had previously been reported for Luc7 NΔ31
185 (Agarwal et al. 2016) and *RPL22B* has a cryptic, intronic 5'ss (GUUUGU) with an A3U substitution
186 relative to the consensus (Kawashima et al. 2014). Since the splicing of ACT1-CUP1 reporters

187 with A3U is stimulated by Luc7 ZnF2_L/L2 (**Fig. 3d**), we wondered if the humanized protein would
188 also stimulate use of the cryptic site in *RPL22B*.

189 We analyzed splicing of *SUS1* and *RPL22B* by RT-PCR using yeast strains expressing
190 Luc7-ZnF2_L/L2 or Luc7 NΔ31. UPF1 was also deleted in these strains to block nonsense
191 mediated decay (NMD) and facilitate detection of *RPL22B* isoforms (Kawashima et al. 2014). Both
192 Luc7 variants somewhat inhibited splicing of both *SUS1* and *RPL22B* with Luc7 NΔ31 showing a
193 greater splicing defect (**Fig. S5**). We did not observe a substantial increase in use of the cryptic
194 5'ss in *RPL22B* due to Luc7 ZnF2_L/L2. However, Luc7 NΔ31 accumulated unspliced *RPL22B*
195 and had comparatively less usage of the cryptic 5'ss than either WT Luc7 or Luc7 ZnF2_L/L2.
196 This is consistent with the ACT1-CUP1 assays and with Luc7 NΔ31 inhibiting splicing of weak,
197 nonconsensus 5'ss including A3U (**Fig. 3e**).

198 To further probe the effects of the Luc7 variants on the yeast transcriptome, we used total
199 RNA-seq to analyze changes in splicing efficiency genome-wide. RNA sequencing was performed
200 in a *upf1Δ* genetic background deficient for nonsense-mediated mRNA decay (NMD). The *upf1Δ*
201 genetic background not only helps to stabilize unspliced mRNAs harboring premature termination
202 codons but also facilitates a more direct analysis of splicing efficiency without confounding effects
203 of differential isoforms stability (Sayani et al. 2008; Kawashima et al. 2014).

204 mRNA expression was globally unchanged when Luc7 ZnF2_L/L2 was expressed
205 compared to WT, as no genes showed significant differential expression (*p* value < 1e-5). The
206 Luc7 NΔ31 strain had 9 differentially expressed genes (**Fig. S6A**): *YBL059W**, *ATP5*, *IMD2*,
207 *DGR2*, *YLR366W*, *RPS22B**, *YML131W*, *HRB1**, *LYS9* (* indicates an intron-containing gene).
208 *HRB1* is interesting due to its reported role in selective export of spliced mRNAs (Hackmann et
209 al. 2014). Its modest upregulation (~1.6 fold) is likely due to the accumulation of unspliced
210 transcripts. It is worth noting that analysis of *HRB1* RNAs also showed a significant fraction of

211 unspliced reads in the control *upf1Δ* strain expressing WT Luc7 (approximately 1:1), indicative of
212 suboptimal splicing even in the presence of the WT protein.

213 To calculate splicing efficiency, we quantified reads which could be unambiguously
214 assigned as either spliced junctions or unspliced reads (*i.e.*, spanning both exonic and intronic
215 regions). For each intron annotation we first calculated the ratio of unspliced reads to spliced
216 reads. We then compared these ratios for each mutant relative to the WT control. Both Luc7-
217 ZnF2_L/L2 and Luc7 NΔ31 had a negative impact on global splicing efficiency compared to WT
218 (**Fig. 4A**). However, the effect was not universal as both mutants showed increased splicing
219 efficiency of a select few transcripts. We grouped each intron by its change in splicing efficiency
220 in each mutant compared to WT and analyzed splicing sequences for each group by generating
221 sequence logos of the 5'ss, branch points, and 3'ss (**Figs. 4A, S6B**).

222 We found that introns with increased splicing efficiency with Luc7 NΔ31 had near perfect
223 consensus 5'ss (GUAUGU). In line the ACT1-CUP1 data, introns with non-"GUAUGU" 5'ss had
224 an average of 45% more unspliced reads with Luc7 NΔ31 compared to WT (**Fig. S6C**). The 5'ss
225 sequence had surprisingly little effect with the Luc7 ZnF2_L/L2. Only one of the common, non-
226 consensus 5'ss showed a statistically significant change in splicing efficiency: introns with a
227 GUACGU 5'ss had 18% fewer unspliced reads on average (**Fig. S6C**). This is consistent with the
228 position of the ZnF2 region in contacting the U1 snRNA/5'ss duplex near the U4 position, but we
229 did not observe a similar change at U4 substitutions in our ACT1-CUP1 assays (**Figs. 3d, S4**).

230 The introns with increased splicing efficiency in both the Luc7 ZnF2_L/L2 and NΔ31-
231 expressing strains showed a strong enrichment for the consensus U at position one of the branch
232 point consensus (UACUAAC, underlined) as well as a more modest enrichment for the consensus
233 C at position 7 (UACUAACC). Interestingly, the introns with increased splicing efficiency using the
234 Luc7 ZnF2_L/L2 variant showed an enrichment for an A immediately downstream of the branch
235 point (UACUAACA). An adenine at this position would facilitate formation of an additional base

236 pair with the U2 snRNA at U2 nucleotide U33. Base pairing between the U2 snRNA and intron is
237 seen at this position in cryo-EM structures of the U2 snRNP (Plaschka et al. 2018; Zhang et al.
238 2024). This suggests that increased base pairing between U2 and the branch point may
239 compensate for the deleterious effects of the ZnF2 L/L2 variant.

240 We also found that the strain expressing Luc7 ZnF2_L/L2 was able to splice pre-mRNAs
241 of ribosomal protein genes (RPGs) protein pre-mRNAs with much higher efficiency than pre-
242 mRNAs of non-RPGs, while the strain expressing Luc7 NΔ31 showed little difference between
243 the two (**Fig. 4B**). In an attempt to explain this observation, we checked for correlations between
244 intron length and splicing efficiency as well as between the transcription start site (TSS) to 5'ss
245 distance and splicing efficiency, since introns found in RPGs are typically longer than those of
246 non-RPGs (Springola et al. 1999). While both were statistically significant with the Luc7 ZnF2_L/L2
247 mutant, neither was a better explanatory variable for splicing efficiency than ribosomal vs non-
248 ribosomal protein gene (**Figs. 4C, S6D**).

249 While splicing efficiency in the Luc7 NΔ31-expressing strain was not significantly
250 correlated with ribosomal vs non-ribosomal protein gene or intron length, it did show a significant
251 correlation with the distance from TSS to the 5'ss (**Fig. 4C**) with longer distances from the TSS
252 corresponding to generally lower splicing efficiency. Since our data (**Figs. 3e, 4**) and that by
253 Agarwal and coworkers (Agarwal et al. 2016) suggest that Luc7 NΔ31 is less able to stabilize the
254 U1 snRNA/5'ss interaction, it would seem to indicate that this becomes even worse the further
255 from the TSS and (possibly) the 5' end of the nascent transcript. We do not know exactly what
256 factors are responsible for this behavior, but Luc7 NΔ31 is synthetically lethal with deletion of the
257 nuclear cap binding complex (CBC) (Agarwal et al. 2016). It is possible that the ability of the CBC
258 to stabilize U1 on the pre-mRNA (Gornemann et al. 2005; Larson and Hoskins 2017) and
259 compensate for Luc7 NΔ31 is less effective at greater TSS to 5'ss distances. Similar RNA cap to

260 5'ss distance dependence for the function of Luc7 has been remarked upon previously with the
261 presence of Luc7 favoring selection of cap-proximal 5'ss (Puig et al. 2007).

262

263 **Luc7 ZnF2_L/L2 Alters the Requirement for Prp28 During Splicing**

264 We next assayed the Luc7 mutants for an altered requirement of the DEAD-box ATPase
265 Prp28 for U1/U6 base pairing exchange at the 5'ss during spliceosome activation (**Fig. 5A**) (Staley
266 and Guthrie 1999). It has previously been shown that Luc7 NΔ31 can completely bypass the need
267 for Prp28 activity and that the *PRP28* gene is no longer essential when Luc7 NΔ31 is present
268 (Agarwal et al. 2016). Unlike Luc7 NΔ31, Luc7 ZnF2_L/L2 does not bypass the requirement for
269 the presence of Prp28 during splicing (**Fig. 5B**). We then tested whether Luc7 ZnF2_L/L2 could
270 alter the demand for Prp28 activity using a Prp28 ATPase mutant (Prp28 R499A, a mutation in
271 DEAD-box motif Va) that is proposed to impair ATP hydrolysis and leads to a *cs* growth phenotype
272 (**Fig. 5A**). We predicted that if Luc7 ZnF2_L/L2 places increased demand on Prp28, then this
273 Luc7 mutant should exacerbate the growth defects present with Prp28 R499A. Alternatively, if
274 Luc7 ZnF2_L/L2 facilitates U1/U6 exchange by Prp28 R499A, it should result in suppression of
275 the *cs* phenotype. Luc7 ZnF2_L/L2 not only suppresses the *cs* phenotype, it surpasses Luc7
276 NΔ31 in its ability to do so (**Fig. 5C**). Together, these data demonstrate that Luc7 ZnF2_L/L2
277 alters the requirement for ATP hydrolysis by Prp28 during splicing in a way that still requires Prp28
278 presence and is distinctly different from Luc7 NΔ31. Suppression of Prp28 cold sensitivity is not
279 inconsistent with increasing splicing efficiency at non-consensus splice sites as demonstrated by
280 Luc7 ZnF2_L/L2 in the ACT1-CUP1 reporter assay (**Fig. 3**) or with endogenous 5'ss with U4C
281 substitutions relative to the consensus (**Fig. 4**).

282 **DISCUSSION**

283 In this work we studied the roles of the yeast Luc7 ZnF domains in 5'ss selection using
284 humanized variants in which the ZnF domains were mutated to resemble those found in the three
285 human Luc7 paralogs. We were not able to detect an impact of ZnF1 substitutions on splicing of

286 reporter substrates; however, substitutions in ZnF2 that mimic the corresponding domain in
287 human LUC7L and LUC7L2 proteins increased usage of nonconsensus splice sites both in
288 reporter assays and for endogenous yeast transcripts. A mutant with substitutions mimicking
289 ZnF2 of LUC7L3, which is the most sequence divergent of the human paralogs with Luc7, was
290 not viable. In contrast with the Luc7 ZnF2 variant, a Luc7 NΔ31 mutant generally decreased usage
291 of non-consensus 5'ss, including one endogenous cryptic splice site. We also noted that this
292 variant also decreased usage of reporter pre-mRNAs with increased pairing to U1 snRNA (the
293 U4A and U4G ACT1-CUP1 variants) and caused increased accumulation of unspliced transcripts
294 with longer TSS to 5'ss distances. Despite differential impacts on 5'ss usage Luc7 NΔ31 and the
295 ZnF2 variant were both able to suppress a *cs* allele of Prp28, suggesting an impact on both U1
296 binding to pre-mRNAs and its release during U1/U6 exchange. Altogether, our data reveal how
297 the Luc7 ZnF2 domain can tune 5'ss usage at multiple steps in splicing.

298 The molecular basis for human LUC7L, LUC7L2, and LUC7L3 promoting different splicing
299 outcomes in human cells is not yet understood. Recently it has been postulated that LUC7L
300 paralog specificity may arise from differences in the number of potential base pairs on either side
301 of the exon/intron junction (Kenny et al. 2022). LUC7L and LUC7L2 (which are more closely
302 related to one another than either is to LUC7L3) may promote splicing primarily at 5'ss with higher
303 levels of complementarity with U1 snRNA at the +3, +4, and +5 positions (CAG/GUAAGU) relative
304 to the -3, -2, and -1 positions (CAG/GUAAGU). These were denoted as having a “right-handed”
305 preference relative to the exon/intron junction (handedness used in this context is unrelated to
306 chirality). In contrast, Luc7L3 appeared to have preference for “left-handed” interactions with
307 higher complementarity on the “exon side” of the junction. Based on the structure of yeast splicing
308 complexes containing Luc7 (**Fig. 1b, c**), this would suggest that ZnF2 could play a role in
309 preference for right-handed 5'ss while ZnF1 could play a role in preference for left-handed sites.
310 Yeast 5'ss are much less diverse than their human counterparts with nearly all having extensive

311 complementarity on the intron side (right-handed). Luc7 may function similarly to LUC7L and
312 LUC7L2, and this may explain the lack of effect of ZnF1 changes on reporter and endogenous
313 transcript splicing. In fact, we could find only four yeast genes (~1% of all pre-mRNAs) with high
314 complementarity within the exon (-3C, -2A, -1G relative to the exon/intron boundary).

315 Our results with yeast-human Luc7 chimeras also support the notion of a divergent
316 function for LUC7L3. Yeast Luc7 proteins containing human LUC7L3 ZnF1 were viable but those
317 containing LUC7L3 ZnF2 were not, regardless of the origin of ZnF1 (**Fig. 2**). This suggests that
318 the function yeast ZnF2 cannot be compensated for by the more divergent human LUC7L3 ZnF2.
319 For human LUC7L3, this could indicate that while it may promote splicing of left-handed 5'ss, it is
320 also not able to do the same for those that are right-handed. This is in agreement with data from
321 Kenny *et al.* showing that overexpression of LUC7L3 represses splicing of right-handed 5'ss
322 (Kenny *et al.* 2022).

323 We were not able to identify a phenotype associated with replacement of yeast ZnF1 with
324 that from any of the human homologs, even when using two different substrates with mutations
325 that strengthened the left-handedness of the 5'ss (**Fig 2b, c**). We cannot conclude if this indicates
326 that ZnF1 alone is not responsible for the left-handed preference for 5'ss by LUC7L3 or if this
327 feature of the human splicing machinery cannot be recapitulated in our yeast system.
328 Nonetheless, it suggests that further work is needed to define the role of ZnF1. Work from Agarwal
329 *et al.* indicated that while yeast were viable with Luc7 containing a disrupted metal-binding site in
330 ZnF1, several of these mutants possessed a *ts* phenotype and were synthetic lethal with
331 mutations in a variety of other splicing factors (Agarwal *et al.* 2016). This indicates that ZnF1 does
332 have a function in yeast splicing, but its role may be context-dependent.

333 One of the complexities in studying U1 snRNP-associated factors *in vivo* is that splicing
334 outcomes (for example, as measured by RNA-seq) are only correlated with U1 association. For
335 splicing chemistry to occur, it is essential that U1 be released during the transition from the pre-B
336 to B complex spliceosome. This release must occur so that 5'ss interactions with the U1 snRNA

337 can be exchanged for those with the U6 snRNA. This normally requires the action of the DEAD-
338 box ATPase Prp28. Consequently, inferring changes in U1 binding from measurements of mRNA
339 production are difficult and a convolution of U1 overall binding properties (on- and off-rates), U1
340 release by Prp28, and U6 binding among likely other influences. Our work shows that while
341 substitution of ZnF2 of Luc7 can result in relatively few overall changes in the transcriptome (**Fig.**
342 **4**), it can still perturb the ATPase-dependence of U1 release. Humanization of Luc7 ZnF2 does
343 not bypass the need for Prp28 but does suppress the *cs* phenotype of a Prp28 ATPase site mutant
344 (**Fig. 5**). This suggests that human LUC7L/L2 ZnF2 facilitates U1 release by Prp28. We do not
345 know if this occurs by weakening the U1 snRNA/5'ss duplex at this stage and/or by stimulating
346 Prp28 activity. However, it does provide additional evidence that the zinc fingers play roles in both
347 recognition of the 5'ss by U1 and its release during activation. Given the conservation of these
348 factors, it is likely that this is also true in humans. Thus, understanding the function of the human
349 Luc7 homologs should consider their impact on both U1 binding and release. Given that LUC7L2
350 promotes glycolysis at the expense of oxidative phosphorylation (Jourdain et al. 2021), it is
351 tempting to speculate that different Luc7 homologs have different ATPase dependencies for the
352 U1/U6 exchange that could correlate with cellular metabolic state.

353 **MATERIALS AND METHODS**

354 *Saccharomyces cerevisiae* strains used in these studies were derived from 46α (kind gift
355 of David Brow) or a *PRP28* and *LUC7* double shuffle strain (gift of Beate Schwer) (Lesser and
356 Guthrie 1993a; Agarwal et al. 2016). The open reading frame of *LUC7* and the 500 base pairs up
357 and downstream was amplified from yeast genomic DNA and cloned into the CEN6/ARS4
358 centromeric plasmids pRS416 and pRS414. **Supplemental Tables 1 and 2** contain detailed lists
359 of strains and plasmids used. Yeast transformation and growth was carried out using standard
360 techniques and media (Amberg et al. 2005).

361 **Site-Directed Mutagenesis**

362 Point mutants were generated using inverse polymerase chain reaction (PCR) with
363 Phusion DNA polymerase (New England Biolabs) or Herculase II (Agilent). PCR was performed
364 for 16 cycles using primers with the desired nucleotides changes incorporated at or near the 5'
365 ends. Template DNA was removed by treatment with DpnI (New England Biolabs), and the PCR
366 products were subsequently 5' phosphorylated using T4 polynucleotide kinase (New England
367 Biolabs) and self-ligated by T4 DNA ligase (New England Biolabs) before being used to transform
368 Top10 competent cells (Thermo Fisher Scientific). Individual colonies were screened by Sanger
369 sequencing to identify the desired changes.

370 **Temperature Growth Assays**

371 Yeast strains were grown to mid-log phase in YPD supplemented with 0.003% w/v
372 adenine hemisulfate (YPAD) or selective media, the OD₆₀₀ was adjusted to 0.5 and equal volumes
373 were spotted onto YPAD or selective plates. Plates were incubated at the indicated temperature
374 and scored after 3 days growth at 30°C or 3 days growth at 23°C or 37°C.

375 **ACT1-CUP1 Copper Assays**

376 *ACT1-CUP1* reporters and growth assays have been described previously (Lesser and
377 Guthrie 1993a; Carrocci et al. 2017). Briefly, yeast strains expressing WT or mutant proteins and
378 *ACT1-CUP1* reporters were grown to mid-log phase in SC-LEU media to maintain selection for
379 the reporter plasmids, adjusted to $OD_{600} = 0.5$ and equal volumes were spotted onto plates
380 containing 0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2,
381 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.25, 2.5, 3.0, or 3.5 mM CuSO₄. Plates were scored after 3
382 days growth at 30°C.

383 **RT-PCR RNA Analysis**

384 Yeast were grown in YPAD media until OD_{600} reached 0.5–0.8. Cells (8 OD_{600} units) were
385 harvested by centrifugation, washed with water and total cellular RNA was isolated using a
386 MasterPure Yeast RNA Purification Kit (Lucigen) according to the vendor's instructions. DNaseI-
387 treated total RNA (4 µg) was reverse transcribed using Primescript reverse transcriptase (Takara
388 Bio) and random hexamers (Thermo Fisher Scientific). Assembled reactions were incubated at
389 30°C for 10 min, followed by 1 h at 42°C for complete extension. The RT was heat inactivated by
390 treatment at 70°C for 15 min and reactions were diluted 1:20 and used in PCR without further
391 purification. PCR reactions were carried out using Taq polymerase (New England Biolabs) and
392 contained 2.5 µM gene-specific primers that flanked the intron. One of the primers was also
393 labeled at the 5' end with Cy5 to facilitate fluorescence imaging. Products were separated using
394 2.5% (w/v) metaphor agarose (Lonza) in 1×TBE, and the gel was subsequently imaged using an
395 iBright imager (Thermo Fisher Scientific). Band intensities were quantified using ImageJ.

396 **RNA extraction and RNA Sequencing**

397 RNA was isolated as previously described (Wang et al. 2020). Briefly, strains expressing
398 either *LUC7-WT* or mutants *luc7-nΔ31* and *luc7-znf2* and with *UPF1* deleted were grown
399 overnight in YPD at 30°C. The following morning, the cultures were diluted in fresh YPD to OD_{600}
400 = 0.1 and grown at 30°C for 2 doublings; after which cells were collected and flash frozen in liquid

401 nitrogen. Total RNA was extracted using hot phenol:chloroform followed by ethanol precipitation.
402 Total RNA (40 µg) from each condition was then treated with DNaseI (Invitrogen) to remove
403 genomic DNA. Samples were ribo-depleted using the Ribocop for Yeast kit (Lexogen) and
404 libraries were prepared using the CORALL Total RNA-Seq V2 kit (Lexogen). Barcoding was
405 carried out using the UDI 12 nt Set B1 (Lexogen), and amplification was done using 15 cycles of
406 PCR. Sequencing was performed on a NovaSeq PE150 by Novogene who also carried out
407 sample demultiplexing.

408 **Read Quality Control and Mapping**

409 UMI-tools was used to extract unique molecular identifiers (UMI) from reads (Smith et al.
410 2017). Each UMI was 12 nucleotides (nt) long (--bc-pattern=NNNNNNNNNNNN). Cutadapt was
411 used for quality control and to remove adaptors and polyA sequences (Martin 2011). Terminal
412 "N"s were removed from each read. Adapters -g "T{100}" -a AGATCGGAAGAGC -A
413 AGATCGGAAGAGC -A "A{100}". A minimum overlap of 2 nt was required for each adapter and
414 a maximum of 2 errors was allowed in each adapter sequence. Bases with quality scores less
415 than 20 were removed from both ends of each read. A minimum read length of 50 nt was required.
416 Any read with more than 4 ambiguous bases (N) after filtering was removed. Reads were aligned
417 to the *Saccharomyces* genome (S288C version R64-3-1) downloaded using HISAT2 (version:
418 2.2.1) (Cherry et al. 2012; Engel et al. 2014; Kim et al. 2019). Known splice site annotations were
419 acquired from the SGD. For non-canonical splicing events a minimum intron length of 20 nt and
420 a maximum intron length of 1,000 nt was required. A penalty of 0 was set for non-canonical splice
421 site alignment. PCR duplicates were removed using umi_tools extract prior to counting.

422 **Counting of mRNAs, Spliced, and Unspliced Reads**

423 Genome annotation files were acquired from the SGD. Counting was done using
424 Rsubread featureCounts (Liao et al. 2019). Each read in a pair was counted individually and
425 multiple overlapping was allowed. DESeq2 was used to estimate differential gene expression

426 (Love et al. 2014). To count unambiguously unspliced reads, both sides of each intron were
427 counted separately, and the results were averaged. The annotation file was 1 nt outside of the
428 intron and 1 nt inside the intron; a read needed to be mapped to both positions to be counted.
429 Only non-split reads were counted, and each read in a pair was counted individually with multiple
430 overlapping allowed. To count unambiguously spliced reads, both sides of each intron were
431 counted separately, and the results were averaged. The annotated file was 5 nt outside of the
432 intron and a minimum overlap of 4 nt was required. Only split alignments were counted. In some
433 cases, alternative splice sites were counted as spliced reads; however, this was a small minority
434 of reads. Each read in a pair was counted individually and multiple overlapping was allowed. Any
435 introns with no spliced reads in any replicate were removed from further analysis. The
436 implementation can be found in the counting script (https://github.com/SamDeMario-lab/Luc7_splicing).
437

438 **Splicing Efficiency Calculations**

439 Splicing efficiency was calculated as the ratio of reads which were unambiguously
440 unspliced over unambiguously spliced for each intron. This ratio was calculated individually for
441 each replicate and the geometric mean was used as the splicing efficiency for downstream
442 analysis. We note that due to PCR biases our splicing efficiency calculations are unlikely to be
443 accurate representations of the true levels of spliced and unspliced transcripts. However, all of
444 our analysis is based around relative changes in splicing efficiency and, therefore, the biases are
445 uniform across all samples. The "Intronic reads in mutant/WT" ratio was calculated as the splicing
446 efficiency of the mutant divided by the splicing efficiency of from strains expressing WT Luc7.

447 **Data Processing and Plot Generation**

448 Data was processed and visualized in R version 4.2.2 (R Core Development Team 2022).
449 DESeq2 was used to test differential expression (Love et al. 2014). Plots were generated using
450 ggplot2 (Wickham 2016), ggforce was used to create reversed log transformed axes (Pedersen

451 2022), and ggseqlogo was used to make sequence logos (Wagih 2017). Rcolorbrewer was used
452 to select color pallets for most panels (Neuwirth 2022). Figures were arranged using gridExtra
453 (Auguie 2017). BSgenome.Scerevisiae.UCSC.sacCer3, biostrings and, biomart were used to
454 extract reference sequences from genomic coordinates (The Bioconductor Dev Team 2014; Drost
455 and Paszkowski 2017; Pagès et al. 2022). Likely branch point sequences were acquired from the
456 Ares lab Yeast Intron Database (Grate 2002). Any intron without a predicted branchpoint was
457 excluded from the branch point analysis.

458

459 **ACKNOWLEDGEMENTS**

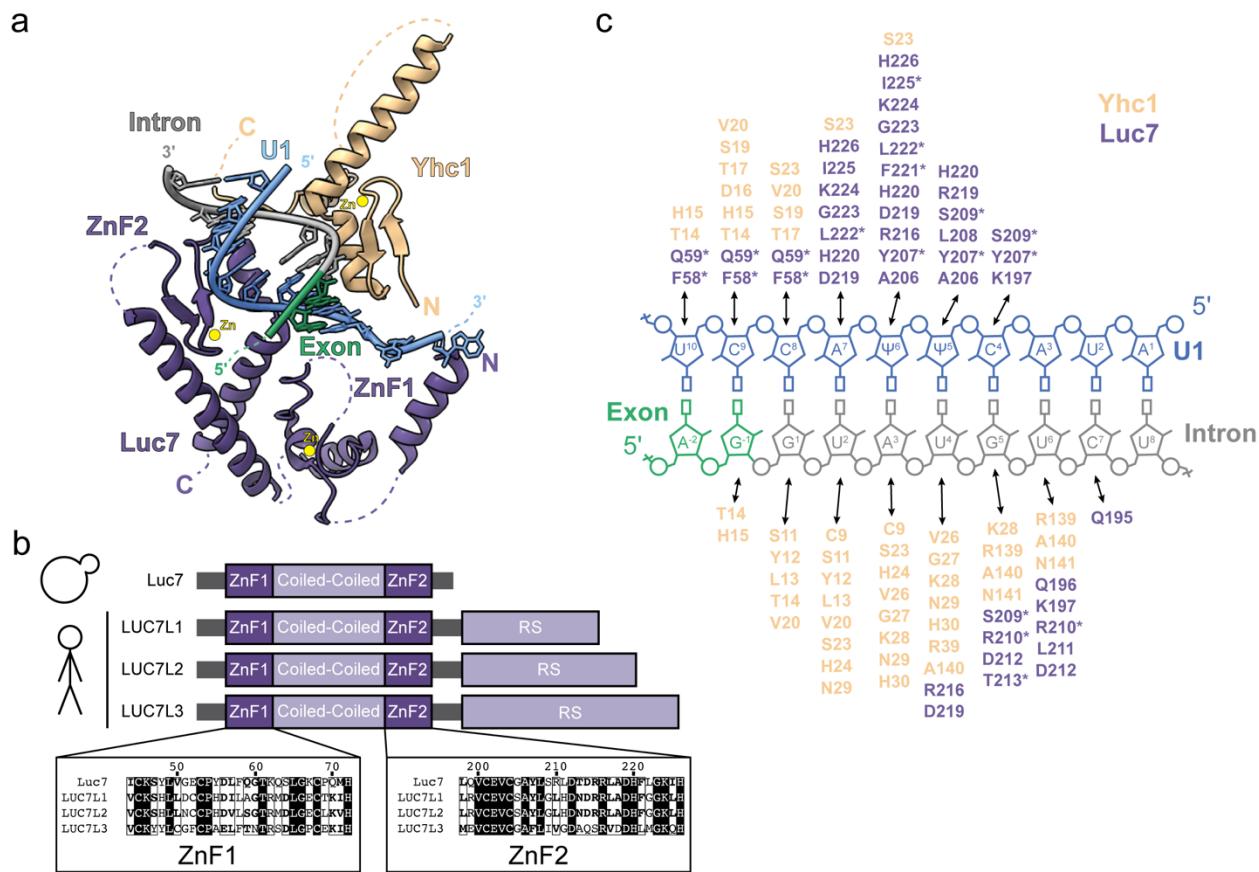
460 We thank members of the Hoskins lab for their helpful discussions. We thank Dave Brow,
461 Charles Query, and Beate Schwer for strains and plasmids used in this study.

462

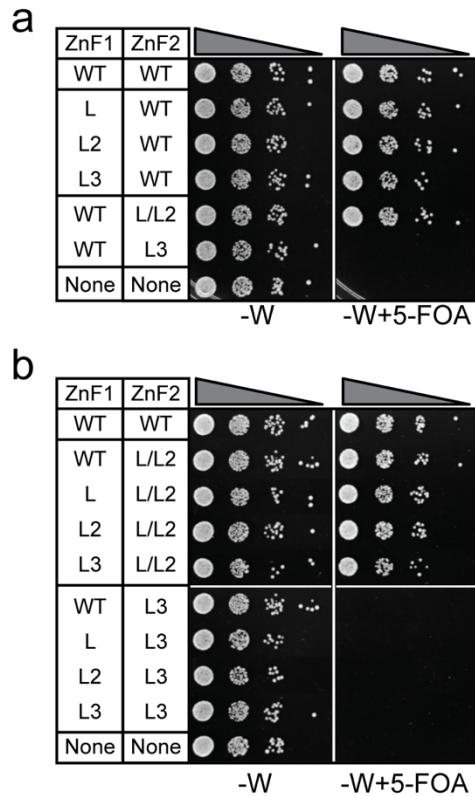
463 **FUNDING**

464 This work was supported by grants from the National Institutes of Health (R35 GM136261 to AAH
465 and GM130370 to GC) with additional support from a Research Forward grant award from the
466 Wisconsin Alumni Research Foundation.

467

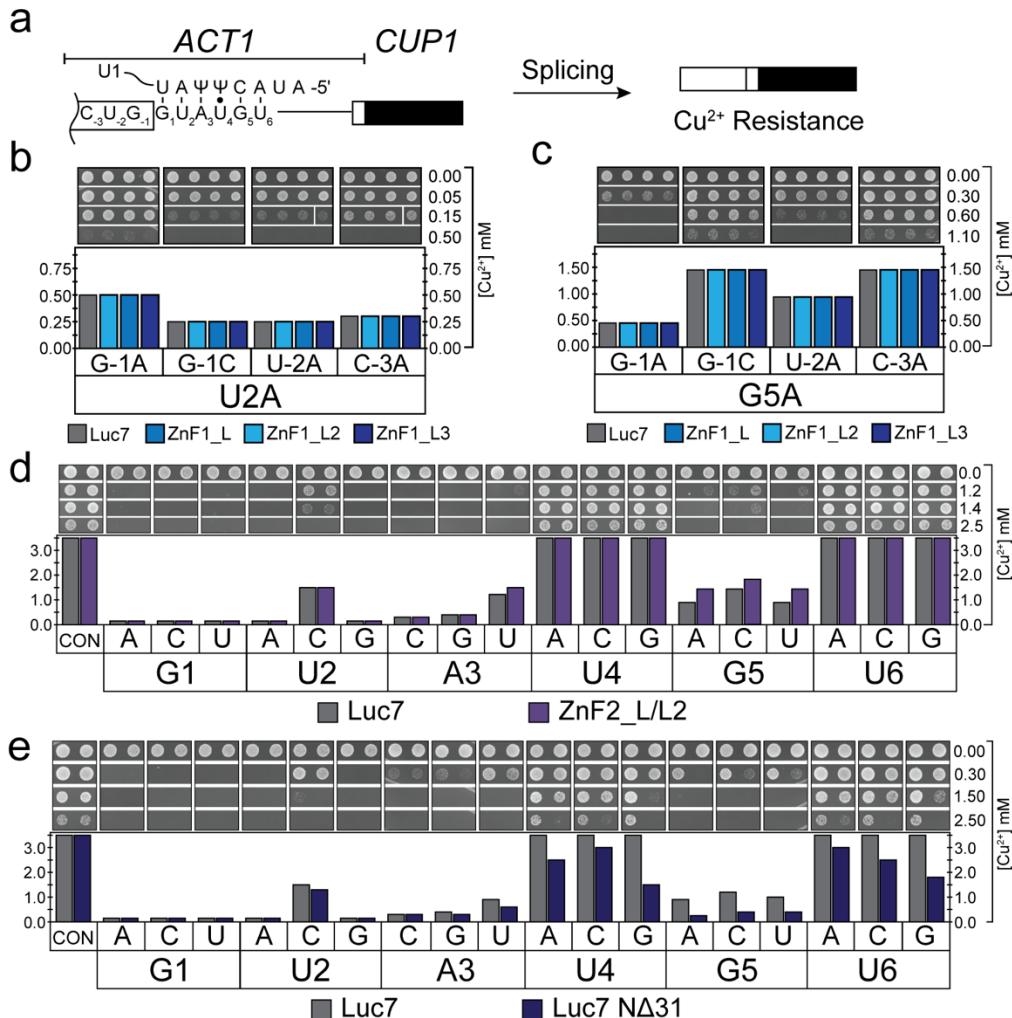

468 **COMPETING INTERESTS**

469 AAH is a member of the scientific advisory board and carrying out sponsored research for
470 Remix Therapeutics.


471

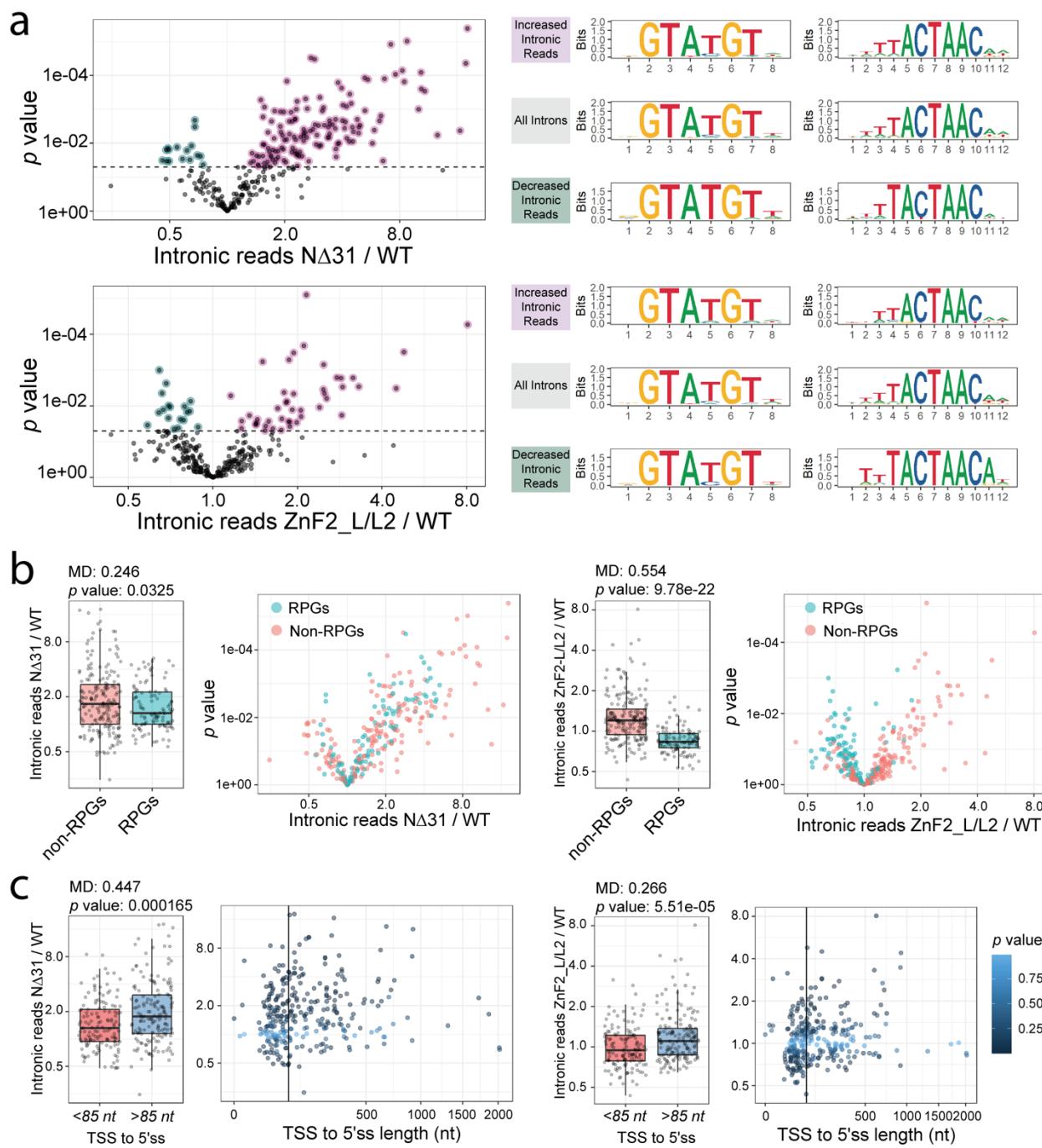
472 **DATA AND CODE AVAILABILITY**

473 All scripts used to process data as well as count tables and annotation files are available on
474 GitHub (https://github.com/SamDeMario-lab/Luc7_splicing). All data generated during this study
475 are available on the GEO at accession number (PRJNA1022512).



477 **Figure 1. The U1:5'ss duplex contacts Yhc1/U1-C and Luc7/LUC7L.** (a) U1:5'ss base pairing
478 is stabilized by the Yhc1 and Luc7 ZnF domains in the structure of the yeast pre-spliceosome
479 (PDB 6G90). Luc7 ZnF2 contacts the 5'ss duplex whereas ZnF1 lies in the direction of exon 1,
480 which are both partially unresolved. (b) Schematic showing *LUC7* and the three human paralogs.
481 A sequence alignment shows similarity of the ZnF domains. (c) Schematic showing Yhc1 (beige)
482 and Luc7 (purple) residues located within 6 Å of the U1:5'ss duplex (blue/grey). Asterisks indicate
483 residues that are not conserved between yeast and human Luc7 proteins.

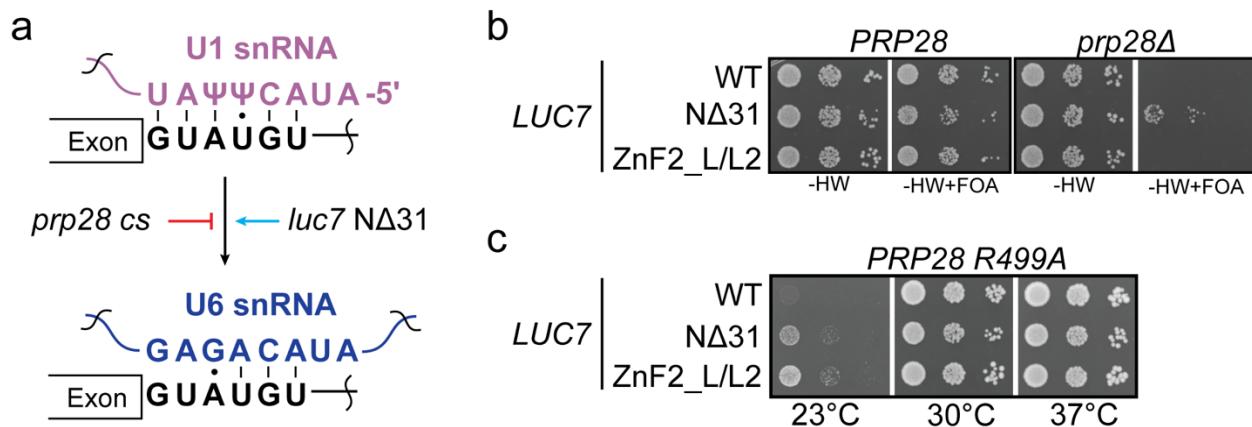
484


485 **Figure 2. Yeast are viable with humanized Luc7 ZnF1 and ZnF2.** (a) Luc7 ZnF1 mutants are
486 viable in yeast. The ZnF2_L/L2 mutant is also viable whereas ZnF2_L3 is lethal. (b) Expressing
487 Luc7 with mutations in both ZnF1 and ZnF2 does not rescue the lethality associated with
488 ZnF2_L3.

489

490 **Figure 3. Mutation of the ZnF domains of Luc7 can have specific impacts on 5'ss usage.**

491 (a) Schematic representation of the *ACT1-CUP1* reporter pre-mRNA and splicing assay. Proper
 492 processing of the splicing reporter confers resistance to Cu²⁺ in the growth media. (b) *ACT1-*
 493 *CUP1* assays using a reporter with substitutions in the 5'ss sequence U2A (GaAUGU) and the
 494 indicated changes in the exon. ZnF1 mutants have no obvious effect on splicing. (c) Same as in
 495 b but using a reporter with the 5'ss G5A (GUAUgU). (d) *ACT1-CUP1* assays using ZnF2_L/L2 to
 496 assay intronic positions of the 5'ss. Mutation of Luc7 ZnF2 improves splicing of A3U, G5C
 497 and G5U but does not affect other reporters. (e) *ACT1-CUP1* assays using the NΔ31 truncation
 498 mutant of Luc7. Shown is a representative *ACT1-CUP1* assay from three experimental replicates.



499

500 **Figure 4. Analysis of RNA-seq data from cells expressing WT, $N\Delta 31$, or $ZnF2_L/L2$ Luc7**
501 **Proteins.** (a) Plots showing changes in splicing efficiencies for each intron in Luc7 $N\Delta 31$ (Top)
502 and Luc7 $ZnF2_L/L2$ (Bottom). p values are the results of unequal variances t-tests using
503 geometric means between 3 replicates. Introns with statistically significant changes in splicing
504 efficiency were categorized into increased or decreased intronic reads in mutants over WT, p

505 value < 0.05 (dashed line). Sequence logos for 5' splice sites (middle) and branch points (right)
506 are shown for each category. **(b)** Changes in splicing efficiencies in Luc7 NΔ31 (Left) and Luc7
507 ZnF2_L/L2 (Right) vs WT for ribosomal protein genes. Cyan points indicate ribosomal protein
508 genes. Histogram *p* values are the results of unequal variances t-tests using geometric means.
509 **(c)** Plots showing transcriptional start site to 5'ss distances vs changes in splicing efficiency for
510 Luc7 NΔ31 (Left) and Luc7 ZnF2_L/L2 (Right) vs WT Luc7. Color indicates *p* values. Black vertical
511 line indicates 85 nt. (MD - Difference of geometric means)

512

513

514 **Figure 5. Luc7 ZnF2_L/L2 suppresses the cs phenotype of Prp28 R499A.** (a) Schematic
515 showing the impact of Prp28 alleles that modulate the U1 to U6 exchange during splicing.
516 Truncation of Luc7 bypasses the requirement for Prp28 in splicing and allows splicing to proceed
517 whereas Prp28 ATPase mutants inhibit this step and stall splicing. (b) Luc7 ZnF2_L/L2 does not
518 bypass the requirement for Prp28 in splicing unlike Luc7 NΔ31. (c) Luc7 ZnF2_L/L2 suppresses
519 cold sensitivity associated with Prp28 R499A.

520 **REFERENCES**

521 Agarwal R, Schwer B, Shuman S. 2016. Structure-function analysis and genetic interactions of
522 the Luc7 subunit of the *Saccharomyces cerevisiae* U1 snRNP. *RNA* **22**: 1302-1310.

523 Amberg DC, Burke D, Strathern JN. 2005. *Methods in Yeast Genetics: A Cold Spring Harbor*
524 *Laboratory Course Manual*. Cold Spring Harbor Laboratory Press, Cold Spring Harbor,
525 NY.

526 Auguie B. 2017. gridExtra: Miscellaneous Functions for "Grid" Graphics.

527 Carrocci TJ, Zoerner DM, Paulson JC, Hoskins AA. 2017. SF3b1 mutations associated with
528 myelodysplastic syndromes alter the fidelity of branchsite selection in yeast. *Nucleic*
529 *Acids Res* **45**: 4837-4852.

530 Chalivendra S, Shi S, Li X, Kuang Z, Giovinazzo J, Zhang L, Rossi J, Saviola AJ, Wang J, Welty
531 R et al. 2023. Selected humanization of yeast U1 snRNP leads to global suppression of
532 pre-mRNA splicing and mitochondrial dysfunction in the budding yeast. *bioRxiv*.
533 doi:10.1101/2023.12.15.571893.

534 Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo
535 MC, Dwight SS, Engel SR et al. 2012. *Saccharomyces Genome Database*: the
536 genomics resource of budding yeast. *Nucleic Acids Res* **40**: D700-705.

537 Daniels NJ, Hershberger CE, Gu X, Schueger C, DiPasquale WM, Brick J, Saunthararajah Y,
538 Maciejewski JP, Padgett RA. 2021. Functional analyses of human LUC7-like proteins
539 involved in splicing regulation and myeloid neoplasms. *Cell Rep* **35**: 108989.

540 Drost HG, Paszkowski J. 2017. Biomartr: genomic data retrieval with R. *Bioinformatics* **33**:
541 1216-1217.

542 Eaton SL, Roche SL, Llavero Hurtado M, Oldknow KJ, Farquharson C, Gillingwater TH, Wishart
543 TM. 2013. Total protein analysis as a reliable loading control for quantitative fluorescent
544 Western blotting. *PLoS One* **8**: e72457.

545 Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz BC,
546 Karra K, Nash RS et al. 2014. The reference genome sequence of *Saccharomyces*
547 *cerevisiae*: then and now. *G3 (Bethesda)* **4**: 389-398.

548 Espinosa S, De Bortoli F, Li X, Rossi J, Wagley ME, Lo HG, Taliaferro JM, Zhao R. 2022.
549 Human PRPF39 is an alternative splicing factor recruiting U1 snRNP to weak 5' splice
550 sites. *RNA* **29**: 97-110.

551 Fica SM. 2020. Cryo-EM snapshots of the human spliceosome reveal structural adaptions for
552 splicing regulation. *Curr Opin Struct Biol* **65**: 139-148.

553 Fortes P, Bilbao-Cortes D, Fornerod M, Rigaut G, Raymond W, Seraphin B, Mattaj IW. 1999.
554 Luc7p, a novel yeast U1 snRNP protein with a role in 5' splice site recognition. *Genes*
555 *Dev* **13**: 2425-2438.

556 Gornemann J, Kotovic KM, Hujer K, Neugebauer KM. 2005. Cotranscriptional spliceosome
557 assembly occurs in a stepwise fashion and requires the cap binding complex. *Mol Cell*
558 **19**: 53-63.

559 Grate L, Ares M. 2002. Searching Yeast Intron Data at the Areslab Website. (in *Guide to Yeast*
560 *Genetics and Molecular and Cell Biology, Part B*, C. Guthrie and G. Fink, eds) *Methods*
561 *Enz.* **350**: 380-392.

562 Hackmann A, Wu H, Schneider UM, Meyer K, Jung K, Krebber H. 2014. Quality control of
563 spliced mRNAs requires the shuttling SR proteins Gbp2 and Hrb1. *Nat Commun* **5**:
564 3123.

565 Hansen SR, White DS, Scalf M, Correa IR, Smith LM, Hoskins AA. 2022. Multi-step recognition
566 of potential 5' splice sites by the *Saccharomyces cerevisiae* U1 snRNP. *Elife* **11**.

567 Jourdain AA, Begg BE, Mick E, Shah H, Calvo SE, Skinner OS, Sharma R, Blue SM, Yeo GW,
568 Burge CB et al. 2021. Loss of LUC7L2 and U1 snRNP subunits shifts energy
569 metabolism from glycolysis to OXPHOS. *Mol Cell* **81**: 1905-1919 e1912.

570 Kandels-Lewis S, Seraphin B. 1993. Involvement of U6 snRNA in 5' splice site selection.
571 *Science* **262**: 2035-2039.

572 Kawashima T, Douglass S, Gabunilas J, Pellegrini M, Chanfreau GF. 2014. Widespread use of
573 non-productive alternative splice sites in *Saccharomyces cerevisiae*. *PLoS Genet* **10**:
574 e1004249.

575 Kenny CJ, McGurk MP, Burge CB. 2022. Human LUC7 proteins impact splicing of two major
576 subclasses of 5' splice sites. *Biorxiv*. doi:10.1101/2022.12.07.519539.

577 Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and
578 genotyping with HISAT2 and HISAT-genotype. *Nat Biotechnol* **37**: 907-915.

579 Kondo Y, Oubridge C, van Roon AM, Nagai K. 2015. Crystal structure of human U1 snRNP, a
580 small nuclear ribonucleoprotein particle, reveals the mechanism of 5' splice site
581 recognition. *Elife* **4**.

582 Larson JD, Hoskins AA. 2017. Dynamics and consequences of spliceosome E complex
583 formation. *Elife* **6**.

584 Lesser CF, Guthrie C. 1993a. Mutational analysis of pre-mRNA splicing in *Saccharomyces*
585 *cerevisiae* using a sensitive new reporter gene, CUP1. *Genetics* **133**: 851-863.

586 -. 1993b. Mutations in U6 snRNA that alter splice site specificity: implications for the active site.
587 *Science* **262**: 1982-1988.

588 Li X, Liu S, Jiang J, Zhang L, Espinosa S, Hill RC, Hansen KC, Zhou ZH, Zhao R. 2017.
589 CryoEM structure of *Saccharomyces cerevisiae* U1 snRNP offers insight into alternative
590 splicing. *Nat Commun* **8**: 1035.

591 Li X, Liu S, Zhang L, Issaian A, Hill RC, Espinosa S, Shi S, Cui Y, Kappel K, Das R et al. 2019.
592 A unified mechanism for intron and exon definition and back-splicing. *Nature* **573**: 375-
593 380.

594 Liao Y, Smyth GK, Shi W. 2019. The R package Rsubread is easier, faster, cheaper and better
595 for alignment and quantification of RNA sequencing reads. *Nucleic Acids Res* **47**: e47.

596 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for
597 RNA-seq data with DESeq2. *Genome Biol* **15**: 550.

598 Love SL, Emerson JD, Koide K, Hoskins AA. 2023. Pre-mRNA splicing-associated diseases
599 and therapies. *RNA Biol* **20**: 525-538.

600 Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads.
601 *EMBnetjournal* **17**.

602 Matlin AJ, Clark F, Smith CW. 2005. Understanding alternative splicing: towards a cellular code.
603 *Nat Rev Mol Cell Biol* **6**: 386-398.

604 Neuwirth E. 2022. RColorBrewer: ColorBrewer Palettes.

605 Pagès H, Aboyoun P, Gentleman R, DebRoy S. 2022. Biostrings: Efficient manipulation of
606 biological strings.

607 Pedersen TL. 2022. ggforce: Accelerating 'ggplot2'.

608 Plaschka C, Lin PC, Charenton C, Nagai K. 2018. Prespliceosome structure provides insights
609 into spliceosome assembly and regulation. *Nature* **559**: 419-422.

610 Puig O, Bragado-Nilsson E, Koski T, Seraphin B. 2007. The U1 snRNP-associated factor Luc7p
611 affects 5' splice site selection in yeast and human. *Nucleic Acids Res* **35**: 5874-5885.

612 R Core Development Team. 2022. R: A language and environment for statistical computing. R
613 Foundation for Statistical Computing.

614 Roca X, Krainer AR, Eperon IC. 2013. Pick one, but be quick: 5' splice sites and the problems of
615 too many choices. *Genes Dev* **27**: 129-144.

616 Ruby SW, Abelson J. 1988. An early hierachic role of U1 small nuclear ribonucleoprotein in
617 spliceosome assembly. *Science* **242**: 1028-1035.

618 Sayani S, Janis M, Lee CY, Toesca I, Chanfreau GF. 2008. Widespread impact of nonsense-
619 mediated mRNA decay on the yeast intronome. *Mol Cell* **31**: 360-370.

620 Schwer B, Shuman S. 2014. Structure-function analysis of the Yhc1 subunit of yeast U1 snRNP
621 and genetic interactions of Yhc1 with Mud2, Nam8, Mud1, Tgs1, U1 snRNA, SmD3 and
622 Prp28. *Nucleic Acids Res* **42**: 4697-4711.

623 Shcherbakova I, Hoskins AA, Friedman LJ, Serebrov V, Correa IR, Jr., Xu MQ, Gelles J, Moore
624 MJ. 2013. Alternative spliceosome assembly pathways revealed by single-molecule
625 fluorescence microscopy. *Cell Rep* **5**: 151-165.

626 Sievers F, Higgins DG. 2014. Clustal Omega, accurate alignment of very large numbers of
627 sequences. *Methods Mol Biol* **1079**: 105-116.

628 Smith T, Heger A, Sudbery I. 2017. UMI-tools: modeling sequencing errors in Unique Molecular
629 Identifiers to improve quantification accuracy. *Genome Res* **27**: 491-499.

630 Spingola M, Grate L, Haussler D, Ares M, Jr. 1999. Genome-wide bioinformatic and molecular
631 analysis of introns in *Saccharomyces cerevisiae*. *RNA* **5**: 221-234.

632 Staley JP, Guthrie C. 1999. An RNA switch at the 5' splice site requires ATP and the DEAD box
633 protein Prp28p. *Mol Cell* **3**: 55-64.

634 The Bioconductor Dev Team. 2014. BSgenome.Scerevisiae.UCSC.sacCer3: *Saccharomyces*
635 *cerevisiae* (Yeast) full genome (UCSC version sacCer3).

636 Wagih O. 2017. ggseqlogo: a versatile R package for drawing sequence logos. *Bioinformatics*
637 **33**: 3645-3647.

638 Wang C, Liu Y, DeMario SM, Mandric I, Gonzalez-Figueroa C, Chanfreau GF. 2020. Rrp6
639 Moonlights in an RNA Exosome-Independent Manner to Promote Cell Survival and
640 Gene Expression during Stress. *Cell Rep* **31**: 107754.

641 Wickham H. 2016. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag, New York.

642 Wilkinson ME, Charenton C, Nagai K. 2020. RNA Splicing by the Spliceosome. *Annu Rev
643 Biochem* **89**: 359-388.

644 Zhang X, Zhan X, Bian T, Yang F, Li P, Lu Y, Xing Z, Fan R, Zhang QC, Shi Y. 2024. Structural
645 insights into branch site proofreading by human spliceosome. *Nat Struct Mol Biol.*
646