

Transcriptional programs mediating neuronal toxicity and altered glial-neuronal signaling in a *Drosophila* knock-in tauopathy model

Running title: *Drosophila* knock-in tauopathy model

Hassan Bukhari,^{1,2} Vanitha Nithianandam,^{1,2} Rachel A. Battaglia,^{1,2} Anthony Cicalo,^{2,3,4}
Souvarish Sarkar,¹ Aram Comjean,⁵ Yanhui Hu,⁵ Matthew J. Leventhal,^{6,7} Xianjun Dong,^{2,3,4} and
Mel B. Feany^{1,2*}

¹Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston,
Massachusetts 02115

² Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase,
MD 20815

³Genomics and Bioinformatics Hub, Brigham and Women's Hospital, Boston, MA 02115

⁴Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston,
MA, 02115

⁵Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115

⁶Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
02139

⁷MIT Ph.D. Program in Computational and Systems Biology, Cambridge, MA 02139

*Correspondence should be addressed to:

Mel B. Feany, M.D., Ph.D.

Department of Pathology

Brigham and Women's Hospital,

Harvard Medical School

77 Ave Louis Pasteur, Room 630F

Boston, MA 02115

Phone: 617-525-4405

Fax: 617-525-4422

Email: mel_feany@hms.harvard.edu

1 **Abstract**

2 Missense mutations in the gene encoding the microtubule-associated protein tau cause
3 autosomal dominant forms of frontotemporal dementia. Multiple models of frontotemporal
4 dementia based on transgenic expression of human tau in experimental model organisms,
5 including *Drosophila*, have been described. These models replicate key features of the human
6 disease, but do not faithfully recreate the genetic context of the human disorder. Here we use
7 CRISPR-Cas mediated gene editing to model frontotemporal dementia caused by the tau
8 P301L mutation by creating the orthologous mutation, P251L, in the endogenous *Drosophila* tau
9 gene. Flies heterozygous or homozygous for tau P251L display age-dependent
10 neurodegeneration, metabolic defects and accumulate DNA damage in affected neurons. To
11 understand the molecular events promoting neuronal dysfunction and death in knock-in flies we
12 performed single-cell RNA sequencing on approximately 130,000 cells from brains of tau P251L
13 mutant and control flies. We found that expression of disease-associated mutant tau altered
14 gene expression cell autonomously in all neuronal cell types identified and non-cell
15 autonomously in glial cells. Cell signaling pathways, including glial-neuronal signaling, were
16 broadly dysregulated as were brain region and cell-type specific protein interaction networks
17 and gene regulatory programs. In summary, we present here a genetic model of tauopathy,
18 which faithfully recapitulates the genetic context and phenotypic features of the human disease
19 and use the results of comprehensive single cell sequencing analysis to outline pathways of
20 neurotoxicity and highlight the role of non-cell autonomous changes in glia.

21

22 **Introduction**

23 The neuronal microtubule-associated protein tau forms insoluble deposits termed neurofibrillary
24 tangles and neuritic threads in neuronal soma and processes in a diverse group of age-

25 dependent neurodegenerative diseases, including Alzheimer's disease and frontotemporal
26 dementia. These disorders have collectively been termed "tauopathies" (Feany and Dickson
27 1996; Götz et al. 2019; Goedert 2004). While wild type tau is deposited in Alzheimer's disease
28 and other more common tauopathies, missense mutations in tau occur in rarer familial forms of
29 tauopathy causing neurodegeneration and insoluble tau deposition. Autosomal dominant
30 disease-causing mutations occur throughout the tau protein but are particularly frequent in exon
31 10, which contains one of four microtubule binding repeats (Ghetti et al. 2015). These repeats
32 mediate microtubule (Lee et al. 1989; Butner and Kirschner 1991) and actin (Cabralles Fontela
33 et al. 2017) binding, and are important determinants of tau aggregation (von Bergen et al.
34 2000). Experimental models of tauopathy have been created in diverse model organisms, from
35 yeast to non-human primates, by expressing wild type or frontotemporal dementia-associated
36 mutant forms of human tau in transgenic animals. Mutant forms of tau are typically more toxic
37 than wild type tau in transgenic model organisms. Work in these models has implicated a
38 number of cellular pathways in mediating tau neurotoxicity, including mitochondrial dysfunction
39 (Rhein et al. 2009; DuBoff et al. 2012), oxidative stress (Dias-Santagata et al. 2007; Dumont et
40 al. 2011) and aberrant cell cycle reentry of postmitotic neurons (Khurana et al. 2006; Andorfer et
41 al. 2005).

42 However, while transgenic models have been useful, they do not faithfully replicate the
43 genetic underpinnings of the authentic human disorders and thus may not allow the
44 identification and study of the full complement of important mediators of tauopathy
45 pathogenesis. We have therefore used CRISPR-Cas9 gene editing to model familial
46 frontotemporal dementia caused by missense mutations in tau more precisely in *Drosophila*.
47 Mutation of proline 301 to leucine in exon 10 is the most common mutation of tau in
48 frontotemporal dementia patients (Poorkaj et al. 2001), and has been frequently modeled in
49 transgenic animals (Goedert and Jakes 2005). The overall structure and expression of tau is

50 conserved from mammals to *Drosophila* (Heidary and Fortini 2001), with proline 251 being
51 orthologous to human proline 301. We have therefore replaced *Drosophila* tau proline 251 with
52 leucine (P251L) and phenotypically analyzed the resultant homozygous and heterozygous
53 animals with age. We have additionally performed single-cell sequencing to identify cell
54 populations, networks and signaling systems altered by mutant tau expression.

55

56 **Results:**

57 **Phenotypic analysis of a *Drosophila* knock-in model of frontotemporal dementia**

58 We used CRISPR-Cas9 gene editing to recapitulate the genetic basis of human frontotemporal
59 dementia in the powerful genetic experimental organism *Drosophila* by modeling the disease-
60 causing proline 301 to leucine in fly tau. Protein sequence alignment shows that the
61 microtubule-binding domains, including human tau proline 301 are evolutionary conserved from
62 *Drosophila* to humans (Supplemental Fig. S1). The homologous residue of the human tau
63 proline 301, *Drosophila* tau proline 251, was mutated to leucine using a highly efficient guide
64 RNA along with single-stranded oligodeoxynucleotides (Fig. 1A,B). Mutant tau was expressed at
65 equivalent levels to wild type tau (Supplemental Fig. 2A).

66 Expression of frontotemporal dementia-linked forms of mutant tau, including P301L, lead
67 to age-dependent neuronal loss in patients and in transgenic models (Ghetti et al. 2015; Lewis
68 et al. 2001; Yoshiyama et al. 2007; Götz et al. 2001). We thus examined the histology of brains
69 of heterozygous (P251L / +) and homozygous (P251L) tau knock-in animals with age. We found
70 increased numbers of cortical and neuropil vacuoles in knock-in animals (Fig. 1C,D).
71 Neurodegeneration in *Drosophila* is frequently accompanied by the formation of brain vacuoles
72 (Buchanan and Benzer 1993; Wittmann et al. 2001; Ordonez et al. 2018; Heisenberg and Böhl
73 1979). Increasing numbers of vacuoles were observed with advancing age, and with two copies

74 of the P251L compared with one copy (Fig. 1C,D). Inappropriate neuronal cycle reentry is a
75 feature of human tauopathy (Husseman et al. 2000) and human tau transgenic animals
76 (Andorfer et al. 2005; Khurana et al. 2006). We stained control and tau P251L knock-in brains
77 with an antibody directed to proliferating cell nuclear antigen (PCNA) to assess cell cycle
78 activation (Khurana et al. 2006). We observed increasing cell cycle reentry with age in tau
79 P251L knock-in brains, with more cell cycle activation in homozygotes compared to
80 heterozygotes (Fig. 1E, Supplemental Fig. 2B).

81 Metabolic alterations and mitochondrial dysfunction are pervasive features of
82 neurodegenerative diseases, including tauopathies (DuBoff et al. 2013; Götz et al. 2019). We
83 thus performed metabolic analysis on intact whole fly brains using the Seahorse XFe96
84 Analyzer (Neville et al. 2018). We observed reduced basal oxygen consumption rate (OCR) and
85 a shift in mitochondrial bioenergetics to quiescent metabolic state in tau 251L knock-in animals,
86 with homozygotes showing more impairment than heterozygotes (Fig. 2A,B).

87 Oxidative stress accompanying mitochondrial dysfunction results in damage to key
88 cellular substrates, including DNA. DNA damage commonly occurs in age-related
89 neurodegenerative diseases (Welch and Tsai 2022), including tauopathies (Khurana et al. 2012;
90 Thadathil et al. 2021; Shanbhag et al. 2019). We took two approaches to examining DNA
91 damage in tau P251L knock-in animals. First, we used the comet assay, in which DNA single- or
92 double-strand breaks are demonstrated using single-cell gel electrophoresis (Khurana et al.
93 2012; Frost et al. 2014). We observed that nuclei from brains of tau P251L knock-in flies
94 displayed almost 2-fold longer comet tails than controls (Fig. 2C, arrowheads, D).

95 As a second measure of DNA damage, we immunostained for the histone variant H2Av
96 phosphorylated at serine 137 (pH2Av), a marker of DNA double-strand breaks (Madigan et al.
97 2002; Khurana et al. 2012; Frost et al. 2014). We found significantly increased numbers of

98 double-strand breaks within neurons (Fig. 2E, arrows, arrowheads, F,G). DNA double-strand
99 breaks were elevated with age and in homozygous compared to heterozygous tau P251L
100 knock-in flies (Fig. 2E-G). Increased DNA damage was assessed by counting both the numbers
101 of Kenyon cell nuclei containing pH2Av foci, and the number of Kenyon cell nuclei containing
102 more than 2 foci (Fig. 2E, arrows, G), which correlates with increased numbers of DNA double-
103 strand breaks (Laptsko et al. 2015; Hong and Choi 2013).

104

105 **Single-cell RNA sequencing reveals gene expression changes mediated by pathologic**
106 **tau**

107 Our tau P251L knock-in flies replicate important features of human tauopathies and transgenic
108 models of the disorders. We therefore performed single-cell RNA sequencing to investigate
109 transcriptional programs and cellular pathways altered by expression of mutant tau. Using an
110 optimized brain dissociation method, 10x library preparation, sequencing, and a bioinformatics
111 analysis pipeline, we implemented single-cell RNA sequencing on tau P251L knock-in and
112 control *Drosophila* brains at 10 days of age (Fig. 3A). The 10-day time point was chosen to
113 identify early perturbations related to neuronal dysfunction and degeneration (Fig. 1,2). After
114 stringent quality control 130,489 high-quality cells were retained in the final integrated dataset
115 and 29 clusters of cells were identified. We annotated 26 clusters using a published fly cell atlas
116 (Li et al. 2022). We used the most highly expressed marker genes within each cluster to identify
117 clusters. For instance, we used *dac*, *crb* and *jdp* to annotate Kenyon cells; *Yp1*, *Yp2* and *Yp3* for
118 mushroom body output neurons (MBON); *Mtna*, *CG8369* and *CG1552* for glia; *CG34355*, *Gad1*
119 and *mamo* for medullary neurons; *acj6*, *Li1* and *sosie* for T neurons (Supplemental Figs.
120 S3,S4,S5). The clustered dot plot illustrates enrichment of marker genes in annotated neuronal
121 and glial clusters (Fig. 3C, Supplemental Fig. S4C). Based on prior published analyses (Li et al.

122 2022; Croset et al. 2018; Davie et al. 2018) we further outlined major groups of cells, including
123 Kenyon cells, medullary neurons, mushroom body output neurons (MBON), astrocytes and
124 perineurial glia (Fig. 3B; Supplemental Fig. S3; Supplemental Table S1). As previously
125 observed (Davie et al. 2018), cholinergic neurons were the most common neuronal type defined
126 by neurotransmitter phenotype, followed by GABAergic and glutamatergic neurons
127 (Supplemental Fig. S3). Less abundant clusters of dopaminergic neurons were also identified
128 (Supplemental Fig. S3). In summary, our scRNA sequencing in a precisely edited *Drosophila*
129 tauopathy model, yielded 130,489 high quality cells, and identified cellular populations
130 throughout diverse brain regions and cell types, including rarer cell populations such as
131 astrocytes and perineurial glia.

132 After sample integration, quality control and cluster annotation, we performed differential
133 gene expression analysis (DEG) to identify genes modulated by precise pathologic mutation
134 modeling of tauopathy in the *Drosophila* brain. DEG analysis of all the 26 annotated clusters
135 revealed that tau P251L knock-in altered genes throughout the *Drosophila* brain, in both
136 neurons and glia (Fig. 4A, Supplemental Table S2). We found that 472 genes were upregulated
137 across all clusters in tau P251L knock-in brains, while 1145 genes were downregulated
138 (Supplemental Table S3). Interestingly, transposable elements (*FBti0020120 RR48373-transposable-element*,
139 *FBti0063007*, *FBti0019000*, *FBti0019150*, *RR50423-transposable-element*,
140 *FBti0019148*) were frequently upregulated in P251L knock-in brains (Fig. 4B),
141 consistent with findings from *Drosophila* human tau overexpression models and human
142 Alzheimer's disease brain tissue (Sun et al. 2018; Guo et al. 2018). The set of commonly
143 downregulated genes was notable for multiple ribosomal protein genes (Fig. 4C), suggesting a
144 translational defect in tauopathy. Multiple nuclear and mitochondrially encoded respiratory chain
145 subunits and other mitochondrial proteins were notably present in the commonly upregulated
146 and downregulated gene, as were genes encoding cytoskeletal and associated proteins (*Arc1*,

147 *Msp300, Ank2, unc-104, Amph, brp, alphaTub84B*). Both categories of genes fit well with known
148 mediators of tauopathy pathogenesis (DuBoff et al. 2013; Schulz et al. 2023).

149 As expected, gene enrichment analyses (Fig. 4D; Supplemental Fig. S6) highlighted
150 mitochondrial and cytoskeletal processes. In addition, diverse metabolic and neuronal function
151 pathways, including associated learning, previously associated with Alzheimer's disease and
152 related tauopathies emerged from gene ontology (GO) enrichment analyses. Interestingly,
153 enrichment analysis for human disease associated genes revealed predominantly
154 neurodegenerative disorders, including tauopathy (Fig. 4E).

155

156 **Distinct and shared region- and cell-specific transcriptional programs in tau P251L
157 knock-in brains**

158 Significant anatomic and cell type selectivity characterizes human neurodegenerative diseases,
159 including tauopathies. We therefore analyzed gene expression changes separately in
160 anatomically and functionally related groups of cells including the central body (Kenyon cells,
161 MBON and Pox neurons), optic lobe (lamina, medulla, and lobula neurons) and glia (astrocytes
162 and perineurial glia). Volcano plots in Supplemental Fig. 7A, C and F present upregulated and
163 downregulated genes in each group of cells. Interestingly, transposable element were top up-
164 regulated genes in each of the three groups. GO enrichment analyses (Supplemental Fig. 7B,D)
165 identified distinct biological processes altered by mutant tau expression in the central body
166 compared to the optic lobe. Both associative learning and cAMP metabolic process were
167 specifically identified in the central body, correlating with the importance of Kenyon cells in
168 learning and memory in flies and with the central role for cAMP underlying learning and memory
169 (Guven-Ozkan and Davis 2014; Feany and Quinn 1995). Heterochromatin organization and
170 DNA repair, both processes strongly implicated in tauopathy pathogenesis (Fig. 2) (Khurana et

171 al. 2012; Frost et al. 2014; Welch and Tsai 2022) emerged as enriched processes following
172 analysis of the central body and optic lobe separately (Supplemental Fig. 7D). Direct
173 comparison of differentially regulated genes in central body compared to optic lobe neurons
174 revealed 239 commonly regulated genes and 562 distinct genes (Supplemental Fig. 7E).
175 Consistent with analysis of the total transcriptome (Fig. 4), shared biological processes included
176 downregulation of mitochondrial genes and upregulation of axon guidance-associated genes
177 (Supplemental Fig. 6E; Supplemental Table S4).

178 Since tau is a predominantly neuronal gene (Heidary and Fortini 2001; Goedert 2004;
179 Götz et al. 2019) the observed changes in neuronal transcriptomes plausibly reflect cell-
180 autonomous effects of frontotemporal dementia associated mutant tau protein. Interestingly, our
181 single-cell approach also revealed significant changes in gene expression in glial cells in tau
182 P251L knock-in brains (Supplemental Fig. 7F,G). Expression of mutant tau may thus exert non-
183 cell autonomous control on glial transcriptional programs. Metabolic processes (Supplemental
184 Fig. 7G) were downregulated in glia in response to neuronal expression of mutant tau,
185 consistent with the importance of glial metabolism in supporting a wide array of neuronal
186 functions (Nedergaard and Verkhratsky 2012; Verkhratsky et al. 2012). Interestingly, the top two
187 GO processes identified by analysis of upregulated glial genes were associative learning and
188 regulation of neuronal remodeling, suggesting that coordinate changes in neurons and glia may
189 lead to impairment of critical neuronal functions when mutant tau is expressed by neurons.

190 We next constructed protein interaction networks to explore further the biological
191 pathways altered in tau P251L knock-in brains compared to controls. We used the solution of
192 the prize-collecting Steiner forest algorithm (Tuncbag et al. 2013) to map differentially
193 expressed genes onto a network of physical protein interactions using *Drosophila* interactome
194 data. Networks constructed from the central body, optic lobe and glial cells were substantially
195 distinct (Fig. 5), consistent with differential effects of mutant tau on different anatomic regions

196 and cell types. The electron transport chain was identified in subnetworks from both the optic
197 lobe and glia suggesting that mutant tau can influence mitochondrial function in both a cell-
198 autonomous and non-cell autonomous fashion (Figs. 2,5). Regulation of nuclear function was
199 commonly identified in both central body and optic lobe neurons, consistent with a strong
200 influence of neuronally expressed tau on chromatin structure mediated through the Linker of
201 Nucleoskeleton and Cytoskeleton (LINC) complex (Frost et al. 2014, 2016).

202 Protein catabolism was a subnetwork in both central body and glial networks. Protein
203 catabolism was connected to multiple other subnetworks in the central body network and
204 interestingly contained multiple proteins previously implicated in Alzheimer's disease, including
205 Appl (fly ortholog of APP), beta-site APP-cleaving enzyme (Bace, a fly homolog of BACE1),
206 three members of the cathepsin family (CtsB1, cathD, CtsF/CG12163), and tau itself identified
207 as a computational network-inferred node. As expected from gene ontology analysis
208 (Supplemental Fig. 7G), multiple metabolic subnetworks were identified in the glial network,
209 consistent with the role of glia in providing metabolic support to neurons (Nedergaard and
210 Verkhratsky 2012; Verkhratsky et al. 2012). A subnetwork enriched for nodes associated with
211 fatty acid metabolism was identified in the glial network (Fig. 5), correlating with the important
212 role of glia in lipid metabolism and signaling in both flies and mammalian systems (Goodman
213 and Bellen 2022; Lee et al. 2021). Detailed protein interaction networks identified in the central
214 body, optic lobe and glia are shown in Supplemental Fig. S8-S10.

215

216 **Cell-cell communication and pseudotime trajectory analyses highlight the role of glial
217 cells in tau P251L knock-in brains**

218 Altered gene expression (Supplemental Fig. 7) and protein interaction networks (Fig. 5) in glia
219 driven by neuronal-predominant expression of P251L mutant tau suggests perturbed

220 intercellular communication in P251L knock-in brains. We therefore calculated the interaction
221 scores for 196 manually curated ligand-receptor pairs using the FlyPhoneDB quantification
222 algorithm (Liu et al. 2022) in tau P251L knock-in brains and controls. We found significant
223 alterations predicted in major cellular signaling pathways (Fig. 6; Supplemental Fig. S11).
224 Altered signaling is indicated in circle plots in Fig. 6 (A,C,E,G) by nodes representing a unique
225 cell types and edges representing a communication event. The thickness of an edge reflects the
226 interaction strength of the communication event. Dot plots in Fig. 6 (B,D,F,H) display the
227 calculated score of selected ligand-receptor pairs from one cell type to another with the shading
228 of the dot indicating the interaction score and the size of the dot the P value. Many of predicted
229 signaling changes support altered communication between glia and neurons. For instance,
230 synaptic plasticity signaling, assessed by expression of the ligand spatzle and kekkon receptors,
231 was mainly driven by perineurial glia in the control brain. However, perineurial glial cells in tau
232 P251L knock-in animals had reduced expression of the ligand spatzle 5 while recipient cells
233 downregulated kekkon receptors (Fig. 6B). Similarly, expression of the JAK-STAT ligand upd2
234 was significantly downregulated in perineurial glia in tau P251L knock-in brains compared to
235 controls, while the receptor dome was reduced in expression in widespread target neuronal
236 clusters (Fig. 6D). Interestingly, there was a predicted upregulation of JAK-STAT signaling from
237 mushroom body output neurons to a restricted set of neuronal clusters in brains of flies
238 expressing P251L mutant tau (Fig. 6C). In contrast, predicted hippo signaling from mushroom
239 body output neurons to perineurial glial based on decreased levels of the ligand ds and receptor
240 fat was decreased in tau P251L knock-in brains compared to controls (Fig. 6E).

241 Astrocytic signaling also showed predicted changes in tau P251L knock-in brains
242 compared to controls. JAK-STAT signaling perineurial glia to astrocytes was reduced in mutant
243 tau expressing brains (Fig. 6C), while hippo signaling from astrocytes to multiple neuronal
244 subtypes was increased in tau P251L knock-in brains (Fig. 6E,F). TNF- α signaling from

245 astrocytes was also increased in flies expressing mutant tau, as suggested by increased levels
246 of the ligand eiger and receptor wengen (Fig. 6G,H). Altered astrocyte integrin, hedgehog and
247 insulin signaling was also suggested by changes in expression of ligand and cognate receptor
248 pairs (Supplemental Fig. S11A,D,E).

249 Given altered gene expression (Fig. 4, Supplemental Fig. 7), protein interaction networks
250 (Fig. 5) and predicted signaling (Fig. 6) in glia we next examined gene expression profiles in
251 these non-neuronal cells in more detail (Fig. 7). Transposable elements were significantly
252 upregulated in both types of glia (Fig. 7A,C; Supplemental Table S5), although one
253 transposable element was highly downregulated in both glia subsets (RR48361). Gene ontology
254 enrichment analysis highlighted different metabolic pathways in the two cell types. Amino acid
255 and glutamate metabolism pathways were enriched in perineurial glia while L-cysteine, acyl-
256 CoA and cAMP metabolic pathways were enriched in astrocytes.

257 Since we observed significant alterations in glial signaling in tau P251L knock-in brains
258 (Fig. 6; Supplemental Fig. S11) we investigated glial gene trajectories in our single-cell RNA
259 sequencing, focusing on astrocytes because we obtained a large number (nearly 5800) of these
260 cells (Supplemental Table S1). We first subclustered astrocytes into 4 groups (Fig. 7E). We then
261 calculated the entropy of these clusters (Guo et al. 2017) and used cluster 1, which showed the
262 highest entropy, as the root for trajectory analysis (Street et al. 2018). A single lineage starting
263 from cluster 1 and progressing sequentially from cluster 2 through cluster 3 and finally to cluster
264 0 emerged (Fig. 7G). We then clustered differentially expressed genes along the calculated
265 trajectory as presented in the heat map, in which pseudotime is represented in columns from left
266 to right (Fig. 7H). Our pseudotemporal analysis suggests different stages of astrocytic response
267 to tauopathy.

268 Gene ontology analysis across pseudotime revealed multiple genes involved in signaling
269 pathways (*FMRFa*, *NimB5*), particularly in cholinergic signaling (nicotinic acetylcholine receptor
270 subunit *NtR*, *mAChR-A*, *ChAT*) early in the glial trajectory. Cellular stress response emerged
271 later in the trajectory with upregulation of heat shock proteins (*Hsp68*, *Hsp70Ab*), while altered
272 mitochondrial gene expression (*mt:ND5*, *mt:CoI*) characterized astrocytes late in the calculated
273 trajectory. These findings suggest that altered astrocyte signaling (Fig. 6; Supplemental Fig.
274 S11) may emerge early in tauopathy pathogenesis and drive subsequent cell-autonomous and
275 non-cell autonomous stress responses and cytotoxicity. A complete list of all differentially
276 expressed glial genes, genes associated with gene ontology biological processes, and
277 trajectory-associated genes is provided in Supplemental Table S5.

278

279 **Gene regulatory networks in control and tau P251L knock-in Kenyon cells**

280 Kenyon cells are a major defined neuronal component of the central body of the *Drosophila*
281 brain (Fig. 4). Together with their output neurons (MBON), Kenyon cells play a central role in
282 learning and memory in the *Drosophila* brain (Heisenberg 2003; Modi et al. 2020); memory loss
283 is a key feature of human tauopathies (Grossman et al. 2023). Kenyon cells are cholinergic
284 (Barnstedt et al. 2016), a neuronal type that is selectively vulnerable in previously described fly
285 tauopathy models (Wittmann et al. 2001) and a pathway altered early in our trajectory analysis
286 (Fig. 7). Our cell-cell communication analyses suggested altered signaling in Kenyon cells, or
287 their output neurons, via multiple signaling pathways (Fig. 6; Supplemental Fig. 11). We
288 therefore focused next on gene expression in Kenyon cells. We identified three Kenyon cells
289 clusters, γ Kenyon cells, α/β Kenyon cells, and α'/β' Kenyon cells (Fig. 8A). Transposable
290 elements were upregulated in all Kenyon cell clusters in tau P251L knock-in brains
291 (Supplemental Fig. S12A,C,E), as observed in other neuronal and glial clusters (Fig. 7,

292 Supplemental Fig. 7). Analysis of biological pathways associated with common upregulated and
293 downregulated genes in all three Kenyon cell clusters identified key biological processes
294 previously linked to tauopathy pathogenesis (Götz et al. 2019; Frost et al. 2015), including
295 control of DNA and RNA structure and metabolism (Fig. 8B), as well as many pathways without
296 prior links to tauopathy. A complete list of differentially expressed genes and associated
297 biological processes is given in Supplemental Table S6.

298 Given the multiple lines of evidence connecting tauopathy pathogenesis to Kenyon cell
299 function we next determined the gene regulatory networks controlling disease-associated
300 changes in gene expression in Kenyon cells. We implemented the SCENIC (Single-Cell
301 rEgulatory Network Inference and Clustering, Aibar et al. 2017) workflow on gene expression
302 data from control and tau P251L knock-in Kenyon cells. The top 10 regulons identified in
303 control compared to tauopathy model Kenyon cells are show in columns in the heat maps in Fig.
304 8C (control Kenyon cells) and Fig. 8D (tau P251L knock-in Kenyon cells). Regulons were largely
305 distinct in the two genotypes (Fig. 8C,D; Supplemental Table S7). The only shared transcription
306 factor among the top 10 regulons was lola. Even for the shared lola regulon, the gene
307 expression patterns per cell clustered and co-expressed with different transcription factors and
308 are different among Kenyon cells of control vs. tau P251L knock-in animals. The distinct gene
309 regulatory networks illustrated in the heatmap are concordant with altered gene expression (Fig.
310 8B) and cell-cell communication (Fig. 6) between control and tau P251L knock-in Kenyon cells.
311 The increase in HSF, Stat92E and Parp expression (Supplemental Fig. 13) and regulons (Fig.
312 8D) in brains of tauopathy model flies are consistent with elevated cellular stress, DNA damage
313 and cell death in aging neurons exposed to mutant tau P251L (Figs. 1,2).

314

315 **Discussion**

316 Here we present a new model of tauopathy in the experimentally facile model organism
317 *Drosophila* based on precise gene editing of the endogenous tau gene to introduce a mutation
318 orthologous to human proline 301 to leucine (P301L), the most common tau mutation in
319 frontotemporal dementia patients (Poorkaj et al. 2001). We observe age-dependent
320 neurodegeneration in our knock-in animals (Fig. 1C,D). Homozygous knock-in flies display early
321 and greater total levels of degeneration compared to heterozygous animals. These findings are
322 compatible with a toxic gain of function mechanism, as generally posited in familial
323 frontotemporal tauopathies (Goedert et al. 2012; Frost et al. 2015; Götz et al. 2019; Bardai et al.
324 2018b). However, given the important role of microtubules in neurodevelopment, a loss of
325 function component contribution cannot be excluded, even given the lack of clear
326 neurodegeneration in tau knockout mice (Harada et al. 1994; Dawson et al. 2001; Morris et al.
327 2013) and flies (Burnouf et al. 2016). As expected given that levels of mutant tau are controlled
328 by the endogenous tau promotor in our model compared with the strong exogenous promotor
329 systems employed in prior transgenic models, neurodegeneration in knock-in animals is
330 observed at older ages and is milder (Wittmann et al. 2001; Bardai et al. 2018b; Law et al.
331 2022). However, we do observe key biochemical and cellular pathologies previously described
332 in transgenic *Drosophila* tauopathy models, including metabolic dysfunction (Fig. 2A,B),
333 elevated levels of DNA damage (Fig. 2C-G), and abnormal cell cycle activation (Fig. 1E)
334 (Khurana et al. 2012; DuBoff et al. 2012; Bardai et al. 2018a; Khurana et al. 2006). Importantly,
335 these pathways are also perturbed in mouse tauopathy models and tauopathy patients
336 (Khurana et al. 2012; Götz et al. 2019; Frost et al. 2015; Andorfer et al. 2005; DuBoff et al.
337 2013; Welch and Tsai 2022; Herrup and Arendt 2002).

338 The similarities of our knock-in model to human tauopathies and prior overexpression
339 tauopathy models, recapitulated in a more faithful genetic knock-in context, motivated us to
340 perform a comprehensive transcriptional analysis in our tau P251L knock-in brains using single-

341 cell RNA sequencing. We recovered a large number (130,489) of high-quality cells, which
342 allowed us to identify the majority of previously annotated neuronal and glial groups from prior
343 single cell sequencing analyses in the adult fly brain (Li et al. 2022; Davie et al. 2018).
344 Comparing gene expression profiles between control and tau P251L knock-in animals revealed
345 pervasive dysregulation of genes in neuronal (Figs. 4,8) and glial (Fig. 7) subtypes and
346 throughout different anatomic regions (Fig. 4, and Supplemental Fig. 6). These findings are
347 consistent with prior single cell sequencing studies in flies overexpressing mutant human tau
348 (Praschberger et al. 2023; Wu et al. 2023). We observed regulation of both common and distinct
349 biological pathways when comparing differentially expressed genes across cell subtypes.
350 Transposable elements were notably upregulated in the complete gene expression set, as well
351 as in specific anatomic regions and neuronal subtypes. These findings correlate with a
352 previously described functional role for transposable element mobilization in *Drosophila* models
353 of tauopathy, and in tauopathy patients (Sun et al. 2018; Guo et al. 2018). Mitochondrial
354 function has been strongly linked to neurotoxicity in tauopathies (Frost et al. 2015; Götz et al.
355 2019; DuBoff et al. 2013) and is a feature of our current model (Fig. 2). We accordingly
356 observed altered expression of mitochondrial genes and biological processes in the complete
357 expression data set (Fig. 4), as well as in separate analyses of the central body, optic lobe
358 (Supplemental Fig. 7), and Kenyon cells (Fig. 8, Supplementary Fig. S12). More importantly, we
359 observed significant alterations in multiple metabolic, cellular communication and biological
360 pathways not previously implicated in tauopathy pathogenesis (Figs. 4,5,6), which can now be
361 assessed in tauopathy models and patients for mechanistic relevance and ultimately therapeutic
362 targeting.

363 Cell type selectivity is a fundamental, and poorly understood, feature of human
364 neurodegenerative diseases, including tauopathies. Our protein interaction networks highlighted
365 regionally specific biology with predominantly distinct nodes appearing in the central body

366 compared to the optic lobe (Fig. 5). Comparative analysis of genes differentially expressed in
367 central body compared to the optic lobe are consistent with substantial regional differences in
368 the response to mutant tau expression with substantially greater numbers of unique compared
369 to common genes upregulated in the central body vs. the optic lobe (Supplemental Fig. 7E).
370 Even within subgroups of Kenyon cells there are equivalent numbers or more uniquely up- or
371 down-regulated genes compared to commonly regulated genes (Fig. 8B). Our dataset thus
372 highlights a substantial set of genes that may contribute to selective neuronal susceptibility in
373 neurodegeneration, including many differentially regulated genes and processes not previously
374 linked to tau pathobiology.

375 Although tau is a predominantly neuronal protein (Götz et al. 2019; Goedert 2004;
376 Heidary and Fortini 2001), we observed significant alteration of glial gene expression in tau
377 P251L knock-in brains compared to controls (Figs. 4,7), suggestive of non-cell autonomous
378 control of glia cell function by neuronally expressed tau. Gene ontology (Fig. 7A,B) and protein
379 interaction network (Fig. 5) analyses highlighted a number of metabolic processes altered in glia
380 by expression of toxic tau in neurons, including glutamate, lipid and amino acid metabolism
381 (Figs. 5,7). Glial uptake and detoxification of neurotransmitters and their metabolites, as well as
382 toxic lipid species, maintains neuronal function and viability. Lipid metabolism is further central
383 to energy production by glial cells, which support highly energy consuming neurons with active
384 synaptic transmission (Smolić et al. 2021; Jiwaji and Hardingham 2023). In addition to glial
385 processes previously implicating in controlling neuronal health, our transcriptional analysis
386 revealed new metabolic and signaling pathways in glia regulated by expression of mutant tau
387 (Fig. 7A-C), which can now be explored as non-cell autonomous mechanisms regulating
388 neuronal function and viability in tauopathy.

389 An effect of mutant tau expression in neurons on glial gene expression implies signaling,
390 and possibly perturbed signaling, between the two cell types. Examination of expression of 196

391 ligand-receptor pairs (Liu et al. 2022) indeed supported broad alterations in glial-neuronal
392 communication in tau P251L knock-in flies (Fig. 6, Supplemental Fig. S11), with mutant tau
393 expression perturbing synaptic plasticity, JAK-STAT, hippo, TNF- α , integrin and EGFR signaling
394 between perineurial cells, astrocytes and multiple neuronal subtypes. Although prior studies
395 have implicated glial signaling, for example the JAK-STAT pathway (Colodner and Feany 2010),
396 in non-cell autonomous control of neurotoxicity, the pervasive nature of the altered signaling
397 suggested by our single-cell transcriptional analyses is unexpected and provides multiple
398 targets for functional testing. Our findings further suggest that a systematic and broad
399 perturbation of intercellular signaling is present in tauopathy, which may require manipulation of
400 multiple pathways to correct and systems-level analysis to monitor.

401 Trajectory analysis has been widely used to order temporal events along developmental
402 pathways, but has less often been applied to neurodegenerative disease progression
403 (Karademir et al. 2022; Wang et al. 2022; Fitz et al. 2021; Dai et al. 2023). Given the evidence
404 for altered glial-neuronal communication in our tau knock-in model we assessed possible
405 trajectories in the four distinct subgroups of astrocytic glial cells that we defined. Using the
406 astrocyte cluster with the highest entropy as the root (Guo et al. 2017) we identified a single
407 astrocyte trajectory (Fig. 7G). Differential gene expression and gene ontology analyses across
408 the trajectory revealed altered expression of neurotransmitter and cell signaling genes first,
409 followed by altered cell stress responses, and finally mitochondrial changes (Fig. 7H,
410 Supplemental Table S5). A number of genes involved in cholinergic signaling were changed
411 early in the glial trajectory. We have previously demonstrated that cholinergic terminals are
412 preferentially vulnerable and degenerate early in a tauopathy model based on transgenic human
413 tau expression in flies (Wittmann et al. 2001). Our trajectory analysis may thus help identify
414 early events in glial-mediated neurodegeneration, including pathways not previously associated
415 with tauopathy (Supplemental Table S5). Glial pathways contributing to neurodegeneration are

416 increasingly recognized as attractive and understudied avenues for therapeutic intervention
417 (Jiwaji and Hardingham 2023). Identifying and intervening in early glial-neuronal signaling
418 events may prevent later, and possibly irreversible, neuronal damage.

419 Reversing pathological neuronal cell-autonomous programs may provide an alternative
420 or additional method of preventing neuronal dysfunction and death in tauopathies. We focused
421 on Kenyon cells as a group of neurons involved in the behaviorally relevant process of memory
422 and comprised of cholinergic neurons, a vulnerable cell type in *Drosophila* (Wittmann et al.
423 2001) and human (Ishida et al. 2015; Whitehouse et al. 1981) tauopathies to define
424 transcriptional programs driving neurodegeneration in response to mutant tau expression. As
425 expected by the multiple neuropathological and cell biological abnormalities present in our
426 knock-in model flies (Figs. 1,2), we observed substantially distinct regulons in tau P251L knock-
427 in Kenyon cells compared to controls (Fig. 8C,D). We identified regulons involved in stress
428 responses (Hsf, Stat92E), including the DNA damage response (Parp), as would be expected
429 from the presence of elevated DNA damage in Kenyon cells in our knock-in flies (Fig. 2E-G).
430 We recovered nej, the fly ortholog of vertebrate CREB-binding protein (CBP) as a top regulon
431 induced in knock-in flies. Increasing levels of nej/CBP is beneficial in fly (Cutler et al. 2015) and
432 vertebrate (Caccamo et al. 2010) models relevant to Alzheimer's disease, suggesting that
433 upregulation of nej may represent a protective response in Kenyon cells. We also identified
434 multiple regulons not previously associated with neurodegenerative tauopathies (Fig. 8C,D).
435 Therapeutic manipulation of these programs or key transcriptionally regulated mediators will be
436 attractive candidates for evaluation in patient tissue, patient derived cellular models and
437 vertebrate models of tauopathy.

438 The mechanisms transducing the effects of mutant tau on gene expression are likely
439 multiple and as yet only partially characterized. We have previously defined a cascade in which
440 cytosolic tau binds and stabilizes F-actin (Fulga et al. 2007), leading to signal transduction

441 through the LINC complex, nuclear lamin disruption (Frost et al. 2016) and consequent
442 chromatin relaxation (Frost et al. 2014) promoting aberrant transposable element activation and
443 neurodegeneration (Sun et al. 2018). Other cytosolic targets of tau may promote transcriptional
444 regulation through parallel mechanisms. For example, tau-mediated actin hyperstabilization
445 promotes mitochondrial dysfunction and excess production of oxidative free radicals by
446 interfering with mitochondrial dynamics (DuBoff et al. 2012). Oxidative stress may directly
447 contribute to elevated DNA damage in tauopathy (Bardai et al. 2018b; DuBoff et al. 2013; Götz
448 et al. 2019; Frost et al. 2016). However, although tau is best known as a cytosolic protein
449 involved in regulation of the cytoskeleton, a number of studies have demonstrated that tau can
450 also be detected in the nucleus (Loomis et al. 1990; Thurston et al. 1996; Cross et al. 2000),
451 where the protein binds DNA (Wei et al. 2008; Hua et al. 2003; Sjöberg et al. 2006; Bukar Maina
452 et al. 2016). Thus, tau may play a direct role in instructing the nuclear transcriptional programs
453 we have defined (Fig. 8C,D).

454 In summary, here we develop a genetically precise model of frontotemporal dementia
455 caused by the most common tau mutation found in patients and present a comprehensive
456 picture of gene expression changes and derived protein interaction, cell signaling and
457 transcriptional networks. We recapitulate neurodegeneration, metabolic dysfunction and DNA
458 damage, common features of human tauopathies (Goedert 2004; Götz et al. 2019; Welch and
459 Tsai 2022) and confirm that cellular pathways perturbed in overexpression tauopathy models
460 are also dysregulated in the more faithful genetic knock-in context. More importantly, our work
461 suggests previously unsuspected, pervasive alterations in glial-neuronal signaling in tauopathy
462 pathogenesis, implicates many new genes and pathways and provides a genetic model system
463 in which to test the new hypotheses our data suggests.

464

465 **Methods**

466 **Genetics and CRISPR-Cas9 editing**

467 The *Drosophila tau* gene is located on the 3rd chromosome. The guide RNAs targeting the *tau*
468 gene to mutate proline 251 to leucine were identified using Harvard Medical School's
469 DRSC/TRiP "find CRISPRs" tool. The gRNA '5' CCGGGAGGCAGGGACAAGAAGAT 3' was
470 cloned into pCDF3.1 plasmid and injected into the embryos of the TH_attP40 nos-Cas9 strain
471 along with a single-stranded oligo nucleotide donor. The single-stranded oligo nucleotide donor
472 was 150 bp in length and contained a C to T transition that resulted in alteration of the codon
473 CCG (proline) to CTG (leucine). Embryos were injected (BestGene Inc.) and founder flies
474 obtained. Founder flies were then balanced to obtain homozygous knock-in animals. The
475 mutation was confirmed by PCR. The genotype of knock-in animals in most experiments
476 (Figures 1,2C-E,4-8) was *elav-GAL4/+; tau-P251L knock-in* (homozygous or heterozygous for
477 *tau-P251L knock-in* as specified in figures and legends). In these experiments control animals
478 were *elav-GAL4/+*. In Fig. 2A,B the genotype of knock-in flies was *w¹¹¹⁸; tau-P251L knock-in /*
479 *tau-P251L knock-in* (homozygous) or *w¹¹¹⁸; tau-P251L knock-in / +* (heterozygous) as specified
480 in the figure. In Fig. 2A,B the genotype of control flies was *w¹¹¹⁸*. The *elav-GAL4* line was
481 obtained from the Bloomington *Drosophila* Stock Center. Patrik Verstreken kindly provided tau
482 knockout flies. All crosses and aging were performed at 25°C.

483

484 **Assessment of neurodegeneration and metabolism**

485 For sectioning, adult flies were fixed in formalin at 1, 10 and 30 days of age and embedded in
486 paraffin. Vacuoles, PCNA and pH2Av levels were examined using previously described
487 methodology (Fulga et al. 2007; Frost et al. 2014) with additional details provided in the
488 Supplemental Methods. Primary antibodies used include pH2Av (Rockland, 600-401-914,

489 1:100), elav (DSHB, 9F8A9, 1:5), GAPDH (Thermo Fisher, MA5-15738, 1:1000) and PCNA
490 (DAKO, MO879, 1:500). A polyclonal antibody to *Drosophila* tau was prepared in rabbits
491 immunized with full length recombinant tau protein (Thermo Fisher) and was used at
492 1:5,000,000 for western blotting. For all histological analyses, at least 6 brains were analyzed
493 per genotype and time point. The comet assay and assessment of bioenergetics were
494 performed as previously described (Frost et al. 2014; Sarkar et al. 2020) with additional details
495 provided in the Supplemental Methods. The sample size (n), mean and SEM are given in the
496 figure legends. All statistical analyses were performed using GraphPad Prism 5.0. For
497 comparisons across more than 2 groups, one-way ANOVA with Tukey post-hoc analysis was
498 used. For comparison of 2 groups Student's t-tests were performed.

499

500 **Single-cell RNA sequencing (scRNA-seq) and downstream analyses**

501 A standard sample preparation (Li et al. 2017; Davie et al. 2018), raw data processing (Satija et
502 al. 2015) and downstream analyses such as cell cluster annotation (Hu et al. 2021) gene
503 ontology analysis (Kuleshov et al. 2016), protein-protein interaction network analysis (Tuncbag
504 et al. 2016), cell-cell communication analysis (Liu et al. 2022), trajectory analysis (Street et al.
505 2018) and gene regulatory network analysis(Van de Sande et al. 2020) were performed as
506 previously described. Detailed methods are presented in the Supplemental Methods.

507

508 **Data Access**

509 All raw and processed sequencing data generated in this study have been submitted to the
510 NCBI Gene Expression Omnibus (GEO; <https://www.ncbi.nlm.nih.gov/geo/>) under accession
511 number GSE223345. R code that was used to perform Seurat-based integration, trajectory, and

512 cell-cell interaction and PPI network analyses are available at GitHub (<https://github.com/bwh-bioinformatics-hub/Single-cell-RNA-seq-of-the-CRISPR-engineered-endogenous-tauopathy-model>) and in the Supplemental Code file.

515

516 **Competing Interest Statement**

517 The authors have no competing interests.

518

519 **Acknowledgments**

520 We thank Tingting Zhao for help with bioinformatics analyses and Yi Zhong for excellent
521 technical assistance. Fly stocks obtained from the Bloomington *Drosophila* Stock Center (NIH
522 P40OD018537) were used in this study. We thank Dr. Patrik Verstreken for providing the
523 *Drosophila* tau knockout line. Monoclonal antibodies were obtained from the Developmental
524 Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the
525 University of Iowa, Department of Biology, Iowa City, IA 52242. This research was funded by
526 NIH R01AG057331 and AG076214 and Aligning Science Across Parkinson's [Grant number
527 ASAP-000301] through the Michael J. Fox Foundation for Parkinson's Research (MJFF). For
528 the purpose of open access, the author has applied a CC BY public copyright license to all
529 Author Accepted Manuscripts arising from this submission.

530

531

532 **References**

- 533 Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow
534 F, Marine J-C, Geurts P, Aerts J, et al. 2017. SCENIC: single-cell regulatory network
535 inference and clustering. *Nat Methods* **14**: 1083–1086.
- 536 Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P. 2005. Cell-cycle reentry and cell
537 death in transgenic mice expressing nonmutant human tau isoforms. *J Neurosci* **25**:
538 5446–5454.
- 539 Bardai FH, Ordóñez DG, Bailey RM, Hamm M, Lewis J, Feany MB. 2018a. Lrrk promotes tau
540 neurotoxicity through dysregulation of actin and mitochondrial dynamics. *PLoS Biol* **16**:
541 e2006265.
- 542 Bardai FH, Wang L, Mutreja Y, Yenjerla M, Gamblin TC, Feany MB. 2018b. A Conserved
543 Cytoskeletal Signaling Cascade Mediates Neurotoxicity of FTDP-17 Tau Mutations In
544 Vivo. *J Neurosci* **38**: 108–119.
- 545 Barnstedt O, Owald D, Felsenberg J, Brain R, Moszynski J-P, Talbot CB, Perrat PN, Waddell S.
546 2016. Memory-Relevant Mushroom Body Output Synapses Are Cholinergic. *Neuron* **89**:
547 1237–1247.
- 548 Buchanan RL, Benzer S. 1993. Defective glia in the Drosophila brain degeneration mutant drop-
549 dead. *Neuron* **10**: 839–850.
- 550 Bukar Maina M, Al-Hilaly YK, Serpell LC. 2016. Nuclear Tau and Its Potential Role in
551 Alzheimer's Disease. *Biomolecules* **6**: 9.
- 552 Burnouf S, Grönke S, Augustin H, Dols J, Gorsky MK, Werner J, Kerr F, Alic N, Martinez P,
553 Partridge L. 2016. Deletion of endogenous Tau proteins is not detrimental in Drosophila.
554 *Sci Rep* **6**: 23102.
- 555 Butner KA, Kirschner MW. 1991. Tau protein binds to microtubules through a flexible array of
556 distributed weak sites. *J Cell Biol* **115**: 717–730.
- 557 Cabrales Fontela Y, Kadavath H, Biernat J, Riedel D, Mandelkow E, Zweckstetter M. 2017.
558 Multivalent cross-linking of actin filaments and microtubules through the microtubule-
559 associated protein Tau. *Nat Commun* **8**: 1981.
- 560 Caccamo A, Maldonado MA, Bokov AF, Majumder S, Oddo S. 2010. CBP gene transfer
561 increases BDNF levels and ameliorates learning and memory deficits in a mouse model
562 of Alzheimer's disease. *Proc Natl Acad Sci U S A* **107**: 22687–22692.
- 563 Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma'ayan A. 2013. Enrichr:
564 interactive and collaborative HTML5 gene list enrichment analysis tool. *BMC
565 Bioinformatics* **14**: 128.

- 566 Colodner KJ, Feany MB. 2010. Glial fibrillary tangles and JAK/STAT-mediated glial and
567 neuronal cell death in a Drosophila model of glial tauopathy. *J Neurosci* **30**: 16102–
568 16113.
- 569 Croset V, Treiber CD, Waddell S. 2018. Cellular diversity in the Drosophila midbrain revealed by
570 single-cell transcriptomics. *Elife* **7**: e34550.
- 571 Cross DC, Muñoz JP, Hernández P, Maccioni RB. 2000. Nuclear and cytoplasmic tau proteins
572 from human nonneuronal cells share common structural and functional features with
573 brain tau. *J Cell Biochem* **78**: 305–317.
- 574 Cutler T, Sarkar A, Moran M, Steffensmeier A, Puli OR, Mancini G, Tare M, Gogia N, Singh A.
575 2015. Drosophila Eye Model to Study Neuroprotective Role of CREB Binding Protein
576 (CBP) in Alzheimer's Disease. *PLoS One* **10**: e0137691.
- 577 Dai DL, Li M, Lee EB. 2023. Human Alzheimer's disease reactive astrocytes exhibit a loss of
578 homeostatic gene expression. *Acta Neuropathol Commun* **11**: 127.
- 579 Davie K, Janssens J, Koldere D, De Waegeneer M, Pech U, Kreft Ł, Aibar S, Makhzami S,
580 Christiaens V, Bravo González-Blas C, et al. 2018. A Single-Cell Transcriptome Atlas of
581 the Aging Drosophila Brain. *Cell* **174**: 982-998.e20.
- 582 Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP. 2001. Inhibition of neuronal
583 maturation in primary hippocampal neurons from tau deficient mice. *J Cell Sci* **114**:
584 1179–1187.
- 585 Dias-Santagata D, Fulga TA, Duttaroy A, Feany MB. 2007. Oxidative stress mediates tau-
586 induced neurodegeneration in Drosophila. *J Clin Invest* **117**: 236–245.
- 587 DuBoff B, Feany M, Götz J. 2013. Why size matters - balancing mitochondrial dynamics in
588 Alzheimer's disease. *Trends Neurosci* **36**: 325–335.
- 589 DuBoff B, Götz J, Feany MB. 2012. Tau promotes neurodegeneration via DRP1 mislocalization
590 in vivo. *Neuron* **75**: 618–632.
- 591 Dumont M, Stack C, Elipenahli C, Jainuddin S, Gerges M, Starkova NN, Yang L, Starkov AA,
592 Beal F. 2011. Behavioral deficit, oxidative stress, and mitochondrial dysfunction precede
593 tau pathology in P301S transgenic mice. *FASEB J* **25**: 4063–4072.
- 594 Feany MB, Dickson DW. 1996. Neurodegenerative disorders with extensive tau pathology: a
595 comparative study and review. *Ann Neurol* **40**: 139–148.
- 596 Feany MB, Quinn WG. 1995. A neuropeptide gene defined by the Drosophila memory mutant
597 amnesiac. *Science* **268**: 869–873.

- 598 Fitz NF, Nam KN, Wolfe CM, Letronne F, Playso BE, Iordanova BE, Kozai TDY, Biedrzycki RJ,
599 Kagan VE, Tyurina YY, et al. 2021. Phospholipids of APOE lipoproteins activate
600 microglia in an isoform-specific manner in preclinical models of Alzheimer's disease. *Nat
601 Commun* **12**: 3416.
- 602 Frost B, Bardai FH, Feany MB. 2016. Lamin Dysfunction Mediates Neurodegeneration in
603 Tauopathies. *Curr Biol* **26**: 129–136.
- 604 Frost B, Götz J, Feany MB. 2015. Connecting the dots between tau dysfunction and
605 neurodegeneration. *Trends Cell Biol* **25**: 46–53.
- 606 Frost B, Hemberg M, Lewis J, Feany MB. 2014. Tau promotes neurodegeneration through
607 global chromatin relaxation. *Nat Neurosci* **17**: 357–366.
- 608 Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT, Feany MB. 2007.
609 Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal
610 degeneration in vivo. *Nat Cell Biol* **9**: 139–148.
- 611 Ghetti B, Oblak AL, Boeve BF, Johnson KA, Dickerson BC, Goedert M. 2015. Invited review:
612 Frontotemporal dementia caused by *microtubule-associated protein tau* gene (*MAPT*)
613 mutations: a chameleon for neuropathology and neuroimaging: *MAPT* mutations and
614 FTD. *Neuropathology and Applied Neurobiology* **41**: 24–46.
- 615 Goedert M. 2004. Tau protein and neurodegeneration. *Semin Cell Dev Biol* **15**: 45–49.
- 616 Goedert M, Ghetti B, Spillantini MG. 2012. Frontotemporal dementia: implications for
617 understanding Alzheimer disease. *Cold Spring Harb Perspect Med* **2**: a006254.
- 618 Goedert M, Jakes R. 2005. Mutations causing neurodegenerative tauopathies. *Biochim Biophys
619 Acta* **1739**: 240–250.
- 620 Goodman LD, Bellen HJ. 2022. Recent insights into the role of glia and oxidative stress in
621 Alzheimer's disease gained from Drosophila. *Curr Opin Neurobiol* **72**: 32–38.
- 622 Götz J, Chen F, Barmettler R, Nitsch RM. 2001. Tau filament formation in transgenic mice
623 expressing P301L tau. *J Biol Chem* **276**: 529–534.
- 624 Götz J, Halliday G, Nisbet RM. 2019. Molecular Pathogenesis of the Tauopathies. *Annu Rev
625 Pathol* **14**: 239–261.
- 626 Grossman M, Seeley WW, Boxer AL, Hillis AE, Knopman DS, Ljubenov PA, Miller B, Piguet O,
627 Rademakers R, Whitwell JL, et al. 2023. Frontotemporal lobar degeneration. *Nat Rev
628 Dis Primers* **9**: 40.
- 629 Guo C, Jeong H-H, Hsieh Y-C, Klein H-U, Bennett DA, De Jager PL, Liu Z, Shulman JM. 2018.
630 Tau Activates Transposable Elements in Alzheimer's Disease. *Cell Rep* **23**: 2874–2880.

- 631 Guo M, Bao EL, Wagner M, Whitsett JA, Xu Y. 2017. SLICE: determining cell differentiation and
632 lineage based on single cell entropy. *Nucleic Acids Res* **45**: e54.
- 633 Guven-Ozkan T, Davis RL. 2014. Functional neuroanatomy of *Drosophila* olfactory memory
634 formation. *Learn Mem* **21**: 519–526.
- 635 Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T, Sato-Yoshitake R, Takei Y, Noda
636 T, Hirokawa N. 1994. Altered microtubule organization in small-calibre axons of mice
637 lacking tau protein. *Nature* **369**: 488–491.
- 638 Heidary G, Fortini ME. 2001. Identification and characterization of the *Drosophila* tau homolog.
639 *Mech Dev* **108**: 171–178.
- 640 Heisenberg M. 2003. Mushroom body memoir: from maps to models. *Nat Rev Neurosci* **4**: 266–
641 275.
- 642 Heisenberg M, Böhl K. 1979. Isolation of Anatomical Brain Mutants of *Drosophila* by Histological
643 Means. *Zeitschrift für Naturforschung C* **34**: 143–147.
- 644 Herrup K, Arendt T. 2002. Re-expression of cell cycle proteins induces neuronal cell death
645 during Alzheimer's disease. *J Alzheimers Dis* **4**: 243–247.
- 646 Hong S-T, Choi K-W. 2013. TCTP directly regulates ATM activity to control genome stability and
647 organ development in *Drosophila melanogaster*. *Nat Commun* **4**: 2986.
- 648 Hua Q, He RQ, Haque N, Qu MH, del Carmen Alonso A, Grundke-Iqbali I, Iqbali K. 2003.
649 Microtubule associated protein tau binds to double-stranded but not single-stranded
650 DNA. *Cell Mol Life Sci* **60**: 413–421.
- 651 Husseman JW, Nochlin D, Vincent I. 2000. Mitotic activation: a convergent mechanism for a
652 cohort of neurodegenerative diseases. *Neurobiol Aging* **21**: 815–828.
- 653 Ishida C, Kobayashi K, Kitamura T, Ujike H, Iwasa K, Yamada M. 2015. Frontotemporal
654 dementia with parkinsonism linked to chromosome 17 with the MAPT R406W mutation
655 presenting with a broad distribution of abundant senile plaques. *Neuropathology* **35**: 75–
656 82.
- 657 Jiwaji Z, Hardingham GE. 2023. The consequences of neurodegenerative disease on neuron-
658 astrocyte metabolic and redox interactions. *Neurobiol Dis* **185**: 106255.
- 659 Karademir D, Todorova V, Ebner LJA, Samardzija M, Grimm C. 2022. Single-cell RNA
660 sequencing of the retina in a model of retinitis pigmentosa reveals early responses to
661 degeneration in rods and cones. *BMC Biol* **20**: 86.

- 662 Khurana V, Lu Y, Steinhilb ML, Oldham S, Shulman JM, Feany MB. 2006. TOR-mediated cell-
663 cycle activation causes neurodegeneration in a *Drosophila* tauopathy model. *Curr Biol*
664 **16**: 230–241.
- 665 Khurana V, Merlo P, DuBoff B, Fulga TA, Sharp KA, Campbell SD, Götz J, Feany MB. 2012. A
666 neuroprotective role for the DNA damage checkpoint in tauopathy. *Aging Cell* **11**: 360–
667 362.
- 668 Lapytsko A, Kollarovic G, Ivanova L, Studencka M, Schaber J. 2015. FoCo: a simple and robust
669 quantification algorithm of nuclear foci. *BMC Bioinformatics* **16**: 392.
- 670 Law AD, Cassar M, Long DM, Chow ES, Giebultowicz JM, Venkataraman A, Strauss R,
671 Kretzschmar D. 2022. FTD-associated mutations in Tau result in a combination of
672 dominant and recessive phenotypes. *Neurobiol Dis* **170**: 105770.
- 673 Lee G, Neve RL, Kosik KS. 1989. The microtubule binding domain of tau protein. *Neuron* **2**:
674 1615–1624.
- 675 Lee JA, Hall B, Allsop J, Alqarni R, Allen SP. 2021. Lipid metabolism in astrocytic structure and
676 function. *Semin Cell Dev Biol* **112**: 123–136.
- 677 Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L,
678 Yager D, et al. 2001. Enhanced neurofibrillary degeneration in transgenic mice
679 expressing mutant tau and APP. *Science* **293**: 1487–1491.
- 680 Li H, Janssens J, De Waegeneer M, Kolluru SS, Davie K, Gardeux V, Saelens W, David FPA,
681 Brbić M, Spanier K, et al. 2022. Fly Cell Atlas: A single-nucleus transcriptomic atlas of
682 the adult fruit fly. *Science* **375**: eabk2432.
- 683 Liu Y, Li JSS, Rodiger J, Comjean A, Attrill H, Antonazzo G, Brown NH, Hu Y, Perrimon N.
684 2022. FlyPhoneDB: an integrated web-based resource for cell-cell communication
685 prediction in *Drosophila*. *Genetics* **220**: iyab235.
- 686 Loomis PA, Howard TH, Castleberry RP, Binder LI. 1990. Identification of nuclear tau isoforms
687 in human neuroblastoma cells. *Proc Natl Acad Sci U S A* **87**: 8422–8426.
- 688 Madigan JP, Chotkowski HL, Glaser RL. 2002. DNA double-strand break-induced
689 phosphorylation of *Drosophila* histone variant H2Av helps prevent radiation-induced
690 apoptosis. *Nucleic Acids Res* **30**: 3698–3705.
- 691 Modi MN, Shuai Y, Turner GC. 2020. The *Drosophila* Mushroom Body: From Architecture to
692 Algorithm in a Learning Circuit. *Annu Rev Neurosci* **43**: 465–484.
- 693 Morris M, Hamto P, Adame A, Devidze N, Masliah E, Mucke L. 2013. Age-appropriate cognition
694 and subtle dopamine-independent motor deficits in aged tau knockout mice. *Neurobiol
695 Aging* **34**: 1523–1529.

- 696 Nedergaard M, Verkhratsky A. 2012. Artifact versus reality--how astrocytes contribute to
697 synaptic events. *Glia* **60**: 1013–1023.
- 698 Neville KE, Bosse TL, Klekos M, Mills JF, Weicksel SE, Waters JS, Tipping M. 2018. A novel ex
699 vivo method for measuring whole brain metabolism in model systems. *J Neurosci Methods* **296**: 32–43.
- 700
- 701 Ordonez DG, Lee MK, Feany MB. 2018. α -synuclein Induces Mitochondrial Dysfunction through
702 Spectrin and the Actin Cytoskeleton. *Neuron* **97**: 108-124.e6.
- 703 Poorkaj P, Grossman M, Steinbart E, Payami H, Sadovnick A, Nochlin D, Tabira T, Trojanowski
704 JQ, Borson S, Galasko D, et al. 2001. Frequency of tau gene mutations in familial and
705 sporadic cases of non-Alzheimer dementia. *Arch Neurol* **58**: 383–387.
- 706 Praschberger R, Kuenen S, Schoovaerts N, Kaempf N, Singh J, Janssens J, Swerts J,
707 Nachman E, Calatayud C, Aerts S, et al. 2023. Neuronal identity defines α -synuclein and
708 tau toxicity. *Neuron* **111**: 1577-1590.e11.
- 709 Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, Ozmen L, Bluethmann H, Dröse S,
710 Brandt U, et al. 2009. Amyloid-beta and tau synergistically impair the oxidative
711 phosphorylation system in triple transgenic Alzheimer's disease mice. *Proc Natl Acad
712 Sci U S A* **106**: 20057–20062.
- 713 Sarkar S, Murphy MA, Dammer EB, Olsen AL, Rangaraju S, Fraenkel E, Feany MB. 2020.
714 Comparative proteomic analysis highlights metabolic dysfunction in α -synucleinopathy.
715 *NPJ Parkinsons Dis* **6**: 40.
- 716 Schulz L, Ramirez P, Lemieux A, Gonzalez E, Thomson T, Frost B. 2023. Tau-Induced
717 Elevation of the Activity-Regulated Cytoskeleton Associated Protein Arc1 Causally
718 Mediates Neurodegeneration in the Adult Drosophila Brain. *Neuroscience* **518**: 101–111.
- 719 Shanbhag NM, Evans MD, Mao W, Nana AL, Seeley WW, Adame A, Rissman RA, Masliah E,
720 Mucke L. 2019. Early neuronal accumulation of DNA double strand breaks in
721 Alzheimer's disease. *Acta Neuropathol Commun* **7**: 77.
- 722 Sjöberg MK, Shestakova E, Mansuroglu Z, Maccioni RB, Bonnefoy E. 2006. Tau protein binds
723 to pericentromeric DNA: a putative role for nuclear tau in nucleolar organization. *J Cell
724 Sci* **119**: 2025–2034.
- 725 Smolić T, Zorec R, Vardjan N. 2021. Pathophysiology of Lipid Droplets in Neuroglia.
726 *Antioxidants (Basel)* **11**: 22.
- 727 Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, Purdom E, Dudoit S. 2018. Slingshot:
728 cell lineage and pseudotime inference for single-cell transcriptomics. *BMC Genomics* **19**:
729 477.

- 730 Sun W, Samimi H, Gamez M, Zare H, Frost B. 2018. Pathogenic tau-induced piRNA depletion
731 promotes neuronal death through transposable element dysregulation in
732 neurodegenerative tauopathies. *Nat Neurosci* **21**: 1038–1048.
- 733 Thadathil N, Delotterie DF, Xiao J, Hori R, McDonald MP, Khan MM. 2021. DNA Double-Strand
734 Break Accumulation in Alzheimer's Disease: Evidence from Experimental Models and
735 Postmortem Human Brains. *Mol Neurobiol* **58**: 118–131.
- 736 Thurston VC, Zinkowski RP, Binder LI. 1996. Tau as a nucleolar protein in human nonneuronal
737 cells in vitro and in vivo. *Chromosoma* **105**: 20–30.
- 738 Tuncbag N, Braunstein A, Pagnani A, Huang S-SC, Chayes J, Borgs C, Zecchina R, Fraenkel
739 E. 2013. Simultaneous reconstruction of multiple signaling pathways via the prize-
740 collecting steiner forest problem. *J Comput Biol* **20**: 124–136.
- 741 Verkhratsky A, Sofroniew MV, Messing A, deLanerolle NC, Rempe D, Rodríguez JJ,
742 Nedergaard M. 2012. Neurological diseases as primary gliopathies: a reassessment of
743 neurocentrism. *ASN Neuro* **4**.
- 744 von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E. 2000.
745 Assembly of tau protein into Alzheimer paired helical filaments depends on a local
746 sequence motif ((306)VQIVYK(311)) forming beta structure. *Proc Natl Acad Sci U S A*
747 **97**: 5129–5134.
- 748 Wang S, Sudan R, Peng V, Zhou Y, Du S, Yuede CM, Lei T, Hou J, Cai Z, Cella M, et al. 2022.
749 TREM2 drives microglia response to amyloid- β via SYK-dependent and -independent
750 pathways. *Cell* **185**: 4153-4169.e19.
- 751 Wei Y, Qu M-H, Wang X-S, Chen L, Wang D-L, Liu Y, Hua Q, He R-Q. 2008. Binding to the
752 minor groove of the double-strand, tau protein prevents DNA from damage by
753 peroxidation. *PLoS One* **3**: e2600.
- 754 Welch G, Tsai L-H. 2022. Mechanisms of DNA damage-mediated neurotoxicity in
755 neurodegenerative disease. *EMBO Rep* **23**: e54217.
- 756 Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR. 1981. Alzheimer disease: evidence
757 for selective loss of cholinergic neurons in the nucleus basalis. *Ann Neurol* **10**: 122–126.
- 758 Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M, Feany MB. 2001.
759 Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. *Science*
760 **293**: 711–714.
- 761 Wu T, Deger JM, Ye H, Guo C, Dhindsa J, Pekarek BT, Al-Ouran R, Liu Z, Al-Ramahi I, Botas
762 J, et al. 2023. Tau polarizes an aging transcriptional signature to excitatory neurons and
763 glia. *Elife* **12**: e85251.

764 Yoshiyama Y, Higuchi M, Zhang B, Huang S-M, Iwata N, Saido TC, Maeda J, Suhara T,
765 Trojanowski JQ, Lee VM-Y. 2007. Synapse loss and microglial activation precede
766 tangles in a P301S tauopathy mouse model. *Neuron* **53**: 337–351.

767

768

769 **Figure legends**

770 **Figure 1. CRISPR-Cas9-mediated knock-in model of frontotemporal dementia in**
771 ***Drosophila*.** CRISPR-Cas9 gene editing strategy to knock in the human tau P301L homologous
772 mutation in *Drosophila*, tau P251L, located in exon 5 of *Drosophila* tau (A). Successful mutation
773 in homozygous tau P251L knock-in flies (B). Hematoxylin and eosin staining reveals evidence of
774 neurodegeneration as seen by increased number of brain vacuoles (arrowheads) with age in
775 homozygous and heterozygous knock-in animals (C,D). Scale bar represents 10 μ m (C).
776 Neurodegeneration is accompanied by abnormal cell cycle reentry as marked by proliferating
777 cell nuclear antigen (PCNA) staining (E). Flies are 30 days old in (C) and the age indicated in
778 the figure labels in (D,E). n = 6 per genotype and time point (D,E). Data are presented as mean
779 \pm SD. *** = P < 0.001, one-way ANOVA with Tukey post-hoc analysis.

780 **Figure 2. Mitochondrial dysfunction and DNA damage in tau P251L knock-in brains.**
781 Decreased oxygen consumption rate (OCR) (A) and shift to a quiescent metabolic phenotype as
782 indicated by plotting the OCR vs. the extracellular acidification rate (ECAR) (B) in homozygous
783 and heterozygous tau P251L knock-in brains compared to controls. n = 6 per genotype.
784 Elevated levels of DNA damage in tau P251L knock-in brains as indicated by increased tail
785 length (C, arrowheads, D) following electrophoresis of nuclei from dissociated brains in the
786 comet assay. n = 3 per genotype. Increase in the number of Kenyon cells neurons (E, identified
787 by the neuronal marker elav) containing DNA double-strand breaks as marked by pH2Av foci
788 (E, arrowheads; arrows indicate neuronal nuclei with more than two foci) in histological sections
789 of mushroom bodies (Kenyon cells) from tau P251L knock-in animals, as quantified in (F,G). n =
790 6 per genotype and time point. Scale bars represent 5 μ m. Flies are 10 days old in (A-D), 30
791 days old in (E) and the age indicated in the figure labels in (F,G). Data are presented as mean \pm
792 SD. *** = P < 0.001, one-way ANOVA with Tukey post-hoc analysis.

793

794 **Figure 3. Single-cell RNA sequencing of tau P251L knock-in brains.** Schematic of the
795 single-cell RNA sequencing analysis pipeline (A). Following dissection, brains were dissociated
796 in the enzymatic solutions and the single-cell suspension was encapsulated by 10x chromium
797 platform. The 10x libraries were prepared, sequenced and after quality control, data was
798 analyzed. UMAP representation of the 6 integrated sc-RNA sequencing runs, 3 control and 3
799 tau P251L knock-in (B). The integrated dataset contains 130,489 cells, and 26 clusters out of 29
800 were annotated. Percentage expression heatmap of the highly expressed marker genes within
801 all clusters (C). Flies are 10 days old.

802

803 **Figure 4. Differential gene expression and enrichment analysis of the scRNA seq dataset**
804 **in tau P251L knock-in brains compared to controls.** The number of differentially expressed
805 genes (DEGs), both upregulated and downregulated genes, in all the annotated clusters of tau
806 P251L knock-in brains compared to controls (A). Results are displayed across three major
807 anatomic and functional classes of cells: 1) central body containing three clusters of Kenyon
808 cells (KC), mushroom body output neurons and pox neurons, 2) optic lobe neurons containing
809 lamina, medullary and lobula neurons clusters, and 3) glia cells containing astrocytes and
810 perineurial clusters. Heatmap of the top 50 upregulated (B) and downregulated (C) genes in all
811 the clusters of tau P251L knock-in brains compared to controls (Supplemental Table S3). Gene
812 ontology (GO) enrichment analysis identified top upregulated and downregulated biological
813 processes (BP), molecular functions (MF), and cellular components (CC) (D). Analysis of
814 human disease associated genes revealed top upregulated and downregulated disease-
815 associated gene sets (E). Score represents the combined score $c = \log(p)*z$ (Chen et al. 2013).

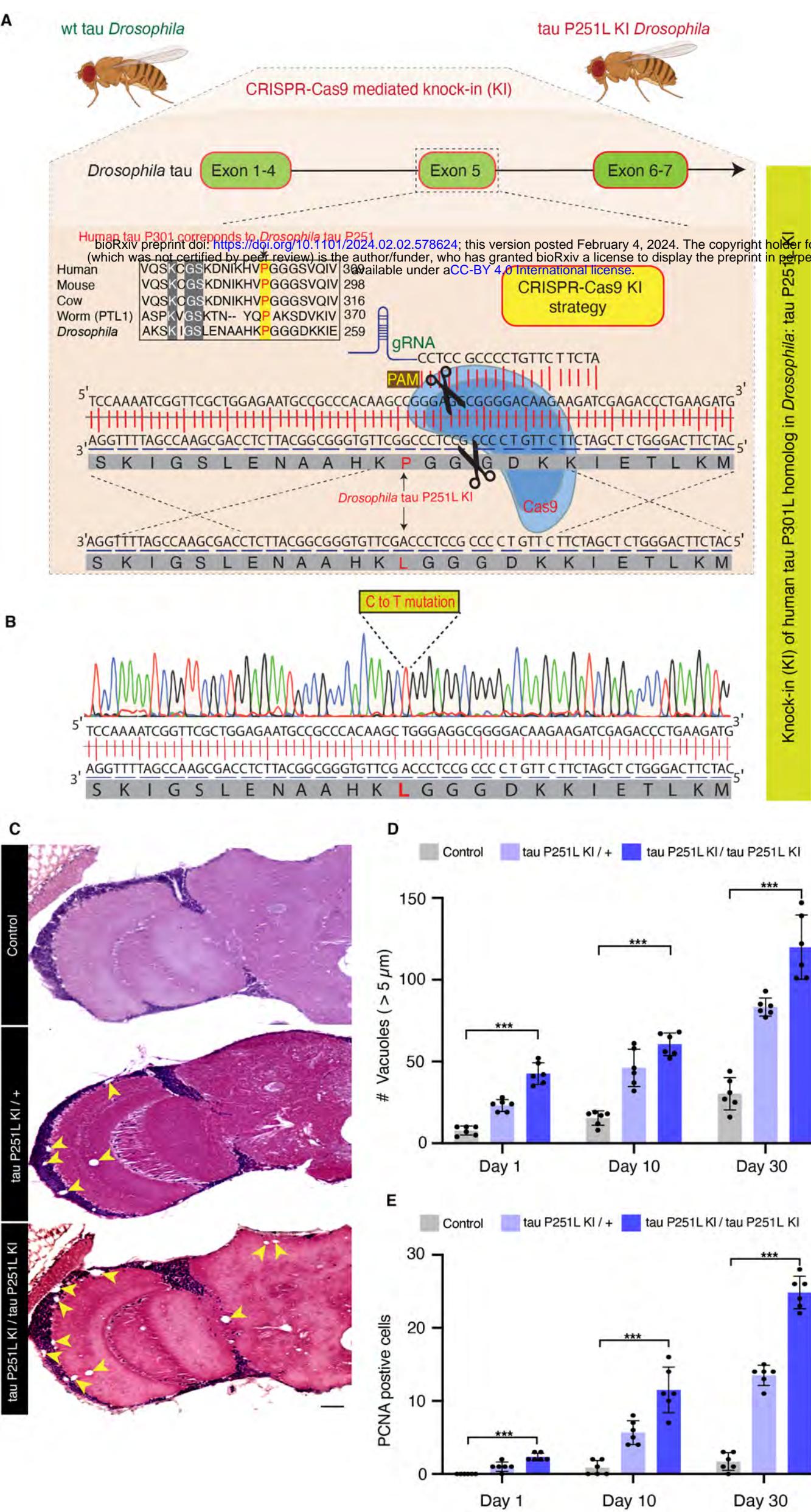
816

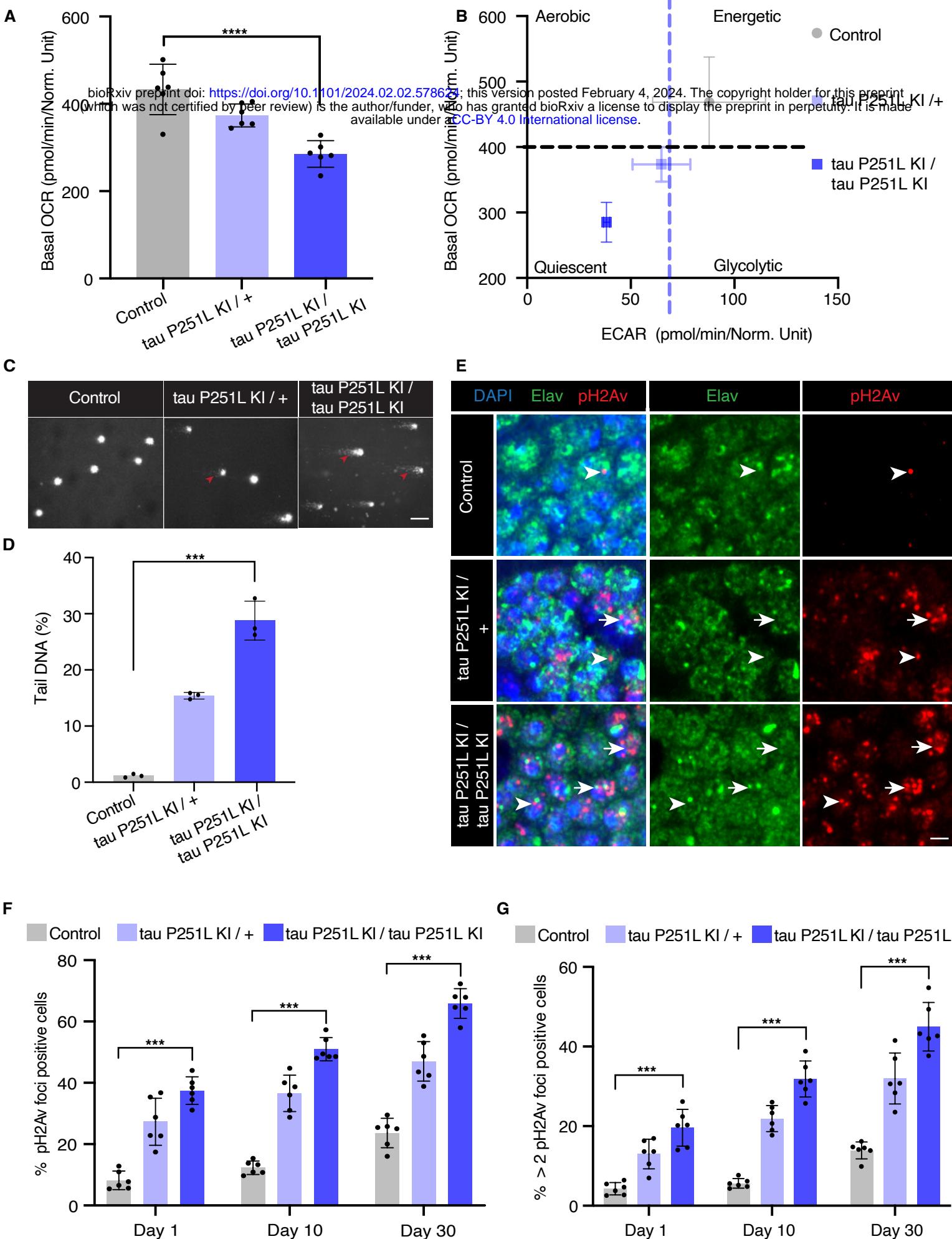
817 **Figure 5. Protein interaction networks enriched in the central body, optic lobe and glia in**
818 **tau P251L knock-in brains compared to controls.** Protein interaction networks are largely
819 distinct among central body neurons, optic lobe neurons and glia. Subnetworks including nodes
820 enriched for protein catabolism (central body), electron transport chain (optic lobe) or fatty acid
821 metabolism (glia) are highlighted. Interaction strength displayed in blue shows the stringency of
822 the interaction: the lower the strength, the stronger the interaction.

823

824 **Figure 6: Cell-cell communication analysis predicts altered signaling in tau P251L knock-**
825 **in brains compared to controls.** Altered ligand and receptor expression predicts regulation of
826 synaptic plasticity signaling mainly via perineurial glial cells in control brains (A). Signaling from
827 perineurial glia is significantly reduced in tau P251L knock-in brains as predicted by levels of
828 spaetzle ligand and kekkon receptor (B). JAK-STAT signaling, as predicted by expression of the
829 upd2 ligand and dome receptor, mediated by perineurial glia in control brains (C), is
830 substantially reduced in brains from tau P251L knock-in animals (D). Hippo signaling, indicated
831 by expression of ds ligand and fat receptor, is upregulated in astrocytes of flies expressing
832 P251L mutant tau compared to controls (E,F). Predicted TNF- α signaling from ligand eiger to
833 receptor wengen is increased in astrocytes of tau P251L knock-in flies (G,H). In panels
834 (B,D,F,H) the interactions from and to the specified cell types are indicated on the x-axis, while
835 the size of the circle indicates the P value and the intensity of the blue color illustrates the
836 interaction score as defined in the figure label below the panels.

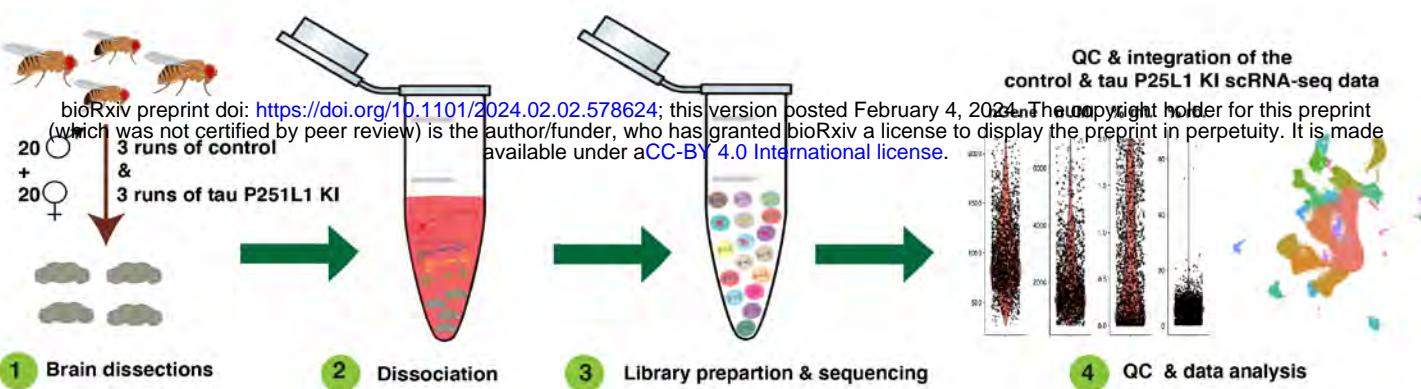
837


838 **Figure 7: Gene expression and trajectory analysis in glia.** Differentially regulated genes,
839 both upregulated and downregulated, in perineurial glia of tau P251L knock-in brains compared
840 to controls (A). Gene ontology analysis shows biological processes associated with the up-


841 regulated and down-regulated genes in perineurial glia from tau P251L knock-in brains
842 compared to controls (*B*). Differentially regulated genes, both upregulated and downregulated, in
843 astrocytes of tau P251L knock-in brains compared to controls (*C*). Gene ontology analysis
844 shows biological process associated with upregulated and downregulated genes in astrocytes of
845 tau P251L knock-in brains (*D*). All dots on the volcano plots are significant at FDR < 0.05 and
846 log2FC > 0.25 for upregulated and < -0.25 for downregulated genes. Score represents the
847 combined score $c = \log(p)*z$ (Chen et al. 2013). Astrocytes from both control and tau P251L
848 knock-in brains were further subclustered into 4 groups. Entropy analysis to define the root for
849 trajectory analysis revealed cluster 1 to have the highest entropy (*E,F*). Slingshot trajectory
850 analysis on astrocyte clusters identified a single lineage passing sequentially from clusters 1 to
851 2, 3, and 0 (*G*). Differential gene expression between astrocyte subclusters adjacent in
852 pseudotime were used to cluster genes along the pseudotime trajectory (*H*). Each row in the
853 heat map represents a gene. The columns are astrocyte subclusters arranged according to
854 pseudotime from left to right. Examples of differentially regulated genes from
855 enriched gene ontology biological processes are shown on the calculated trajectory (*H*).

856

857 **Figure 8: Gene expression and regulatory networks in Kenyon cells.** Three Kenyon cell
858 (KC) clusters, γ -KC, $\alpha\beta$ -KC, and $\alpha'\beta'$ -KC, and biological process based on the common
859 upregulated and downregulated genes in Kenyon cell clusters in tau P251L knock-in brains (*A,B*).
860 Score represents the combined score $c = \log(p)*z$ (Chen et al. 2013). Control and tau P251L
861 knock-in Kenyon cells were clustered separately using SCENIC gene regulatory network
862 analysis to identify regulons. The top 10 regulons identified by SCENIC gene regulatory network
863 analysis in control (*C*) and tau P251L knock-in (*C*) Kenyon cells (*C*) are presented in the
864 heatmaps. Each row represents a Kenyon cell; each column is a regulon.


Figure 1

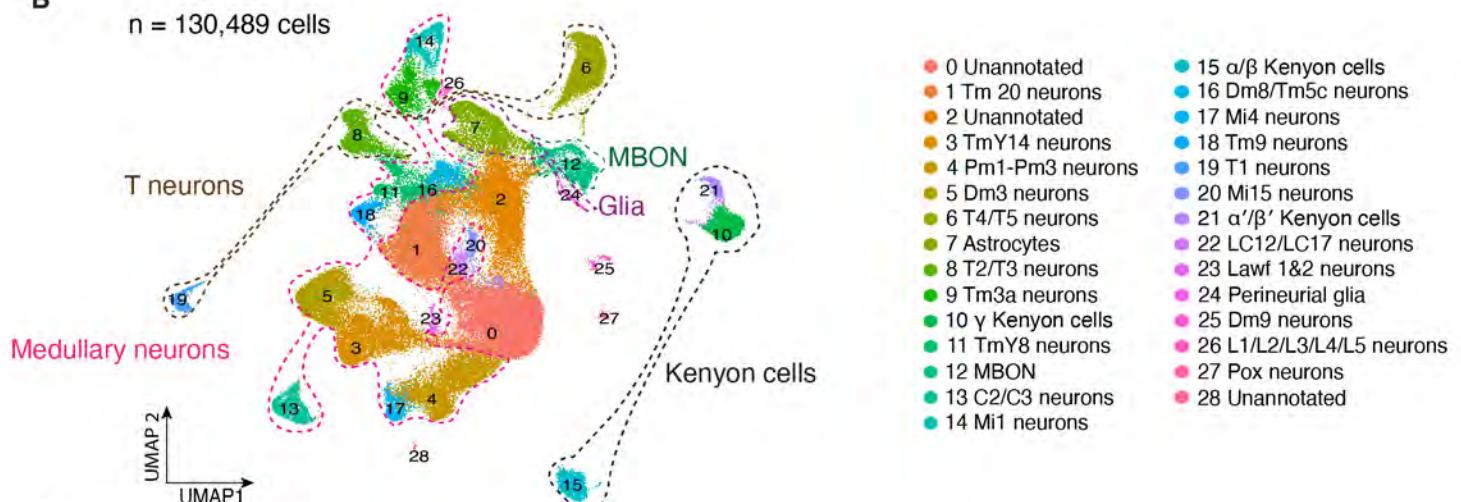
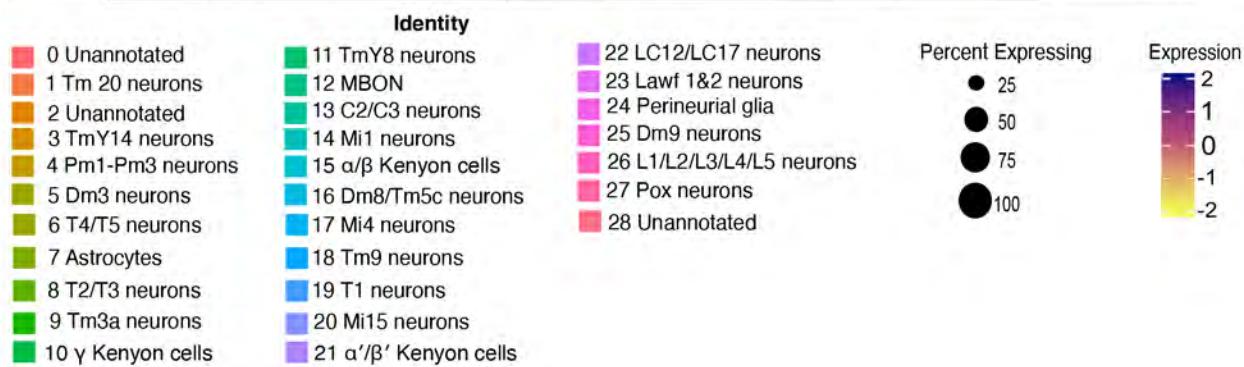
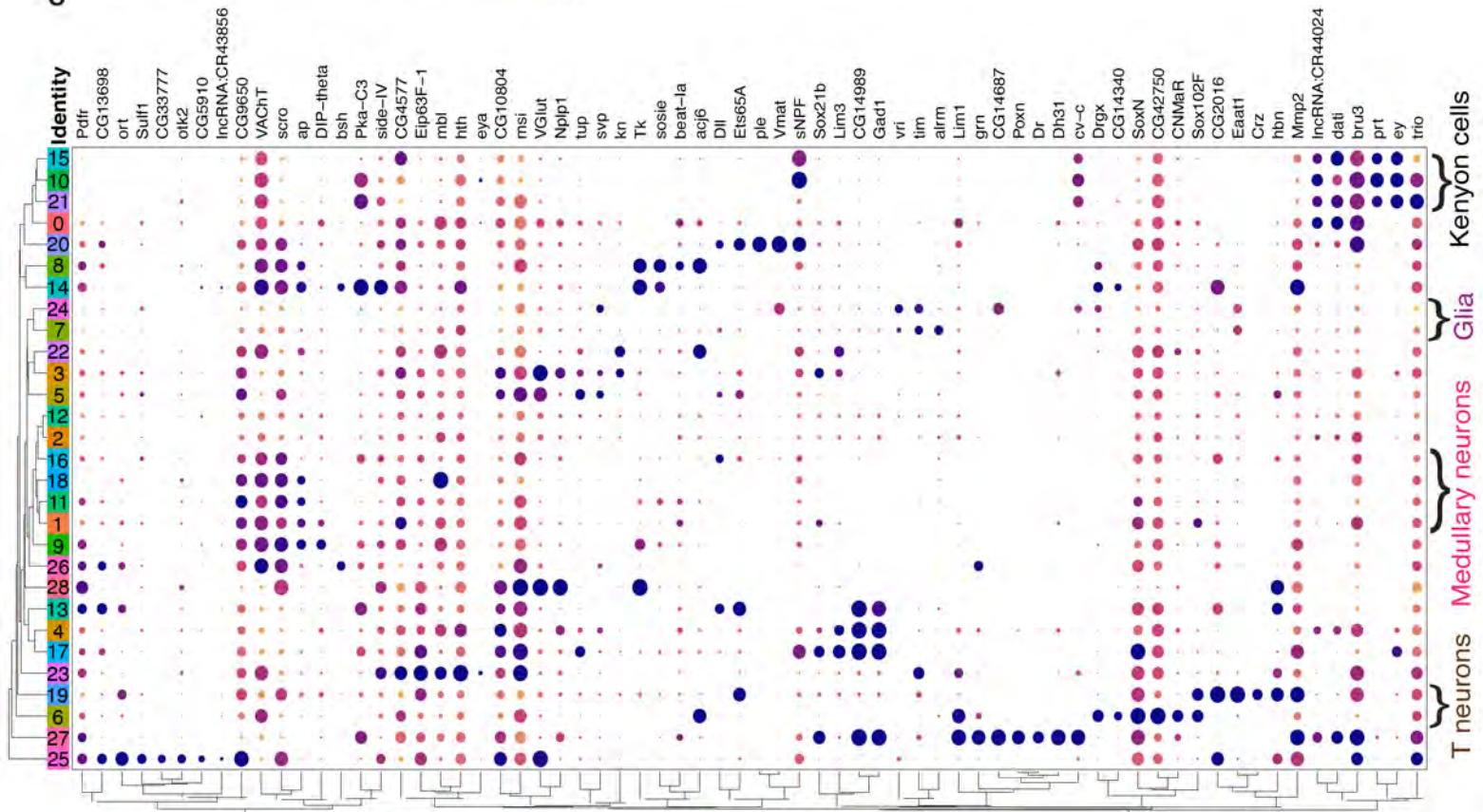
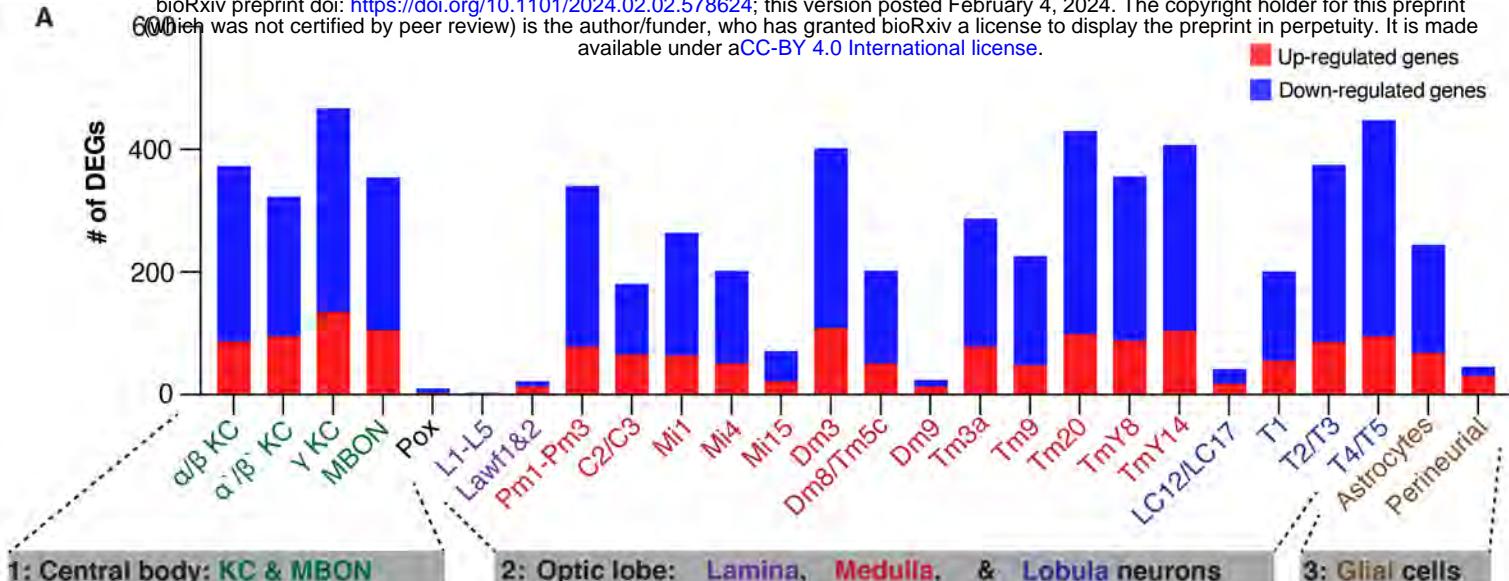
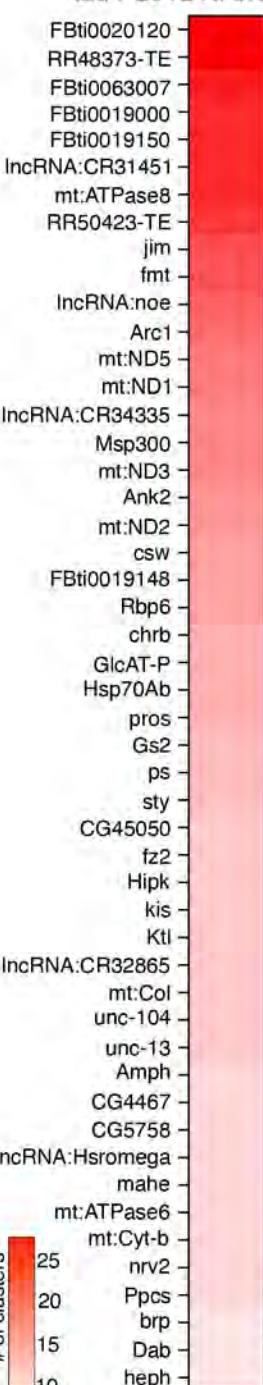

Figure 2

Figure 3

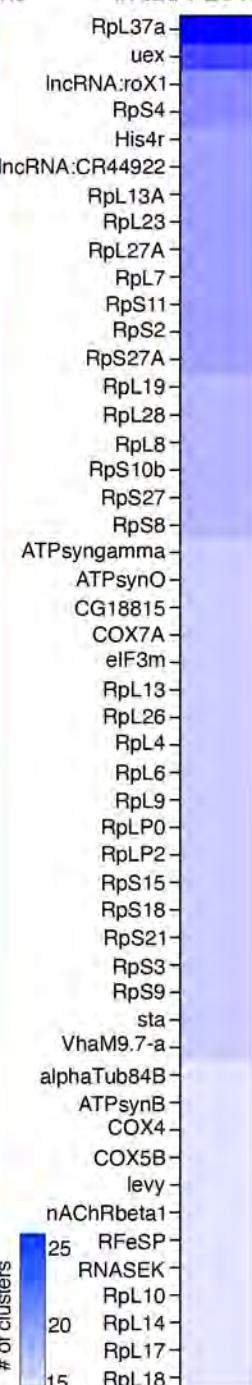


A

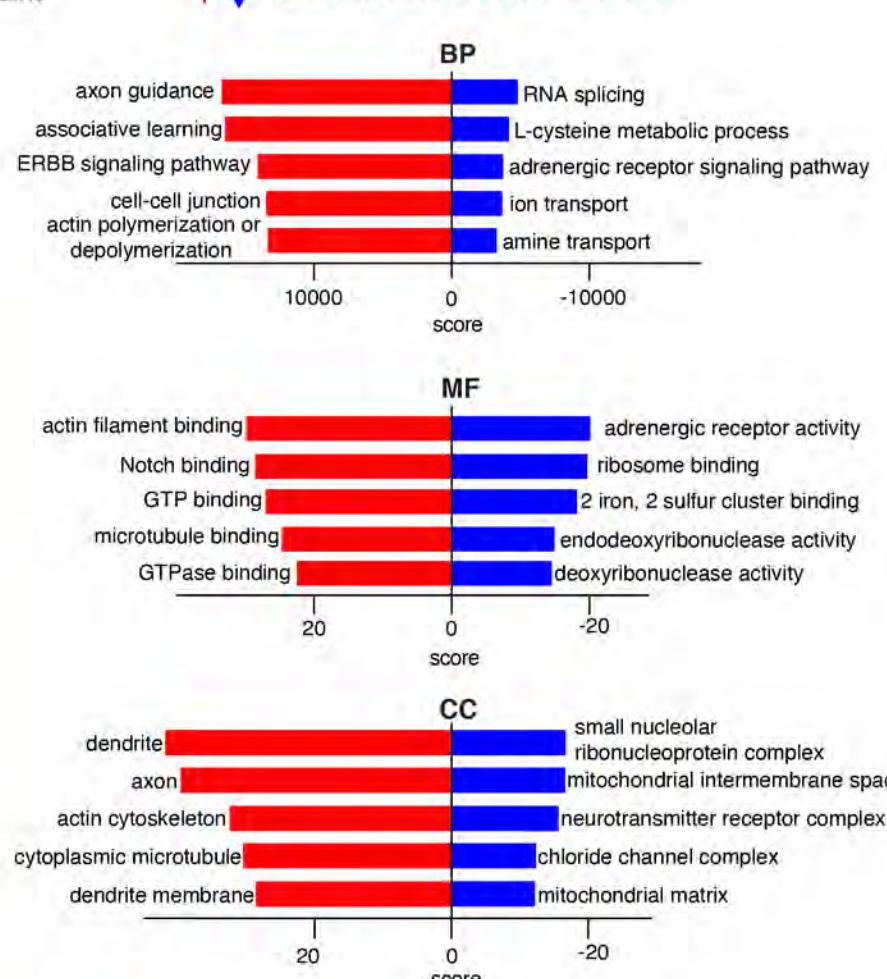
B

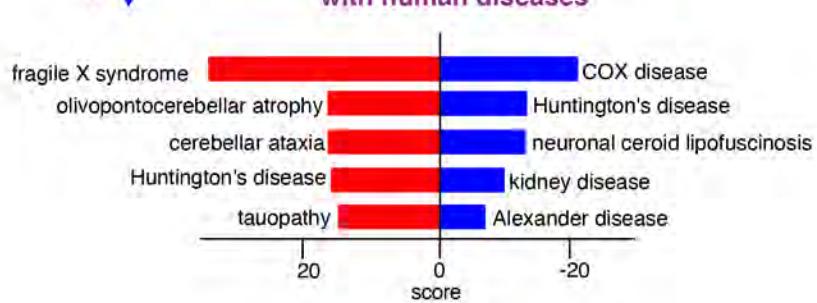

C


Figure 4

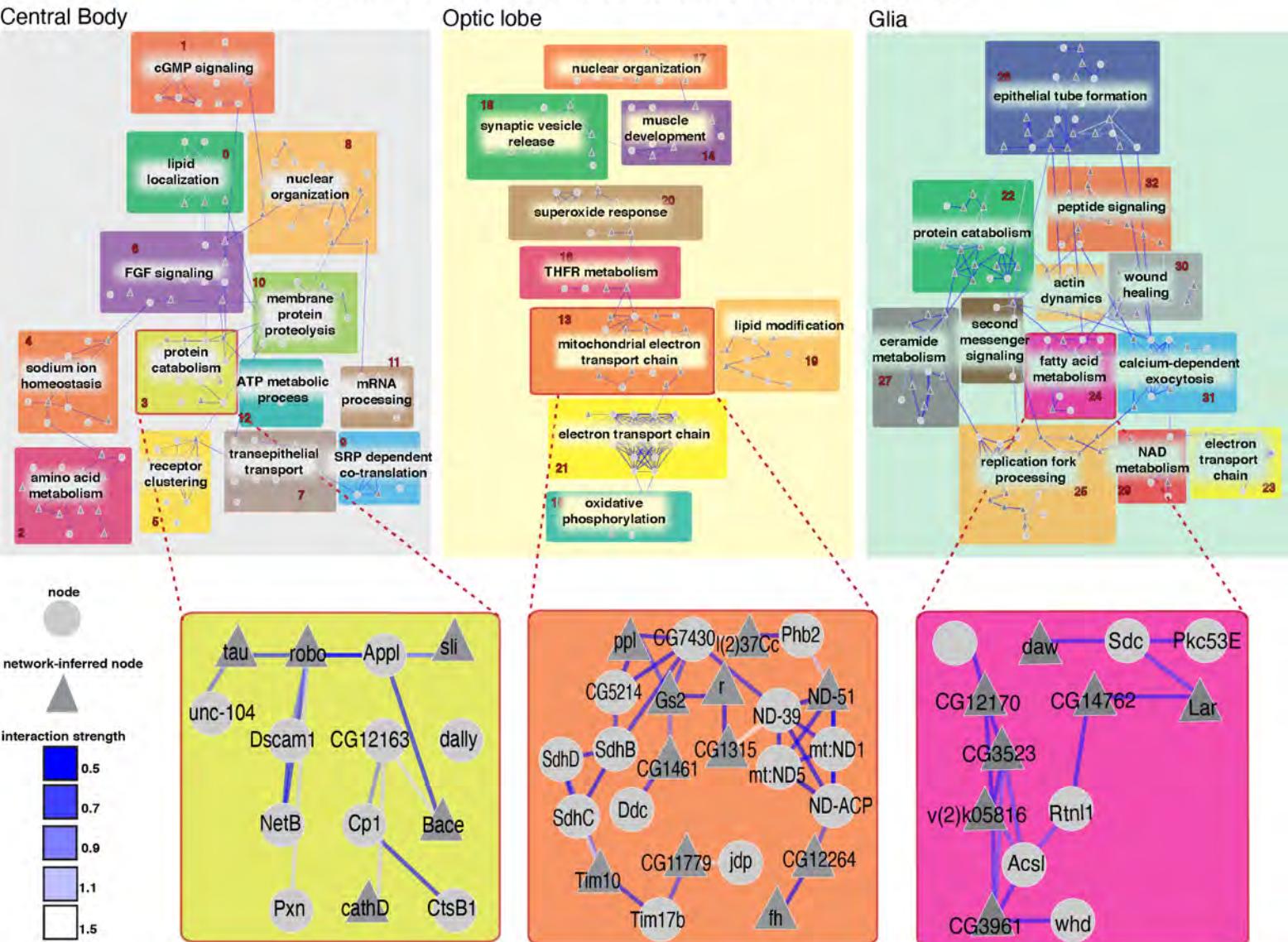
bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.02.578624>; this version posted February 4, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


Up-regulated genes
Down-regulated genes


B Up-regulated genes in tau P251L KI brains


C Down-regulated genes in tau P251L KI brains

D ↑ ↓ GO terms in tau P251L KI brains



E ↑ ↓ Genes in tau P251L KI brains associated with human diseases

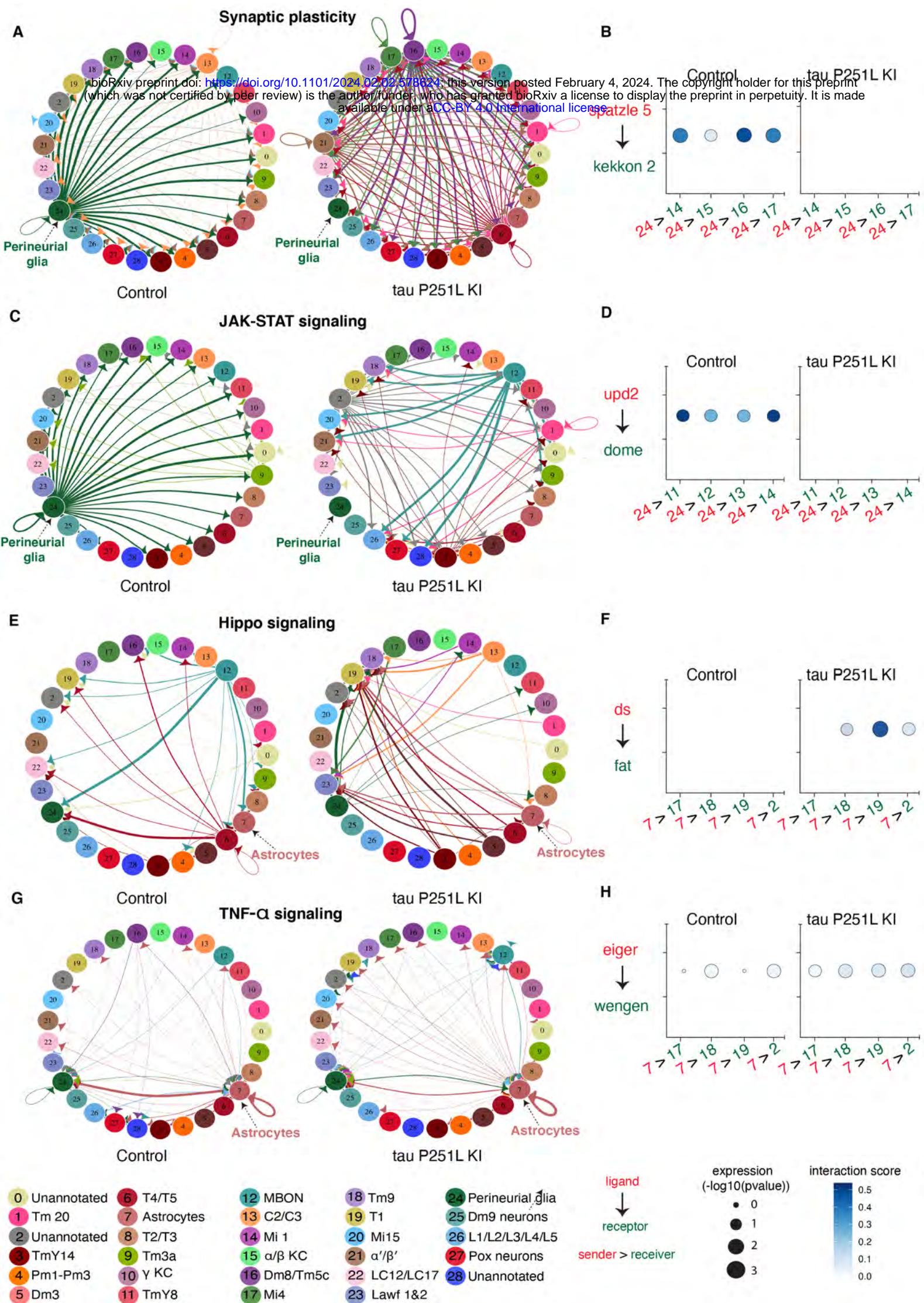
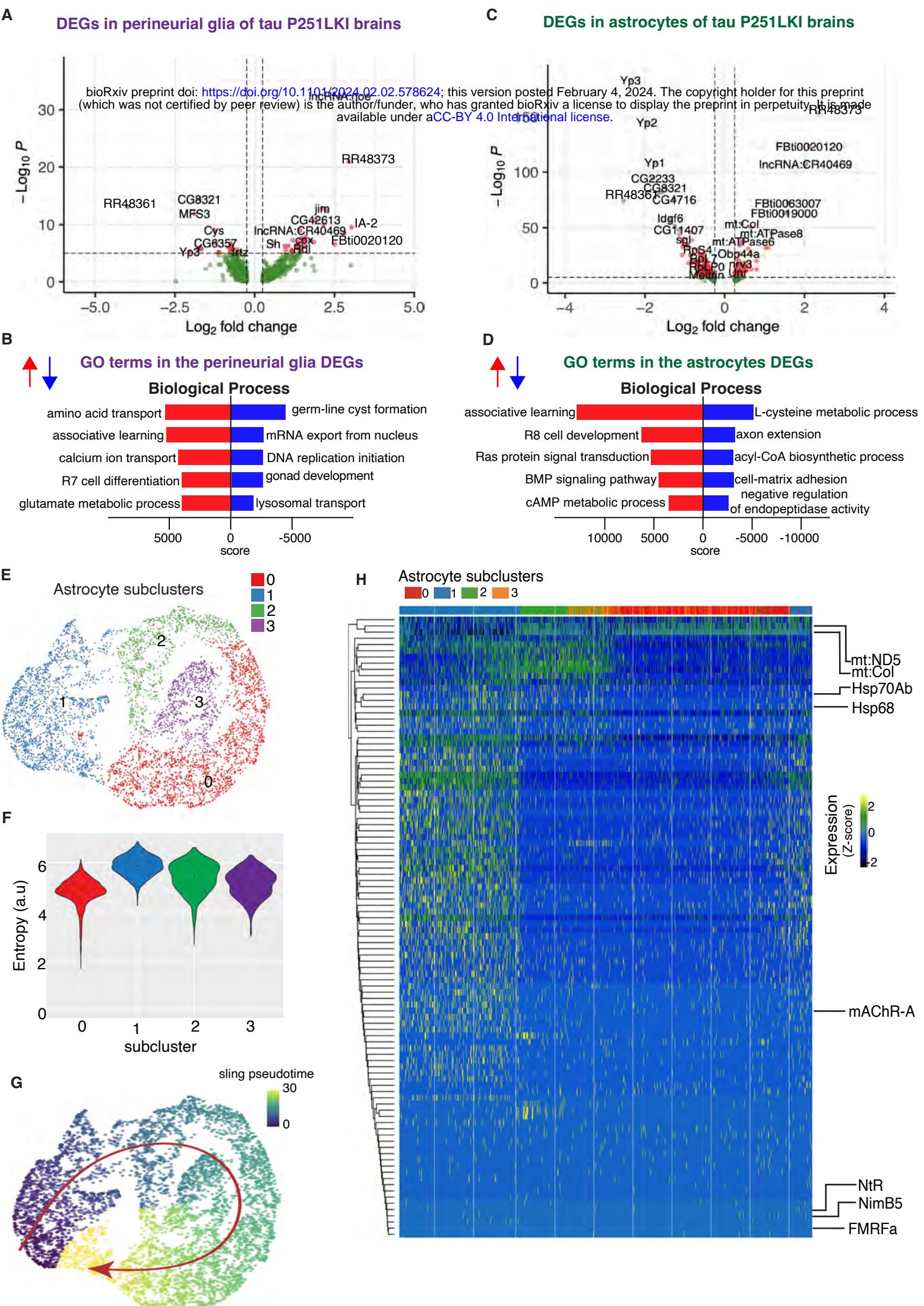


Figure 5


Protein interaction networks enriched in tau P251L KI brains

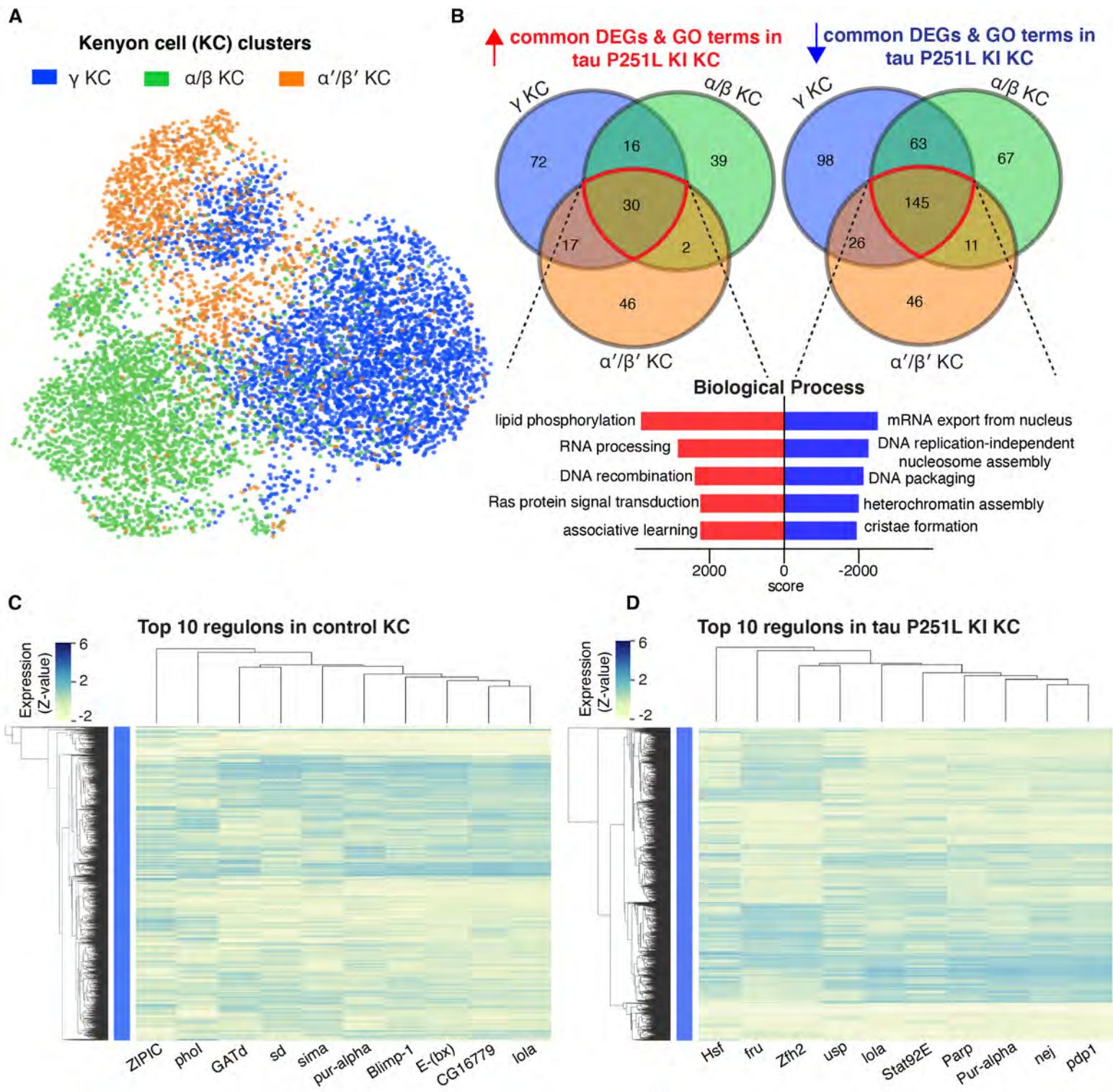

Figure 6

Figure 7

Figure 8

