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Abstract  
In electroencephalographic (EEG) data, power-frequency slope exponents (1/f_β) can provide 
non-invasive markers of in vivo neural activity excitation-inhibition (E:I) balance. E:I balance may 
be altered in neurodevelopmental conditions; hence, understanding how 1/f β evolves across 
infancy/childhood has implications for developing early assessments/interventions. This 
systematic review (PROSPERO-ID: CRD42023363294) explored the early maturation (0-26yrs) 
of resting-state EEG 1/f measures (aperiodic [AE], power law [PLE] and Hurst [HE] exponents), 
including studies containing ≥1 1/f measures and ≥10 typically developing participants. Five 
databases (including Embase and Scopus) were searched during March 2023. Forty-two studies 
were identified (Nparticipants=3478). Risk of bias was assessed using the Quality Assessment with 
Diverse Studies tool. Narrative synthesis of HE data suggests non-stationary EEG activity occurs 
throughout development. Age-related trends were complex, with rapid decreases in AEs during 
infancy and heterogenous changes thereafter. Regionally, AE maxima shifted developmentally, 
potentially reflecting spatial trends in maturing brain connectivity. This work highlights the 
importance of further characterising the development of 1/f measures to better understand how 
E:I balance shapes brain and cognitive development. 
 
Keywords: Systematic review, aperiodic exponent, Hurst exponent, EEG, 
electroencephalography, development, infant, toddler, child, adolescent, young adult 

 
Introduction  

The maintenance of excitation and inhibition (E:I) balance in the brain is an essential 
homeostatic mechanism that regulates spontaneous neural activity and facilitates the complex 
activity patterns thought to underlie efficient information processing (Lendner et al., 2020, Weber, 
Klein and Abeln, 2020, Tran et al., 2020) and adaptive behaviour (Rocha et al., 2018; Bassi et al., 
2019). This key feature of brain physiology can be represented by a power law (1/f ) relationship 
between spectral frequencies and spectral power in electrophysiological data  (Gao, Peterson and 
Voytek, 2017). Steeper 1/f profiles (higher exponents) characterised within specific frequency 
ranges (Manning et al., 2009; Miller et al., 2012) suggest higher contributions of inhibitory (i.e. 
increased GABAergic/decreased glutamatergic) signalling whereas flatter (lower) exponents 
suggest excitation-dominant signalling (E>I) (Gyurkovics et al., 2022). This can be non-invasively 
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studied using electroencephalography [EEG] (Waschke, Wöstmann and Obleser, 2017)  (Waschke, 
Wöstmann and Obleser, 2017) which is sensitive to local field potential (LFP) aggregates; and thus 
changes in power spectral densities (PSDs) will affect estimated 1/f exponents. The power 
spectrum can be further decomposed into both frequency-specific ‘periodic’ oscillations and an 
‘aperiodic’ signal (termed β or χ) (Voytek et al., 2015). In adulthood, β significantly declines with 
age (Voytek, et al., 2015; Waschke, Wöstmann and Obleser, 2017) although the physiological origin 
of this age-related change is unclear. EEG 1/f  measures also display behavioural and clinical 
relevance, particularly in conditions thought to relate to shifts in E:I balance, such as those 
affecting attention and behaviour (Waschke et al., 2021; Robertson et al., 2019), states of 
consciousness (Leroy et al., 2023), and functional recovery from stroke (Leemburg et al., 2018). 
Prior to future research utilising 1/f  measures to explore possible atypical brain E:I or as a 
biomarker in clinical populations, we must first characterise 1/f  measures across the typically 
developing (TD) lifespan, from infancy to early adulthood (other studies have begun to chart this 
for later adulthood, see Finley et al., 2022). 

Three different methods for deriving the 1/f β exist in the human EEG literature: (1) power 
law exponents (PLEs, He, 2014) estimated from the slope of log-frequency versus log-power 
distributions and measures accounting for periodic oscillations, including aperiodic exponents 

(μV2 Hz−1) [AEs]; (2) fitting of one-over-f [FOOOF] (now specparams) via estimation of an initial 
slope and iterative estimation of gaussian peaks, which are subsequently subtracted to facilitate 
slope re-estimation prior to combining into a representative model (Donoghue et al., 2020); or (3) 
from non-integer resampling (Irregular Resampling Auto-Spectral Analysis [IRASA])(Wen and Liu, 
2016). Given the challenges of comparing raw exponents acquired when performing different tasks 
(Gao, Peterson and Voytek, 2017), we focus here only on characterising resting-state 1/f β during 
typical development and maturation. We also explore evidence surrounding the maturation of 
activity patterns in the temporal domain via the resting Hurst exponent (HE), typically calculated 

via detrended fluctuation analysis (DFA)(Peng et al., 1994, 1995). HE () can be converted into 

PLE for both stationary ( = 0-1) and non-stationary ( = 1-2) cases (Eke et al., 2000; Hardstone 
et al., 2012). Given the dynamic nature of the brain’s activity, EEG data generally display persistent 
patterns of electrical activity (0.50<HE<1.00) which are non-stationary (HE>0.50) i.e. activity 
does not revert to a baseline state but is segregated and maintained in contextual functional states. 
To further synergise the 1/f  literature here we also convert HE into AE, wherein AE=2*HE-1, 
thus providing a comprehensive account of early developmental 1/f β changes.  

This systematic review aims to explore how and when 1/f  measures change in early human 
development, and where variability within early lifespan stages exists, thereby offering a more 
nuanced perspective of sensitive periods of neurodevelopment.  

 

Methods  
Eligibility Criteria and Selection Process 

We included observational or experimental studies containing resting-state (eyes open 
[EOR] or closed [ECR]) data for ten or more typically developing (TD) human participants with 
a mean-centred age less than 26.50yrs (i.e. bordering into ‘emerging adulthood’, see Hochberg and 
Konner, 2020). For subjects younger than 2yrs (infants and neonates), data collected during sleep 
or wake (including when observing videos or toys) were included. We included studies which 
referred to AE or slope, 1/f β, HE, fractal dimension (to assess for HEs), PLE/spectral slopes, or 
AE/PLE estimation models (e.g. FOOOF/specparams/IRASA/sprintf/PaWNextra). Abstracts 
fitting these criteria were assessed as full-texts if an English-language text was available, including 
abstracts referring to an evoked paradigm or where sample or method details were omitted, so as 
to capture suitable studies containing resting-state data. Articles focusing on non-human 
populations (e.g. animals, or simulations only), of an unsuitable format (preprints, reviews, theses, 
case reports, books, conference abstracts, and non-peer-reviewed material) or using measures 
other than scalp-based EEG (e.g. iEEG, sEEG or ECoG, MEG, TMS, tDCS) were excluded. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.578622doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.02.578622
http://creativecommons.org/licenses/by-nc-nd/4.0/


PREPRINT MANUSCRIPT 

 3 

Articles lacking measures of interest in the main/supplementary texts were excluded. In calculating 
the HE, the underlying scaling exponent (α) only deviates from 0.50 for short window sizes (see 
Hardstone et al., 2012), hence the scaling range should be reported. Furthermore, we exclude 
papers not reporting or responding to requests for two or more key details (scaling range, epoch 
length, window size).  
 
Search Strategy and Information Sources 

The systematic review was completed according to the PRISMA guidelines (Page et al., 
2021) and pre-registered with the international Prospective Register of Systematic Reviews 
(PROSPERO Registration number: CRD42023363294). Relevant literature referred to the 
development/maturation of the 1/f β signal: 1/f , aperiodic exponent/slope and/or the HE (Hurst 
exponent*/slope or fractal, primarily measured via DFA or detrend* fluctuation analysis) across 
the early human lifespan (birth, newborn, neonat*, infan*, toddler*, child*, adolescent, teenager, 
young adult*, develop*, maturation*) as measured using EEG (EEG or electroencephal*). 
Searches were performed across the following databases (with appropriate MESH headings and 
adjacency terms where permissible): Ovid-Embase, Ovid-PsycInfo, Ovid-Medline, Scopus and 
Web of Science, during March 2023. For an example search strategy, see Supplementary Material 
I. Backwards searching of included studies was also performed.  
 
Selection Process 

Records were stored and de-duplicated in Endnote before being transferred to Rayaan 
for secondary deduplication and subsequent screening. Titles and abstracts were screened by 
author RAS, with a subset (20%) reviewed independently by co-author DM and re-reviewed in 
cases of disagreement until a consensus was reached.  

 
Data Collection and Data Items 

Article full texts were then screened by RAS and data pertaining to sample characteristics 
(age mean and SD, sample size, gender split) and 1/f data (AE/PLE/HE) were extracted from 
tables or figures of the main and/or supplementary texts, an associated repository or by contacting 
the authors directly.  

 
Study Risk of Bias Assessment 

Risk of bias was assessed independently by co-authors RAS and CE using the Quality 
Assessment for Diverse Studies (QuADS) tool (Harrison et al., 2021), with the omission of item 
12 (stakeholder involvement) due to a lack of relevance to the TD population. Rater scores 
(91.07% agreement) were compared to ensure differences of less than 2 points (0.01%, 6/504 
cases). Differing cases were discussed, agreed and calibrated. For the assessment criteria and risk 
of bias results, see Supplementary Materials II and III respectively. 
 
Synthesis Methods 

Few studies reported age correlations or other effect sizes (N=8) and given the ambiguity 
of raw AE effect size interpretation (Gao, Peterson and Voytek, 2017) and the absence of a 
comparison state uniform to all studies, a meta-analysis was not performed. Rather, we qualitatively 
synthesised findings across lifespan stages: infancy (0.01-2.00yrs), toddlerhood (2.00-3.00yrs), 
childhood (3.00-12.99yrs), adolescence (13.00-19.99yrs), young adulthood (20.00-26.00yrs), spatial 
scale (global, regional, channel-wise), method (HE, PLE/AE) and condition (ECR/EOR). 
 

Results  
Our database searches yielded 1,596 records. After de-duplication, we screened 1,112 titles and 
abstracts. Nine full-texts sought for retrieval were unavailable, resulting in 138 retrieved full-texts, 
of which 37 were included (see Figure 1). We identified a further five studies after searching for 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.578622doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.02.578622
http://creativecommons.org/licenses/by-nc-nd/4.0/


PREPRINT MANUSCRIPT 

 4 

citations of the included studies as well as their reference lists. The characteristics of the included 
studies are shown in Table 1.  
 

 
Figure 1. PRISMA flowchart for record screening. 
Backwards searching utilised based on citation title relevance of included texts to ensure 
sufficient article capture (N=5 relevant reports, see ‘Included’).  
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Table 1. Studies included in the review.  1 
Infancy (0.01-2.00yrs), Toddlerhood (2.00-3.00yrs), Childhood (3.00-12.99yrs), Adolescence (13.00-19.99yrs), Young adulthood [YA] (20.00-26.00yrs). 2 
‘ est  ’ in the ‘Scale’ column denotes values are estimated from a plot. Measures include eyes open (EOR) and closed (EOR) rest, alongside other 3 
specified states. Measures from sub-samples in the ‘Original Measure’ column are referred to by ‘S’ whilst observed timepoints are denoted by ‘t’. 4 
Sample split by sex is given in ‘N (M, F)’, wherein unknown values are indicated by ‘?’. Data from supplementary sources (tables, figures) are denoted 5 
as ‘Supp.’ in the ‘Source’ column, with open-access data from the open science framework (OSF) marked and ‘Auth Corr.’ denoting author 6 
correspondence was required for additional information/data was absent from the published material. Sections and figures (‘Fig’) are marked where 7 
relevant. Studies with overlapping data are marked with the same superscript character (a,b respectively). In column ‘F’, ‘Y’ entries denote backward-8 
search results. For technical details of measures, see Supplement IV. 9 
# Study  Lifespan Stage (age, yrs) Measure Scale(s) Original Measure HE to AE  Measure N (M, F) Source F 

1 Schaworonkow & 
Voytek (2021) 

Infancy 
(0.10-0.56) 

1/f 
(FOOOF) 

Channelwise S1: 1.74-3.22 (N = 20) 
S2: 1.74-2.95 (N = 20) 
S3: 1.79-2.25 (N = 20) 
S4: 1.94-2.98 (N = 5) 
S5: 1.46-2.76 (N = 3) 
S6: 1.88-2.63 (N = 2) 

 Baseline-wakeful 
reaching 
 

22(10,12) Methods, 
Auth Corr., 
GitHub 

 

2 Karalunas (2022) Infancy 
(0.12±0.01) 
 
Adolescent 
(14.10±1.30) 

1/f 
(FOOOF) 

Global,  
 
 
Channelwise 

Infant EOR (PEACH cohort): 2.21±0.28 
Adol EOR (1.85±0.28): ECR (1.98±0.26), 
EOR-ECR avg (1.91±0.28) 
Infant: 2.48±0.24 (Cz, EOR) 
Adol: 2.28±0.19 (Cz, EOR),  
2.33±0.27 (Pz, ECR), 
2.29±0.19(EOR-ECR average) 

 EOR, ECR 
EOR-ECRavg 

69 (36,33) 
152(85,67) 

Auth Corr.  

3 Fransson (2013) Infancy 
(0.81, 0.75-0.85) 

1/f (PLE) Global,  
Regional, 
Channelwise 

2.07±0.22 
 

 Natural Active/ 
Quiet Sleep 

15(9,12) Fig 4 Y 

4 Carter-Leno (2022) Infancy 
(0.90±0.05) 

1/f 
(FOOOF) 

Global, 
Regional, 
Channelwise 

1.50±0.13 (non-social), 1.52±0.16 
Fz: social (1.53±0.16), non-social 
(1.51±0.13) 
Cz: social (1.51±0.15), non-social 
(1.49±0.13) 
Pz: social (1.51±0.16), non-social 
(1.49±0.13) 

 ~EOR (social 
and non-social 
videos) 

24(13,11) Table 1, 
Fig 4, 
Auth Corr. 

 

5 Roche (2019) Infancy 
(1.92-10.25) 

1/f (PLE) Globalest, 
Regional 

~0.58  ~EOR (movie) 37(0,37) Methods, 
Results 

 

6 Smith (2021) Infancy 
(med. 0.63, 0.43-0.82) 

HE Global Delta[1-3Hz]: ~0.80 (A), 0.68(S)  
Theta[4-7Hz]: ~0.74(A), 0.68(S) 
Alpha[8-12Hz]: ~0.69(A), 0.68(S) 
Beta[13-30Hz]: ~0.88(A), 0.72(S) 

 Awake, Sleep 20(12,8) Section 3.1,  
Fig 6, 
Auth Corr. 

 

7 Smith (2017) Infancy 
(med. 0.58, 0.48-0.94) 

HE Global s Delta[1-3Hz]: ~0.78 
Theta[4-7Hz]: ~0.70  
Alpha[8-12Hz]: ~0.66 
Beta[13-30Hz]: ~0.94 

 Awake 
~(EOR) 

21(?,?) Fig 5, 
Auth Corr. 
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8 Cellier (2021) Toddler (N=5),  
Child (N=81), 
Adolescent (N=22), 
Young Adult (N=8) 
(2.95-24) 

1/f 
(FOOOF) 

Regional 
(Parietal-midline 
[P], Frontal-
midline [F]) 

Toddler: [P] 1.45±0.23, [F] 1.32±0.54 
Children:  [P] 1.23±0.25, [F] 1.34±0.22 
Adolescents: [P] 1.24±0.18, [F] 1.13±0.24 
Young Adults: [P] 1.14±0.12, [F] 1.11±0.09 

 EOR 116 (33,24,59 
unlabelled) 

Fig 2,  
Sections 2.2, 
3.1,  
Auth Corr., 
OSF 

 

9 Houtman (2021) Toddler (2.92 [N=8], 3.92 
[N=13]),  
Child 
(7-16[N=29]) 

1/f 
(FOOOF), 
HE 

Global  
 
Channelwise 

Infant-toddler (I) & child-adol (C): HE, 11-
18Hz: I: ~0.655, C: ~0.656 
Infant-toddler (I) & child-adol (C): AE, 
~1.11-1.60  
(Hurst, 11-18Hz): I: ~0.63-.70), C: ~0.64 -
0.74, 0.66±0.02 

 EOR 50 (28,22): 
Inf-Todd: 
21 (14,7) 
Child-Adol: 
29 (14,15) a 
 

Fig 3, 5 
Supp. Fig 5 

 

10 Wilkinson & Nelson 
(2021)  

Child 
(3.98±1.09, 2.67-6.67) 

1/f 
(FOOOF) 

Global 
Regional 

1.19±0.12 
Frontal:  1.26±0.13 
Central:  1.33±0.14 
Temporal:  1.11±0.15 
Posterior:  1.07±0.32 

 EOR 12(12,0) Methods,  
Results, 
Auth Corr. 

 

11 Robertson (2019) Child 
(5.65±1.23) 

1/f 
(FOOOF) 

Global 
Channelwise  

1.51±0.32  EOR 50(36,14) Table 1, 
Fig 2A, B 

 

12 McSweeney (2023) Child 
(6.92±2.21) 

1/f 
(FOOOF) 

Global EOR: 1.53±0.31 
ECR: 1.77±0.28 

 EOR, ECR 502(230,272) Section 3.2, 
Auth Corr. 

 

13 Arnett (2022a) 
…Stein 

Child 
(8.83±1.23) 

1/f 
(FOOOF) 

Global 1.77±0.15 (Median: 1.76)  EOR 29(19,10) b Methods, 
Auth Corr. 

 

14 Arnett (2022b) 
… Levin 

Child 
(8.83±1.23) 

1/f 
(FOOOF) 

Global 1.77±0.15 (Median: 1.76, range: 0.22-2.30)  EOR 29(19,10) b Methods, 
Auth Corr. 

 

15 Peisch & Arnett 
(2022) 

Child 
(9.40±1.36) 

1/f  
(FOOOF) 

Global 
Regional  
 

1.78±0.14 
Anterior Frontal (AF): 1.79±0.14 
Frontal (FR): 1.79±0.13 
Central (CE): 1.75±0.15 
Parietal (PR): 1.81±0.16 
Occipital (OC): 1.77±0.22 

 EOR 29(19,10) b Methods,  
Auth Corr. 

 

16 Hill (2022) Child 
(9.41±1.95) 

1/f 
(FOOOF) 

Global 
 
Regional 
(anterior [A], 
central [C], 
posterior [P]) 

EOR: 1.65±0.18 
ECR: 1.81±0.16 
EOR:  A (1.64±0.19), C (1.69±0.19)  
P (1.68±0.20)  
ECR:  A (1.81±0.17), C (1.85±0.16),  
P (1.84±0.18) 

 EOR, ECR 139 (72, 67) Fig 2, 
Auth Corr. 

 

17 Tröndle (2022) Child (N=153), 
Adolescent (N=34), 
Young Adult (N=3) 
(10.07±3.39, 5.02-21.67) 

1/f  
(FOOOF) 

Regional 
(Parieto-
occipital) 

1.89±0.36 (0.68-2.77) 
Child: 1.98±0.30 
Adolescent: 1.58±0.37 
Young adult: 1.12±0.04 

 ECR 190 
(104,86) 

Methods, 
Auth Corr., 
Fig 3, App. 4, 
Supp. 2, 3 

 

18 Kwok (2019) Child 
4yrs (N=8), 
5yrs (N=14), 
6yrs (N=11), 
(5.60±?.??) 

HE  Global, 
 
Channelwise est 

Median: ~0.09 (EOR) ~0.06(ECR) 
Posterior electrodes: ~0.09 EOR, ECR 

 EOR, ECR 33(?,?) Fig 6A-C  

19 Smit (2011)  Child (5.27±0.19, 
6.79±0.19), 
Adolescent (16.06±0.55 
17.57±0.55), 

HE  Channelwise (12 
channels) 

Child Theta (P3 maxima): 0.77±0.09 (5yrs), 
0.76±0.07 (7yrs)  
Child Alpha (O2 maxima): 0.70±0.09 (5yrs), 
0.71±0.08 (7yrs) 

 ECR 5yrs 366 
7yrs 378 
16yrs 426 

Auth Corr. 
Methods, 
Fig 3, 
Table 2 
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Young Adult (26.18±4.15) 
(5-50)  

Child Beta: 0.64±0.09 (5 yrs, Fp2), 
0.62±0.08 (7yrs, F8)  
Adol Theta (Fp1 maxima): 0.72±0.06 
(16yrs), 0.72±0.06 (18yrs) 
Adol Alpha (O1 maxima): 0.72±0.10 (16yrs), 
0.73±0.12 (18yrs) 
Adol Beta: 0.64±0.09 (16yrs), 0.66±0.11 
(18yrs)  
YA Theta (F3 maxima): 0.73±0.07 (25yrs) 
YA Alpha (P4 maxima): 0.75±0.09 (25yrs) 
YA Beta (O1 maxima): 0.67±0.10 (25yrs) 

18yrs 387 
25yrs 396 

20 Bruining (2020) Child 
(10.30±1.54) 

HE  Global 0.66±0.04  ECR 29 (14,15)a Supp. Table 1 Y 

21 McSweeney (2021) Adolescent 
(12-17) 

1/f 
(FOOOF) 

Global (1-45Hz) t1 (all subjects): EOR (1.21±0.30) 

t1 (subjects with t1 & t2): EOR (1.21±0.30) 

t1 (all subjects): ECR (1.33±0.27) 

t1 (subjects with t1 & t2): ECR (1.21±0.30) 

t2 (all subjects): EOR (1.10±0.26) 

t2 (subjects with t1 & t2): EOR (1.11±0.27) 

t2 (all subjects): ECR (1.16±0.25) 

t2 (subjects with t1 & t2): ECR (1.17±0.26) 

 EOR, ECR 186 
(85,101) 
 

95 @t1, t2 

Fig 1B,  
Results 

 

22 Ostlund (2021) Adolescent 
(13.97±1.28) 

1/f 
(FOOOF) 

Global (2-50Hz) (EOR+ECR/2): 1.80±0.28 (0.92-2.57) 
EOR: 1.72±0.31 (0.88-2.49) 
ECR: 1.88±0.28 (0.90-2.65) 

 EOR, ECR 97(53,43) Table 1  

23 Linkenkaer-Hansen 
(2007) 

Adolescent 
(16.50-19.50) 

HE  Channelwise 
(Alpha, Beta) 

Alpha: (0.70-0.74±0.08-0.11) 
Beta:(0.61-0.66±0.07-0.09) 

 ECR 390 
(196,194) 

Table 1  

24 Gao, F. (2017) Adolescent 
(18.30±2.80) 

HE  Channelwise 
(Delta-
Gamma)est 

Alpha: ~0.80 
Beta: ~0.70 

0.60 
0.40 

ECR 15(15,0) Fig 2  

25 Donoghue (2020) Young Adult 
(19.56±1.90) 

1/f 
(FOOOF) 

Channelwise 
(Cz) 

1.43±0.25  EOR 16(8,8) Auth Corr., 
Results 

 

26 Linkenkaer-Hansen 
(2001) 

Young Adult 
(20-30) 

1/f (PLE) 
 
HE  
 

Global (Alpha 
[8-13Hz]) 
4-channel avg 

PLE ECR: 0.36±0.17 
PLE EOR: 0.51±0.12 
HE ECR: 0.68±0.07 
HE EOR: 0.70±0.04 

 EOR, ECR 10(9,1) Results Y 

27 Muthukumaraswamy 
& Liley (2018) 

Young Adult 
(23.00±??) 

1/f 
(IRASA) 

Global, 
 
Channelwise 

lf 1.36(1.12-1.72) 

hf 1.48(1.18-1.81) 

lf  frontal maxima: 1.72 

hf  central maxima: 1.81 

 ECR 17(17,0) Methods, 
Supp. Fig 7 
 

 

28 Pathania (2021) Young Adult 
(20.88±2.24) 

1/f (PLE) 
1/f 
(FOOOF) 

Global 
(FOOOF), 
Regional 
(FOOOF), 

1.36±0.26 
F(1.18±0.34), C(1.40±0.28),  
P(1.46±0.28), O(1.41±0.29) 

 EOR 59(19,40) Auth Corr.  

29 Barry and de Blasio 
(2021) 

Young Adult 
(21.20±3.80) 

1/f  PN 
Slope 
(PaWNextra) 

Global 
 
Channelwise (30 
channels) 

EOR (session 1, 2 average): 1.07±0.33 
ECR: 1.22±0.38 
EOR: 0.41-1.50 (Fp1, Cz) 
ECR: 0.38-1.22 (Fp1, C4) 

 EOR, ECR 20(3,17) Auth Corr.  
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30 Merkin (2023) Young Adult 
(22.20±3.90,18–35) 

1/f 
(FOOOF) 

Global est 
Regional 

~1-2.1 
~ range 1.3-1.6 YA 

 ECR 85(37,48) Sections 2.1, 
3.1, Supp. S5 

 

31 Ke (2022) Young Adult 
(22.29±2.28) 

1/f 
(FOOOF) 

Global,  
Regional 
(Frontal, 
Central, Parietal, 
Occipital) 

Global (1.84±0.34) 
Frontal (1.99±0.35) 
Central (1.84±0.34) 
Parietal (1.76±0.37) 
Occipital (1.67±0.52) 

 EOR 90(44,46) Table 1, 
Auth Corr. 

 

32 Smit (2013) Young Adult 
(22.40, 21–25) 

1/f (PLE) 
HE 

Channelwise 
(Alpha [9-
13Hz])  
CP3 

Maxima (both): central midline, scalp ranges 
Hurst (0.70-0.80), 1/f (0.20-0.40) 
PLE = 0.43 
HE = 0.66 (Range: 0.66-1.04) 

 EOR 39(11,28) Fig 1B/C, 
Auth Corr. 

Y 

33 Zsido (2022) Young Adult 
(22.48±3.79) 

1/f 
(FOOOF) 

Global est ~1.40  ECR 31(?,?) Methods  

34 Immink (2021) Young Adult 
(22.67±3.85) 

1/f 
(IRASA) 

Global 2.06±0.13 (range: 1.82-2.48)  ECR 45(22,23) Section 3.1, 
Auth. Corr. 

 

35 Pathania (2022) Young Adult 
(23.29±3.47) 

1/f 
(FOOOF) 

Global (2-
25Hz), 
Regional 

1.17±0.23 
F(1.20±0.25), C(1.22±0.27), P(1.09±0.28), 
O(0.96±0.28) 

 ECR 21(11,10) Section 4.1,  
Figure 2B, 
Auth Corr. 

 

36 Cross (2022) Young Adult 
(25.00±7.13) 

1/f 
(FOOOF, 
IRASA) 

Global 
 

IRASA ECR: 1.11±0.30 
IRASA EOR: 1.08±0.31 

 EOR, ECR  35 (18,17) Auth Corr.  

37 Nakao (2019) Young Adult 
(19.57±?? 
18-21) 

HE Alpha [8-13Hz] FCz: 0.75±0.12 
Min (T7, 0.74±0.12) 
Max (O1, 0.80±0.13) 

0.50 
(0.48-0.60) 

ECR 23(11,12) Fig 5,  
Section 3.3, 
Auth Corr. 

 

38 Natarajan (2004) Young Adult 
(20.00±3.00) 

HE  Global (1-50Hz) 0.29±0.06 -0.42 ECR 30(15,15) Table 1  

39 Liu, S (2022) Young Adult 
(20-30) 

HE  Channelwise est 
(Broadband) 
[0.5-120Hz]  

EOR 
~0.80-0.82 

EOR 
0.60-0.64 

ECR, EOR 26(?,?) Fig 5  

40 Sleimen-Malkoun 
(2015) 

Young Adult 
(22.70±1.60, 18.80-25.10) 

HE Global (0.5-
100Hz) 

1.69 
Higher for posterior vs midline 

2.38 ECR 31(17,14) Fig 4 Y 

41 Irrmischer (2018) Young Adult 
(25.00±6.20) 

HE Global (Delta 
[1-4Hz], Theta 
[4-8Hz], Alpha 
[8-13Hz], Beta 
[13-45Hz]) 
 

ECR (N = 57) 
Theta: 0.66±0.01 
Alpha: 0.71±0.01 
Beta: 0.66 ± 0.01 
EOR (N = 23) 
Theta: 0.69±0.02 
Alpha: 0.75±0.02 
Beta: 0.70 ± 0.01 

ECR 
0.32 
0.42 
0.32 
EOR 
0.38 
0.50 
0.40 

EOR, ECR 57(22,35) Results  

42 Bornas (2013) Young Adult 
(24.61±7.03) 

HE  Regional (theta 
[3-7Hz], alpha 
[8-13Hz], 
broadband [1-
40Hz]): Central 
[C], Parietal [P], 
Occipital [O]) 

Theta 
C(0.75±0.07), P(0.76±0.07), O(0.74±0.07) 
Alpha 
C(0.76±0.07), P(0.80±0.08), O(0.85±0.10) 
Broadband 
C(0.85±0.07), P(0.86±0.06), O(0.88±0.06) 

Theta 
0.50,0.52 
0.48 
Alpha 
0.52, 0.60 
0.70 
Broadband 
0.70, 0.72 
0.76 

EOR, ECR 
average 

56(20,36) Table 1  

10 
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Risk of Bias 
Across the 12 QuADS items examined, the performance of included studies was generally 

strong across all items with average scores exceeding 2 (scale 0-3, Supplementary Material III). 
Studies generally showed the weakest performance in terms of providing recruitment data, 
discussing study strengths and limitations and providing clearly defined research aims/hypotheses.  
 
Narrative Synthesis 

Of the 42 included articles (N=3,478 aggregated observations; 99 HEs+AEs/PLEs, 
1097HEs, 2282AEs/PLEs), seven included infants (5 AE/PLE, 2 HE), two included samples 
containing toddler cohorts (1 AE, 1 AE & HE), thirteen included children (9 AE, 3HE, 1 AE & 
HE), eight included adolescents (5 AE, 3 HE), and twenty-one included young adults (12 AE, 7 
HE and 2 HE and PLE). Most studies analysed data in either EOR or ECR conditions, though 
two studies used EOR-ECR averages to increase the signal-noise ratio (SNR) (no statistical ECR-
EOR differences were reported). The majority of 1/f β studies used the FOOOF package (22/42), 
and thus, for brevity, studies should be assumed to use FOOOF unless otherwise stated. Results 
are discussed as measured (i.e. HE as HE, not AE), with later discussion on the utility of value 
conversion (see also Table 1). 

Overall, the method employed to measure 1/f β only has a marked impact when comparing 
converted HE with measurements of AE/PLE, whilst comparisons of direct measures (i.e. 
measures not converted from HEs) show no difference between calculation methods (Figure 2A). 
Focusing on direct AE measures, the global AE decreases from infancy to toddlerhood and 
remains within more confined AE ranges thereafter (Figure 2B). However, the interpretation of 
this trajectory hinges on an accurate characterisation of AEs during infancy (via sufficiently 
powered studies), whereas currently, few studies exist. Further, there does not appear to be a 
difference between global versus regional AEs across the lifespan (Figure 3A), evident also on a 
regional scale (Supplement V). Both ECR and EOR AEs display broad variability (Figure 2B), 
particularly in young adulthood (YA), irrespective of study size. Following infancy, regional and 
global age-related changes generally overlap, with the highest (global) between-study variability 
observed in YA. These data suggest no differences between AE estimation method, resting-state 
paradigm, or the level of scale measurement (for most stages). Given the comparability of EOR 
and ECR, we plot results only for EOR where study data for both conditions is available. 

In EOR, we observe age-related AE stabilisation following infancy, with the centre of this 
trajectory in line with the infant AE estimates of Carter Leno et al., (2022)(Figure 3B). In summary, 
there is insufficient evidence in infancy-toddlerhood to validate exponential AE decay, and from 
childhood onwards AEs seem to vary (partly due to the broad spread of ages in individual studies, 
as reflected in the age SDs). Whether consistent AE decreases occur from infancy to toddlerhood 
is likely to be better revealed by studying data at the individual level, dissecting both within- and 
between-study variability with greater precision. This includes exploring the impact of parameter 
decisions, such as the number of peaks fit and peak height which affect slope estimation and 
therefore AE estimates. Notably, the topography of the AE changes with age (Figure 4) with AE 
maxima shifting from posterior foci during infancy (and early toddlerhood) to the midline with 
continued development. Comparatively, changes in the HE across early development are equally 
subtle, with evidence from the majority of included studies illustrating that HEs vary by < 0.10 for 
any given band across the early life span. 

 
Hurst Exponent: Infancy-Young adulthood 

For the HE synthesis, twenty-four studies were included: seven containing infants, one 
containing toddlers, four containing children, three containing adolescents and nine containing 
young adults. Infants displayed persistent neural activity patterns (HE>0.50) from delta-beta bands 
(1-30Hz), during wake (Smith et al., 2017) and sleep (Smith et al., 2021). Whilst no studies explicitly 
examined HE maturation in infancy or toddlerhood, one study used a sample containing toddlers. 
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Houtman et al., (2021) showed that in an infant-toddler sample, HEs vary from ~0.65-0.68 across 
the scalp (with no statistical difference observed between toddlers and children). In childhood, 
studies collectively showed similar HE in older children, with HE also >0.50: Bruining et al., (2020) 
showed global HE of 0.66±0.04 during ECR in older children (the same sample used in Houtman’s 
work). Moreover, in a study from ages 5-71yrs (5-7, 16-18yrs longitudinally), Smit et al., (2011) 
identified age-related changes in alpha (5-18yrs occipital maxima, 25yrs: parietal maxima) and beta 
band HEs (5, 7yrs frontal maxima, 16-50yrs: occipital maxima). By contrast, the theta band HE of 
Smit et al., (2011) are stable and parietal dominant from childhood (5yrs) until YA (25yrs) before 
switching to frontal dominant in adolescence. Conversely, Kwok et al., (2019) observed anti-
persistent trends (HE<0.50) for global alpha band HE (EOR: ~0.09, ECR, ~0.06) and identified 
ECR-EOR differences unrelated to age. HEs remain consistent throughout adolescence, with 
ECR alpha and beta band HE (Linkenkaer-Hansen et al., 2007) similar across studies (Gao et al., 
2017).  In YA, Smit, Linkenkaer-Hansen and de Geus (2013) identify EOR alpha band HE maxima 
in the central midline consistent with other ECR and EOR studies (Linkenkaer-Hansen et al., 2001). 
Moreover, other EOR studies illustrate increasing HE with age; both Nakao et al., (2019) and Liu 
et al., (2022) reported consistent ECR alpha band HE across the scalp. However, Natarajan et al., 
(2004) report considerably lower global HE (0.29 vs ≥0.70-0.80 in other studies), and Sleimen-
Malkoun et al., (2015) identify a broadband global HE  of 1.69, suggesting non-stationary (variation 
unrestricted to a singular mean/setpoint) with occipital maxima and frontal minima. Overall, 
studies continue to demonstrate posterior (occipital) HE maxima for the alpha band (Irrmischer 
et al., 2018; Bornas et al., 2013) consistent with prior power-based studies. In addition, Irrmischer 
et al., (2018) showed that for theta and beta bands, global EOR HE exceed ECR HE. Overall, the 
HE lifespan trend entails mostly subtle increases in HE with age, differing depending on the band 
examined and falling within a range of 0.60-0.80 (non-stationary and persistent).  
 
Aperiodic/Power Law Exponents: Infancy-Young adulthood 

For the AE/PLE synthesis, thirty-six studies were included: five containing infants, two 
containing toddlers, ten containing children, five containing adolescents and fourteen containing 
young adults. Infant AE (typically >2.00) was higher than in any other lifespan stage for the 
included studies and appeared to decrease throughout infancy. For instance, Schaworonkow and 
Voytek (2021) described global AE decreases from 40-134 postnatal days with posterior maxima 
(40-70days: 3.21, 70-96days: 2.95, 96-134 days: 2.75). In younger infants (0.12 vs 0.81yrs), 
Karalunas et al., (2022) observed EOR-ECR AE averages that were maximal in the midline (2.48, 
Cz). Conversely, Carter Leno et al., (2022) studied 10-month-old infants and identified global AE 
of 1.50, with no significant regional AE differences nor age effects. By contrast, the evidence from 
PLE studies shows much lower 1/f estimates; during movie-watching, infant global PLE was 
~0.58 for Roche et al., (2019), considerably below global PLE observed by Fransson et al., (2013) 
(2.07, occipital cortex). 

The largest gap in the developing AE literature sits in toddlerhood; toddler AE are the 
least characterised of the studied lifespan stages, with only one study evident (Houtman et al., 2021), 
which described AE that were maximal in the midline (~1.50-1.60). Additional insights were 
gained from the toddler sub-cohort (N=5) of Cellier et al., (2021) wherein steeper posterior (1.27-
1.83) than frontal (0.47-1.81) AE were observed. Moreover, Cellier et al., found that AEs 
significantly decreased with age across their full cohort (3-24yrs) from toddlerhood through young 
adulthood (r = -0.36). 

In comparison with other lifespan stages, AE and HE have been best characterised in 
childhood. Childhood studies recruited TD (McSweeney et al., 2023; Tröndle et al., 2022; Cellier et 
al., 2021) and case-control child cohorts for comparison with neurodevelopmental conditions 
including ADHD (Peisch and Arnett, 2022; Arnett, et al., 2022a, b) and Fragile X syndrome 
(Wilkinson and Nelson, 2021). Childhood AE studies show higher AE than in infancy-
toddlerhood, shifting from negative linear AE decay to a positive trend from early to late childhood. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.578622doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.02.578622
http://creativecommons.org/licenses/by-nc-nd/4.0/


PREPRINT MANUSCRIPT 

 11 

Studies in overlapping ages for early (Wilkinson and Nelson, 2021; Robertson et al., 2019; Peisch 
and Arnett, 2022; Hill et al., 2022) and late childhood (Tröndle et al., 2022; Ostlund et al., 2021; 
McSweeney et al., 2021) are generally in agreement in terms of both the direction and range of AE, 
for both ECR and EOR (Figure 2B) and regional versus global (Figure 3A) respectively. This 
was also consistent with figure estimates for studies where data could not be directly obtained 
(Houtman et al., 2021). Two studies provided statistical evidence of a negative age-related AE 
trend; firstly by Peisch and Arnett (2022) in younger children (r =-.30, consistent with previous 
overlapping work: Arnett et al., 2022a, b), and secondly by McSweeney et al., (2023) in older 
children where a quadratic age-related AE decrease was observed, and ECR AE (1.77) significantly 
exceeded EOR (1.53) (a trend shown in other studies across the early lifespan, see Figure 2B).  

Two studies in childhood which have both AE data for ECR and EOR demonstrated these 
conditions to be comparable (Hill et al., 2022; Ostlund et al., 2021), alongside single-condition data 
(typically EOR) from other studies in this stage (Figure 2B). Equally, two studies with AE 
measures for both global and regional scales highlighted comparability across scales (Wilkinson 
and Nelson, 2021; Hill et al., 2022), with similar trajectories evident based on combined data from 
other studies as in Figure 3A (Robertson et al., 2019; Ostlund et al., 2021; Peisch and Arnett, 2022; 
Tröndle et al., 2022; McSweeney et al., 2021). Significant relationships between AE for both scales 
have also been reported for EOR but not ECR (Hill et al., 2022: [global] r = -.24, [regional] anterior: 
r = -0.28, central: -0.24, posterior: -0.35). Topographically,  AE maxima in late childhood seem to 
be parietal dominant (Peisch and Arnett, 2022; Tröndle et al., 2022).  
 In adolescence, three studies provided quantitative evidence for age-related AE decreases 
(Ostlund et al., 2021; McSweeney et al., 2021; Karalunas et al., 2022), with additional support for 
this decreasing trajectory in sub-cohort data from Cellier et al., (2021). Age-related decreases are 
observed for both ECR and EOR (Ostlund et al., 2021; McSweeney et al., 2021), with lower AE 
observed in females, and faster age-related flattening observed in males (McSweeney et al., 2021). 
Given the collinearity between EOR and ECR, some authors opted to average across conditions 
(Ostlund et al., 2021). Topographic data was only available from one study (Karalunas et al., 2022), 
highlighting AE maxima in the central midline and lateral electrodes (extending more frontally and 
laterally in higher density caps), with lower adolescent AE than in the study’s infant sample.  
 A more complex trend is observed during YA, with divergent lines of evidence suggesting 
an increased versus decreased age effect when taken as a whole. Early YA resting-state PLE studies 
report considerably lower estimates than studies leveraging methods accommodating for 
oscillatory peaks to derive AE. For example, Smit, Linkenkaer-Hansen and de Geus (2013) identify 
EOR PLE maxima in the central midline (0.20-0.40) whilst Muthukumaraswamy and Liley (2018) 
use IRASA to account for knees in the spectra by modelling multiple slopes, identifying global AE 

of 1.36 (1:0.1-2.5Hz, frontal maxima) and 1.48 (2:20-100Hz, central maxima) respectively. AE 
studies cluster between 1.30-1.60, similar to the range described by Merkin et al., (2023), 
irrespective of whether FOOOF (Donoghue et al., 2020; Pathania et al., 2021, 2022; Zsido et al., 
2022; Cross et al., 2022), IRASA (Muthukumaraswamy and Liley, 2018) or other methods (Barry 
and De Blasio, 2021) are utilised, and with similar patterns for ECR and EOR, though ECR AE 
remains higher. Two exceptions to this are noted (Ke et al., 2022; Immink et al., 2021), with one of 
these (Immink et al., 2021) identifying ECR AE estimates falling within the tentative infant AE 
range (>2.00). Merkin et al., also noted that regional (but not global) age-related AE changes were 
significant when accounting for peak parameters and goodness of fit and did not differ by region.  

In YA, the magnitude of ECR AE exceed that of EOR AE (Pathania et al., 2022; Cross et 
al., 2022; Barry and De Blasio, 2021), and topographical maxima centre around the central and 
frontal regions (Pathania et al., 2022; Barry and De Blasio, 2021), with an indication that this is 
more commonly frontal dominant (Ke et al., 2022). The differences in regional AE are smaller than 
in other lifespan stages, thus differences between these maxima (e.g. parietal - Pathania et al., 2021 
vs occipital - Pathania et al., 2022) are unlikely to reflect biological differences.   
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Figure 2. Consistency of the (A) global aperiodic exponent (μV2 Hz−1) across methods and (B) 
resting-state method for each lifespan stage.  
Studies are denoted beneath each plot, both figures include eyes open (EOR) and closed (ECR) 
rest; larger samples are encoded with higher alpha in each plot; see the marker legend for 
corresponding glyphs. Inf: Infancy, Todd: Toddlerhood, Child: Childhood, Adol: Adolescence, 
YA: Young adulthood, Ext Ad: Extended adulthood. Horizontal whiskers denote study age 
standard deviation (SD) whilst vertical whiskers denote 1/f β SD. Study numbers (white, black) 
only differ to enhance readability. ‘lf’ and ‘hf’ denote low and high frequency slope estimation 
ranges. For visibility, only global AEs are shown, whilst converted HE may include regional 
measures as the only recording sites available. 
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Figure 3. Consistency of the (A) global aperiodic exponent (μV2 Hz−1) across global and regional scales and (B) 
focusing explicitly on the global trend of AEs across lifespan stages.  
For studies where both EOR and ECR were available, only EOR was plotted, as to avoid excess 
overlap. (A) dotted lines indicate regional AEs, whilst solid lines denote global AEs. Alpha 
encoding as in Figure 2. Study numbers (white, black) only differ to enhance readability. (B) 
Colourisation by lifespan stage from infancy-young adulthood. ‘lf’ and ‘hf’ denote low and high 
frequency slope estimation ranges. 
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Figure 4. Illustrative regional maturation of the aperiodic exponent (μV2 Hz−1) with age. 
Due to limited access to study data for studies in each lifespan stage, topoplots have been 
generated from available eyes-open rest (EOR) data (references: #1, #9, #11, #15, #2 
respectively). For the toddler topoplot, transparency edits to the corresponding published 
topoplot were made as the data were not publicly available or supplied on request.  
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Discussion  
In this systematic review, we aimed to explore how and when EEG derived 1/f  measures 

change in early human development, and where variability within early lifespan stages exists. We 
found that AE and HE age-related changes have complex developmental patterns; (1) HE 
consistently exceeded 0.50 across development, suggesting persistent and non-stationary signals 
throughout the early lifespan (2) provisional evidence suggests AEs decrease throughout infancy 
(i.e. an increased excitation:inhibition ratio) prior to the AE varying within confined ranges across 
subsequent development, (3) this pattern is generally consistent across AE methods, (4) the 
magnitude of ECR AEs exceed that of EOR AEs throughout early development (with overlapping 
trends observed), (5) heterogenous post-infancy AE changes do not differ between global or 
regional scales and (6) a posterior-anterior shift in maximal AE occurs from infancy through young 
adulthood. 

 
Further evidence is required to determine age-related AE trends 

Despite the influence of narrowband oscillations on slope fitting and exponent estimation, 
PLEs show age-related decreases (Waschke, Wöstmann and Obleser, 2017). We find that AE 
changes non-linearly from childhood onwards, a finding in line with large child AE datasets in 
both the EEG (Cellier et al., 2021; McSweeney et al., 2023) and MEG (Thuwal, Banerjee and Roy, 
2021) literature. However, several other EEG studies fail to identify global (Merkin et al., 2023) or 
regional age-effects (Hill et al., 2022). As recent evidence suggests that the balance of E:I in early 
infancy may have key implications for brain development and function across the lifespan, infant 
AEs can provide an important early non-invasive marker of the integrity of functional brain activity. 
Provisional evidence shows decreases in global AEs from the first several weeks after birth in 
term-born infants, however, there are significant gaps in the literature, particularly in mid and late 
infancy. Recently, Rico-Picó et al., (2023) identified early decreases in global AE (6-9 months) and 
flattening thereafter (9-18 months). In toddlerhood, gaps in characterising AE are more significant, 
which impedes the interpretation of a qualitative ‘trajectory’ of AE development thereafter 
(particularly given the complex patterns of AE variability observed in childhood). A preprint by 
Wilkinson et al., (2023) partially addresses this toddler AE gap, charting resting AE from 2-44 
months, highlighting considerably flatter spectra than we observe here, with AE rising from 1.00 
to 1.20 (0-1200 days) and age-sex interactions being evident. Evidence from this work suggests 
that AE increases persist through infancy and toddlerhood. Physiologically, increased postnatal 
AEs (higher inhibition/lower excitation) are in keeping with the axiom that postnatal GABA-
related activity shifts from excitatory (depolarising) to inhibitory (hyperpolarising) postnatally due 
to changes in intracellular chloride concentrations (Ben-Ari et al., 2007; Kirmse et al., 2015; Ben-
Ari and Cherubini, 2022). However, as this GABA shift occurs in immature neurons, E:I balance 
later tilts towards excitation (during or following late infancy) as circuits and networks mature and 
glutamate signalling predominates. Whether net excitation or inhibition initially dominates activity 
in the developing brain is frequently disputed: evidence from rodent (postnatal days 2-12) and 
newborn infant frontal EEG (35-46 postmenstrual weeks) 1/f data show higher AEs are observed 
with increasing age (Chini, Pfeffer and Hanganu-Opatz, 2022), possibly due to a more protracted 
integration of interneurons (relative to pyramidal neurons) into emerging circuits.  

Furthermore, there is currently no consensus on whether at the earliest point in infant 

development E:I balance tilts more towards excitation or inhibition, as AE measure coverage in 

this window is limited. Wilkinson et al (2023)’s data suggests that all regional AEs but temporal 

AEs increase during infancy, whilst temporal AE decreases prior to a nadir~400 days, before 

increasing. Overall, these data and our findings agree that infant AE maxima are in the posterior 

channels overlaying occipital regions. However, our findings differ as to the direction of expected 

regional/global AE change. Whilst higher frequency peaks in Wilkinson’s data may have affected 

AE estimation, the authors performed comprehensive model fit screening. They modified slope 
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fitting functions in order to accommodate poor estimations at 10-20Hz, whereas modelling of 

knees or multiple slopes (as in Shuffrey et al., 2022) such as from 0.5-10Hz may have produced 

different findings. It is unclear whether this point could also extend to Chini et al’s data from early 

infancy. Overall, future AE research should seek to provide robust estimates of early neonatal AEs, 

identifying whether age-related decreases occur from the beginning of the neonatal period and 

continue through to late infancy. One approach to address this involves visualising pooled 

individual-level data across studies to get an accurate consensus of how AE varies within given 

stages (e.g. infancy) and, consequently, how variable it becomes across lifespan stages into 

adulthood. Importantly, the results of the group-level analysis reported here suggest that such an 

analysis should consider differing methodologies and model-fitting parameters to make robust 

comparisons.  

 
Comparable AE results across methods 

In contrast to early infancy, synthesising AE patterns across methods in subsequent 
childhood suggest that AE estimation methods are broadly comparable (except for converted HE): 
in YA in particular, FOOOF, IRASA, PawWNextra and PLE estimates overlap from 0.77-1.93. 
HEs differ in that whilst they inform us about the temporal persistence of EEG activity patterns 
(revealing when patterns become conserved across time), HEs are agnostic to the direction of 
change and tilting of the E:I balance spectra and thus only partially explain how E:I shapes evolving 
functional circuits/networks. Moreover, converted HE show substantial differences vs AE 
measured directly, likely as a result of: (1) many HE being characterised via DFA based on 
amplitude envelopes of specific bands (particularly papers from >2012), (2) time domain effects 
occurring due to reduced sampling windows and recording lengths, (3) data self-similarity which 

must be verified in source data for DFA and (4) conversion assuming DFA scaling exponents (⍺) 
are Gaussian (i.e. >0.5 or < 0.5) and not Brownian (~0.5)(Eke et al., 2002). Finally, (5) the HE does 
not accommodate for oscillatory influence, and thus similar to PLEs, converted AE will provide 
potential over- or underestimates of the true AE, potentially providing physiologically implausible 
estimates akin to what has been described in the frequency spectra literature (Barry and De Blasio, 
2021). Across the lifespan, HE studies consistently show persistent (0.50<HE<1.00), non-
stationary (HE>0.50) patterns in each lifespan stage, reminiscent of sustained processing during 
measurement, and notably, of properties of a system with memory whose signal is exhibiting 
positive correlations over time (Hardstone et al., 2012). Only Sleimen-Malkoun et al., (2015)’s study 

suggested non-stationarity (1>⍺>2, therefore HE=⍺-1) in the EEG during rest. It is, however, 
worth noting that detecting developmental changes in HEs requires both large subject samples 
and (noise-free) long epochs (Berthouze, James and Farmer, 2010) in order to characterise 
temporal correlations at multiple scales. This is all the more poignant given the individual variation 
in long-range temporal correlations within and across subjects (Linkenkaer-Hansen et al., 2007). 
Whilst the HE has been studied more deeply in adults, larger AE studies tend to focus on 
childhood. The HE studies captured by this systematic review were generally monofractal or 
equivalent multifractal measures (H(2)), though recent studies have tended to focus on multifractal 
EEG dynamics, potentially offering insights into more complex non-stationary scaling behaviours 
in EEG data (Zorick and Mandelkern, 2013); these methods thereby index E:I proxies at multiple 
temporal scales, akin to estimating 1/f slopes across multiple frequency ranges.   
 
ECR consistently exceeds EOR AE  

When focusing on AEs specifically, there was consistent evidence that the magnitude of 
ECR AEs exceeded that of EOR AEs across the lifespan. Childhood studies showed marginal AE 
increases in later (Hill et al., 2022; Tröndle et al., 2022; McSweeney et al., 2021) versus earlier 
(Robertson et al., 2019; Wilkinson and Nelson, 2021) childhood (for both EOR/ECR), although 
this may reflect greater between-dataset variability rather than genuine AE increases preceding a 
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prolonged age-related decline. Across early development, the greater magnitude of ECR vs EOR 
AE is driven not only by posterior dominant alpha band activity (Wilson, Castanheira and Baillet, 
2022) but also the activity in other frequency bands (Barry et al., 2007). Whilst some authors using 
other methods report FOOOF AEs are greater in EOR than in ECR, such as SPRiNT (Wilson, 
Castanheira and Baillet, 2022), our findings consistently show that studies using FOOOF, IRASA 
and PaWNextra find ECR AE to exceed that of EOR. Moreover, both EOR and ECR AEs follow 
similar trajectories suggesting these ‘resting’ E:I processes mature in similar ways, consistent across 
both regional and global scales. 

 
 

Regional vs Global AE 
For the most part, global AE magnitude exceeds that of regional AEs (Figure 3A), likely 

owing to the average rate of AE decrease across the scalp remaining constant across development 
whilst regional AE differs (as maturing regions shift developmentally). For example, regional 
changes in AE are apparent in early childhood, but equilibrate before YA and thus the 
neurobiological changes underlying AE changes during mature ageing are likely physiologically 
distinct from those in the earlier lifespan (Merkin et al., 2023). For example, using simultaneous 
EEG-fMRI during EOR, Jacob et al., (2021) identified posterior parietal AE maxima (~1.60) in 
adults, with global average AE (1.49) being associated with decreases in frontal and increases in 
cerebellar, insular and cingulate blood-oxygen-level-dependent fMRI activity. In later life, 
Aggarwal and Ray (2023) identify there are no age-related MEG AE differences in younger versus 
older adults up to 50Hz, but from 64-140Hz AE decreases and from 230-430Hz increases (higher 
inhibition), collectively suggesting that subtle GABAergic changes may occur in later life outside 
of spectral ranges accessible to EEG. Moreover, whilst AE maturation may taper in earlier 
development, AE development is not static thereafter. Differences between mid and older adults 
were evident in posterior channels, similar to what is observed in early development, suggesting 
that network hubs established in infancy are also the last to change during later ageing. However, 
it is worth considering that when producing regional estimates to inform network maturation, 
selecting spatially neighbouring high SNR channels is vital (Linkenkaer-Hansen et al., 2001). 
Therefore, whether estimating regionally or globally, researchers should utilise model fit statistics 
to ensure adequate representation of underlying neural data. Currently, only a minority of studies 
report model fits and fewer still include fits as covariates. Given the need to systematically validate 
lifespan AE, we consider model reporting to be vital to ensuring accurate characterisation of 
developmental trajectories.  
 
Regional AE maxima shift across typical development 

Topographical E:I maxima by definition relate to spectra with lower E:I balance (steeper 
AE spectra) relative to the rest of the brain, which in the absence of a stimulus (endogenous or 
exogenous) may suggest ongoing regional maturation (as opposed to flatter spectra and greater 
neural “noise” in ageing and pathology (Dave, Brothers and Swaab, 2018; Pertermann et al., 2019), 
or regions involved in networks which are more selectively held at baseline during conditions of 
rest. Understanding where AE are maximal (and neural noise minimal) provides insights into 
which regions are potentially undergoing maturational changes, which must first be characterised 
in TD to provide a referential maturational trajectory. We find that typical AE maturation displays 
a posterior-to-anterior shift in ageing (PASA), similar to the fMRI literature, with age-related 
reductions in occipital activity concomitant with increasing frontal activity (Davis et al., 2008; 
McCarthy, Benuskova and Franz, 2014). In longitudinal infant data at 6, 9 and 16 months, Rico-
Picó et al., (2023) show AE decreases more slowly in occipital (maximal) and frontal versus parietal 
and central areas. These AE changes temporally coincide with white matter maturation and 
ongoing activity integration in the toddler as sensorimotor skills emerge (Hagmann et al., 2010). 
From childhood to late adolescence, the difference between posterior and anterior AE seems to 
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grow with age across both sleep and wake, being the strongest in the second stage of sleep (Favaro 
et al., 2023). fMRI FC maturation at this point in development follows a sensorimotor-association 
gradient where primary sensory maturation precedes that of frontal executive and association areas 
(Sydnor et al., 2023).  Overall, AEs demonstrate PASA in line with prior neuroimaging evidence, 
and accordingly, centro-frontal regions seem to be the maturational ‘endpoint’ for early AE 
development (with the lowest neural noise), perhaps supporting an increasing processing 
requirement for cognitive function.  
 
Limitations and future work 

This review highlights the complexity of characterising group-level age-related AE changes 
across studies, methods, and spatial scales. Given the heterogeneity in AE estimates, AE must be 
estimated on relatively noise-free data (minimal evidence of physiological/non-physiological 
artefacts including eye movements, electrode bridging, line noise, cardiac and respiratory signals 
or sweat-induced artefacts). Simulation work suggests SNR>2 are appropriate for determining 
HEs (Linkenkaer-Hansen et al., 2007). SNR may also be influenced by equipment selection, 
particularly for acquisitions with reduced channels, poorer contact quality and/or more flexible 
sensors, designed for ‘active’ paradigms (see Grummett et al., 2015). There are further influences 
due to data constraints and processing decisions, including the effect of window length on 
smoothing, affecting peak estimates. Data reference schemes will also affect PSD and AE 
estimates (Gao, Peterson and Voytek, 2017), for which most included studies used average 
referencing (see Table 1 and Supplementary Material IV). Equally, filtering decisions affect the 
frequency range available for exponent estimation; as others have shown, estimations on lower 
versus higher frequency slopes differ (Shuffrey et al., 2022; Muthukumaraswamy and Liley, 2018) 
and may have different physiological interpretations in the contexts of neurodevelopment and 
pathophysiology. In addition, motion is generally unavoidable in infants and children, who may 
not tolerate prolonged recording periods, hindering attempts to use epoch averaging to increase 
SNR.  
AE estimation methods must, therefore, be valid for the applied dataset(s) and comparable with 
prior studies. For instance, when comparing FOOOF and IRASA results, a consideration is that 
IRASA evaluates spectral ranges beyond the fitted range in order to compute median AE using 
resampling factors (Gerster et al., 2022). Therefore, comparing results by exact frequency mapping 
results in evaluating upper or lower limit ranges which may be affected by filtering or noise, thus 
biasing AE estimation. Fortunately, IRASA and FOOOF AE estimates in this review overlap 
heavily, but this is nonetheless a consideration. Moreover, Gyurkovics et al., (2021) highlight that 
neural variability as captured by the 1/f β may differ between age groups, and spectra calculated 
from longer epochs (or averages) may be optimal for FOOOF as shorter single-trial spectrum 
models can overfit noise (due to the number of free parameters). For specific limitations and 
strengths of either method, see Gerster et al., (2022). Other tools for parameterising the AE have 
been introduced recently, but these have yet to be applied to resting scalp EEG (Seymour et al., 
2022). Beyond methodological choices, AEs may also change based on genotype, task paradigm, 
and cognitive state (He, 2014; Voytek et al., 2015; Donoghue et al., 2020), hence the focus on quasi-
resting states and typical development in this review. The reviewed literature discussed provided 
(predominantly) cross-sectional measures of AE across development. However, the AE varies 
both statically across (e.g. 0.68-2.77 in Tröndle et al., 2022) and dynamically within individuals 
(during recordings), especially in task-specific contexts. For example, Wilson, Castanheira and 
Baillet (2022) show that the AE varies over time in the resting-state, with YA AEs predictive of 
subject state (EOR vs ECR). Ultimately, more complex modelling may be required to evaluate 
how AE variation within-individual differs from results observed across individuals. Moreover, we 
suggest that the pooling of individual datapoints from constituent studies and a quantitative 
analysis thereof may better distinguish how age (and sex) influence biological AE changes across 
the lifespan.  
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 In addition to limitations inherent to the methods of studies included in the review, there 
are limitations to the review itself. Given the sparsity of effect size measures for AE and age 
(age*AE correlations or age-related mean group differences between EOR and ECR AE) it was 
not possible to produce a meaningful meta-analytic measure of age-related AE change. In addition, 
our inclusive search approach (including searches for terms relating to fractal measures to ensure 
sufficient HE data was sourced to provide adequate converted comparisons) resulted in significant 
heterogeneity. The suitability of including infant AEs where participant attention was captured 
using “toys” (Carter Leno et al., 2022) as a “resting” AE measure could be disputed. However, we 
perceive this to be a necessary means to engage young infant participants and minimise motion, 
and in the trajectories we have qualitatively illustrated, these AE estimates are consistent with a 
trend of decreasing AEs from infancy towards childhood.   

 
Summary 

In summary, this review demonstrates that age-related AE changes in early development 
are complex. However, there are significant gaps in the data which currently prevent the robust 
establishment of age-related directions of change and reliable AE ranges, particularly in infancy 
and toddlerhood. We identify consistent AEs across methods and scales and confirm higher values 
of ECR than EOR, as well as developmental changes in AE maxima. However, our review 
exclusively characterises the maturation of AEs in the resting state. Thus, specific task-related AE 
changes across the lifespan remain to be explored. As AE data is made available to the community, 
we can collectively extend the findings of this review to advance knowledge of how E:I shapes FC 
in early development. Moreover, characterising typical AE development provides a point of 
reference for exploring atypical development in which early life E:I balance is perturbed, where 
AEs could act as a potential non-invasive biomarker. 
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Development of the Aperiodic exponent (AE) throughout early life is complex

Key gaps in infancy and toddlerhood 
AE must be addressed in order to

understand AE development1
AE development is heterogenous 
from childhood onwards; further 

evidence is required to adequately 
characterise age-related trends

2
Topographical AE change occurs 
from front-to-back across early 

development3
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