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Abstract

Spatial omics technologies are increasingly leveraged to characterize how disease disrupts tissue organization and cellular
niches. While multiple methods to analyze spatial variation within a sample have been published, statistical and
computational approaches to compare cell spatial organization across samples or conditions are mostly lacking. We
present GraphCompass, a comprehensive set of omics-adapted graph analysis methods to quantitatively evaluate and
compare the spatial arrangement of cells in samples representing diverse biological conditions. GraphCompass builds upon
the Squidpy spatial omics toolbox and encompasses various statistical approaches to perform cross-condition analyses
at the level of individual cell types, niches, and samples. Additionally, GraphCompass provides custom visualization
functions that enable effective communication of results. We demonstrate how GraphCompass can be used to address
key biological questions, such as how cellular organization and tissue architecture differ across various disease states and
which spatial patterns correlate with a given pathological condition. GraphCompass can be applied to various popular
omics techniques, including, but not limited to, spatial proteomics (e.g. MIBI-TOF), spot-based transcriptomics (e.g. 10x
Genomics Visium), and single-cell resolved transcriptomics (e.g. Stereo-seq). In this work, we showcase the capabilities of
GraphCompass through its application to three different studies that may also serve as benchmark datasets for further
method development. With its easy-to-use implementation, extensive documentation, and comprehensive tutorials,
GraphCompass is accessible to biologists with varying levels of computational expertise. By facilitating comparative
analyses of cell spatial organization, GraphCompass promises to be a valuable asset in advancing our understanding of
tissue function in health and disease.
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1. Introduction molecular profiles while maintaining information about the
locati f cells, theref bli the stud f cell-cell
The spatial arrangement and interactions of cells under oca IOI’IS. O. e s,. erefore enablng © .su v o .ce e
communication [Fischer et al., 2023] and tissue architecture
[Fischer et al., 2022, Wu et al., 2022]. Spatial omics technologies

have been increasingly leveraged by researchers interested in

different physiological and pathological states provide insights
into the underlying mechanisms of tissue function and disease
progression. Understanding cell spatial organization is not only . X K X i R
. . . . . delineating mechanisms that disrupt tissue homeostasis and
essential for deciphering physiological processes but also for N K . . K
. . R . . cellular niches in diseased individuals. For example, spatial
advancing diagnostic and therapeutic strategies [Rao et al.,
2021, Palla et al., 2022a, Williams et al., 2022].

Spatial omics have emerged as a powerful technology for

transcriptomics data has been instrumental in deciphering
spatial dysregulation in ischemic hearts [Kuppe et al., 2022].
Additi 11 tial t ics data has b d to elucidat
profiling cellular phenotypes in their tissue context. Spatial ! 1ona.y, spatial bro eom'lcs a B.L as. een use oe}1c1 ate
N . . . R cellular neighborhoods associated with disease progression and
transcriptomics methods such as 10x Genomics Visium [Stahl

et al., 2016] and Stereo-seq [Chen et al., 2022], as well as
spatial proteomics methods such as CODEX [Goltsev et al.,

2018] and MIBI-TOF [Keren et al.,, 2019], can measure

response to therapy in breast cancer [Risom et al., 2022].
Related work has looked into identifying cell interactions
[Fischer et al., 2023], spatial clusters [Zhao et al., 2021, Varrone
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Fig. 1. GraphCompass offers graph and statistical analysis methods to compare the spatial organization of cells across different

conditions. a GraphCompass workflow. All spatial omics datasets that are stored as AnnData objects are currently supported. Support for SpatialData

objects [Marconato et al., 2023] will be added in the near future. Select a region of interest (ROI) with napari (GitHub) or use the entire tissue section.

‘We use Squidpy to encode spatial omics measurements as graphs. If available, add node labels, such as cell types. Then, compare graphs across conditions

or samples using any of the methods implemented in GraphCompass. b The example datasets covered here represent various technologies and different

modalities. ¢ In our framework, samples are represented as cellular graphs in which nodes correspond to cells or spots and edges denote spatial proximity.

Nodes may be labeled (colored) based on their cell type and samples representing the same condition are grouped together to account for sample variation.

d-f GraphCompass integrates multiple spatial metrics to find statistically significant differences in spatial organization across experimental conditions,

utilizing spatial information at various abstraction levels. d Analyse graphs that consist of a single cell type and compare them between conditions

using graph distance metrics (cell-type-specific subgraphs comparison). e Perform neighborhood analysis by retrieving cell-type neighbors enriched in

one condition compared to another (cellular neighborhood comparison). f Using a holistic approach, compare entire graphs representing data obtained

under two or more conditions (entire graphs comparison).

et al.,, 2023], and niche composition in individual samples
[Bernstein et al., 2023]. However, methods to compare spatial
organization across different sample groups are still lacking.
Such methods would be instrumental in elucidating how the
arrangement of cell types influences the overall state of a tissue.
In this work, we model spatial omics samples as graphs of
cells to enable differential analysis of phenotypes. We focus on
providing easy-to-use graph metrics and statistical methods for
the comparative analysis of cell spatial organization. Studying
changes in niche composition and tissue architecture is essential
to unlock new insights into the role of tissue organization in
prognosis and diagnosis [Rao et al., 2021, Palla et al., 2022a,
Williams et al., 2022].

We introduce GraphCompass (Graph Comparison Tools
for Differential Analyses in Spatial Systems), a Python-
based framework that brings together a robust suite of graph
analysis and visualization methods, specifically tailored for the
analysis of cell spatial organization using spatial omics data.
Developed on top of Squidpy [Palla et al., 2022b] and AnnData
[Virshup et al., 2021], our methods are easily integrated into
existing spatial omics analysis workflows. The framework’s
modular design ensures adaptability and compatibility with
various single-cell data analysis packages (Figure la). Available
for community use and collaboration, GraphCompass can be
accessed at https://github.com/theislab/graphcompass/, where

we provide extensive function documentation and tutorials. We
adapted the methods to make them flexible enough to handle
large feature spaces (>20,000 genes), different resolutions
(e.g. spot or single-cell), and multiple modalities of spatial
omics data (Figure 1b). To showcase the broad applicability
of the methods in our suite, we curate datasets from three
different spatial omics techniques and show that our methods
recapitulate experimental results, additionally providing novel
insights into the global changes in tissue organization under
different disease and developmental stages. The collection of
omics-adapted methods we present are an effective hypothesis-
generating tool that may inform the development of new
diagnostic methods and therapeutic targets.

To the best of our knowledge, GraphCompass is the first
method to enable differential analysis of spatial organization
across conditions at three levels of abstraction: cell-type-
specific subgraphs (Figure 1d), multi-cell niches (Figure le),
and entire graphs (Figure 1f). Though other methods, such
as CellCharter [Varrone et al., 2023] and MENDER [Yuan,
2024], also attempt to differentiate samples based on their
neighborhood composition, they rely on clustering algorithms,
and hence a well-chosen number of clusters. Here, we propose
to perform differential niche analysis by studying enriched
pairs of neighbor cells. We also present approaches that
have never been applied to spatial omics before, such as the
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Wasserstein Weisfeiler-Lehman kernel and filtration curves.
We adapt them to large continuous feature spaces, a typical
characteristic of spatial omics data, and show that these
metrics are powerful tools to compare samples and sample
groups, capturing both local and global information. In this
manuscript, we demonstrate the capacity of our methods to
reproduce results consistent with previously published findings,
as well as provide novel mechanistic hypotheses. To date,
GraphCompass is the most comprehensive toolkit aimed at
differential neighborhood composition and spatial organization
analysis in the context of spatial omics technologies applied
to disease studies. We hope that this framework will empower
significant advancements in understanding the complexities of
cell organization within the spatial context of tissues, both in
health and disease.

2. Methods

2.1. Graph construction

In the realm of spatial omics, nodes in the graph represent
either individual cells or predefined spots. The nature of the
node depends on the type of spatial omics technology used:

1. Cell-Based Data:
each node corresponds to an individual cell. Every node

For single-cell resolution techniques,

is associated with a node attribute, namely the cell’s
transcriptomic profile.

2. Spot-Based Data: Technologies like Visium provide data at
the level of spots, which are predefined, regularly spaced
areas on a tissue section, each containing multiple cells. In
this scenario, each spot, with its aggregated gene expression
information, forms a node.

Edges represent spatial proximity between nodes. The edge
construction method depends on the data’s layout:

1. Grid Layout: In spot-based technologies like Visium, where
spots are arranged in a fixed grid, edge construction
is relatively straightforward. Graph edges are typically
defined based on direct neighbors in this grid, leading to
a structured, regular graph topology.

2. TIrregular Layouts: For data not laid out in a grid, defining
node adjacency requires more sophisticated methods.
Delaunay triangulation is a common approach used here.
It involves creating a triangulated mesh such that no node
lies inside the circumcircle of any triangle. This method
effectively captures the proximity between irregularly
spaced cells.

Once the graph is constructed, it serves as a foundational
structure for various differential analyses: comparing cell-
type-specific subgraphs, cellular neighborhoods, and entire
graphs between experimental conditions, developmental stages,
or disease states. We use existing methods within Squidpy
to compute a spatial graph from various types of spatial
omics data. These graphs serve as the input for the analysis
and visualization algorithms implemented in our package. We
describe these analysis functions in the next sections.

2.2. Comparing cell-type-specific subgraphs

We introduce two graph distance metrics to compare cell-
type-specific graphs between different conditions: portrait and
diffusion methods. Both methods provide similarity scores

sraphCompass | 3

between two networks of cells that represent two different
conditions.

2.2.1. Portrait Method

This method creates a so-called “portrait” of a graph, which is
a way to represent the overall structure of the graph [Bagrow
and Bollt, 2019]. The portrait of a graph typically includes
information about the distribution of distances between nodes
and degree distribution. The idea behind the portrait method
is to capture the essence of the graph’s topology in a
comprehensive snapshot.

Given two graphs G and G’, we first define the network
portrait B of each graph as an array with | X k elements, such
that

B, = |(vi,vj) : D =1,degree(i) = k. (1)

Here, (v;,v;) are node pairs of graph G such that the shortest
path between v; and v;, D;;, equals I. The degree of a node
is defined as the number of edges incident to that node. We
do not compare G and G’ directly. Instead, we compare their
network portraits B and B’, such that A(G,G’) = A(B,B’)
(that is, such that the difference between the network portraits
approximates the difference between the graphs). To compare
the network portraits, we calculate the weighted distributions
P(k,l) and Q(k,1), such that

kB
P(k’l)fﬁ’
Q1) = D0 @)

Zc ne2 ’

where n. represents the number of nodes within a given
connected component ¢, and >, n. = N, with N being the
total number of nodes in the graph. We subsequently compare
the two distributions using the Jensen-Shannon divergence:

Dys = LKL(PIIM) + L KL(@I[M), )

where KL is the Kullback—Leibler divergence and M = %(P —+
Q). D;s is the similarity score between the cell-type-specific
graphs G and G’, each representing a different experimental
condition or co-variate. Here, a high similarity score implies
maximally different graphs, and a low score implies that graphs
are nearly identical. This comparison is repeated for every cell
type present in both graphs. Cell-type-specific similarity scores
are jointly visualized to determine which cell types are most
similarly organized across both conditions.

2.2.2. Diffusion Method

Diffusion, in the context of graphs, refers to the process of
spreading a certain amount of an imaginary substance (like
information, heat, etc.) across the nodes of a graph over time.
Diffusion on graphs can be intuitively understood through the
analogy of balls connected by springs. When you impart energy
to one ball in the system (for example, by hitting or pushing it),
this energy is represented by the ball’s movement. As the ball
starts moving, it stretches or compresses the springs connected
to it (the edges in the graph). This, in turn, transfers energy
to the balls (nodes) at the other ends of these springs. Balls
directly connected to the moving ball receive the energy first,
and then the energy propagates to others in a ripple-like effect.
The overall structure of the graph (how balls are connected by
springs) affects the energy diffusion pathway and rate.
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Diffusion on graphs is implemented by NetLSD [Tsitsulin
et al., 2018], a Python library that encodes a so-called “trace
signature” to capture the energy diffusion process. The trace
signature is computed as follows: Given graph G, calculate its
normalized Laplacian as

L=I-D 7AD" 3. (4)

A and D are the adjacency and degree matrix of G, respectively.
Next, we compute the closed-form solution to the heat equation
associated with the normalized Laplacian, which is defined as

ou
aTt = —Luy, (5)

where u; represents the imaginary “energy” of a given node at
time t. The solution to the heat equation is then computed as

n

Hy=e =3 e ™a;0]. (6)
=1
Here, H;;; quantifies the amount of energy transferred from
node v; to node v; at time t. As a last step, we compute the
heat trace h; as the trace of Hy, such that

hy = tr(Hy) = Ze_“‘f. (7)
J

To compare two graphs, we simply compute the Lo distance
between the corresponding heat traces computed at different
times t,

4G, G = | S (he — )2, (8)

2.3. Comparing cellular neighborhoods

To compare cellular neighborhoods between different conditions,
we leverage Generalized Linear Models (GLMs). These models
allow us to determine statistically significant changes in
the neighborhood enrichment (i.e., the enrichment of spatial
proximity between two cell types) across multiple conditions,
offering a deeper understanding of the spatial density and
distribution of specific cell types relative to others under a
given condition. Here, we refer to a pair of cell types as
“enriched” if they neighbor each other more often than we
would expect based on random chance. We first compute
neighborhood enrichment in each sample separately using
Squidpy’s nhood_enrichment function. This function calculates
the observed number of each cell type pair, which is then
compared against the expected frequency. This expected
frequency is determined through permutation tests.

The nhood_enrichment function returns a n X n matrix Z
containing enrichment z-scores. Z;; represents the enrichment
of the pair that consists of cell type ¢ and cell type j. Since
this matrix is symmetric, we extract the upper triangular
portion, which we flatten to obtain a 1 X n vector representing
neighborhood enrichment in a single sample. Given m samples,
we concatenate their corresponding vectors along the condition
axis to obtain a m X n matrix for usage in linear models
(neighborhood enrichment z-scores) or Poisson and Quasi-
Poisson Generalised Linear Models. For the latter two, we
model the counts of each observed cell type pair in each
neighborhood rather than the z-scores. The Quasi-Poisson
model is particularly appropriate when neighborhood counts
are sparse for a pair of cell types. We include a fixed linear term
to account for the “batch/subject/patient” co-variate, and an
interaction term between all levels of the condition and cell type
pair factors to fit the models.

AHerpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

2.4. Comparing entire graphs

We present two methods to perform holistic graph comparisons:
filtration curves and Weisfeiler-Lehman graph kernels. Both
methods result in graph embeddings that can be compared
against one another to obtain a broad measure of tissue
architecture similarity.

2.4.1. Filtration Curves

In the context of Topological Data Analysis (TDA), filtrations
are a fundamental concept used to understand the shape of
data [O’Bray et al., 2021]. The basic idea is to gradually
“grow” or “filter” the data and observe how topological features
such as connected components, holes, and voids evolve. We
define a graph filtration as a sequence of nested subgraphs
o C Gi C G2...Gyy, C G, ordered by edge weights. Let
G = (V,E,w) be a weighted graph, where w : E — R is
the weight function assigning a real number to each edge, here
defined as the Euclidean distance between the gene expression
matrices associated with neighboring nodes. To generate the
filtration curve, we order the edges based on their weights,
obtaining a series of weights w1 < wa ... Wm—1 < Wy,. O'Bray
et al. [2021] define the i*" graph in the filtration, G;, as the
subgraph that includes all edges whose weight is less than or
equal to w; as well as all nodes connected by said edges. Since
our distance function can take on any positive real number,
we compute ten threshold values from the collection of edge
weights to restrict the algorithm’s computation time. We define
the threshold values as the 10th, 20th, ..., 90th and 100th
percentile. At every filtration step, the algorithm analyzes the
properties of the subgraph by evaluating a graph descriptor
function. Assuming every node has been assigned a node label
(i.e., a cell type), we can simply compute the number of each
cell type present in the subgraphs. Computing and comparing
filtration curves is an efficient approach for representing graphs
and contrasting two graphs or sets of graphs.

2.4.2. Weisfeiler-Lehman Graph Kernels

The Weisfeiler-Lehman (WL) graph kernel is a powerful
technique used in graph theory and machine learning,
particularly in the context of graph classification and similarity
analysis. Boris Weisfeiler and Andrei Lehman introduced it in
the late 20th century as a graph isomorphism test [Weisfeiler
and Leman, 1968]. Though it has been shown that there
are non-isomorphic graphs that cannot be distinguished by
this algorithm, it has been successfully implemented as a
graph similarity measure [Shervashidze et al., 2011]. Broadly
speaking, the algorithm consists of three steps: node label
augmentation, iteration, and kernel computation. In each
iteration, the node label of a given node is transformed into
an augmented label, or multi-set of labels, that contains the
original label as well as the labels of the given node’s neighbors.
The augmented label is subsequently hashed, resulting in a new,
compressed node label. Given a graph G = (V, E), where V is
a set of nodes (vertices) and FE is a set of edges, we can define
the node label augmentation step as

ah+1(v) = hash(ah(v)y-/\/‘h(v))v ©)

We define a” (v) as the compressed label of node v at iteration
h. Similarly, N (v) represents the neighbor labels at iteration
h. Lastly, we define a®(v) as the original label of node v. The
node labeling step is repeated for a pre-specified number of
iterations. After the iteration process, the labels assigned to
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the nodes are used to compute a kernel matrix. This matrix
quantifies the structural similarity between pairs of graphs. The
original formulation of the algorithm restricts its use to graphs
with discrete labels. However, some of the more common spatial
omics methods, most notably Visium, do not produce single-
cell-resolved data. Each spot may contain more than one cell,
complicating cell type assignment. The spot is best represented
by its associated gene expression matrix. The Wasserstein WL
kernel [Togninalli et al., 2019] extends the WL kernel from the
discrete to the continuous case. We define a” (v) as the attribute
of node v at iteration h. Let w(v, u) be the weight of the edge
between nodes v and u. Then, the updated node attribute at
iteration h + 1 is computed as

ah(v)+; S w(w,u)a(u) | . (10)

" () = 1
2 deg(v) weN ()

Once node embeddings have been computed, the algorithm
evaluates the distance between pairs of nodes (v;, v;) for each
v; € V and each v; € V', resulting in distance matrix D. Here,
we define the distance between nodes v; and v; as the Euclidean
distance between their corresponding gene expression matrices.
Lastly, the algorithm quantifies the similarity of graphs G and
G’ by measuring the Wasserstein distance between them as

W = min(T, D), 11

where 7 € I' is a transport matrix and (-, ) is the Frobenius
dot product.

3. Results

In the next sections, we demonstrate the utility of
GraphCompass methods by analyzing three datasets derived
from three different technologies and spatial systems (MIBI-
TOF breast cancer [Risom et al., 2022], 10x Genomics Visium
heart [Kuppe et al., 2022], and Stereo-seq axolotl [Wei et al.,
2022]).

implemented in GraphCompass, highlighting what can be

We only use analysis and visualization functions

learned from each function.

3.1. Spatial organization of the tumor
microenvironment and breast cancer progression

Risom et al. [2022] used multiplexed ion beam imaging by
time of flight (MIBI-TOF) [Keren et al., 2019] with a 37-
plex antibody staining panel to study changes in the tumor
microenvironment during the transition from ductal carcinoma
in situ (DCIS) to invasive breast cancer (IBC), allowing them
to identify spatial and functional changes in various cell
types, including myoepithelial cells, fibroblasts and immune
cells (Figure 2a). They compared normal samples to both
DCIS samples and IBC patient samples. DCIS samples can
be further divided into progressors (samples that progress
from DCIS to IBC) and non-progressors. The subset of
data we analyze consists of 67 samples (Nnormai = 9,
NProgressors 147 NNonfprogressors = 44) As part of
their effort to identify features that distinguish transitioning
samples from non-transitioning samples, the authors used a
masking approach to gauge the thickness and continuity of
the myoepithelial barrier in multiplexed images. An important,
yet surprising, finding of this experiment is that myoepithelial
disruption occurs in lesions that did not become invasive
(non-progressors), while the myoepithelium of DCIS patients
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Fig. 2. MIBI-TOF dataset studying the role of the tumor
microenvironment (TME) in breast cancer progression. a
Schematic figure describing the different biological conditions investigated
in this study. b Comparing entire tissue samples, using Weisfeiler-Lehman
Graph Kernels, to show the overall similarity in spatial organization
across two conditions (normal versus non-progressors and normal versus
progressors). The smaller the Wasserstein distance, the more similar
the spatial organization is under the two compared conditions. ¢
Cell-type-specific subgraphs comparison, using the portrait method,
across condition pairs (normal versus non-progressors and normal versus
progressors). The size of the dot is indicative of the similarity score
variance over samples. The larger the dot size, the lower the score variance
and the higher the score confidence is. d, e Filtration curves (Normal,
Non-progressor and Progressor) for d Monocytes and e Macrophages. We
plot a filtration curve for every sample, as well as the mean curve for
every condition, which can be identified by the thicker, darker lines. Large
vertical steps towards the left of the plot indicate low density, whereas
large vertical steps towards the right of the plot indicate high density. f
Enrichment of various cell type pairs in progressors and non-progressors,

where the control condition acts as a baseline.

that do develop IBC (progressors) stayed mostly intact. A
robust myoepithelial barrier is a key feature of healthy breast
tissue, meaning that progressor samples more closely resemble
normal breast samples in terms of myoepithelial robustness
than non-progressor samples do. Risom et al. [2022] suggest
that myoepithelial disruption may be a protective mechanism
against progression to invasive cancer.

We employed GraphCompass to further investigate the
downstream effects of myoepithelial disruption on breast tissue
architecture at different scales. We first used a holistic
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approach, Weisfeiler-Lehman Graph Kernels (Section 2.4.2),
to assess the overall similarity between the architecture of
normal breast tissue and the spatial organization of non-
progressor and progressor samples. Based on this holistic
view of breast cellular organizational structure, we find that
normal tissue resembles non-progressor samples more closely
than progressor samples (Figure 2b). Next, we generated cell-
type-specific subgraphs using the portrait distance method
(Section 2.2.1). These subgraphs indeed suggest that the
spatial organization of myoepithelial cells (MYOEP) in normal
breast tissue is significantly more similar to that in progressor
7.9¢7%,
Student’s t-test comparing similarity score means between I.

tissue than that in non-progressor tissue (p =

normal vs progressor and II. normal vs non-progressor) (Figure
2c). GraphCompass was thus able to confirm the previously
reported finding that non-progressor tissue is characterized by
its compromised myoepithelial layer, distinguishing it from
healthy and progressor tissue.

To further attempt to explain the protective quality
of the disintegrating myoepithelial barrier, we executed a
neighborhood analysis (Section 2.3) to determine which types of
cells are more likely to co-occur in non-progressor samples than
in progressor samples and normal breast samples. Interestingly,
immune cells were more likely to neighbor other immune cells
in non-progressor samples compared to normal breast samples,
indicating that non-progressors mount an immune response to
the tumor, recruiting T lymphocytes (TCELL), B lymphocytes
(BCELL), and dendritic cells (DC) to the site of the tumor.
Indeed, CD4T-CD4T, CD4T-CDS8T, B cell-T cell, and CD4T-
DC were all enriched in non-progressor samples compared to
normal samples (Figure 2f). Notably, we did not observe
an enrichment of these neighbor pairs in progressor samples.
We hence hypothesize that a thinner myoepithelial barrier
protects against the transition to invasive breast cancer by
contributing to the development of a “hot” tumor, ie., a
tumor that presents with a microenvironment characterized by
heightened immune activity, often featuring tumor-infiltrating
lymphocytes [Duan et al., 2020]. The “temperature” of immune
environments has indeed been shown to play a crucial role
in shaping the trajectory of disease progression from pre-
invasive lesions to invasive cancer [Galon et al., 2010, Fridman
et al., 2017]. The compromised myoepithelial barrier in non-
progressor samples may allow immune cells, particularly T
lymphocytes, greater access to the tumor microenvironment,
increasing their presence around tumors. Our analysis suggests
that these tumor-infiltrating T cells may eventually trigger
cancer cell death, preventing progression to invasive breast
cancer.

In addition, we found that monocyte (MONO) organization
in normal tissue is more similar to monocyte organization in
non-progressors than that in progressors (p = 7.6e~2, Student’s
t-test comparing similarity score means between I. normal
vs. progressor and II. normal vs. non-progressor) (Figure 2c).
Furthermore, the filtration curves (Section 2.4.1) show that the
average number of macrophages (MACS) is higher in progressor
samples than in non-progressors and control samples (Figure
2¢). In mouse models of cancer, monocytes have been observed
to migrate to the site of the tumor, where they differentiate into
tumor-associated macrophages (TAMs). Multiple independent
breast cancer studies have identified the TAM signature and
density as markers of tumor progression [Lin et al., 2003, Arwert
et al., 2018, Cassetta et al., 2019]. Our results suggest that
progressor monocytes have differentiated into macrophages,
which may affect progressor prognosis. We could not establish

. Aﬂerpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a Control Myocardial Infarction Myocardial Infarction Zones
I Remote Zone (RZ)
M Border Zone (BZ)

M Ischaemic Zone (12)

Negnio™
h Ny, =5
N, =8
BZ 1Z
b = C
— - Cell type specific Distance Similarity Maximally

Different
i Rt @ ©
T 200 control
i Tl @-0-0)-® o °
B 180 vs H
8170 1z Identical
2 T 1 T T T T T T T T T Graphs
& 160 = =
E E— L g 2 T 9 T B T ® & Y Hghvarance
28 25 2 > o ¢ T & 2 & ©° § > S Lowconfidence
~E NE N 9 o = v 2 L .
N e R o o < =3 = 0
8 x8 S8 2 © 5 © > 5 5 ¢
2 c © 5 € s o ¢ [ d
T £ = ©v 2 3 =
259283 o
'-5 > w
5 v Low variance/
8 High confidence

Filtration Curves for Cardiomyocyte Filtration Curves for Myeloid

4000| Region
1000,

3500, g;ntro\

3000f — 17 800
£

2500
3 600
2 2000
3

o
TTIITA TE1804 £ 556 596

56
Edge weight threshold

656 @ITIIRG W1e0a B

Edge weight threshold

556 596

Fig. 3. Visium dataset studying myocardial tissue architecture
following ischemic injury. a Schematic figure describing the different
physiological zones studied: the ischaemic zone (IZ), border zone (BZ),
the unaffected left ventricular myocardium (remote zone, RZ), and control
samples. b Comparing entire tissue samples, using Weisfeiler-Lehman
Graph Kernels, to show the overall similarity in spatial organization
across two conditions (RZ versus control and RZ versus IZ). The smaller
the Wasserstein distance, the more similar the spatial organization
is under the two compared conditions. ¢ Cell-type-specific subgraphs
comparison, using the portrait method, across condition pairs (RZ versus
control and RZ versus 1Z). The size of the dot is indicative of the similarity
score variance. The larger the dot size, the lower the score variance and
the higher the score confidence is. d, e Filtration curves (RZ, IZ and
Control) for d Cardiomyocytes and e Myeloid cells. We plot a filtration
curve for every sample, as well as the mean curve for every condition,
which can be identified by the thicker, darker lines. Large vertical steps
towards the left of the plot indicate low density, whereas large vertical

steps towards the right of the plot indicate high density.

differences in the organization of luminal tumor cells between
progressors and non-progressors (Figure 2c¢). Therefore, tumor
spatial organization neither seems to cause nor appears to be
immediately affected by myoepithelial integrity.
Understanding and manipulating the immune environment
is essential for developing targeted therapeutic strategies to
enhance immune responses and restrain cancer progression.
Though further beyond the
scope of our shown that the
algorithms implemented in GraphCompass generate results

experimental validation is

manuscript, we have

consistent with previously published findings, namely that
myoepithelial barrier disintegration is associated with favorable
disease outcomes. We have also demonstrated the use of
GraphCompass as a hypothesis-generating tool, offering a
potential explanation as to why myoepithelial loss protects
against tumor progression.

3.2. Myocardial tissue reorganization following
ischemic injury
Kuppe et al. [2022] conducted a comprehensive study to

examine the changes that occur in the cardiac transcriptome
and epigenome following a heart attack. They integrated data
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from three different modalities: single-cell RN A-seq, chromatin
accessibility data, and spatial transcriptomics data generated
by the Visium platform [Stahl et al., 2016]. Their data contains
samples from patients who experienced myocardial infarction
and healthy individuals. Samples were taken from different
physiological zones of the myocardium (RZ, remote zone; BZ,
border zone; 1Z, ischaemic zone; FZ, fibrotic zone) (Figure 3a).
Here, we focus on the experiments that were based on spatial
transcriptomics data. These experiments show changes in the
organization of cardiomyocytes and myeloid cells after ischemic
injury.

To study the effect of ischemic injury beyond the initial
site of the injury, we performed a comparison of samples
taken from three physiological regions: the IZ, the unaffected
left ventricular myocardium (RZ), and control cardiac tissue
(Nrz =8, Nrz = 5, Ncontrot = 4). We focused our analysis
on these three regions to better understand whether RZ is
affected by the ischemic injury and therefore more similar to
the IZ or is protected from the injury and thus more similar
to control tissue. Using the entire graph comparison approach
(Section 2.4.2), we show that the spatial arrangement of the
RZ is not significantly more similar to the arrangement of
the IZ than that of the control (Figure 3b). This indicates
that the remote zone might not be impacted, or only partially
impacted, by the myocardial infarction. To further study the
effects of ischemic injury at the cellular organization level, we
utilized the cell-type-specific portrait method (Section 2.2.1).
We found that the organization of cardiomyocytes in the RZ
differed from that in the normal tissue samples. It also differed
from cardiomyocyte organization in the IZ. Overall, the spatial
arrangement of cardiomyocytes in the RZ is slightly more
similar to the arrangement in the control samples than to the
arrangement in the IZ, though the effect is not significant (p =
0.25, Student’s t-test comparing similarity score means between
I. RZ vs control and II. RZ vs 1Z) (Figure 3c). This finding
indicates that the cardiomyocytes in the remote ventricular
myocardium are impacted by the injury, though to a lesser
extent than the cardiomyocytes in the IZ. Our results also
suggest that the arrangement of myeloid cells in the RZ is
significantly more similar to that in the control tissue than that
in the IZ (p = 2.2e”7, Student’s t-test comparing similarity
score means between I. RZ vs control and II. RZ vs 1Z) (Figure
3c). This supports the notion that the damage inflicted by
ischemic injury on myeloid cells is localized at the injury site.
The filtration curves also show that cardiomyocyte organization
in the RZ is affected by the injury (Figure 3d), while myeloid
organization is not (Figure 3e). In particular, the curves show
that both the number and density of cardiomyocytes in the RZ
have been impacted by the infarction.

Collectively, our results support the finding that myocardial
infarction can have localized or systemic impacts on different
cell types. Though damage typically originates in a specific
area of the heart, we observe that the consequences can extend
beyond the initial site of injury. Indeed, experimental studies
have suggested that the size of the infarct depends on the
post-infarct inflammatory response [Frangogiannis, 2014].

3.3. Restoration of axolotl brain function upon
injury: Comparing healthy and regenerated
brains

Wei et al. [2022] used the Stereo-seq technology [Chen et al.,

2022] to generate spatial omics data spanning six axolotl

developmental stages and seven regeneration phases. The
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Fig. 4. Stereo-seq dataset studying the axolotl brain during
development and regeneration. a Schematic figure describing the
subset of regeneration stages we investigated. On the day of injury
(0 days post-injury, DPI), a section of the brain was removed. We
compared a tissue sample collected 30 days post-injury (30 DPI) with
a section obtained 60 days post-injury (60 DPI) and a control sample
from an unharmed adult axolotl. b Comparing entire tissue samples, using
Weisfeiler-Lehman Graph Kernels, to show the overall similarity in spatial
organization across two stages (Injury 60 DPI versus Adult and Injury
60 DPI versus Injury 30 DPI). The smaller the Wasserstein distance,
the more similar the spatial organization is under the two compared
conditions. ¢ Cell-type-specific subgraphs comparison, using the portrait
method, across condition pairs (Injury 60 DPI versus Adult, Injury 60
DPI versus Injury 30 DPI).

axolotl is a type of salamander, known for its remarkable
ability to regenerate lost body parts. This ability makes
them an invaluable model for studying tissue regeneration
and wound healing, potentially offering insights applicable to
human medicine (Figure 4a). To shed light on the molecular
events that precede regeneration, the authors removed a part
of the brain and then collected spatial transcriptomics data 2, 5,
10, 15, 20, 30, and 60 days post-injury. They claim that 60 days
post-injury, brain cell composition and the spatial distribution
of cell types are restored.

To assess tissue restoration success, we focused on studying
the last two regenerative stages using two samples collected 30
and 60 days post-injury (30 DPI and 60 DPI). We compared the
60 DPI sample against the 30 DPI sample as well as a control
adult sample from the development data set (Nsoppr = 1,
Neoppr = 1, Naguit = 1). The aim of our analysis is to
understand whether, after 60 days, the regenerating axolotl
brain is more similar to the unharmed adult brain or the 30 DPI
brain. If the axolotl brain has indeed completely regenerated,
we would expect to see that both the distribution of cell types
and their spatial organization have been restored, mimicking
that of the control adult sample. Comparing the 30 DPI, 60
DPI, and control sections at the sample level (Section 2.4.2),
we show that the 60 DPI brain is slightly more similar to the
30 DPI brain than to the adult brain, indicating that the
arrangement of cells has not been fully restored post-injury
(Figure 4b), though the differences are subtle.

Comparison of the cell-type-specific subgraphs further
supports our conclusion that the spatial organization of the
regenerated brain differs from the organization of the healthy
brain. Indeed, the portrait graph (Section 2.2.1) indicates that
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the organization of multiple cell types in the 60 DPI sample
resembles the 30 DPI organization more so than the adult
brain organization. For example, one cell type that is arranged
similarly in the 30 DPI and 60 DPI samples is the telencephalon
neuroblast (tINBL), which has been shown to have a role in
telencephalon neurogenesis during regeneration [Lust et al.,
2022] (Figure 4c), indicating that regeneration may not yet
be complete 60 days after the injury. However, the portrait
plot also shows several cell types in the 60 DPI sample whose
spatial organization is similar to that of adult cells. These cell
types include dorsal pallium excitatory neurons (dpEX) and
Sfrp+ ependymal glial cells (sfrpEGC). This suggests that the
arrangement of dpEX and sfrpEGC cells is restored 60 days
post-injury.

Wei et al. [2022] observe that development and regeneration
are characterized by many of the same processes, including
neuronal differentiation and migration, but that several
pathways were uniquely upregulated in regenerating brains.
In addition,
cells (EGCs),

while the other is found only in the regenerating

they identify two subtypes of ependymoglial

one of which is present in the developing
brain,
brain. It is possible that these biological differences underlie
the incomplete restoration of cell spatial organization in
regenerating brains, but more data is needed to draw robust
conclusions.

To summarize, we find that the arrangement of some
cell types is successfully restored in the 60 days following
brain injury. However, we also highlighted differences in the
organization of the 60 DPI brain and the healthy adult brain,
indicating that the former had not been fully regenerated at
the 60-day mark.

4. Discussion

GraphCompass is a comprehensive graph analysis framework
that provides quantitative methods to compare cell spatial
organization across physiological systems, pathological states,
and developmental stages. Compatible with spatially resolved
transcriptomics and proteomics data, GraphCompass integrates
multiple graph-based and statistical approaches for investigating
spatial graphs at three different levels of abstraction: individual
cell types, multi-cell neighborhoods, and entire samples. These
methods were adapted for spatial omics data, such that they
can handle high-dimensional features, flexible node identities
(spot or single cell) and variable edge weight definitions.
Differences in cell spatial organization can be indicators
of disease states, or correlate with how patients respond
to treatments. Studying cell spatial organization across
individuals can provide insights into developmental and
regenerative processes, which can guide the development
believe that

GraphCompass will significantly advance our understanding of

of engineered tissues and organoids. We
the role of tissue architecture in healthy development, disease
onset, and recovery.

In this manuscript, we have demonstrated the capabilities
of GraphCompass through its application to datasets derived
from diverse technologies, highlighting the biological insights
that can be obtained from the various metrics it implements.
Developed in Python, GraphCompass interfaces seamlessly with
Squidpy and AnnData, enhancing its scalability and the potential
for expansion with new methodologies. With GraphCompass,
our aim is to offer the computational biology community user-
friendly and accessible graph comparison methods, empowering

AHerpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

both experimental and computational scientists in the analysis
and interpretation of tissue architecture differences across
different biological phenotypes.
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