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Abstract

Spatial omics technologies are increasingly leveraged to characterize how disease disrupts tissue organization and cellular
niches. While multiple methods to analyze spatial variation within a sample have been published, statistical and
computational approaches to compare cell spatial organization across samples or conditions are mostly lacking. We
present GraphCompass, a comprehensive set of omics-adapted graph analysis methods to quantitatively evaluate and
compare the spatial arrangement of cells in samples representing diverse biological conditions. GraphCompass builds upon
the Squidpy spatial omics toolbox and encompasses various statistical approaches to perform cross-condition analyses
at the level of individual cell types, niches, and samples. Additionally, GraphCompass provides custom visualization
functions that enable effective communication of results. We demonstrate how GraphCompass can be used to address
key biological questions, such as how cellular organization and tissue architecture differ across various disease states and
which spatial patterns correlate with a given pathological condition. GraphCompass can be applied to various popular
omics techniques, including, but not limited to, spatial proteomics (e.g. MIBI-TOF), spot-based transcriptomics (e.g. 10x
Genomics Visium), and single-cell resolved transcriptomics (e.g. Stereo-seq). In this work, we showcase the capabilities of
GraphCompass through its application to three different studies that may also serve as benchmark datasets for further
method development. With its easy-to-use implementation, extensive documentation, and comprehensive tutorials,
GraphCompass is accessible to biologists with varying levels of computational expertise. By facilitating comparative
analyses of cell spatial organization, GraphCompass promises to be a valuable asset in advancing our understanding of
tissue function in health and disease.
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1. Introduction

The spatial arrangement and interactions of cells under

different physiological and pathological states provide insights

into the underlying mechanisms of tissue function and disease

progression. Understanding cell spatial organization is not only

essential for deciphering physiological processes but also for

advancing diagnostic and therapeutic strategies [Rao et al.,

2021, Palla et al., 2022a, Williams et al., 2022].

Spatial omics have emerged as a powerful technology for

profiling cellular phenotypes in their tissue context. Spatial

transcriptomics methods such as 10x Genomics Visium [St̊ahl

et al., 2016] and Stereo-seq [Chen et al., 2022], as well as

spatial proteomics methods such as CODEX [Goltsev et al.,

2018] and MIBI-TOF [Keren et al., 2019], can measure

molecular profiles while maintaining information about the

locations of cells, therefore enabling the study of cell-cell

communication [Fischer et al., 2023] and tissue architecture

[Fischer et al., 2022, Wu et al., 2022]. Spatial omics technologies

have been increasingly leveraged by researchers interested in

delineating mechanisms that disrupt tissue homeostasis and

cellular niches in diseased individuals. For example, spatial

transcriptomics data has been instrumental in deciphering

spatial dysregulation in ischemic hearts [Kuppe et al., 2022].

Additionally, spatial proteomics data has been used to elucidate

cellular neighborhoods associated with disease progression and

response to therapy in breast cancer [Risom et al., 2022].

Related work has looked into identifying cell interactions

[Fischer et al., 2023], spatial clusters [Zhao et al., 2021, Varrone
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Fig. 1. GraphCompass offers graph and statistical analysis methods to compare the spatial organization of cells across different

conditions. a GraphCompass workflow. All spatial omics datasets that are stored as AnnData objects are currently supported. Support for SpatialData

objects [Marconato et al., 2023] will be added in the near future. Select a region of interest (ROI) with napari (GitHub) or use the entire tissue section.

We use Squidpy to encode spatial omics measurements as graphs. If available, add node labels, such as cell types. Then, compare graphs across conditions

or samples using any of the methods implemented in GraphCompass. b The example datasets covered here represent various technologies and different

modalities. c In our framework, samples are represented as cellular graphs in which nodes correspond to cells or spots and edges denote spatial proximity.

Nodes may be labeled (colored) based on their cell type and samples representing the same condition are grouped together to account for sample variation.

d-f GraphCompass integrates multiple spatial metrics to find statistically significant differences in spatial organization across experimental conditions,

utilizing spatial information at various abstraction levels. d Analyse graphs that consist of a single cell type and compare them between conditions

using graph distance metrics (cell-type-specific subgraphs comparison). e Perform neighborhood analysis by retrieving cell-type neighbors enriched in

one condition compared to another (cellular neighborhood comparison). f Using a holistic approach, compare entire graphs representing data obtained

under two or more conditions (entire graphs comparison).

et al., 2023], and niche composition in individual samples

[Bernstein et al., 2023]. However, methods to compare spatial

organization across different sample groups are still lacking.

Such methods would be instrumental in elucidating how the

arrangement of cell types influences the overall state of a tissue.

In this work, we model spatial omics samples as graphs of

cells to enable differential analysis of phenotypes. We focus on

providing easy-to-use graph metrics and statistical methods for

the comparative analysis of cell spatial organization. Studying

changes in niche composition and tissue architecture is essential

to unlock new insights into the role of tissue organization in

prognosis and diagnosis [Rao et al., 2021, Palla et al., 2022a,

Williams et al., 2022].

We introduce GraphCompass (Graph Comparison Tools

for Differential Analyses in Spatial Systems), a Python-

based framework that brings together a robust suite of graph

analysis and visualization methods, specifically tailored for the

analysis of cell spatial organization using spatial omics data.

Developed on top of Squidpy [Palla et al., 2022b] and AnnData

[Virshup et al., 2021], our methods are easily integrated into

existing spatial omics analysis workflows. The framework’s

modular design ensures adaptability and compatibility with

various single-cell data analysis packages (Figure 1a). Available

for community use and collaboration, GraphCompass can be

accessed at https://github.com/theislab/graphcompass/, where

we provide extensive function documentation and tutorials. We

adapted the methods to make them flexible enough to handle

large feature spaces (>20,000 genes), different resolutions

(e.g. spot or single-cell), and multiple modalities of spatial

omics data (Figure 1b). To showcase the broad applicability

of the methods in our suite, we curate datasets from three

different spatial omics techniques and show that our methods

recapitulate experimental results, additionally providing novel

insights into the global changes in tissue organization under

different disease and developmental stages. The collection of

omics-adapted methods we present are an effective hypothesis-

generating tool that may inform the development of new

diagnostic methods and therapeutic targets.

To the best of our knowledge, GraphCompass is the first

method to enable differential analysis of spatial organization

across conditions at three levels of abstraction: cell-type-

specific subgraphs (Figure 1d), multi-cell niches (Figure 1e),

and entire graphs (Figure 1f). Though other methods, such

as CellCharter [Varrone et al., 2023] and MENDER [Yuan,

2024], also attempt to differentiate samples based on their

neighborhood composition, they rely on clustering algorithms,

and hence a well-chosen number of clusters. Here, we propose

to perform differential niche analysis by studying enriched

pairs of neighbor cells. We also present approaches that

have never been applied to spatial omics before, such as the
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Wasserstein Weisfeiler-Lehman kernel and filtration curves.

We adapt them to large continuous feature spaces, a typical

characteristic of spatial omics data, and show that these

metrics are powerful tools to compare samples and sample

groups, capturing both local and global information. In this

manuscript, we demonstrate the capacity of our methods to

reproduce results consistent with previously published findings,

as well as provide novel mechanistic hypotheses. To date,

GraphCompass is the most comprehensive toolkit aimed at

differential neighborhood composition and spatial organization

analysis in the context of spatial omics technologies applied

to disease studies. We hope that this framework will empower

significant advancements in understanding the complexities of

cell organization within the spatial context of tissues, both in

health and disease.

2. Methods

2.1. Graph construction
In the realm of spatial omics, nodes in the graph represent

either individual cells or predefined spots. The nature of the

node depends on the type of spatial omics technology used:

1. Cell-Based Data: For single-cell resolution techniques,

each node corresponds to an individual cell. Every node

is associated with a node attribute, namely the cell’s

transcriptomic profile.

2. Spot-Based Data: Technologies like Visium provide data at

the level of spots, which are predefined, regularly spaced

areas on a tissue section, each containing multiple cells. In

this scenario, each spot, with its aggregated gene expression

information, forms a node.

Edges represent spatial proximity between nodes. The edge

construction method depends on the data’s layout:

1. Grid Layout: In spot-based technologies like Visium, where

spots are arranged in a fixed grid, edge construction

is relatively straightforward. Graph edges are typically

defined based on direct neighbors in this grid, leading to

a structured, regular graph topology.

2. Irregular Layouts: For data not laid out in a grid, defining

node adjacency requires more sophisticated methods.

Delaunay triangulation is a common approach used here.

It involves creating a triangulated mesh such that no node

lies inside the circumcircle of any triangle. This method

effectively captures the proximity between irregularly

spaced cells.

Once the graph is constructed, it serves as a foundational

structure for various differential analyses: comparing cell-

type-specific subgraphs, cellular neighborhoods, and entire

graphs between experimental conditions, developmental stages,

or disease states. We use existing methods within Squidpy

to compute a spatial graph from various types of spatial

omics data. These graphs serve as the input for the analysis

and visualization algorithms implemented in our package. We

describe these analysis functions in the next sections.

2.2. Comparing cell-type-specific subgraphs
We introduce two graph distance metrics to compare cell-

type-specific graphs between different conditions: portrait and

diffusion methods. Both methods provide similarity scores

between two networks of cells that represent two different

conditions.

2.2.1. Portrait Method

This method creates a so-called “portrait” of a graph, which is

a way to represent the overall structure of the graph [Bagrow

and Bollt, 2019]. The portrait of a graph typically includes

information about the distribution of distances between nodes

and degree distribution. The idea behind the portrait method

is to capture the essence of the graph’s topology in a

comprehensive snapshot.

Given two graphs G and G′, we first define the network

portrait B of each graph as an array with l × k elements, such

that

Blk = |(vi, vj) : Dij = l, degree(i) = k|. (1)

Here, (vi, vj) are node pairs of graph G such that the shortest

path between vi and vj , Dij , equals l. The degree of a node

is defined as the number of edges incident to that node. We

do not compare G and G′ directly. Instead, we compare their

network portraits B and B′, such that △(G,G′) ≡ △(B,B′)

(that is, such that the difference between the network portraits

approximates the difference between the graphs). To compare

the network portraits, we calculate the weighted distributions

P (k, l) and Q(k, l), such that

P (k, l) =
kBlk∑
c nc

2
,

Q(k, l) =
kB′

lk∑
c nc

2
, (2)

where nc represents the number of nodes within a given

connected component c, and
∑

c nc = N , with N being the

total number of nodes in the graph. We subsequently compare

the two distributions using the Jensen-Shannon divergence:

DJS =
1

2
KL(P ||M) +

1

2
KL(Q||M), (3)

where KL is the Kullback–Leibler divergence and M = 1
2 (P +

Q). DJS is the similarity score between the cell-type-specific

graphs G and G′, each representing a different experimental

condition or co-variate. Here, a high similarity score implies

maximally different graphs, and a low score implies that graphs

are nearly identical. This comparison is repeated for every cell

type present in both graphs. Cell-type-specific similarity scores

are jointly visualized to determine which cell types are most

similarly organized across both conditions.

2.2.2. Diffusion Method

Diffusion, in the context of graphs, refers to the process of

spreading a certain amount of an imaginary substance (like

information, heat, etc.) across the nodes of a graph over time.

Diffusion on graphs can be intuitively understood through the

analogy of balls connected by springs. When you impart energy

to one ball in the system (for example, by hitting or pushing it),

this energy is represented by the ball’s movement. As the ball

starts moving, it stretches or compresses the springs connected

to it (the edges in the graph). This, in turn, transfers energy

to the balls (nodes) at the other ends of these springs. Balls

directly connected to the moving ball receive the energy first,

and then the energy propagates to others in a ripple-like effect.

The overall structure of the graph (how balls are connected by

springs) affects the energy diffusion pathway and rate.
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Diffusion on graphs is implemented by NetLSD [Tsitsulin

et al., 2018], a Python library that encodes a so-called “trace

signature” to capture the energy diffusion process. The trace

signature is computed as follows: Given graph G, calculate its

normalized Laplacian as

L = I − D
− 1

2 AD
− 1

2 . (4)

A and D are the adjacency and degree matrix of G, respectively.

Next, we compute the closed-form solution to the heat equation

associated with the normalized Laplacian, which is defined as

∂ut

∂t
= −Lut, (5)

where ut represents the imaginary “energy” of a given node at

time t. The solution to the heat equation is then computed as

Ht = e
−tL

=
n∑

j=1

e
−tλjϕjϕ

T
j . (6)

Here, Hij,t quantifies the amount of energy transferred from

node vi to node vj at time t. As a last step, we compute the

heat trace ht as the trace of Ht, such that

ht = tr(Ht) =
∑
j

e
−tλj . (7)

To compare two graphs, we simply compute the L2 distance

between the corresponding heat traces computed at different

times t,

d(G,G
′
) =

√√√√ n∑
t=1

(ht − h′
t)

2. (8)

2.3. Comparing cellular neighborhoods
To compare cellular neighborhoods between different conditions,

we leverage Generalized Linear Models (GLMs). These models

allow us to determine statistically significant changes in

the neighborhood enrichment (i.e., the enrichment of spatial

proximity between two cell types) across multiple conditions,

offering a deeper understanding of the spatial density and

distribution of specific cell types relative to others under a

given condition. Here, we refer to a pair of cell types as

“enriched” if they neighbor each other more often than we

would expect based on random chance. We first compute

neighborhood enrichment in each sample separately using

Squidpy’s nhood enrichment function. This function calculates

the observed number of each cell type pair, which is then

compared against the expected frequency. This expected

frequency is determined through permutation tests.

The nhood enrichment function returns a n × n matrix Z

containing enrichment z-scores. Zij represents the enrichment

of the pair that consists of cell type i and cell type j. Since

this matrix is symmetric, we extract the upper triangular

portion, which we flatten to obtain a 1× n vector representing

neighborhood enrichment in a single sample. Given m samples,

we concatenate their corresponding vectors along the condition

axis to obtain a m × n matrix for usage in linear models

(neighborhood enrichment z-scores) or Poisson and Quasi-

Poisson Generalised Linear Models. For the latter two, we

model the counts of each observed cell type pair in each

neighborhood rather than the z-scores. The Quasi-Poisson

model is particularly appropriate when neighborhood counts

are sparse for a pair of cell types. We include a fixed linear term

to account for the “batch/subject/patient” co-variate, and an

interaction term between all levels of the condition and cell type

pair factors to fit the models.

2.4. Comparing entire graphs
We present two methods to perform holistic graph comparisons:

filtration curves and Weisfeiler-Lehman graph kernels. Both

methods result in graph embeddings that can be compared

against one another to obtain a broad measure of tissue

architecture similarity.

2.4.1. Filtration Curves

In the context of Topological Data Analysis (TDA), filtrations

are a fundamental concept used to understand the shape of

data [O’Bray et al., 2021]. The basic idea is to gradually

“grow” or “filter” the data and observe how topological features

such as connected components, holes, and voids evolve. We

define a graph filtration as a sequence of nested subgraphs

∅ ⊆ G1 ⊆ G2 . . . Gm ⊆ G, ordered by edge weights. Let

G = (V,E,w) be a weighted graph, where w : E → R is

the weight function assigning a real number to each edge, here

defined as the Euclidean distance between the gene expression

matrices associated with neighboring nodes. To generate the

filtration curve, we order the edges based on their weights,

obtaining a series of weights w1 ≤ w2 . . . wm−1 ≤ wm. O’Bray

et al. [2021] define the ith graph in the filtration, Gi, as the

subgraph that includes all edges whose weight is less than or

equal to wi as well as all nodes connected by said edges. Since

our distance function can take on any positive real number,

we compute ten threshold values from the collection of edge

weights to restrict the algorithm’s computation time. We define

the threshold values as the 10th, 20th, . . . , 90th and 100th

percentile. At every filtration step, the algorithm analyzes the

properties of the subgraph by evaluating a graph descriptor

function. Assuming every node has been assigned a node label

(i.e., a cell type), we can simply compute the number of each

cell type present in the subgraphs. Computing and comparing

filtration curves is an efficient approach for representing graphs

and contrasting two graphs or sets of graphs.

2.4.2. Weisfeiler-Lehman Graph Kernels

The Weisfeiler-Lehman (WL) graph kernel is a powerful

technique used in graph theory and machine learning,

particularly in the context of graph classification and similarity

analysis. Boris Weisfeiler and Andrei Lehman introduced it in

the late 20th century as a graph isomorphism test [Weisfeiler

and Leman, 1968]. Though it has been shown that there

are non-isomorphic graphs that cannot be distinguished by

this algorithm, it has been successfully implemented as a

graph similarity measure [Shervashidze et al., 2011]. Broadly

speaking, the algorithm consists of three steps: node label

augmentation, iteration, and kernel computation. In each

iteration, the node label of a given node is transformed into

an augmented label, or multi-set of labels, that contains the

original label as well as the labels of the given node’s neighbors.

The augmented label is subsequently hashed, resulting in a new,

compressed node label. Given a graph G = (V,E), where V is

a set of nodes (vertices) and E is a set of edges, we can define

the node label augmentation step as

a
h+1

(v) = hash(a
h
(v),Nh

(v)), (9)

We define ah(v) as the compressed label of node v at iteration

h. Similarly, Nh(v) represents the neighbor labels at iteration

h. Lastly, we define a0(v) as the original label of node v. The

node labeling step is repeated for a pre-specified number of

iterations. After the iteration process, the labels assigned to
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the nodes are used to compute a kernel matrix. This matrix

quantifies the structural similarity between pairs of graphs. The

original formulation of the algorithm restricts its use to graphs

with discrete labels. However, some of the more common spatial

omics methods, most notably Visium, do not produce single-

cell-resolved data. Each spot may contain more than one cell,

complicating cell type assignment. The spot is best represented

by its associated gene expression matrix. The Wasserstein WL

kernel [Togninalli et al., 2019] extends the WL kernel from the

discrete to the continuous case. We define ah(v) as the attribute

of node v at iteration h. Let w(v, u) be the weight of the edge

between nodes v and u. Then, the updated node attribute at

iteration h + 1 is computed as

a
h+1

(v) =
1

2

a
h
(v) +

1

deg(v)

∑
u∈N(v)

w(v, u) · ah
(u)

 . (10)

Once node embeddings have been computed, the algorithm

evaluates the distance between pairs of nodes (vi, v
′
j) for each

vi ∈ V and each v′
j ∈ V ′, resulting in distance matrix D. Here,

we define the distance between nodes vi and v′
j as the Euclidean

distance between their corresponding gene expression matrices.

Lastly, the algorithm quantifies the similarity of graphs G and

G′ by measuring the Wasserstein distance between them as

W = min
T ∈Γ

⟨T ,D⟩, (11)

where T ∈ Γ is a transport matrix and ⟨·, ·⟩ is the Frobenius

dot product.

3. Results

In the next sections, we demonstrate the utility of

GraphCompass methods by analyzing three datasets derived

from three different technologies and spatial systems (MIBI-

TOF breast cancer [Risom et al., 2022], 10x Genomics Visium

heart [Kuppe et al., 2022], and Stereo-seq axolotl [Wei et al.,

2022]). We only use analysis and visualization functions

implemented in GraphCompass, highlighting what can be

learned from each function.

3.1. Spatial organization of the tumor
microenvironment and breast cancer progression

Risom et al. [2022] used multiplexed ion beam imaging by

time of flight (MIBI-TOF) [Keren et al., 2019] with a 37-

plex antibody staining panel to study changes in the tumor

microenvironment during the transition from ductal carcinoma

in situ (DCIS) to invasive breast cancer (IBC), allowing them

to identify spatial and functional changes in various cell

types, including myoepithelial cells, fibroblasts and immune

cells (Figure 2a). They compared normal samples to both

DCIS samples and IBC patient samples. DCIS samples can

be further divided into progressors (samples that progress

from DCIS to IBC) and non-progressors. The subset of

data we analyze consists of 67 samples (NNormal = 9,

NProgressors = 14, NNon−progressors = 44). As part of

their effort to identify features that distinguish transitioning

samples from non-transitioning samples, the authors used a

masking approach to gauge the thickness and continuity of

the myoepithelial barrier in multiplexed images. An important,

yet surprising, finding of this experiment is that myoepithelial

disruption occurs in lesions that did not become invasive

(non-progressors), while the myoepithelium of DCIS patients

Progressor Non-progressor
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Fig. 2. MIBI-TOF dataset studying the role of the tumor

microenvironment (TME) in breast cancer progression. a

Schematic figure describing the different biological conditions investigated

in this study. b Comparing entire tissue samples, using Weisfeiler-Lehman

Graph Kernels, to show the overall similarity in spatial organization

across two conditions (normal versus non-progressors and normal versus

progressors). The smaller the Wasserstein distance, the more similar

the spatial organization is under the two compared conditions. c

Cell-type-specific subgraphs comparison, using the portrait method,

across condition pairs (normal versus non-progressors and normal versus

progressors). The size of the dot is indicative of the similarity score

variance over samples. The larger the dot size, the lower the score variance

and the higher the score confidence is. d, e Filtration curves (Normal,

Non-progressor and Progressor) for d Monocytes and e Macrophages. We

plot a filtration curve for every sample, as well as the mean curve for

every condition, which can be identified by the thicker, darker lines. Large

vertical steps towards the left of the plot indicate low density, whereas

large vertical steps towards the right of the plot indicate high density. f

Enrichment of various cell type pairs in progressors and non-progressors,

where the control condition acts as a baseline.

that do develop IBC (progressors) stayed mostly intact. A

robust myoepithelial barrier is a key feature of healthy breast

tissue, meaning that progressor samples more closely resemble

normal breast samples in terms of myoepithelial robustness

than non-progressor samples do. Risom et al. [2022] suggest

that myoepithelial disruption may be a protective mechanism

against progression to invasive cancer.

We employed GraphCompass to further investigate the

downstream effects of myoepithelial disruption on breast tissue

architecture at different scales. We first used a holistic
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approach, Weisfeiler-Lehman Graph Kernels (Section 2.4.2),

to assess the overall similarity between the architecture of

normal breast tissue and the spatial organization of non-

progressor and progressor samples. Based on this holistic

view of breast cellular organizational structure, we find that

normal tissue resembles non-progressor samples more closely

than progressor samples (Figure 2b). Next, we generated cell-

type-specific subgraphs using the portrait distance method

(Section 2.2.1). These subgraphs indeed suggest that the

spatial organization of myoepithelial cells (MYOEP) in normal

breast tissue is significantly more similar to that in progressor

tissue than that in non-progressor tissue (p = 7.9e−4,

Student’s t-test comparing similarity score means between I.

normal vs progressor and II. normal vs non-progressor) (Figure

2c). GraphCompass was thus able to confirm the previously

reported finding that non-progressor tissue is characterized by

its compromised myoepithelial layer, distinguishing it from

healthy and progressor tissue.

To further attempt to explain the protective quality

of the disintegrating myoepithelial barrier, we executed a

neighborhood analysis (Section 2.3) to determine which types of

cells are more likely to co-occur in non-progressor samples than

in progressor samples and normal breast samples. Interestingly,

immune cells were more likely to neighbor other immune cells

in non-progressor samples compared to normal breast samples,

indicating that non-progressors mount an immune response to

the tumor, recruiting T lymphocytes (TCELL), B lymphocytes

(BCELL), and dendritic cells (DC) to the site of the tumor.

Indeed, CD4T-CD4T, CD4T-CD8T, B cell-T cell, and CD4T-

DC were all enriched in non-progressor samples compared to

normal samples (Figure 2f). Notably, we did not observe

an enrichment of these neighbor pairs in progressor samples.

We hence hypothesize that a thinner myoepithelial barrier

protects against the transition to invasive breast cancer by

contributing to the development of a “hot” tumor, i.e., a

tumor that presents with a microenvironment characterized by

heightened immune activity, often featuring tumor-infiltrating

lymphocytes [Duan et al., 2020]. The “temperature” of immune

environments has indeed been shown to play a crucial role

in shaping the trajectory of disease progression from pre-

invasive lesions to invasive cancer [Galon et al., 2010, Fridman

et al., 2017]. The compromised myoepithelial barrier in non-

progressor samples may allow immune cells, particularly T

lymphocytes, greater access to the tumor microenvironment,

increasing their presence around tumors. Our analysis suggests

that these tumor-infiltrating T cells may eventually trigger

cancer cell death, preventing progression to invasive breast

cancer.

In addition, we found that monocyte (MONO) organization

in normal tissue is more similar to monocyte organization in

non-progressors than that in progressors (p = 7.6e−3, Student’s

t-test comparing similarity score means between I. normal

vs. progressor and II. normal vs. non-progressor) (Figure 2c).

Furthermore, the filtration curves (Section 2.4.1) show that the

average number of macrophages (MACS) is higher in progressor

samples than in non-progressors and control samples (Figure

2e). In mouse models of cancer, monocytes have been observed

to migrate to the site of the tumor, where they differentiate into

tumor-associated macrophages (TAMs). Multiple independent

breast cancer studies have identified the TAM signature and

density as markers of tumor progression [Lin et al., 2003, Arwert

et al., 2018, Cassetta et al., 2019]. Our results suggest that

progressor monocytes have differentiated into macrophages,

which may affect progressor prognosis. We could not establish
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Fig. 3. Visium dataset studying myocardial tissue architecture

following ischemic injury. a Schematic figure describing the different

physiological zones studied: the ischaemic zone (IZ), border zone (BZ),

the unaffected left ventricular myocardium (remote zone, RZ), and control

samples. b Comparing entire tissue samples, using Weisfeiler-Lehman

Graph Kernels, to show the overall similarity in spatial organization

across two conditions (RZ versus control and RZ versus IZ). The smaller

the Wasserstein distance, the more similar the spatial organization

is under the two compared conditions. c Cell-type-specific subgraphs

comparison, using the portrait method, across condition pairs (RZ versus

control and RZ versus IZ). The size of the dot is indicative of the similarity

score variance. The larger the dot size, the lower the score variance and

the higher the score confidence is. d, e Filtration curves (RZ, IZ and

Control) for d Cardiomyocytes and e Myeloid cells. We plot a filtration

curve for every sample, as well as the mean curve for every condition,

which can be identified by the thicker, darker lines. Large vertical steps

towards the left of the plot indicate low density, whereas large vertical

steps towards the right of the plot indicate high density.

differences in the organization of luminal tumor cells between

progressors and non-progressors (Figure 2c). Therefore, tumor

spatial organization neither seems to cause nor appears to be

immediately affected by myoepithelial integrity.

Understanding and manipulating the immune environment

is essential for developing targeted therapeutic strategies to

enhance immune responses and restrain cancer progression.

Though further experimental validation is beyond the

scope of our manuscript, we have shown that the

algorithms implemented in GraphCompass generate results

consistent with previously published findings, namely that

myoepithelial barrier disintegration is associated with favorable

disease outcomes. We have also demonstrated the use of

GraphCompass as a hypothesis-generating tool, offering a

potential explanation as to why myoepithelial loss protects

against tumor progression.

3.2. Myocardial tissue reorganization following
ischemic injury

Kuppe et al. [2022] conducted a comprehensive study to

examine the changes that occur in the cardiac transcriptome

and epigenome following a heart attack. They integrated data
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from three different modalities: single-cell RNA-seq, chromatin

accessibility data, and spatial transcriptomics data generated

by the Visium platform [St̊ahl et al., 2016]. Their data contains

samples from patients who experienced myocardial infarction

and healthy individuals. Samples were taken from different

physiological zones of the myocardium (RZ, remote zone; BZ,

border zone; IZ, ischaemic zone; FZ, fibrotic zone) (Figure 3a).

Here, we focus on the experiments that were based on spatial

transcriptomics data. These experiments show changes in the

organization of cardiomyocytes and myeloid cells after ischemic

injury.

To study the effect of ischemic injury beyond the initial

site of the injury, we performed a comparison of samples

taken from three physiological regions: the IZ, the unaffected

left ventricular myocardium (RZ), and control cardiac tissue

(NIZ = 8, NRZ = 5, NControl = 4). We focused our analysis

on these three regions to better understand whether RZ is

affected by the ischemic injury and therefore more similar to

the IZ or is protected from the injury and thus more similar

to control tissue. Using the entire graph comparison approach

(Section 2.4.2), we show that the spatial arrangement of the

RZ is not significantly more similar to the arrangement of

the IZ than that of the control (Figure 3b). This indicates

that the remote zone might not be impacted, or only partially

impacted, by the myocardial infarction. To further study the

effects of ischemic injury at the cellular organization level, we

utilized the cell-type-specific portrait method (Section 2.2.1).

We found that the organization of cardiomyocytes in the RZ

differed from that in the normal tissue samples. It also differed

from cardiomyocyte organization in the IZ. Overall, the spatial

arrangement of cardiomyocytes in the RZ is slightly more

similar to the arrangement in the control samples than to the

arrangement in the IZ, though the effect is not significant (p =

0.25, Student’s t-test comparing similarity score means between

I. RZ vs control and II. RZ vs IZ) (Figure 3c). This finding

indicates that the cardiomyocytes in the remote ventricular

myocardium are impacted by the injury, though to a lesser

extent than the cardiomyocytes in the IZ. Our results also

suggest that the arrangement of myeloid cells in the RZ is

significantly more similar to that in the control tissue than that

in the IZ (p = 2.2e−7, Student’s t-test comparing similarity

score means between I. RZ vs control and II. RZ vs IZ) (Figure

3c). This supports the notion that the damage inflicted by

ischemic injury on myeloid cells is localized at the injury site.

The filtration curves also show that cardiomyocyte organization

in the RZ is affected by the injury (Figure 3d), while myeloid

organization is not (Figure 3e). In particular, the curves show

that both the number and density of cardiomyocytes in the RZ

have been impacted by the infarction.

Collectively, our results support the finding that myocardial

infarction can have localized or systemic impacts on different

cell types. Though damage typically originates in a specific

area of the heart, we observe that the consequences can extend

beyond the initial site of injury. Indeed, experimental studies

have suggested that the size of the infarct depends on the

post-infarct inflammatory response [Frangogiannis, 2014].

3.3. Restoration of axolotl brain function upon
injury: Comparing healthy and regenerated
brains

Wei et al. [2022] used the Stereo-seq technology [Chen et al.,

2022] to generate spatial omics data spanning six axolotl

developmental stages and seven regeneration phases. The
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Fig. 4. Stereo-seq dataset studying the axolotl brain during

development and regeneration. a Schematic figure describing the

subset of regeneration stages we investigated. On the day of injury

(0 days post-injury, DPI), a section of the brain was removed. We

compared a tissue sample collected 30 days post-injury (30 DPI) with

a section obtained 60 days post-injury (60 DPI) and a control sample

from an unharmed adult axolotl. b Comparing entire tissue samples, using

Weisfeiler-Lehman Graph Kernels, to show the overall similarity in spatial

organization across two stages (Injury 60 DPI versus Adult and Injury

60 DPI versus Injury 30 DPI). The smaller the Wasserstein distance,

the more similar the spatial organization is under the two compared

conditions. c Cell-type-specific subgraphs comparison, using the portrait

method, across condition pairs (Injury 60 DPI versus Adult, Injury 60

DPI versus Injury 30 DPI).

axolotl is a type of salamander, known for its remarkable

ability to regenerate lost body parts. This ability makes

them an invaluable model for studying tissue regeneration

and wound healing, potentially offering insights applicable to

human medicine (Figure 4a). To shed light on the molecular

events that precede regeneration, the authors removed a part

of the brain and then collected spatial transcriptomics data 2, 5,

10, 15, 20, 30, and 60 days post-injury. They claim that 60 days

post-injury, brain cell composition and the spatial distribution

of cell types are restored.

To assess tissue restoration success, we focused on studying

the last two regenerative stages using two samples collected 30

and 60 days post-injury (30 DPI and 60 DPI). We compared the

60 DPI sample against the 30 DPI sample as well as a control

adult sample from the development data set (N30DPI = 1,

N60DPI = 1, NAdult = 1). The aim of our analysis is to

understand whether, after 60 days, the regenerating axolotl

brain is more similar to the unharmed adult brain or the 30 DPI

brain. If the axolotl brain has indeed completely regenerated,

we would expect to see that both the distribution of cell types

and their spatial organization have been restored, mimicking

that of the control adult sample. Comparing the 30 DPI, 60

DPI, and control sections at the sample level (Section 2.4.2),

we show that the 60 DPI brain is slightly more similar to the

30 DPI brain than to the adult brain, indicating that the

arrangement of cells has not been fully restored post-injury

(Figure 4b), though the differences are subtle.

Comparison of the cell-type-specific subgraphs further

supports our conclusion that the spatial organization of the

regenerated brain differs from the organization of the healthy

brain. Indeed, the portrait graph (Section 2.2.1) indicates that

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.02.578605doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.02.578605
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 Ali and Kuijs et al.

the organization of multiple cell types in the 60 DPI sample

resembles the 30 DPI organization more so than the adult

brain organization. For example, one cell type that is arranged

similarly in the 30 DPI and 60 DPI samples is the telencephalon

neuroblast (tlNBL), which has been shown to have a role in

telencephalon neurogenesis during regeneration [Lust et al.,

2022] (Figure 4c), indicating that regeneration may not yet

be complete 60 days after the injury. However, the portrait

plot also shows several cell types in the 60 DPI sample whose

spatial organization is similar to that of adult cells. These cell

types include dorsal pallium excitatory neurons (dpEX) and

Sfrp+ ependymal glial cells (sfrpEGC). This suggests that the

arrangement of dpEX and sfrpEGC cells is restored 60 days

post-injury.

Wei et al. [2022] observe that development and regeneration

are characterized by many of the same processes, including

neuronal differentiation and migration, but that several

pathways were uniquely upregulated in regenerating brains.

In addition, they identify two subtypes of ependymoglial

cells (EGCs), one of which is present in the developing

brain, while the other is found only in the regenerating

brain. It is possible that these biological differences underlie

the incomplete restoration of cell spatial organization in

regenerating brains, but more data is needed to draw robust

conclusions.

To summarize, we find that the arrangement of some

cell types is successfully restored in the 60 days following

brain injury. However, we also highlighted differences in the

organization of the 60 DPI brain and the healthy adult brain,

indicating that the former had not been fully regenerated at

the 60-day mark.

4. Discussion

GraphCompass is a comprehensive graph analysis framework

that provides quantitative methods to compare cell spatial

organization across physiological systems, pathological states,

and developmental stages. Compatible with spatially resolved

transcriptomics and proteomics data, GraphCompass integrates

multiple graph-based and statistical approaches for investigating

spatial graphs at three different levels of abstraction: individual

cell types, multi-cell neighborhoods, and entire samples. These

methods were adapted for spatial omics data, such that they

can handle high-dimensional features, flexible node identities

(spot or single cell) and variable edge weight definitions.

Differences in cell spatial organization can be indicators

of disease states, or correlate with how patients respond

to treatments. Studying cell spatial organization across

individuals can provide insights into developmental and

regenerative processes, which can guide the development

of engineered tissues and organoids. We believe that

GraphCompass will significantly advance our understanding of

the role of tissue architecture in healthy development, disease

onset, and recovery.

In this manuscript, we have demonstrated the capabilities

of GraphCompass through its application to datasets derived

from diverse technologies, highlighting the biological insights

that can be obtained from the various metrics it implements.

Developed in Python, GraphCompass interfaces seamlessly with

Squidpy and AnnData, enhancing its scalability and the potential

for expansion with new methodologies. With GraphCompass,

our aim is to offer the computational biology community user-

friendly and accessible graph comparison methods, empowering

both experimental and computational scientists in the analysis

and interpretation of tissue architecture differences across

different biological phenotypes.
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K. Borgwardt. Wasserstein Weisfeiler-Lehman graph kernels.

Advances in Neural Information Processing Systems, 32,

2019.

A. Tsitsulin, D. Mottin, P. Karras, A. Bronstein, and E. Müller.

NetLSD: hearing the shape of a graph. In Proceedings

of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, pages 2347–2356,

2018.

M. Varrone, D. Tavernari, A. Santamaria-Mart́ınez, L. A.

Walsh, and G. Ciriello. CellCharter reveals spatial cell niches

associated with tissue remodeling and cell plasticity. Nature

Genetics, pages 1–11, 2023.

I. Virshup, S. Rybakov, F. J. Theis, P. Angerer, and F. A. Wolf.

anndata: Annotated data. BioRxiv, pages 2021–12, 2021.

X. Wei, S. Fu, H. Li, Y. Liu, S. Wang, W. Feng, Y. Yang,

X. Liu, Y.-Y. Zeng, M. Cheng, et al. Single-cell Stereo-

seq reveals induced progenitor cells involved in axolotl brain

regeneration. Science, 377(6610):eabp9444, 2022.

B. Weisfeiler and A. Leman. The reduction of a graph to

canonical form and the algebra which appears therein. nti,

Series, 2(9):12–16, 1968.

C. G. Williams, H. J. Lee, T. Asatsuma, R. Vento-Tormo, and

A. Haque. An introduction to spatial transcriptomics for

biomedical research. Genome Medicine, 14(1):1–18, 2022.

Z. Wu, A. E. Trevino, E. Wu, K. Swanson, H. J. Kim, H. B.

D’Angio, R. Preska, G. W. Charville, P. D. Dalerba, A. M.

Egloff, et al. Graph deep learning for the characterization

of tumour microenvironments from spatial protein profiles

in tissue specimens. Nature Biomedical Engineering, 6(12):

1435–1448, 2022.

Z. Yuan. Mender: fast and scalable tissue structure

identification in spatial omics data. Nature

Communications, 15(1):207, 2024.

E. Zhao, M. R. Stone, X. Ren, J. Guenthoer, K. S. Smythe,

T. Pulliam, S. R. Williams, C. R. Uytingco, S. E. Taylor,

P. Nghiem, et al. Spatial transcriptomics at subspot

resolution with BayesSpace. Nature Biotechnology, 39(11):

1375–1384, 2021.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.02.578605doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.02.578605
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	Graph construction
	Comparing cell-type-specific subgraphs
	Portrait Method
	Diffusion Method

	Comparing cellular neighborhoods
	Comparing entire graphs
	Filtration Curves
	Weisfeiler-Lehman Graph Kernels


	Results
	Spatial organization of the tumor microenvironment and breast cancer progression
	Myocardial tissue reorganization following ischemic injury
	Restoration of axolotl brain function upon injury: Comparing healthy and regenerated brains

	Discussion
	Competing interests
	Code availability
	Data availability
	Acknowledgments

