

1 **Optimization of liver graft function using poly-pharmacological drug cocktail CEPT in a**
2 **simulated transplant model**

3

4 **Authors**

5

6 Anil Kharga^{1,2,3,4}, Mohammadreza Mojoudi^{1,2,3}, Huyun Chen^{1,2,3}, McLean S. Taggart^{1,2,3},
7 Antonia T. Dinicu^{1,2,3}, Ozge S. Ozgur^{1,2,3}, Basak Uygun^{1,2,3}, Mehmet Toner^{1,2,3}, Shannon N.
8 Tessier^{1,2,3}, Heidi Yeh^{2,4}, James F. Markmann⁵, Alban Longchamp^{1,2,3,4}, Korkut Uygun^{1,2,3*}

9

10 **Affiliations**

11

12 ¹Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts
13 General Hospital, Boston, MA, USA

14 ²Harvard Medical School, Boston, MA, USA

15 ³Shriners Children's Boston, Boston, MA, USA

16 ⁴Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital,
17 Boston, MA, USA

18 ⁵Transplant Surgery, Penn Medicine, University of Pennsylvania, Philadelphia, PA, USA

19

20 *** Corresponding author:**

21 Korkut Uygun, PhD

22 Telephone Number: 617-371-4881

23 Email: KUygun@mgh.harvard.edu

24

25 **Keywords :**

26

27 Normothermic Machine Perfusion, CEPT, Organ preservation, Organ recovery, Ischemic
28 Reperfusion Injury, Anhepatic phase, Graft Implantation, Drug Intervention, Transplant
29 Simulation

30

31 **Abstract**

32 **Background:** The number of patients in need of a liver transplant far exceeds the supply of
33 available organs. This imbalance could be dramatically reduced should the donor organ pool be
34 expanded by rendering marginal cases transplantable rather than discarded. The poly-
35 pharmacological drug cocktail CEPT (Chroman-1, Emricasan, Polyamine, and Trans-ISRB
36 (integrated stress inhibitor)) has been found to improve the in-vitro viability of human
37 pluripotent stem cells (hPSCs) following cryopreservation. It is worth exploring CEPT's ability
38 to inhibit various apoptotic pathways and preserve cellular function for potentially mitigating
39 warm ischemic stress of the anhepatic phase of graft implantation and promoting more rapid
40 graft recovery following reperfusion with continuous treatment. **Methods:** Rat livers without
41 warm ischemia and CEPT supplementation are the healthy control: fresh (n=3) group. Room-
42 temperature warm ischemia was used to replicate the anhepatic phase of graft implantation in the
43 control (n=6) group and the experimental CEPT group (n=6) without and with CEPT
44 supplementation, respectively. Transplantation was modeled by ex-vivo reperfusion at 37°C for
45 six hours with William's E-based hepatocyte culture media and with CEPT supplementation in
46 the CEPT group. **Results:** Livers treated with CEPT during warm ischemia and subsequent

47 reperfusion have improved hepatocellular function as indicated by increased oxygen O₂
48 utilization, stable pH, and improved cholangiocyte function indicated by the increased hourly
49 rate of bile production. Furthermore, resistance, an endothelial injury marker, and caspase 3/7, an
50 apoptotic marker, were lower. **Conclusion:** To improve the utilization of available donor livers,
51 different stages of the organ transplantation process can be optimized. The anhepatic phase,
52 which includes the period from the removal of the native liver from the recipient to the
53 reperfusion of the donor's graft liver through the portal vein during graft implantation, can be
54 targeted using CEPT for mitigating warm ischemia-induced injury that occurs during vascular
55 anastomosis. (**S1 Fig: Graphical abstract**)

56

57 **Introduction**

58 Liver transplantation is a standard procedure with high survival rates. However, 15% of patients
59 die while awaiting a viable liver [1]. Typically, grafts are derived from donors who have suffered
60 cardiac death or are brain dead. Each source of graft poses different challenges for
61 transplantation. For example, grafts procured from controlled donation after cardiac death (DCD)
62 suffer warm ischemic damage. Damage to grafts from a brain-dead donor (DBD) is primarily
63 because of sterile inflammation from the cytokine storm, imbalance of the autonomic nervous
64 system, and loss of hypothalamic-pituitary-adrenal axis, which causes electrolyte and
65 hemodynamic imbalance [2]. Although DBD grafts do not generally suffer severe warm
66 ischemic damage like that which occurs in a DCD, both types of grafts suffer from cold ischemic
67 damage during transportation and warm ischemic damage during the anhepatic phase of graft
68 implantation in the recipient. Thus, to improve utilization of liver grafts, it is crucial to explore

69 ways to minimize ischemic damage at various stages of transplantation. In the current work, we
70 focused on utilizing drug intervention during the anhepatic phase of graft implantation.

71

72 The anhepatic phase of graft implantation is the duration from the removal of the native liver of
73 the recipient to reperfusion of the donor's graft liver through the portal vein in the recipient [3].
74 Liver core temperature rises rapidly towards room temperature during the performance of
75 vascular anastomosis [4]. Increased temperature increases the graft's metabolic demand [5]; as a
76 result, the graft suffers from warm ischemic damage after the liver is removed from storage on
77 ice at the end of back-benching during vascular anastomosis. Furthermore, anhepatic phases over
78 100 minutes have a higher incidence of graft dysfunction and worse 1-year patient survival [3],
79 and increased implantation time is associated with poor transplant outcomes due to a rise in the
80 graft temperature [6]. Preclinical animal studies to randomized clinical trials (RCT) have used
81 drugs to precondition the graft before implantation and have treated the recipient to help the graft
82 recover faster upon reperfusion [7-10]. Using a drug to target the anhepatic phase of graft
83 implantation and treating the recipient with a drug for faster recovery could be a more
84 straightforward and practical approach.

85

86 A new poly pharmacological drug cocktail-**CEPT**: Chroman 1, Emricasan, Polyamines, and
87 Trans-ISRIB (integrated stress inhibitor) has been shown to enhance cell survival of genetically
88 stable human pluripotent stem cells (hPSCs) and their differentiated progeny by simultaneously
89 blocking several stress and apoptotic pathways that otherwise would have compromised cell
90 structure and function [11]. **Chroman 1** is a highly potent ROCK (Rho-associated coiled-coil

91 forming protein serine/ threonine kinase) pathway inhibitor [12], which improves cell survival by
92 blocking cell contraction through decreased phosphorylation of the myosin light chain, resulting
93 in inhibition of action-myosin contraction, ultimately preventing apoptosis [13]. **Emricasan**, a
94 pan-caspase inhibitor, efficiently blocks caspase-3 activation alone and, when combined with
95 Chroman 1, has proved superior to single compound use [11]. **Trans-ISRIB**, a selective inhibitor
96 of the integrated stress response (ISR), makes cells resistant by preventing stress granule
97 formation and restoring the messenger ribonucleic acid (mRNA) translation [14]. **Polyamines**
98 are positively charged metabolites involved in cellular functions such as transcription,
99 translation, cell cycle, and stress protection [15]. We hypothesize that by targeting various
100 apoptotic pathways, CEPT may minimize Ischemic Reperfusion Injury (IRI) and improve graft
101 recovery post-reperfusion in the recipient.

102

103 Recent clinical trials have demonstrated ex-vivo machine perfusion's efficacy in reconditioning
104 ischemic damaged grafts and assessing the viability of DCD, elderly, and steatotic grafts during
105 the preservation period [16]. Machine perfusion can potentially recondition grafts by mitigating
106 IRI [17]. Normothermic Machine Perfusion (NMP) simulates near-physiological conditions to
107 maintain normal metabolic functions, allowing graft assessment using the liver's hemodynamic,
108 biochemical, and synthetic functions and bile analysis [18]. In addition, machine perfusion can
109 be applied to study drug pharmacokinetics to predict newly developed drugs' absorption,
110 distribution, metabolism, excretion profile, and toxicological behavior [19]. In the current work,
111 we use NMP to simulate the transplantation process on the pump for recovery of the rat liver
112 graft using the drug cocktail-CEPT and simultaneous assessment of graft function.

113

114 **Methods**

115

116 **Ethics statement**

117 This study complies with ethical regulations, and the experimental protocol no: 2011N000111
118 was approved by the Institutional Animal Care and Use Committee (IACUC) of Massachusetts
119 General Hospital, Boston, MA, USA.

120

121 **Rationale for the study design**

122

123 In a 45 min Warm Ischemia Time (WIT) donation after brain death (DBD) porcine model of
124 liver transplantation, a combination of drugs was used for flushing and another combination of
125 drugs was used in the recipient, which decreased the primary non-function of the graft, improved
126 liver function and increased survival [9]. In a recent randomized control trial, following static
127 cold storage, donor's livers were infused ex-situ with epoprostenol via portal vein; recipients
128 received oral α -tocopherol and melatonin before anesthesia and during the anhepatic and
129 reperfusion phase received intravenous drugs- antithrombin III, infliximab, apotransferrin,
130 recombinant erythropoietin- β , C1-inhibitor, and glutathione [7]. In adult living donor liver
131 transplantation clinical trials, intraoperative dexmedetomidine infusion decreased IRI by
132 suppressing intercellular adhesion molecule-1 (ICAM-1) [8]. In a rat orthotopic liver transplant
133 model, Treprostinil, a prostacyclin (PGI 2) analog, was given to donor animals 24 hours before
134 hepatectomy. The recipient animal received a similar treatment until the time of sacrifice, and
135 this drug intervention ameliorated IRI [10].

136

137 Based on these findings, we used NMP technology to simulate the transplantation of rat liver on
138 a pump to explore a new drug cocktail-CEPT efficacy in helping the liver graft, which always
139 suffers ischemic damage due to a gradual rewarming towards room temperature during the
140 anhepatic phase of graft implantation in the recipient, by flushing the graft with the drug before
141 the simulated graft implantation phase and simulating treatment of recipient post-reperfusion
142 using NMP pump.

143

144 **Study design**

145

146 The study design is illustrated in **Fig 1. A.** and it is described below:

147

148 **1) CEPT group** - experimental group: (n=6): The rat liver was procured by flushing with room
149 temperature Lactated Ringer's (LR) for 15 minutes with CEPT. Procurement was followed by
150 60 minutes of warm ischemia at room temperature (21°C). During WIT, the liver was placed in
151 50 ml of LR, supplemented with CEPT, mimicking the recipient's anhepatic phase of graft
152 implantation. During this phase, the drug is present in the graft vasculature. It is aimed to
153 decrease apoptosis during warm ischemia, then 6 hours of NMP with CEPT-supplemented
154 perfusate (500ml), mimicking post-reperfusion phase in the recipient with the drug treatment to
155 improve graft recovery from the ischemic damage suffered during procurement and anhepatic
156 phase of graft implantation.

157

158 **2) Control group (n=6):** The rat liver was procured by flushing with room temperature LR for 15
159 minutes without CEPT. The liver was then stored in 50 mL of LR without CEPT for 60 minutes
160 at room temperature (21°C) to mimic WIT. Following 60 minutes, the liver underwent 6 hours of
161 NMP with 500 mL of perfusate without CEPT.

162

163 **3) Fresh group- healthy control: (n=3)** The rat liver was procured by flushing with room
164 temperature LR without CEPT for 15 minutes without the drug (CEPT), then it was immediately
165 transferred to the NMP pump with perfusate (500ml) not supplemented with CEPT. The fresh
166 liver did not experience 60 minutes of WIT at room temperature (21°C), unlike the CEPT and
167 control groups.

168

169 **Fig 1: Study design and sampling timeline during NMP:** (A) Study design: Rat liver was
170 flushed with LR with/ without drug cocktail (CEPT) during procurement. Fresh group livers
171 were flushed without the drug cocktail and were transferred to the NMP pump immediately;
172 CEPT and control group livers were kept in LR solution with/without the drug cocktail,
173 respectively, for 60 minutes at room temperature (21°C) to induce a low level of warm ischemia
174 of anhepatic phase of graft implantation before transferring to the NMP pump to simulate
175 transplantation with/ without drug cocktail in perfusate respectively. (B) Sampling during NMP
176 was conducted half hourly for perfusate from inflow and outflow ports, bile was collected
177 hourly, and tissue biopsy for flash frozen samples and histology was taken at the end of NMP.
178 CEPT: Chroman-1, Emricasan, Polyamine, and Trans-ISRB (integrated stress inhibitor); WIT:
179 Warm Ischemia Time; LR: Lactated Ringer's, NMP: Normothermic Machine Perfusion.

180

181

182 **Rat hepatectomy**

183

184 Adult male Lewis rats (weighing 300-350 g) were obtained from Charles River Laboratories,
185 Wilmington, MA, USA. The animal study was performed according to the National Research
186 Council guidelines and the Institutional Animal Care and Use Committee (IACUC) protocols at
187 Massachusetts General Hospital (protocol number: 2011N000111). Male Lewis rats were housed
188 socially in temperature ($70^{\circ}\text{F} \pm 2^{\circ}\text{F}$) and humidity (30–70%) controlled environments within
189 pathogen-free high-efficiency particulate air (HEPA)-filtered ventilated cages, alternating 12-
190 hour light/dark cycles. Animals were provided sterilized standard rat chow and water ad libitum.
191 Fifteen rats underwent total hepatectomy. Male Lewis rats were first anesthetized by inhalation
192 of 5% isoflurane in an induction chamber. During the surgical procedure, anesthesia was
193 administrated using a tabletop anesthesia apparatus connected to a standard rodent system. Rats
194 were considered adequately anesthetized when a muscular contraction was absent following a toe
195 pinch. After anesthesia induction, the rat was placed on a surgical table in a supine position and
196 covered with sterile surgical drapes. The abdomen was opened with a transverse abdominal
197 incision 1 cm below the lower end of the sternum. Ligaments and adhesions at the superior and
198 posterior aspects of the liver were divided to free the liver from its surroundings. The rats' bile
199 duct was cannulated with 27 G tubing and secured in place with 6-0 silk thread.

200

201 After which, portal vein tributaries- splenic and gastric veins and hepatic artery were ligated with
202 6-0 silk. Heparin (1 unit/g of rat weight) was injected into the infra-hepatic inferior vena cava
203 (IVC). The portal vein (PV) was cannulated with an 18-G Angio catheter (green colored), and

204 the infra-hepatic IVC was transected immediately to flush the liver and minimize backward
205 building pressure from the flushing fluid. The animal was euthanized by exsanguination of blood
206 from transected IVC. The liver was then flushed with 50 mL room temperature (21°C) Lactated
207 Ringer's (LR) with supplementation of 1 mL heparin in the 50 mL LR through the PV. The PV
208 cannula was secured with 6-0 silk thread, and the liver was freed from its remaining attachments
209 to the diaphragm, retroperitoneum, and intestine. The supra-hepatic IVC was transected, and the
210 liver was removed from the body and weighed immediately to get the initial weight used for
211 calculating edema, oxygen consumption, portal vascular resistance, and hourly rate of bile
212 production.

213

214 **Perfusate composition**

215

216 Ex-vivo NMP was performed with a sterilized and oxygen carrier free perfusate. 1L of perfusate
217 was composed of 950 mL of William's E hepatocyte culture media (Sigma Aldrich, Burlington,
218 MA, USA) to supply the graft with amino acids and nutrition during perfusion, 20 g of bovine
219 serum albumin (BSA) (Sigma Aldrich, Burlington, MA, USA) for oncotic pressure required for
220 balancing portal hydrostatic pressure to prevent tissue edema, 20 g of 35,000 kilo-Dalton
221 polyethylene glycol (PEG) (Sigma Aldrich, Burlington, MA, USA), 20 mg of dexamethasone
222 (Sigma Aldrich, Burlington, MA, USA), 2 mL (1000 unit/ml) of heparin (MGH Pharmacy,
223 Boston, MA, USA), 1 mL (100 units/ml) of regular insulin (MGH Pharmacy, Boston, MA,
224 USA), 10 mL (5000 units/ml of penicillin and 5 mg/ml of streptomycin) penicillin-streptomycin
225 (Thermo Fisher Scientific, Point Street, CA, USA), and 2.2 g of sodium bicarbonate to obtain a
226 pH of 7.4. On the day of the experiment, 5 mL of L-glutamine (Sigma Aldrich, Burlington, MA,

227 USA) was added to 500 mL perfusate prior to perfusion since L-glutamine degrades after 24
228 hours of perfusate preparation. The CEPT group perfusate was supplemented with the drug
229 cocktail- CEPT: 50 nM Chroman 1 (MedChemExpress, Monmouth Junction, NJ, USA), 5 uM
230 Emricasan (MedChemExpress, Monmouth Junction NJ, USA), 0.7 uM trans-ISRIB (Tocris
231 Bioscience, Emeryville, CA, USA), 40 ng/mL putrescine (Sigma Aldrich, Burlington, MA,
232 USA), 4.5 ng/mL spermidine (Sigma Aldrich, Burlington, MA, USA), and 8 ng/mL spermine
233 (Sigma Aldrich, Burlington, MA, USA), all suspended in dimethyl sulfoxide (DMSO) (Sigma
234 Aldrich, Burlington, MA, USA). Putrescine, spermidine, and spermine form the polyamine
235 portion of the CEPT.

236

237

238 **Normothermic machine perfusion (NMP)**

239

240 **Fig 2** illustrates the NMP setup. 500 mL of perfusate was circulated using a peristaltic roller
241 pump system for a 6-hour duration at 37°C at a constant flow rate of 30 mL/min through a
242 membranous oxygenator connected to a 95% O₂ and 5% CO₂ gas cylinder (Airgas, Radnor, PA,
243 USA). The PV inflow pressure was kept below 12 mmHg. Perfusate entered the PV and exited
244 freely from the supra-hepatic inferior venacava (IVC) and infra-hepatic IVC. The perfusion
245 circuit consisted of a perfusion chamber: tissue bath (Radnoti, Covina, CA, USA), Masterflex
246 peristaltic pumps (Cole Parmer, Vernon Hill, IL, USA), a membrane oxygenator (Radnoti,
247 Covina, CA, USA), a heat exchanger (Radnoti, Covina, CA, USA), a bubble trap (Radnoti,
248 Covina, CA, USA). The liver temperature was regulated by a water bath (Lauda, Brinkmann,
249 Westbury, NY, USA) and constantly monitored. During perfusion, the pH was monitored

250 without the supplementation of bicarbonate to assess the ability of the graft to maintain near
251 physiological pH on its own.

252

253 **Fig 2: Normothermic Machine Perfusion (NMP) of rat liver.** The peristaltic pump pushes
254 perfusate from the reservoir through the membrane oxygenator to raise partial pressure (pO_2)
255 above 500 mmHg and removes CO_2 from perfusate. The bubble trap prevents air emboli and acts
256 as a compliance chamber, along with 50ml Syringes to dampen pulsation from the pump. The
257 water bath heats water to 37°C and pumps warm water through the jacketed structure of the
258 oxygenator, tissue bath, and bubble trap to keep perfusate at body temperature (37°C). Samples
259 from inflow and outflow ports were collected every half an hour for analysis, and pressure values
260 were recorded using a pressure transducer attached to the inflow line. Bile was collected every
261 hour for analysis, and the volume produced was recorded.

262

263

264 **Sample collection**

265

266 The sample collection timeline is illustrated in **Fig 1. B**. A proximal port was used for the inflow
267 sample collection, and the outflow sample was collected directly from infra-hepatic IVC. The
268 baseline sample was collected at 15 minutes when the liver had reached the maximum flow rate
269 set (30 ml/min), and bile was collected hourly under the mineral oil to prevent pCO_2 from
270 equilibrating with the atmosphere and have accurate readings for bile pH and bile HCO_3 . After
271 the baseline sampling, inflow and outflow perfusates were analyzed using the Siemens
272 RapidPoint 405 Blood Gas Analyzer (Siemens Healthineers, Malvern, PA, USA). Additional

273 perfusion samples were collected and stored every half an hour for subsequent analysis. Liver
274 biopsies and flash-frozen samples were collected at the end of NMP. The rat liver tissue samples
275 collected were fixed in 10% formalin, embedded in paraffin, and sectioned.

276

277 **Assessment of graft function**

278

279 Liver hepatocellular functions, injury markers, and cholangiocyte functions were assessed on the
280 pump using NMP after inducing 60 minutes of warm ischemic damage at room temperature to
281 mimic the anhepatic phase of graft implantation.

282

283 **1) Metabolic function**

284

285 The metabolic function was assessed with oxygen (O_2) uptake rate and the ability to maintain
286 near physiological pH without the need for bicarbonate (HCO_3) supplementation. Oxygen uptake
287 or consumption rate was defined as inflow partial pressure (pO_2 in) minus outflow pO_2 (pO_2 out)
288 times flow rate (30ml/min) per gram (g) of liver weight. Oxygen uptake in $\mu L/min/g = (pO_2$ in –
289 pO_2 out) * Flow rate * 0.314/ weight.

290

291 **2) Injury markers**

292

293 Liver graft injury was accessed using portal vascular resistance, ineffective glucose metabolism
294 from glucose level, potassium (K), lactate, and liver transaminase: alanine transaminase (ALT)
295 and aspartate transaminase (AST) from the portal vein's inflow line and caspase 3/7 activity at

296 the end of perfusion from the flash-frozen samples as a marker of apoptosis. In addition, edema
297 compared to initial weight at procurement due to WIT for 60 minutes at room temperature before
298 the start of NMP for simulating anhepatic phase of graft implantation and weight changes at the
299 end of NMP compared to initial weight at time of procurement were accessed for cellular and
300 interstitial edema and its resolution at the end of NMP, respectively. Portal vascular resistance
301 was defined as pressure divided by flow rate per gram (g) of liver weight as an indirect marker of
302 liver sinusoidal endothelial cell edema.

303

304 **3) Cholangiocellular function**

305

306 The volume of bile produced every hour was recorded as hourly the rate of bile production, and
307 it was analyzed for biochemistry to calculate bile parameters delta values. Bile pH delta,
308 bicarbonate (HCO_3) delta, and K delta were calculated by subtracting the perfusate inflow values
309 from the bile values at the hourly time point.

310

311 **4) Histological analysis**

312

313 Hematoxylin-eosin (H&E) and Terminal deoxynucleotide transferase dUTP nick end labeling
314 (TUNEL) stains were utilized to segment and stain fixed liver tissue samples collected at the end
315 of 6 hours of perfusion (Specialized Histopathology Services Core, MGH, Charlestown, MA,
316 USA).

317

318 **5) Storage solution and effluent drainage analysis**

319

320 CEPT and Control groups' livers were kept in 50 mL of LR solution at room temperature for 60
321 minutes to simulate the gradual rewarming phase of the anhepatic phase of graft implantation in
322 the recipient. This storage solution (50 mL LR) was analyzed for biochemistry and transaminase
323 level. Effluent drainage collected from IVC after flushing with 3 mL of room temperature LR
324 over 1 minute just before transferring the liver to the NMP pump was analyzed for biochemistry
325 panels: pH, Lactate, Glucose, K, and transaminase: ALT & AST. Point of Care (POC) machine
326 could not detect pH lower than 6.5 and glucose lower than 20 mg/dL. These missing data points
327 were replaced with the lowest measured value of 6.5 for pH and 20 mg/dL for glucose in the
328 graph and for data analysis.

329

330 **Caspase 3/7 Activity Assay**

331

332 For assessments of caspase 3/7 activity, flash-frozen biopsy samples were collected at the end of
333 each perfusion. For this, 300-500 mg of livers were flash-frozen in liquid nitrogen for preservation
334 at -80°C. On the day of measurement, frozen liver samples were added to ice-cold PBS at 50
335 mg/mL and processed for tissue homogenization using the gentleMACS Dissociator (n = 3 per
336 group) (Miltenyi Biotec, Bergisch Gladbach, Germany). Then, an equal volume of room-
337 temperature PBS was added to the lysate to dilute it to 25 mg/mL. In a white flat bottom 96-well
338 assay plate, 100 uL of the diluted lysate was added to each well along with an equal volume of
339 Caspase Glo 3/7 assay reagent (Promega, Madison, Wisconsin, USA), according to the
340 manufacturer's directions. The plate was then placed on a plate shaker set at 250 rpm for 30

341 minutes at room temperature while protected from light. After incubation, luminescence was read
342 from the top of the well using the Synergy 2 microplate reader (Biotek, Winooski, VT, USA).

343

344 **Statistical Analysis**

345

346 Data were managed using Microsoft Excel 365. Statistical analyses and graphs were generated
347 with Prism 9.5.1 (GraphPad Software Inc., La Jolla, CA, USA). Ordinary one-way ANOVA was
348 used for one-factor comparison with Tukey's post-hoc test for multiple comparisons. The
349 significance level was set for p-value < 0.05. Difference among groups at each time point of
350 sample collection was determined through repeated measures, two-way ANOVA followed by
351 Tukey's post-hoc test for multiple comparisons. Simple linear regression was used to show linear
352 trends over time, such as for liver transaminase level (AST/ALT), and their slopes were
353 compared using ANOVA. For edema developed due to induced warm ischemia (for two groups:
354 CEPT and control only), two-tailed two-sample student's t-test with Welch's correction was
355 used. For pH, K, and glucose, pre-perfusion (time: 0) inflow values were recorded when the liver
356 was not placed on the system to show the normal perfusate concentration and pH in the graph,
357 but it was excluded for analysis as the liver was not present for assessment at time: 0.

358

359 **Results**

360

361 **1) Metabolic function**

362

363 The CEPT group had a significantly higher oxygen uptake rate (**Fig 3. A**) than the control group
364 (40.37 ± 0.44 vs. 38.00 ± 0.35 $\mu\text{L of O}_2 / \text{min/g}$ respectively, $p = 0.0003$), and slightly higher than
365 the fresh group (38.81 ± 0.35 , $p = 0.017$). However, control and fresh groups were not different
366 from each other. CEPT group inflow pH (**Fig 3. B**) was significantly higher than the control
367 group (7.326 ± 0.004 vs. 7.283 ± 0.004 respectively, $p < 0.0001$), and was similar to the fresh group
368 (7.318 ± 0.006).

369

370 **Fig 3: Metabolic function during Normothermic Machine Perfusion (NMP): (A) Oxygen**
371 (O_2) **uptake, (B) pH (inflow)**. O_2 uptake rate and pH were significantly better in CEPT treated
372 group compared to the control group. Fresh (n=3): healthy control without 60 min warm
373 ischemia time (WIT) at 21°C , control (n=6): with 60 min WIT @ 21°C but without CEPT, CEPT
374 (n=6): experimental group with 60 min WIT @ 21°C and with CEPT; ANOVA with Tukey's
375 post-hoc test for multiple comparisons; results are expressed as mean with SEM; pre-perfusion
376 (time: 0) inflow pH values before livers were placed on the pump were excluded for analysis; ns:
377 $p > 0.05$, * : $p \leq 0.05$, ** : $p \leq 0.01$, *** : $p \leq 0.001$, **** : $p \leq 0.0001$.

378

379 **2) Injury markers**

380

381 Overall, portal vascular resistance (**Fig 4. A**) of CEPT-treated liver was significantly lower than
382 the control (0.01381 ± 0.0005 vs. 0.01788 ± 0.0005 $\text{mmHg}/(\text{ml}/\text{min})/\text{g}$ of liver respectively, p
383 < 0.0001). However, both CEPT and control groups had portal vascular resistances significantly
384 higher than the fresh group (0.01 ± 0.0005 $\text{mmHg}/(\text{ml}/\text{min})/\text{g}$ of the liver; CEPT vs. fresh and
385 control vs. fresh, both $p < 0.0001$) based on one-way ANOVA. Based on two-way ANOVA, the

386 control group resistance was significantly higher than the fresh liver at 1 hr (0.018 ± 0.003 vs.
387 0.008 ± 0.001 mmHg/(ml/min)/g, $p = 0.04$) and 5 hr (0.015 ± 0.002 vs. 0.010 ± 0.001
388 mmHg/(ml/min)/g, $p = 0.03$). Glucose levels (**Fig 4. B**) of both CEPT and control groups were
389 similar (227.6 ± 3.213 vs. 223.1 ± 4.435 mg/dL respectively, $p=0.75$) and both were significantly
390 higher than the fresh group (198.4 ± 5.378 mg/dL; fresh vs. CEPT $p=0.0001$ and fresh vs. control
391 $p=0.0011$). Although the Potassium (K) (**Fig 4. C**) of the CEPT and control groups were not
392 different overall for the entire 6 hours (5.118 ± 0.0099 vs. 5.166 ± 0.0153 mMole/L respectively,
393 $p= 0.1150$), it is lower in the first half, then reaches a similar level to that of control in the second
394 half for the CEPT group. However, in both groups, K levels are higher than the Fresh group
395 (5.015 ± 0.022 mMole/L; fresh vs. control $p<0.0001$ and fresh vs. CEPT $p= 0.0002$). Overall
396 CEPT group lactate (**Fig 4. D**) level was not different from the control group (1.119 ± 0.0354 vs.
397 1.239 ± 0.065 mMole/L, respectively), but the fresh group's lactate (1.040 ± 0.062 mMole/L) was
398 significantly lower than the control ($p=0.04$) based on one-way ANOVA. However, from two-
399 way ANOVA, the CEPT group lactate was lower than the control at 0.5 hr of perfusion
400 (1.310 ± 0.145 vs. 1.597 ± 0.156 mMole/L respectively, $p=0.027$). Liver transaminase (ALT/ AST)
401 (**Fig 4. E** and **Fig 4. F**) levels raised over time, showing a linear trend with time on running
402 simple linear regression (ALT: R^2 values for fresh, control, and CEPT: 0.55, 0.31, 0.35,
403 respectively; AST: R^2 values for fresh, control, and CEPT: 0.57, 0.32, 0.39, respectively);
404 however, their slopes were not significantly different (ALT slopes for fresh, control, and CEPT:
405 15.10 ± 3.43 , 19.41 ± 5.17 , 25.66 ± 6.16 , respectively, $p=0.45$ and AST slopes for fresh, control, and
406 CEPT: 17.41 ± 3.77 , 20.79 ± 5.44 , 25.89 ± 5.77 , respectively, $p=0.53$). Caspase 3/7 activity (**Fig 4.**
407 **G**), a marker for apoptosis, measured from flash-frozen samples collected at the end of NMP,
408 was significantly lower in the CEPT group compared to both the control and fresh groups (both

409 p<0.0001). Edema compared to initial weight at the time of procurement due to warm ischemia for
410 60 minutes at room temperature during simulation of the anhepatic phase of graft implantation
411 (**Fig 4. H**) before the start of NMP was not different comparing CEPT and control groups (based
412 on two-tailed two-sample student's t-test with Welch's correction). Weight changes at the end of
413 6 hours of NMP (**Fig 4. I**) compared to initial weight were also not different among all three
414 groups (based on one-way ANOVA).

415

416 **Fig 4: Injury markers during Normothermic Machine Perfusion (NMP):** (A) Portal vascular
417 resistance, (B) glucose (inflow), (C) K: potassium (inflow), (D) lactate (inflow), liver
418 transaminase from inflow – (E) ALT and (F) AST, (G) Caspase 3/7 activity at the end of NMP,
419 (H) edema from warm ischemia @ 21°C during the simulated anhepatic phase of graft
420 implantation compared to initial weight at time of procurement, (I) end weight change after 6
421 hours of NMP compared to initial weight at the time of procurement. CEPT-treated livers had
422 lower portal vascular resistance overall compared to the control group on One-way ANOVA
423 (indicated by **** near groups legend), and at 1hr and 5hr, there was a significant difference
424 between only the control and fresh group based on two-way ANOVA (indicated by * below line
425 graph). Lactate was significantly different at 0.5 hr between the CEPT and control group based
426 on two-way ANOVA (indicated by * below line graph). CEPT-treated livers had lower apoptosis
427 marker indicated by lower Caspase 3/7 activity compared to the control group, but other injury
428 markers were not different from the control group. Fresh (n=3): healthy control without 60 min
429 warm ischemia time (WIT) at 21°C, control (n=6): with 60 min WIT @21°C but without CEPT,
430 CEPT (n=6): experimental group with 60 min WIT @ 21°C and with CEPT; ANOVA with
431 Tukey's post-hoc test for multiple comparisons was used for all except (E), (F) & (H). For (E) &

432 (F): simple linear regression with comparison of slopes with ANOVA and for (H): two-tailed
433 two-sample student's t-test with Welch's correction; results are expressed as mean with SEM;
434 pre-perfusion (time: 0) inflow glucose and K values before the livers were placed on the pump
435 were excluded for analysis; ns: $p > 0.05$, * : $p \leq 0.05$, ** : $p \leq 0.01$, *** : $p \leq 0.001$, **** : $p \leq$
436 0.0001; ALT: Alanine transaminase, AST: Aspartate transaminase, K: Potassium.

437

438 **3) Cholangiocellular function**

439

440 Overall, the hourly rate of bile production (**Fig 5. A**) in the CEPT group was significantly higher
441 than the control based on one-way ANOVA, and it was higher than the control group at 1 hr
442 (0.05 ± 0.002 vs. 0.038 ± 0.004 ml/hr/g respectively, $p = 0.038$) based on two-way ANOVA. Still,
443 both groups' hourly bile production rates were not different from the fresh group liver. Bile pH
444 delta, HCO_3 delta, and K delta (**Fig 5. B-D**) were not different among the groups.

445

446 **Fig 5: Cholangiocellular function during Normothermic Machine Perfusion (NMP): (A)**
447 Hourly rate of bile production (B) bile K delta (bile K - inflow perfusate K), (C) bile pH delta
448 (bile pH - inflow perfusate pH), (D) bile HCO_3 delta (bile HCO_3 - inflow perfusate HCO_3).
449 Hourly rate of bile production was significantly higher overall on one-way ANOVA (indicated
450 by * on legends) and was significantly higher during 1st hour of bile collection on two-way
451 ANOVA (indicated by * on line graph) compared to the control groups. There was no significant
452 difference among the groups for bile delta parameters. Fresh (n=3): healthy control without 60
453 min warm ischemia time (WIT) at 21°C, control (n=6): with 60 min WIT @21°C but without

454 CEPT, CEPT (n=6): experimental group with 60 min WIT @ 21°C and with CEPT; ANOVA
455 with Tukey's post-hoc test for multiple comparisons; results are expressed as mean with SEM;
456 ns: $p > 0.05$, * : $p \leq 0.05$, ** : $p \leq 0.01$, *** : $p \leq 0.001$, **** : $p \leq 0.0001$; HCO_3 : bicarbonate.

457

458 **4) Histological analysis**

459

460 Analysis of pathology slides using H&E staining (**Fig 6: A, C, E**) under light microscopy
461 revealed no significant differences among the groups in terms of tissue necrosis and interstitial
462 edema. The portal triad (indicated by the structure around the central vein with a star (*)) was
463 well preserved without cellular and interstitial edema. TUNEL staining (**Fig 6: B, D, F**) showed
464 occasional TUNEL-positive nuclei in high power fields (200x magnification) and were similar
465 among the groups.

466

467 **Fig 6: Histology with H&E and TUNEL staining and light microscopy of the liver biopsy**
468 **taken at the end of 6 hours of NMP:** H&E staining at 100x magnification- (A) fresh group, (C)
469 control group, (E) CEPT group; TUNEL staining at 200x magnification- (B) fresh group, (D)
470 control group, (F) CEPT group. Light microscopy images using H&E staining did not show a
471 significant difference among the groups, and TUNEL staining used for visualizing DNA
472 fragmentation for identifying apoptotic cells showed occasional TUNEL positive nuclei and
473 were similar among the groups; star (*): portal vein with focus on portal triad, black arrow
474 represents TUNEL stained nuclei. H&E: Hematoxylin & Eosin, TUNEL: Terminal
475 deoxynucleotidyl transferase dUTP nick end labeling.

476

477 **5) Storage solution and Effluent drainage analysis**

478

479 Storage solution (**S2 Fig**) in which the control and CEPT groups grafts were maintained at room
480 temperature for inducing warm ischemia for simulating anhepatic phase and effluent drainage
481 (**S3 Fig**) collected from IVC just before the start of NMP were not different among the groups in
482 terms of biochemistry panels: pH, Lactate, Glucose, K, and transaminase: ALT & AST. In
483 addition, AST and ALT were not detectable in the storage solution and, therefore, were not
484 shown in the graph.

485

486 **Discussion**

487

488 Our study simulates injury from warm ischemia during the anhepatic phase of graft implantation
489 in the recipient, as well as simulates 6 hours of the post-reperfusion phase of the transplantation
490 process using an NMP pump with an exploration of the possibility of drug intervention for
491 minimizing IRI. This study suggests that flushing with CEPT and treatment with CEPT post-
492 reperfusion of the graft in a transplant simulation model reduces damage associated with
493 reperfusion, as demonstrated by increased O₂ uptake, pH stability (Fig 3. A & B), higher hourly
494 rate of bile production (**Fig 5. A**) and lower portal vascular resistance (**Fig 4. A**), lower caspase
495 3/7 activity (**Fig 4. G**), and initial lower lactate level at half an hour timepoint (**Fig 4. D**).

496

497 Improved portal vascular resistance in the CEPT group could result from decreased endothelial
498 injury from induction of warm ischemia, suggesting a lowering of endothelial cell swelling in the
499 liver sinusoids and ultimately keeping the capillary vasculature dilated. Low lactate levels and
500 effective lactate clearance both in perfusate and bile have been used for viability assessment
501 [20], and CEPT-treated liver recovered faster, showing lower lactate at the half an hour timepoint
502 of perfusion. Hyperglycemia, non-responsiveness to insulin, is associated with aggravated IRI.
503 Therefore, elevated glucose levels in the perfusion media may serve as an additional injury
504 marker [21]. Both the control and CEPT groups manifest higher overall glucose levels when
505 compared to the fresh group, indicating higher IRI from the induction of warm ischemia of 60
506 minutes at room temperature. The linear trend with time of transaminase level can be explained
507 by the stress of the machine perfusion system and the lack of dialysis circuits in our perfusion
508 system. Both CEPT and control groups experienced similar levels of edema from the induction
509 of 60 minutes of warm ischemia to simulate the anhepatic phase.

510
511 Similarly, weight loss in all groups could be caused by recovery of cellular swelling [22] that
512 occurred during the liver procurement phase and the 60 minutes of WIT phase in the CEPT and
513 control groups. RL solution instead of the University of Wisconsin- Cold Storage Solution (UW-
514 CSS) was used for flushing the graft during procurement since our study did not involve static
515 cold storage (SCS), which is unavoidable in clinical practice because of the need for graft
516 transport. This was done to remove the cold ischemic time (CIT) of SCS as a confounding
517 variable. It is worth noting that the RL solution does not contain colloids such as hydroxyethyl
518 starch, present in UW-CSS for balancing the hydrostatic pressure in the sinusoids during
519 procurement flush, and this could be responsible for causing more edema at the time of

520 procurement, which can result in falsely elevated initial weight after procurement. This can be
521 the second reason for weight loss seen among all three groups at the end of 6 hours of NMP.

522

523 Higher oxygen uptake and stable pH in the CEPT group could be due to a greater number of
524 healthy hepatocytes compared with the control group. The bile volume produced has been used
525 as a biomarker of hepatic viability during ex vivo machine perfusion [23], and we observed that
526 the CEPT group's hourly bile production is higher compared to the control group. This
527 difference is particularly noticeable in the first hour, which may be due to the protective effect of
528 CEPT on cholangiocytes during flushing and WIT. Cholangiocytes function to secrete
529 bicarbonate, resulting in bile with an alkaline pH (>7.45) [24]. The injured biliary tree cannot
530 secrete sufficient HCO_3 , which results in reduced basic bile. Therefore, biliary delta parameters
531 calculated from the difference between bile and inflow perfusate, like pH delta, HCO_3 delta, and
532 K delta, have been used as biomarkers of biliary duct injury [24, 25]. This study could not show
533 differences among the groups using these bile delta parameters, possibly due to a relatively low
534 level of warm ischemic damage at room temperature for 60 minutes.

535

536 There are several limitations from the perfusate used in this study. First, the perfusate does not
537 have an oxygen carrier. Without an oxygen carrier, the delivery of oxygen to the graft is limited,
538 and all metabolic parameters presented in this study are slightly lower than what would have
539 been possible with an added oxygen carrier because a graft can only extract a fraction of the
540 oxygen delivered [26]. The addition of an oxygen carrier in the perfusate might have magnified
541 the difference among the groups related to various parameters, helping to reach the statistical
542 significance level. Furthermore, a comparatively large volume of perfusate compared to graft

543 weight causes the dilution of injury markers like lactate, K, and ALT/AST, making it challenging
544 to observe significant differences. Our study relies on a simulation of 60 minutes of the anhepatic
545 phase of graft implantation and 6 hours of post-reperfusion in the recipient on a pump without
546 using whole blood as perfusate. Due to the lack of whole blood in perfusate, it fails to reveal a
547 high level of IRI from damage caused by innate and acquired immunity like WBCs activation,
548 complement pathway activation, and effects of various cytokines [2]. Furthermore, the short
549 duration of perfusion of 6 hours lacks long-term follow-up.

550

551 **Conclusion**

552

553 CEPT targets various apoptotic pathways [11] and minimizes IRI from the gradual rewarming
554 during the simulated anhepatic phase of graft implantation and enhances graft recovery post-
555 reperfusion, as indicated by significant improvement in hepatocellular function and injury
556 markers. Both the liver graft and patient survival are inferior among recipients of DCD livers
557 compared to DBD [27], and the main factor limiting the utilization of marginal livers from DCD
558 is the subsequent development of ischemic-type biliary lesion (ITBL) [28]. Since CEPT is found
559 to be beneficial for the graft to handle the stress of mild warm ischemia at room temperature, we
560 can try exploring the possibility of recovering DCD liver grafts, which have suffered severe
561 warm ischemic damage due to remaining at a body temperature of 37°C without circulation.
562 Further experiments with the addition of CEPT to individual flush, storage, and perfusate
563 solutions are needed to stratify its protective effect. Treatment of brain-dead donor (DBD) for
564 upstream IRI minimization and recipient animals during and after graft implantation for
565 downstream IRI minimization using CEPT is to be explored in future in-vivo studies.

566

567 **Acknowledgments**

568

569 All illustrations were created with [BioRender.com](#) (Toronto, ON, Canada).

570

571 **References:**

572

- 573 1. Arulraj R, Neuberger J. Liver transplantation: filling the gap between supply and
574 demand. *Clin Med (Lond)*. 2011;11(2):194-8.
- 575 2. Patel PM, Connolly MR, Coe TM, Calhoun A, Pollok F, Markmann JF, et al. Minimizing
576 Ischemia Reperfusion Injury in Xenotransplantation. *Front Immunol*. 2021;12:681504.
- 577 3. Ijtsma AJ, van der Hilst CS, de Boer MT, de Jong KP, Peeters PM, Porte RJ, et al. The
578 clinical relevance of the anhepatic phase during liver transplantation. *Liver Transpl*.
579 2009;15(9):1050-5.
- 580 4. Hertl M, Howard TK, Lowell JA, Shenoy S, Robert P, Harvey C, et al. Changes in liver
581 core temperature during preservation and rewarming in human and porcine liver allografts. *Liver*
582 *Transpl Surg*. 1996;2(2):111-7.
- 583 5. Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage.
584 *Transplantation*. 1988;45(4):673-6.
- 585 6. Jochmans I, Fieuws S, Tieken I, Samuel U, Pirenne J. The Impact of Implantation Time
586 During Liver Transplantation on Outcome: A Eurotransplant Cohort Study. *Transplant Direct*.
587 2018;4(6):e356.

588 7. Meurisse N, Mertens M, Fieuws S, Gilbo N, Jochmans I, Pirenne J, et al. Effect of a
589 Combined Drug Approach on the Severity of Ischemia-Reperfusion Injury During Liver
590 Transplant: A Randomized Clinical Trial. *JAMA Netw Open*. 2023;6(2):e230819.

591 8. Fayed NA, Sayed EI, Saleh SM, Ehsan NA, Elfert AY. Effect of dexmedetomidine on
592 hepatic ischemia–reperfusion injury in the setting of adult living donor liver transplantation.
593 *Clinical Transplantation*. 2016;30(4):470-82.

594 9. Monbaliu D, Vekemans K, Hoekstra H, Vaahtera L, Libbrecht L, Derveaux K, et al.
595 Multifactorial biological modulation of warm ischemia reperfusion injury in liver transplantation
596 from non-heart-beating donors eliminates primary nonfunction and reduces bile salt toxicity.
597 *Ann Surg*. 2009;250(5):808-17.

598 10. Ghonem N, Yoshida J, Stolz DB, Humar A, Starzl TE, Murase N, et al. Treprostinil, a
599 Prostacyclin Analog, Ameliorates Ischemia-Reperfusion Injury in Rat Orthotopic Liver
600 Transplantation. *American Journal of Transplantation*. 2011;11(11):2508-16.

601 11. Chen Y, Tristan CA, Chen L, Jovanovic VM, Malley C, Chu PH, et al. A versatile
602 polypharmacology platform promotes cytoprotection and viability of human pluripotent and
603 differentiated cells. *Nat Methods*. 2021;18(5):528-41.

604 12. Chen YT, Vojkovsky T, Fang X, Pocas JR, Grant W, Handy AMW, et al. Asymmetric
605 synthesis of potent chroman-based Rho kinase (ROCK-II) inhibitors. *MedChemComm*.
606 2011;2(1):73-5.

607 13. Chen G, Hou Z, Gulbranson DR, Thomson JA. Actin-myosin contractility is responsible
608 for the reduced viability of dissociated human embryonic stem cells. *Cell Stem Cell*.
609 2010;7(2):240-8.

610 14. Sidrauski C, McGeachy AM, Ingolia NT, Walter P. The small molecule ISRIB reverses
611 the effects of eIF2 α phosphorylation on translation and stress granule assembly. *eLife*.
612 2015;4:e05033.

613 15. Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M. Remaining Mysteries of
614 Molecular Biology: The Role of Polyamines in the Cell. *J Mol Biol*. 2015;427(21):3389-406.

615 16. Detelich D, Markmann JF. The dawn of liver perfusion machines. *Curr Opin Organ*
616 *Transplant*. 2018;23(2):151-61.

617 17. Nagrath D, Xu H, Tanimura Y, Zuo R, Berthiaume F, Avila M, et al. Metabolic
618 preconditioning of donor organs: defatting fatty livers by normothermic perfusion ex vivo.
619 *Metab Eng*. 2009;11(4-5):274-83.

620 18. Liu Q, Nassar A, Farias K, Buccini L, Mangino MJ, Baldwin W, et al. Comparing
621 Normothermic Machine Perfusion Preservation With Different Perfusates on Porcine Livers
622 From Donors After Circulatory Death. *Am J Transplant*. 2016;16(3):794-807.

623 19. Stevens LJ, Donkers JM, Dubbeld J, Vaes WHJ, Knibbe CAJ, Alwayn IPJ, et al.
624 Towards human ex vivo organ perfusion models to elucidate drug pharmacokinetics in health
625 and disease. *Drug Metab Rev*. 2020;52(3):438-54.

626 20. Xu M, Zhou F, Ahmed O, Randle LV, Shin JK, Zhu Y, et al. Dual Lactate Clearance in
627 the Viability Assessment of Livers Donated After Circulatory Death With Ex Situ Normothermic
628 Machine Perfusion. *Transplant Direct*. 2021;7(12):e789.

629 21. Becker D, Eshmuminov D, Keller R, Mueller M, Bautista Borrego L, Hagedorn C, et al.
630 Automated Insulin Delivery - Continuous Blood Glucose Control During Ex Situ Liver
631 Perfusion. *IEEE Trans Biomed Eng*. 2021;68(4):1399-408.

632 22. Eshmuminov D, Becker D, Bautista Borrego L, Hefti M, Schuler MJ, Hagedorn C, et al.
633 An integrated perfusion machine preserves injured human livers for 1 week. *Nature*
634 *Biotechnology*. 2020;38(2):189-98.

635 23. Sutton ME, op den Dries S, Karimian N, Weeder PD, de Boer MT, Wiersema-Buist J, et
636 al. Criteria for viability assessment of discarded human donor livers during ex vivo
637 normothermic machine perfusion. *PLoS One*. 2014;9(11):e110642.

638 24. Gaurav R, Atulugama N, Swift L, Butler AJ, Upponi S, Brais R, et al. Bile Biochemistry
639 Following Liver Reperfusion in the Recipient and Its Association With Cholangiopathy. *Liver*
640 *Transpl*. 2020;26(8):1000-9.

641 25. Matton APM, de Vries Y, Burlage LC, van Rijn R, Fujiyoshi M, de Meijer VE, et al.
642 Biliary Bicarbonate, pH, and Glucose Are Suitable Biomarkers of Biliary Viability During Ex
643 Situ Normothermic Machine Perfusion of Human Donor Livers. *Transplantation*.
644 2019;103(7):1405-13.

645 26. Dondossola D, Santini A, Lonati C, Zanella A, Merighi R, Vivona L, et al. Human Red
646 Blood Cells as Oxygen Carriers to Improve Ex-Situ Liver Perfusion in a Rat Model. *J Clin Med*.
647 2019;8(11).

648 27. Abt PL, Desai NM, Crawford MD, Forman LM, Markmann JW, Olthoff KM, et al.
649 Survival following liver transplantation from non-heart-beating donors. *Ann Surg*.
650 2004;239(1):87-92.

651 28. Hessheimer AJ, Cárdenas A, García-Valdecasas JC, Fondevila C. Can we prevent
652 ischemic-type biliary lesions in donation after circulatory determination of death liver
653 transplantation? *Liver Transplantation*. 2016;22(7):1025-33.

654

655 **Supporting information:**

656

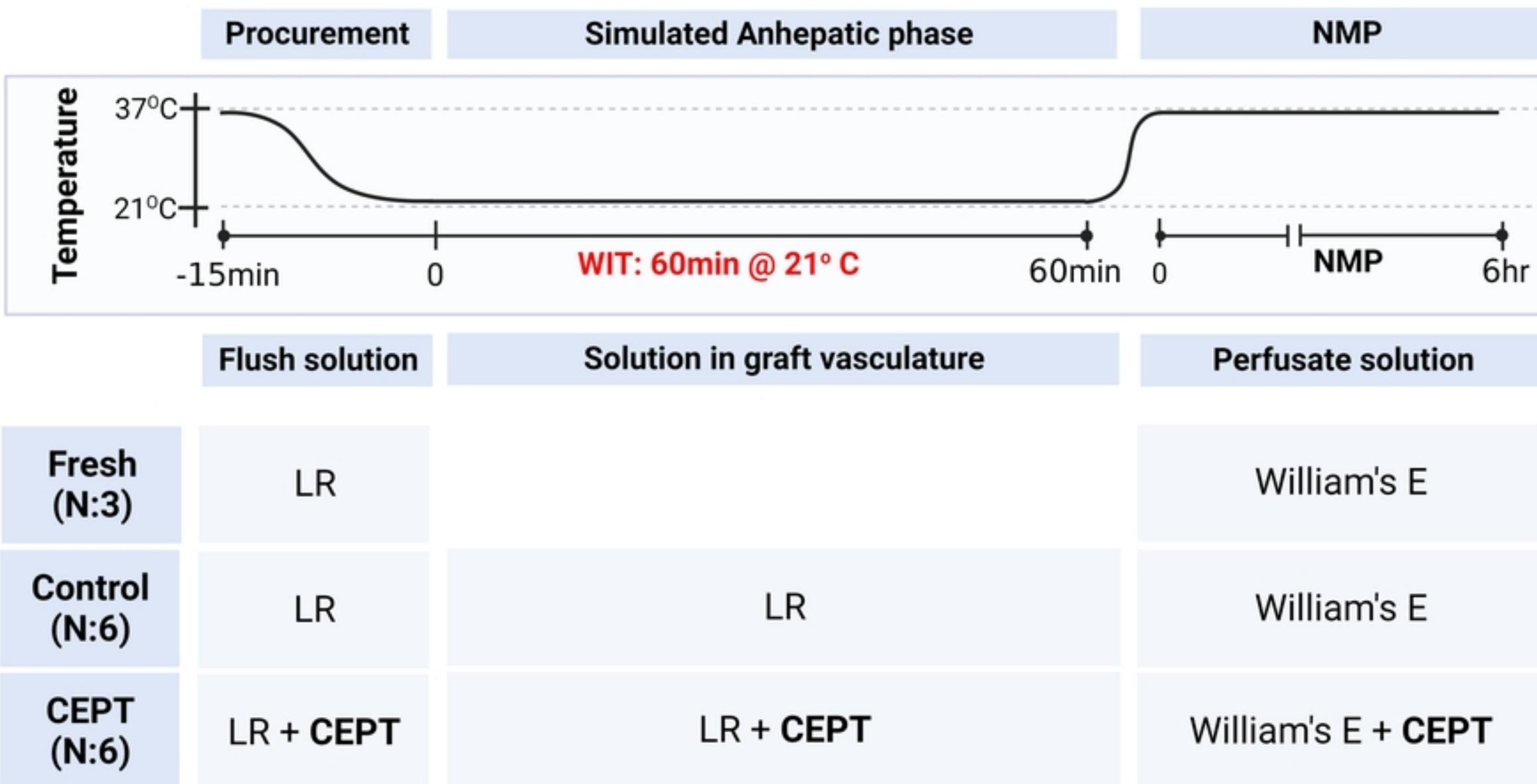
657 **S1 Fig: Graphical abstract**

658

659 **S2 Fig: Biochemistry analysis of storage Ringer's Lactate (RL) solution, in which procured**
660 **liver graft was stored for 60 min at room temperature (21°C) to induce warm ischemic**
661 **damage to simulate the sewing phase (anhepatic phase) of the graft implantation in the**
662 **recipient.** (A) pH, (B) lactate, (C) K: potassium, (D) glucose. Storage solution biochemistry
663 analysis did not show a significant difference. The solid line represents the lower values of pH
664 and glucose that the diagnostic machine can measure, and the dotted line represents the normal
665 concentration of lactate and K in RL. Control (n=3): with 60 min WIT @21°C but without
666 CEPT, CEPT (n=4): experimental group with 60 min WIT @ 21°C and with CEPT; two-tailed
667 two-sample student's t-test with Welch's correction; results are expressed as mean with SEM.

668

669 **S3 Fig: Effluent drainage analysis collected from inferior vena cava (IVC) after flushing**
670 **with 3ml of Ringer's Lactate (RL) just before the start of Normothermic Machine**
671 **Perfusion (NMP).** (A) pH, (B) glucose, (C) ALT, (D) lactate, (E) K: potassium, (F) AST.
672 Effluent drainage biochemistry analysis and transaminase did not show a significant difference.
673 Solid line represents the lower values of pH and glucose that the diagnostic machine can
674 measure, and the dotted line represents the normal concentration of lactate and K in RL. Also,


675 the dotted lines in ALT and AST represent the upper level of physiological transaminase value.
676 Fresh (n=3): healthy control without 60 min warm ischemia time (WIT) at 21°C, control (n=3):
677 with 60 min WIT @21°C but without CEPT, CEPT (n=4): experimental group with 60 min WIT
678 @ 21°C and with CEPT; ANOVA with Tukey's post-hoc test; results are expressed as mean with
679 SEM; ALT: Alanine transaminase, AST: Aspartate transaminase.

680

681 **S4 Data**

682

(A) Study design:

(B) Sampling during NMP:

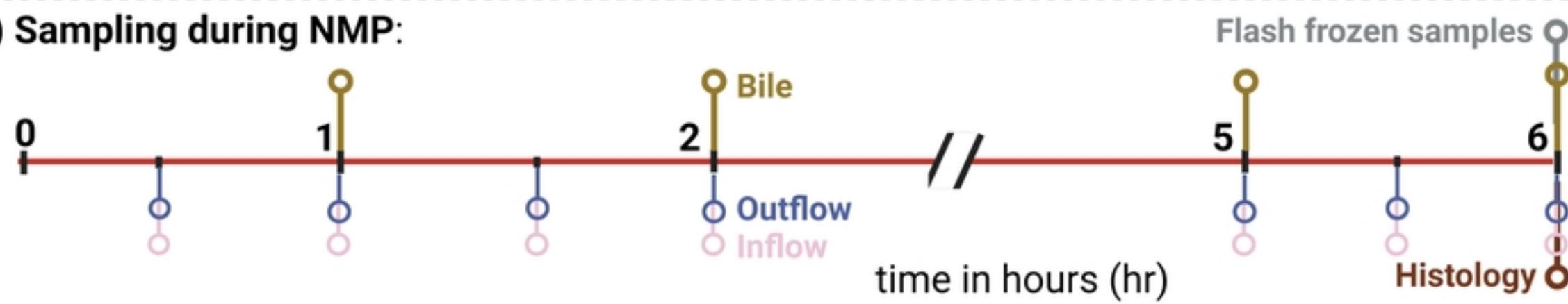


Fig 1

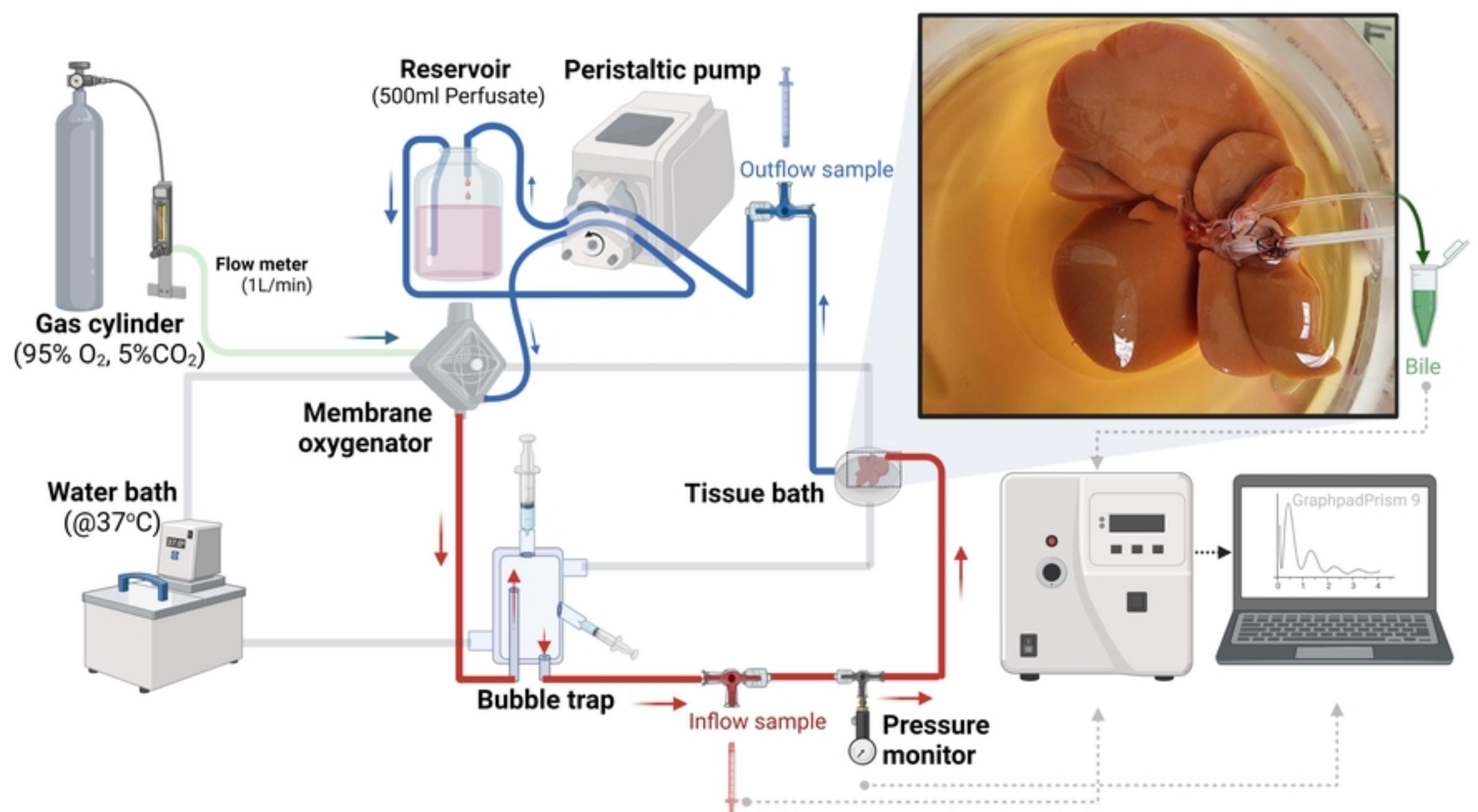


Fig 2

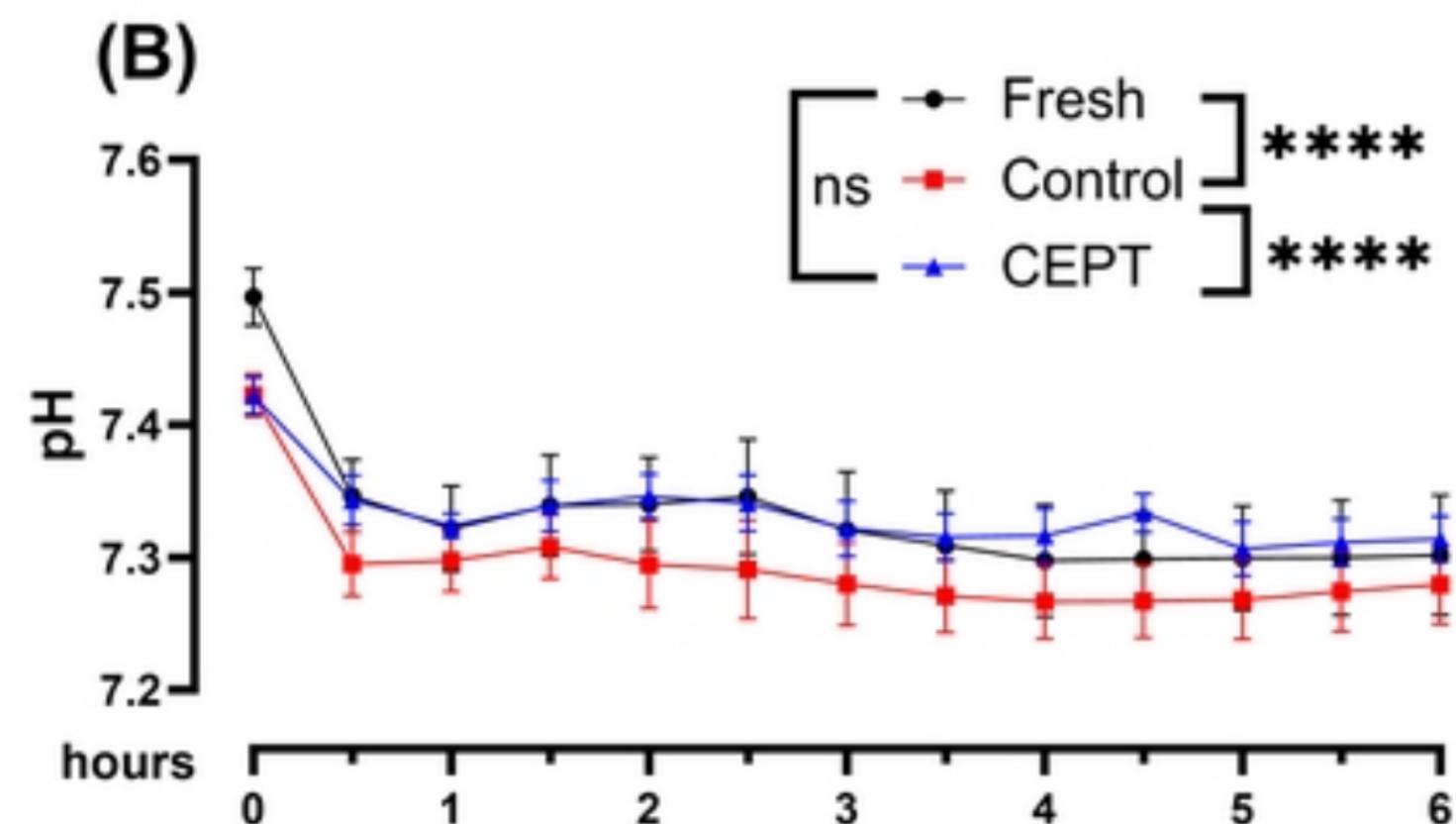
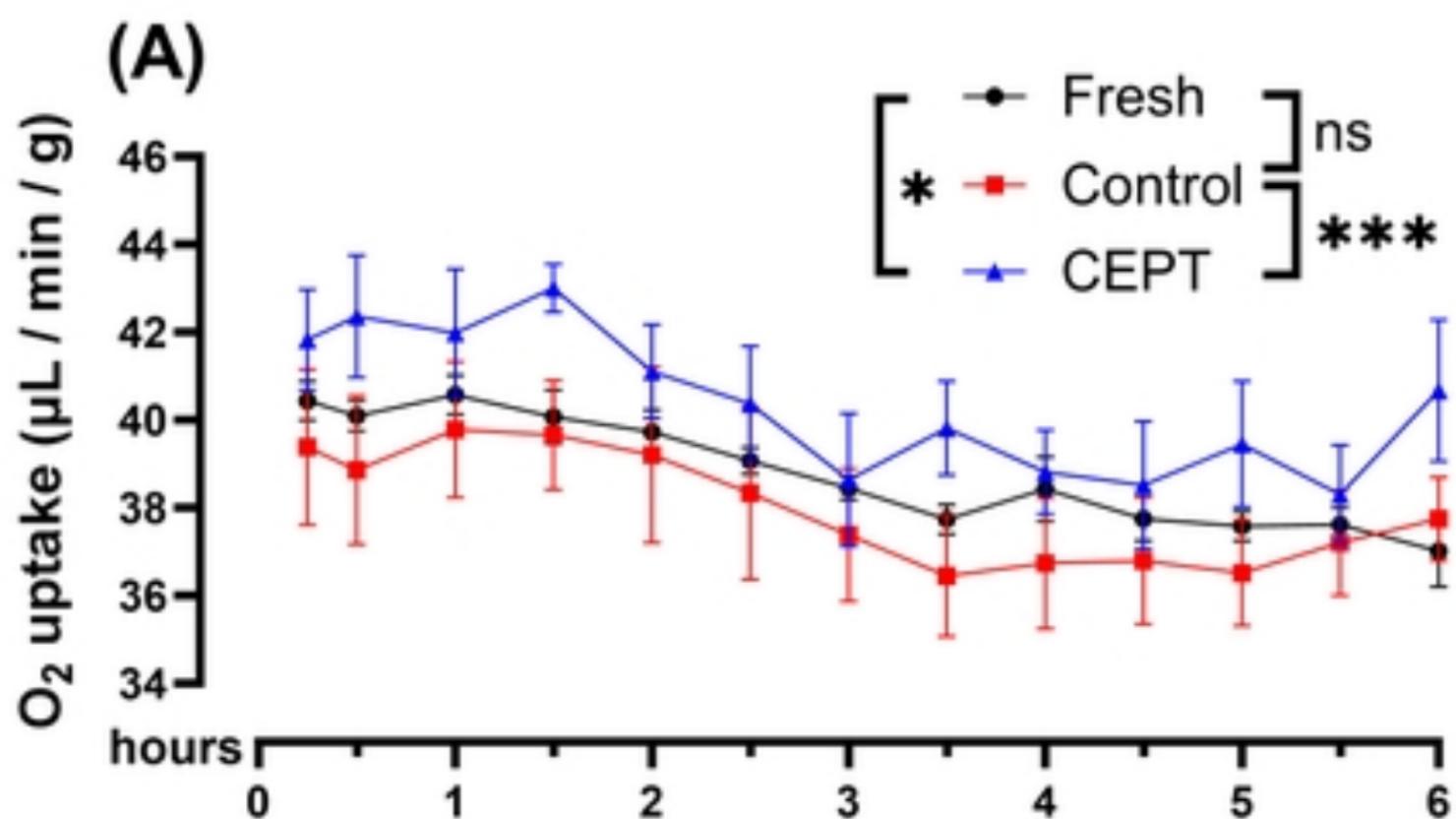
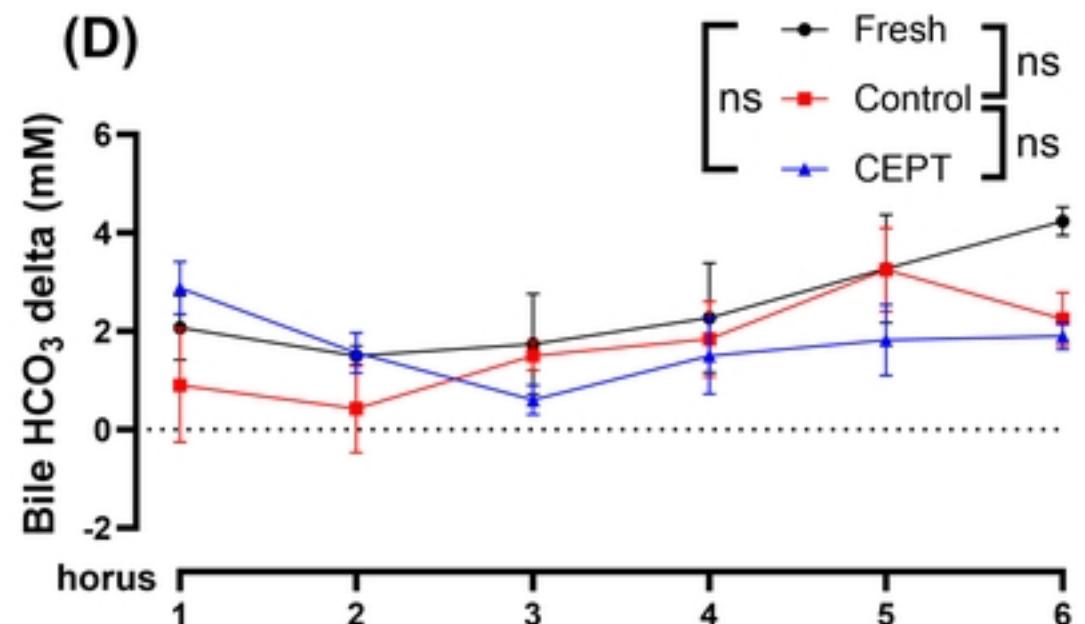
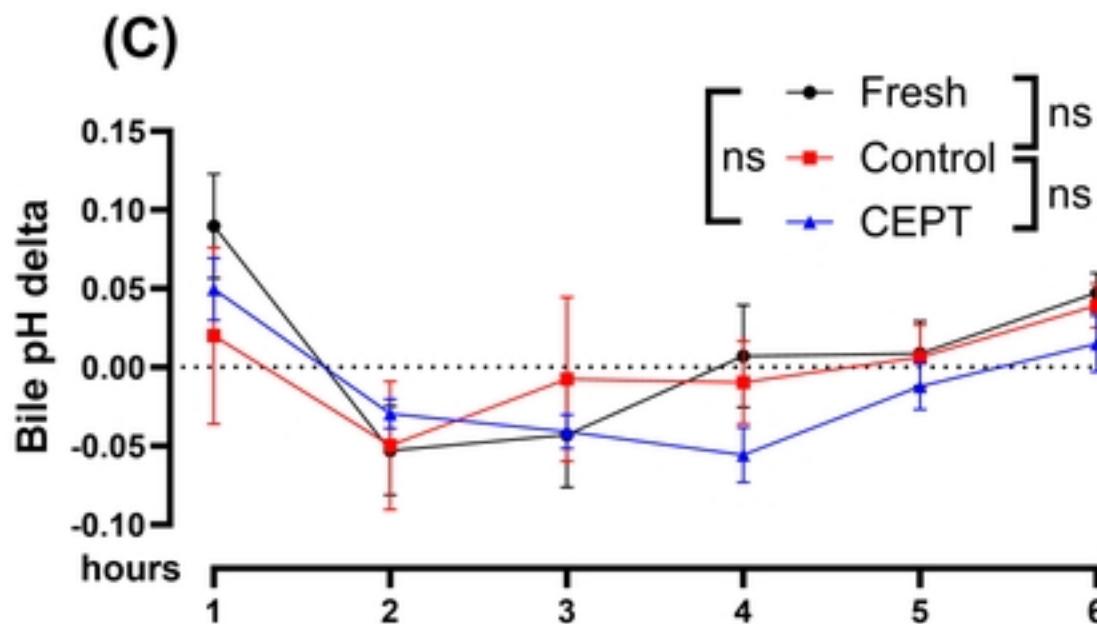
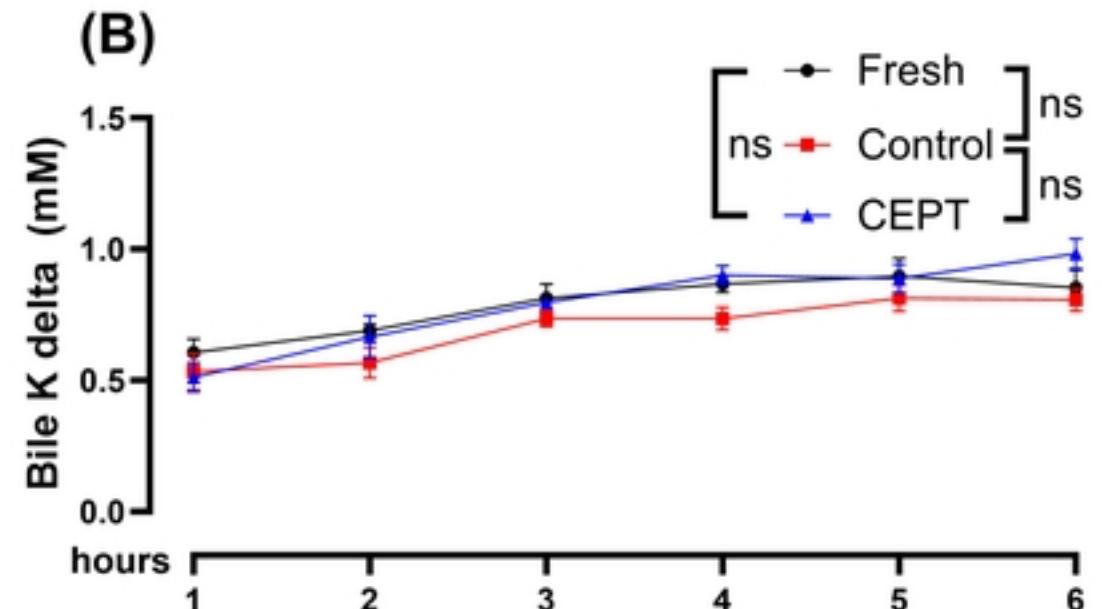
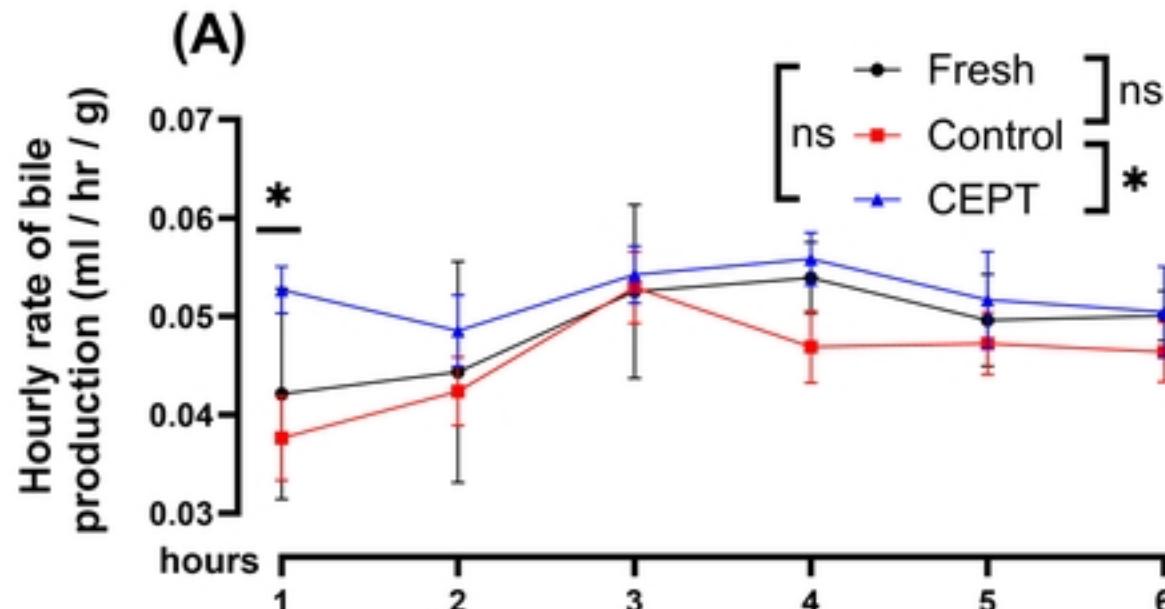



Fig 3

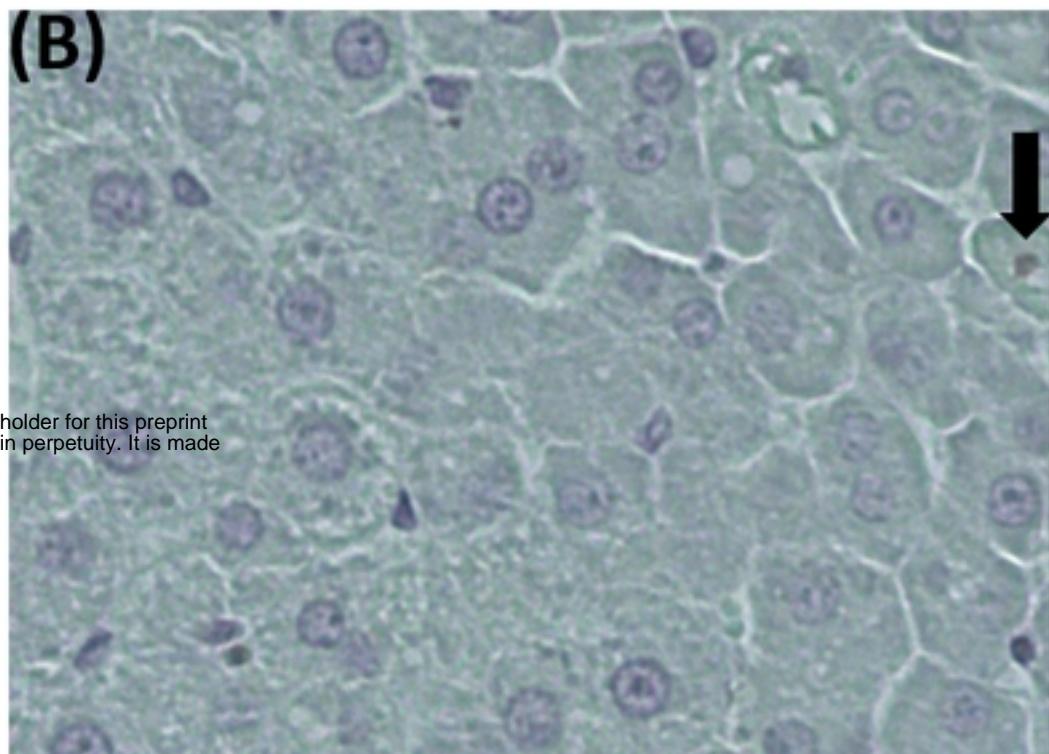
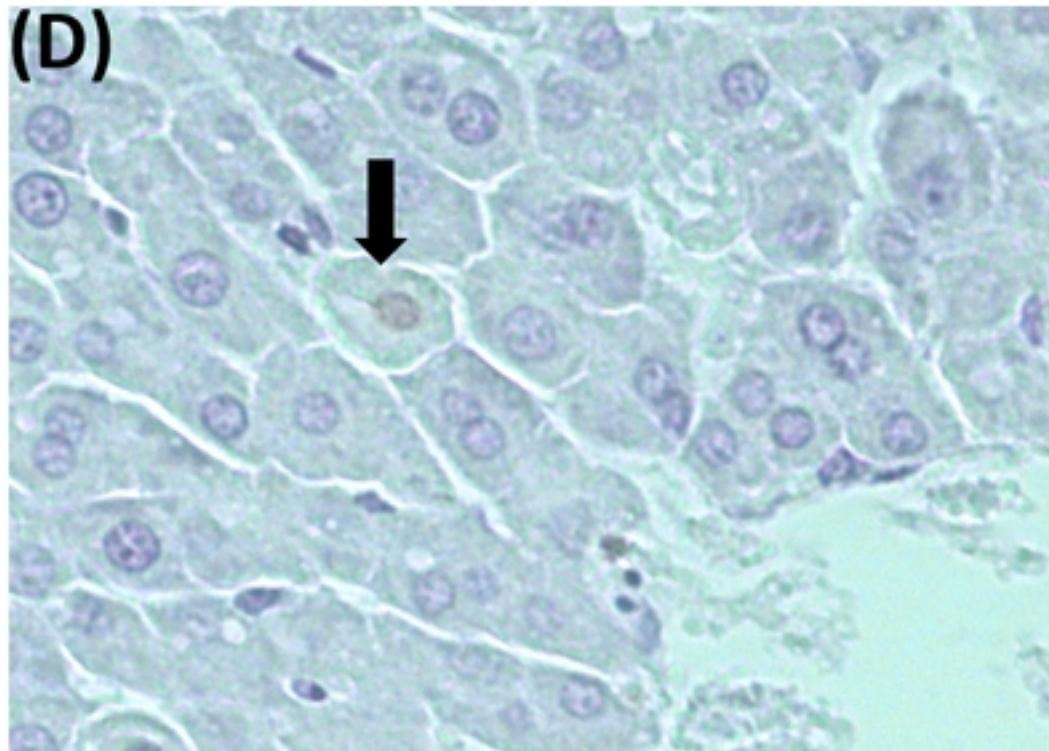
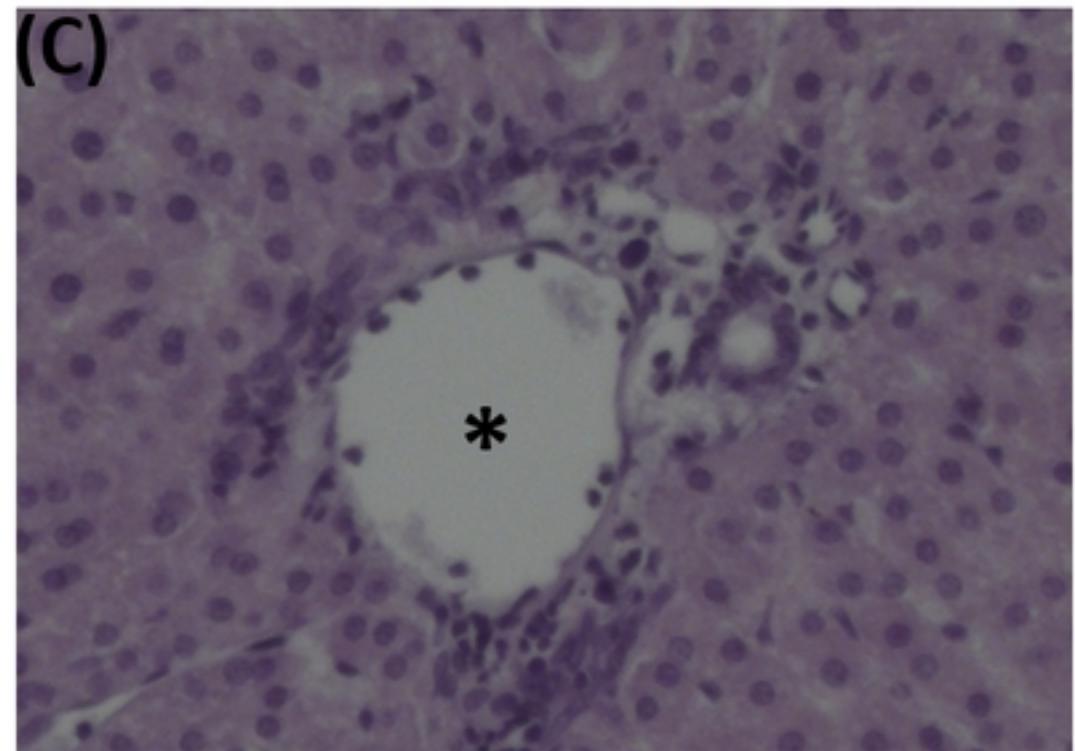
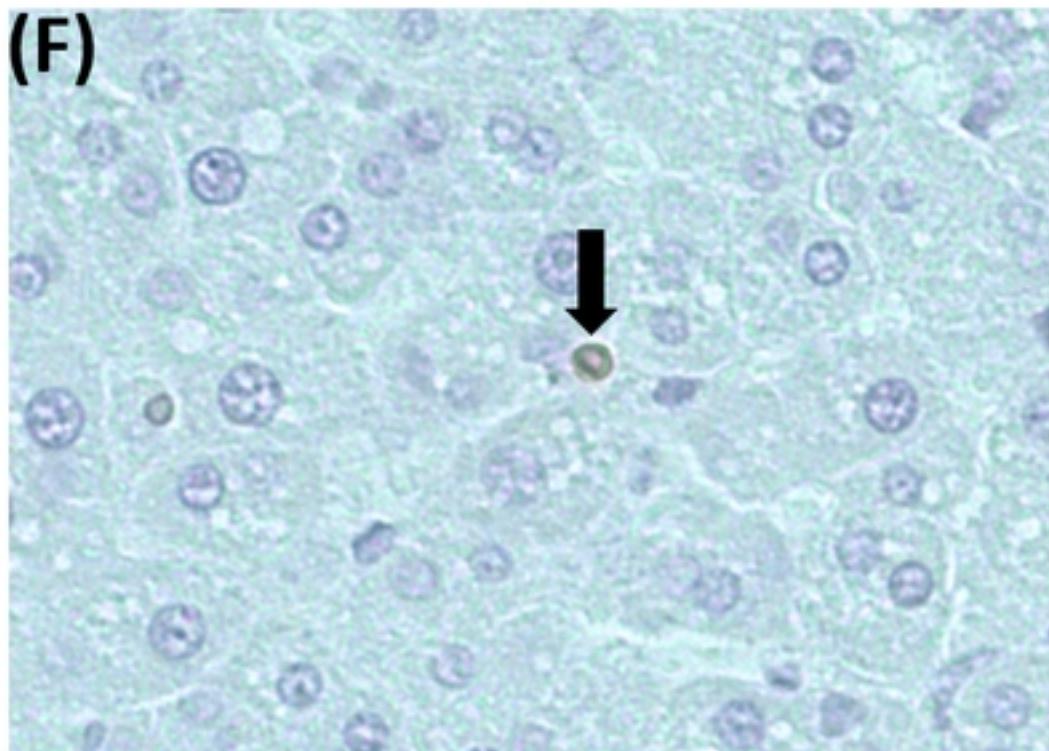


Fig 5



H&E


TUNEL

Fresh

Control

CEPT

Fig 6

Fig 4