

1

1 **Mechanical loading modulates AMPK and mTOR signaling in myoblasts**

2 **Xin Zhou^{1,†}, Shaocun Zhu^{3,†}, Junhong Li^{1,2}, Andre Mateus³, and Ludvig J. Backman^{1,2,*}**

3 **1 Department of Integrative Medical Biology (IMB), Faculty of Medicine, Umeå University, 90187 Umeå, Sweden**

4 **2 Section of Physiotherapy, Department of Community Medicine and Rehabilitation, Faculty of Medicine, Umeå University, 90187 Umeå, Sweden**

5 **3 Department of Chemistry, Faculty of Medicine, Umeå University, 90187 Umeå, Sweden**

6 *** Correspondence: ludvig.backman@umu.se (L.J.B.)**

7 **† These authors contributed equally to this work.**

8

9 **Abstract**

10 Skeletal muscle adaptation to exercise involves various phenotypic changes that enhance metabolic
11 and contractile functions. One key regulator of these adaptive responses is the activation of AMPK,
12 influenced by exercise intensity. However, the mechanistic understanding of AMPK activation during
13 exercise remains incomplete. In this study, we utilized an *in vitro* model to investigate the effects of
14 mechanical loading on AMPK activation and its interplay with the mTOR signaling pathway.

15 Proteomic analysis of myoblasts subjected to static loading (SL) revealed distinct quantitative protein
16 alterations associated with RNA metabolism, with 10% SL inducing the most pronounced response
17 compared to lower intensity of 5% and 2% as well as control. Additionally, 10% SL suppressed RNA
18 and protein synthesis, while activating AMPK and inhibiting the mTOR pathway. Our RNA sequencing
19 analysis further corroborated these findings, revealing numerous differentially regulated genes and
20 signaling pathways influenced by both AMPK and mTOR. Further examination showed that SL
21 induced changes in mitochondrial biogenesis and the ADP/ATP ratio. These findings provide novel
22 insights into the cellular responses to mechanical loading and shed light on the intricate AMPK-
23 mTOR regulatory network in myoblasts.

24

25 **Introduction**

26 Skeletal muscle adaptation to exercise involves a multitude of phenotypic changes that contribute to
27 improved metabolic and contractile functions [1]. These adaptations include enhanced
28 mitochondrial quality, increased glucose uptake, and improved insulin sensitivity [1]. An essential
29 player in these adaptive responses is the activation of AMPK (5'-AMP-activated protein kinase) [2].
30 The activation of AMPK during skeletal muscle contraction is influenced by exercise intensity, with
31 high-intensity exercise resulting in greater AMPK activation compared to low-intensity exercise [3].
32 AMPK activation is closely tied to the AMP/ATP ratio, which rises due to significant ATP depletion
33 during exercise. Although the mechanisms by which exercise induces AMPK activation remain to be
34 fully elucidated, the use of *in vitro* models can provide valuable insights into this process.

35 To mimic the loading patterns experienced by skeletal muscle *in vivo*, myoblasts can be subjected to
36 mechanical loading using the FlexCell Tension system *in vitro*. However, direct evidence regarding
37 whether mechanical loading induces AMPK activation *in vitro* is currently lacking. It is demonstrated
38 that AMPK phosphorylation occurs after *in situ* muscle contraction in rats [4]. In addition, mechanical
39 loading has been shown to activate AMPK γ 3 and upregulate the mammalian/mechanistic target of
40 rapamycin, mTOR signaling [5]. Unlike active muscle contraction observed *in vivo*, the FlexCell
41 Tension system induces elongation of myoblasts to mimic the strain of muscle cells *in vivo*, i.e.
42 passive strain. The potential of this passive strain to activate AMPK remains unknown.

2

43 mTOR, is a major regulator of mRNA translation/protein synthesis. It functions in two different
44 complexes, mTORC1 and mTORC2, which regulate cell growth and survival, respectively [6, 7].
45 Current literature suggests that mTORC1 plays a critical role in stimulating mRNA translation/protein
46 synthesis in skeletal muscle [8]. In skeletal muscle cells, the interplay between two opposing forces,
47 namely mTORC1 and AMPK, governs muscle adaptation to exercise. mTORC1 promotes muscle
48 growth by mediating the anabolic response to resistance exercise, while AMPK is activated during
49 endurance exercises to activate catabolic processes that ultimately lead to normalisation of the
50 AMP/ATP ratio [9]. A computational model suggests that AMPK stimulation subsequently reduces
51 mTORC1 activation [10]. Notably, a connecting aspect of exercise to AMPK activation in skeletal
52 muscle is that exercise induced upregulation of AMPK signaling and downregulation of mTOR
53 signaling [11]. Consequently, exploring the interaction between mTOR and AMPK in myoblasts
54 following various intensities of mechanical loading in vitro is of particular interest.

55 In this study, we aimed to elucidate the signaling pathways activated in myoblasts subjected to
56 varying static load intensities. Utilizing the FlexCell Tension system, we conducted proteomic
57 analyses, RNA sequencing and supplementary validation experiments. Our results indicate that
58 mechanical loading intensities modulate RNA metabolism in a dose-dependent manner through the
59 interaction between AMPK and mTOR signaling pathways. RNA sequencing further corroborated
60 these findings, revealing several signaling pathways influenced by AMPK and mTOR. Additionally,
61 observed alterations in mitochondrial biogenesis in response to varying loading intensities may
62 underlie the observed AMPK activation.

63

64 **Results**

65 **Proteomic Analysis Unveils Disparate Myoblast Responses to Mechanical Stimuli**

66 In order to systematically investigate the cellular alterations induced by mechanical stimuli, we
67 undertook a proteomics analysis of myoblasts. Cells were subjected to three distinct static loading
68 (SL) conditions - 2%, 5%, and 10% - for a duration of 24 hours with intervals of rest in between.
69 Subsequently, cell lysates were obtained for proteomics analysis, resulting in the identification of a
70 total of 6087 proteins. The quantitative outcomes are provided in supplemental data.

71 When only proteins with a minimum of 2-fold change as compared to the control condition were
72 considered the 2% SL did not induce any quantitative changes. Conversely, in response to 5% SL, 12
73 proteins were down-regulated, while one protein (ABCC4) was up-regulated. Notably, a more
74 pronounced response was observed in myoblasts following 10% SL, with a total of 68 proteins being
75 affected (Fig 1A). Of particular interest, six proteins exhibited reduced expression levels in both the
76 5% and 10% SL groups (Fig 1B). Detailed information regarding these proteins, namely RPSA,
77 SUB1/PC4, SUPT5H, SRSF2, RPS21, and PPIL4, is listed in supplementary Table 1. Interestingly, these
78 identified proteins play crucial roles in various steps of the gene expression pathway. Specifically,
79 SUB1 and SUPT5H are involved in promoting RNA transcription and elongation, while SRSF2 is
80 necessary for pre-mRNA splicing. RPSA and RPS21 function as core components of the 40S ribosomal
81 subunit, facilitating mRNA scanning and initiation of protein synthesis. Lastly, PPIL4 accelerates
82 protein folding processes. Pathway and Process Enrichment Analysis revealed that the enriched
83 terms associated with 5% and 10% SL predominantly converged on the metabolism of RNA (Fig 1C).

84

85 **Statical Loading of 5% and 10% Induces Inhibition of RNA and Protein Synthesis**

3

86 Given the involvement of the identified proteins in RNA metabolism and protein synthesis, we
87 proceeded to investigate whether these alterations led to a disruption in RNA and protein synthesis.
88 To address this, we employed the Click-iT kit to assess RNA and protein synthesis in response to SL.
89 While 2% SL resulted in an increase in RNA synthesis as compared to control, both 5% and 10% SL
90 led to a significant reduction in RNA synthesis (Fig 2A). Similarly, protein synthesis was prominently
91 reduced in myoblasts subjected to 10% SL as compared to both 2% and 5% (Fig 2B).

92

93 **10% Statical Loading Suppresses mTOR Pathway via AMPK Activation**

94 The top 10 significantly altered proteins following 5% and 10% SL are provided in Supplementary
95 Table 2 (Supplemental data). Notably, both SUB1 and SRSF2 are ranked as the top two proteins in
96 5% and 10% SL groups. Although we encountered difficulties in obtaining an antibody for SUB1
97 blotting, we present evidence that the expression of SRSF2 is reduced following SL in a dose-
98 dependent manner (Fig 3A), suggesting its potential as a marker for myoblast response to SL. The
99 mTOR pathway, known to regulate cell growth and metabolism in response to mechanical loading
100 [13], plays a critical role in ribosome biogenesis and protein synthesis regulation [12]. Therefore, it is
101 reasonable to investigate whether SL affects mTOR signaling.

102 The expression of p-mTOR exhibited an intensity-dependent pattern, with reduced levels observed
103 in 2% and 5%, compared to the unloaded control, and diminished expression in 10%. Similar
104 expression pattern was observed for phosphorylation of the protein S6 kinase (p70S6K), a key
105 indicator of mTOR activation. Interestingly, treatment with rapamycin, a known mTOR inhibitor,
106 dose-dependently reduced SRSF2 expression (Fig 3C). These findings confirm that SRSF2 is regulated
107 by mTOR in response to SL.

108 Additionally, we observed that AMPK signaling was activated in response to increased SL, as
109 evidenced by elevated levels of pAMPK α in myoblasts following 5% and 10% SL (Fig 3D). AMPK
110 activation requires LKB1 phosphorylation. Even though we didn't find suitable antibodies to blot
111 pLKB1, our data showed that AMPK activation induced by 10% SL was markedly reduced by the
112 addition of LKB1 inhibitor HY-10371 (Fig 3E), suggesting the important role of LKB1 in mediating
113 mechanical loading-induced AMPK activation. Furthermore, we observed that treatment with HY-
114 10371 in 10% SL led to a rescue of p70S6K expression. This finding provides additional confirmation
115 of the interplay between AMPK signaling and mTOR pathway (Fig 3E). To further explore the
116 relationship between AMPK and SRSF2 expression, we utilized Compound C, a specific AMPK
117 inhibitor, which rescued the inhibitory effect of SL on SRSF2 expression (Fig 3E). These data suggest
118 that higher intensity of SL inhibits the mTOR pathway through AMPK activation. It is worth noting
119 that AMPK activation has been previously reported to suppress mTORC1 activity [13].

120

121 **RNA sequencing confirmed the changes of AMPK and mTOR signaling after statical loading**

122 To corroborate our findings on the interaction between AMPK and mTOR pathways, we mapped the
123 mRNA expression profile of statically loaded myoblasts using RNA sequencing. We observed dose-
124 dependent alterations in both AMPK and mTOR pathways, as evidenced by KEGG (Kyoto
125 Encyclopedia of Genes and Genomes) pathway enrichment analysis. Specifically, after 2% SL, AMPK
126 signaling axes indicated enhanced biosynthesis and cell proliferation, marked by upregulated
127 expression of Cyclin D1 and Cyclin A (associated with cell growth), HMGR (cholesterol biosynthesis),
128 SCD1 (unsaturated fatty acid synthesis), 4EBP1 (cell growth and protein biosynthesis), and

129 downregulated Ulk1 (autophagy) (Fig 4A left panel). Conversely, 10% SL conditions resulted in
130 inverse expression patterns for these markers (Fig 4C left panel). Intermediate 5% SL mirrored the
131 10% loading trend, displaying reduced expression of Cyclin A, HMGR, and SCD1 (Fig 4B, left panel).
132 Similarly, mTOR signaling profiles exhibited dose-dependent variations. Notably, PRAS40 and Deptor,
133 two key inhibitors of mTOR signaling, were downregulated in the 5% and 10% SL groups, while 2% SL
134 did not affect their expression (see Fig 4A, B, C, right panel).

135

136 **Statical Loading induced elevated mtRNA expression and transit changes in ADP/ATP ratio,
137 mitochondrial membrane potential**

138 AMPK serves as a crucial sensor of cellular energy status, becoming activated in response to elevated
139 AMP and ADP levels. To investigate the dynamics of AMPK activation in myoblasts following 10% SL,
140 we monitored the time course of ADP/ATP ratio. Notably, a rapid increase in ADP/ATP ratio was
141 observed 1 hour after applying 10% SL, which subsequently returned to basal levels at 9 and 24
142 hours (Fig 5A). Considering the pivotal role of mitochondria in ATP generation, we examined the
143 parallel changes in mitochondrial membrane potential. Intriguingly, we detected significant changes
144 in mitochondrial membrane potential (MMP) 1 hour after 10% SL, which exhibited a gradual
145 recovery over time (Fig 5B), as measured by TMRM staining. Given that mitochondrial positioning
146 and morphology are known to be regulated by the cytoskeleton [14], we employed real-time live
147 imaging to assess the morphological changes following 1 hour of 10% SL. We observed immediate
148 cellular morphology shrinkage, which subsequently returned to normal within 6 hours, in
149 concurrence with MMP (Supplemental data). The intricate relationship between cytoskeleton and
150 energy metabolism prompted us to investigate the potential link between mechanical loading-
151 induced changes in the MMP and the observed shift in ADP/ATP ratio. Notably, our findings suggest
152 that alterations in the MMP following SL contribute to the activation of AMPK signaling.

153 Given the retrospective role of AMPK in stimulating mitochondrial biogenesis, we examined the
154 transcriptional activity of six key genes involved in the electron transport chain (ETC) 24 hours after
155 SL (Fig 5C). Quantitative PCR (qPCR) analysis revealed an overall upregulation of mitochondrial DNA
156 (mtDNA)-encoded genes after SL, including COI, ND6, and ND4, as well as nuclear DNA (nDNA)-
157 encoded genes, including COX18, NDUFAF2, and COX6A2. Among the tested genes, MT-ND4, MT-
158 ND6, and NDUFAF2 are critical components of NADH: Ubiquinone Oxidoreductase (mitochondrial
159 complex I), while COX18, COX6A2, and COI are essential components of Cytochrome C oxidase
160 (mitochondrial complex IV). Notably, a general increase in mtRNA expression was observed for all six
161 genes tested, except for ND6 after 5% SL and COX6A2 after 10% SL. These results strongly suggest
162 the activation of mitochondrial biogenesis, potentially mediated by AMPK signaling activation.

163

164 **Discussion**

165 To our knowledge, no study has investigated the proteomic changes in myoblasts after in vitro
166 mechanical loading. The observed intensity-dependent responses of myoblasts to mechanical
167 loading substantiates the reliability of the FlexCell system as a tool for investigating mechanical
168 responses in vitro. Our proteomic profiling offers valuable insights into the distinct responses of
169 myoblasts to different intensities of mechanical stimuli, emphasizing the significance of the AMPK-
170 mTOR signaling pathway. Noteworthy, our proteomics analysis identified four proteins, namely SUB1
171 (PC4), SRSF2, RPSA, and RPS21, that have been previously associated with mTOR signaling [12]. SUB1
172 is an upstream regulator of mTOR, as it inhibits the deacetylation activity of Sin3-HDAC, thereby

173 activating mTOR signaling [15]. Unfortunately, suitable antibodies for detecting SUB1 in rat
174 myoblasts were unavailable, necessitating further investigation in future studies. Given that the
175 mTOR pathway governs the synthesis of ribosomal components, including ribosomal proteins (RPs)
176 [12], such as RPSA and RPS21, it is plausible that these proteins are regulated by mTOR. In-depth
177 investigations are required to establish a direct connection between mTOR signaling and RPs. We
178 further showed that SRSF2 expression followed the pattern of mTOR activation, and were reversely
179 regulated by AMPK pathway. These findings suggest that SRSF2 expression is regulated by AMPK-
180 mTOR signaling axis.

181 In vivo study using global phosphoproteomic analysis of human skeletal muscle discerningly unveiled
182 a similar pattern in the AMPK-mTOR crosstalk (Fig 2C in [11]). Similar result is reported by Marin et
183 al. when employing Phosphoproteomics in human, rats and mice [16]. In addition to their findings,
184 our findings also underscore the crosstalk between AMPK and mTOR signaling. Additionally,
185 activation of AMPK was accompanied by dynamic alterations in MMP and upregulation of pivotal
186 genes involved in mitochondrial biogenesis. It is noteworthy that, despite an overall inhibition of
187 RNA synthesis following 10% SL, most expressions of mtRNA were augmented after SL. This outcome
188 strongly supports the notion of enhanced mitochondrial biogenesis after SL. Together with the
189 observed cellular morphological changes and mitochondrial membrane potential, our findings
190 suggest adaptive responses in mitochondria, working in conjunction with the cytoskeleton, to the
191 mechanical loading. These results provide valuable insights into the adaptive responses of myoblasts
192 to mechanical stimuli and their implications for cellular energy metabolism.

193 In conjunction with our proteomic findings, RNA sequencing data revealed that numerous
194 downstream targets of AMPK, including Cyclin D1, Cyclin A, HMGR, SCD1, 4EBP1, and Ulk1, exhibited
195 loading intensity-dependent transcriptional regulation, aligning with AMPK activation. A similar
196 pattern was observed in the mTOR signaling pathway, where increased expression of mTOR
197 inhibitors PRAS40 and Deltor was noted specifically at 5% and 10% SL. This RNA sequencing not only
198 corroborated the changes in AMPK and mTOR signaling but also provided insights into the broader
199 signaling alterations under mechanical loading.

200 Overall, our study presents novel findings on the proteomic changes and signaling pathways involved
201 in myoblasts in responses to mechanical loading in vitro. This study contributes to the understanding
202 of the molecular mechanisms underlying muscle adaptation to exercise and highlights the interplay
203 between AMPK and mTOR signaling in this process.

204

205 **Materials and Methods**

206 **Cell culture**

207 L6 myoblasts were cultured in T-175 flasks (Sarstedt, #83.3912.002) in Dulbecco's modified Eagle
208 medium (DMEM; Thermo Fisher Scientific, #31966021) containing L-alanyl-L-glutamine (GlutaMAX)
209 and 10% fetal bovine serum (FBS; Thermo Fisher Scientific, #10500064). Prior to experiments FBS
210 concentration was reduced to 1%.

211 **Mechanical loading and drug treatments**

212 The FlexCell Tension System (Flexcell International Corporation, FX5000, USA) was used to generate
213 mechanical loading to the adherent myoblasts. FlexCell plates were placed on 25 mm diameter
214 round equibiaxial loading posts. The flexible-bottomed membrane of the FlexCell plates were
215 stretched by vacuum suction. The myoblasts received static mechanical loading (SL) of 2%, 5% and

216 10%. The loading protocol was as follow: 1 hour SL followed by 2 hours rest period; this SL and rest
217 period was repeated three times before a resting period of 6 hours. The protocol was repeated for
218 24 hours. By adding rest intervals and applying mechanical strain for intervals, stimulus adaptation is
219 avoided and the mechanical sensitivity of cells maintained [17]. No significant alterations in cell
220 death were observed following the loadings, as determined by lactate dehydrogenase (LDH) assay,
221 data not shown.

222 For rapamycin treatment, cells were cultured with 1-3 μ M rapamycin for 24 hours. For Compound C
223 treatment, cells were cultured with 5 μ M Compound C for 24 hours with/without SL. For HY-10371
224 treatment, cells were cultured with/without 1 μ M HY-10371 for 24 hours with 10% SL.

225 **Proteomics analysis**

226 Sample preparation

227 Medium was switched to SkBM™-2 Basal Medium (SkGM-2 BM, Lanza, #CC-3246) supplemented
228 with SkGM™-2 SingleQuotsTM (SkGM-2 SQ, Lanza, #CC-3244) before loading. Samples were
229 collected and digested into peptides using a modified SP3 protocol [1, 2]. Briefly, cell pellets were
230 resuspended in lysis buffer (2% SDS, 20mM TCEP) and boiled at 95°C for 10 min. SpeedBeads
231 magnetic carboxylate modified particles (Sigma Aldrich, beads A hydrophylic, cat.no
232 GE45152105050250; beads B hydrophobic, cat.no GE65152105050250,) were combined with ratio
233 1:1 v/v and washed using LC-MS water for four times. Then the beads were mixed with each sample
234 in binding buffer (50% ethanol and 2.5% formic acid in final) and incubated with shaking at 500rpm
235 for 15min at room temperature (RT). Then they were transferred into one filter plate (0.22 μ m,
236 Sigma Aldrich, part.no: MSGVN2210). Unbound fraction was removed by centrifugation at 1000rcf.
237 Beads were retained on the filter and washed with 70% ethanol for four time. Trypsin was mixed
238 with digestion solution (100 mM HEPES pH 7.5, 5 mM chloroacetamide, 1.2 mM TCEP) and added to
239 each sample (1 μ g trypsin was used for 25 μ g protein) on the plate. Samples were digested overnight
240 at RT with shaking at 500rpm. Flowthrough containing peptides was collected with centrifugation at
241 1000rcf. 10 μ l 2% DMSO was added to beads for eluting bound peptides and pooled with the
242 previous flowthrough. Peptides were desalted by the Oasis HLB plate (Waters, cat.no 186001828BA)
243 using the factory protocol and then dried by speed vac.

244 LC-MS/MS

245 Dried peptides were dissolved with 0.1% formic acid in water. 1 μ g peptides from each sample was
246 introduced to MS using the Vanquish Neo (Thermo Scientific). The trapping column was PEPMAP
247 NEO C18 (5 μ m particle size, 300 μ m*5mm, Thermo Scientific). Analytical column was nano EaseTM
248 M/Z HSS C18 T3 (100Å, 1.8 μ m particle size, 75 μ m*250mm, Waters). Total length of 2 hours for
249 separation and elution was performed with a gradient of mobile phase A (water and 0.1% formic
250 acid) to 8% B (80% acetonitrile and 0.1% formic acid) over 4 min, and to 27% B over 87 min, then rise
251 to 80% B in 0.1 min and hold for 4 min, finally to 2% B in 30 sec and finally column equilibration was
252 performed.

253 Data acquisition on Exploris 480 (Thermo Scientific) was carried out using a data dependent method.
254 Survey scans covering the mass range of 375 – 1500 were acquired at a resolution of 120,000, RF
255 lens of 40% and normalized automatic gain control (AGC) of 300%. Maximum cycling time of 2 sec
256 was used to control the number of precursors for tandem-MS/MS (MS2) analysis. Charge states
257 include 2-6 charges. Dynamic exclusion was set to exclude the previously selected precursors for 35
258 sec. MS2 scans were acquired at a resolution of 15,000 (at m/z 200), with AGC target value of auto.

259 The isolation window was 1.4 m/z. HCD fragmentation was induced with a normalized collision
260 energy (NCE) of 30. Isotopes were excluded for MS2 analysis.

261 Data analysis

262 Raw data was searched against the homo sapiens UniProt FASTA (proteome identifier [ID]
263 UP000005640) using FragPipe(version 18), label free quantification was achieved using LFQ-MBR
264 workflow. Proteins identified from contaminants and decoyed were removed. Only proteins that
265 quantified in more than one replicate in each group were retained for further analysis. R (version
266 4.2.2) was used for statistics analysis and volcano plots. To reduce technical variation, data was
267 normalized using vsn package[3]. Protein differential expression was evaluated using the limma
268 package. Differences in protein abundances were statistically determined using the Student's t-test
269 moderated by Benjamini–Hochberg's method.

270 **RNA Extraction and qRT-PCR**

271 Extraction of mRNA was performed using the RNA extraction kit (Qiagen, Venlo, Netherlands, #
272 74106) according to the manufacturer's instructions. Subsequently, high-capacity cDNA reverse
273 transcription kit (Thermo Fisher, Waltham, MA, USA) was used to reverse transcribe RNA into cDNA.
274 To determine the gene expression, TaqMan Gene Expression Assays (Applied Biosystems, Carlsbad,
275 CA, USA) were used. cDNA was run using ViiA7 Real-Time PCR system and analyzed with its software
276 (Applied Biosystems, Carlsbad, CA, USA). Gene expression was measured by TaqMan Gene
277 Expression Assay (Applied Biosystems, Carlsbad, CA, USA) and calculated by $2^{-\Delta\Delta Ct}$ method. All
278 probes used for real-time PCR (Applied Biosystems, Carlsbad, CA, USA) are summarized in Table 1.
279 Rpl13a was used as the reference gene for normalization.

280 **Table 1.** All probes used for real-time PCR.

281

Gene Name	Gene Symbol	Assay ID
Mitochondrially Encoded Cytochrome C Oxidase I	MT-CO1	Rn03296721_s1
Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase Core Subunit 6	MT-ND6	Rn03296815_s1
Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase Core Subunit 4	MT-ND4	Rn03296781_s1
Inner Mitochondrial Membrane Peptidase Subunit 1	IMMP1L	Rn01514368_m1
NADH:Ubiquinone Oxidoreductase Complex Assembly Factor 2	NDUFAF2	Rn01489818_g1

Peptidylprolyl isomerase (cyclophilin)-like 4	PPIL4	Rn00452692_m1
---	-------	---------------

Rpl13a	RPL13A	Rn00821946_g1
--------	--------	---------------

282

283 **RNA sequencing and bioinformatics**

284 The RNA sequencing process was carried out by Novogene at their Cambridge Genomic Sequencing
285 Centre in the UK, utilizing the Illumina NovaSeq 6000 system. The sequencing commenced with a
286 quality assessment of the samples to ensure they conformed to RNA sequencing standards.
287 Following this, the library preparation was undertaken, and its quality ascertained. The sequencing
288 approach involved using a 150 bp paired-end strategy for the lncRNA and circRNA libraries, and a 50
289 bp single-end strategy for the small RNA library. To refine the sequenced data, raw reads were
290 cleansed by removing reads with adapters, those containing more than 10% N bases (where 'N'
291 denotes an undetermined base), and reads of low quality (where over 50% of the bases had a
292 Qscore ≤ 5). The HISAT2 tool was employed to align the purified reads to the rat reference genome.
293 The mapping data from all the samples was then processed using the StringTie assembler to
294 assemble the transfrags, which were then compared with reference transcripts to identify
295 potentially novel sequences. Transcript abundance was quantified based on the number of
296 sequenced fragments mapping to exons, using Fragments Per Kilobase of transcript sequence per
297 Millions base pairs sequenced (FPKM) as the measure for gene expression levels. This data was
298 normalized, and the p-values and False Discovery Rate (FDR) were calculated considering multiple
299 hypothesis testing. KEGG analysis was applied to categorize the upregulated and downregulated
300 genes, revealing enriched functions in biological processes and molecular functions for these genes.

301

302 **RNA/protein synthesis assay**

303 5-ethynyl uridine (EU) (1 mM final) or L-homopropargylglycine (HPG) (50 μ M final) was added to the
304 culture medium for 1 hour to label nascent RNA or protein, and then the cells were fixed and
305 permeabilized as previously described. EU labeling of RNAs was detected using the Click-iT RNA
306 Imaging Kit (Life Technologies, cat. #C10639). HPG labeling of proteins was detected using the Click-
307 iTTM HPG Alexa FluorTM 594 Protein Synthesis Assay Kit (Life Technologies, cat. #C10429), following
308 the manufacturer's protocol. The intensity ratio of foci to DAPI was quantified by analyzing ten
309 randomly selected fields from each sample. Three biological repeats were included.

310

311 **Western Blot**

312 Cells were freeze-thawed and further lysed in RIPA (radioimmunoprecipitation) lysis buffer (Thermo
313 Fisher, Waltham, MA, USA) supplemented with protease and phosphatase inhibitor cocktail (Sigma,
314 St. Louis, MO, USA, #P1860). Total protein concentration was determined with the BCA assay
315 (Thermo Fisher, Waltham, MA, USA). Samples containing 20 μ g of protein were separated on SDS-
316 polyacrylamide gels and transferred to PVDF or NC membranes (Thermo Fisher, Waltham, MA, USA).
317 Membranes were blocked in 5% bovine serum albumin in TBST for 1 hour before staining with

318 primary antibodies overnight at 4°C. After washing, the membranes were stained with HRP-
319 conjugated secondary antibodies for 1 hour at RT before incubation with ECL solution and then
320 analyzed in an Odyssey Fc Dual-Mode Imaging System (LI-COR Biotechnology, Nebraska, USA). β -
321 actin was used to normalize target protein expression. All antibodies used are summarized in Table
322 2.

323 **Table 2. Antibodies used for immunostaining and Western blot.**

Antibody	Company	Code	Applications	Molecular weight (kDa)
Phospho-AMPK (Thr172)	Cell Signaling	2535S	WB	62
AMPK α	Cell Signaling	2532	WB	62
Phospho-mTOR (Ser2448) (D9C2)	Cell Signaling	5536S	WB	289
SRSF2	Thermo Fisher	PA5-92037	WB	35
p70(S6K)	Proteintech	14485-1-AP	WB	59
Phospho-p70(S6K)	Proteintech	28735-1-AP	WB	59
β -actin	Cell Signaling	4967	WB	42
Anti-rabbit IgG HRP-linked	Cell Signaling	7074	WB	

324

325 **MMP assay**

326 MMP was examined by assessing TMRM (Thermo Fisher Scientific). After SL, cells were incubation
327 with 20 nmol/L TMRM and Hoechst stain 33258 (30 min, 37 °C) in the dark for 1 hour. The
328 membrane of the FlexCell plates was then cut and transferred to 6-well plates. The membrane was
329 washed twice gently with PBS and then approximately 500 μ l culture medium was added on top of
330 the membrane to maintain cell viability. A Leica Thunder Widefield fluorescence microscope was
331 utilized for analysis.

332

333 **Live-Cell Imaging**

334 Cellular morphology and MMP was assessed in real-time using the Incucyte® S3 Live-Cell Analysis
335 System (Sartorius, Ann Arbor, MI, USA). Cells were subjected to SL for 1 hour with the presence of 20
336 nM TMRM. Afterwards the FlexCell plate membrane was cut and transferred to 6-well plates and
337 placed in the Incucyte® System and the cell morphology and TMRM signaling were visualized

10

338 continuously for 6 hours. The software was adjusted to obtain 9 images per well every 1 hour over
339 the 6 hour period.

340

341 **Statistics**

342 Data were analyzed using GraphPad Prism 7 (GraphPad Software, San Diego, CA) software. One-way
343 analysis of variance (ANOVA) with Tukey's multiple comparison (post hoc) test was performed in
344 comparisons between more than two groups. Differences were considered statistically significant at
345 a *p*-value of <0.05. All experiments were repeated successfully at least three times (i.e., at least
346 three separate experiments were performed with cells isolated from different donors). All
347 experimental samples were prepared in triplicates (*n* = 3).

348

349 **Data Availability Statement**

350 The data that support the findings of this study are available in the methods, results of this article.

351

352 **Conflict of Interest Statement**

353 The authors declare no conflicts of interest.

354

355 **Acknowledgments**

356 We acknowledge the Biochemical Imaging Center at Umeå University and the National Microscopy
357 Infrastructure, NMI (VR-RFI 2019-00217) for providing assistance in microscopy.

358 **Author Contributions**

359 Conceptualization, Xin Zhou and Ludvig Backman; Data curation, Xin Zhou, Shaochun Zhu, and
360 Junhong Li; Formal analysis, Xin Zhou, Junhong Li, Shaochun Zhu and Ludvig Backman; Funding
361 acquisition, Ludvig Backman and Andre Mateus; Investigation, Xin Zhou, Junhong Li, Andre Mateus,
362 Shaochun Zhu and Ludvig Backman; Methodology, Xin Zhou, Junhong Li, Shaochun Zhu and Ludvig
363 Backman; Project administration, Andre Mateus and Ludvig Backman; Resources, Ludvig Backman
364 and Andre Mateus; Supervision, Andre Mateus and Ludvig Backman; Validation, Andre Mateus and
365 Ludvig Backman; Writing – original draft, Xin Zhou; Writing – review & editing, Ludvig Backman. All
366 authors have read and agreed to the published version of the manuscript.

367

368 **Funding**

369 This work was financially supported by Umeå School of Sport Sciences (IH 5.2-25-2021, 5.2-61-2021,
370 5.2-48-2022), Åke Wiberg foundation (M20-0236, M22-0008), Swedish Research Council for Sport
371 Science (P2022-0010, P2023-0011), Kempe foundation (JCK-2032.2), Margareta, Kjell och Håkan
372 Alfredssons foundation and Strategic Research Grant (FS 2.1.6-338-20).

373

374 **References**

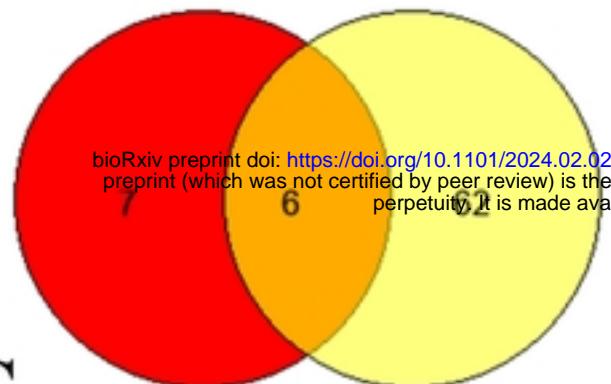
- 375 1. Spaulding, H.R. and Z. Yan, *AMPK and the Adaptation to Exercise*. Annu Rev Physiol, 2022.
376 **84**: p. 209-227.
- 377 2. Hargreaves, M. and L.L. Spriet, *Skeletal muscle energy metabolism during exercise*. Nat
378 Metab, 2020. **2**(9): p. 817-828.
- 379 3. Kjobsted, R., et al., *AMPK in skeletal muscle function and metabolism*. FASEB J, 2018. **32**(4):
380 p. 1741-1777.
- 381 4. Nelson, M.E., et al., *Phosphoproteomics reveals conserved exercise-stimulated signaling and*
382 *AMPK regulation of store-operated calcium entry*. EMBO J, 2019. **38**(24): p. e102578.
- 383 5. Riedl, I., et al., *AMPK γ 3 is dispensable for skeletal muscle hypertrophy induced by functional*
384 *overload*. American Journal of Physiology-Endocrinology and Metabolism, 2016. **310**(6): p.
385 E461-E472.
- 386 6. Dancey, J., *mToR signaling and drug development in cancer*. Nature Reviews Clinical
387 Oncology, 2010. **7**(4): p. 209-219.
- 388 7. Dufour, M., et al., *Targeting the Mammalian Target of Rapamycin (mTOR) in Cancer*
389 *Therapy: Lessons from Past and Future Perspectives*. Cancers (Basel), 2011. **3**(2): p. 2478-
390 500.
- 391 8. Goodman, C.A., *Role of mTORC1 in mechanically induced increases in translation and skeletal*
392 *muscle mass*. J Appl Physiol (1985), 2019. **127**(2): p. 581-590.
- 393 9. Mounier, R., et al., *Antagonistic control of muscle cell size by AMPK and mTORC1*. Cell Cycle,
394 2011. **10**(16): p. 2640-6.
- 395 10. Sadria, M. and A.T. Layton, *Interactions among mTORC, AMPK and SIRT: a computational*
396 *model for cell energy balance and metabolism*. Cell Commun Signal, 2021. **19**(1): p. 57.
- 397 11. Hoffman, N.J., et al., *Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a*
398 *Network of Exercise-Regulated Kinases and AMPK Substrates* (vol 22, pg 922, 2015). Cell
399 Metabolism, 2015. **22**(5): p. 948-948.
- 400 12. Mayer, C. and I. Grummt, *Ribosome biogenesis and cell growth: mTOR coordinates*
401 *transcription by all three classes of nuclear RNA polymerases*. Oncogene, 2006. **25**(48): p.
402 6384-6391.
- 403 13. Alers, S., et al., *Role of AMPK-mTOR-Ulk1/2 in the Regulation of Autophagy: Cross Talk,*
404 *Shortcuts, and Feedbacks*. Molecular and Cellular Biology, 2012. **32**(1): p. 2-11.
- 405 14. Solomon, T., et al., *How cytoskeletal proteins regulate mitochondrial energetics in cell*
406 *physiology and diseases*. Philos Trans R Soc Lond B Biol Sci, 2022. **377**(1864): p. 20210324.
- 407 15. Chen, L., et al., *Acceleration of ageing via disturbing mTOR-regulated proteostasis by a new*
408 *ageing-associated gene PC4*. Aging Cell, 2021. **20**(6).
- 409 16. Nelson, M.E., et al., *Phosphoproteomics reveals conserved exercise-stimulated signaling and*
410 *AMPK regulation of store-operated calcium entry*. Embo Journal, 2019. **38**(24).
- 411 17. Engebretson, B., Z.R. Mussett, and V.I. Sikavitsas, *The effects of varying frequency and*
412 *duration of mechanical stimulation on a tissue-engineered tendon construct*. Connect Tissue
413 Res, 2018. **59**(2): p. 167-177.

414

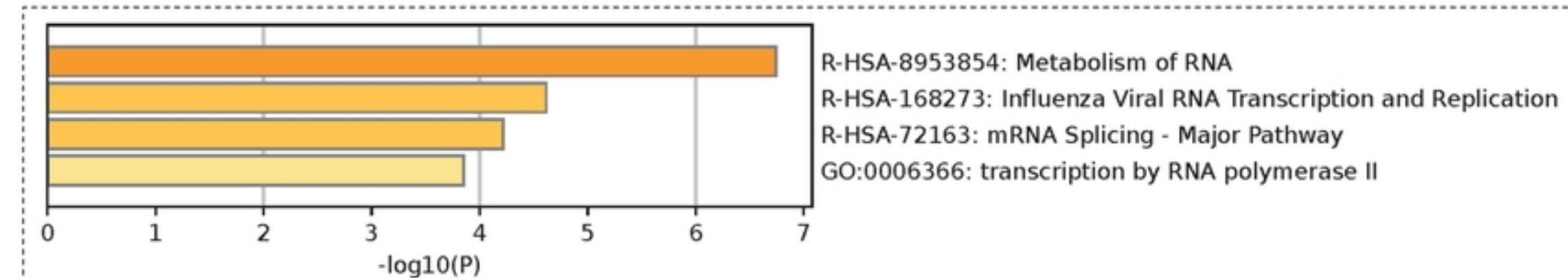
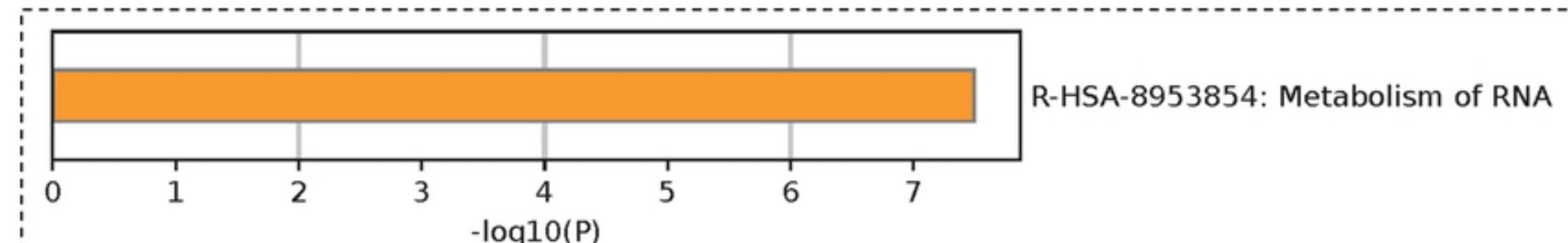
415 **Figure legend**

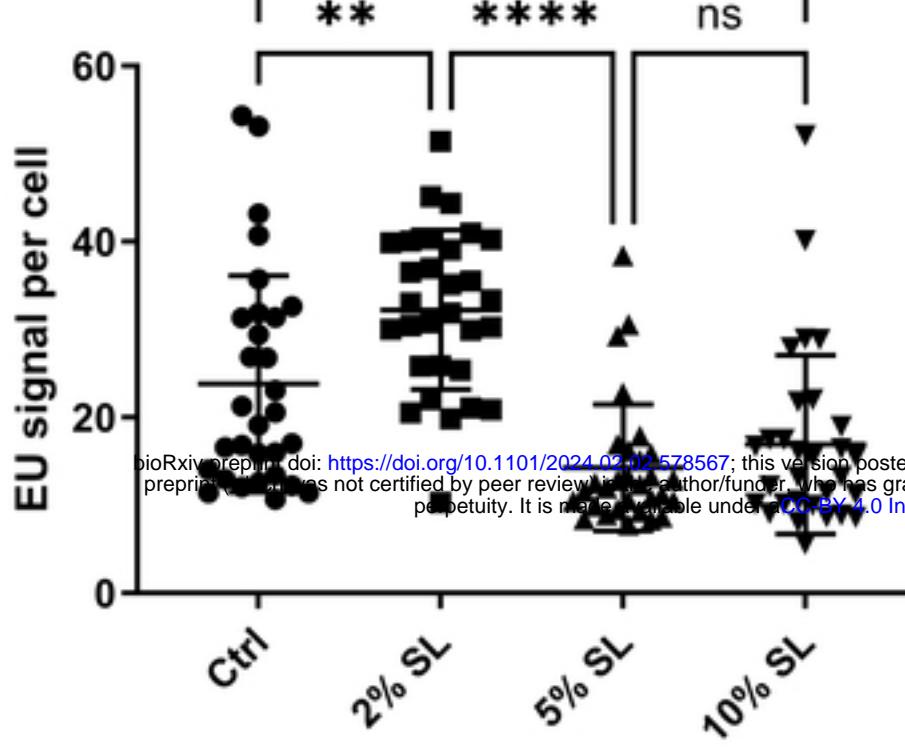
416 **Fig 1.** Impact of static loading (SL) on RNA Metabolism in myoblasts. (A) The volcano plot presents
417 the differential expression of proteins between the Control and SL groups of 2%, 5%, and 10% for 24
418 hours. (B) The Venn diagram depicts the overlap of protein identifications between the 5% and 10%
419 SL groups, highlighting shared protein alterations. (C) Pathway and process enrichment analysis
420 using Metascape reveals enrichment of signaling pathways in 5% and 10% SL. Notably, there is
421 convergence in the signaling pathways associated with RNA metabolism between the 5% and 10%
422 SL.

12



423 **Fig 2.** Reduced RNA and Protein Synthesis by 5% and 10% static loading (SL). (A) Visualization and
424 quantification of RNA synthesis in myoblasts following SL using the Click-iT imaging kit.
425 Representative foci images are displayed on the left panel, while the corresponding quantitative
426 data are presented on the right panel. (B) Visualization and quantification of protein synthesis in
427 myoblasts following SL using the Click-iT imaging kit. Representative foci images are presented on
428 the left panel, and the quantitative data are shown on the right panel. The data are presented as mean
429 \pm standard deviation. Statistical significance is indicated as * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$,
430 **** $p < 0.0001$.

431 **Fig 3.** Statical Loading (SL) suppresses mTOR Pathway via AMPK Activation. (A) Decreased expression
432 of SRSF2 in myoblasts in response to increased intensity of SL. (B) Reduced expression of p-mTOR
433 (Ser2448) and p-p70S6K (Ser371) with increased intensity of SL. (C) Myoblasts treated with 1-3 μ M
434 rapamycin for 24 hours. The results exhibit a dose-dependent reduction in SRSF2 expression. (D)
435 Increased expression of pAMPK α (Thr172) in myoblasts following SL. (E) HY-10371 pretreatment
436 abolished AMPK phosphorylation and rescued p70S6K phosphorylation in loaded myoblasts. (F)
437 Effect of 5 μ M Compound C (CC) treatment on SRSF2 expression in myoblasts exposed to 10% SL.
438 Myoblasts were incubated with or without CC for 24 hours. The addition of CC rescued the
439 expression of SRSF2 in myoblasts subjected to 10% SL. Actin served as a loading control.



440 **Fig 4.** Static loading (SL) induced changes in mRNA profile related to AMPK and mTOR signaling.
441 KEGG Signaling Pathway Enrichment Analysis of mTOR Signaling in Response to SL Treatment. (A-C
442 left panel) show AMPK signaling pathway in response to 2%, 5% and 10% SL. A clear dose-dependent
443 increase in AMPK pathway activation with increase intensity of SL. (A-C right panel) show mTOR
444 signaling pathway in response to 2%, 5% and 10% SL. 2% SL induced activation of the mTOR signaling
445 pathway while 5% and 10% SL exhibited a dose-dependent inhibition of the mTOR signaling
446 pathway. Gene expressions in the red frame are upregulated, in the green frame are downregulated,
447 and those in the yellow frame show variable regulation, either upregulated or downregulated.


448 **Fig 5.** Statical loading (SL) induced changes in parameters related to mitochondrial biogenesis. (A)
449 ADP/ATP ratio measured at 1, 9, 24 hours following 10% SL. Significant increase of ADP/ATP ratio
450 were seen at 1 hour after 10% SL. (B) Mitochondrial membrane potential were visulized by TMRM
451 staining. Hoechst stain 33258 was used to label the nucleus. Representative images were shown at
452 each indicated time point. (C) mRNA expression of mitochondrial proteins encoded by mtDNA
453 (upper panel) and nuclear DNA (lower panel) 24 hours after 10% SL. The data are presented as mean
454 \pm standard deviation. Statistical significance is indicated as * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$,
455 **** $p < 0.0001$.

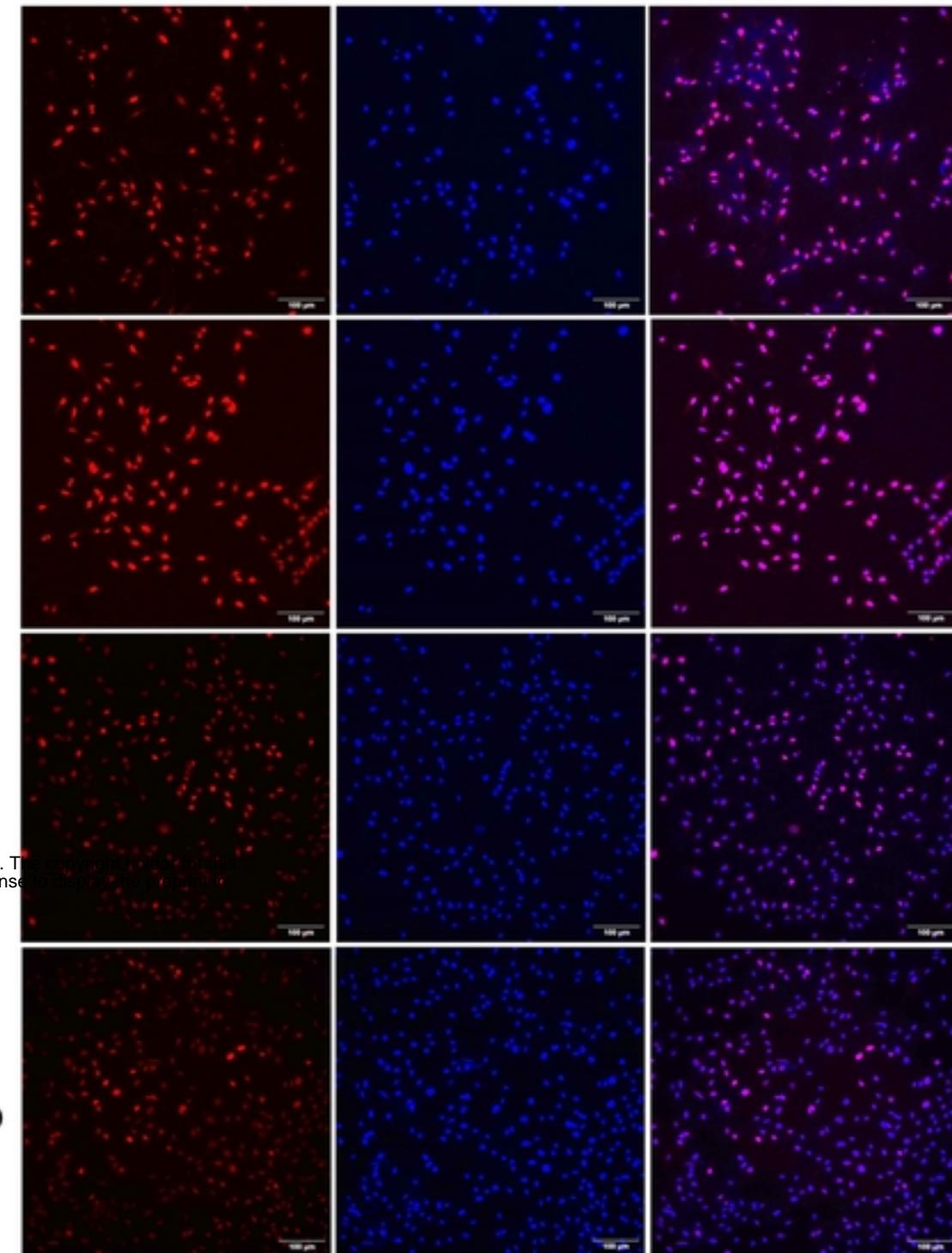
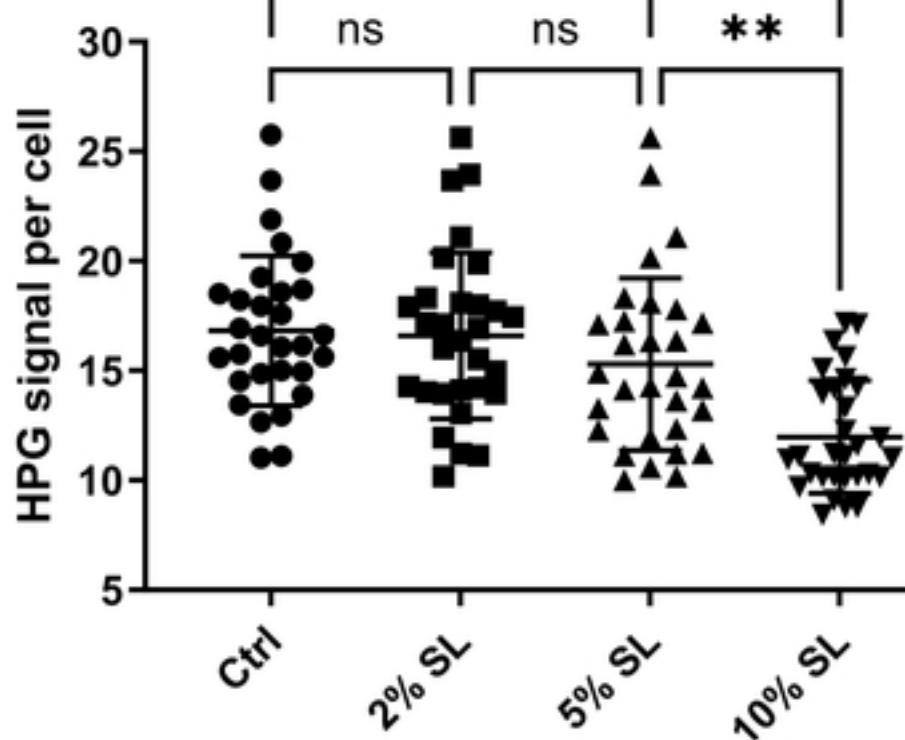
456

A**B**

bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.02.578567>; this version posted February 7, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

C**5% SL****10% SL****5% SL&10% SL****Figure 1**

A**RNA synthesis*********B**



EU

DAPI

Merged

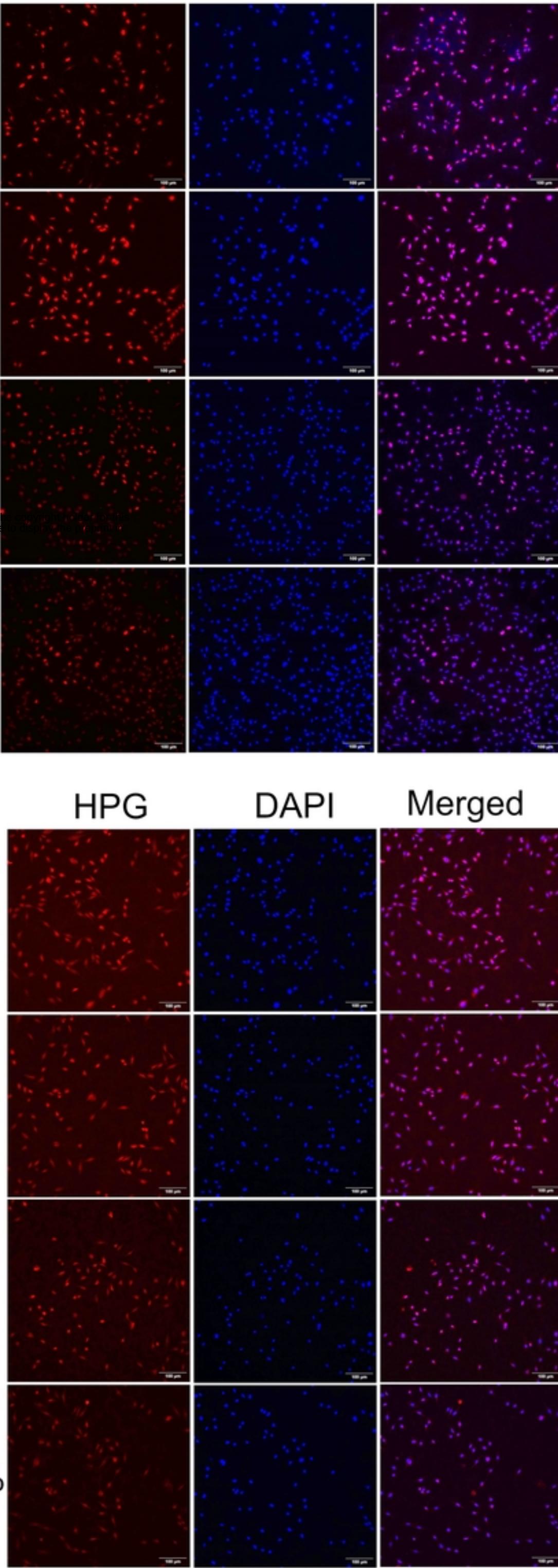
Ctrl

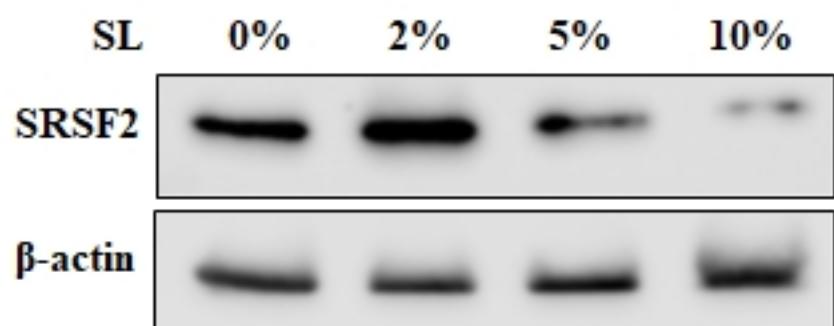
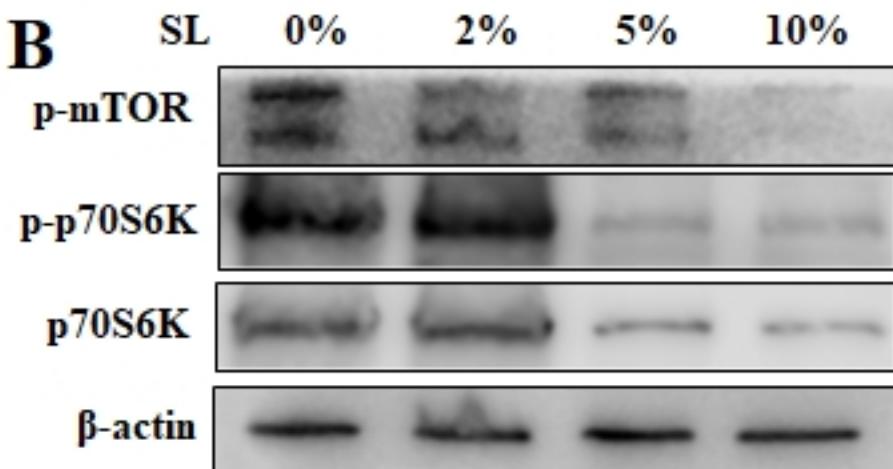
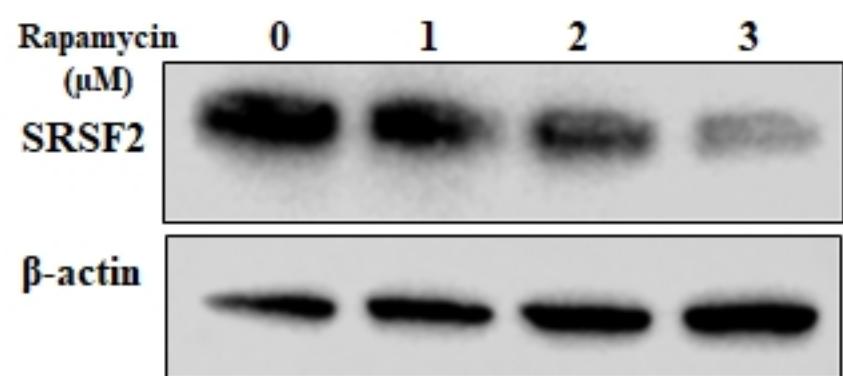
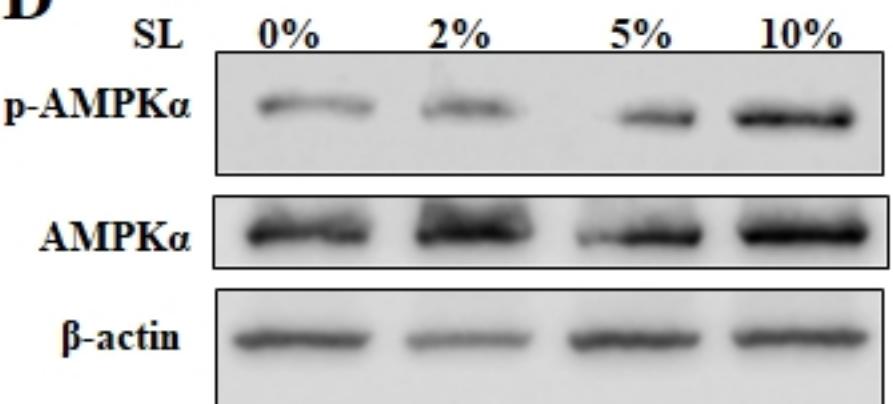
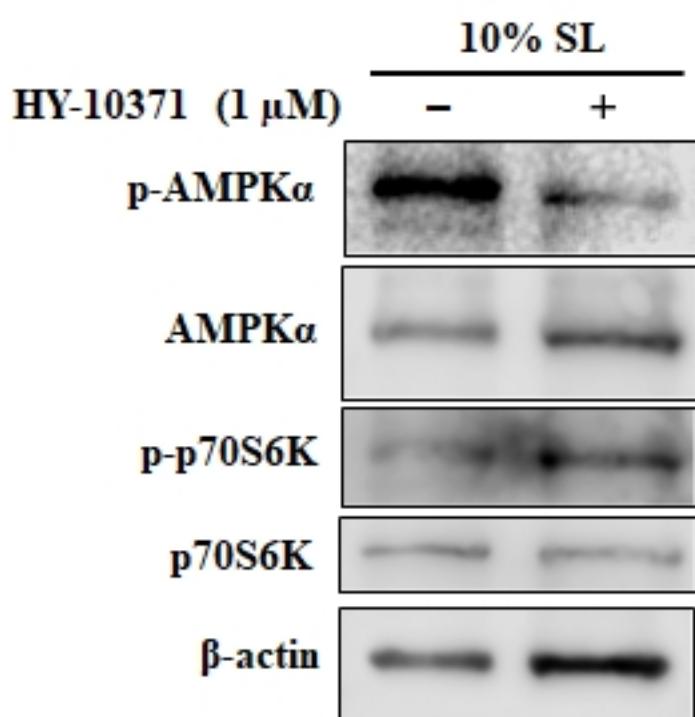
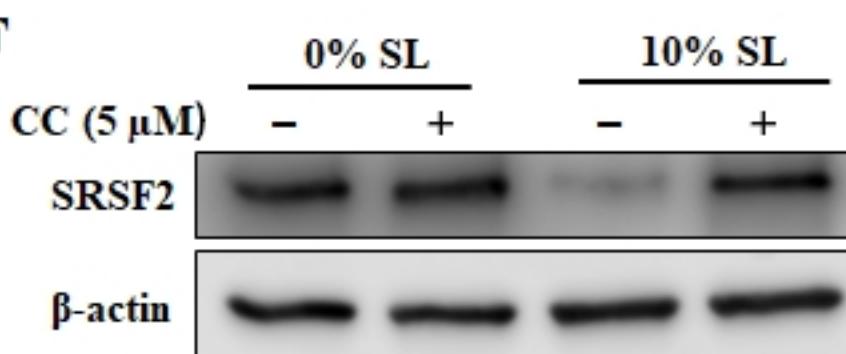
2%

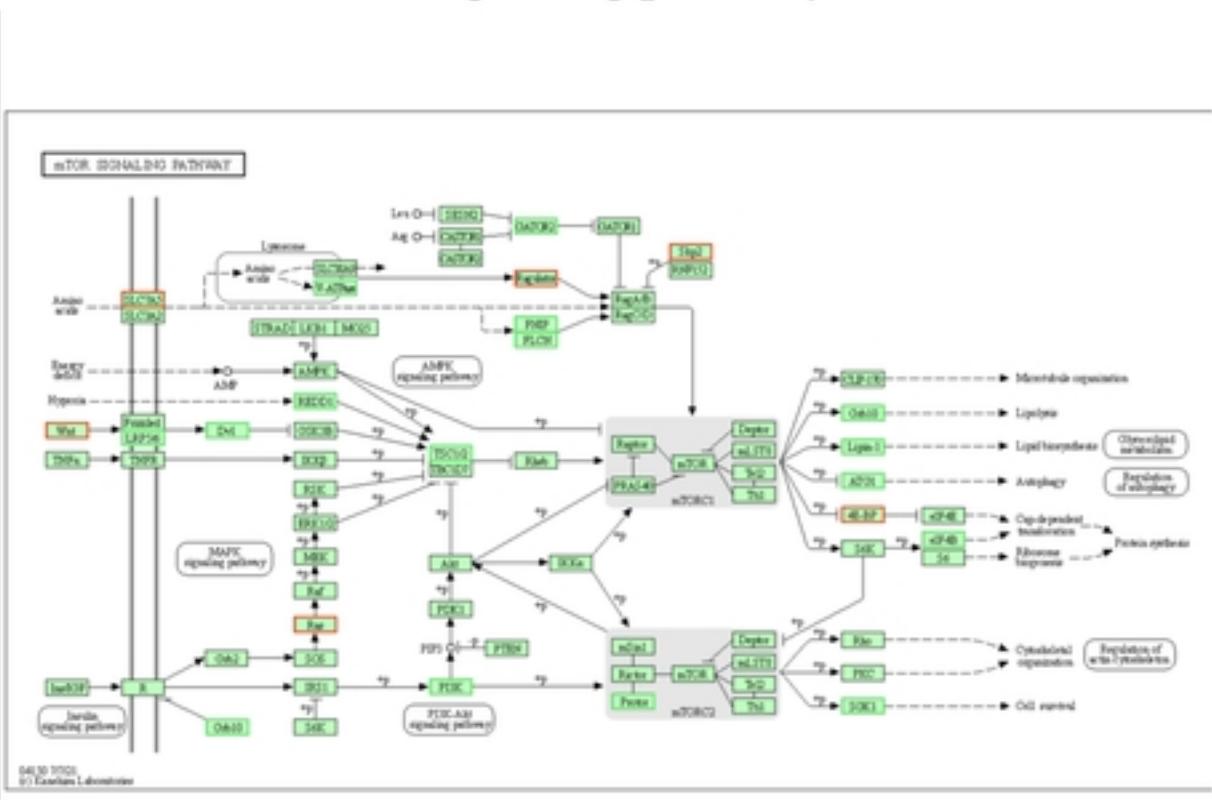
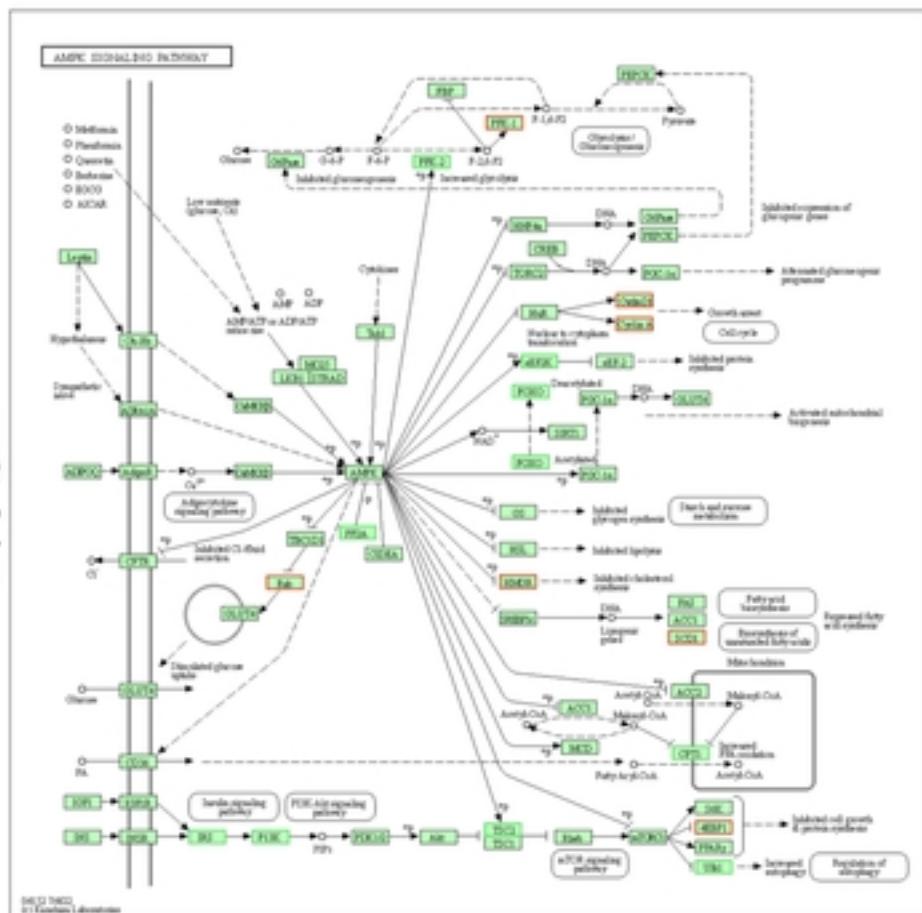
5%
10%**C****Protein synthesis************D**

HPG

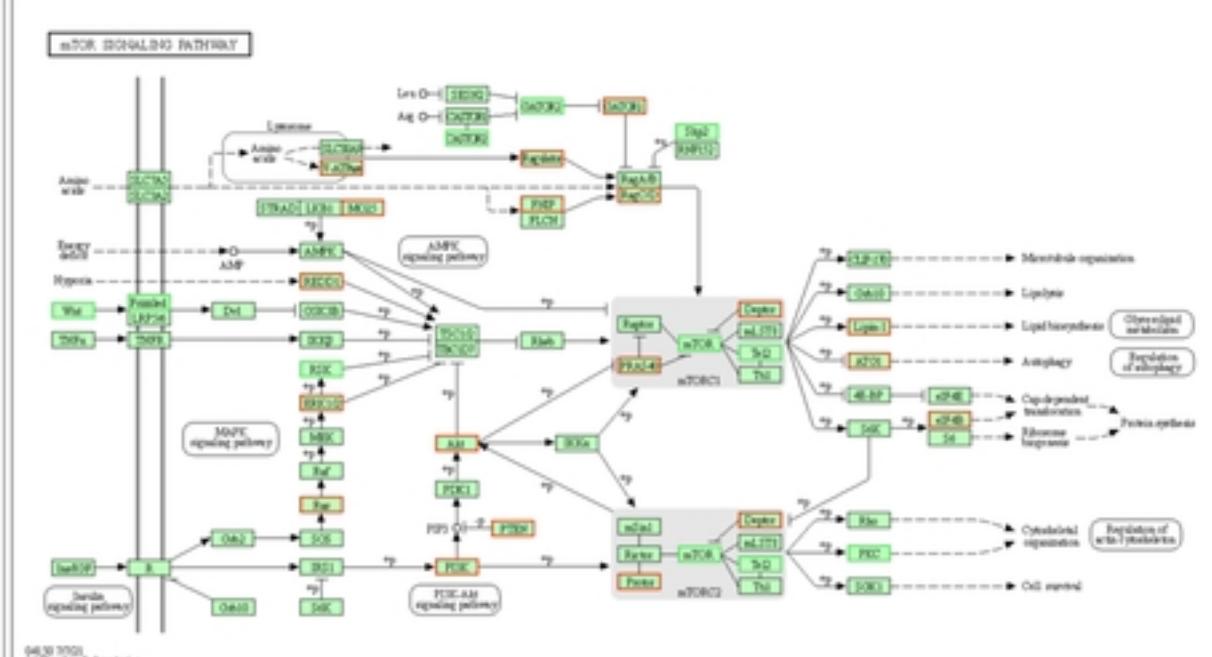
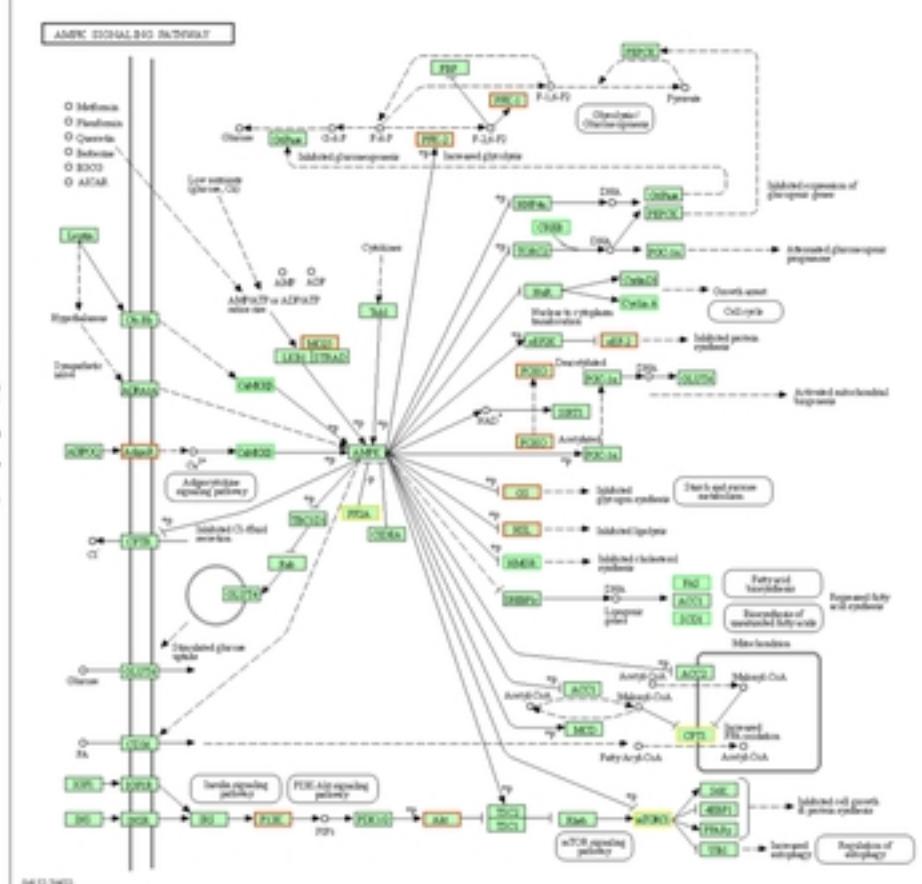
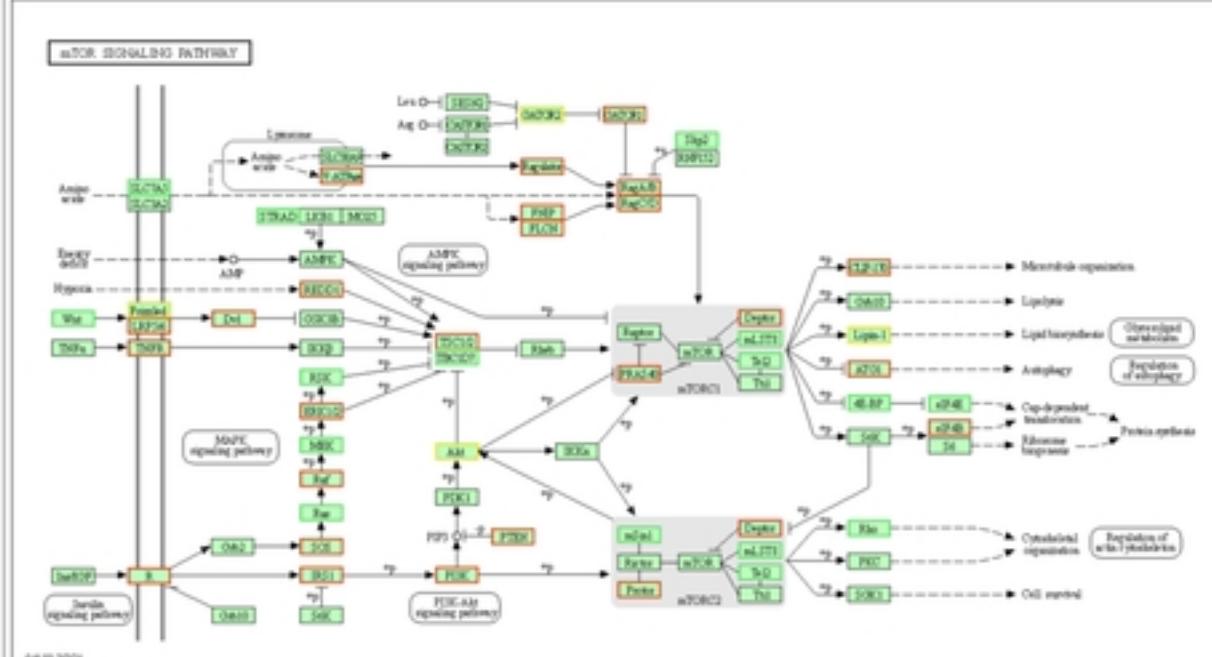
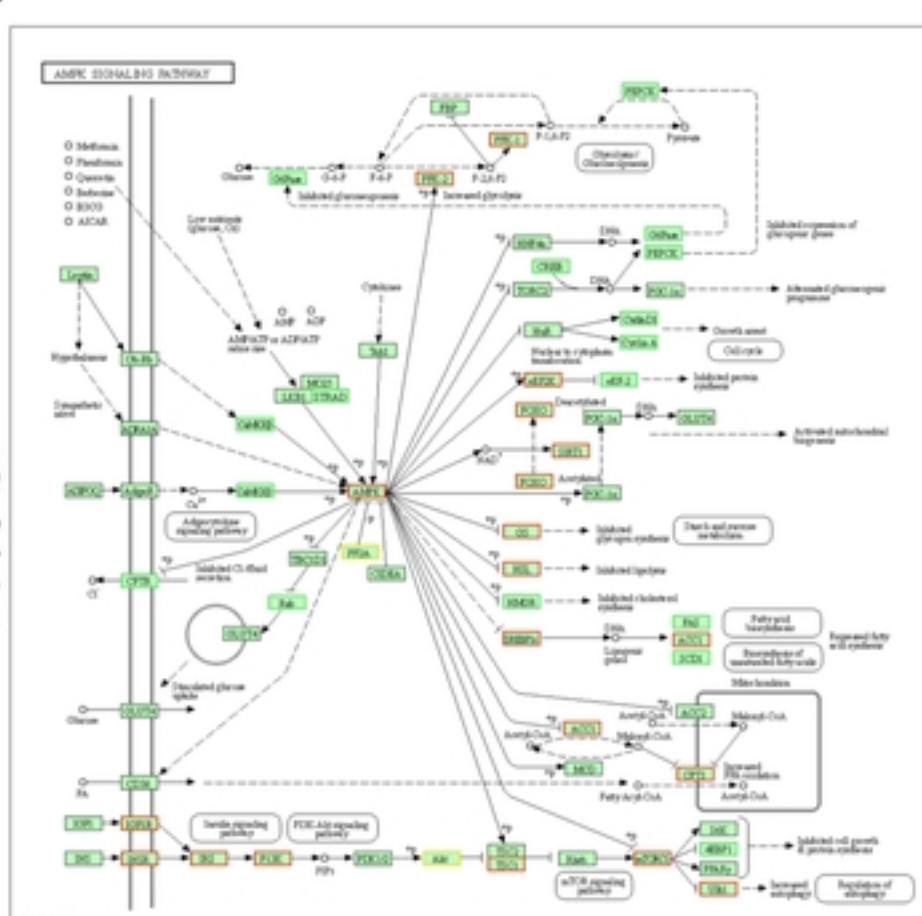
DAPI

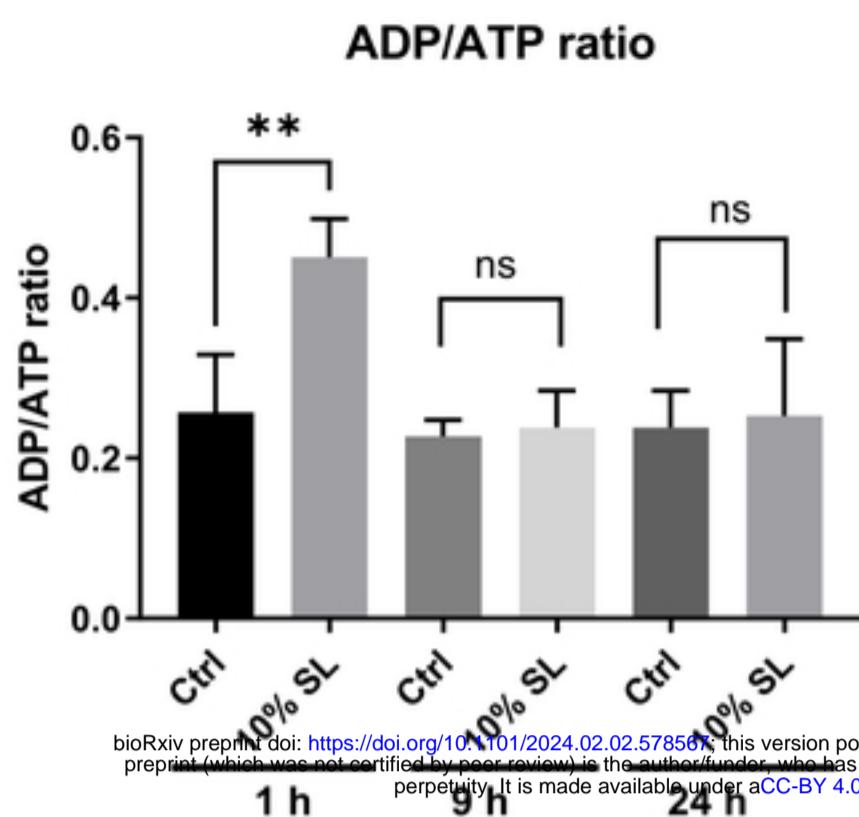

Merged







Ctrl

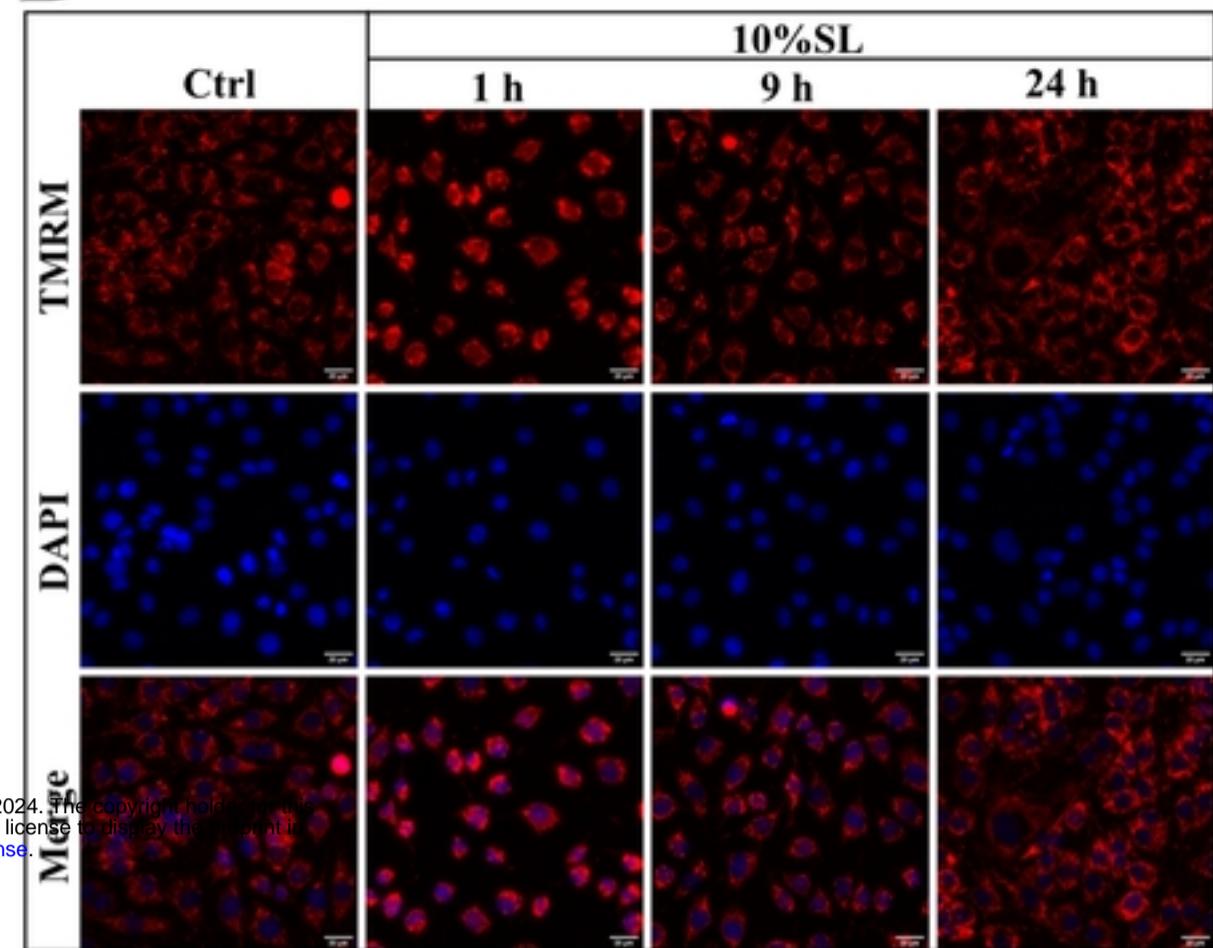
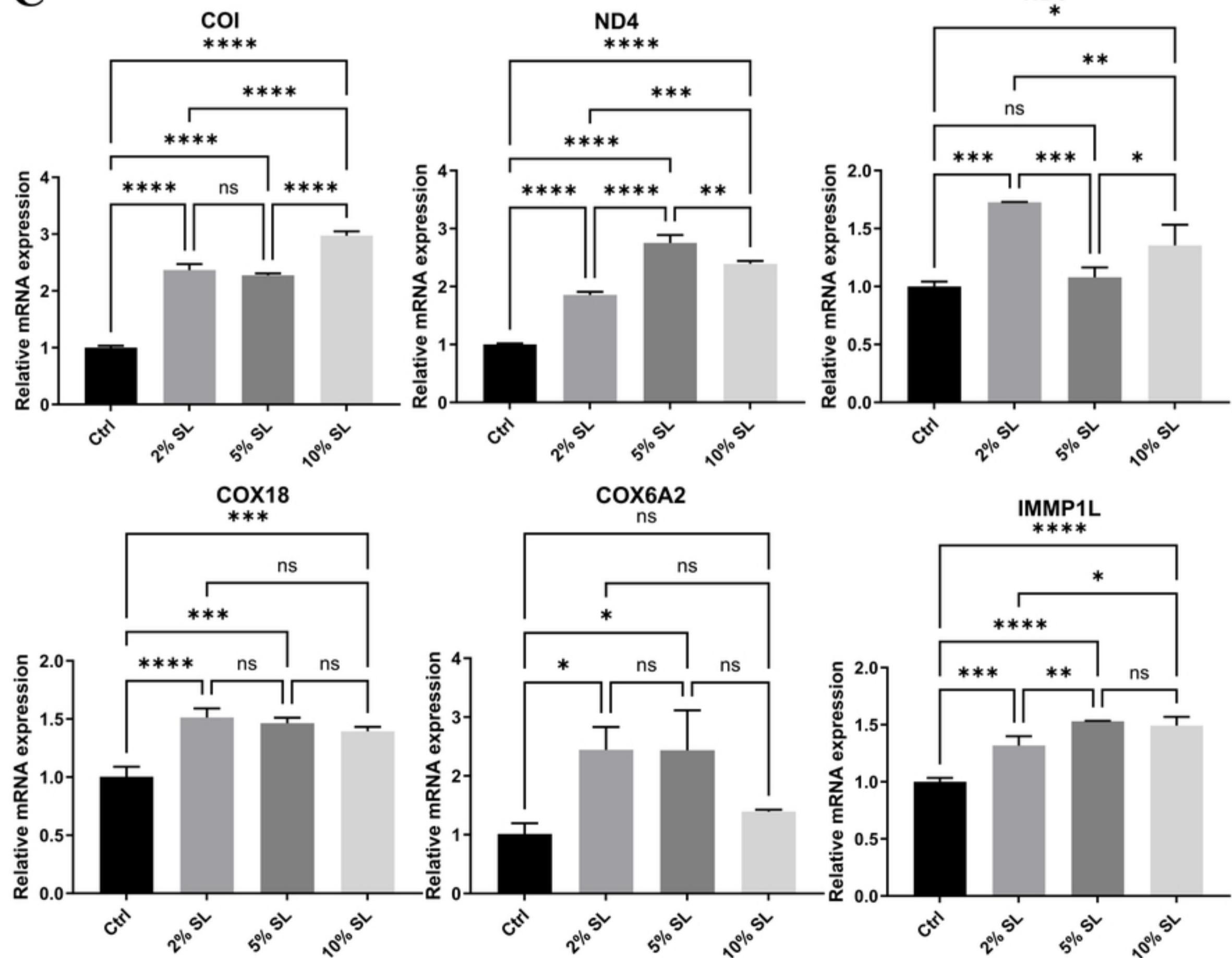


2%

5%





10%


Figure 2

A**B****C****D****E****F****Figure 3**



A**AMPK signaling pathway****mTOR signaling pathway****2% SL****B**

bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.02.578567>; this version posted February 7, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

5% SL**C****10% SL****Figure 4**

A

bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.02.578567>; this version posted February 7, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B**C****Figure 5**