
gMCSpy: Efficient and accurate computation of Genetic

Minimal Cut Sets in Python

Carlos Javier Rodriguez
1
, Naroa Barrena

1
, Danel Olaverri-Mendizabal

1, Idoia Ochoa
1,2,3

,
Luis V. Valcarcel

1,2,3
 and Francisco J. Planes

1,2,3*

1
University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018

San Sebastián, Spain.
2
University of Navarra, Biomedical Engineering Center, Campus Universitario 31009

Pamplona, Navarra, Spain.
3
University of Navarra, Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI),

Campus Universitario, 31080, Pamplona, Spain

*

Corresponding author: fplanes@tecnun.es

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.02.578370doi: bioRxiv preprint

https://doi.org/10.1101/2024.02.02.578370
http://creativecommons.org/licenses/by-nd/4.0/

ABSTRACT

Motivation: The identification of minimal genetic interventions that modulate metabolic

processes constitutes one of the most relevant applications of genome-scale metabolic models

(GEMs). The concept of Minimal Cut Sets (MCSs) and its extension at the gene level, genetic

Minimal Cut Sets (gMCSs), have attracted increasing interest in the field of Systems Biology to

address this task. Different computational tools have been developed to calculate MCSs and

gMCSs using both commercial and open-source software.

Results: Here, we present gMCSpy, an efficient Python package to calculate gMCSs in GEMs

using both commercial and non-commercial optimization solvers. We show that gMCSpy

substantially overperforms our previous computational tool GMCS, which exclusively relied on

commercial software. Moreover, we compared gMCSpy with recently published competing

algorithms in the literature, finding significant improvements in both accuracy and

computation time. All these advances make gMCSpy an attractive tool for researchers in the

field of Systems Biology for different applications in health and biotechnology.

Availability and Implementation: The Python package gMCSpy can be accessed at:

https://github.com/PlanesLab/gMCSpy

Key words: genome-scale metabolic models, genetic interventions, synthetic lethality, genetic

minimal cut sets, mixed-integer linear programming, open-source software

Contact: fplanes@tecnun.es

Supplementary Information:

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.02.578370doi: bioRxiv preprint

https://doi.org/10.1101/2024.02.02.578370
http://creativecommons.org/licenses/by-nd/4.0/

Introduction

The large number of interrelated reactions that support life makes the characterization of

biological systems a daunting task. Genome-scale metabolic models (GEMs) have emerged in

the last two decades to address this complexity. In particular, GEMs provide a comprehensive

representation of the metabolic and genetic interplay in an organism, aiming to offer a holistic

view of cellular metabolism by integrating genomic, biochemical, and physiological information

(Gu et al., 2019). Importantly, different molecular layers in GEMs are connected via gene-

protein-reaction (GPRs) rules, which describe how genes translate into the enzymes of specific

reactions that produce/consume metabolites. In recent years, the field of systems biology has

witnessed significant advancements in the analysis of GEMs, with a particular focus on

identifying potential intervention strategies for different clinical and biotechnological

applications.

An influential concept for the identification of optimal intervention strategies in GEMs is

Minimal Cut Sets (MCSs). MCSs define a minimal (irreducible) set of reactions whose deletion

leads to a desired metabolic phenotype, e.g. infeasible biomass production or optimal

production of a compound of biotechnological interest (Klamt and Gilles, 2004). We

introduced a closely related concept called genetic Minimal Cut Sets (gMCSs), which define

minimal intervention strategies at the gene level (Apaolaza et al., 2017). Different algorithms

have been developed to calculate both MCSs and gMCSs in large GEMs (von Kamp and Klamt,

2014; Pratapa et al., 2015; Schneider et al., 2020). In particular, we developed a function in the

COBRA toolbox (Heirendt et al., 2019) to carry out this task (Apaolaza et al., 2019), called here

GMCS. More recently, StrainDesign was released (Schneider et al., 2022), a Python library that

improves previous developments of the same group and extends their framework to an open-

source platform.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.02.578370doi: bioRxiv preprint

https://doi.org/10.1101/2024.02.02.578370
http://creativecommons.org/licenses/by-nd/4.0/

Here, we present gMCSpy, a novel Python package that calculates gMCSs for GEMs. gMCSpy

integrates several algorithmic improvements with respect to our previous tool, GMCS, which

was built in MATLAB environment. Furthermore, gMCSpy allows the user to search for gMCSs

with both commercial and open-source mixed-integer linear programming (optimization)

solvers. We show that gMCSpy overperforms GMCS and StrainDesign in computation time and

completeness of the solutions in a benchmark of 6 relevant GEMs. Overall, in our attempt to

release an open-source framework, gMCSpy demonstrates computational and accuracy

advances with respect to previous methods in the literature.

Methods

gMCSpy is an open-source package written in Python to calculate gMCSs in GEMs. The package

was built using COBRApy (Ebrahim et al., 2013) to conform with the standardization of GEMs

and take advantage of model manipulations previously developed by the COBRA community.

In order to compute gMCSs, we implemented the Mixed Integer Linear Programming (MILP)

model defined in the work of Apaolaza et al., 2019 (see Supplementary Methods). gMCSpy

includes a common interface to define this MILP model and translation functions to compute

gMCSs with different solvers, namely the commercial solvers Gurobi (Gurobi Optimization LLC,

2023) and IBM ILog CPLEX (Cplex, 2009), and the open-source solver SCIP (Bestuzheva et al.,

2023). This constitutes an advance with respect to our previous tool, GMCS, which was

developed in MATLAB environment exclusively for CPLEX. Moreover, gMCSpy can use the

latest versions of CPLEX, currently V22.1.0, in contrast, the latest version of CPLEX compatible

with MATLAB is V12.10.0.

A critical part in our methodology is the computation of matrix G, which defines the gene

knockout constraints in our MILP model (see Supplementary Methods). This step is performed

by the function buildGMatrix, which has been substantially improved in gMCSpy with respect

to our previous work (Apaolaza et al., 2019). In particular, buildGMatrix requires the function

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.02.578370doi: bioRxiv preprint

https://doi.org/10.1101/2024.02.02.578370
http://creativecommons.org/licenses/by-nd/4.0/

parseGPRToModel, which transforms GPR rules into artificial reaction networks (GPR

networks) (Apaolaza et al., 2019; Barrena et al., 2023). We have implemented an efficient

recursive strategy in Python to reduce the computational expenditure in constructing GPR

networks. This function allows us to efficiently deal with complex GPR rules, in contrast to

other methods that limit the size of GPRs that they can handle (Schneider et al., 2022).

Importantly, we have also refined the definition of matrix G to more accurately enumerate

gMCSs in increasing length order (see Supplementary Methods).

The main function to calculate gMCSs in gMCSpy is calculateGeneMCS. It can be used to

perform a global search (with all genes) but also to identify gMCSs involving a specific subset of

genes, as done in Apaolaza et al., 2017, with the targetKOs attribute. Likewise, we can

compute nutrient-genetic MCSs (ngMCSs), interventions that combine nutrient deprivations in

the environment and gene knockouts (Apaolaza et al., 2022), using the isNutrient attribute.

The same analysis can be done at the reaction level with the function calculateMCS. Different

examples are available in the gMCSpy documentation to illustrate these functions.

Results

We compared gMCSpy with two published tools in the literature: our previous MATLAB tool,

GMCS, and StrainDesign. gMCSpy and StrainDesign were benchmarked here with two

commercial solvers: CPLEX and Gurobi; while GMCS was examined only with CPLEX, as it is not

designed to work with Gurobi. The results obtained with the open-source solver, SCIP, can be

found in Supplementary Figure 1. For this side-by-side comparison, we used E. coli core (Orth

et al., 2010) and the most recent GEMs of E. coli, iML1515 (Monk et al., 2017); P. putida,

iJN1463 (Nogales et al., 2020); S. cerevisiae, Yeast-GEM v8.7.0 (Lu et al., 2019); and human

cells, Human-GEM v1.16.0 (Robinson et al., 2020) (Table 1). In the case of human cells, we

considered two cases: under the most general growth medium (Human-GEM v1.16.0) and

under Ham’s growth medium (Human-GEM v1.16.0_CultureMedia). Using the RAVEN toolbox,

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.02.578370doi: bioRxiv preprint

https://doi.org/10.1101/2024.02.02.578370
http://creativecommons.org/licenses/by-nd/4.0/

we applied the Ham’s growth medium and removed all reactions and associated metabolites

that cannot undertake any flux in this setting (Wang et al., 2018). We assessed the capacity of

the different approaches to extract all single, double and triple gene deletions which result to

be lethal for proliferation, as well as the required computation time. The benchmark was

performed in an Intel Xeon Gold 8248R using 16 threads and 64GB of RAM. Full details can be

found in Figure 1.

First, we note that not all GEMs were compatible with StrainDesign (Table 1). This

incompatibility comes from GPRs, as StrainDesign cannot handle GPRs larger than a certain

length. This implies that large GPRs need to be removed before using StrainDesign, in contrast

to gMCSpy or GMCS, which can be directly used to search for gMCSs.

Model No.

Reactions

No.

Metabolites

No.

Genes

Gmcspy StrainDesign GMCS

E. coli core 95 72 137 � � �

iML1515 2712 1877 1516 � � �

iJN1463 2927 2153 1462 � � �

Yeast-GEM 4131 2806 1163 � × �

Human-GEM v1.16.0 11944 7118 2897 � × �

Human-GEM

v1.16.0_CultureMedia

11509 6800 2897 � × �

Table 1: Summary of GEMs used in the benchmarking study of gMCS computation. We considered E.

coli core (Orth et al., 2010); E. coli, iML1515 (Monk et al., 2017); P. putida, iJN1463 (Nogales et al.,

2020); S. cerevisiae, Yeast-GEM v8.7.0 (Lu et al., 2019); and human cells, Human-GEM v1.16.0

(Robinson et al., 2020), respectively. In the case of human cells, we considered two cases: under the

most general growth medium (Human-GEM v1.16.0) and under Ham’s growth medium (Human-GEM

v1.16.0_CultureMedia). The dimension of each case considered, in terms of number of reactions,

metabolites and genes, is provided. The last three columns analyze whether (or not) the different

methods considered, the considered methods can be applied to search for gMCSs for the corresponding

GEM.

Second, gMCSpy substantially reduces the computation time with respect to StrainDesign in all

the GEMs tested (Figure 1A). In some of the scenarios, we obtained improvements of nearly

20-fold increase in speed with respect to StrainDesign (e.g., with Gurobi in iML1515).

Moreover, gMCSpy obtained a better performance in Gurobi than in CPLEX in most cases. This

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.02.578370doi: bioRxiv preprint

https://doi.org/10.1101/2024.02.02.578370
http://creativecommons.org/licenses/by-nd/4.0/

is not the case in StrainDesign, where both solvers had a similar behavior. Importantly,

StrainDesign failed to recover all the solutions in some GEMS. For example, it could not

recover 36 lethal triple gene knockouts in iML1515. This was not the case in gMCSpy, which

recovered all the solutions.

With respect to our previous tool, GMCS, we note several performance improvements. First, as

mentioned in the Methods section, a key improvement of gMCSpy over GMCS is related to the

computation of matrix G. We observed significant differences in computation time (two-sided

Wilcoxon test p-value = 0.03125), finding drastic improvements in some of the scenarios

(Supplementary Figure 2). For example, gMCSpy took 3.94 seconds to build matrix G in Human-

GEM v1.16.0_CultureMedia while GMCS took 227.97 seconds. Second, we slightly modified

matrix G to avoid the case found in Human-GEM v1.16.0_CultureMedia, where one lethal

triple gene knockout was missed with GMCS (Figure 1B) (see Supplementary Methods). This

modification in our approach has a negligible impact on the computation performance of

gMCSpy (Supplementary Figure 3). Overall, we show superior performance across all models in

both solvers, presenting more than 10-fold reduction in computation time in some scenarios

tested (e.g. Yeast-GEM-8.7 in Gurobi). These results clearly show that gMCSpy is more efficient

and accurate in computing gMCSs than our previous MATLAB tool, GMCS.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.02.578370doi: bioRxiv preprint

https://doi.org/10.1101/2024.02.02.578370
http://creativecommons.org/licenses/by-nd/4.0/

Figure 1: Benchmark of existing tools to compute gMCSs in GEMs. A) Computation times to calculate

gMCS up to length 3. i.e., lethal single, double, and triple knockouts, for each of the cases analyzed with

gMCSpy, StrainDesign and GMCS. Mean values across 10 different runs are shown at the top of bars.

‘NA’ means that the calculation was not possible. B) Number of gMCSs up to length 3 that were found

for each of the cases analyzed with gMCSpy, StrainDesign and GMCS.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.02.578370doi: bioRxiv preprint

https://doi.org/10.1101/2024.02.02.578370
http://creativecommons.org/licenses/by-nd/4.0/

Discussion

The capacity of predicting key genetic interventions has profound implications for various

areas in health and biotechnology. The gMCS framework offers a valuable tool for optimizing

interventions within biological systems, particularly in the field of drug discovery, where it can

aid in the identification of potential drug targets that modulate cellular metabolism in different

disease areas, opening new avenues for the development of personalized medicine.

gMCSpy constitutes an efficient open-source Python package to calculate gMCSs in GEMs using

both commercial and non-commercial optimization solvers. It substantially improves our

previous tool, GMCS, which was developed in MATLAB environment and limited to CPLEX, as

shown in the benchmarking study summarized in Figure 1. Moreover, gMCSpy overperforms in

both accuracy and computation time StrainDesign, a competing algorithm in the literature. All

these advances make gMCSpy an attractive tool for researchers in the field of Systems Biology.

Acnowledgements

This work was supported by the Minister of Economy and Competitiveness of Spain [PID2019-

110344RB-I00 and PID2022-143298OB-I00, F.J.P., and PID2021-126718OA-I00, I.O.], PIBA

Programme of the Basque Government [PIBA_2020_01_0055, F.J.P.], ERANET program

ERAPerMed [MEET-AML, F.P.], Ramon y Cajal contract [RYC2019-028578-I, I.O.], Gipuzkoa

Fellows grant [2022-FELL-000003-01, I.O], Elkartek programme of the Basque Government [KK-

2022/00045, F.J.P., KK-2023/00001, I.O.], Ramon Areces grant [to FJP]. N.B. received his salary

from a Basque Government predoctoral grant [PRE_2021_2_0025]. The funders had no role in

study design, data collection and analysis, decision to publish, or preparation of the

manuscript.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.02.578370doi: bioRxiv preprint

https://doi.org/10.1101/2024.02.02.578370
http://creativecommons.org/licenses/by-nd/4.0/

References

Apaolaza,I. et al. (2022) A network-based approach to integrate nutrient microenvironment in

the prediction of synthetic lethality in cancer metabolism. PLoS Comput Biol, 18,

e1009395.

Apaolaza,I. et al. (2017) An in-silico approach to predict and exploit synthetic lethality in cancer

metabolism. Nature Communications 2017 8:1, 8, 1–9.

Apaolaza,I. et al. (2019) GMCS: Fast computation of genetic minimal cut sets in large networks.

Bioinformatics, 35, 535–537.

Barrena,N. et al. (2023) Synthetic lethality in large-scale integrated metabolic and regulatory

network models of human cells. NPJ Syst Biol Appl, 9, 32.

Bestuzheva,K. et al. (2023) Enabling Research through the SCIP Optimization Suite 8.0. ACM

Trans. Math. Softw., 49.

Cplex,I.I. (2009) V12.1: User’s Manual for CPLEX. International Business Machines Corporation,

46, 157.

Ebrahim,A. et al. (2013) COBRApy: COnstraints-Based Reconstruction and Analysis for Python.

BMC Syst Biol, 7, 1–6.

Gu,C. et al. (2019) Current status and applications of genome-scale metabolic models. Genome

Biology 2019 20:1, 20, 1–18.

Gurobi Optimization LLC (2023) Gurobi Optimizer Reference Manual.

Heirendt,L. et al. (2019) Creation and analysis of biochemical constraint-based models using

the COBRA Toolbox v.3.0. Nat Protoc, 14, 639–702.

von Kamp,A. and Klamt,S. (2014) Enumeration of Smallest Intervention Strategies in Genome-

Scale Metabolic Networks. PLoS Comput Biol, 10.

Klamt,S. and Gilles,E.D. (2004) Minimal cut sets in biochemical reaction networks.

Bioinformatics, 20, 226–234.

Lu,H. et al. (2019) A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for

comprehensively probing cellular metabolism. Nat Commun, 10.

Monk,J.M. et al. (2017) iML1515, a knowledgebase that computes Escherichia coli traits.

Nature Biotechnology 2017 35:10, 35, 904–908.

Nogales,J. et al. (2020) High-quality genome-scale metabolic modelling of Pseudomonas putida

highlights its broad metabolic capabilities. Environ Microbiol, 22, 255–269.

Orth,J.D. et al. (2010) Reconstruction and Use of Microbial Metabolic Networks: the Core

Escherichia coli Metabolic Model as an Educational Guide . EcoSal Plus, 4.

Pratapa,A. et al. (2015) Fast-SL: An efficient algorithm to identify synthetic lethal sets in

metabolic networks. Bioinformatics, 31, 3299–3305.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.02.578370doi: bioRxiv preprint

https://doi.org/10.1101/2024.02.02.578370
http://creativecommons.org/licenses/by-nd/4.0/

Robinson,J.L. et al. (2020) An atlas of human metabolism.

Schneider,P. et al. (2020) An extended and generalized framework for the calculation of

metabolic intervention strategies based on minimal cut sets. PLoS Comput Biol, 16.

Schneider,P. et al. (2022) StrainDesign: a comprehensive Python package for computational

design of metabolic networks. Bioinformatics, 38, 4981–4983.

Wang,H. et al. (2018) RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and

a case study on Streptomyces coelicolor. PLoS Comput Biol, 14.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.02.578370doi: bioRxiv preprint

https://doi.org/10.1101/2024.02.02.578370
http://creativecommons.org/licenses/by-nd/4.0/

