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ABSTRACT 

Motivation: The identification of minimal genetic interventions that modulate metabolic 

processes constitutes one of the most relevant applications of genome-scale metabolic models 

(GEMs). The concept of Minimal Cut Sets (MCSs) and its extension at the gene level, genetic 

Minimal Cut Sets (gMCSs), have attracted increasing interest in the field of Systems Biology to 

address this task. Different computational tools have been developed to calculate MCSs and 

gMCSs using both commercial and open-source software.      

Results: Here, we present gMCSpy, an efficient Python package to calculate gMCSs in GEMs 

using both commercial and non-commercial optimization solvers. We show that gMCSpy 

substantially overperforms our previous computational tool GMCS, which exclusively relied on 

commercial software. Moreover, we compared gMCSpy with recently published competing 

algorithms in the literature, finding significant improvements in both accuracy and 

computation time. All these advances make gMCSpy an attractive tool for researchers in the 

field of Systems Biology for different applications in health and biotechnology.    

Availability and Implementation: The Python package gMCSpy can be accessed at: 

https://github.com/PlanesLab/gMCSpy 

Key words: genome-scale metabolic models, genetic interventions, synthetic lethality, genetic 

minimal cut sets, mixed-integer linear programming, open-source software 
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Introduction 

The large number of interrelated reactions that support life makes the characterization of 

biological systems a daunting task. Genome-scale metabolic models (GEMs) have emerged in 

the last two decades to address this complexity. In particular, GEMs provide a comprehensive 

representation of the metabolic and genetic interplay in an organism, aiming to offer a holistic 

view of cellular metabolism by integrating genomic, biochemical, and physiological information 

(Gu et al., 2019). Importantly, different molecular layers in GEMs are connected via gene-

protein-reaction (GPRs) rules, which describe how genes translate into the enzymes of specific 

reactions that produce/consume metabolites. In recent years, the field of systems biology has 

witnessed significant advancements in the analysis of GEMs, with a particular focus on 

identifying potential intervention strategies for different clinical and biotechnological 

applications. 

An influential concept for the identification of optimal intervention strategies in GEMs is 

Minimal Cut Sets (MCSs). MCSs define a minimal (irreducible) set of reactions whose deletion 

leads to a desired metabolic phenotype, e.g. infeasible biomass production or optimal 

production of a compound of biotechnological interest (Klamt and Gilles, 2004). We 

introduced a closely related concept called genetic Minimal Cut Sets (gMCSs), which define 

minimal intervention strategies at the gene level (Apaolaza et al., 2017). Different algorithms 

have been developed to calculate both MCSs and gMCSs in large GEMs (von Kamp and Klamt, 

2014; Pratapa et al., 2015; Schneider et al., 2020). In particular, we developed a function in the 

COBRA toolbox (Heirendt et al., 2019) to carry out this task (Apaolaza et al., 2019), called here 

GMCS. More recently, StrainDesign was released (Schneider et al., 2022), a Python library that 

improves previous developments of the same group and extends their framework to an open-

source platform.   
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Here, we present gMCSpy, a novel Python package that calculates gMCSs for GEMs. gMCSpy 

integrates several algorithmic improvements with respect to our previous tool, GMCS, which 

was built in MATLAB environment. Furthermore, gMCSpy allows the user to search for gMCSs 

with both commercial and open-source mixed-integer linear programming (optimization) 

solvers. We show that gMCSpy overperforms GMCS and StrainDesign in computation time and 

completeness of the solutions in a benchmark of 6 relevant GEMs. Overall, in our attempt to 

release an open-source framework, gMCSpy demonstrates computational and accuracy 

advances with respect to previous methods in the literature. 

Methods 

gMCSpy is an open-source package written in Python to calculate gMCSs in GEMs. The package 

was built using COBRApy (Ebrahim et al., 2013) to conform with the standardization of GEMs 

and take advantage of model manipulations previously developed by the COBRA community.  

In order to compute gMCSs, we implemented the Mixed Integer Linear Programming (MILP) 

model defined in the work of Apaolaza et al., 2019 (see Supplementary Methods). gMCSpy 

includes a common interface to define this MILP model and translation functions to compute 

gMCSs with different solvers, namely the commercial solvers Gurobi (Gurobi Optimization LLC, 

2023) and IBM ILog CPLEX (Cplex, 2009), and the open-source solver SCIP (Bestuzheva et al., 

2023). This constitutes an advance with respect to our previous tool, GMCS, which was 

developed in MATLAB environment exclusively for CPLEX. Moreover, gMCSpy can use the 

latest versions of CPLEX, currently V22.1.0, in contrast, the latest version of CPLEX compatible 

with MATLAB is V12.10.0. 

A critical part in our methodology is the computation of matrix G, which defines the gene 

knockout constraints in our MILP model (see Supplementary Methods). This step is performed 

by the function buildGMatrix, which has been substantially improved in gMCSpy with respect 

to our previous work (Apaolaza et al., 2019). In particular, buildGMatrix requires the function 
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parseGPRToModel, which transforms GPR rules into artificial reaction networks (GPR 

networks) (Apaolaza et al., 2019; Barrena et al., 2023). We have implemented an efficient 

recursive strategy in Python to reduce the computational expenditure in constructing GPR 

networks. This function allows us to efficiently deal with complex GPR rules, in contrast to 

other methods that limit the size of GPRs that they can handle (Schneider et al., 2022). 

Importantly, we have also refined the definition of matrix G to more accurately enumerate 

gMCSs in increasing length order (see Supplementary Methods). 

The main function to calculate gMCSs in gMCSpy is calculateGeneMCS. It can be used to 

perform a global search (with all genes) but also to identify gMCSs involving a specific subset of 

genes, as done in Apaolaza et al., 2017, with the targetKOs attribute. Likewise, we can 

compute nutrient-genetic MCSs (ngMCSs), interventions that combine nutrient deprivations in 

the environment and gene knockouts (Apaolaza et al., 2022), using the isNutrient attribute. 

The same analysis can be done at the reaction level with the function calculateMCS. Different 

examples are available in the gMCSpy documentation to illustrate these functions.  

Results 

We compared gMCSpy with two published tools in the literature: our previous MATLAB tool, 

GMCS, and StrainDesign. gMCSpy and StrainDesign were benchmarked here with two 

commercial solvers: CPLEX and Gurobi; while GMCS was examined only with CPLEX, as it is not 

designed to work with Gurobi. The results obtained with the open-source solver, SCIP, can be 

found in Supplementary Figure 1. For this side-by-side comparison, we used E. coli core (Orth 

et al., 2010) and the most recent GEMs of E. coli, iML1515 (Monk et al., 2017); P. putida, 

iJN1463 (Nogales et al., 2020); S. cerevisiae, Yeast-GEM v8.7.0 (Lu et al., 2019); and human 

cells, Human-GEM v1.16.0 (Robinson et al., 2020) (Table 1). In the case of human cells, we 

considered two cases: under the most general growth medium (Human-GEM v1.16.0) and 

under Ham’s growth medium (Human-GEM v1.16.0_CultureMedia).  Using the RAVEN toolbox, 
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we applied the Ham’s growth medium and removed all reactions and associated metabolites 

that cannot undertake any flux in this setting (Wang et al., 2018). We assessed the capacity of 

the different approaches to extract all single, double and triple gene deletions which result to 

be lethal for proliferation, as well as the required computation time. The benchmark was 

performed in an Intel Xeon Gold 8248R using 16 threads and 64GB of RAM. Full details can be 

found in Figure 1.  

First, we note that not all GEMs were compatible with StrainDesign (Table 1). This 

incompatibility comes from GPRs, as StrainDesign cannot handle GPRs larger than a certain 

length. This implies that large GPRs need to be removed before using StrainDesign, in contrast 

to gMCSpy or GMCS, which can be directly used to search for gMCSs. 

Model No. 

Reactions 

No. 

Metabolites 

No. 

Genes 

Gmcspy StrainDesign GMCS 

E. coli core 95 72 137 � � � 

iML1515 2712 1877 1516 � � � 

iJN1463 2927 2153 1462 � � � 

Yeast-GEM 4131 2806 1163 � × � 

Human-GEM v1.16.0 11944 7118 2897 � × � 

Human-GEM 

v1.16.0_CultureMedia 

11509 6800 2897 � × � 

Table 1: Summary of GEMs used in the benchmarking study of gMCS computation. We considered E. 

coli core (Orth et al., 2010); E. coli, iML1515 (Monk et al., 2017); P. putida, iJN1463 (Nogales et al., 

2020); S. cerevisiae, Yeast-GEM v8.7.0 (Lu et al., 2019); and human cells, Human-GEM v1.16.0 

(Robinson et al., 2020), respectively. In the case of human cells, we considered two cases: under the 

most general growth medium (Human-GEM v1.16.0) and under Ham’s growth medium (Human-GEM 

v1.16.0_CultureMedia). The dimension of each case considered, in terms of number of reactions, 

metabolites and genes, is provided. The last three columns analyze whether (or not) the different 

methods considered, the considered methods can be applied to search for gMCSs for the corresponding 

GEM. 

Second, gMCSpy substantially reduces the computation time with respect to StrainDesign in all 

the GEMs tested (Figure 1A). In some of the scenarios, we obtained improvements of nearly 

20-fold increase in speed with respect to StrainDesign (e.g., with Gurobi in iML1515). 

Moreover, gMCSpy obtained a better performance in Gurobi than in CPLEX in most cases. This 
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is not the case in StrainDesign, where both solvers had a similar behavior. Importantly, 

StrainDesign failed to recover all the solutions in some GEMS. For example, it could not 

recover 36 lethal triple gene knockouts in iML1515. This was not the case in gMCSpy, which 

recovered all the solutions. 

With respect to our previous tool, GMCS, we note several performance improvements. First, as 

mentioned in the Methods section, a key improvement of gMCSpy over GMCS is related to the 

computation of matrix G. We observed significant differences in computation time (two-sided 

Wilcoxon test p-value = 0.03125), finding drastic improvements in some of the scenarios 

(Supplementary Figure 2). For example, gMCSpy took 3.94 seconds to build matrix G in Human-

GEM v1.16.0_CultureMedia while GMCS took 227.97 seconds. Second, we slightly modified 

matrix G to avoid the case found in Human-GEM v1.16.0_CultureMedia, where one lethal 

triple gene knockout was missed with GMCS (Figure 1B) (see Supplementary Methods). This 

modification in our approach has a negligible impact on the computation performance of 

gMCSpy (Supplementary Figure 3). Overall, we show superior performance across all models in 

both solvers, presenting more than 10-fold reduction in computation time in some scenarios 

tested (e.g. Yeast-GEM-8.7 in Gurobi). These results clearly show that gMCSpy is more efficient 

and accurate in computing gMCSs than our previous MATLAB tool, GMCS.    
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Figure 1: Benchmark of existing tools to compute gMCSs in GEMs. A) Computation times to calculate 

gMCS up to length 3. i.e., lethal single, double, and triple knockouts, for each of the cases analyzed with 

gMCSpy, StrainDesign and GMCS. Mean values across 10 different runs are shown at the top of bars. 

‘NA’ means that the calculation was not possible.  B) Number of gMCSs up to length 3 that were found 

for each of the cases analyzed with gMCSpy, StrainDesign and GMCS.  
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Discussion 

The capacity of predicting key genetic interventions has profound implications for various 

areas in health and biotechnology. The gMCS framework offers a valuable tool for optimizing 

interventions within biological systems, particularly in the field of drug discovery, where it can 

aid in the identification of potential drug targets that modulate cellular metabolism in different 

disease areas, opening new avenues for the development of personalized medicine.  

gMCSpy constitutes an efficient open-source Python package to calculate gMCSs in GEMs using 

both commercial and non-commercial optimization solvers. It substantially improves our 

previous tool, GMCS, which was developed in MATLAB environment and limited to CPLEX, as 

shown in the benchmarking study summarized in Figure 1. Moreover, gMCSpy overperforms in 

both accuracy and computation time StrainDesign, a competing algorithm in the literature. All 

these advances make gMCSpy an attractive tool for researchers in the field of Systems Biology.     
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