

1 **Architecture of intact mammalian pyruvate dehydrogenase complex revealed by *in-situ***
2 **structural analysis**

3 Chen Wang^{1#}, Cheng Ma^{2#}, Shenghai Chang^{1,3}, Hangjun Wu^{1,3}, Chunlan Yan¹, Jinghua Chen⁴,
4 Yongping Wu⁵, Shaoya An¹, Jiaqi Xu¹, Qin Han³, Yujie Jiang¹, Zhinong Jiang¹, Haichun Gao⁴,
5 Xing Zhang^{1,3,6*}, Yunjie Chang^{3,7*}

6 ¹Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang
7 University School of Medicine, Hangzhou, Zhejiang, 310058, China.

8 ²Protein facility, core facilities, Zhejiang University School of Medicine, Hangzhou, Zhejiang,
9 310058, China.

10 ³Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou,
11 Zhejiang, 310058, China

12 ⁴College of Life Science, Zhejiang University, Hangzhou 310058, China

13 ⁵College of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F
14 University, Hangzhou, Zhejiang, 310058, China.

15 ⁶Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 310058, China.

16 ⁷Department of Cell Biology and Department of Infectious Disease of Sir Run Run Shaw Hospital,
17 Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.

18

19 # These authors contributed equally to this work

20 *To whom correspondence should be addressed:

21 Yunjie Chang(yjchang@zju.edu.cn) or Xing Zhang(xzhang1999@zju.edu.cn)

22

23 **The multi-enzyme pyruvate dehydrogenase complex (PDC) links glycolysis to the citric acid**
24 **cycle by converting pyruvate into acetyl-coenzyme A and is essential for cellular energy**
25 **metabolism. Although individual components have been characterized, the structure of**
26 **intact PDC remains unclear, hampering our understanding of its composition and multi-step**
27 **catalytic reactions. Here, we report the *in-situ* architecture of intact PDC within mammalian**
28 **mitochondria by cryo-electron tomography. The organization of peripheral E1 and E3**
29 **multimers varies substantially among PDCs. We discovered 1-46 E1 heterotetramers**
30 **surrounding each PDC core, and up to 12 E3 dimers locating primarily along the pentagonal**
31 **openings. Furthermore, we observed dynamic interactions of the substrate translocating**
32 **lipoyl domains (LDs) with both E1 and E2, implicating the mechanism of substrate**
33 **channeling. Our findings reveal the intrinsic dynamics of PDC peripheral compositions,**
34 **suggesting an additional model in which the number of assembled E1 heterotetramer, E3**
35 **dimer, and functional LDs of PDC may be regulated to further control its catalytic activity.**

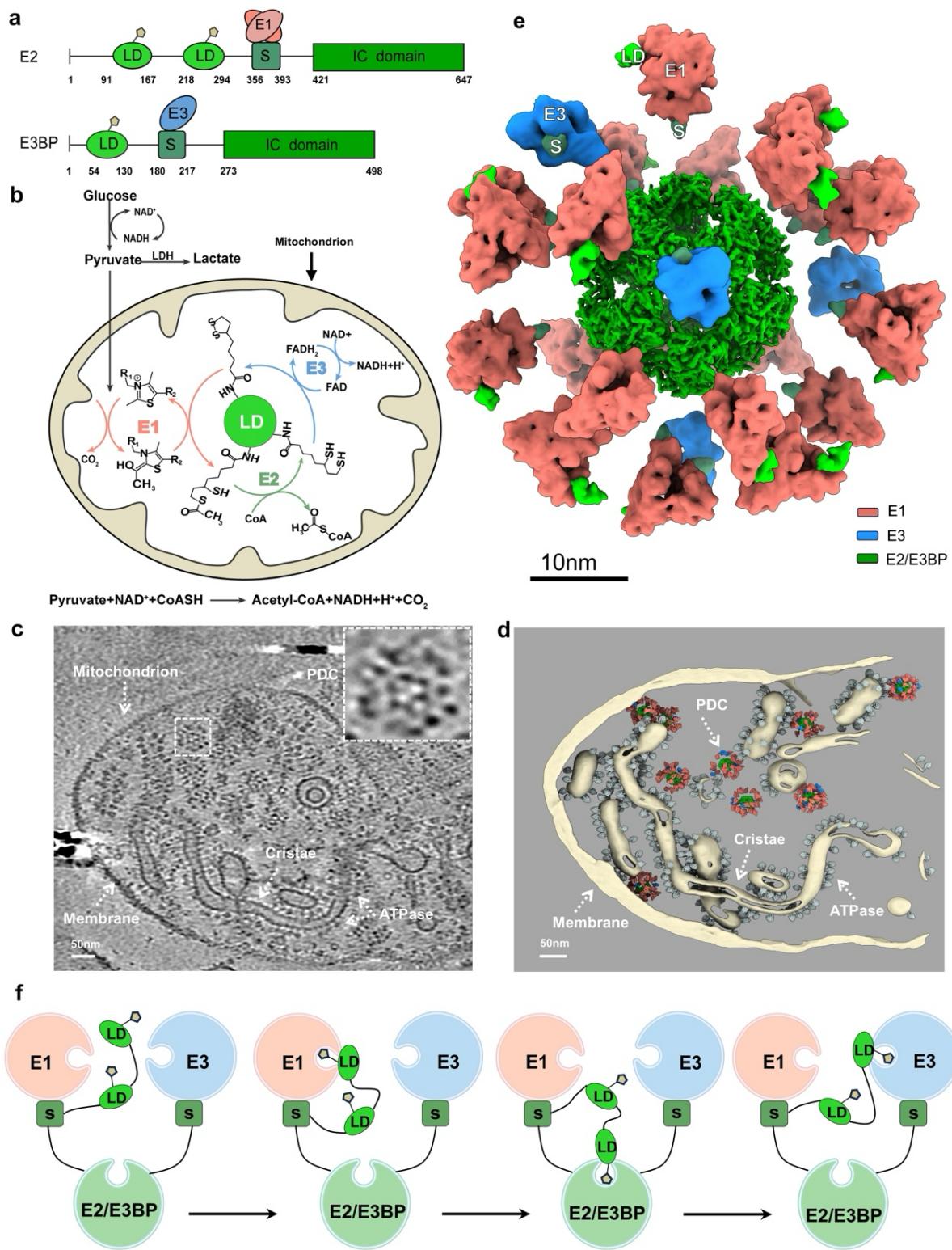
36

37 The pyruvate dehydrogenase complex (PDC) is a multi-subunit complex that is essential for
38 oxidative pathway and cellular energy metabolism. It links glycolysis to the citric acid cycle, and
39 the biosynthesis of fatty acids and steroids by catalyzing the oxidative decarboxylation of pyruvate
40 into acetyl-coenzyme A (acetyl-CoA)¹⁻⁴. Due to its critical role in metabolism, PDC is associated
41 with many major diseases, such as neurodegenerative disorders, metabolic acidosis, diabetes, and
42 cancer⁵⁻⁸.

43 The PDC, along with the 2-ketoglutarate dehydrogenase complex (OGDC) and the branched-
44 chain α -keto acid dehydrogenase complex (BCKDC), belongs to the α -keto acid/2-oxo-acid
45 dehydrogenase (OADH) family, the largest cellular enzyme system with the molecular weight
46 ranging from 4 to 10 million Da (MDa)⁹. The PDC is composed of multiple copies of three
47 catalytic enzymes: pyruvate dehydrogenase (E1; EC1.2.4.1), dihydrolipoyl transacetylase (E2; EC
48 2.3.1.12) and dihydrolipoyl dehydrogenase (E3; EC 1.8.1.4)¹⁰. E1 is a α 2 dimeric in Gram-
49 negative bacteria and a α 2 β 2 heterotetrameric in Gram-positive bacteria and eukaryotes¹¹⁻¹³. E2 is
50 a multidomain protein consisting of 1-3 lipoyl domains (LDs), a peripheral subunit-binding
51 domain (PSBD) and an inner catalytic (IC) domain (Fig. 1a). E3 is a homodimer^{14,15} and is shared
52 among different members of the OADH family. E2 enzymes fold into a cube (24-mer, for gram
53 negative bacteria) or pentagonal icosahedron (60-mer, for gram-positive bacteria and eukaryotes)
54 from trimers¹⁶⁻¹⁹, serving as a scaffold for the assembly of peripheral E1 and E3 enzymes. The
55 catalytic reaction of PDC consists of three steps (Fig. 1b). First, E1 undergoes an oxidative
56 decarboxylation reaction and transfer of an acyl group to lipoate in mobile LD of an E2 enzyme.
57 Then the activated E2-linked LD transports the lipoyl moiety to CoA, forming acetyl-CoA. Finally,
58 the LD is reoxidized for another catalytic cycle by an E3 enzyme. The E3 enzyme facilitates the
59 transfer of protons to NAD⁺, resulting in the formation of NADH³. In the catalytic reaction cycle,
60 the LD domains function as flexible "swinging arms" to transport intermediate substrates among
61 the active sites of the enzymes within PDC^{20,21} (Fig. 1f).

62 Previous studies have characterized the structures of E1, E2 and E3, and their stoichiometry,
63 catalytic processes, and regulatory mechanisms of the PDC^{11-19,22-33}. However, the majority of
64 solved structures to date are individual components of the PDC, thus preventing the full
65 understanding of how individual enzymes of PDC collaborate to perform catalyzes as a whole.
66 Recently, several structures of endogenous PDC from bacteria, fungi, and bovine, with special
67 focus on the PDC core, were obtained by cryo-electron microscopy single-particle analysis (cryo-

68 EM SPA)^{31,34-38} and provide valuable insights into the interactions between different components
69 of the PDC. The interaction interface of LD and E2 IC domain was revealed from the resting state
70 E2, which was obtained by growing *Escherichia coli* in a minimal medium supplemented with
71 succinate instead of glucose³⁶. Compared to the prokaryotic counterpart, the eukaryotic PDC has
72 additional dihydrolipoamide dehydrogenase-binding protein (E3BP)³⁹, which is structurally very
73 similar to E2 (Fig. 1a) and localizes at the PDC core. In fungi, E3BP was found to reside within
74 the PDC core as four separate complexes^{34,35,38}. While for mammalian PDC, multiple copies of
75 E3BP substitute part of E2 and form an icosahedral E2/E3BP core²³, with the stoichiometry of E2
76 and E3BP remains elusive. Nonetheless, these structures exhibited limited resolutions for
77 peripheral densities and were unable to distinguish E1 or E3, hampering our understanding of the
78 overall PDC structure. Moreover, how the substrate intermediates are channeled by LDs to other
79 PDC components during catalysis also remains elusive.


80 Characterizing the OADH family complex in its intact state through crystallization or
81 purification remains challenging due to the complexity of its assembly and the highly mobile E2-
82 linked lipoyl "swinging arms", which play a central role in the multi-step catalytic mechanism. In
83 addition, previous studies have suggested that PDCs display intrinsic heterogeneity, lacking
84 uniform structures with defined stoichiometry and subunit organization^{31,34,40,41}. Unraveling the
85 molecular architecture of intact PDCs is indispensable for a comprehensive understanding of its
86 catalytic mechanisms. Here, we determined the *in-situ* structure of intact PDC from the
87 mitochondria of porcine hearts by cryo-electron tomography (cryo-ET). Our results show
88 structural evidence of highly heterogeneous composition and spatial distribution of E1 and E3
89 multimers, providing deeper insights into collaborative mechanisms among multiple components
90 within PDC. Furthermore, we observed new structural snapshots of the LD transfer pathway,
91 illustrating how the swinging arms deliver the substrate-carrying prosthetic group into the active
92 sites of E1 and E2. Overall, our work provides profound insights for understanding the regulation,
93 assembly and collaborative catalytic reactions of multi-enzyme OADH complexes.

94 ***In-situ* structure of intact PDC**

95 To characterize PDC in its native environment, we reconstructed the *in-situ* structure of PDC
96 within mitochondria of porcine heart using cryo-ET. The mitochondrial membrane, cristae and
97 ATPase are clearly visible in the cryo-electron tomograms (Fig. 1c-d). The cristae exhibit a
98 conventional lamella shape, indicating the investigated regions retain the microenvironment of

99 mitochondria. PDC particles were readily seen in the reconstructed tomograms (Fig. 1c). To get
100 an idea about the abundance of PDC in mitochondria, we measured the volume size of the
101 examined mitochondria in our tomograms and calculated the density of the PDC in native
102 mitochondrial lumen. Based on our calculation, there is only one PDC particle per $2.7 \times 10^{-3} \mu\text{m}^3$.
103 Considering that the volume of mitochondrion ranges from $0.04\text{--}0.08 \mu\text{m}^3$ ⁴², the average number
104 of PDC is approximately 15-30 per mitochondrion in heart cells.

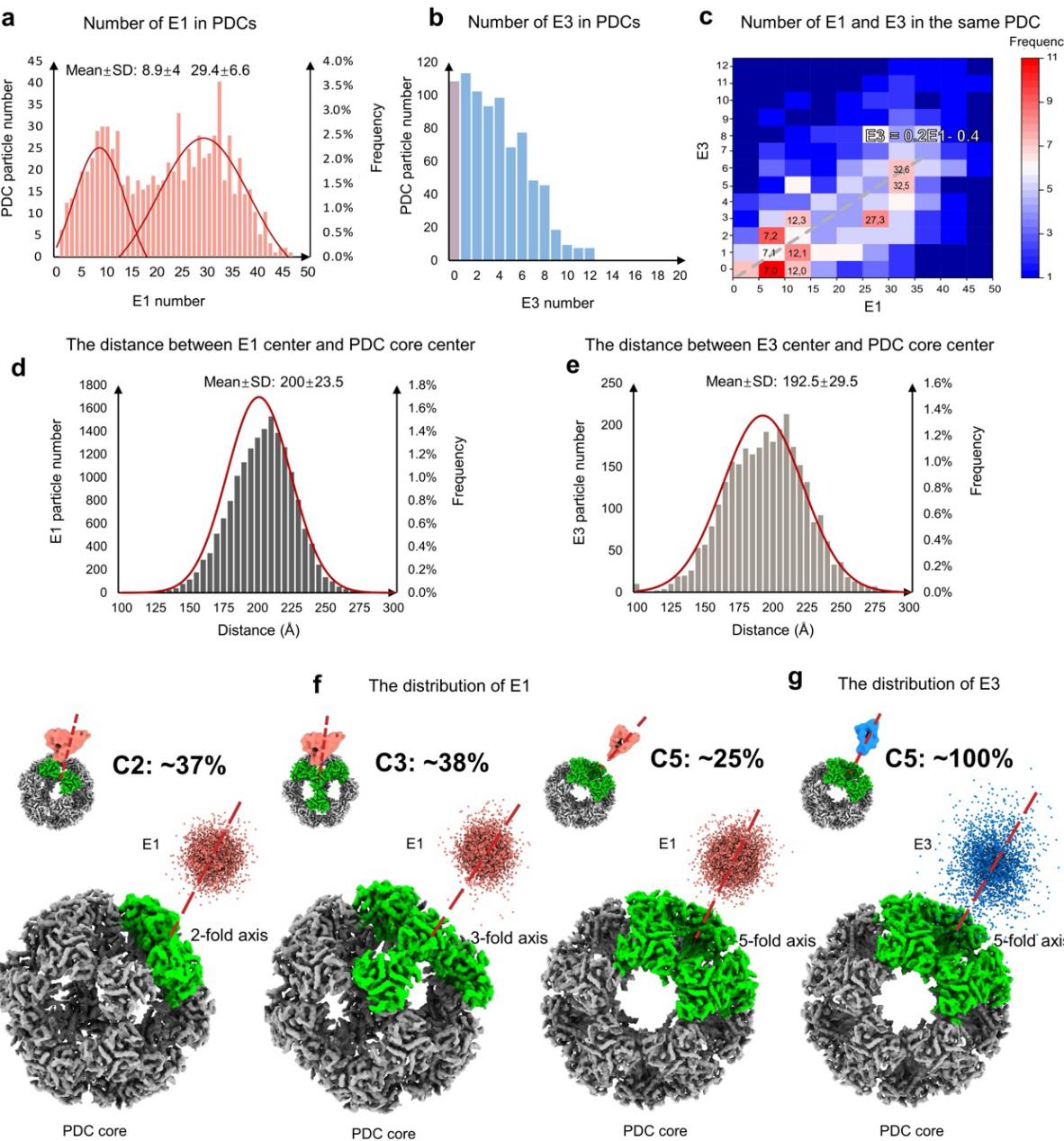
105 The PDC core is found to be surrounded by a shell of protein densities, which lacks apparent
106 symmetry and is speculated to be E1 or E3 multimers (Fig. 1c insertion). To solve the *in-situ*
107 structure of the PDC at high resolution, we picked PDC particles from hundreds of tomograms and
108 carried out sub-tomogram averaging analysis (Extended Data Fig. 1 and Extended Data Table 2).
109 In the average structure, E2 folds into an icosahedral core (dark green in Fig. 1e), which agrees
110 well with the reported mammalian PDC core structure^{18,31}. The surrounding shell densities were
111 classified, refined, and then distinguished as E1 heterotetramers or E3 dimers by comparing with
112 the reported crystal structures (Extended Data Fig. 1). Moreover, local refinement and
113 classification help us identified the LD and PSBD binding on the E1 or E3 multimers (Fig. 1e,
114 details will be shown in following sections). The numbers and locations of E1 heterotetramer and
115 E3 dimer vary across the PDC particles, which will be presented in details in the next section. On
116 average, each PDC has twenty-one E1 heterotetramers and four E3 dimers surrounding the 60-mer
117 E2 core (Fig. 1e and Supplementary Video 1).

118

119 **Fig. 1 | The molecular architecture and multi-step catalytic reactions of mammalian PDC.** a,

120 Organization of E2 and E3BP domains of mammalian PDC. E2 or E3BP is composed of one or

121 two lipoyl domains (LDs) followed by a peripheral subunit-binding domain (PSBD) and an inner


122 catalytic (IC) domain that are connected by flexible linkers. “S” represents PSBD. E1 or E3 binds

123 on the PSBD of E2 or E3BP, respectively. **b**, Scheme of the multi-step reaction catalyzed by the
124 individual components of PDC. **c**, A representative cryo-electron tomogram slice showing intact
125 PDC particles in a mitochondrion. The insertion shows the zoomed in view of one PDC particle.
126 **d**, Three-dimensional surface view of the tomogram shown in **c**. **e**, Average structure of
127 mammalian PDC, with 21 E1 and 4 E3 surrounding the 60-mer E2 core (green: E2, light coral: E1,
128 blue: E3, lime: LD, teal: S). See also Supplementary Video 1. **f**, A putative scheme (based on
129 Arjunan et al²¹) of the substrate channeling mechanism in the catalytic cycle of PDC. Only one
130 copy of each enzyme is shown for simplicity. From left to right: the pre-catalytic state of PDC, the
131 first, second and third reaction step of the PDC catalytic cycle, respectively. During the catalytic
132 cycle, the LD interacts with each enzyme sequentially to transport the substrate.

133 **The heterogeneous organization of E1 and E3 illustrates the intrinsic flexibilities of PDC
134 composition and assembly**

135 E1 and E3 multimers were distinguished by 3D refinement and classification, making it
136 possible to analyze their spatial organization. The number of E1 heterotetramers in the periphery
137 of each PDC in mitochondria (hereafter called mitochondrial PDC) is not constant, but varies from
138 1 to 46, with an average of 21 E1 heterotetramers per PDC (Fig. 2a). The distribution of E1 number
139 fits with two normal distributions (Fig. 2a). The number of E3 dimers in each mitochondrial PDC
140 varies between 0 and 12, with an average of 4 E3 dimer per PDC (Fig. 2b). It is worth noting that
141 each PDC has at least one E1 heterotetramer, whereas a subset of PDC particles has no E3 at all
142 (Fig. 2b). We then further conducted statistical analysis on the quantities of E1 and E3 in the same
143 mitochondrial PDC. The result shows a linear variation in the numbers of E1 and E3 multimers
144 (Fig. 2c). Specifically, for each mitochondrial PDC, there was an additional assembly of E3 dimer
145 along with five more E1 heterotetramers. In addition, the distributions of E1 and E3 multimers in
146 the same PDC also exhibited two major proportions (Fig. 2c), with the centers locating around
147 [7E1, 1E3] and [32E1, 6E3], which is consistent with the bimodal distribution of E1 heterotetramer
148 (Fig. 2a). Our results show that native PDCs do not have a specific subunit stoichiometry,
149 consistent with previous reports^{35,43-45}.

150 The distances between E1/E3 multimer centers and the icosahedral PDC core were then
151 measured to analyze the diameter of PDC. The distance between the E1 center and the PDC core
152 center varies between 130 Å and 270 Å, with an average value and standard deviation of ~200 Å
153 and ~24 Å, respectively (Fig. 2d). While the average distance between E3 center and the PDC core
154 center is ~193 Å, with the standard deviation ~30 Å (Fig. 2e). Therefore, taking into account of
155 the size of E1 and E3 multimers, the diameter of PDC typically ranges from 40 to 60 nm, with an
156 average value of 50 nm.

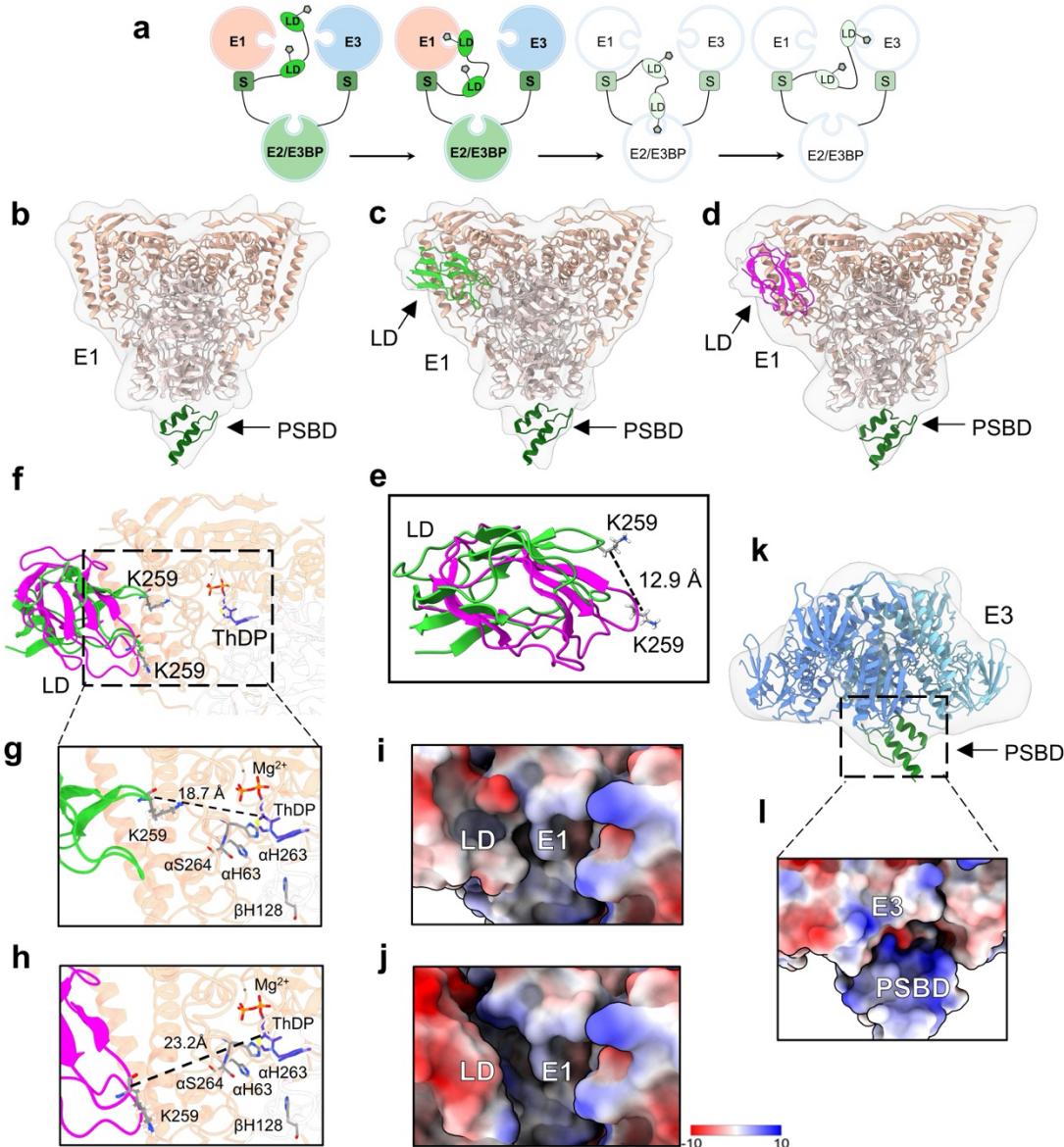
157

158 **Fig. 2 | The numbers and spatial arrangements of E1 and E3 multimers in mitochondrial**
 159 **PDC. a**, Distribution of the number of E1 heterotetramer in each mitochondrial PDC. SD: standard
 160 deviation. **b**, Distribution of the number of E3 dimer in each mitochondrial PDC. **c**, Distribution
 161 of the number of E1 and E3 multimers in the same PDC in mitochondria. As indicated by the grey
 162 line, the number of E3 has a linear relationship with the number of E1 ($E3 = 0.2 * E1 - 0.4$). **d**,
 163 Statistics of the distance between the E1 heterotetramer center and the PDC core center. **e**, Statistics
 164 of the distance between the E3 dimer center and the PDC core center. **f**, Spatial distribution of E1
 165 heterotetramer. E1 locates along the 2-fold (left), 3-fold (middle) or 5-fold (right) axis of the
 166 icosahedral PDC core. Each light coral dot represents one E1 heterotetramer. **g**, Spatial distribution
 167 of E3 dimer. E3 primarily locates along the 5-fold axis of the PDC core. Each blue dot represents
 168 one E3 dimer. See also Supplementary Video 2.

169 The icosahedral PDC core has 2-, 3- and 5-fold symmetries. We then analyzed the spatial
170 distributions of E1 and E3 multimers along different symmetry axes. The E1 heterotetramers
171 scatter around the core, with minor preference locating along the 2-fold and 3-fold axes than the
172 5-fold axis (Fig. 2f and Extended Data Table 3). On the other hand, the E3 dimer only locates
173 above the pentagonal opening (Fig. 2g and Supplementary Video 2).

174 Previous cryo-EM SPA studies using PDC purified from endogenous sources suggest that E1
175 and E3 multimers may form clusters surrounding the E2 core^{31,35,36}, which is different from our
176 results. To address the difference, we purified the PDC from the mitochondria of porcine hearts
177 (hereafter called purified PDC) and frozen the samples on cryo-EM grids covered with graphene
178 oxide. The analyses of PDC fractions using SDS-PAGE and mass spectrometry show that all
179 components are maintained in the purified PDC (Extended Data Fig. 2 and Extended Data Table
180 1). Instead of doing SPA, we carried out cryo-ET investigations for the purified PDC. The
181 tomograms show that the purified PDC encountered sample compression, resulting in
182 fragmentation and the presence of scattered E1 and E3 subunits in the background (Extended Data
183 Fig. 3). Some PDC particles locate around the tomogram center and possess E2 core with clear
184 icosahedral features. However, the particles close to the graphene surfaces, looking perfect along
185 the z-axis, are broken and have incomplete cores and periphery densities. The complete and
186 compressed particles can be easily distinguished in 3-dimensional tomograms, but not in the
187 projection images for SPA. We thus speculate that the mixture of the compressed particles with the
188 complete ones increases the difficulty for the subsequent distinguishment of E1 and E3 multimers.

189 To further analyze the differences between the purified PDC and mitochondrial PDC, we
190 manually picked 1209 complete particles from 256 tomograms of the purified PDC and carried
191 out similar subtomogram averaging and statistical analysis as the mitochondrial PDC. The quantity
192 of E1 and E3 multimers in each purified PDC varies between 1-42 and 0-11, respectively, with the
193 average value of twenty-two E1 and three E3 multimers (Extended Data Fig. 4a and b). The
194 distance between E1 center, E3 center and the PDC core is ~200 Å and ~190 Å, respectively
195 (Extended Data Fig. 4d and e). These features are similar to those native PDCs observed within
196 the mitochondrial lumen. However, it is notable that the number distribution of E1 heterotetramers
197 in purified PDC fits with one normal distribution (Extended Data Fig. 4c), rather than the bimodal
198 distribution of mitochondrial PDC. This difference could be attributed to the PDC extraction,
199 which may lead to sample homogenization and the loss of the natural distribution observed in the


200 mitochondrial PDC. Moreover, it further confirms that the mitochondria we observed retain their
201 microenvironment. Together, our structural analysis here reveals the heterogeneous organization
202 of E1 and E3 multimers, illustrating the intrinsic flexibilities of the composition and assembly of
203 the PDC (Supplementary Videos 1 and 2).

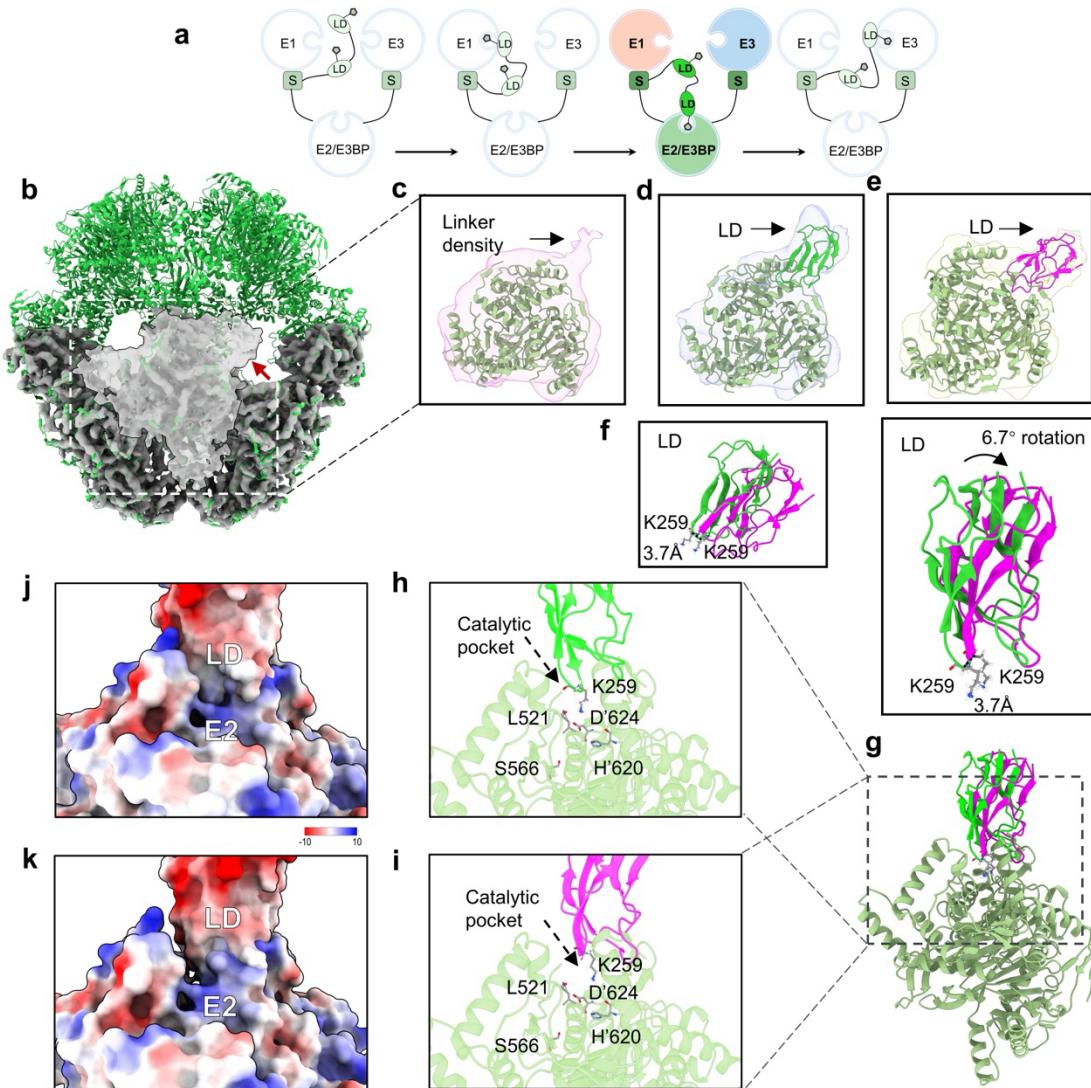
204 **Binding of E1 and E3 on PSBD and the structural evidence of E1-LD interactions for
205 alternating-active site mechanism**

206 The PSBD subunits of the PDC core provide binding sites for E1 and E3 multimers, and the
207 LD serves as a swinging arm to transfer substrates among different enzymes^{3,20,46} (Fig. 3a). We
208 carried out 3D classifications to analyze these interactions of E1 and E3 with PSBD and LD. The
209 purified PDC and mitochondrial PDC particles were combined together to increase the particle
210 number and improve the achievable resolution (Extended Data Fig. 1). The E1 heterotetramers
211 were classified into three main classes (Fig. 3b-d). The reported E1 crystal structure (PDB 6cfo)
212 fit well with the main architecture of the class averages, with all E1 heterotetramers possessing an
213 additional density close to the C-terminal region (Fig. 3b-d) and ~82% E1 heterotetramers having
214 additional density close to the N-terminal region (Fig. 3c-d). It was previously reported that the N
215 terminus of E1 α subunit binds PSBD, while its C terminus interacts with LD^{12,47,48}. We thus
216 docked PSBD (PDB: 1zwv) and LD (predicted by AlphaFold2⁴⁹, Extended Data Fig.5a) to
217 corresponding regions, which agree well with our structures. Due to the resolution limitation,
218 PSBD can be fitted in two different ways with opposite orientations (Fig. 3b-d and Extended Data
219 Fig. 5b). Nevertheless, since E1 is a $\alpha2\beta2$ heterotetramer, these two fitting strategies are thus
220 structurally identical.

221 Our class averages (Fig. 3c and d) present two different binding positions of LD on E1, with
222 its lysine residue K259 shifting ~12.9 Å (Fig.3e). As a consequence, the lysine residue in one class
223 average (Fig. 3g) is closer to the substrate ThDP than the other class average (Fig. 3h). Therefore,
224 we speculate that the structure shown in Fig.3c illustrate the functional state of substrate
225 transferring between E1 and LD, while the other structure shown in Fig. 3d represents an
226 intermediate state of the dynamic LD binding process. In addition, the number of E1 subunits with
227 LD binding is 4.5 times of those E1 without LD binding (Extended Data Table 3), indicating that
228 E1 is involved in an active oxidative decarboxylation reaction. Our results also suggest that the
229 interactions between LD and E1 primarily rely on electrostatic interactions (Fig. 3i and j). The LD
230 presents a large negatively charged patch (E239, E254, E256, E265, E279 and D250, Extended

231 Data Fig. 6c) that interacts with the positively charged residues of the N-terminal of the E1 α -helix
232 (K48, K54, K307, R43, R44, R273, R275, R282, R314, H63, H92, H261 and H263) (Extended
233 Data Fig. 5c).

234
235 **Fig. 3 | The interactions of E1 and E3 with PSBD and LD of the PDC core.** a, The putative
236 scheme of the substrate channeling mechanism in the catalytic cycle of PDC, as shown in Fig. 1f.
237 The diagram highlights the pre-catalytic state and the E1-LD interactions in the first step of
238 catalytic cycle. b-d, Class averages of E1 subunits. b, Class average showing the binding of E1 on
239 PSBD with the rigid fitting models. PSBD locates under the E1 C-terminal region. The docking
240 models are from the reported human source structures (PDB: 6cfo for E1 and PDB: 1zv for
241 PSBD). c and d, Class averages showing the interaction of E1 with PSBD and different
242 conformations of LD. LD locates near the E1 N-terminal region. The docking model of LD was
243 simulated from the porcine source (218-294 amino acids) using the AlphaFold2. e, Comparison of


244 the two conformations of LD shown in **c** and **d**. **f**, The interaction interfaces between two
245 conformations of LDs with E1. **g** and **h**, Enlarged view of the interaction interface shown in **f**. The
246 distances between the lysine residue K259 of LD and the substrate ThDP is indicated. **i** and **j**,
247 Electrostatic potential of the interaction interface between the LD and E1, corresponding to panel
248 **g** and **h**, respectively. **k**, Average structure showing the binding of E3 on the PSBD with the rigid
249 fitting models. Models of E3 and PSBD was obtained using the human source (PDB: 1zy8). **l**,
250 Electrostatic potential at the interaction interface between PSBD and E3. LD: lipoyl domain, S:
251 PSBD.

252 It is worth noting that, although the $\alpha 2\beta 2$ heterotetrameric E1 has two active sites, in our
253 results, only one active site was observed to be occupied by LD (Fig. 3c and d). Studies in
254 biochemistry, kinetics, and spectroscopy have shown that E1 functions through an alternating
255 active-site mechanism, also called the flip-flop mechanism, i.e., one active site is involved in the
256 pyruvate decarboxylation process while the other catalyzes the reductive acetylation of an E2-
257 lipoamide molecule simultaneously⁵⁰⁻⁵³. Our results offer evidence for this alternating active-site
258 mechanism from a structural biological perspective.

259 Our analysis of the E3 subunits illustrates that one PSBD binds to the bridge of the E3 dimer
260 (Fig. 3k), primarily relying on electrostatic interactions (Fig. 3l). The structures show that both the
261 E1 heterotetramer and E3 dimer bind on one PDC-core linked PSBD. The E1 heterotetramer
262 roughly faces the PDC core with its 2-fold axis, while the 2-fold axis of E3 dimer tilts $\sim 60^\circ$ relative
263 to the pentagonal opening of the PDC core (Fig. 1e and Extended Data Fig. 5d). Overall, our
264 structure shows interactions of PSBD-E1-LD and PSBD-E3, illustrating the binding of E1 and E3
265 to the E2/E3BP core and the substrate transfer between E1 and LD.

266 **Electrostatics-based dynamic interactions between the LD and the PDC core**

267 PDC transfers substrates between different enzymes by the LDs¹⁶, which are connected to the
268 catalytic domains of the PDC core through flexible linker regions (Fig. 4a). Analysis of the
269 interactions between LD and different enzymes of the PDC is essential for understanding the
270 catalytic reactions. The *in-situ* structure of the PDC core was resolved by sub-tomogram averaging
271 to analyze the interactions between LD and the PDC core. The PDC core structure was resolved
272 to a resolution of 4.3 Å (Fig. 4b). The overall structure shows the expected 60-meric central core
273 with icosahedral symmetry and the density matches well with the SPA resolved core structure of
274 bovine PDC (PDB 7uom) (Fig. 4b). Noticeably, if we lower the threshold of the core structure,
275 significant protruding densities can be found at the bridges of E2 subunits (arrow indicated in Fig.
276 4b), which supposed to be the LDs or flexible linkers with dynamic conformations.

277

278 **Fig. 4 | Interactions between the LD and the catalytic domain of E2.** **a**, The putative scheme of
279 the substrate channeling mechanism in the catalytic cycle of PDC, as shown in Fig. 1f. The diagram
280 highlights the second step of the catalytic cycle, emphasizing the interactions between the LD and
281 the PDC core in the second step of PDC catalytic cycle. **b**, 4.3 Å resolution subtomogram average
282 structure of the inner E2/E3BP core (grey) fitting with the bovine PCD core atomic structure (green,
283 PDB:7umo). The transparent density shows one E2/E3BP trimer with a lower threshold. The
284 additional density indicated by the red arrow represents the extension from the PDC core. The
285 extended densities were classified into three classes shown in **c-e**. **e**, One class average has a small
286 extension density, which is supposed to be the linker between the IC domain and the LD or PSBD.
287 E2 (PDB: 7uom) was fitted into the density map. **d** and **e**, Two class averages with large extended
288 densities which can be fitted with E2 (PDB: 7uom) and LD. The docking model of LD was
289 simulated from the porcine source (218-294 amino acids) using the AlphaFold2⁴⁹. The position of
290 LD was adjusted by rigid fitting to the density map. **f**, Comparison of the two conformations of
291 LD shown in **d** and **e**. **g**, The interaction interface between the LD and E2 trimer, corresponding
292 to the structures shown in **d** and **e**. **h** and **i**, Enlarged view of the interaction interface shown in **g**.

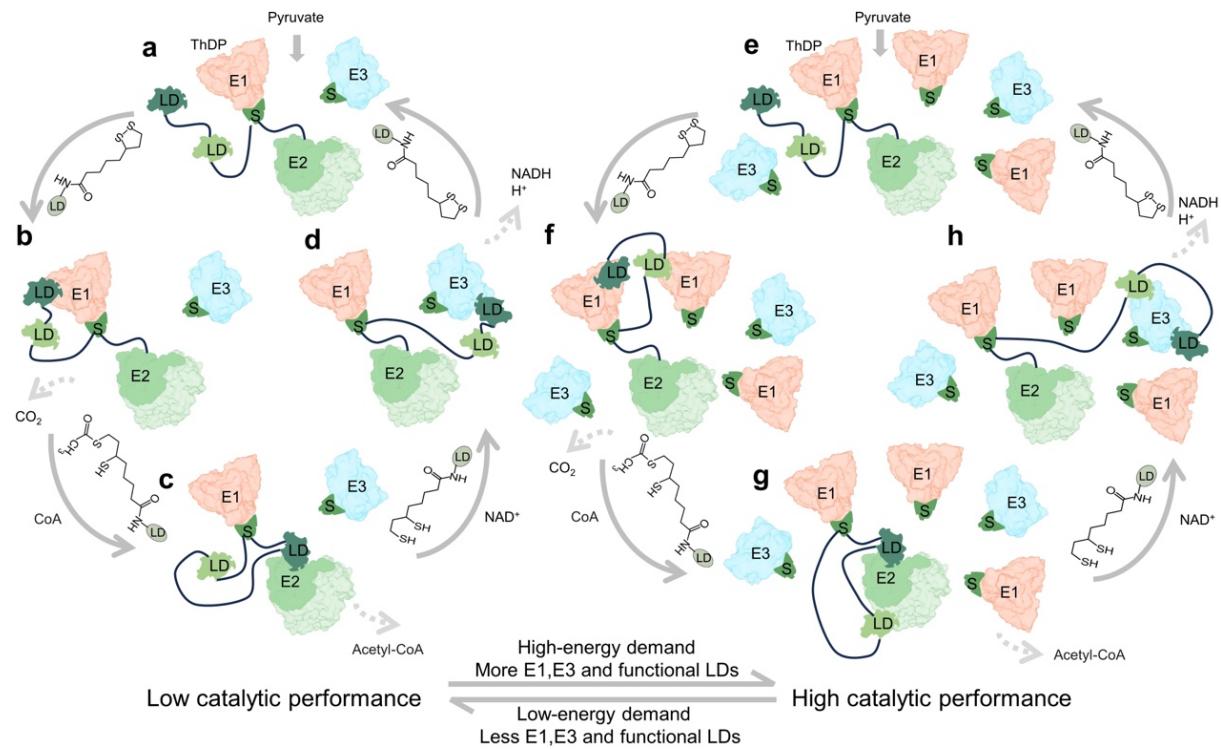
293 **j** and **k**, Electrostatic potential of the interaction interface between LD and E2, corresponding to **h**
294 and **i**, respectively. LD: lipoyl domain, S: PSBD.

295 To better visualize the protruding densities, we performed asymmetric reconstruction of the
296 E2 subunits. All 60 E2 subunits were extracted from each icosahedral PDC core, aligned together
297 and then 3D classified into three classes. These class averages present significant protruding
298 densities on the E2 trimer (Fig. 4c-e and Extended Data Fig. 6a and b). The protruding density in
299 one class average is significantly smaller than LD and should be the extended linker (Fig. 4c). The
300 LD (predicted by AlphaFold2⁴⁹, Extended Data Fig. 5a) fit well into the prominent densities of the
301 remaining two classes (Figs. 4d and e). Although the locations of LD relative to E2 rotate ~6.7° in
302 the class averages (Figs. 4d and e), the position of the lysine residue K259 barely changes (shifts
303 ~3.7Å). Since the E2 active site channel is located at the interface between two catalytic domains³⁶.
304 The structures thus illustrate that the LD binds above the E2 catalytic pocket (Fig. 4g) and inserts
305 the lipoyl moiety attached lysine residue (K259) to a funnel-shaped opening that leads to the E2
306 active site channel (Figs. 4h and i).

307 Our results suggest that the electrostatic interactions between the positively charged amino
308 acids of LD (Extended Data Fig. 6c) and the negatively charged amino acids of E2 (R429, R430,
309 R435, R549, K552, K547, H556 and H620, Extended Data Fig. 6d) play a crucial role in stabilizing
310 their interactions (Fig. 4j and k). In the catalytic domain of E2, the overall surface potential around
311 the active site channel entrance is mostly electropositive (Extended Data Fig. 6d), which could be
312 a common electrostatic navigation mechanism across all E2 systems³⁶. Moreover, the sequence
313 alignments of the LDs in prokaryotes, fungi, and mammals show that the number of acidic amino
314 acids in different species ranged from 12 to 15 with conserved electric properties (Extended Data
315 Fig. 6e). This indicates a general electrostatic-based interaction between LD and E2 across species.
316 In brief, we captured two snapshots of the previously indistinct E2-LD interactions in mammalian
317 PDC, providing insights into the transacetylase reaction taking place within mitochondria.

318 **Discussion**

319 In this study, we purified mitochondria from porcine hearts and utilized cryo-ET and related
320 approaches to elucidate the *in-situ* structure of mammalian PDC. Our results show the intrinsic
321 flexibility of the PDC on both diameter and peripheral organizations. In mitochondrial PDC, E1
322 scatters around the icosahedral PDC core, while E3 only locates along the 5-fold axis (Fig. 2f-g).
323 This could be attributed to that the spacious pentagonal channel, compared to that near the 2-fold


324 and 3-fold axes, could facilitate the mobility of the E3 outer motif more effectively, enabling its
325 active involvement in the oxidation process of dihydrolipoyl moieties associated with the five
326 adjacent E2 trimers. Two normal distributions of the number of E1 and E3 in each mitochondrial
327 PDC were observed (Fig. 2c), suggesting that there may be distinct subpopulations or
328 heterogeneity within the PDC population and an additional regulation to promptly respond to
329 different cellular states or nutrition conditions.

330 The exact number of E2 and E3BP constituting the 60-mer core of mammalian PDC is still
331 under debate. A "substitution model" for mammalian E2:E3BP favors 40:20⁵⁴ or 48:12²³. Due to
332 the resolution limit, we are unable to discriminate the densities of E3BP and E2 within our *in-situ*
333 PDC core structure. However, since E3 specifically binds on the E3BP-linked PSBD, our results
334 reveal up to 12 E3 dimers in the mitochondrial PDC, implying that the mammalian PDC core
335 scaffold is likely composed of 48 E2 and 12 E3BP. In addition, although one PDC core could bind
336 up to 48 E1 and 12 E3 multimers, the actual numbers of E1 and E3 multimers are typically far
337 from saturation (Fig. 2c), similar as *M. Smolle et.al* proposed⁴³. Such structural features might also
338 be true for prokaryotic PDCs, which could function properly without fully saturating all the
339 binding sites of E1 and E3²², potentially allowing various substitutions to emerge during evolution.

340 The dynamic movement of the N-terminally-located, E2-linked LDs plays a pivotal role in the
341 catalytic process of PDC. These LDs, functioning as swinging arms, facilitate the transferring of
342 their prosthetic groups to the active sites of all three enzymes throughout the catalytic cycle. Here,
343 we captured the dynamic interactions of LDs with both E1 (Fig. 3) and E2 (Fig. 4). These
344 interactions primarily rely on electrostatic interactions (Fig. 3i-j and Fig. 4j-k). We thus propose
345 that the acidic patches on the LD serve as a general binding site for its interactions with different
346 components of PDC. The reported LD position relative to E2 in the resting state of PDC in
347 *Escherichia coli* is different from our observations (Extended Data Fig. 6f), whereas the position
348 of the lysine residue (K245 in *Escherichia coli* LD and K259 in porcine LD) barely changes
349 (Extended Data Fig. 6g). This confirms that the E2-LD interactions are highly dynamic and
350 suggests that LD might be able to deliver the substrate-carrying prosthetic group into the E2 active
351 site from various directions.

352 Previous study¹⁸ and our present work show that the binding sites of E1 and E3 are not
353 necessarily fully saturated for a PDC in mitochondria to be functional. The E2 core associated with
354 one peripheral E1 heterotetramer and one E3 dimer is sufficient to accomplish the catalysis²².

355 Consequently, the more peripheral enzymes, the more LD substrate binding sites, and the higher
 356 the catalytic efficiency. Our results suggest that while the number and distribution of the peripheral
 357 E1 and E3 multimers vary substantially, the mitochondria may still normally carry out energy
 358 metabolism. The variation of E1 or E3 quantity may also function to regulate the catalytic
 359 efficiency of PDC in addition to other ways of regulation, and may be controlled by physiological
 360 conditions and metabolic demands of mitochondria.

361
 362 **Fig. 5 | A catalytic performance regulation model of the PDC.** **a-d**, Schematic of PDC reaction
 363 with low catalytic performance. In low energy demand, limited amount of E1 and E3 bind to the
 364 PDC core. Each E2 has two LDs, but only one of the LDs functions as swing arm to carry out
 365 substrate transfer among E1, E2 and E3. **e-h**, Schematic of PDC reaction with high catalytic
 366 performance. With increasing energy demand, more E1 and E3 bind to the PDC core and provide
 367 more activating sites. Both LDs of the E2 are required to function as swing arms for substrate
 368 transfer to increase the catalytic performance. All E1 and E3 bind on the PSBD connected with the
 369 E2 core by flexible linkers. Some linkers are omitted for simplicity. LD: lipoyl domain, S: PSBD.

370 We therefore proposed an additional regulation model for the catalytic performance of
 371 mammalian PDC. In low-energy demand state, several E1 and E3 enzymes are adequate for the
 372 catalytic reactions (Fig. 5a). Although each E2 possesses two LDs, only one LD is required for
 373 substrate transfer since there is a limited number of E1/E3 active sites (Fig. 5b-d). E1 captures and
 374 decarboxylates a pyruvate and transfers it to a mobile LD (Fig. 5b). Then, the substrate is
 375 transferred by the LD to an active site on E2 to produce acetyl-CoA (Fig. 5c). Subsequently, the

376 lipoyl moiety is transferred to a catalytic site of E3 by the LD and reoxidized to complete one
377 reaction (Fig. 5d).

378 In a high-energy demand state, more E1 and E3 multimers would be assembled on the PDC
379 core to provide more active sites, and both LDs of the E2 subunit are required to function
380 simultaneously to achieve higher efficient transfer of substrate (Fig. 5e-h). Both LDs interact with
381 E1 subunits simultaneously (Fig. 5f) and transfer acetyl groups, facilitating reactions at two
382 catalytic sites on the E2 heterotetramers (Fig. 5g), then transfer the resulting reduced lipoyl moiety
383 to two catalytic sites on E3 (Fig. 5h), thereby completing multiple reactions simultaneously to
384 improve the catalytic efficiency. This high-performance catalytic process continues until the
385 energy demand of the mitochondrion decreases. Then part of the E1 and E3 dissociate from the E2
386 core and the PDC reverts to the state where only one LD is involved in the reaction. Previous
387 studies have postulated two different mechanisms for the higher-order interaction of the
388 components of OADH complexes: the “multiple random coupling” (MRC) mechanism⁵⁵ and the
389 “division-of-labor” (DOL) mechanism^{45,56}. The model we proposed favors the MRC mechanism
390 in which the overall activity of the PDC is influenced by redundancies and random processes.
391 Considering the similarity among members of the OADH family, the regulation mechanism
392 proposed here is likely applicable to all members of the OADH family.

393 The regulation of the mammalian PDC is crucial for maintaining glucose homeostasis during
394 feeding and fasting states. It has been reported that the catalytic reaction of PDC is regulated
395 through the end-product inhibition by acetyl-CoA and NADH^{57,58}, and through the reversible
396 phosphorylation and dephosphorylation of the E1 subunit by PDK and PDP^{3,59,60}. Acetyl-
397 CoA/CoA and NADH/NAD⁺ ratios act as effectors in feedback inhibition by influencing the redox
398 and acetylation status of the lipoamide cofactors. While PDK and PDP inhibit PDC activity by
399 phosphorylation of the serine residues on E1. Since the (de-)phosphorylation regulation directly
400 relates with the enzyme activity of E1, we suspect such (de-)phosphorylation of the E1 subunit
401 might affect the (dis-)assembly of E1 and E3 to regulate the catalytic performance of PDC. It may
402 be helpful to select periods of high and low expression of PDP and PDK to obtain samples and
403 carry out structural analysis to verify this hypothesis.

404 In conclusion, we obtained the *in-situ* structure of mammalian PDC which implies the
405 dynamic substrate transporting by the LDs between different enzymes. The location and quantity
406 of peripheral proteins as well as the interface at which they interact with the PDC core are

407 structurally described. Overall, our results provide profound insights into the structure and
408 regulation of OADH family complexes.

409

410 **Methods**

411 **Isolation of mitochondria from porcine heart**

412 All the following procedures were carried out on ice or at 4°C. Fresh porcine heart was obtained
413 from the slaughter house and transported to the laboratory as soon as possible. The heart muscles
414 were washed twice with Milli-Q water. 720g of heart muscles were isolated and cut into small
415 cubes and suspended in 1000 ml of buffer A (0.25Msucrose, 10mM potassium phosphate, 0.1mM
416 EDTA, pH 7.6). These tissues were homogenized in a large-capacity blender for 5 min. The
417 homogenate was centrifuged in 1-liter bottles at 2000 g for 10 min. The supernatant fluid was
418 strained through eight layers of cheesecloth. The mitochondrial fraction was collected by
419 centrifugation at 22,000 g for 17 min. The Crude mitochondria was washed twice with 200 ml 0.02
420 M potassium phosphate, pH 7.0 and paste was collected by centrifugation at 22,000 g for 10 min.
421 The crude extracted mitochondria were prepared for further purification of PDC or preparation of
422 cryo-ET samples.

423 **PDC purification**

424 The crude mitochondria were suspended in 60 ml 0.02 M potassium phosphate (pH 7.0). 5 M NaCl
425 and Cooktail were added into the suspension at a ratio of 1:100, and the pH was adjusted to 6.4.
426 The suspension was disrupted twice at 276 bar with a cell disruptor (JNBIO) equipped with a
427 cooling system. The mitochondria lysate was centrifuged at 30,000 g for 30 min, and the
428 supernatant was added 10 mM MgCl₂ and PEG precipitated in 5% (w/v) PEG 6,000 for 10 min.
429 The precipitate was collected by centrifugation at 30,000g for 20 and resuspended in 25 ml buffer
430 B (50 mM MOPS-KOH buffer, pH 7.0, 0.02 mM thiamin pyrophosphate, 1 mM MgCl₂, 2mM
431 DTT). The suspension was stored 4h in a refrigerator and then centrifuged at 40,000 g for 20 min
432 before discarding the precipitates. To the clear supernatant fluid was added 2 mM EGTA. After 20
433 min the solution was loaded onto 10ml 35% (w/v) sucrose cushions centrifuged at 105,000 g for
434 3.5 h in a Beckman type SW32 rotor. The precipitate is resuspended with buffer B supplemented
435 with 2 mM EGTA. After 20 minutes, the solution was added to a 10% to 40% sucrose gradient
436 configured by buffer C (50 mM potassium phosphate buffer, pH 7.0, 0.02 mM thiamin
437 pyrophosphate,1 mM MgCl₂, 1 mM NAD⁺, 0.1 mM EDTA, 0.4 mM DTT)) and centrifuged at
438 144,000 g for 2.5 h using a SW41Ti rotor with a Beckman Coulter Optima XPN-100 centrifuge.
439 The gradients were fractionated and assessed by SDS-PAGE and negative staining, PDC around
440 the sucrose density of 15%. The samples were concentrated to 0.4 mg ml⁻¹ by using a membrane

441 concentrator with a 100 kDa cut-off for biochemical and cryo-ET analyses.

442 **Biochemical analysis of PDC**

443 Prepare a 12% polyacrylamide gel and assemble the electrophoresis tank. Load 20 μ l of PDC
444 protein sample and 5 μ l of protein marker onto the gel for polyacrylamide gel electrophoresis
445 (SDS-PAGE).

446 Purified PDC obtained by purification method was concentrated to 30 μ l using a 100 kDa
447 concentrator. Protein precipitation was performed using TCA precipitation method. The
448 precipitated protein was resolubilized by adding a resolubilization solution (8 M urea, 100 mM
449 Tris-HCl, pH 8.5), and the protein concentration was determined using the BCA method. Equal
450 amounts of protein were taken and adjusted to the same volume. TCEP (tris(2-
451 carboxyethyl)phosphine) and CAA (chloroacetamide) were added for reduction and alkylation
452 reaction at 37 °C for 1 hour. The reduced and alkylated samples were diluted with 100 mM Tris-
453 HCl solution to reduce the Urea concentration to below 2 M. Trypsin was added at a 1:50 ratio of
454 enzyme to protein and incubated overnight at 37 °C with shaking for enzymatic digestion. The
455 next day, the digestion reaction was terminated by adding TFA, and the supernatant was subjected
456 to desalting using an SDB-RPS desalting column. After vacuum drying, the samples were stored
457 at -20 °C. Mass spectrometry analysis was performed using an ion mobility-quadrupole-time-of-
458 flight mass spectrometer (timsTOF Pro) from Bruker. Sample injection and separation were
459 performed using an UltiMate 3000 RSLCnano liquid chromatography system coupled online with
460 the mass spectrometer. Peptide samples were injected and trapped on a Trap column (75 μ m \times 20
461 mm, 2 μ m particle size, 100 Å pore size, Thermo), followed by elution onto an analytical column
462 (75 μ m \times 250 mm, 1.6 μ m particle size, 100 Å pore size, ionopticks) for separation. The analysis
463 gradient was established using two mobile phases (mobile phase A: 0.1% formic acid in H₂O and
464 mobile phase B: 0.1% formic acid in ACN). The flow rate of the liquid phase was set to 300 nL/min.
465 Peptides were introduced into the mass spectrometer via CaptiveSpray nanospray ion source for
466 DDA scanning. TIMS function was enabled, and PASEF scanning mode was used. Each scan cycle
467 consisted of 1.1s, including one MS1 scan and 10 PASEF MS/MS scans, with each PASEF MS/MS
468 scan generating 12 MS/MS spectra. The mass spectrometry data were analyzed using MaxQuant
469 (V2.0.1) software with the Andromeda database search algorithm. The protein reference database
470 used for the search was the Sus_scrofa protein reference database from Uniprot (2023-01-09,
471 containing 46,139 protein sequences). The main search parameters were as follows: variable

472 modifications - Oxidation (M), Acetyl (Protein N-term); fixed modification - Carbamidomethyl
473 (C); enzyme - Trypsin/P; primary mass tolerance - 20 ppm in the first search and 4.5 ppm in the
474 main search; secondary mass tolerance - 20 ppm. The search results were filtered at a 1% FDR
475 (false discovery rate) threshold at the protein and peptide levels. Protein entries corresponding to
476 reverse sequences, contaminating proteins, and peptides with a single modification were removed,
477 and the remaining identification information was used for further analysis.

478 **Preparation of cryo-ET samples**

479 An aliquot of a 3 μ l purified PDC sample was applied to a holey carbon grid covered with graphene-
480 oxide (Quantifoil R1.2/1.3, Au, 300 mesh). After waiting for 60 s, the grids were blotted for 3.5 s
481 at a humidity of 100% and 4°C and plunge-frozen in liquid ethane using a Vitrobot (Thermo Fisher
482 Scientific).

483 The crude extracted mitochondria was rinsed gently with 1 ml of 0.02 M potassium phosphate. An
484 aliquot of a 5 μ l sample was applied to a glow-discharged holey carbon grid (Quantifoil R2/2, Au,
485 400 mesh). After waiting for 60 s, the grids were blotted for 7 s at a humidity of 100% and 22 °C
486 and plunge-frozen in liquid ethane using a Vitrobot.

487 **Cryo-ET data collection and tomogram reconstruction**

488 The frozen-hydrated samples were transferred to a 300 kV Titan Krios electron microscope
489 (Thermo Fisher Scientific) equipped with a GIF energy filter and a Falcon 4 direct electron detector
490 (Thermo Fisher Scientific). All images were recorded at \times 81,000 magnification with a pixel size
491 of 1.5 Å at the specimen level. PaceTomo script⁶¹ was used with the SerialEM software to collect
492 tilt series at -2 to -4 μ m defocus (dose-symmetric collection theme, start from 0°, group size 2),
493 with accumulative dose of ~90–100 e $^-$ /Å 2 distributed over 35 images and covering angles from
494 –51° to 51°, with a tilt step of 3°.

495 All recorded images were first motion-corrected by Relion-4.0⁶² and then stacked by IMOD⁶³ and
496 aligned by AreTomo⁶⁴. Gctf⁶⁵ was used to determine the defocus of each tilt image. For
497 subtomogram averaging using i3, the ‘ctfphaseflip’ function in IMOD was used to do the contrast
498 transfer function (CTF) correction for the tilt images. Tomograms were reconstructed by weighted
499 back-projection (WBP) or simultaneous iterative reconstruction (SIRT) methods using IMOD or
500 tomo3D with the CTF-corrected aligned stacks.

501 **Subtomogram averaging and corresponding analysis**

502 All PDC core particles were first manually picked from 6x binned SIRT reconstructed tomograms.
503 Then subtomograms of PDC particles were cut from the 4x binned WBP reconstructed tomograms
504 and aligned by i3⁶⁶.
505 Refinement of the PDC core structure: the subtomogram averaging pipeline in Relion-4.0 was used
506 for high-resolution structure determination. The coordinates and Euler angles of each PDC particle
507 generated from the previous i3 alignment step were first transferred to Relion4.0 by a homemade
508 script package. 3D alignment and classification were generated under binning 4x and 2x, followed
509 by local refinement and 2 times of CTF and frame refinement for unbinned data, resulting in the
510 4.3 Å resolution PDC core structure.
511 Local refinement and classification of E2 subunit: each PDC core consists of 60 E2 subunits. After
512 the alignment of PDC core, the position of each E2 subunit was calculated using the “symmetry
513 expansion” and “shift center” functions in Relion-4.0 (60 E2 subunits corresponding to each PDC
514 core). Then Relion-3.1 was used to do 3D alignment and classifications for all E2 subunits, under
515 binning 4x and 2x, based on the previously described protocol⁶⁷ with some minor modifications.
516 Duplicates were removed for particles with distance less than 3 nm between their centers. A
517 spherical mask was applied adjacent to the E2 subunit to generate the classification results shown
518 in Fig. 3b-d. Afterwards, the multi-reference alignment (MRA) and classification in i3 were
519 applied to further confirm the classification result.
520 Refinement and classification of E1 and E3 multimers: 1) we speculate the densities surrounding
521 the PDC cores in raw tomograms (Fig. 1c and Extended Data Fig. 1a) are E1 and E3 multimers.
522 Therefore, we manually picked ~10k particles of these densities from the 6x binned SIRT
523 reconstructed tomograms, then the corresponding subtomograms were cut from the 4x binned
524 WBP reconstructed tomograms, followed by 3D alignment and classification using i3 to get an
525 initial model. In the initial model, part of the icosahedral PDC core is still visible, with strong
526 densities roughly locating along its C2, C3 and C5 axis and the distance between the densities and
527 PDC core is ~20 nm. 2) Using the PDC core orientations and positions from Relion-4.0, we run
528 “symmetry expansion” (icosahedral symmetry) for each PDC core, then shifted the positions to
529 ~20 nm away from the core center. We thus got 60 positions corresponding to each PDC core.
530 Those positions were used as particle centers to cut subvolumes from the WBP reconstructed
531 tomograms. The volume size was set to ~40 nm to make sure there are enough overlaps between
532 different subtomograms, so that we did not miss any possible E1 or E3 particles. 3) The

533 subtomograms were aligned to the initial model generated from i3, followed by 3D classifications.
534 E1 and E3 multimers are identified by comparing the density shape with the reported E1 and E3
535 structures. See also Extended Data Fig.1 for subtomogram averaging workflow.

536 **Mitochondrial volume size calculation**

537 Using the IMOD software⁶³, we manually draw the area of each mitochondrion in all tomograms
538 and obtained the area size based on the IMOD contour information. We then rotate the tomogram
539 along the Z-axis, measure the height of the mitochondria, and calculate the volume size of each
540 mitochondrion by multiplying the area size with the height.

541 **Model Fitting and Visualization**

542 Atomic models (PDB accession code E2: 7uom, E1 binding PSBD: 6cfo, 1w88, E3: binding PSBD:
543 1zy8, PSBD: 1zwv) were rigidly fitted to the corresponding densities using the Fit in Map tool⁶⁸
544 in UCSF chimera or ChimeraX. EMAN2 was used for segmentation of the mitochondrial
545 membranes and cristae. ArtiaX⁶⁹ was used for mapping the PDC complexes and ATP back to the
546 raw tomograms. UCSF Chimera⁶⁸ and ChimeraX⁷⁰ were used for rendering the graphics.

547 **Data and materials availability**

548 Cryo-ET subtomogram averages were deposited in Electron Microscopy Data Bank under
549 accession codes: E2/E3BP core (Fig. 4b): EMD-38712, E1-PSBD (Fig. 3b): EMD-38711, E1-
550 PSBD-LD1 (Fig. 3c): EMD-38709, E1-PSBD-LD2 (Fig. 3d): EMD-38710, E2-LD1 (Fig. 4c):
551 EMD-38713, E2-LD2 (Fig. 4d): EMD-38714, E2-Linker (Fig. 4e): EMD-38715, E3-PSBD (Fig.
552 3k): EMD-38716. All data needed to evaluate the conclusions in this paper are present in the paper
553 and the supplementary information.

554 **Acknowledgements**

555 We thank Lingyun Wu, Chenyu Yang and Menghan Zhang in the Center of Cryo-Electron
556 Microscopy (CCEM), Zhejiang University for their technical assistance on 200kv and 120kv cryo-
557 electron microscopy. We thank Deyue Xu from the Laboratory Animal Center, Zhejiang
558 University for providing fresh porcine heart in pre-experiment. We thank Shuaiqi (Phil) Guo and
559 Donghyun (Raphael) Park for critical reading of the manuscript. This work was supported by the
560 National Key Research and Development Program of China (2018YFA0507700 to X.Z.) and
561 National Natural Science Foundation of China (32200980 to Y.C.).

562 **Author contributions**

563 X.Z. initiated the project. X.Z. and Y.C. supervised the research. C.W., C.M., H.W., Y.W., S.A.
564 and Q.H. performed the sample preparation and characterization. Y.C., C.W. and S.C. collected
565 the cryo-ET data. Y.C. and C.W. processed the cryo-ET data and reconstructed the cryo-ET density
566 map. C.W. and Y.C. prepared figures. M.C., C.W., S.C. and J.C. performed the AlphaFold2
567 prediction and sequence alignment. C.Y., J.X, Y.J. and Z.J. assisted in the sample preparation and
568 data analysis. Y.C., X.Z., C.W., C.M. and H.G. wrote the manuscript. All authors discussed and
569 commented on the results and the manuscript.

570 **Competing interests**

571 The authors declare that they have no competing interests.

572 **Additional Information**

573 **Supplementary Information** is available for this paper.

574 **Correspondence and requests for materials** should be addressed to Yunjie Chang or Xing Zhang.

575

576 References

577 1 Bisswanger, H. Substrate specificity of the pyruvate dehydrogenase complex from *Escherichia coli*. *J Biol Chem* **256**, 815-822 (1981).

578 2 Patel, M. S. & Roche, T. E. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. *FASEB J* **4**, 3224-3233 (1990). <https://doi.org/10.1096/fasebj.4.14.2227213>

579 3 Patel, M. S., Nemeria, N. S., Furey, W. & Jordan, F. The pyruvate dehydrogenase complexes: structure-based function and regulation. *J Biol Chem* **289**, 16615-16623 (2014). <https://doi.org/10.1074/jbc.R114.563148>

580 4 Cox, L. J. R. a. D. J. Macromolecular organization of enzyme systems. *Annual Review of Biochemistry* **35**, 57-84 (1966).

581 5 Saunier, E., Benelli, C. & Bortoli, S. The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents. *Int J Cancer* **138**, 809-817 (2016). <https://doi.org/10.1002/ijc.29564>

582 6 Jeoung, N. H. Pyruvate Dehydrogenase Kinases: Therapeutic Targets for Diabetes and Cancers. *Diabetes Metab J* **39**, 188-197 (2015). <https://doi.org/10.4093/dmj.2015.39.3.188>

583 7 Lee, I. K. The role of pyruvate dehydrogenase kinase in diabetes and obesity. *Diabetes Metab J* **38**, 181-186 (2014). <https://doi.org/10.4093/dmj.2014.38.3.181>

584 8 Sun, W., Liu, Q., Leng, J., Zheng, Y. & Li, J. The role of Pyruvate Dehydrogenase Complex in cardiovascular diseases. *Life Sci* **121**, 97-103 (2015). <https://doi.org/10.1016/j.lfs.2014.11.030>

585 9 Reed, L. J. A trail of research from lipoic acid to alpha-keto acid dehydrogenase complexes. *J Biol Chem* **276**, 38329-38336 (2001). <https://doi.org/10.1074/jbc.R100026200>

586 10 Koike, M., Reed, L. J. & Carroll, W. R. α -Keto Acid Dehydrogenation Complexes. *Journal of Biological Chemistry* **238**, 30-39 (1963). [https://doi.org/10.1016/s0021-9258\(19\)83957-1](https://doi.org/10.1016/s0021-9258(19)83957-1)

587 11 Arjuman, P. *et al.* Structure of the pyruvate dehydrogenase multienzyme complex E1 component from *Escherichia coli* at 1.85 Å resolution. *Biochemistry* **41**, 5213-5221 (2002). <https://doi.org/10.1021/bi0118557>

588 12 Frank, R. A., Pratap, J. V., Pei, X. Y., Perham, R. N. & Luisi, B. F. The molecular origins of specificity in the assembly of a multienzyme complex. *Structure* **13**, 1119-1130 (2005). <https://doi.org/10.1016/j.str.2005.04.021>

589 13 Ciszak, E. M., Korotchkina, L. G., Dominiak, P. M., Sidhu, S. & Patel, M. S. Structural basis for flip-flop action of thiamin pyrophosphate-dependent enzymes revealed by human pyruvate dehydrogenase. *J Biol Chem* **278**, 21240-21246 (2003). <https://doi.org/10.1074/jbc.M300339200>

590 14 Brautigam, C. A. *et al.* Structural insight into interactions between dihydrolipoamide dehydrogenase (E3) and E3 binding protein of human pyruvate dehydrogenase complex. *Structure* **14**, 611-621 (2006). <https://doi.org/10.1016/j.str.2006.01.001>

591 15 Mattevi, A., Schierbeek, A. J. & Hol, W. G. J. Refined Crystal-Structure of Lipoamide Dehydrogenase from *Azotobacter-Vinelandii* at 2.2-a Resolution - a Comparison with the Structure of Glutathione-Reductase. *J Mol Biol* **220**, 975-994 (1991). [https://doi.org/10.1016/0022-2836\(91\)90367-F](https://doi.org/10.1016/0022-2836(91)90367-F)

592 16 Reed, L. J. & Oliver, R. M. Structure-Function-Relationships in Pyruvate and Alpha-Ketoglutarate Dehydrogenase Complexes. *Advances in Experimental Medicine and Biology* **148**, 231-241 (1982).

593 17 Milne, J. L. *et al.* Molecular architecture and mechanism of an icosahedral pyruvate dehydrogenase complex: a multifunctional catalytic machine. *EMBO J* **21**, 5587-5598 (2002). <https://doi.org/10.1093/emboj/cdf574>

594 18 Jiang, J. *et al.* Atomic Structure of the E2 Inner Core of Human Pyruvate Dehydrogenase Complex. *Biochemistry-Us* **57**, 2325-2334 (2018). <https://doi.org/10.1021/acs.biochem.8b00357>

595 19 Izard, T. *et al.* Principles of quasi-equivalence and Euclidean geometry govern the assembly of cubic and dodecahedral cores of pyruvate dehydrogenase complexes. *P Natl Acad Sci USA* **96**, 1240-1245

623 (1999). <https://doi.org/10.1073/pnas.96.4.1240>

624 20 Perham, R. N. Swinging arms and swinging domains in multifunctional enzymes: catalytic machines
625 for multistep reactions. *Annu Rev Biochem* **69**, 961-1004 (2000).
<https://doi.org/10.1146/annurev.biochem.69.1.961>

626 21 Arjunan, P. *et al.* Novel Binding Motif and New Flexibility Revealed by Structural Analyses of a Pyruvate
627 Dehydrogenase-Dihydrolipoyl Acetyltransferase Subcomplex from the Pyruvate Dehydrogenase
628 Multienzyme Complex. *J Biol Chem* **289**, 30161-30176 (2014).
<https://doi.org/10.1074/jbc.M114.592915>

629 22 Byron, O. & Lindsay, J. G. The Pyruvate Dehydrogenase Complex and Related Assemblies in Health
630 and Disease. *Subcell Biochem* **83**, 523-550 (2017). https://doi.org/10.1007/978-3-319-46503-6_19

631 23 Hiromasa, Y., Fujisawa, T., Aso, Y. & Roche, T. E. Organization of the cores of the mammalian pyruvate
632 dehydrogenase complex formed by E2 and E2 plus the E3-binding protein and their capacities to bind
633 the E1 and E3 components. *J Biol Chem* **279**, 6921-6933 (2004).
<https://doi.org/10.1074/jbc.M308172200>

634 24 Mattevi, A. *et al.* Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme
635 complex. *Science* **255**, 1544-1550 (1992). <https://doi.org/10.1126/science.1549782>

636 25 Stoops, J. K. *et al.* On the unique structural organization of the *Saccharomyces cerevisiae* pyruvate
637 dehydrogenase complex. *J Biol Chem* **272**, 5757-5764 (1997). <https://doi.org/10.1074/jbc.272.9.5757>

638 26 Zhou, Z. H., McCarthy, D. B., O'Connor, C. M., Reed, L. J. & Stoops, J. K. The remarkable structural and
639 functional organization of the eukaryotic pyruvate dehydrogenase complexes. *Proc Natl Acad Sci U S
640 A* **98**, 14802-14807 (2001). <https://doi.org/10.1073/pnas.011597698>

641 27 Baker, T. S. *et al.* 3-Dimensional Structure of the Truncated Core of Yeast Pyruvate-Dehydrogenase
642 Complex. *Faseb J* **6**, A345-A345 (1992).

643 28 Stoops, J. K. *et al.* 3-Dimensional Structure of the Truncated Core of the *Saccharomyces-Cerevisiae*
644 Pyruvate-Dehydrogenase Complex Determined from Negative Stain and Cryoelectron Microscopy
645 Images. *J Biol Chem* **267**, 24769-24775 (1992).

646 29 Mande, S. S., Sarfaty, S., Allen, M. D., Perham, R. N. & Hol, W. G. J. Protein-protein interactions in the
647 pyruvate dehydrogenase multienzyme complex: Dihydrolipoamide dehydrogenase complexed with
648 the binding domain of dihydrolipoamide acetyltransferase. *Structure* **4**, 277-286 (1996).
[https://doi.org/10.1016/S0969-2126\(96\)00032-9](https://doi.org/10.1016/S0969-2126(96)00032-9)

649 30 Toyoda, T., Suzuki, K., Sekiguchi, T., Reed, L. J. & Takenaka, A. Crystal structure of eucaryotic E3,
650 lipoamide dehydrogenase from yeast. *J Biochem-Tokyo* **123**, 668-674 (1998).

651 31 Liu, S., Xia, X., Zhen, J., Li, Z. & Zhou, Z. H. Structures and comparison of endogenous 2-oxoglutarate
652 and pyruvate dehydrogenase complexes from bovine kidney. *Cell Discov* **8**, 126 (2022).
<https://doi.org/10.1038/s41421-022-00487-y>

653 32 Frank, R. A. W., Titman, C. M., Pratap, J. V., Luisi, B. F. & Perham, R. N. A molecular switch and proton
654 wire synchronize the active sites in thiamine enzymes. *Science* **306**, 872-876 (2004).
<https://doi.org/10.1126/science.1101030>

655 33 Blackwell, N. C., Cullis, P. M., Cooper, R. A. & Izard, T. Rhombohedral crystals of 2-dehydro-3-
656 deoxygalactarate aldolase from. *Acta Crystallogr D* **55**, 1368-1369 (1999).
<https://doi.org/10.1107/S0907444999006502>

657 34 Forsberg, B. O., Aibara, S., Howard, R. J., Mortezaei, N. & Lindahl, E. Arrangement and symmetry of the
658 fungal E3BP-containing core of the pyruvate dehydrogenase complex. *Nat Commun* **11**, 4667 (2020).
<https://doi.org/10.1038/s41467-020-18401-z>

659 35 Kyriulis, F. L. *et al.* Integrative structure of a 10-megadalton eukaryotic pyruvate dehydrogenase
660 complex from native cell extracts. *Cell Rep* **34** (2021). <https://doi.org/10.1016/j.celrep.2021.108727>

661 36 Skerlova, J., Berndtsson, J., Nolte, H., Ott, M. & Stenmark, P. Structure of the native pyruvate

670 dehydrogenase complex reveals the mechanism of substrate insertion. *Nat Commun* **12** (2021).
671 <https://doi.org/10.1038/s41467-021-25570-y>

672 37 Tuting, C. *et al.* Cryo-EM snapshots of a native lysate provide structural insights into a metabolon-
673 embedded transacetylase reaction. *Nat Commun* **12**, 6933 (2021). <https://doi.org/10.1038/s41467-021-27287-4>

675 38 Skalidis, I. *et al.* Cryo-EM and artificial intelligence visualize endogenous protein community members.
676 *Structure* **30**, 575-589 e576 (2022). <https://doi.org/10.1016/j.str.2022.01.001>

677 39 Demarcucci, O. & Lindsay, J. G. Component-X - an Immunologically Distinct Polypeptide Associated
678 with Mammalian Pyruvate-Dehydrogenase Multi-Enzyme Complex. *Eur J Biochem* **149**, 641-648
679 (1985). <https://doi.org/10.1111/j.1432-1033.1985.tb08972.x>

680 40 Jung, H. I., Bowden, S. J., Cooper, A. & Perham, R. N. Thermodynamic analysis of the binding of
681 component enzymes in the assembly of the pyruvate dehydrogenase multienzyme complex of. *Protein*
682 *Sci* **11**, 1091-1100 (2002). <https://doi.org/10.1110/ps.4970102>

683 41 Perham, R. N. Domains, Motifs, and Linkers in 2-Oxo Acid Dehydrogenase Multienzyme Complexes -
684 a Paradigm in the Design of a Multifunctional Protein. *Biochemistry-US* **30**, 8501-8512 (1991).
685 <https://doi.org/10.1021/bi00099a001>

686 42 Kaasik, A., Saifulina, D., Zharkovsky, A. & Veksler, V. Regulation of mitochondrial matrix volume. *Am J*
687 *Physiol Cell Physiol* **292**, C157-163 (2007). <https://doi.org/10.1152/ajpcell.00272.2006>

688 43 Smolle, M. *et al.* A new level of architectural complexity in the human pyruvate dehydrogenase
689 complex. *J Biol Chem* **281**, 19772-19780 (2006). <https://doi.org/10.1074/jbc.M601140200>

690 44 Hezaveh, S., Zeng, A. P. & Jandt, U. Full Enzyme Complex Simulation: Interactions in Human Pyruvate
691 Dehydrogenase Complex. *J Chem Inf Model* **58**, 362-369 (2018).
692 <https://doi.org/10.1021/acs.jcim.7b00557>

693 45 Prajapati, S. *et al.* Structural and Functional Analyses of the Human PDH Complex Suggest a "Division-
694 of-Labor" Mechanism by Local E1 and E3 Clusters. *Structure* **27**, 1124-1136 e1124 (2019).
695 <https://doi.org/10.1016/j.str.2019.04.009>

696 46 Ali, S. T. & Guest, J. R. Isolation and Characterization of Lipoylated and Unlipoylated Domains of the
697 E2p Subunit of the Pyruvate-Dehydrogenase Complex of Escherichia-Coli. *Biochem J* **271**, 139-145
698 (1990). <https://doi.org/10.1042/bj2710139>

699 47 Patel, M. S., Korotchkina, L. G. & Sidhu, S. Interaction of E1 and E3 components with the core proteins
700 of the human pyruvate dehydrogenase complex. *Journal of Molecular Catalysis B-Enzymatic* **61**, 2-6
701 (2009). <https://doi.org/10.1016/j.molcatb.2009.05.001>

702 48 Whitley, M. J. *et al.* Pyruvate dehydrogenase complex deficiency is linked to regulatory loop disorder
703 in the α V138M variant of human pyruvate dehydrogenase. *J Biol Chem* **293**, 13204-13213 (2018).
704 <https://doi.org/10.1074/jbc.RA118.003996>

705 49 Skolnick, J., Gao, M., Zhou, H. & Singh, S. AlphaFold 2: Why It Works and Its Implications for
706 Understanding the Relationships of Protein Sequence, Structure, and Function. *J Chem Inf Model* **61**,
707 4827-4831 (2021). <https://doi.org/10.1021/acs.jcim.1c01114>

708 50 Yi, J. Z. *et al.* Effect of substitutions in the thiamin diphosphate-magnesium fold on the activation of
709 the pyruvate dehydrogenase complex from Escherichia coli by cofactors and substrate. *J Biol Chem*
710 **271**, 33192-33200 (1996). <https://doi.org/10.1074/jbc.271.52.33192>

711 51 Sergienko, E. A. *et al.* Spectroscopic detection of transient thiamin diphosphate-bound intermediates
712 on benzoylformate decarboxylase. *Biochemistry-US* **39**, 13862-13869 (2000).
713 <https://doi.org/10.1021/bi001214w>

714 52 Sergienko, E. A. & Jordan, F. New model for activation of yeast pyruvate decarboxylase by substrate
715 consistent with the alternating sites mechanism: Demonstration of the existence of two active forms
716 of the enzyme. *Biochemistry* **41**, 3952-3967 (2002). <https://doi.org/10.1021/bi011860a>

717 53 Kovina, M. V. & Kochetov, G. A. Cooperativity and flexibility of active sites in homodimeric transketolase.
Febs Lett **440**, 81-84 (1998). [https://doi.org/10.1016/S0014-5793\(98\)01423-9](https://doi.org/10.1016/S0014-5793(98)01423-9)

718 54 Brautigam, C. A., Wynn, R. M., Chuang, J. L. & Chuang, D. T. Subunit and catalytic component
720 stoichiometries of an in vitro reconstituted human pyruvate dehydrogenase complex. *J Biol Chem* **284**,
721 13086-13098 (2009). <https://doi.org/10.1074/jbc.M806563200>

722 55 Hackert, M. L., Oliver, R. M. & Reed, L. J. Evidence for a multiple random coupling mechanism in the
723 alpha-ketoglutarate dehydrogenase multienzyme complex of *Escherichia coli*: a computer model
724 analysis. *Proc Natl Acad Sci U S A* **80**, 2226-2230 (1983). <https://doi.org/10.1073/pnas.80.8.2226>

725 56 Milne, J. L. *et al.* Molecular structure of a 9-MDa icosahedral pyruvate dehydrogenase subcomplex
726 containing the E2 and E3 enzymes using cryoelectron microscopy. *J Biol Chem* **281**, 4364-4370 (2006).
727 <https://doi.org/10.1074/jbc.M504363200>

728 57 Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a
729 central metabolite and second messenger. *Cell Metab* **21**, 805-821 (2015).
730 <https://doi.org/10.1016/j.cmet.2015.05.014>

731 58 Luengo, A. *et al.* Increased demand for NAD(+) relative to ATP drives aerobic glycolysis. *Mol Cell* **81**,
732 691-707 e696 (2021). <https://doi.org/10.1016/j.molcel.2020.12.012>

733 59 Harris, R. A., Bowker-Kinley, M. M., Huang, B. L. & Wu, P. F. Regulation of the activity of the pyruvate
734 dehydrogenase complex. *Adv Enzyme Regul* **42**, 249-259 (2002). [https://doi.org/10.1016/S0065-2571\(01\)00061-9](https://doi.org/10.1016/S0065-2571(01)00061-9)

735 60 Patel, M. S. & Korotchkina, L. G. Regulation of the pyruvate dehydrogenase complex. *Biochem Soc T*
736 **34**, 217-222 (2006). <https://doi.org/10.1042/Bst0340217>

737 61 Eisenstein, F. *et al.* Parallel cryo electron tomography on in situ lamellae. *Nat Methods* (2022).
738 <https://doi.org/10.1038/s41592-022-01690-1>

739 62 Zivanov, J. *et al.* A Bayesian approach to single-particle electron cryo-tomography in RELION-4.0.
740 *eLife* **11**, e83724 (2022). <https://doi.org/10.7554/eLife.83724>

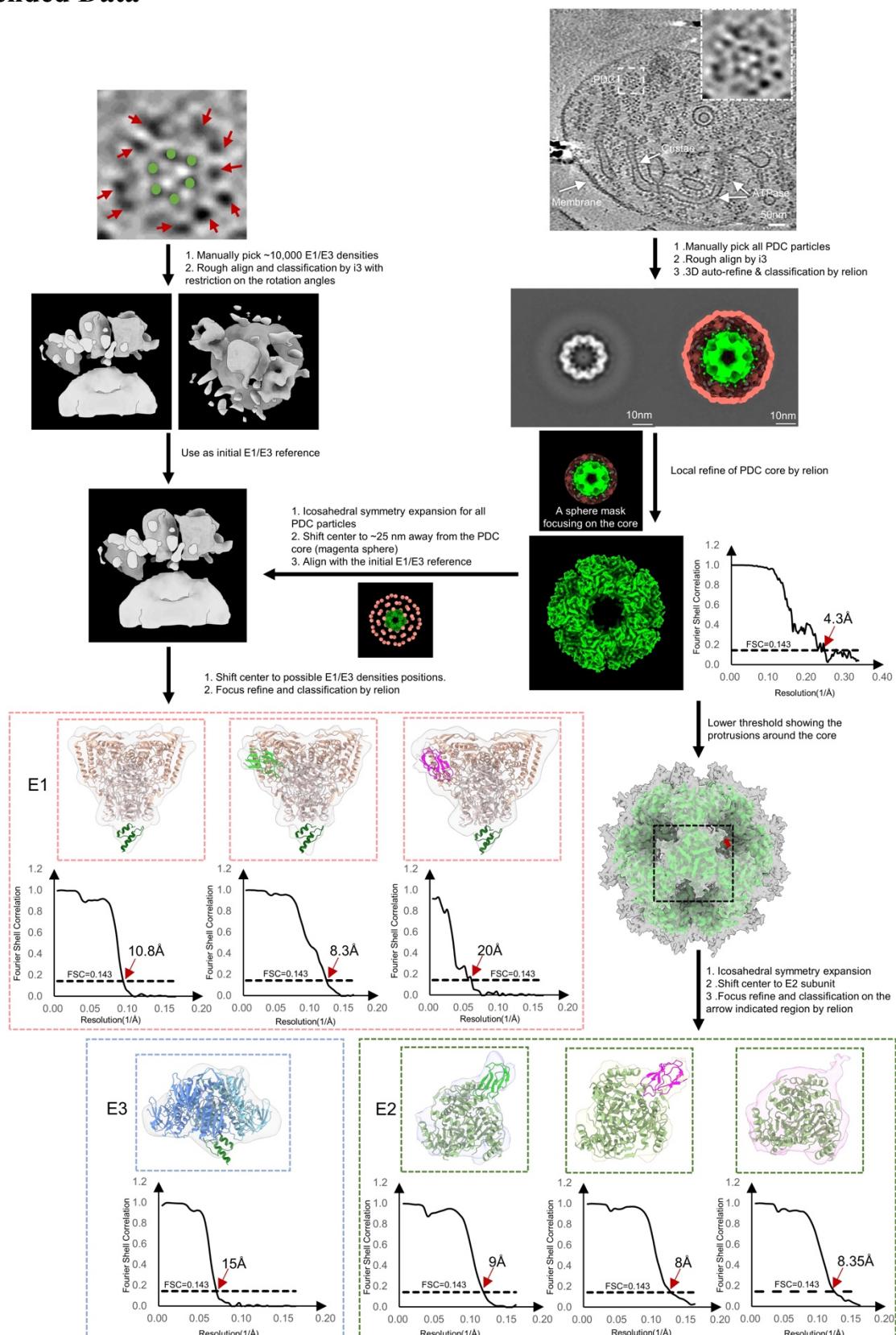
741 63 Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer Visualization of Three-Dimensional Image
742 Data Using IMOD. *Journal of structural biology* **116**, 71-76 (1996).
743 <https://doi.org/http://dx.doi.org/10.1006/jsb.1996.0013>

744 64 Zheng, S. *et al.* AreTomo: An integrated software package for automated marker-free, motion-
745 corrected cryo-electron tomographic alignment and reconstruction. *J Struct Biol X* **6**, 100068 (2022).
746 <https://doi.org/10.1016/j.jysbx.2022.100068>

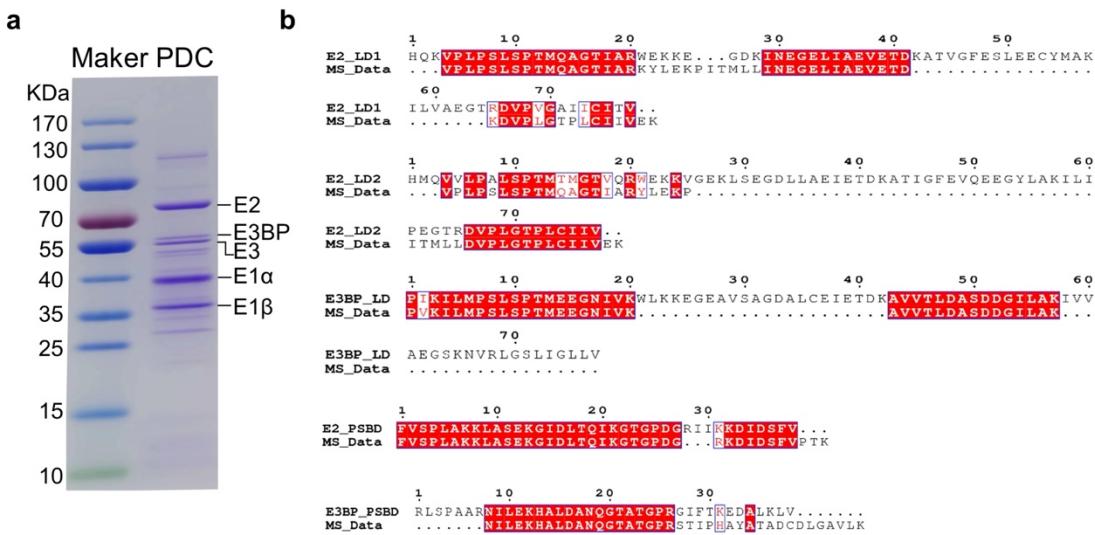
747 65 Zhang, K. Gctf: Real-time CTF determination and correction. *Journal of structural biology* **193**, 1-12
748 (2016). <https://doi.org/10.1016/j.jsb.2015.11.003>

749 66 Winkler, H. *et al.* Tomographic subvolume alignment and subvolume classification applied to myosin
750 V and SIV envelope spikes. *Journal of structural biology* **165**, 64-77 (2009).
751 <https://doi.org/https://doi.org/10.1016/j.jsb.2008.10.004>

752 67 Bharat, T. A. & Scheres, S. H. Resolving macromolecular structures from electron cryo-tomography
753 data using subtomogram averaging in RELION. *Nat Protoc* **11**, 2054-2065 (2016).
754 <https://doi.org/10.1038/nprot.2016.124>

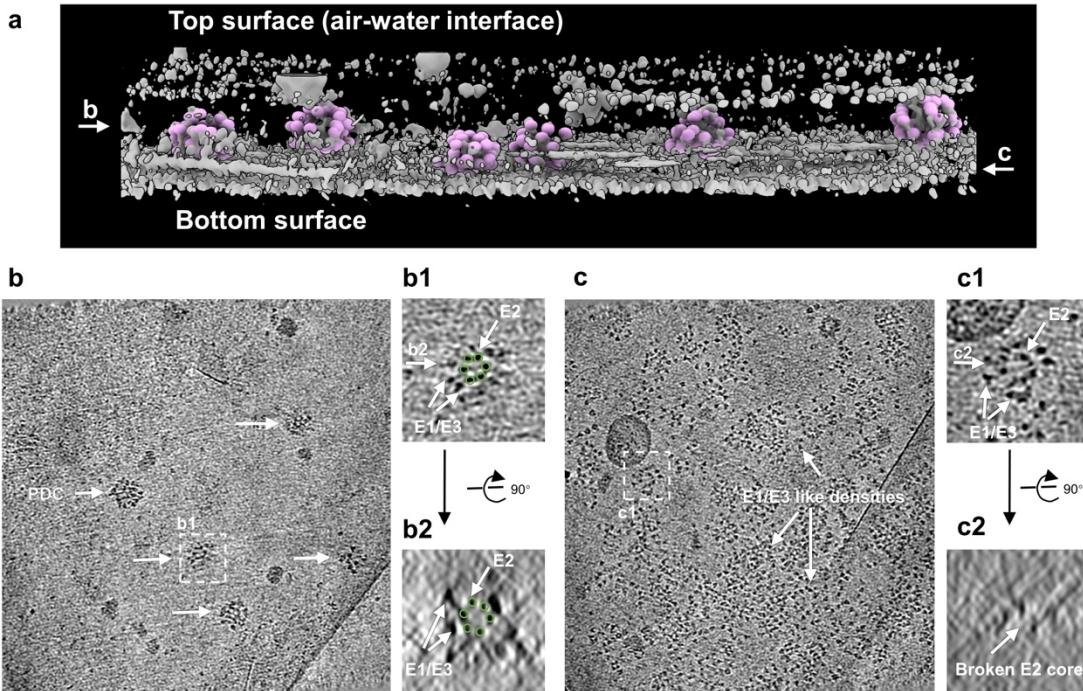

755 68 Pettersen, E. F. *et al.* UCSF chimera - A visualization system for exploratory research and analysis.
756 *Journal of Computational Chemistry* **25**, 1605-1612 (2004). <https://doi.org/10.1002/jcc.20084>

757 69 Ermel, U. H., Arghittu, S. M. & Frangakis, A. S. ArtiaX: An electron tomography toolbox for the
758 interactive handling of sub-tomograms in UCSF ChimeraX. *Protein Sci* **31**, e4472 (2022).
759 <https://doi.org/10.1002/pro.4472>

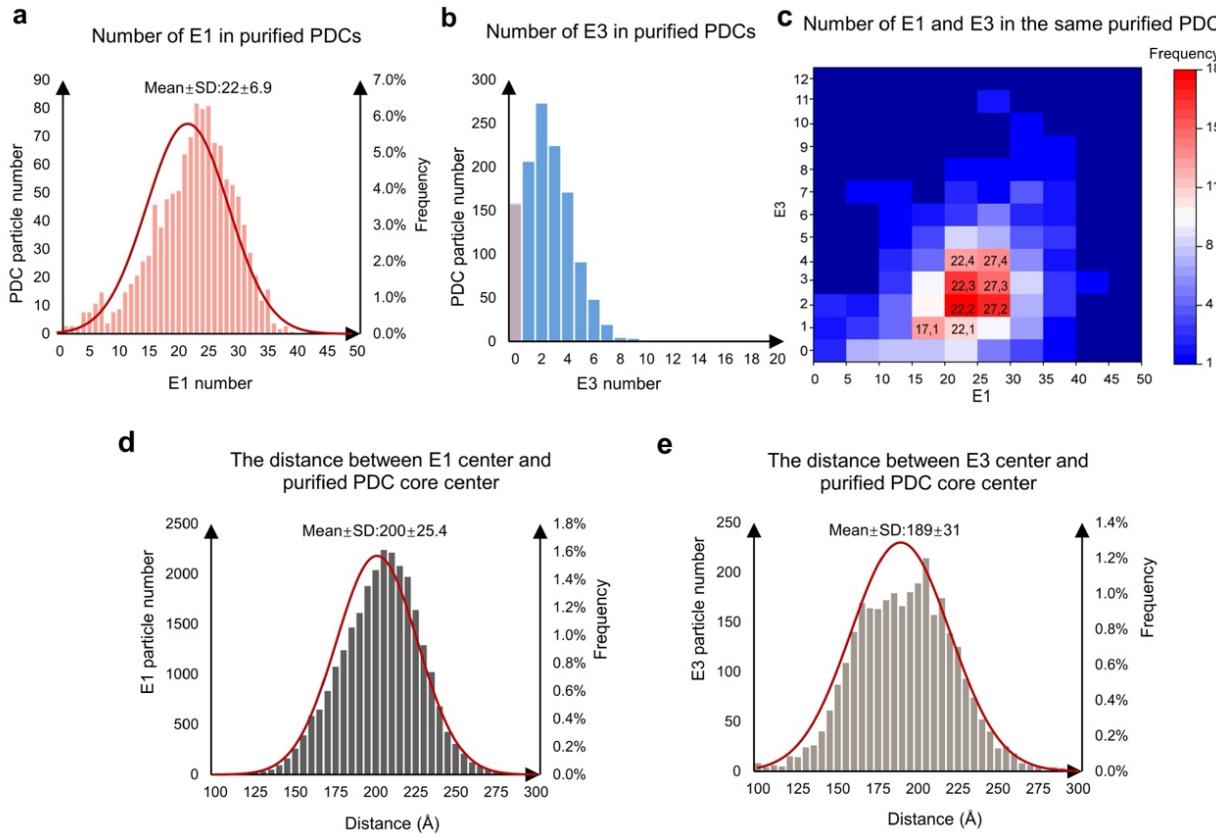

760 70 Goddard, T. D. *et al.* UCSF ChimeraX: Meeting modern challenges in visualization and analysis. *Protein
761 Science* **27**, 14-25 (2018). <https://doi.org/10.1002/pro.3235>

762

763 **Extended Data**

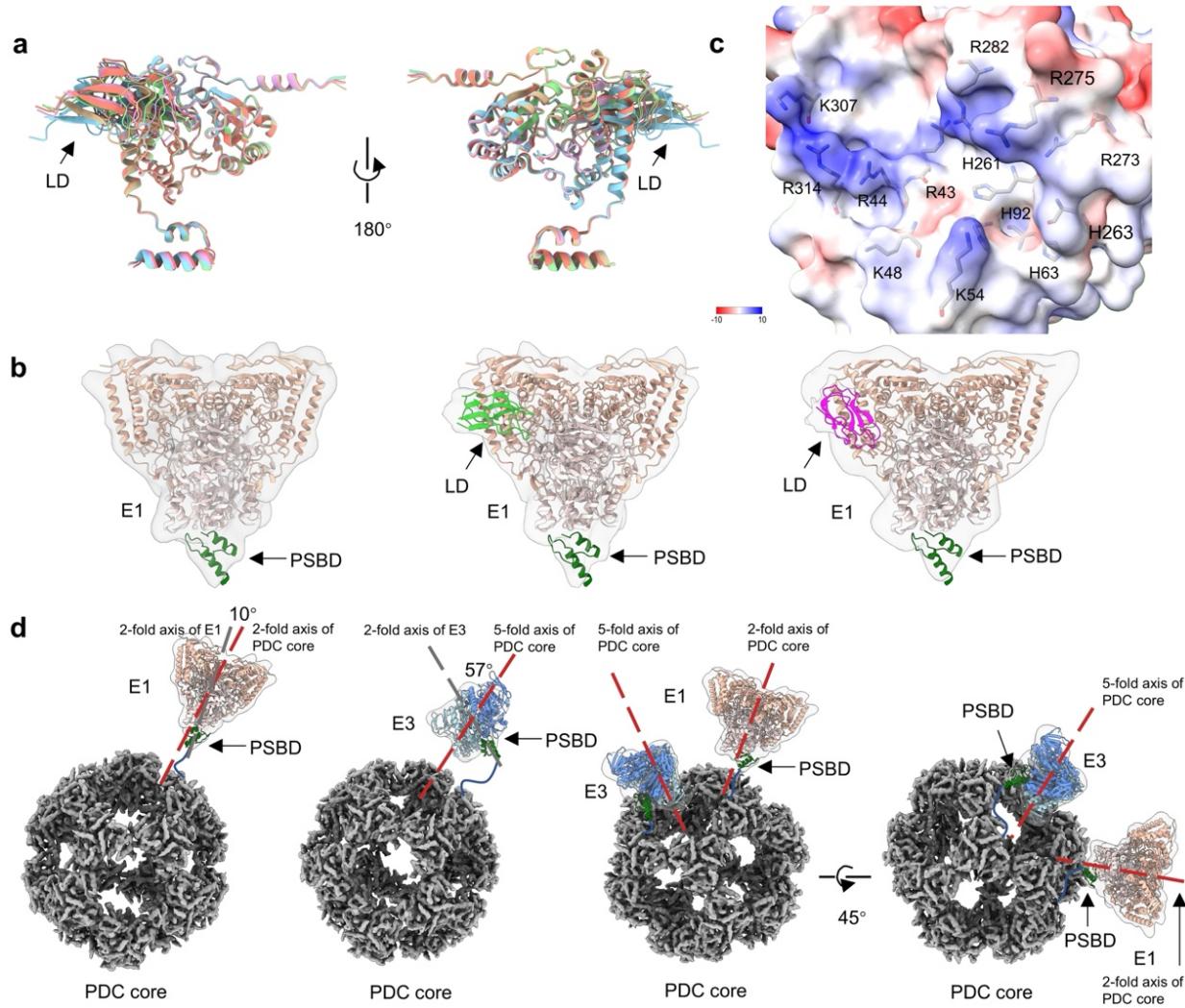

765 **Extended Data Fig. 1 | Subtomogram averaging workflow.** Flow chart of the subtomogram
766 averaging processing. The PDC particles were manually picked from the tomograms and then
767 averaged by i3 or Relion. The PDC core and peripheral densities are then local refined and
768 classified to improve the resolution and analyze the interactions between different components.
769 Refer to Materials and Methods for details of the processing.
770

771


772 **Extended Data Fig. 2 | SDS-PAGE analysis of the purified PDC and mass spectrometry**
773 **analysis of the LD and PSBD. a,** The SDS-PAGE analysis detected the purified PDC. The
774 resulting bands include the major components of the PDC: E2, E3BP, E3, E1 α , E1 β , lane1: pre-
775 stained marker; lane 2: purified PDC sample. This data is repeated more than three times, and all
776 resulted in the same results. **b,** The mass spectrometry data analysis comparison of peptides
777 contained in DLAT (E2) and PDHX (E3BP) with LD and PSBD and same amino acids are
778 represented in red.

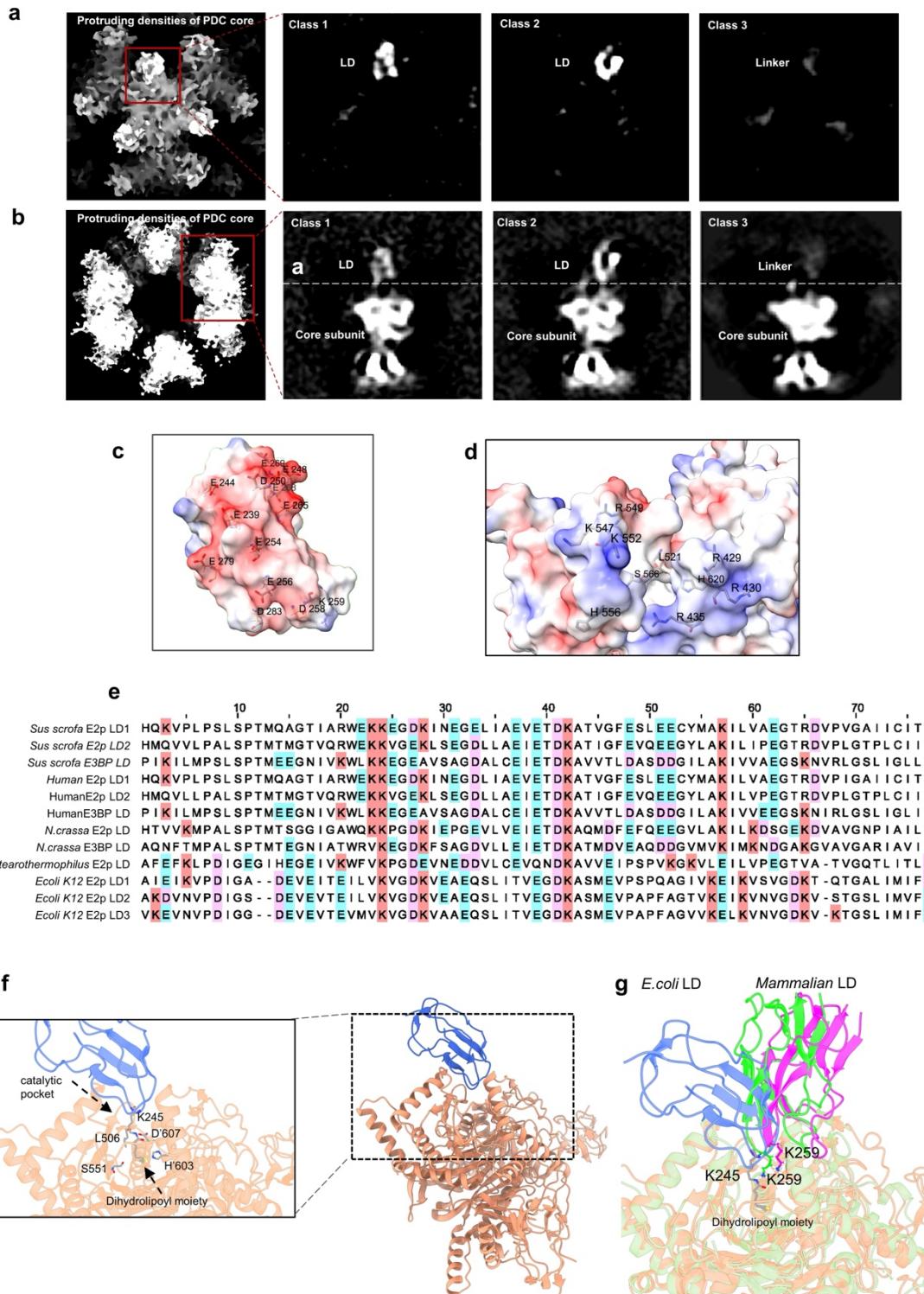
779

780


781 **Extended Data Fig. 3 | Cryo-ET investigations of the purified PDC.** **a**, 3D surface view of a
782 representative cryo-electron tomogram of the purified PDC sample (viewing roughly along the y
783 axis). The densities of six unbroken PDC particles are shown in pink spheres. **b**, A section
784 (viewing along z axis) close to the center of the tomogram shown in **a**. Five PDC particles are
785 indicated by arrows. The enlarged view of a PDC is shown in **b1**. **b2** shows the side view of the
786 same PDC. The E2 core is clearly visible in both **b1** and **b2** (indicated by green circles). The
787 densities surrounding the E2 core are supposed to be E1 or E3. **c**, A section (viewing along the z
788 axis) close to the bottom surface of the tomogram shown in **a**. Multiple PDCs like densities are
789 observed in this tomogram section and one example is shown in **c1** (top view) and **c2** (side view).
790 The E1, E2 and E3 densities are clearly visible in top view **c1**. In the side view **c2**, however, the
791 E2 core appears to be broken and the E1 and E3 are almost invisible. Instead, E1 and E3 like
792 densities scattering around the bottom surface of the tomogram.
793

794

795 **Extended Data Fig. 4 | The numbers and spatial arrangements of E1 and E3 multimers in**
 796 **purified PDC. a, The number of E1 heterotetramer in purified PDCs. b, The number of E3 dimer**
 797 **in purified PDCs. c, The number of E1 and E3 multimers in the same purified PDC. d, Statistics**
 798 **on the distance between the E1 heterotetramer center and the PDC core center. e, Statistics on the**
 799 **distance between the E3 dimer center and the PDC core center.**


800

801

802 **Extended Data Fig. 5 | The interaction and orientation between E1 and E3 with the LD and**
803 **PSBD of the PDC core. a**, AlphaFold2 predicts five distinct conformations for the binding of the
804 **C chain of E1 with LD. LD locates near the E1 N-terminal region. **b**, Class averages of E1**
805 **heterotetramer, with PSBD fitting in opposite orientations compared to those shown in Fig. 3b-d.**
806 **c**, Analysis of the electrostatic potential of E1 at the LD-E1 interaction interface, showing the
807 **location of basic amino acids. **d**, The positions and orientations of E1 and E3 multimers relative**
808 **to the PDC core are different. E1 heterotetramer binds with PSBD in a head-on manner towards**
809 **the core, while the E3 dimer binds with PSBD at a certain angle relative to the core.**

810

811

812 **Extended Data Fig. 6 | Subtomogram average structures of E2 and the charged potential**
813 **energy analysis at the interfaces between E2 and LD.** **a**, The top view of 3D classification of
814 protruding densities of PDC core, divided into three classes. Class 1 and Class 2 are referred to as
815 LD (Low Density), while Class 3 is referred to as linker. **b**, The side view of 3D classification of
816 protruding densities of PDC core. **c**, Acidic patches on the surface of LD, showing the location of

817 acidic amino acids. **d**, Electrostatic potential of E2 at the LD-E2 interaction interface, showing the
818 location of basic amino acids. **e**, The LD sequences of different species were aligned, with acidic
819 amino acid E highlighted in blue, D highlighted in pink, and conserved amino acid K highlighted
820 in light red. **f**, The E2-LD interaction interface in resting state PDC of *Escherichia coli* (PDB 7b9k).
821 **g**, Comparison between the E2-LD interaction sites of mammalian PDC from current work and
822 the resting state *Escherichia coli* PDC. The catalytic pocket of E2 and LD of *Escherichia coli* PDC
823 (Fig. 2c and d) are shown in orange and blue, respectively. The catalytic pocket of E2 of
824 mammalian PDC is shown in dark sea green, and the mammalian LDs with two different
825 conformations are shown in lime and magenta, respectively.
826

827 **Extended Data Table 1 | Mass spectrometry analysis.** Mass spectrometry analysis was
 828 performed on the purified protein solution of PDC, with the main components of PDC highlighted
 829 in yellow. The complete mass spectrometry analysis data can be found in the source data file. The
 830 Excel file contains multiple worksheets and includes descriptions for each column header.

Accession	Gene	Description	Unique sequence coverage [%]	Intensity	MS/MS count
F1SGH5	PDHB	Pyruvate dehydrogenase E1P component subunit beta OS=Sus scrofa OX=9823 GN=PDHB PE=1 SV=1	42.8	92405000	22
A0A5G2QSG9	PDHX	Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex OS=Sus scrofa OX=9823 GN=PDHX PE=1 SV=1	29.7	19839000	19
F1SLA0	ATP5F1B	ATP synthase subunit beta OS=Sus scrofa OX=9823 GN=ATP5F1B PE=1 SV=3	46.9	36817000	19
A0A5G2QFC4	DLAT	Acetyltransferase component of pyruvate dehydrogenase complex OS=Sus scrofa OX=9823 GN=DLAT PE=1 SV=1	31.3	16306000	18
A0A5G2QMB8	PDHA1	Pyruvate dehydrogenase E1P component subunit alpha, somatic form, mitochondrial OS=Sus scrofa OX=9823 GN=PDHA1 PE=1 SV=1	35.4	73636000	18
P19620	ANXA2	Annexin A2 OS=Sus scrofa OX=9823 GN=ANXA2 PE=1 SV=4	34.5	2685200	16
A0A5G2QPK6	DLD	Dihydrolipoyl dehydrogenase OS=Sus scrofa OX=9823 GN=DLD PE=1 SV=2	26.7	12721000	15
A0A8W4F7W9	SDHA	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial OS=Sus scrofa OX=9823 GN=SDHA PE=4 SV=1	25.8	2401500	14
F1RPS8	ATP5F1A	ATP synthase subunit alpha OS=Sus scrofa OX=9823 GN=ATP5F1A PE=1 SV=3	23.9	11664000	13
F1S0V3	ANXA6	Annexin OS=Sus scrofa OX=9823 GN=ANXA6 PE=1 SV=4	18.6	402680	11
F1SKM0	UQCRC1	Ubiquinol-cytochrome c reductase core protein 1 OS=Sus scrofa OX=9823 GN=UQCRC1 PE=1 SV=3	22.9	2570700	11
A0A286ZZT0	NNT	proton-translocating NAD(P)+ transhydrogenase OS=Sus scrofa OX=9823 GN=NNT PE=1 SV=3	26.5	725930	10
A0A287A2Y4	ATP5PD	ATP synthase subunit d, mitochondrial OS=Sus scrofa OX=9823 GN=ATP5PD PE=1 SV=1	37.3	2197200	10
A0A286ZV48	OGDH	oxoglutarate dehydrogenase (succinyl-transferring) OS=Sus scrofa OX=9823 GN=OGDH PE=1 SV=2	10.6	726000	9
A0A5G2QM65	ETFDH	Electron transfer flavoprotein-ubiquinone oxidoreductase OS=Sus scrofa OX=9823 GN=ETFDH PE=1 SV=1	18.3	343710	9
F1RZQ6	SLC25A4	ADP/ATP translocase OS=Sus scrofa OX=9823 GN=SLC25A4 PE=1 SV=3	18.9	1711900	9
F1S9Q3	HSPA8	Heat shock protein family A (Hsp70) member 8 OS=Sus scrofa OX=9823 GN=HSPA8 PE=1 SV=3	13.7	218880	9
F1SHD7	NDUFS1	NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial OS=Sus scrofa OX=9823 GN=NDUFS1 PE=1 SV=4	16	591340	9
A0A5G2QPD2	COX4I1	Cytochrome c oxidase subunit 4 OS=Sus scrofa OX=9823 GN=COX4I1 PE=1 SV=1	32.5	11014000	8
A0A5G2QZX1	ACTG1	Actin gamma 1 OS=Sus scrofa OX=9823 GN=ACTG1 PE=1 SV=1	4.7	636340	8
F1SAX3	ATP1A1	Sodium/potassium-transporting ATPase subunit alpha OS=Sus scrofa OX=9823 GN=ATP1A1 PE=1 SV=4	9.3	145600	8
F1SM98	NDUFV2	NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial OS=Sus scrofa OX=9823 GN=NDUFV2 PE=1 SV=3	36.4	1102300	8
Q29554	HADHA	Trifunctional enzyme subunit alpha, mitochondrial OS=Sus scrofa OX=9823 GN=HADHA PE=2 SV=1	14	449160	8
A0A287A2N6	IMMT	MICOS complex subunit MIC60 OS=Sus scrofa OX=9823 GN=IMMT PE=1 SV=1	13.7	121500	7
:	:	:	:	:	:
F1S6Q1	NDUFA13	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 OS=Sus scrofa OX=9823 GN=NDUFA13 PE=1 SV=4	20.8	216460	3
:	:	:	:	:	:
A0A5G2R006	ACADM	Medium-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Sus scrofa OX=9823 GN=ACADM PE=3 SV=2	6.5	32241	2
:	:	:	:	:	:
A0A287B804	SLC25A6	ADP/ATP translocase OS=Sus scrofa OX=9823 GN=SLC25A6 PE=3 SV=2	5.2	5157.4	1
:	:	:	:	:	:
A0A8W4FNW8	PCCB	Propionyl-CoA carboxylase beta chain, mitochondrial OS=Sus scrofa OX=9823 GN=PCCB PE=4 SV=1	3.8	7697.3	1
:	:	:	:	:	:
F1SV70	MMP27	Matrix metallopeptidase 27 OS=Sus scrofa OX=9823 GN=MMP27 PE=3 SV=3	1.8	0	0

832 **Extended Data Table 2 | Number of tomograms and particles used for subtomogram**
833 **averaging analysis.**

	Tomograms	PDC particles	All E1	E1-PSBD (Fig. 3b)	E1-PSBD-LD1 (Fig. 3c)	E1-PSBD-LD2 (Fig. 3d)	E2-LD1 (Fig. 4c)	E2-LD2 (Fig. 4d)	E2-Linker (Fig. 4e)	E3 (Fig. 3k)
Purified PDC	256	1,209	27,156	3,862	22,951	343	16572	29289	26679	3,120
Mitochondrial PDC	122	805	17,038	3,097	13,755	186	10552	20811	16929	2,977
Total	378	2,014	44,194	6,959	36,706	529	27124	50100	43608	6,097

834

835 **Extended Data Table 3 | The quantity distribution of E1 heterotetramer above the 2-, 3-, and**
836 **5-fold axes of the PDC core.**

	E1 along C3 axis			E1 along C2 axis			E1 along C5 axis		
	All	E1 with PSBD	E1 with PSBD and LD	All	E1 with PSBD	E1 with PSBD and LD	All	E1 with PSBD	E1 with PSBD and LD
purification	8,013	2,176	5,837	12,558	914	11,644	6,585	722	5,813
mitochondrial	6,499	1,664	4,835	6,319	1,168	5,151	4,220	265	3,955
total	14,512			18,877			10,805		

837