
Rapid Invisible Frequency Tagging (RIFT) in a
novel setup with EEG

Arora, Kabir; Gayet, Surya; Kenemans, J. Leon; Van der Stigchel, Stefan; Chota, Samson

Helmholtz Institute, Utrecht University, 3584 CS, Utrecht, The Netherlands

Steady-State Visual EvokedPotentials (SSVEPs) provide a report-free and continuousmeasure of neural pro-
cessing. Recent progress in display technology has allowed for the tagging ofmultiple stimuli simultaneously
at >60Hz frequencies - high enough to evade perceptibility, while still evoking an oscillatory neural response.
Known as Rapid Invisible Frequency Tagging (RIFT), this technique has currently only been used in combi-
nation withMagnetoencephalography (MEG), which is less accessible compared to Electroencephalography
(EEG). Although responses to LEDs flickering at similar frequencies have been shown in EEG, it is currently
unclear whether RIFT, using a more conventional stimulus display, can sufficiently evoke a response in EEG,
and therefore whether it is worth adding the RIFT-EEG pairing to the cognitive neuroscientist’s toolkit. Here,
we successfully implement the first RIFT-EEG setup. We show that the oscillatory input is measurable in the
EEG trace, what its topographical spread is, a rough range of applicable frequencies, and that this response
is comparable to that evoked in MEG.

1 Introduction
Steady-State Visual Evoked Potentials (SSVEPs) are a
characteristic neural response to rhythmically varying
sensory inputs. As opposed to Event-Related Potentials
(ERPs), which reveal responses to single, disconnected
events, SSVEPs provide a continuous response to con-
sistent visual or auditory stimuli directly from the neu-
ral traces without the need for manual report. This
has led to their frequent use in understanding cogni-
tive functions (See Norcia et al., 2015 for overview). An
extensively used application of the SSVEP is frequency
tagging, that is, labeling different stimuli with signa-
ture luminance oscillations that can later be disentan-
gled and uniquely tracked over time from the neural re-
sponse. Here, the SSVEP response to frequency tagged
stimuli is used as a direct marker and tracker of spa-
tial attention (Morgan et al., 1996; M. M. Müller & Hüb-
ner, 2002) or feature-based attention (M. Müller et al.,
2006; Pei et al., 2002). Recent progress in display tech-
nology has given rise to a newbranch of frequency tag-
ging: Rapid Invisible FrequencyTagging (RIFT),wherein
stimuli are flickered at frequencies higher than 60Hz
(Seijdel et al., 2023; Zhigalov et al., 2019).

This novel framework avoids two major limitations of
existing SSVEP applications (which have mainly made
use of stimuli flickering at rates below 30Hz). Firstly,
at these frequencies, luminance changes are visible.
This may confound effects of endogenous attentional
shifts through exogenous flicker-caused distractions
(Cass et al., 2011). RIFT, by flickering complex stimuli
beyond the threshold of visibility, offers an attentional
tracker without perceptual interference. Secondly,
in the <30Hz range SSVEP responses may be difficult
to disentangle from endogenous oscillations in similar
frequency bands, or may even entrain or disrupt them

(Notbohm et al., 2016; Spaak et al., 2014). In addition
to operating far from the domain of alpha oscillations,
RIFT has also been shown not to entrain endogenous
oscillations in the gamma range (Duecker et al., 2021),
circumventing any such confounds during analysis.

At this stage, such early studies have already an-
swered certain fundamental questions about the utility
of RIFT across various applications. It has been shown
that RIFT is a powerful tool to capture spatial shifts
of attention both to tagged stimuli (Bouwkamp et al.,
2023, Preprint), as well as to tagged, but perceptually
indistinguishable regions of visual space (Brickwedde
et al., 2022). Over the last few years RIFT has been ap-
plied within the visual domains of reading (Pan et al.,
2021), distractor suppression (Ferrante et al., 2023),
and visual search (Spaak et al., 2023, Preprint) among
others, establishing that its robustness is comparable
to that of the more conventional SSVEP. Current RIFT
work is expanding both upon the cognitive contexts
that may benefit from the technique (Bouwkamp et al.,
2023; Seijdel et al., 2024, Preprint), as well as technical
aspects such as optimizing display features (Minarik
et al., 2023) and exploring alternate forms of tagging
(Spaak et al., 2023, Preprint).

Despite the clear and promising potential such work
shows for RIFT within vision research, relatively few
studies have utilized it. One cause may be the acces-
sibility of current RIFT setups. Beyond the display
equipment itself, all existing RIFT research has been
implemented in combination with MEG. While the ex-
isting framework has clearly delivered novel insights
for cognitive neuroscience as described above, the low
number of MEG setups worldwide combined with both
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the active cost of running MEG experiments as well
as the initial capital required encourages the explo-
ration of viable, more accessible alternatives. Addi-
tionally, as the potential of RIFT as a communication
medium for Brain-Computer Interfaces begins to be
explored (Brickwedde et al., 2022) as an improvement
upon existing SSVEP Brain-Computer Interfaces (Zhu
et al., 2010), the need to assess the possibility of amore
portable RIFT framework rises further.

Electroencephalography (EEG) has been shown to be
sensitive to periodic stimulation in the RIFT frequency
range using flickering LEDs (Gulbinaite et al., 2019;
Herrmann, 2001). However, most tasks designed to
study cognition utilize stimuli varying across several
features such as size, shape, orientation, colour, etc.
and therefore flickering LEDs may not reflect the con-
text within which RIFT could be best utilized. Here, we
successfully implement the first RIFT setup pairedwith
EEG. We show that it is possible to pick up RIFT sig-
nals from multiple stimuli at different frequencies in
the EEG response, reveal the topographical spread of
these signals, and demonstrate that the evoked signals
are comparable in magnitude to those evoked in MEG.

2 Methods

Participants

We recruited 36 healthy participants (29 female, 23.3
± 3.0 | mean ± std) with normal or corrected to nor-
mal vision. None of the participants reported a history
of epilepsy or psychiatric diagnosis. Participants were
compensated either with €20 or an equivalent amount
of participation credits as per Utrecht University’s in-
ternal participation framework. The study was carried
out in accordance with the protocol approved by the
Faculty of Social and Behavioural Sciences Ethics Com-
mittee of Utrecht University.

Experimental Design
Trials began with a centrally presented fixation cross
(uniformly random duration between 1-1.25s), after
which both memory stimuli were presented (1s). This
was followed by a variable stimuli-cue delay (uniformly
random, 1.5-1.9s), at the end of which a central retro-
cue was presented (0.15s) in the form of either a blue
or red circle, informing participants which item would
be probed on that trial. The retro-cue randomly cued
either the left or the right item (50/50). After a fixed
cue-probe interval (1.5s), the memory probe was dis-
played centrally until response. Participants had to
specify with a keyboard button press whether the ori-
entation of the memory probe was more clockwise (Q
key) or anti-clockwise (P key) compared to that of the
retro-cued memory stimulus. Participants were able
to respond 0.5s after the memory probe onset (indi-
cated to them via a change in the colour of the fixation
cross fromblack togreen). If no responsewasreceived
within 3s, or a different button was pressed, the trial
ended and participants were shown ‘incorrect’ feed-
back (median = 0.4% of trials).

Each participant completed 480 trials (excluding 10
practice, not analyzed; 15 blocks of 32 trials each).
Orientations of the memory stimulus (always distinct),
as well as whether the blue/red stimuli would be pre-
sented to the left or right, were equated in prevalence
individually and presented in random order.

Stimuli
The screen background was maintained at true grey
throughout the experiment. A black fixation cross (0.4
dva)waspresent in thecenterof the screen throughout
each trial. Memory stimuli consisted of circular square
wave gratings (r = 3 dva, spatial freq. = 2 cpdva) either
blue or red in colour. Thesewere presented slightly be-
low horizontal (eccentricity = 6 dva horizontal, -2 dva
vertical) in order to facilitate the tagging response (Mi-
narik et al., 2023). To minimize tagging frequency, a ra-

Fig 2.1: Task design. Two uniquely coloured and oriented stimuli were presented on either side of
fixation. A colour-based retro-cue specified which of the two would be probed for response. Partici-
pants indicatedwhether the orientation of amemory probewasmore clockwise or counterclockwise
compared to that of the retro-cued item. The highlighted locations were flickered at 60/64/68.57Hz
(See TaggingManipulation) throughout the trial (Note: not to scale; memory probe did not overlapwith
flickering regions in actual display).
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-dially symmetric transparency mask was applied to
the memory stimuli as per the following function:

T (x) =
1

1 + e
−6x
r

where x is the distance of a point on the circular patch
from center (0) to the circumference (at radius r), and
T (x) is the resulting transparency at this point ranging
from 0.5 (semi-transparent) to 1 (fully opaque). Both
memory stimuli were presented with distinct orienta-
tions ranging from 0-165° (in intervals of 15°). The
retro-cue (r = 0.23 dva) was displayed centrally in one
of the two memory stimuli colours. The memory probe
consisted of a black, circular ring (r =1.2 dva, thickness
= 0.13 dva) with spokes (0.6 dva extensions) protrud-
ing outwards from diametrically opposite ends to indi-
cate an orientation. These dimensions ensured that the
tips of the memory probe never overlap (minimum sep-
aration = 1.5 dva) with the flickering regions on screen
(See Tagging Manipulation). The memory probe angle
varied between 3°-50° clockwise or anti-clockwise of
the retro-cued memory stimulus, following a staircase
(Farell & Pelli, 1999) that maintained accuracy on the
memory task at 75% (PsychtoolBox QUEST algorithm, β
= 3.5,∆ = 0.01, γ = 0.5). Feedback was given after each
trial in the form of a green/red image (r = 1.5 dva) of a
tick/cross for right/wrong answers respectively.

TaggingManipulation
The areas corresponding to the two memory stimuli
were tagged from stimuli onset until the end of the trial.
Two frequencies were randomly assigned to either the
left or right area. The two frequenciesusedwereeither
60/64Hz (24 participants) or 60/68.57Hz (12 partici-
pants). The lateralization of the frequencies (60L/60+R
vs. 60+/60R) was counterbalanced with the direction
of the retro-cued item and presented in a random se-
quence. For the first 1s of a trial (when memory stim-
uli were being presented), the two circular gratings
were tagged with the corresponding frequency. For
the remainder of the trial, the background was tagged
(range 0-1 luminance in order to look invisible against
the true grey background). The same transparency
map was applied to the flickering regions as the mem-
ory stimuli (See Stimuli). The tagging sinusoids were
constructed such that despite the variable stimuli-cue
delay, the waves were always at the same phase at the
moment of retro-cue onset. Temporal precision of the
displayed stimuli was continually recorded using Psy-
chToolBox’s Screen(‘Flip’) command. Any trial with a
framedisplayed>4msoff-timewasexcluded fromanal-
ysis (mean = 0.17% of trials, median = 0 trials).

Protocol
Participants underwent a 2-hour session at the Divi-
sion of Experimental Psychology, Utrecht University.
Participants received procedural information prior to
the session, and provided informed consent, date of
birth, biological sex, and dominant hand information at
the beginning of the session. After completion of the
EEG setup, participants were seated 76cm from the

screen with a chinrest. After eye calibration, the ex-
periment was explained using a visual guide and verbal
script. Participants were also informed that they may
potentially see visual glitches or flickers on the screen
(due to the high-speed projection), and that they would
be asked after the experiment whether they did or not.
Following these instructions and 10 practice trials, the
1 hour experiment was completed. Participants filled
out a questionnaire on whether they noticed any visual
artifacts on screen (and if so, at what stage of the task,
and to what degree they felt this interfered with their
task on a scale of 1-5). Compensation was awarded
when applicable, and the session was ended.

Display Apparatus
Stimuliwere projectedusing aProPixx projector (VPixx
Technologies Inc., QC Canada; resolution = 960x540px;
refresh rate = 480Hz) in a rear-projection format (pro-
jected screen size = 48x27.2cm). Experimental code
was written using PsychToolBox (Brainard & Vision,
1997; Kleiner et al., 2007) in MATLAB (MATLAB, 2022).

Eye-tracking Recording and Analysis
Gaze was tracked using an Eyelink SR (SR Research,
Ontario, Canada) eyetracker. Both eyes were tracked
at 500Hz. Immediately prior to the experiment, a 9-
point calibration was performed. This calibration was
also performed after every 3rd block. Eye position data
was not analyzed in the current study.

EEG Recording and Pre-processing
EEG data was recorded using a 64-channel ActiveTwo
BioSemi system (BioSemi B.V., Amsterdam, The Nether-
lands) at 2048Hz. To record vertical and horizontal
eye movements, two additional electrodes were placed
above and on the outer canthus of the left eye respec-
tively. Immediately prior to the experiment, adequate
signal quality from all channels was ensured using
BioSemi ActiView software. All data analysis was con-
ducted inMatlabusing the Fieldtrip toolbox (Oostenveld
et al., 2011). The EEG data was first re-referenced to
the average of all channels (excluding poor channels
determined by visual inspection, median = 5 [frontal]
channels per participant). Data was high-pass filtered
(0.01Hz), then line noise and harmonics were removed
using aDFTfilter (50, 100, 150Hz). Datawas segmented
into trials ranging from 3.4s before to 2s after retro-
cue onset. An ICA was performed to remove oculomo-
tor artifacts, and trials with other motor artifacts (as
per visual inspection) were removed. Baseline correc-
tion was performed using a 0.5s window (-0.7 to -0.2s
w.r.t stimuli onset).

RIFT Response: Coherence

In order to determine the strength of the EEG re-
sponse to RIFT frequencies, magnitude-squared co-
herence was used, which is a dimensionless quan-
tity from 0-1 that measures how consistently two sig-
nals are matched in both their frequency content and
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phase. This results in higher values when two signals
oscillate at the same frequency while doing so with a
constant phase-difference across trials. Coherence
was computed between a reference wave (pure sinu-
soids at the corresponding 60Hz/64Hz/68.57Hz fre-
quency, sampled at 2048Hz) and sets of trials per chan-
nel and participant. The 5.3s trials were first band-
pass filtered (±1.9Hz) at the frequencies of interest
(60Hz & 64Hz for the first set of participants, 60Hz &
68.57Hz for the second set) using a two-pass Butter-
worth filter (4th order, hamming taper). The filtered
time-series data was Hilbert transformed. This pro-
vided a time-varying instantaneous magnitude (M(t))
and phase (ϕ(t)). The set of all instantaneous mag-
nitudes of the filtered responses (M⃗x(t)) and the ref-
erence sinusoid (M⃗y(t)) across all n trials, as well as
the differences between their instantaneous phases
across all n trials (∆ϕ⃗xy(t)) were used to compute time-
varying coherence:

coh(t) =

∣∣∣∑n
tr=1 M⃗x(t)M⃗y(t)e

i∆ϕ⃗xy(t)
∣∣∣2

n
∑n

tr=1 M⃗x(t)2M⃗y(t)2

In order to compute coherence spectrograms and in-
spect the sharpness of the coherence signal, coher-
ence was computed in a similar manner for frequen-
cies ranging from 56.5Hz to 71.5Hz in intervals of
0.5Hz.

RIFT Response: Power
For visual comparison, the strength of the RIFT re-
sponse was also computed through Fourier Trans-
forms. An FFT was applied to each 5.3s trial using a
hammingwindow. Signal-to-noise (SNR) was then com-
puted by dividing power at the frequencies of inter-
est (60Hz, 64Hz, and 68.57Hz) with the mean power of
surrounding frequencies excluding close neighbours
(±(0.5-2Hz) away).

3 Results
We first assessed whether the RIFT signal emerges
within the EEG response at all. Time-varying coher-
ence measures were averaged across all experimen-
tal conditions and participants to provide a general
overview. For this initial outline, six channels with the
highest mean coherence were identified per partici-
pant and averaged. Data from the first set of partic-
ipants (using 60 and 64Hz, n=24) and the second (us-
ing 60 and 68.57Hz, n=12) are presented separately.
The computed coherence spectrograms show that for
both groups of participants (Figure 3.1a-b) there are
notable peaks in oscillatory activity at the tagged fre-
quencies. A spreadwithin the frequency domain is also
present and equivalent to that of the bandpass filter
range (± 1.9Hz) applied prior to applying the coherence
measure. We then inspected the spatial spread of this
obtained response over the EEG topography averaged
across the entire flicker duration (Figure 3.2a-b) both
with coherence and power/SNR. Both topographies
are restricted to parietal/occipital electrodes.

Given the clear drop in signal evoked from 60Hz and

Fig 3.1: Coherence SpectrogramMean coherence (averaged across participants and best channels,
see text) for a) Group 1 participants with tagging at 60 & 64Hz (n=24) b) Group 2 participants with
tagging at 60 & 68.57Hz (n=12). Dotted lines indicate stimuli onset, stimuli offset, and retro-cue onset
respectively.
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Fig 3.2: RIFT topography in EEG, using a) Coherence b) Power/SNR at 60Hz (n=36), 64Hz (n=24), and
68.57Hz (n=12), averaged across participants and experimental conditions.

64Hz to 68.57Hz (Figure 3.2), we next determined quan-
titatively whether these tagging frequencies imple-
mented in the present studywere all equivalent options
for RIFT-EEG in terms of the coherence elicited (Figure
3.3).

For this, per-participant we averaged the 6 channels
with the strongest RIFT response at each frequency.
Although no significant difference was seen across

60Hz and 64Hz (Mean difference = 0.0187; 95% con-
fidence intervals of bootstrapped mean differences:
[-0.0083, 0.0441]; p=0.19), the coherence elicited by
68.57Hz was significantly lower than that of 64Hz
(Mean difference = -0.031; 95% CI: [-0.055, -0.008];
p<0.05) and that of 60Hz (Mean difference = -0.049;
95% CI: [-0.070, -0.028]; p<0.005). This is also reflected
at the topography level. Visual inspection of coherence
topographies for all participants at their respective ta-

Fig 3.3: Mean coherence across tagged frequencies (from top-6-channel averages per participant),
averaged over tagged duration. Grey indicates distribution of bootstrapped mean differences be-
tween 64Hz and 68.57Hz (dashed lines indicate respective means; black bar indicates 95% CIs; other
comparisons stated in text).
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Fig 3.4: RIFT topography variability Mean coherence across tagged frequencies and participants
(normalized w.r.t. each participant’s most strongly responsive channel), averaged across tagged du-
ration.

-gging frequencies (Figure3.4) showcasesa clear pari-
etal/occipital focus in most topographies at 60Hz and
64Hz. This is absent when inspecting the neural re-
sponse at 68.57Hz.

Lastly, we assessed the extent to which the RIFT re-
sponse obtained through EEG is comparable to that
of MEG (Figure 3.5). We compared the mean coher-
ence elicited for all 36 participants in this study at 60Hz

(from the 1s interval where stimuli were flickering on-
screen) to equivalent values from a RIFT-MEG study on
reading (Panet al., 2021) after roughly adjusting for dif-
ferences in flickering area by computing an evoked co-
herence value per dva2 of flickering area on screen. No
significant difference was seen between MEG and EEG
coherence per unit area (Mean difference = 0.0008;
95% CIs: [-0.0002, 0.0022]; p=0.19). The latter showed
lower variance (EEG µ/σ =1.95, MEG µ/σ = 1.62).

Fig 3.5: Coherence from different tools Mean coherence at 60Hz across imaging modalities EEG
(present study; from top-6-channel averages per participant) and MEG (Pan et al., 2021) averaged
over tagged duration. Grey indicates distribution of bootstrapped mean differences between 64Hz
and 68.57Hz; black bar indicates 95% CIs.
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Participants were also informed at the start of the ex-
periment that they would be asked at the end whether
they observed any visual artifacts on screen, and filled
out a questionnaire on the subject at the end of the ex-
periment. Of the 36 participants, only 4 responded pos-
itively to noticing any ‘flickering glitches’ or similar on
the screen. Three of these reported only noticing such
artifactswhen the stimuli were on screen (and not dur-
ing the stimuli-cue intervals), all reporting flicker inten-
sity with the lowest possible score of 1/5. One partic-
ipant reported only noticing such artifacts during the
stimuli-cue intervals, with an intensity score of 2/5.

4 Discussion
We conducted a visual memory task with 36 partic-
ipants in order to determine the feasibility of pair-
ing RIFT with EEG. We show the frequency content of
the EEG response to tagged stimuli/regions, the topo-
graphical spread of this response, cross-participant
variations, and that it is comparable to that evoked in
MEG.

The utility of RIFT in combination with EEG for cogni-
tive neuroscience experimentsmay be qualitatively as-
sessed (and compared to its utility with MEG) across
two metrics. Firstly, the strength of the RIFT signal
evoked in theneural responsedetermineswhetherEEG
is sensitive enough to pick up on such high-frequency
oscillatory responses from conventional stimulus dis-
plays at all. Secondly, the range of frequencies avail-
able for tagging is relevant, since this directly impacts
the number of stimuli that are ‘taggable’ and thus the
possible types of experiments that may be compatible
with an EEG-based RIFT setup.

Overall RIFT-Response
Time-frequency analysis showed that there is an in-
crease in oscillatory activity selectively at tagged fre-
quencies upon presentation of luminance-modulated
stimuli, and additionally that this increase is sustained
even throughout periods where regions of space are
tagged in the absence of a stimulus. We also confirm
that this ’absence of a stimulus’ in RIFT-tagged regions
is truly reflected, since almost none of our participants
report noticing any flickers even though they were in-
formed beforehand to expect such visual artifacts. We
show that the signal emerges from parietal/occipital
electrodes, visible both with more conventional FFT-
basedanalysisaswell asbyusingcoherencemeasures
across trials (with the latter providing a broader topog-
raphy). The evoked strength of the RIFT-EEG response
at 60Hz is similar to that in MEG, and there is propor-
tionally similar cross-participant variance between the
two, indicating comparable consistency. It is therefore
clear that RIFT does in fact evoke a recoverable oscil-
latory response in EEG.

Importantly, the results presented here may actually
not reflect the upper limit of RIFT strength that can be

extracted from the EEG response; certain factors may,
through alternative decisions of experimental design
and analysis, evoke an even stronger response. Firstly,
recent work with MEG has shown that accounting for
minute equipment-driven phase-variability in the tag-
ging signal across trials can improve signal strength
(Spaak et al., 2023, Preprint). Secondly, the task we
present here flickered stimuli at a higher eccentricity
than the onewedrawacomparison to (Panet al., 2021),
and it has been shown that RIFT signal strength varies
inverselywithflicker eccentricity inMEG (Minarik et al.,
2023). This suggests that future optimization of meth-
ods may give rise to a stronger reflection of the tagged
input in the EEG response.

Dependence on tagged frequency
This study utilized three frequencies, namely 60Hz,
64Hz, and 68.57Hz, due to their compatibility with the
ProPixx projector refresh rate. Although responses to
flickering LEDs have been shown in EEG up until 80Hz
(Gulbinaite et al., 2019) or more (Herrmann, 2001), our
results show that there is a significant drop-off in RIFT
signal acquisition at 68.57Hz. From the participant-
wise topographies, it can be seen that plotting the RIFT
coherence at 68.57Hz over the head topology does not
evoke a stronger signal from parietal/occipital chan-
nels compared to the rest, in stark contrast to both
60Hz coherence topologies in the same participants
and 60/64Hz topologies in another set of participants.
ExistingRIFT studieswithMEGhaveutilized similar fre-
quencies to equivalently tag three objects simultane-
ously (Bouwkamp et al., 2023, Preprint). Therefore, the
range of frequencies that display an equivalent neural
tagging response do not boast a similar robustness in
EEG to that of MEG.

Though it may be possible to evoke a stronger RIFT re-
sponse from higher frequencies in future tasks as de-
scribed above, currently we only see usable responses
to 60Hz and 64Hz tagging. However, given that previ-
ous RIFT work has also made use of 56Hz (Brickwedde
et al., 2022) without any resulting concerns over per-
ceptibility of the flicker, and that different choices dur-
ing the analysis stage (narrower bandpass filtering
for coherence) may allow increased frequency reso-
lution for tagging, we infer that RIFT-EEG is capable
of uniquely tagging at least two individual stimuli/re-
gions, with a strong likelihood of being able to tag at
least three.

We conclude that these metrics offer sufficient evi-
dence in support of RIFT-EEG as a tool sensitive enough
to reflect modulations from shifts of attention. This,
in combination with developments towards accessibil-
ity on the display side of RIFT, such as commercially
available monitors with 500Hz refresh rates (Alien-
ware Gaming Monitor, Dell Inc., Texas) exceeding the
480Hz refresh used here, suggests a promising future
for the widespread application of RIFT to understand-
ing cognitive functions aswell as toBrain-Computer In-
terfaces.
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