

1 Iron deficiency causes aspartate-sensitive metabolic and

2 proliferative dysfunction in CD8+ T cells

3 Megan R. Teh^{1*}, Nancy Gudgeon², Joe N. Frost¹, Linda V. Sinclair³, Alastair L. Smith⁴,
4 Christopher L. Millington⁴, Barbara Kronsteiner⁵, Jennie Roberts⁶, Bryan P. Marzullo⁶,
5 Alexandra E. Preston¹, Jan Rehwinkel¹, Thomas A. Milne⁴, Daniel A. Tennant⁶, Susanna J.
6 Dunachie^{5,7}, Andrew E. Armitage¹, Sarah Dimeloe², Hal Drakesmith^{1*}

7 [1] MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular
8 Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK

9 [2] Institute of Immunology and Immunotherapy, University of Birmingham,
10 Birmingham, UK

11 [3] Cell Signalling and Immunology, University of Dundee, Dundee, UK

12 [4] MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine,
13 Radcliffe Department of Medicine, University of Oxford, Oxford, UK

14 [5] NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine,
15 University of Oxford, Oxford, UK

16 [6] Institute of Metabolism and Systems Research, College of Medical and Dental Sciences,
17 University of Birmingham, Birmingham, UK

18 [7] Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok,
19 Thailand

20 *Correspondence: alexander.drakesmith@ndm.ox.ac.uk and megan.teh@ccc.ox.ac.uk

21

22 **Summary**

23 Iron is an irreplaceable co-factor for metabolism. Iron deficiency affects >1 billion
24 people, causing symptoms including anaemia and impaired immunity. Nevertheless,
25 precisely how iron deprivation impacts immune cell function remains poorly
26 characterised. We therefore interrogated how physiologically low iron availability
27 affected activated CD8+ T cell metabolism and function, using multi-omic and metabolic
28 labelling approaches. Iron limitation profoundly stalled proliferation without influencing
29 cell viability, altered histone methylation status and disrupted mitochondrial membrane
30 potential. Consistently, metabolism of glucose and glutamine in the TCA cycle was limited,
31 indeed TCA cycle activity was partially reversed to a reductive trajectory. Previous
32 studies have shown mitochondria-derived aspartate is crucial for proliferation of
33 transformed cells. Surprisingly, we found aspartate was increased in stalled iron deficient
34 CD8+ T-cells, but was not utilised cytosolically for nucleotide synthesis, likely due to
35 trapping within depolarised mitochondria. Conversely, exogenous aspartate, which
36 directly accesses the cytosol, markedly rescued the clonal expansion of even severely
37 iron-deficient CD8+ T-cells. Overall, iron scarcity creates a mitochondrial-located
38 metabolic bottleneck impairing T-cells, which can be bypassed by resupplying inhibited
39 biochemical processes with aspartate. These findings reveal molecular consequences of
40 iron deficiency for CD8+ T cell function, providing mechanistic insight into the basis for
41 immune impairment during iron deficiency.

42

43

44

45

46

47

48

49

50 Introduction

51 Studies of metabolism in cancer and in different cell lineages have changed
52 understanding of how metabolic processes regulate cellular transformation and cell
53 fate^{1,2}. In contrast, how common nutritional deficiencies influence metabolic pathways
54 and alter cell biology is relatively poorly studied. Iron deficiency is the most common
55 micronutrient deficiency worldwide³, inhibiting erythropoiesis, impairing cognitive
56 development and disabling immunity, and is a comorbidity for several disorders
57 including heart failure^{4,5}.

58 Within cells, iron is utilised by ~2% of proteins and ~6.5% of enzymes (including
59 ~35% of oxidoreductases)⁶. Key conserved biochemical processes are iron-dependent,
60 such as the electron transport chain (ETC), tricarboxylic acid (TCA) cycle, nucleotide
61 synthesis, DNA repair, histone and DNA demethylation, and oxygen sensing⁶. Cells
62 typically obtain iron by receptor-mediated internalisation of transferrin, a dedicated
63 iron-chaperone protein in plasma and extracellular fluid⁷. However, the amount of iron
64 bound to transferrin shows marked physiological variation. For example, in severe iron
65 deficiency or in the presence of inflammation, plasma iron concentrations can drop by
66 ~90%^{8,9}, drastically decreasing iron supply to cells.

67 Notably, human genetic studies and pre-clinical work link decreased transferrin-
68 iron acquisition by proliferating lymphocytes to impaired adaptive immunity^{5,10}. Patients
69 homozygous for a mutation in *Tfrc* (the gene encoding the transferrin receptor, TFR1,
70 also known as CD71) that inhibits cellular iron uptake, have a severe combined
71 immunodeficiency characterised by reduced lymphocyte function and suppressed
72 antibody titres¹⁰. Similarly, low serum iron availability suppresses B and T-cell responses
73 in mice following vaccination and influenza infection⁵. How iron deficiency
74 mechanistically impairs adaptive immune cells remains unclear, but understanding this
75 issue could inform how iron regulates immunity and provide further rationale for
76 correcting iron deficiency within human populations.

77 T-cells dramatically remodel their metabolism post-activation, including
78 upregulation of glycolysis and oxidative phosphorylation (OXPHOS), in order to meet the
79 increased energetic and biosynthetic requirements of proliferation and effector
80 function¹¹. Transition from naïve to activated T-cell is accompanied by greatly increased
81 expression of the iron uptake protein, TFR1, and CD8+ T-cell iron content is calculated to

82 triple within the first 24h post-activation¹². In this study, we investigate how low iron
83 supply influences activated CD8+ T-cells via 'omics approaches and isotope tracing. We
84 find mitochondrial defects, dysregulated metabolic processes and stalled cell division,
85 but show that a single amino acid, aspartate, rescues multiple aspects of cell dysfunction
86 including proliferation. These results offer new insight into the molecular effects of iron
87 deficiency within the immune system.

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109 **Results**

110 *Transcriptomic and proteomic screens reveal potential nodes of dysfunction during CD8+
111 T-cell iron-deficiency*

112 Iron is utilised by ~400 proteins, of which 204 are described to be expressed in T-
113 cells^{6,12,13}. Iron interacting proteins operate in a wide diversity of pathways ranging from
114 mitochondrial metabolism to DNA synthesis⁶, suggesting that iron-deficiency likely has
115 important and wide-acting effects on T-cell biochemistry. However, the specific effects
116 of iron scarcity are difficult to predict because of the interdependence of cellular
117 processes. We therefore took an unbiased approach to initially define the impact of iron
118 limitation on global CD8+ T-cell transcription and translation, employing RNA-
119 sequencing (RNA-seq) and quantitative protein-mass spectrometry (protein-MS) of
120 murine OT-I CD8+ T-cells activated *in vitro* across physiologically-titrated transferrin-
121 iron concentrations (0.001-0.625 mg/mL holotransferrin, with total amount of
122 transferrin kept constant at 1.2 mg/mL) for 48h (Fig. 1a).

123 Despite observing suppression of cellular proliferation during iron deprivation,
124 measured using cell trace violet (CTV) (Fig. 1b-c), only 193 genes were identified as
125 significantly differentially regulated between iron replete and deficient conditions by
126 RNA-seq (Supplementary Fig. 1a; Supplementary file 1). However, clear segregation was
127 still observed between the two iron concentrations by principal component analysis
128 (PCA; Supplementary Fig. 1b). Genes identified by RNA-seq as induced during iron-
129 deficiency also displayed an enrichment of the activating histone marks, H3K4me3 and
130 H3K27ac at transcription start sites (TSSs) in the low iron condition (Supplementary Fig.
131 1c) when analysed by ChIPmentation. Meanwhile, genes suppressed by iron-deficiency at
132 the RNA level showed depletion of these activating marks around their TSSs. This data
133 indicates that RNA expression changes observed during iron deficiency are largely due to
134 transcriptional differences rather than alterations in RNA stability. Expression of the iron
135 uptake receptor, *Tfrc*, was significantly higher in the low iron condition (Supplementary
136 Fig. 1d), consistent with cellular iron limitation¹⁴.

137 Protein-MS analysis identified 116 differentially expressed proteins (Fig. 1d;
138 Supplementary file 2). As expected, TFR1 protein copy number increased as
139 holotransferrin was depleted (Supplementary Fig. 1e). Despite the differential
140 expression of 116 proteins, no differences were observed in overall protein mass or

141 protein molecules per CD8+ T-cell activated across a titration of holotransferrin
142 conditions (Supplementary Fig. 1f-g), indicating that despite decreased cell division, iron
143 deficient CD8+ T-cells do not accumulate extra protein.

144 5091 mRNAs/proteins were mutually detected by the RNA-seq and protein-MS
145 with a significant positive correlation in the $\log_2|FC|$ values (Fig. 1e). Of these, only 15
146 were significantly differentially regulated at both the mRNA and protein levels
147 (Supplementary Fig. 1h). These modest expression changes indicate changes in protein
148 function rather than expression may be the predominant driver of the profound
149 suppressive effect of iron deficiency on CD8+ T cell proliferation. Of note, 7 of the 15
150 mutually differentially expressed genes encoded proteins related to metabolism,
151 including amino acid transporters (*Slc1a4*, *Slc7a3*) or enzymes (*Dglucy*, *Ephx1*, *Asns*, *Cth*,
152 *Pck2*), indicating changes in cellular metabolism may underpin this functional alteration.

153 In addition, gene set enrichment analysis (GSEA), conducted on both RNA-seq and
154 protein-MS datasets also indicated altered expression of the P53 pathway (Fig. 1f,
155 Supplementary Fig. 1i). The P53 pathway coordinates responses to cellular stress such as
156 DNA damage, hypoxia and nutrient deprivation, with downstream effects including
157 apoptosis, DNA repair and cell cycle arrest¹⁵. Altered activity of this pathway may
158 therefore also contribute to the titratable impairment to cellular proliferation in low iron
159 conditions (Fig. 1b-c). Consistent with this, expression of CDKN1A, a P53 target and
160 suppressor of the G1-S phase cell cycle transition was induced by iron deprivation at 24h,
161 prior to the first cell division and continued to be upregulated as CD8+ T-cells entered
162 their proliferative phase at 48h (Fig. 1g-h, Supplementary Fig. 1j-k). However, while cell
163 division halted, cells remained viable at 48h (Fig. 1i). This data suggests that induction of
164 the P53 signalling pathway may contribute to drive cell cycle suppression via CDKN1A,
165 but iron deprivation does not cause cell death at this time point.

166

167 *Iron-deficiency does not induce a hypoxic response in CD8+ T-cells*

168 P53 induction during iron chelation has been described in cell lines, macrophages
169 and CD4+ T-cells¹⁶⁻¹⁹ and is understood to occur via HIF1 α stabilisation due to impaired
170 activity of their regulators, the iron and oxygen-dependent PHD proteins¹⁹. We therefore
171 tested whether HIF1 α was similarly stabilised in cells deprived of iron more

172 physiologically, via decreased availability of transferrin-bound iron. While the iron
173 chelator deferiprone (DFP) clearly induced HIF1 α stabilisation in CD8+ T-cells, low iron
174 conditions did not alter HIF1 α levels relative to iron replete controls (Supplementary Fig.
175 1l-m). Moreover, the proteomic profile of iron deficient CD8+ T-cells bears little
176 resemblance to the proteomes of 5 day activated cytotoxic CD8+ T-cells exposed to
177 hypoxia for 24h as reported by Ross *et al*²⁰ (Supplementary Fig. 1n). Both hypoxia and
178 iron chelation have also been shown to induce glycolytic genes^{16,20}, but this was not
179 observed in our cells in low iron media.

180

181 *Low iron alters the CD8+ T-cell mitochondrial proteome*

182 We observed decreased activity of the key upstream metabolic regulator, mTOR,
183 measured as phosphorylation of its target S6 (pS6; Fig. 1j-l) and downregulation of the
184 MYC and mTORC1 signalling pathways (Fig. 1f, Supplementary Fig. 1i). Decreased
185 mTORC1 is consistent with lack of upregulation of glycolysis genes and may also relate to
186 lack of total protein accumulation in non-proliferating iron deficient cells. However,
187 unexpectedly, we observed upregulation of proteins involved in mitochondrial processes
188 including OXPHOS and fatty acid metabolism (Fig. 1f). The enrichment of the fatty acid
189 signature was driven largely by increases in β -oxidation proteins involved in fatty acid
190 and branched chain amino acid breakdown rather than fatty acid synthesis (Fig. 1m). ETC
191 proteins involved in the highly iron-dependent respiratory complexes I (CI), CIII and CIV
192 were also upregulated (Fig. 1m). Consistent with increased abundance of these
193 mitochondrial proteins, mitochondrial mass, measured with Mitotracker green (MTG),
194 was also elevated in low iron conditions (Supplementary Fig. 1o). Of note, by selecting
195 for mitochondrially localised proteins using the MitoCarta3.0 gene set²¹, we observed
196 improved segregation within the first two principal components of CD8+ T-cells cultured
197 in different iron concentrations (Fig. 1n) compared to when all proteins were analysed
198 (Supplementary Fig. 1p), indicating mitochondrial proteins are disproportionately
199 influenced by iron availability relative to all proteins detected.

200 Mitochondria are enriched for iron interacting proteins with 7% of mitochondrial
201 proteins classified as iron-interacting compared to 2% cell wide⁶. Aconitase 2 (ACO2)
202 and SDH of the TCA cycle and CI-CIV of the ETC require iron cofactors for function²².

203 Mitochondria are also home to heme and iron-sulfur (Fe-S) cluster synthesis pathways²².
204 Analysis of proteomics data from Howden *et al*¹³ revealed upregulation of heme and Fe-
205 S cluster synthesis proteins in T-cells post-activation (Supplementary Fig. 2a-c). The
206 heavy reliance of mitochondrial function on iron in combination with the upregulation of
207 mitochondrial proteins suggests that mitochondrial function may be disrupted during
208 iron scarcity.

209

210 *Iron-deficiency impairs CD8+ T cell mitochondrial function*

211 To directly interrogate CD8+ T cell mitochondrial function under iron deprivation,
212 we first assessed a metric of mitochondrial health, specifically levels of superoxide ($O_2^{\bullet-}$)
213 - a key exemplar of mROS species. As available iron declined, mROS levels increased in
214 CD8+ T-cells (Fig. 2a-b). CI, CII and CIII of the ETC, which all require iron for electron
215 transfer²² are key mROS producers²³. Given the observed increase in ETC proteins (Fig.
216 1m), but lower availability of iron during iron restriction, we propose an imbalance in
217 ETC proteins to iron cofactors may impair efficient electron transfer resulting in
218 increased mROS generation. Consistent with this, iron deprivation decreased the
219 mitochondrial membrane potential (Fig. 2c, Supplementary Fig. 3a) and was previously
220 shown to suppress mitochondrial ATP generation⁵. Upregulation of the mitochondrial
221 superoxide detoxifying protein, SOD2, was also observed under iron scarcity (Fig. 2d),
222 indicating compensatory mechanisms to suppress mROS, which at the lowest iron
223 concentrations still fail to control them.

224 Taken together with the alterations in the mitochondrial proteome, these data
225 indicate that iron deprived CD8+ T-cells may have defective mitochondrial metabolism.
226 To directly assess this, we next performed stable isotope-based tracing coupled to
227 metabolite-mass spectrometry (metabolite-MS). CD8+ T-cells were activated for 24h and
228 then incubated with ¹³C6-glucose or ¹³C5-glutamine for a further 24h under iron replete-
229 or deficient conditions. Here, minimal changes in overall abundance of the glycolytic
230 metabolites, pyruvate and lactate, or the amino acids derived from glycolytic
231 intermediates (alanine, serine, and glycine) were observed, suggesting glycolytic activity
232 was preserved under low iron conditions (Fig. 3a-b). This is consistent with minimal
233 changes in HIF1 α activity (Supplementary Fig. 1l-n) and in agreement with glycolysis

234 being an iron independent pathway (none of the enzymes involved in glycolysis require
235 iron).

236 In these experiments we also noted that while ~20% labelling of $^{13}\text{C}_6$ -glucose into
237 the TCA cycle was observed, $^{13}\text{C}_5$ -glutamine was much more readily incorporated into
238 the TCA cycle, labelling 60-80% of TCA cycle metabolites (Supplementary Fig. 3b). The
239 larger incorporation of glutamine relative to glucose into the TCA cycle is consistent with
240 reports indicating substantial reduction of glucose-derived pyruvate to lactate in
241 activated T-cells, alongside increased glutamine anaplerosis into the TCA cycle²⁴. The TCA
242 cycle metabolite succinate lies upstream of an iron-dependent enzyme (SDH).
243 Consistently, we observed that while succinate abundance was depressed in iron limiting
244 conditions (-23%; Fig. 3a-b), it was relatively accumulated compared to the downstream
245 metabolites, fumarate (-47%) and malate (-41%), suggesting suppressed flux from
246 succinate to fumarate (Fig. 3a-b). Decreased ^{13}C -labelling from $^{13}\text{C}_5$ -glutamine into
247 fumarate and malate also supports this.

248 A second iron-dependent step of the TCA cycle occurs at the level of ACO2, which
249 converts citrate to α -ketoglutarate (α -KG). In agreement with reduced TCA cycle activity,
250 decreased abundance of α -KG was observed in low-iron cells (Fig. 3a-b). Decreased α -KG
251 M+3 isotopomers from $^{13}\text{C}_5$ -glutamine and a trend towards reduced α -KG M+2
252 isotopomers from $^{13}\text{C}_6$ -glucose supports reduced ACO2 activity (Fig. 3c, Supplementary
253 Fig. c-e). However, since α -KG is also produced from glutamate by activity of glutamate
254 dehydrogenase (GDH), decreased α -KG may also reflect decreased activity of this enzyme.
255 Indeed, decreased relative abundance of α -KG M+5 mass isotopomers from $^{13}\text{C}_5$ -
256 glutamine, indicate a trend towards decreased GDH activity under low iron conditions
257 (Fig. 3c, Supplementary Fig. 3d). Consistent with this, ^{13}C -labelled glutamate accumulated
258 in low iron conditions following $^{13}\text{C}_5$ -glutamine tracing (Fig. 3b). Decreased oxidative
259 TCA cycle progression, due to limited glutamine anaplerosis, ACO2 and SDH activity
260 agrees with diminished NAD⁺ reduction and consequent increases in the NAD⁺/NADH
261 ratio (Fig. 3d, Supplementary Fig. 3f) also observed under iron scarcity. Since NADH is a
262 positive allosteric regulator of GDH, this may also partly the indicated decrease in GDH
263 activity²⁵.

264

265 *Iron depletion alters H3K27 methylation, but proliferation is not rescued by α-KG*
266 *supplementation*

267 α-KG levels were decreased by ~40% in iron-deficient CD8+ T cells (Fig. 3a-b, 4a).
268 α-KG is a substrate for many dioxygenases, including the histone lysine demethylases
269 (KDMs)²⁶ (Fig. 4b) and alterations in T-cell metabolism have been shown to alter KDM
270 activity and T-cell fate²⁷. Crucially, most KDMs require an iron catalytic core to mediate
271 hydroxylation of histone methyl groups using α-KG and oxygen as substrates²⁶. The
272 unstable methyl-hydroxy intermediate spontaneously dissociates leaving a
273 demethylated product^{28,29}. This dual dependency of KDMs for α-KG and iron mean that a
274 decrease of α-KG availability under iron limitation may exert a double hit on KDM activity,
275 with potential impacts on the appropriate chromatin restructuring necessary for CD8+
276 T-cell differentiation. The abundance of KDMs substantially increases upon T-cell
277 activation, with KDM6B being the second most upregulated KDM in CD8+ T-cells^{12,13}.
278 KDM6B is responsible for the removal of the repressive histone mark, H3K27me3, a
279 process critical for T-cell differentiation and effector function acquisition^{30,31}. Consistent
280 with decreased activity under iron limitation, CD8+ T-cells demonstrated a titratable
281 failure to remove H3K27me3 relative to iron replete controls, with H3K27me3 levels
282 remaining almost as high as IL-7 treated, “naïve-like” cells (Fig. 4c-d, Supplementary 4a-
283 b). These findings therefore indicate that altered CD8+ T cell metabolic activity under low
284 iron may have direct implications for their epigenetic status and differentiation capacity.
285 Of note however, direct supplementation with cell-permeable dimethyl-α-KG failed to
286 rescue H3K27me3 levels and cellular proliferation (Supplementary Fig. 4c-d) in iron
287 deprived T-cells, consistent with H3K27me3 demethylation requiring both α-KG and
288 iron.

289

290 *Iron depletion suppresses nucleotide synthesis from aspartate*

291 Aspartate is produced downstream of the TCA cycle metabolite oxaloacetate and
292 critically supports cellular proliferation through de novo purine and pyrimidine
293 synthesis³²⁻³⁴. In cancer cells, ETC inhibition or iron chelation impairs aspartate
294 synthesis, resulting in suppressed proliferation of these immortalised cells³⁵⁻³⁷.
295 However, despite TCA cycle inhibition, aspartate was unexpectedly higher in iron

296 deficient cells, with the majority derived from glutamine (Fig. 3a-b, 5a, Supplementary
297 Fig. 5a).

298 To understand whether nucleotide synthesis was altered downstream of
299 decreased TCA activity in iron-depleted CD8+ T cells, we measured the abundance of
300 nucleotides and their upstream precursors by LC-MS, observing that AICAR, a metabolite
301 which lies two steps downstream of aspartate incorporation into purine synthesis³⁸ was
302 substantially decreased during iron limitation (Fig. 5b-c). PPAT, the initiating enzyme of
303 purine synthesis which has been predicted to be iron dependent⁶ was also reduced in
304 iron scarcity (Fig. 5d). Carbamoyl-aspartate and orotate which lie downstream of
305 aspartate incorporation into pyrimidine synthesis were similarly depleted (Fig. 5e-f).
306 Consistent with these observations, certain nucleotides were decreased during iron-
307 deficiency (Supplementary Fig. 5b-c), albeit to a lesser extent, which may be explained by
308 their decreased usage under suppressed CD8+ T-cell proliferation and associated DNA
309 synthesis (Fig. 1b-c).

310 Together, these data indicate that nucleotide synthesis from aspartate is limited in
311 iron deficient CD8+ T cells, despite overall cellular abundance of aspartate being
312 increased rather than decreased (Fig. 3a-b, 5a). This aspartate accumulation could be
313 partially explained by increased production by an alternative pathway, for instance
314 pyruvate anaplerosis to oxaloacetate via pyruvate carboxylase (PC) and reductive TCA
315 cycling (Fig. 5g)³⁹. Carbon flux from ¹³C6-glucose through the oxidative (canonical
316 forward) TCA cycle via pyruvate dehydrogenase (PDH) results in entry of two ¹³C atoms
317 into TCA cycle metabolites (M+2 mass isotopomers)³⁹. Meanwhile, entry of carbon from
318 ¹³C6-glucose to the reductive (reverse) TCA cycle via PC produces M+3 mass
319 isotopomers. During iron-deficiency, significant increases in ¹³C6-glucose labelling into
320 M+3 TCA cycle metabolites including fumarate and malate were observed, indicative of
321 increased PC contribution to these metabolites (Fig. 5h). PC activity, evaluated as (malate
322 M+3 – succinate M+3)/pyruvate M+3, as utilised by Elia *et al*⁴⁰, was also increased (Fig.
323 5i). PC protein also trended towards increased expression in low iron conditions (Fig. 5j)
324 while PCK2, which mediates the reverse reaction, converting oxaloacetate to the
325 glycolytic intermediate phosphoenolpyruvate (PEP) was suppressed (Fig. 5k) suggesting
326 carbon flux into oxaloacetate is favoured in low iron conditions. In line with increased PC
327 usage, pyruvate supplementation provided a proliferative advantage to iron depleted

328 cells (Fig. 5l). A reversal of TCA cycle activity is also in agreement with the observed
329 increase in the NAD+/NADH ratio (Fig. 3d, Supplementary Fig. 3f). This suggests that
330 under iron limiting conditions, CD8+ T-cells may utilise PC and the reductive TCA cycle
331 to replenish the depleted metabolites fumarate and malate, circumventing the use of the
332 iron-dependent enzymes, ACO2 and SDH. Aspartate accumulation under iron depletion
333 could also be explained by decreased usage, as shown for nucleotide synthesis above.
334 Aspartate is also used for the synthesis of asparagine, however at 48h post-activation,
335 CD8+ T-cells in both iron deficient and replete conditions had not synthesised asparagine,
336 indicated by the absence of ¹³C labelling from ¹³C5-glutamine (Fig. 3b, Supplementary Fig.
337 5d). This agrees with previous reports that CD8+ T-cells lack asparagine producing
338 capacity (asparagine synthetase expression) at 48h post-activation, but gain this later
339 into their activation and differentiation³⁴. Accordingly, asparagine supplementation
340 provided no proliferative benefit (Supplementary Fig. 5e). Taken together, increased
341 abundance of aspartate alongside decreased nucleotide synthesis indicates that aspartate
342 usage by this pathway is suppressed under iron restriction.

343

344 *Increased nucleotide availability provides resistance to iron-deficiency in CD8+ T-cells*

345 To interrogate whether nucleotide abundance limits CD8+ T cell proliferation
346 under iron deficiency, we first tested whether genetically increasing nucleotide
347 abundance could rescue proliferation. Cellular nucleotide balance is maintained via the
348 activity of ribonucleotide reductase (RNR) and SAMHD1⁴¹ (Supplementary Fig. 6a).
349 While RNR enables production of dNTPs, SAMHD1 degrades dNTPs⁴¹. Consistently,
350 *Samhd1* deletion (KO) results in dNTP accumulation in lung fibroblasts⁴² and bone
351 marrow derived DCs (BMDCs)⁴³ and is assumed to operate similarly in CD8+ T-cells. We
352 isolated CD8+ T-cells from *Samhd1*-KO or wildtype littermates and activated them as
353 previously described. *Samhd1*-KO CD8+ T-cells were less sensitive to iron scarcity in
354 terms of a block on proliferation relative to wildtype cells (Supplementary Fig. 6b). This
355 effect was modest, likely explained by the fact that SAMHD1-KO prevents dNTP
356 breakdown but cannot rescue impaired nucleotide production. SAMHD1-KO CD8+ T-
357 cells showed appropriate upregulation of *Tfrc* expression in low iron concentrations
358 (Supplementary Fig. 6c-d) but failed to rescue CD25 or perforin expression
359 (Supplementary Fig. 6e-f). Notably, SAMHD1-KO cells showed comparable expression of

360 *Cdkn1a* (Supplementary Fig. 6g), indicating increased nucleotide pools provide a
361 proliferative advantage despite elevated *Cdkn1a* expression.

362

363 *Aspartate supplementation rescues iron deficient CD8+ T-cells*

364 For aspartate to be utilised for nucleotide synthesis, it must be in the cytosol. Thus,
365 an explanation for decreased aspartate usage could be inappropriate retention of
366 aspartate in the mitochondria. SLC25A12/13 transports aspartate from the mitochondria
367 to the cytosol in exchange for glutamate⁴⁴ (Fig. 6a), but requires a proton gradient to
368 mediate transport⁴⁴, which is decreased in iron depleted CD8+ T-cells. (Fig. 2c).
369 Therefore, it is possible that a reduction in ETC chain activity due to iron-deficiency may
370 impair the mitochondrial proton gradient, in turn inhibiting SLC25A12/13 and
371 sequestering aspartate in the mitochondria where it cannot be used for nucleotide
372 synthesis.

373 We directly assessed whether supplementation of aspartate into cell culture media,
374 such that it can be taken up directly into the cytosol, can rescue CD8+ T cell proliferation.
375 CD8+ T-cells were activated *in vitro* as described in Fig. 1a in the presence or absence of
376 aspartate (40 mM). While CD8+ T-cells in low iron conditions with no added aspartate
377 showed almost no population expansion over 72h of culture, the addition of aspartate
378 increased the carrying capacity of the low iron culture by ~10⁴ additional cells (Fig. 6b).
379 When assessing division at 48h using CTV, aspartate increased the percentage of divided
380 cells from 25% in the lowest iron condition (0.0002 mg/mL holotransferrin) to 61% (Fig.
381 6c). At 72h, the fraction of cells which could undergo three or more divisions in low iron
382 conditions was profoundly increased with aspartate supplementation (increased from
383 7% to 56% in the lowest iron condition; Fig. 6d). Together, these data indicate that
384 aspartate alone can substantially overcome the cell cycle impairment induced by iron
385 scarcity and promotes a more profound recovery of cell division compared to exogenous
386 pyruvate or *Samhd1*-KO.

387 While clonal expansion is critical for effective CD8+ T-cell effector responses, other
388 aspects of CD8+ T-cell biology provide important indicators of function. *Tfrc* mRNA
389 expression was increased in low iron concentrations, indicative of cellular iron scarcity,
390 irrespective of whether aspartate was supplemented or not (Supplementary Fig. 7a).

391 However, aspartate supplementation did permit CD8+ T-cells to maintain high
392 TFR1/CD71 expression in the lowest iron concentrations when expression typically
393 begins to drop (Fig. 7e). Aspartate may therefore provide benefit via promoting increased
394 iron uptake capability during iron starvation. Aspartate supplementation also promoted
395 CD8+ T cell expression of the activation marker, CD25, the cytolytic molecule, perforin,
396 and the cytokine, IFN- γ , indicating its availability within the cytosol supports processes
397 beyond proliferation (Fig. 6f-h).

398 To understand if aspartate, in addition to altering cell proliferation and function,
399 induces a shift in gene expression, we conducted an RNA-seq of CD8+ T-cells in iron
400 replete and iron deficient conditions, with or without aspartate (Supplementary file 3).
401 Samples segregated largely based on iron concentrations rather than aspartate treatment
402 (Supplementary Fig. 7b) suggesting aspartate supplementation does not drive broad
403 alterations in transcriptional profile. Aspartate supplementation induced relatively few
404 transcriptional changes with only 76 and 48 differentially expressed genes in high and
405 low iron conditions respectively. Notably, the transcriptional changes induced by
406 aspartate in low iron conditions correlate with the changes mediated by aspartate in high
407 iron conditions (Supplementary Fig. 7c) indicating aspartate has similar, albeit small
408 effects regardless of iron availability. Aspartate supplementation only marginally
409 reduced *Cdkn1a* expression in low iron conditions (Supplementary Fig. 7d) indicating
410 that the proliferative advantage conferred by aspartate is capable of overcoming P53
411 mediated cell cycle inhibition despite elevated *Cdkn1a*. GSEA revealed that the dominant
412 aspartate effect is suppression of interferon (IFN) response pathways (Supplementary
413 Fig. 7e) and was particularly driven by reduced IFN-stimulated gene-expression. Similar
414 effects were observed for aspartate treatment at high iron concentrations
415 (Supplementary Fig. 7f). Notably, type-I IFN can have anti-proliferative effects that may
416 be related to upregulation of *Cdkn1a*⁴⁵. Thus, the rescue effect of aspartate on CD8+ T-
417 cell division may be partly facilitated if anti-proliferative type-I IFN signalling is
418 counteracted.

419 Aspartate did not alter mROS generation (Supplementary Fig. 7g), suggesting that
420 aspartate is unable to attenuate the mitochondrial dysfunction likely occurring at CI and
421 CIII in iron deprived CD8+ T-cells. However, aspartate did increase mTORC1 activity
422 measured via the expression of the downstream target, pS6 (Fig. 6i) and slightly

423 suppressed the iron-deficiency-mediated increase in the NAD+/NADH ratio
424 (Supplementary Fig. 7h). Aspartate treated CD8+ T-cells also displayed increased
425 glycolytic and total ATP production (Supplementary Fig. 7i-k) and counteracted the
426 accumulation of the repressive histone mark H3K27me3 by iron deficient CD8+ T-cells
427 (Fig. 6j). Therefore, even in cells cultured in very low iron conditions, aspartate
428 availability enables TCR-triggered CD8+ T-cells to acquire an activated phenotype,
429 reconfigure important aspects of their metabolism, and proliferate.

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449 **Discussion**

450 Given the breadth and conserved nature of pathways involving iron interacting
451 proteins it follows that iron deprivation would likely have broad implications on cell
452 biochemistry, health, and function with potential knock-on effects at the tissue or
453 systemic levels. Our work explains why iron depletion potently suppresses T-cell
454 responses in models of immunisation, infection, and autoimmunity^{5,17,46-48}. We also
455 propose that the iron deficiency-associated perturbations described here may in part be
456 responsible for cellular dysfunction in other cell types and tissues during iron deficiency.

457 Cells which undergo rapid proliferation are more likely to be impacted by iron-
458 deficiency than quiescent populations. This is because in iron scarce environments,
459 dividing cells will dilute out iron stores between daughter cells without exogenous iron
460 pools to replenish the difference, and dividing cells have high biosynthetic demands.
461 Meanwhile, quiescent cells can furnish iron interacting proteins via internal recycling of
462 iron cofactors. This principle is demonstrated by T-cells homozygous for the TFR1^{Y20H}
463 mutation which reduces iron uptake efficiency¹⁰. Quiescent naïve TFR1^{Y20H} T-cells are
464 not noticeably impacted by the mutation but become extremely sensitive upon
465 activation¹⁰. Moreover, some tissues, such as muscle may be able to resist iron deficiency
466 to some degree by upregulation of glycolysis⁴⁹. However, the capacity to switch to a
467 glycolytic program may depend on having reduced demands for nucleotides and other
468 macromolecular synthesis processes necessary for proliferation.

469 We demonstrate that iron-deficiency in CD8+ T-cells promotes an altered metabolic
470 state. Iron-deficiency caused relatively modest perturbation of the cellular transcriptome
471 and proteome, at odds with the significant inhibition of proliferation. Iron-deficiency acts
472 most immediately to derail metabolism, with the most drastic effects on mitochondrial
473 function. We observed decreased TCA cycle activity at the iron-dependent enzymes ACO2
474 and SDH, resulting in depletion of downstream metabolites. Despite suppressed TCA
475 cycling, aspartate levels were augmented, but metabolites immediately downstream of
476 aspartate metabolism, used for cytosolic nucleotide synthesis, were suppressed. We
477 propose that aspartate accumulates within mitochondria due to iron-deficiency
478 associated suppressed activity of the proton-dependent mitochondrial aspartate carrier,
479 SLC25A12/13. Remarkably, aspartate supplementation of culture media, assumed to
480 access the cytosol directly, profoundly rescued iron-deficiency impaired proliferation

481 and enhanced other functional aspects of activated T-cells including H3K27me3 removal
482 and increased mTORC1 activity. Our results place disrupted aspartate handling front and
483 centre in the metabolic derangements of cellular iron-deficiency.

484 Increased H3K27me3 in iron deficient CD8+ T-cells is suggestive of KDM6
485 dysfunction. The inability of CD8+ T-cells to remodel their chromatin environment likely
486 has implications for cellular differentiation. Moreover, suppressed levels of α -KG and/or
487 iron may be capable of inhibiting iron and α -KG-dependent enzymes more generally
488 including other KDM enzymes, the ten-eleven translocation (TET) DNA demethylases, as
489 has been seen for KDM3B, which can act as an iron sensor influencing H3K9 methylation
490 and mTORC1 activation⁵⁰, and the PHD proteins which regulate HIF1 α ^{19,51}. However, iron
491 scarcity did not stabilise HIF1 α or induce a proteomic response resembling that induced
492 under hypoxic conditions. Different iron-dependent enzymes may have differential
493 responses to iron inaccessibility, likely due to different iron binding affinities and
494 expression levels. The PHD proteins have very high affinities for iron⁵², potentially
495 explaining our result that iron chelators which potently suppress iron availability induce
496 a HIF1 α response while iron deficiency caused by low extracellular transferrin-iron
497 supply cannot. Thus, iron deprivation does not blanket inhibit all iron-dependent
498 pathways and iron chelation does not fully recapitulate physiological iron-deficiency.

499 In 1925, Otto Warburg proposed that “every living cell contains iron and that life
500 without iron is impossible”⁵³, referring to the fact that cell culture media requires iron in
501 order to support cellular growth⁵³. Activated iron deficient T-cells do not progress
502 through the proliferative cycle, but also do not apoptose, as has been observed by
503 others⁵⁰. Cellular iron deficiency mediated by depriving physiological sources of
504 extracellular iron imparts a distinct and dysregulated metabolic signature. Our findings
505 demonstrate that a lack of iron alters mitochondrial function, with knock-on effects
506 influencing utilisation of cytosolic and nuclear metabolic pathways, ultimately affecting
507 cell identity. Iron deficient activated CD8+ T-cells are ‘stunned’ but not moribund, and
508 can be substantially restored by aspartate, partially overcoming Warburg’s limitation.
509 Aspartate is generally poorly taken up by cells, but our findings suggest that engineering
510 cells, such as tumour targeted chimeric antigen receptor T-cells (CAR-T cells), to
511 overexpress the plasma membrane aspartate transporter (SLC1A1/2/3) could provide
512 resistance to iron depletion, for example in niches such as the tumour microenvironment.

513 **Acknowledgements**

514 Thank you to the staff of the Department of Biomedical Services, University of
515 Oxford for animal husbandry and welfare, the members of the Drakesmith lab, Michael
516 Murphy (MRC Mitochondrial Biology Unit, University of Cambridge), Sumana Sharma
517 (MRC Translational Immune Discovery Unit, University of Oxford), Katja Simon (The
518 Kennedy Institute of Rheumatology, University of Oxford) and Ana-Victoria Lechuga-
519 Vieco (The Kennedy Institute of Rheumatology, University of Oxford) for helpful
520 discussions, Natasha White and Giulia Pironaci (both MRC Translational Immune
521 Discovery Unit, University of Oxford) for assistance with OT-I colony management,
522 Hannah Murray and Dana Costigan (both MRC Translational Immune Discovery Unit,
523 University of Oxford) for practical help with pilot experiments, Andrew Howden and the
524 FingerPrints Proteomic Facility for protein-MS analysis (University of Dundee).

525 M.R.T, J.N.F., A.E.P., A.E.A and H.D. were supported by a U.K Medical research
526 council, MRC Human Immunology Unit grant awarded to H.D. (MCU_12010/10). M.R.T.
527 is funded by the Clarendon Fund and the Corpus Christi College A. E. Haigh graduate
528 scholarship. T.A.M. and A.S. were supported by a Medical Research Council (MRC, UK)
529 Molecular Haematology Unit grant awarded to T.A.M. (MC_UU_00016/6 and
530 MC_UU_00029/6). L.V.S was supported by a Wellcome Trust Principal Research
531 Fellowship, awarded to Doreen Cantrell (205023/Z/16/Z). N.G. and S.D. are supported
532 by a Blood Cancer UK Project grant (21007) and an MRC new investigator research grant
533 (MR/V011588/1). J.R., B.M. and D.A.T are supported by a Cancer Research UK
534 Programme grant (C42109/A24757).

535

536 **Author contributions**

537 Conceptualisation, M.R.T., H.D., S.D., J.N.F., A.E.A., L.V.S., B.K.D., A.L.S., D.A.T, A.E.P., S.J.D.,
538 T.A.M., J.R.; Methodology, M.R.T., N.G., L.V.S, A.L.S.; Formal analysis, M.R.T.; Investigation,
539 M.R.T, N.G., J.N.F., L.V.S., A.L.S., C.L.M., B.K.D., J.R., B.M.; Resources, J.R.; Writing, M.R.T, H.D.,
540 A.E.A.; Supervision, H.D., A.E.A., S.K.D.; Funding acquisition, H.D., S.D.

541

542

543 **Declaration of interests**

544 T.A.M. is a paid consultant for and shareholder in Dark Blue Therapeutics Ltd. D.A.T
545 undertakes paid consultancy work for Sitryx Ltd.

546

547 **Data availability**

548 The RNA-seq and ChIPmentation datasets have been submitted to the Gene
549 Expression Omnibus (GEO) with the dataset identifiers (GSE251962, GSE251963,
550 GSE251964). The protein-MS dataset has been deposited to the ProteomeXchange
551 Consortium via the PRIDE partner repository with the dataset identifier (PXD047814)

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569 **Figure titles and legends**

570 **Fig. 1| Iron-deficiency induces changes to metabolic processes at the RNA and**
571 **protein level.** **(a)** CD8+ OT-I T-cells isolated from mice were activated with 5 μ g/mL

572 plate bound α -CD3, 1 μ g/mL α -CD28 and 50 U/mL IL-2 for 48h in a titration of

573 holotransferrin conditions. Naïve T-cells were collected on day 0. Where

574 comparisons between high and low iron conditions are made, the holotransferrin

575 concentrations used are 0.625 (high) and 0.001 (low) mg/mL. **(b-c)** Division assessed

576 using CTV, n=5. **(d)** Volcano plot with the significance thresholds of $\log_2|FC| > 0.585$, p-

577 value < 0.05, n=4. **(e)** Correlation plot of the $\log_2|FC|$ between high and low iron

578 conditions by RNA-seq and protein-MS, n=4. **(f)** Hallmark GSEA for the protein-MS, n=4.

579 **(g)** P53 induces CDKN1A expression which inhibits the G1-S phase transition. **(h)**

580 CDKN1A protein expression and **(i)** percentage viable cells, n=4. **(j)** mTORC1 and MYC

581 are metabolic regulators that enable biosynthesis downstream of TCR stimulation. **(k-l)**

582 mTORC1 activity measured via its downstream target pS6, n=4. Controls were treated

583 overnight with rapamycin (rapa; 1 μ M). **(m)** Heatmap of proteins in selected metabolic

584 pathways defined using GO terms where the p-value < 0.05, n=4. ETC =

585 GO_RESPIRATORY_ELECTRON_TRANSPORT_CHAIN, β -oxidation =

586 GO_FATTY_ACID_BETA_OXIDATION, ribosome = GO_CYTOSOLIC_RIBOSOME, amino acid

587 (AA) transport = GO_AMINO_ACID_IMPORT. **(n)** PCA of the protein-MS given prior

588 selection for proteins in the MitoCarta3.0 gene set, n=4. Data are mean \pm SEM. Statistics

589 are: **(a, h-i, k)** sampled matched one-way ANOVAs with the Geisser-Greenhouse

590 correction; **(e)** Pearson correlation R^2 value.

591

592 **Fig. 2| Iron deprivation induces mROS production and loss of mitochondrial**
593 **membrane potential.** CD8+ T-cells were activated as described in Fig. 1a. **(a-b)** mROS

594 MFI measured using MitoSOX red, n=4. **(c)** Mitochondrial membrane potential calculated

595 as the ratio of Mitotracker deep red (MTDR) to Mitotracker green (MTG), n=4. **(d)** SOD2

596 protein expression by protein-MS, n=4. Data are mean \pm SEM. Statistics are: **(a, d)**

597 matched one-way ANOVAs with the Geisser-Greenhouse correction; **(c)** matched two-

598 tailed t-test.

599

600 **Fig. 3| Iron scarcity impairs TCA cycle activity at the iron-dependent enzymes ACO2**
601 **and SDH.** CD8+ T-cells were activated as described in Fig. 1a. For tracing experiments,
602 T-cells were activated in standard media for 24h and then incubated in media containing
603 $^{13}\text{C}6$ -glucose or $^{13}\text{C}5$ -glutamine for a further 24h. **(a)** Relative metabolite abundance
604 from T-cells cultured in low iron (0.001 mg/mL holotransferrin) versus high iron (0.625
605 mg/mL holotransferrin) normalised to spiked in glutaric acid. Pooled relative total
606 abundances from the $^{13}\text{C}6$ -glucose and $^{13}\text{C}5$ -glutamine experiments, n=8. NEAA = non-
607 essential amino acids, EAA = essential amino acids. **(b)** $^{13}\text{C}5$ -glutamine tracing, n=4.
608 Relative abundance of labelled and unlabelled metabolites calculated as the fraction
609 labelled multiplied by the raw abundance. **(c)** Relative abundance of α -KG mass
610 isotopomers from ^{13}C -glutamine tracing, n=4. **(d)** NAD+/NADH ratio. Data from
611 independent experiments denoted by different symbols, n=13. Data are mean \pm SEM.
612 Statistics are: **(a)** matched t-tests between 0.625 and 0.001 mg/mL holotransferrin
613 conditions for each metabolite; **(b, c)** matched two-way ANOVAs with the Geisser-
614 Greenhouse correction and the Sidak correction for multiple comparisons; **(d)** matched
615 two-tailed t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

616

617 **Fig. 4| Iron-deficiency permits accumulation of H3K27me3 in CD8+ T-cells.** CD8+
618 T-cells were activated as described in Fig. 1a. **(a)** Relative abundance of α -KG. Data from
619 independent experiments denoted by different symbols, n=8. **(b)** KDM enzymes use iron
620 cofactors and α -KG and oxygen substrates to mediate the hydroxylation of methyl groups
621 which spontaneously dissociate to leave a demethylated histone. KDM6 enzymes remove
622 the repressive histone mark, H3K27me3, from effector gene loci upon T-cell activation.
623 **(c-d)** H3K27me3 MFI. “Naïve” controls cells were cultured in IL-7 (5 ng/mL), n=4. Data
624 are mean \pm SEM. Histograms are normalised to mode. Statistics are: **(a)** paired two tailed
625 t-test; **(c)** matched one-way ANOVA with the Geisser-Greenhouse correction.

626

627 **Fig. 5| Iron scarcity suppresses nucleotide synthesis downstream of aspartate**
628 **incorporation.** CD8+ T-cells were activated as described in Fig. 1a. For the $^{13}\text{C}6$ -glucose
629 tracing experiments, T-cells were activated for 24h and then incubated in media
630 containing $^{13}\text{C}6$ -glucose for a further 24h. **(a)** Relative abundance of aspartate. Data from
631 independent experiments denoted by different symbols, n=8. **(b)** Aspartate is

632 incorporated into purine and pyrimidine nucleotides. Relative abundance of **(c)** AICAR,
633 n=4. AICAR was normalised to spiked in ^{15}N -dT. **(d)** PPAT protein via protein-MS, n=4.
634 Relative abundance of **(e)** carbamoyl-aspartate and **(f)** orotate, n=4. Carbamoyl-
635 aspartate and orotate were normalised to spiked in glutaric acid. **(g)** Schematic of ^{13}C 6-
636 glucose tracing. Orange and green circles indicate ^{13}C labelled atoms. Orange circles
637 show labelling expected from oxidative TCA cycling via PDH. Green circles indicate
638 labelling from reductive TCA cycling via PC. PC activity measured via the **(h)** fractional
639 labelling into heavy labelled metabolites expected from reductive TCA cycling and via **(i)**
640 the ratio of (Malate M3 – Succinate M3)/Pyruvate M3, n=4. **(j)** PC protein expression via
641 protein-MS, n=4. **(k)** PCK2 protein expression via protein-MS, n=4. **(l)** Division measured
642 using CTV with or without pyruvate (10 mM), n=4. Data are mean \pm SEM. Statistics are:
643 **(a, c, e-f, i)** paired two tailed t-tests; **(d, j-k)** one-way ANOVAs with the Geisser-
644 Greenhouse correction; **(h)** matched two-way ANOVA with the Sidak correction for
645 multiple comparisons; **(l)** matched two-way ANOVA with the Geisser-Greenhouse
646 correction.

647

648 **Fig. 6| Aspartate increases the carrying capacity of iron deprived CD8+ T-cell**
649 **cultures.** CD8+ T-cells were activated as described in Fig. 1a with or without aspartate
650 (40 mM). **(a)** Aspartate is synthesised in the mitochondria but must be transported into
651 the cytosol by the proton-dependent transporter, SLC25A12/13 for downstream
652 metabolism. **(b)** Viable cell counts, n=5. **(c)** Percentage divided cells at 48h and **(d)**
653 percentage of cells undergoing 3+ divisions at 72h assessed using CTV, n=5. **(e)**
654 TFR1/CD71, **(f)** CD25 and **(g)** perforin MFI, n=5. **(h)** IFN- γ MFI, n=4. **(i)** mTORC1 activity
655 measured via pS6, n=4. **(j)** H3K27me3 MFI, n=4. “Naïve” controls cells were cultured in
656 IL-7 (5 ng/mL). Data are mean \pm SEM. Statistics are: **(b)** non-linear regressions using
657 exponential growth equations with an extra sum-of-squares F test applied for either high
658 or low holotransferrin concentrations between aspartate treated and untreated; **(c-j)**
659 two-way ANOVAs with the Geisser-Greenhouse correction.

660

661

662

663 **Supplemental figure titles and legends**

664 **Supplementary Fig. 1| Iron restriction induces transcriptional and proteomic**
665 **reprogramming.** CD8+ T-cells were activated as described in Fig. 1a. Where
666 comparisons between high and low iron conditions are made, the holotransferrin
667 concentrations used are 0.625 (high) and 0.001 (low) mg/mL. **(a)** Volcano plot of RNA-
668 seq with significance thresholds of FDR < 0.05 and $\log_2|FC| > 1.5$, n=4. **(b)** PCA of RNA-
669 seq samples, n=4. **(c)** H3K4me3 and H3K27ac enrichment at TSSs of genes identified to
670 be up or downregulated by iron-deficiency, n=1. Center = TSS. RPKM = reads per kilobase
671 of transcript per million mapped reads. *Tfrc/TFR1* **(d)** mRNA and **(e)** protein expression,
672 n=4. **(f)** protein molecules and **(g)** protein mass per cell measured via protein-MS, n=4.
673 **(h)** Genes and proteins mutually up or downregulated in low iron conditions, n=4.
674 Metabolic genes are in green. **(i)** Hallmark GSEA for the RNA-seq, n=4. *Cdkn1a* mRNA
675 expression assessed by qPCR at **(j)** 24h and **(k)** 48h, n=4. **(l-m)** HIF1 α MFI, n=4. Controls
676 were treated for 4h with deferiprone (DFP; 75 μ M). **(n)** Venn diagrams of proteins
677 mutually up or downregulated in response to iron deficient conditions and hypoxia (1%
678 O₂ relative to normoxia at 18% O₂) in CD8+ T-cells. Hypoxia data are derived from Ross
679 *et al*²⁰. **(o)** Mitochondrial membrane mass measured using Mitotracker green (MTG) MFI,
680 n=4. **(p)** Principal components analysis of all proteins, n=4. Statistics are: **(d, o)** paired
681 t-test; **(e-g, j-l)** sample matched one-way ANOVAs with the Geisser-Greenhouse
682 correction.

683

684 **Supplementary Fig. 2| Heme and Fe-S cluster synthesis proteins are induced**
685 **following CD8+ T cell activation.** Data derived from Howden *et al*¹³. Protein copy
686 numbers for proteins involved in **(a)** heme synthesis, **(b)** mitochondrial Fe-S cluster
687 synthesis and **(c)** cytosolic Fe-S cluster synthesis. n=6 at 0h, n=3 at 24h and 6d. Data are
688 mean \pm SEM. Statistics are: **(a-c)** ordinary one-way ANOVAs with multiple comparisons
689 using Tukey's correction. *p < 0.05; **p < 0.01; ***p<0.001; ****p < 0.0001.

690

691 **Supplementary Fig. 3| Iron-deficiency alters CD8+ T-cell mitochondrial**
692 **metabolism.** CD8+ T-cells were activated as described in Fig. 1a. **(a)** Mitotracker deep
693 red (MTDR) MFI, n=4. **(b)** Metabolic fraction labelled by either ¹³C6-glucose or ¹³C5-

694 glutamine in high iron conditions (0.625 mg/mL holotransferrin), n=4. **(c)** Relative
695 abundance of α -KG mass isotopomers from ^{13}C -glucose tracing, n=4. Schematic of tracing
696 into α -KG from **(d)** $^{13}\text{C}5$ -glutamine and **(e)** $^{13}\text{C}6$ -glucose. Blue circles indicate ^{13}C labelled
697 atoms from $^{13}\text{C}5$ -glutamine. Pink circles indicate ^{13}C labelled atoms from $^{13}\text{C}6$ -glucose.
698 **(f)** NAD⁺/NADH ratio, n=4. Data are mean \pm SEM. Statistics are: **(a, f)** matched two-tailed
699 t-test; **(b)** two-way ANOVA with sample matching between metabolites but not between
700 the two carbon tracers. **(c)** matched two-way ANOVAs with the Geisser-Greenhouse
701 correction and the Sidak correction for multiple comparisons. *p < 0.05, **p < 0.01, ***p
702 < 0.001, ****p < 0.0001.

703

704 **Supplementary Fig. 4| H3K27me3 accumulates in iron deprived CD8+ T-cells by**
705 **48h.** CD8+ T-cells were activated as described in Fig. 1a. **(a-b)** H3K27me3 MFI measured
706 at 48h, n=4. “Naïve” controls cells were cultured in IL-7 (5 ng/mL). **(c)** Percentage divided
707 cells and **(d)** H3K27me3 MFI of cells cultured with or without dimethyl- α -KG (1 mM),
708 n=4. Data are mean \pm SEM. Histograms are normalised to mode. Statistics are: **(a)**
709 matched one-way ANOVA with the Geisser-Greenhouse correction; **(c)** matched mixed
710 effect analysis with the Geisser-Greenhouse correction; **(d)** two-way ANOVA with the
711 Geisser-Greenhouse correction.

712

713 **Supplementary Fig. 5| Iron deficient T-cells suppress aspartate utilising pathways.**
714 Isolated CD8+ T-cells were activated as described in Fig. 1a. For the $^{13}\text{C}5$ -glutamine
715 tracing experiments, T-cells were activated for 24h and then incubated in media
716 containing $^{13}\text{C}5$ -glutamine for a further 24h. **(a)** Aspartate and isotopomers labelled from
717 $^{13}\text{C}5$ -glutamine, n=4. M+1/2/3/4 indicate isotopomers derived from glutamine. **(b)**
718 Relative metabolite abundance of T-cells in low iron (0.001 mg/mL holotransferrin)
719 versus high iron (0.625 mg/mL holotransferrin) normalised to spiked in glutaric acid,
720 n=4. **(c)** Aspartate is incorporated into ribonucleotides which can be interconverted
721 between mono, di and tri-phosphorylated forms or converted to deoxy-ribonucleotides.
722 **(d)** asparagine isotopomers labelled from $^{13}\text{C}5$ -glutamine, n=4. M+1/2/3/4 indicate
723 isotopomers derived from glutamine. **(e)** Division assessed with CTV with or without
724 asparagine (100 μM), n=4. Data are mean \pm SEM. Statistics are: **(a, d)** matched two-way
725 ANOVAs with the Geisser-Greenhouse correction and the Sidak correction for multiple

726 comparisons; **(b)** matched t-tests between 0.625 and 0.001 mg/mL holotransferrin
727 conditions for each metabolite; **(e)** two-way ANOVA with the Geisser-Greenhouse
728 correction.

729

730 **Supplementary Fig. 6| SAMHD1-KO T-cells show resistance to iron-deficiency**
731 **suppressed proliferation.** T-cells were isolated from SAMHD1-KO mice and wildtype
732 littermate controls and were activated as described in Fig. 1a. **(a)** RNR enables dNTP
733 production, SAMHD1 degrades dNTPs. SAMHD1-KO should result in dNTP accumulation.
734 **(b)** Percentage divided cells measured using CTV. Data from independent experiments
735 denoted by different symbols, n=8. *Tfrc*/TFR1/CD71 **(c)** mRNA and **(d)** surface protein
736 MFI, n=4. **(e)** CD25 and **(f)** perforin MFI, n=4. **(g)** *Cdkn1a* mRNA expression by qPCR,
737 n=4. Data are mean \pm SEM. Statistics are: **(b-g)** sample matched two-way ANOVAs with
738 the Geisser-Greenhouse correction applied for **(d-f)**.

739

740 **Supplementary Fig. 7| Aspartate has limited impact on cellular transcription but**
741 **promotes a more metabolic state in CD8+ T-cells.** CD8+ T-cells were activated as
742 described in Fig. 1a with or without aspartate (40 mM). **(a)** *Tfrc* mRNA expression by
743 qPCR, n=4. **(b)** RNA-seq PCA, n=4. **(c)** Correlation plot comparing the \log_2 FC between
744 aspartate and control conditions at either low iron or high iron conditions, n=4.
745 Significance thresholds of $|\log_2\text{FC}| > 1.5$ and an FDR < 0.05 were applied. **(d)** *Cdkn1a*
746 mRNA expression, n=4. GSEA of aspartate treated CD8+ T-cells versus control in **(e)** low
747 iron conditions or **(f)** high iron conditions, n=4. **(g)** mROS MFI, n=4. **(h)** NAD+/NADH
748 ratio, n=4. **(i)** Glycolytic, **(j)** mitochondrial and **(k)** total ATP production rate measured
749 using the ATP rate seahorse kit, n=4. Data are mean \pm SEM. Statistics are: **(a, d, g-k)** two-
750 way ANOVAs with the Geisser-Greenhouse correction with Sidak's test for multiple
751 comparisons for **(h-k)**. **(c)** Pearson correlation R^2 value. *p < 0.05.

752

753

754

755

756 **Methods**

757 *Mice*

758 Animal work was completed under the authority of UK home office project and
759 personal licenses granted under the Animals (Scientific Procedures) Act (ASPA) 1986.
760 Mice were housed in individually ventilated cages. OT-I CD45.1 mice were acquired from
761 Vincenzo Cerundolo, University of Oxford and Audrey Gerard, University of Oxford.
762 *Samhd1*-KO mice and their genotyping were described in Rehwinkel et al⁴³. C57BL6/J
763 mice were purchased from Envigo. Mice were euthanised using a rising concentration of
764 CO₂ followed by cervical dislocation.

765

766 *Cell culture media*

767 To manipulate iron availability, iron free medium was prepared with RPMI 1640
768 media (Gibco, 21875034), 1% penicillin/streptomycin (Sigma Aldrich, P0781-100ML),
769 1% glutamine (Sigma Aldrich, G7513-100ML) and 10% iron free serum substitute (Pan
770 Biotech, P04-95080). Iron free media was supplemented with set concentrations of
771 human holotransferrin (R&D systems, 2914-HT-001G/Sigma Aldrich, T0665) ranging
772 from 0.0002-0.625 mg/mL. Total transferrin was kept constant at 1.2 mg/mL by
773 adjusting human apotransferrin (unbound transferrin) concentrations (R&D systems,
774 3188-AT-001G/Sigma Aldrich, T1147) accordingly. The highest concentration of 0.625
775 mg/mL holotransferrin (~15.6 μmol/L of iron) is reflective of the levels of iron
776 physiologically found in human sera (14-32 μmol/L of iron⁵⁴). Meanwhile, the low
777 holotransferrin concentrations of 0.001 mg/mL are much lower than that found in
778 plasma, but are hypothesised to be representative of highly iron depleted environments
779 such as those in the tumour microenvironment³⁷.

780 Aspartate (Scientific Laboratory supplies, CHE2306) was dissolved in iron free
781 media by slowly titrating in 1M NaOH (Sigma Aldrich, 30620-1KG-M) until aspartate was
782 completely solubilised and the pH ~7.5. Asparagine and pyruvate were dissolved directly
783 into iron free media at the described concentrations.

784

785

786 *CD8+ T-cell activation*

787 Plates for CD8+ T-cell activation were coated with 5 μ g/mL α -CD3 (Biolegend, 100239) in phosphate buffered saline (PBS) for 2-3h at 37°C. Lymph nodes and spleens (inguinal, axillary, brachial, cervical, and mesenteric) from mice were steriley collected 789 in iron free media and homogenised through 40 μ m filters using EasySep buffer (Stem 790 Cell Technologies, 20144) or an in-house alternative (PBS + 2% FBS + 1mM EDTA 791 (Invitrogen, AM9260G)) to produce single cell suspensions. CD8+ T-cells were isolated 792 from total homogenate using the EasySep Mouse CD8+ T-cell (Stem Cell Technologies, 793 19853) isolation kit and EasyPlate EasySep magnets (Stem Cell Technologies, 18102) or 794 EasyEights EasySep magnets (Stem Cell Technologies, 18103), according to the 795 manufacturer's protocols. Cells were optionally stained with cell trace violet (CTV, 796 Invitrogen, C34557) for 8 minutes at 37°C prior to culture. Cells were plated at 0.5-1 \times 10⁶ 797 cells/mL in iron free media supplemented with defined holotransferrin concentrations 798 (see section cell culture media). Cells were provided with 50 μ M β -mercaptoethanol 799 (BME, Gibco, 31350-010), 1 μ g/mL α -CD28 (Biolegend, 102115) and 50 U/mL IL-2 800 (Biolegend, 575402). CD8+ T-cells were cultured at 37°C, 5% CO₂ for 24-72h.

802

803 *RNA extraction*

804 CD8+ T-cells were collected from cell culture plates and washed twice with PBS; 805 cell pellets were immediately snap frozen on dry ice. T-cell pellets were resuspended in 806 350 μ L of RLT+ buffer from the Qiagen RNeasy plus mini kit (Qiagen, 74136) and RNA 807 was extracted according to the manufacturer's instructions. For RNA extracted for RNA- 808 sequencing, samples were treated on-column with the Qiagen RNase-free DNase I set 809 (Qiagen, 79254) according to the method described in appendix D of the Qiagen RNeasy 810 mini kit manual (Qiagen, 74104). RNA concentrations were determined using a 811 Nanodrop one instrument (Thermofisher Scientific).

812

813 *cDNA synthesis and qPCR*

814 cDNA was synthesised using the High-Capacity RNA-to-cDNA kit (Applied 815 Biosystems, 4388950) and qPCR experiments were completed on a QuantStudio 7 flex

816 real-time PCR system (Applied Biosystems, 4485701) using the Taqman gene expression
817 master mix (Applied Biosystems, 4369016) and appropriate Taqman Gene Expression
818 Assay (*B2m*, Mm00437762_m1; *Cdkn1a*, Mm04205640_g1; *Tfrc*, Mm00441941_m1).
819 *B2m* was used as the endogenous control gene.

820

821 *RNA-sequencing*

822 For RNA-sequencing, RNA quality was assessed using an Agilent high sensitivity
823 RNA ScreenTape (Agilent, 5067-5579) and corresponding sample buffer (Agilent, 5067-
824 5580) on a 4200 TapeStation system (Agilent, G2991BA). Library preparation and bulk
825 mRNA-sequencing to a depth of 30 million paired end reads using the Illumina NovaSeq
826 6000 platform was conducted by Novogene.

827 Read alignment was conducted using RNA-star to the *Mus Musculus* genome
828 (mm39) and features were annotated using FeatureCounts from the subread package.
829 Differential gene expression analysis was conducted using EdgeR (R package) with the
830 thresholds of $\log_2|\text{fold change}| > 1.5$ and an FDR < 0.05 applied. Gene set enrichment
831 analysis (GSEA) was completed using FGSEA (R package) and Hallmark pathways.

832

833 *ChIP-mentation*

834 CD8+ T-cells were activated for 48h after which they were collected, washed twice
835 in PBS, and fixed in 1% paraformaldehyde (PFA, Thermo Scientific, 28906) for 10 minutes
836 at room temperature with rotation. Cells were washed twice at 16000 g for 30 seconds
837 and dry pellets were snap frozen on dry ice.

838 Antibody binding buffer was prepared: 0.5% BSA and 1/200 protease inhibitor
839 cocktail (PIC) in PBS. 10 μ L of protein A dynabeads (ThermoFisher, 1001D) per sample
840 were washed twice with antibody binding buffer on a magnet. Beads were blocked with
841 1 μ L of antibody (α -H3K27ac, Diagenode, C15410196; α -H3K4me3, Diagenode,
842 C15410003) in antibody binding buffer for 3-4h at 4°C with rotation. Just prior to adding
843 the chromatin, the beads were washed with antibody binding buffer.

844 Cell pellets were resuspended in 120 μ L of lysis buffer (50 mM Tris pH8, 10 mM
845 EDTA, 0.5% SDS) with 1/200 PIC and transferred into Covaris tubes (Covaris, 520045).
846 Samples were sonicated for 180 seconds using the settings aiming for 200 bp fragments.
847 Samples were diluted with lysis buffer with 1/200 PIC to a 900 μ L total volume and 100
848 μ L of 10% Triton X-100 was added to neutralise. Samples were incubated for 10 minutes
849 with rotation. 10 μ L of prewashed protein A dynabeads were added and incubated for
850 30 minutes at 4°C. Samples were placed on a magnet and 250 μ L of sample supernatant
851 was added to antibody bound beads. Chromatin/antibody/bead mixtures were
852 incubated overnight at 4°C with rotation. Samples were washed three times with 150 μ L
853 RIPA wash buffer (50 mM HEPES pH 7.6, 500 mM LiCl, 1 mM EDTA, 1% NP-40, 0.7%
854 NaDeoxycholate), once with 150 μ L TE buffer and once with 150 μ L 10 mM Tris pH 8,
855 each time for 5 minutes. Beads were resuspended in 29 μ L pre-warmed tagmentation
856 buffer with 1 μ L Tn5 transpose (Illumina, 20034197). Samples were incubated for 5
857 minutes with vigorous mixing at 1100 rpm at 37°C in a thermomixer. 150 μ L of RIPA
858 buffer was added immediately to degrade the Tn5. Beads were washed once with 150 μ L
859 of RIPA buffer and then resuspended with 22.5 μ L of ddH₂O.

860 25 μ L of 2X NEBNext Ultra II Q5 MasterMix (New England Biosciences, M0544S),
861 1.25 μ L 5 μ M universal adaptor primer and 1.25 μ L 5 μ M index adaptor primer was added
862 to each sample. Samples were transferred to a thermocycler and the following program
863 was run: 72°C for 5 minutes then 95°C for 5 minutes followed by 12 cycles of 98°C for 10
864 minutes, 63°C for 30 seconds and 72°C for 3 minutes. Following the 12 cycles, samples
865 were incubated at 72°C for 5 minutes and then held at 12°C. Supernatants were removed
866 and 50 μ L of Ampure XP beads (Beckman Coulter, A63880) were added and pipetted 10
867 times and then incubated at room temperature for 2 minutes. Beads were washed once
868 with 150 μ L 80% ethanol, incubating for 2 minutes at room temperature. The ethanol
869 was removed, and the beads were allowed to air dry for 3-5 minutes. 11 μ L of ddH₂O was
870 added to the beads to elute the DNA. The supernatant was collected.

871 DNA quality was assessed using an Agilent D100 high sensitivity screentape
872 (Agilent, 5067- 5584) and the High sensitivity D1000 reagents (Agilent, 5067- 5585) on
873 a 2200 TapeStation system (Agilent, G2964AA) and using a Qubit fluorometer. DNA-
874 sequencing to a depth of 10 million paired end reads using the Illumina NovaSeq 6000
875 platform was conducted by Novogene.

876 Data was analysed using the SeqNado analysis pipeline
877 (<https://github.com/alsmith151/SeqNado>). Peak enrichment for H3K27ac and
878 H3K4me3 was conducted for the promoters of genes previously identified as being
879 differentially regulated at the RNA level by the RNA-seq.

880

881 *Protein-mass spectrometry*

882 CD8+ T-cells were activated for 48h, harvested, and washed twice in PBS. Cells
883 were fixed in 2% PFA (Thermo Scientific, 28906) for 30 minutes, washed and
884 resuspended in PBS. Cells that were alive at the time of fixation were sorted by flow
885 cytometry using forward and side scatter into PBS. Cells were pelleted and snap frozen
886 on dry ice. Pelleted cells were lysed using the 2-step trypsin lysis protocol described by
887 Kelly et al⁵⁵. Cell pellets were resuspended in 200 µL TEAB digest buffer (0.1 M TEAB, 1
888 mM MgCl₂, 1:80 benzonase, pH 8) and incubated for 20 minutes at 37°C in a thermomixer.
889 The amount of trypsin for a 1:20 trypsin to protein (w/w) ratio was calculated and 50%
890 of the required trypsin was added. Samples were incubated overnight at 37°C in a
891 thermomixer. The remaining trypsin was added, and samples were incubated for 60
892 minutes at 37°C in a thermomixer. The samples were acidified to a final concentration of
893 1% trifluoroacetic acid (TFA) and subjected to a C18 stage-tip desalting with the
894 following buffers: condition (100% acetonitrile), wash (0.1% TFA), elute (66.6%
895 acetonitrile, 0.1% TFA), ion exchange (2:1 ratio of 100% acetonitrile to 0.1% TFA).
896 Samples were dried using a speed-vac at 65°C.

897 Protein-MS analysis was performed as described previously⁵⁶. Peptides were
898 analysed on a Q-Exactive-HF-X (Thermo Scientific) mass spectrometer coupled with a
899 Dionex Ultimate 3000 RS (Thermo Scientific). LC buffers were the following: buffer A
900 (0.1% formic acid in Milli-Q water (v/v)) and buffer B (80% acetonitrile and 0.1% formic
901 acid in Milli-Q water (v/v)). 2 µg of each sample were loaded at 15 µL/min onto a trap
902 column (100 µm × 2 cm, PepMap nanoViper C18 column, 5 µm, 100 Å, Thermo Scientific)
903 equilibrated in 0.1% TFA. The trap column was washed for 3 minutes at the same flow
904 rate with 0.1% TFA then switched in-line with a Thermo Scientific, resolving C18 column
905 (75 µm × 50 cm, PepMap RSLC C18 column, 2 µm, 100 Å). The peptides were eluted from
906 the column at a constant flow rate of 300 nl/minute with a linear gradient from 3% buffer

907 B to 6% buffer B in 5 minutes, then from 6% buffer B to 35% buffer B in 115 minutes, and
908 finally to 80% buffer B within 7 minutes. The column was then washed with 80% buffer
909 B for 4 minutes and re-equilibrated in 3% buffer B for 15 minutes. Two blanks were run
910 between each sample to reduce carry-over. The column was always kept at a constant
911 temperature of 50°C.

912 The data were acquired using an easy spray source operated in positive mode with
913 spray voltage at 1.9 kV, the capillary temperature at 250°C and the funnel RF at 60°C. The
914 MS was operated in data-independent acquisition (DIA) mode as reported earlier with
915 some modifications⁵⁷. A scan cycle comprised a full MS scan (m/z range from 350–1650,
916 with a maximum ion injection time of 20 ms, a resolution of 120,000 and automatic gain
917 control (AGC) value of 5×10^6). MS survey scan was followed by MS/MS DIA scan events
918 using the following parameters: default charge state of 3, resolution 30.000, maximum
919 ion injection time 55 ms, AGC 3×10^6 , stepped normalized collision energy 25.5, 27 and
920 30, fixed first mass 200 m/z. Data for both MS and MS/MS scans were acquired in profile
921 mode. Mass accuracy was checked before the start of sample analysis.

922 Quantification of reporter ions was completed using Spectronaut (Biognosys;
923 Spectronaut 14.10.201222.47784) in library-free (directDIA) mode. Minimum peptide
924 length was set to 7, and maximum peptide length was set to 52, with a maximum of 2
925 missed cleavages. Trypsin was specified as the digestive enzyme used. The FDR at the
926 precursor ion level and protein level was set at 1% (protein and precursor Q value cutoff).
927 The max number of variable modifications was set to 5, with protein N-terminal
928 acetylation and glutamine and asparagine deamidation and methionine oxidation set as
929 variable modifications. Carbamidomethylation of cysteine residues was selected as a
930 fixed modification. Data filtering and protein copy number quantification were
931 performed in the Perseus software package, version 1.6.6.0. Copy numbers were
932 calculated using the proteomic ruler⁵⁸. This method sets the summed peptide intensities
933 of the histones to the number of histones in a typical diploid cell. The ratio between the
934 histone peptide intensity and summed peptide intensities of all other identified proteins
935 is then used to estimate the protein copy number per cell for all the identified proteins.
936 Data was subsequently analysed using custom R scripts. A $\log_2|\text{fold change}| > 0.585$
937 (equivalent to $|\text{fold change}| > 1.5$) was used (as used in Howden et al¹³). We also applied
938 the typical p-value threshold of <0.05 when comparing the high (0.625 mg/mL

939 holotransferrin) and low (0.001 mg/mL holotransferrin) iron concentrations via a t-test
940 as well as an additional threshold of p-values < 0.05 when a one-way ANOVA was
941 conducted across all conditions. For RNA-seq, GSEA was conducted using FGSEA (R
942 package) and the Hallmark pathways. For analysing mitochondrial proteins, proteins
943 were filtered by inclusion in the MitoCarta3.0 gene set²¹. Data Availability: The mass
944 spectrometry proteomics data have been deposited to the ProteomeXchange Consortium
945 via the PRIDE⁵⁹ partner repository with the dataset identifier PXD047814.

946

947 *¹³C6-glucose and ¹³C5-glutamine tracing*

948 For heavy isotope tracing experiments, CD8+ T-cells were isolated and activated as
949 described above. Iron free media with varying holotransferrin concentrations was
950 prepared using phenol red free RPMI 1640 (Gibco, 11835030) as phenol red can interfere
951 with metabolite-ms. At 24h prior to cell collection (24h post activation), cells were
952 collected, washed, and replated in media containing the heavy isotope of interest (¹³C6-
953 glucose (Cambridge Isotope Laboratories, Inc., CLM-1396-1) and ¹³C5-glutamine (CK
954 Isotopes, CNLM-1275)) on plates coated with α -CD3. Iron free tracing media was
955 prepared using SILAC RPMI 1640 flex media (Gibco, A24945201) which lacks glucose,
956 phenol red, glutamine, arginine, and lysine. Argine (MP Biomedicals, 194626) and lysine
957 hydrochloride (MP Biomedicals, 194697) were supplemented at standard RPMI 1640
958 concentrations of 1.2 mM and 0.2 mM respectively. For ¹³C6-glucose tracing, glutamine
959 (Sigma Aldrich, G7513-100ML) was added at 2 mM and ¹³C6-glucose at 11.1 mM. For
960 ¹³C5-glutamine tracing, ¹³C5-glutamine was added at 2 mM and glucose (Sigma Aldrich,
961 158968-100G) at 11.1 mM. Holotransferrin and apotransferrin as well as activation
962 reagents (BME, α -CD28 and IL-2) were added to the iron free tracing media as described
963 in section 2.3 at standard concentrations. Metabolites were measured by Gas
964 chromatography-mass spectrometry as described below.

965

966 *Gas chromatography-mass spectrometry (GC/MS) for metabolites*

967 48h activated CD8+ T-cells were collected, counted and 2-4x10⁶ cells were washed
968 twice in ice cold 0.9% saline made with NaCl (Sigma Aldrich, 31434-500G-M) and
969 ultrapure HPLC grade water (Alfa Aesar, 22934). Cells were pelleted and snap frozen on

970 dry ice. Cells were extracted in 1:1:1 pre-chilled methanol, HPLC-grade water (containing
971 1.75 µg/mL D6-glutaric acid) and chloroform. The extracts were shaken at 1400 rpm for
972 15 minutes at 4°C and centrifuged at 12,000 g for 15 minutes at 4°C. The upper aqueous
973 phase was collected and evaporated under vacuum. Metabolite derivatization was
974 performed using an Agilent autosampler. Dried polar metabolites were dissolved in 15
975 µL of 2% methoxyamine hydrochloride in pyridine (Thermo Fisher Scientific, 25104) at
976 55°C, followed by an equal volume of N-tert-Butyldimethylsilyl-N-
977 methyltrifluoroacetamide with 1% tertbutyldimethylchlorosilane after 60 minutes, and
978 incubation for a further 90 minutes at 55°C. GC-MS analysis was performed using an
979 Agilent 6890GC equipped with a 30m DB-35 MS capillary column. The GC was connected
980 to an Agilent 5975C MS operating under electron impact ionization at 70 eV. The MS
981 source was held at 230°C and the quadrupole at 150°C. The detector was operated in scan
982 mode and 1 µL of derivatised sample was injected in splitless mode. Helium was used as
983 a carrier gas at a flow rate of 1 mL/min. The GC oven temperature was held at 80°C for 6
984 minutes and increased to 325°C at a rate of 10°C/minutes for 4 minutes. The run time for
985 each sample was 59 minutes. For determination of the mass isotopomer distributions
986 (MIDs), spectra were corrected for natural isotope abundance. Data processing was
987 performed using MATLAB.

988

989 *Liquid chromatography-mass spectrometry (LC/MS) for AICAR detection*

990 CD8+ T-cells were collected after 48h of culture and 3x10⁶ cells were washed
991 twice with PBS. Dry pellets were snap frozen on dry ice. Cell pellets were resuspended
992 in 0.01% formic acid (Sigma Aldrich, 1003445799) containing 0.8 µM 15N₂-dT
993 (Cambridge Isotope Labs, NLM-3901-PK) and were incubated for 37°C for 30 minutes.
994 Samples were centrifuged at maximum speed for 10 minutes and the lysates were
995 collected and added to 3 kDa amicon ultra 0.5 centrifugal filter units (Millipore,
996 UFC500324) and centrifuged for 20 minutes at 16000 g. The filtrates were transferred
997 to a mass spectrometry vial for analysis of compounds in nucleotide synthesis.

998 Samples were analysed on a TSQ Altis Triple Quadrupole Mass Spectrometer in
999 selected reaction monitoring mode (SRM) interfaced to an UltiMate 3000 uHPLC. The
1000 uHPLC was fitted with a nanoEase M/Z Symmetry C18 Trap Column, 100Å, 5 µm, 180 µm

1001 \times 20 mm (Waters) at RT and a Luna Omega 3 μ m PS C18 column (150 x 0.3 mm) connected
1002 to an EASY-SprayTM source with an EASY-Spray Cap flow emitter (15 μ M). 10 μ l of sample
1003 was injected per run via a 10 μ l sample loop. Buffers used were from Romil and of Ultra
1004 LC standard. Buffer A: H₂O (0.1 % acetic acid), buffer B MeCN (0.1 % acetic acid). The
1005 gradient was 0-2.8 min – 1 % B, 22 min – 30 % B, 23.5 min – 99 % B. This was followed
1006 by 2 wash pulses (1-99 % B) and equilibration to 1% B (45 min total run time). The trap
1007 column was held at a constant 1 % B and switching from the trap to the main column
1008 occurred at 1 min and back at 40 min. Mass spectrometry conditions were as follows:
1009 source voltage of 2400V in positive ionisation mode; ion transfer tube temperature
1010 275 °C, CID gas pressure 1.5 mTorr, scan widths for Q1 and Q3 at 0.7 m/z , a
1011 chromatographic filter was used with a peak width of 6 sec, dwell time 20 ms. Collision
1012 energy voltage and RF voltage were optimized using the Thermo Tune software using for
1013 the compounds assayed using authentic compounds dissolved in Buffer A. Peaks
1014 retention times were confirmed in samples by co-injection with the relevant standard.

1015 Data was analysed using the FreeStyle 1.6 software and the Genesis peak detection
1016 algorithm with its default settings. Data was analysed by ratioing the target peak area
1017 with the ¹⁵N₂-dT peak area.

1018

1019 *Liquid chromatography-mass spectrometry (LC/MS) for nucleotides and nucleotide*
1020 *precursors*

1021 48h CD8+ T-cells were collected at 48h post-activation and 3x10⁶ cells were
1022 washed twice with ice cold 0.9% saline made with NaCl (Sigma Aldrich, 31434-500G-M)
1023 and ultrapure HPLC grade water (Alfa Aesar, 22934). Cells were pelleted and snap frozen
1024 on dry ice. Metabolites were extracted with 100 μ L of ice-cold extraction buffer (40%
1025 methanol (Biosolve, BIO-13687802), 40% acetonitrile (Biosolve, BIO-01204102), 20%
1026 water (Biosolve, BIO-23214102-1), 15 μ M glutaric acid internal standard and 0.5%
1027 formic acid (Biosolve, BIO-069141A8)) for 5 minutes on ice. 8.8 μ L of 15% ammonium
1028 bicarbonate (Supelco, 5.33005) solution was added to neutralise and samples were left
1029 on dry ice for a further 15 minutes. Samples were thawed on ice and then centrifuged at
1030 20 G at 4°C for 5 minutes. Supernatants were collected for LC-MS analysis.

1031 LCMS analysis was performed on an Agilent LCMS QToF 6546 using a Waters
1032 Premier BEH Z-HILIC VanGuard Fit column (1.7 μ m, 2.1 mm x 150 mm) with the following
1033 mobile phases:

1034 Mobile phase A: 20 mM Ammonium hydrogen carbonate (LiChropur, Supelco) in
1035 LC-MS grade water (Ultra CHROMASOLV, Honeywell Riedel-de Haën) with 0.1%
1036 ammonium hydroxide (Alfa Aesar, Thermo Scientific) and 5 μ M InfinityLab deactivator
1037 additive (Agilent Technologies).

1038 Mobile phase B: 90% UHPLC grade acetonitrile (BioSolv, Greyhound Chemicals),
1039 10% LC-MS grade water (Ultra CHROMASOLV, Honeywell Riedel-de Haën) with 5 μ M
1040 InfinityLab deactivator additive (Agilent Technologies).

1041 5 μ l of sample was injected and the chromatographic separation was achieved
1042 with a gradient run with a constant flow rate of 0.2 mL/min and the following program:
1043 T = 0 min, 10% A, 90% B; T = 2 min, 10% A, 90% B; T = 18 min, 35% A, 65% B; T = 22
1044 min, 65% A, 35% B; T = 22.1 min, 85% A, 15% B; T = 25 min, 85% A, 15% B; T = 25.1
1045 min, 10% A, 90% B; T = 30 min, 10% A, 90% B.

1046 Full scan data was acquired between m/z 50 – 1050 at 1 Hz whilst using online
1047 mass correction. Analyte ionisation was achieved via ESI (negative polarity) with the
1048 following parameters: VCap: 2000 V, Nozzle Voltage: 500 V, gas temperature: 225 °C,
1049 drying gas: 8 l/min, nebulizer: 30 psi, sheath gas temp: 300 °C, sheath gas flow 12 l/min.
1050 Data extraction was performed using Agilent Profinder 10.0. Data was normalised to the
1051 internal standard (D6-Glutaric acid) peak area using an in-house R script.

1052

1053 *NAD+/NADH ratio measurements*

1054 NAD+/NADH ratio measurements were made using the NAD/NADH-Glo assay
1055 (Promega, G9071) according to the manufacturer's instructions with modifications for
1056 measuring NAD+ and NADH individually (rather than pooled). Cultured CD8+ T-cells
1057 were collected, washed in PBS, and counted. 1x10⁵ cells in 50 μ L of PBS were lysed in 50
1058 μ L of 0.2 M NaOH (Sigma Aldrich, 30620-1KG-M) with 1% dodecyltrimethylammonium
1059 bromide (DTAB, Alfa Aesar, A10761) per condition in technical duplicates. Each sample
1060 was split (50 μ L) into a second tube for matched NAD+ and NADH measurements.

1061 For measurement of NAD+, NADH was first degraded by adding 25 μ L of 0.4 M HCl
1062 (Fisher Scientific, H/1111/PB17) to the first tube, heated to 60°C for 15 minutes followed
1063 by incubation at room temperature for 10 minutes. 25 μ L 0.5 M TRIZMA base (Sigma
1064 Aldrich, T1503-1KG) was added to quench the HCl.

1065 To measure NADH, NAD⁺ was degraded by heating the second tube to 60°C for 15
1066 minutes followed by incubation at room temperature for 10 minutes. 50 µL of 0.2 M HCl
1067 (Fisher Scientific, H/1111/PB17) and 0.25 M TRIZMA base (Sigma Aldrich, T1503-1KG)
1068 solution was added to quench the NaOH.

1069 The NAD/NADH-Glo detection reagent was prepared as instructed. 50 µL of each
1070 sample (either purified for NAD⁺ or NADH) and 50 µL of NAD/NADH-Glo detection
1071 reagent was added to a white 96 well plate and mixed gently. The plate was incubated at
1072 room temperature and luminescence was measured using a Promega GloMax multi-
1073 detection luminometer at 30, 45 and 60 minutes.

1074

1075 *Extracellular flux analysis assay*

1076 Extracellular flux analysis (Seahorse) was conducted using the Seahorse XF Real-
1077 Time ATP rate assay kit (Agilent, 103592-100). The day prior to the assay, the Agilent
1078 Seahorse XF96 analyser was turned on and a sensor cartridge (Agilent, 103792-100) was
1079 hydrated in sterile dH₂O at 37°C in a non-CO₂ incubator overnight. The water was
1080 replaced by Seahorse XF calibrant (Agilent, 103059-000) on the day of the assay and the
1081 cartridge was incubated for 1 hour prior to loading the drug ports. The day of the assay,
1082 ATP assay media was prepared using 1 mM pyruvate (Agilent, 103578-100), 2 mM
1083 glutamine (Agilent, 103579-100), 10 mM glucose (Agilent, 103577-100) in Seahorse XF
1084 RPMI pH 7.4 (Agilent, 103576-100) and warmed to 37°C. Cells were collected, washed
1085 and 1x10⁵ cells in 50 µL of ATP assay media were plated per well on a Poly-D-lysine
1086 (Gibco, A3890401) coated XF96 microplate (Agilent, 101085-004). Plates were spun
1087 down, supernatant removed, and cells incubated at 37°C for 30 minutes in a non-CO₂
1088 incubator followed by addition of 130 µL of ATP assay media and further incubation for
1089 25-30 minutes. Oligomycin and rotenone/antimycin A were used at a final concentration
1090 of 1.5 µM and 0.5 µM respectively. 20 µL of oligomycin (15 µM) and 22 µL of
1091 rotenone/antimycin A (5 µM) were loaded into the sensor cartridge in ports A and B
1092 respectively. The ATP rate assay was run on a Seahorse XF96 analyser with 3
1093 measurements taken for each step (baseline, oligomycin, rotenone/antimycin A) using
1094 the following injection settings: 3 minutes mix, 0 minutes wait, 3 minutes measure. Data

1095 was analysed using the Agilent Seahorse Wave desktop software (version 2.6) and the
1096 Seahorse XF real-time ATP rate assay report generator.

1097

1098 *Flow cytometry*

1099 Cells were transferred from cell culture plates to 96 well round bottom plates and
1100 washed with PBS.

1101 In intracellular cytokine staining experiments, cells were first stimulated with cell
1102 activation cocktail (1:500 or 1:2500) (Biolegend, 423301), BFA (5 mg/mL) (Biolegend,
1103 420601) and monensin (2 mM) (Biolegend, 420701) in iron free media at 37°C/5% CO₂
1104 for 5h prior to staining.

1105 Cells were stained with 20 µL of surface antibody cocktail with Zombie NIR fixable
1106 viability kit (1:400-1000, Biolegend, 423105) in PBS for 20 minutes on ice. Cells were
1107 fixed with 2% paraformaldehyde (Pierce, 28906) diluted in PBS or commercial fixation
1108 buffer (Biolegend, 420801) for 20 minutes on ice. For nuclear staining of markers such
1109 as H3K27me3, cells were fixed in Foxp3 transcription factor fixation buffer (eBioscience,
1110 00-5523-00) for 1h on ice.

1111 For intracellular staining, cells were permeabilised in perm/wash buffer
1112 (Biolegend, 421002) for 20 minutes. Intracellular targets were stained with 20 µL of
1113 intracellular stain prepared in perm/wash buffer for 20 minutes to overnight. Cells were
1114 resuspended in PBS and data was acquired using an Attune NxT flow cytometer
1115 (Thermofisher Scientific). Data was analysed using FlowJo (BD biosciences).

1116 Detection of mROS was conducted using MitoSOX dye (Invitrogen, M36008). Cells
1117 were resuspended in 200 µL of MitoSOX dye diluted to 5 µM in phenol red iron free media
1118 and incubated at 37°C/5% CO₂ for 15 minutes before surface staining. Acquisition was
1119 conducted on live cells.

1120 Cells were stained with Mitotracker Green (MTG; M7514, Thermofisher Scientific)
1121 and Mitotracker Deep Red (MTDR; M22426, Thermofisher Scientific) at 100nM in iron
1122 free media for 30 minutes at 37°C/5% CO₂ prior to staining. Cells were acquired live. The
1123 ratio of MTDR to MTG was calculated as a metric of mitochondrial membrane potential
1124 relative to mitochondrial mass.

1125 For flow staining for the metabolic regulators, pS6 and HIF1 α , cells were washed
1126 once with a solution of 50% RPMI 1640, 50% HBSS (Gibco, 14025-092) and 0.5% BSA
1127 (PAN biotech, P06-139310) before fixation in 1% PFA (Pierce, 28906) for 20 minutes.
1128 Cells were washed with PBS and optionally surface stained for fixation stable epitopes.
1129 Cells were permeabilised using 90% ice cold methanol (Sigma Aldrich, 34860-1L-R) for
1130 20 minutes at -20°C prior to permeabilization and acquisition.

1131

1132 *Cell counting by flow cytometry.*

1133 Cells were transferred into 96 well round bottom TC plates and washed once with
1134 2% FBS in PBS (FACS buffer). Cells were resuspended in FACS buffer containing 0.5
1135 μ g/mL 7-AAD (Biolegend, 420403) and incubated on ice for 10 minutes and then
1136 acquired directly on the Attune NxT flow cytometer (Thermofisher Scientific). 50 μ L of
1137 cells were acquired per well to enable accurate calculation of cell concentration and wells
1138 were resuspended using a multichannel between each column on the 96 well plate to
1139 account for cell settling effects.

1140

1141 *Data analysis*

1142 Unless explicitly specified, data analysis was completed using Excel (Microsoft),
1143 Prism (GraphPad), FlowJo (BD biosciences) or custom scripts written in the R coding
1144 language. Statistics are specified in Fig. legends.

1145

1146

1147

1148

1149

1150

1151

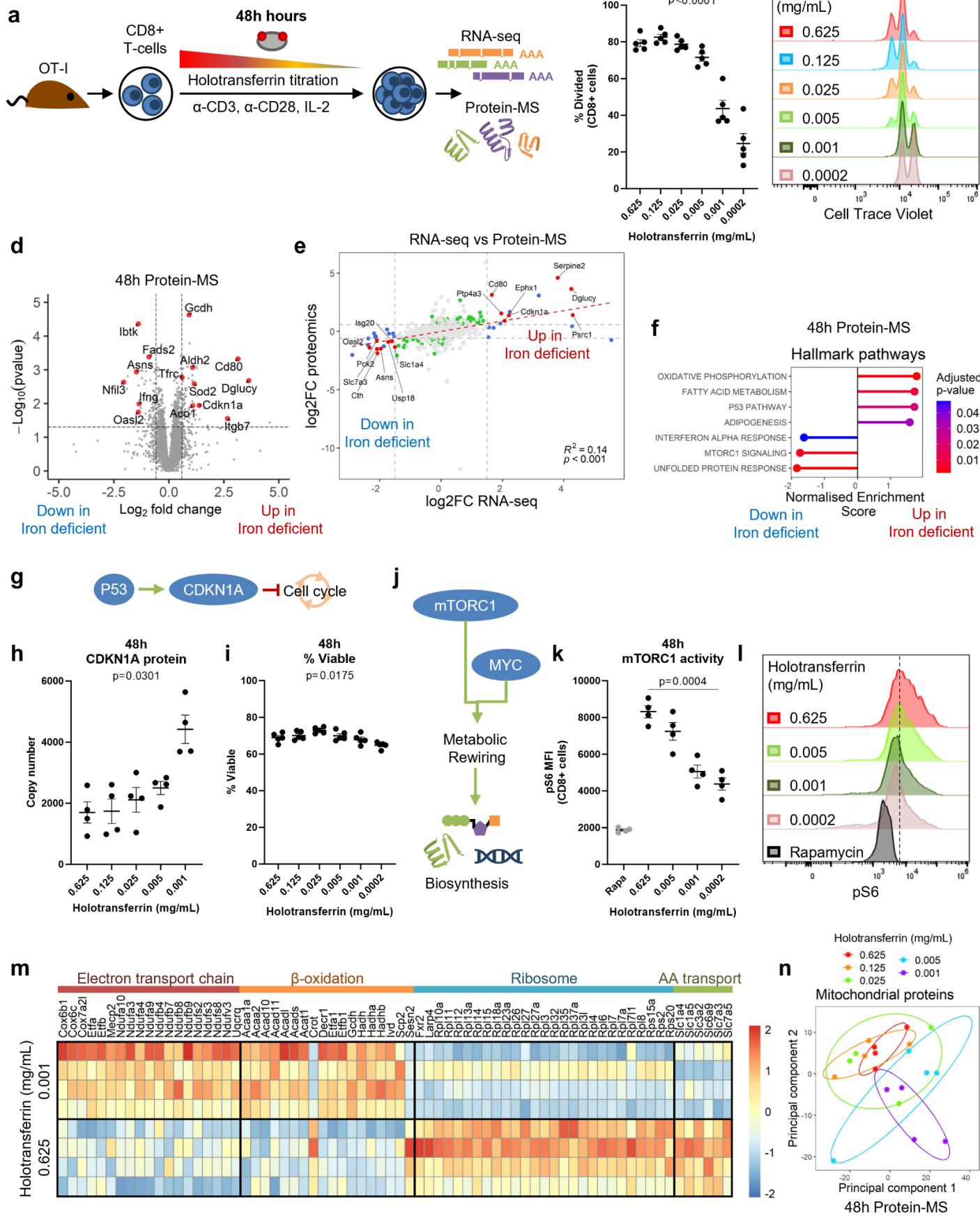
1152

1153 **References**

- 1154 1 Ryan, D. G. *et al.* Coupling Krebs cycle metabolites to signalling in immunity and
1155 cancer. *Nat Metab* **1**, 16-33 (2019). <https://doi.org/10.1038/s42255-018-0014-7>
- 1156 2 Finley, L. W. S. What is cancer metabolism? *Cell* **186**, 1670-1688 (2023).
1157 <https://doi.org/10.1016/j.cell.2023.01.038>
- 1158 3 Prevalence, years lived with disability, and trends in anaemia burden by severity
1159 and cause, 1990-2021: findings from the Global Burden of Disease Study 2021.
1160 *Lancet Haematol* **10**, e713-e734 (2023). [https://doi.org/10.1016/s2352-
1161 3026\(23\)00160-6](https://doi.org/10.1016/s2352-3026(23)00160-6)
- 1162 4 Pasricha, S. R., Tye-Din, J., Muckenthaler, M. U. & Swinkels, D. W. Iron deficiency.
1163 *Lancet* **397**, 233-248 (2021). [https://doi.org/10.1016/s0140-6736\(20\)32594-0](https://doi.org/10.1016/s0140-6736(20)32594-0)
- 1164 5 Frost, J. N. *et al.* Hepcidin-Mediated Hypoferremia Disrupts Immune Responses to
1165 Vaccination and Infection. *Med (N Y)* **2**, 164-179.e112 (2021).
1166 <https://doi.org/10.1016/j.medj.2020.10.004>
- 1167 6 Andreini, C., Putignano, V., Rosato, A. & Banci, L. The human iron-proteome.
1168 *Metallomics* **10**, 1223-1231 (2018). <https://doi.org/10.1039/c8mt00146d>
- 1169 7 Dautry-Varsat, A. Receptor-mediated endocytosis: the intracellular journey of
1170 transferrin and its receptor. *Biochimie* **68**, 375-381 (1986).
1171 [https://doi.org/10.1016/s0300-9084\(86\)80004-9](https://doi.org/10.1016/s0300-9084(86)80004-9)
- 1172 8 Armitage, A. E. *et al.* Rapid growth is a dominant predictor of hepcidin suppression
1173 and declining ferritin in Gambian infants. *Haematologica* **104**, 1542-1553 (2019).
1174 <https://doi.org/10.3324/haematol.2018.210146>
- 1175 9 Shah, A., Frost, J. N., Aaron, L., Donovan, K. & Drakesmith, H. Systemic
1176 hypoferremia and severity of hypoxemic respiratory failure in COVID-19. *Crit Care*
1177 **24**, 320 (2020). <https://doi.org/10.1186/s13054-020-03051-w>
- 1178 10 Jabara, H. H. *et al.* A missense mutation in TFRC, encoding transferrin receptor 1,
1179 causes combined immunodeficiency. *Nature Genetics* **48**, 74-78 (2016).
1180 <https://doi.org/10.1038/ng.3465>
- 1181 11 Reina-Campos, M., Schäring, N. E. & Goldrath, A. W. CD8(+) T cell metabolism in
1182 infection and cancer. *Nat Rev Immunol* **21**, 718-738 (2021).
1183 <https://doi.org/10.1038/s41577-021-00537-8>

- 1184 12 Teh, M. R., Frost, J. N., Armitage, A. E. & Drakesmith, H. Analysis of Iron and Iron-
1185 Interacting Protein Dynamics During T-Cell Activation. *Front Immunol* **12**, 714613
1186 (2021). <https://doi.org/10.3389/fimmu.2021.714613>
- 1187 13 Howden, A. J. M. *et al.* Quantitative analysis of T cell proteomes and environmental
1188 sensors during T cell differentiation. *Nat Immunol* **20**, 1542-1554 (2019).
1189 <https://doi.org/10.1038/s41590-019-0495-x>
- 1190 14 Wilkinson, N. & Pantopoulos, K. The IRP/IRE system in vivo: insights from mouse
1191 models. *Front Pharmacol* **5**, 176 (2014).
1192 <https://doi.org/10.3389/fphar.2014.00176>
- 1193 15 Levine, A. J., Hu, W. & Feng, Z. The P53 pathway: what questions remain to be
1194 explored? *Cell Death Differ* **13**, 1027-1036 (2006).
1195 <https://doi.org/10.1038/sj.cdd.4401910>
- 1196 16 Pereira, M. *et al.* Acute Iron Deprivation Reprograms Human Macrophage
1197 Metabolism and Reduces Inflammation In Vivo. *Cell Rep* **28**, 498-511.e495 (2019).
1198 <https://doi.org/10.1016/j.celrep.2019.06.039>
- 1199 17 Lai, Y. *et al.* Iron controls T helper cell pathogenicity by promoting glucose
1200 metabolism in autoimmune myopathy. *Clin Transl Med* **12**, e999 (2022).
1201 <https://doi.org/10.1002/ctm2.999>
- 1202 18 Kim, B. M., Choi, J. Y., Kim, Y. J., Woo, H. D. & Chung, H. W. Desferrioxamine (DFX)
1203 has genotoxic effects on cultured human lymphocytes and induces the p53-
1204 mediated damage response. *Toxicology* **229**, 226-235 (2007).
1205 <https://doi.org/10.1016/j.tox.2006.10.022>
- 1206 19 An, W. G. *et al.* Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha.
1207 *Nature* **392**, 405-408 (1998). <https://doi.org/10.1038/32925>
- 1208 20 Ross, S. H., Rollings, C. M. & Cantrell, D. A. Quantitative Analyses Reveal How
1209 Hypoxia Reconfigures the Proteome of Primary Cytotoxic T Lymphocytes. *Front
1210 Immunol* **12**, 712402 (2021). <https://doi.org/10.3389/fimmu.2021.712402>
- 1211 21 Rath, S. *et al.* MitoCarta3.0: an updated mitochondrial proteome now with sub-
1212 organelle localization and pathway annotations. *Nucleic Acids Res* **49**, D1541-
1213 d1547 (2021). <https://doi.org/10.1093/nar/gkaa1011>
- 1214 22 Paul, B. T., Manz, D. H., Torti, F. M. & Torti, S. V. Mitochondria and Iron: current
1215 questions. *Expert Rev Hematol* **10**, 65-79 (2017).
1216 <https://doi.org/10.1080/17474086.2016.1268047>

- 1217 23 Turrens, J. F. Mitochondrial formation of reactive oxygen species. *J Physiol* **552**,
1218 335-344 (2003). <https://doi.org/10.1113/jphysiol.2003.049478>
- 1219 24 Pearce, E. L., Poffenberger, M. C., Chang, C. H. & Jones, R. G. Fueling immunity:
1220 insights into metabolism and lymphocyte function. *Science* **342**, 1242454 (2013).
<https://doi.org/10.1126/science.1242454>
- 1222 25 Bera, S. *et al.* Allosteric regulation of glutamate dehydrogenase deamination
1223 activity. *Sci Rep* **10**, 16523 (2020). <https://doi.org/10.1038/s41598-020-73743-4>
- 1225 26 Islam, M. S., Leissing, T. M., Chowdhury, R., Hopkinson, R. J. & Schofield, C. J. 2-
1226 Oxoglutarate-Dependent Oxygenases. *Annu Rev Biochem* **87**, 585-620 (2018).
<https://doi.org/10.1146/annurev-biochem-061516-044724>
- 1228 27 Jaccard, A. *et al.* Reductive carboxylation epigenetically instructs T cell
1229 differentiation. *Nature* **621**, 849-856 (2023). <https://doi.org/10.1038/s41586-023-06546-y>
- 1231 28 Loenarz, C. & Schofield, C. J. Physiological and biochemical aspects of
1232 hydroxylations and demethylations catalyzed by human 2-oxoglutarate
1233 oxygenases. *Trends Biochem Sci* **36**, 7-18 (2011).
<https://doi.org/10.1016/j.tibs.2010.07.002>
- 1235 29 Markolovic, S., Wilkins, S. E. & Schofield, C. J. Protein Hydroxylation Catalyzed by
1236 2-Oxoglutarate-dependent Oxygenases. *J Biol Chem* **290**, 20712-20722 (2015).
<https://doi.org/10.1074/jbc.R115.662627>
- 1238 30 Cribbs, A. P. *et al.* Histone H3K27me3 demethylases regulate human Th17 cell
1239 development and effector functions by impacting on metabolism. *Proc Natl Acad
1240 Sci U S A* **117**, 6056-6066 (2020). <https://doi.org/10.1073/pnas.1919893117>
- 1241 31 Russ, B. E. *et al.* Distinct epigenetic signatures delineate transcriptional programs
1242 during virus-specific CD8(+) T cell differentiation. *Immunity* **41**, 853-865 (2014).
<https://doi.org/10.1016/j.jimmuni.2014.11.001>
- 1244 32 Villa, E., Ali, E. S., Sahu, U. & Ben-Sahra, I. Cancer Cells Tune the Signaling Pathways
1245 to Empower de Novo Synthesis of Nucleotides. *Cancers (Basel)* **11** (2019).
<https://doi.org/10.3390/cancers11050688>
- 1247 33 Morris, S. M., Jr. Regulation of enzymes of the urea cycle and arginine metabolism.
1248 *Annu Rev Nutr* **22**, 87-105 (2002).
<https://doi.org/10.1146/annurev.nutr.22.110801.140547>


- 1250 34 Hope, H. C. *et al.* Coordination of asparagine uptake and asparagine synthetase
1251 expression modulates CD8+ T cell activation. *JCI Insight* **6** (2021).
<https://doi.org/10.1172/jci.insight.137761>
- 1253 35 Birsoy, K. *et al.* An Essential Role of the Mitochondrial Electron Transport Chain in
1254 Cell Proliferation Is to Enable Aspartate Synthesis. *Cell* **162**, 540-551 (2015).
<https://doi.org/10.1016/j.cell.2015.07.016>
- 1256 36 Sullivan, L. B. *et al.* Supporting Aspartate Biosynthesis Is an Essential Function of
1257 Respiration in Proliferating Cells. *Cell* **162**, 552-563 (2015).
<https://doi.org/10.1016/j.cell.2015.07.017>
- 1259 37 Schwartz, A. J. *et al.* Hepcidin sequesters iron to sustain nucleotide metabolism and
1260 mitochondrial function in colorectal cancer epithelial cells. *Nature Metabolism* **3**,
1261 969-982 (2021). <https://doi.org/10.1038/s42255-021-00406-7>
- 1262 38 Pedley, A. M. & Benkovic, S. J. A New View into the Regulation of Purine
1263 Metabolism: The Purinosome. *Trends Biochem Sci* **42**, 141-154 (2017).
<https://doi.org/10.1016/j.tibs.2016.09.009>
- 1265 39 Leone, R. D. *et al.* Glutamine blockade induces divergent metabolic programs to
1266 overcome tumor immune evasion. *Science* **366**, 1013-1021 (2019).
<https://doi.org/10.1126/science.aav2588>
- 1268 40 Elia, I. *et al.* Tumor cells dictate anti-tumor immune responses by altering
1269 pyruvate utilization and succinate signaling in CD8(+) T cells. *Cell Metab* **34**, 1137-
1270 1150.e1136 (2022). <https://doi.org/10.1016/j.cmet.2022.06.008>
- 1271 41 Coggins, S. A., Mahboubi, B., Schinazi, R. F. & Kim, B. SAMHD1 Functions and
1272 Human Diseases. *Viruses* **12** (2020). <https://doi.org/10.3390/v12040382>
- 1273 42 Franzolin, E. *et al.* The deoxynucleotide triphosphohydrolase SAMHD1 is a major
1274 regulator of DNA precursor pools in mammalian cells. *Proc Natl Acad Sci USA* **110**,
1275 14272-14277 (2013). <https://doi.org/10.1073/pnas.1312033110>
- 1276 43 Rehwinkel, J. *et al.* SAMHD1-dependent retroviral control and escape in mice.
1277 *Embo j* **32**, 2454-2462 (2013). <https://doi.org/10.1038/emboj.2013.163>
- 1278 44 Ruprecht, J. J. & Kunji, E. R. S. The SLC25 Mitochondrial Carrier Family: Structure
1279 and Mechanism. *Trends Biochem Sci* **45**, 244-258 (2020).
<https://doi.org/10.1016/j.tibs.2019.11.001>

- 1281 45 Talpaz, M., Mercer, J. & Hehlmann, R. The interferon-alpha revival in CML. *Ann*
1282 *Hematol* **94 Suppl 2**, S195-207 (2015). <https://doi.org/10.1007/s00277-015-2326-y>
- 1284 46 Li, L. *et al.* Iron deprivation restrains the differentiation and pathogenicity of T
1285 helper 17 cell. *J Leukoc Biol* **110**, 1057-1067 (2021).
1286 <https://doi.org/10.1002/jlb.3ma0821-015r>
- 1287 47 Voss, K. *et al.* Elevated transferrin receptor impairs T cell metabolism and function
1288 in systemic lupus erythematosus. *Sci Immunol* **8**, eabq0178 (2023).
1289 <https://doi.org/10.1126/sciimmunol.abq0178>
- 1290 48 Wang, Z. *et al.* Iron Drives T Helper Cell Pathogenicity by Promoting RNA-Binding
1291 Protein PCBP1-Mediated Proinflammatory Cytokine Production. *Immunity* **49**, 80-
1292 92.e87 (2018). <https://doi.org/10.1016/j.jimmuni.2018.05.008>
- 1293 49 Henderson, S. A., Dallman, P. R. & Brooks, G. A. Glucose turnover and oxidation are
1294 increased in the iron-deficient anemic rat. *Am J Physiol* **250**, E414-421 (1986).
1295 <https://doi.org/10.1152/ajpendo.1986.250.4.E414>
- 1296 50 Shapiro, J. S. *et al.* Iron drives anabolic metabolism through active histone
1297 demethylation and mTORC1. *Nat Cell Biol* **25**, 1478-1494 (2023).
1298 <https://doi.org/10.1038/s41556-023-01225-6>
- 1299 51 Henning, A. N., Roychoudhuri, R. & Restifo, N. P. Epigenetic control of CD8(+) T cell
1300 differentiation. *Nat Rev Immunol* **18**, 340-356 (2018).
1301 <https://doi.org/10.1038/nri.2017.146>
- 1302 52 McNeill, L. A. *et al.* Hypoxia-inducible factor prolyl hydroxylase 2 has a high affinity
1303 for ferrous iron and 2-oxoglutarate. *Mol Biosyst* **1**, 321-324 (2005).
1304 <https://doi.org/10.1039/b511249b>
- 1305 53 Warburg, O. IRON, THE OXYGEN-CARRIER OF RESPIRATION-FERMENT. *Science*
1306 **61**, 575-582 (1925). <https://doi.org/10.1126/science.61.1588.575>
- 1307 54 Firkin, F. a. R., B. Interpretation of biochemical tests for iron deficiency: diagnostic
1308 difficulties related to limitations of individual tests. *Aust Prescr* **20**, 74-76 (1997).
1309 <https://doi.org/https://doi.org/10.18773/austprescr.1997.063>
- 1310 55 Kelly, V., Al-Rawi, A., Lewis, D., Kustatscher, G. & Ly, T. Low Cell Number Proteomic
1311 Analysis Using In-Cell Protease Digests Reveals a Robust Signature for Cell Cycle
1312 State Classification. *Mol Cell Proteomics* **21**, 100169 (2022).
1313 <https://doi.org/10.1016/j.mcpro.2021.100169>

- 1314 56 Reyes, L. *et al.* -----A type I IFN, prothrombotic hyperinflammatory neutrophil
1315 signature is distinct for COVID-19 ARDS. *Wellcome Open Res* **6**, 38 (2021).
1316 <https://doi.org/10.12688/wellcomeopenres.16584.2>
- 1317 57 Muntel, J. *et al.* Surpassing 10 000 identified and quantified proteins in a single run
1318 by optimizing current LC-MS instrumentation and data analysis strategy. *Mol*
1319 *Omics* **15**, 348-360 (2019). <https://doi.org/10.1039/c9mo00082h>
- 1320 58 Wiśniewski, J. R., Hein, M. Y., Cox, J. & Mann, M. A "proteomic ruler" for protein
1321 copy number and concentration estimation without spike-in standards. *Mol Cell*
1322 *Proteomics* **13**, 3497-3506 (2014). <https://doi.org/10.1074/mcp.M113.037309>
- 1323 59 Perez-Riverol, Y. *et al.* The PRIDE database resources in 2022: a hub for mass
1324 spectrometry-based proteomics evidences. *Nucleic Acids Res* **50**, D543-d552
1325 (2022). <https://doi.org/10.1093/nar/gkab1038>

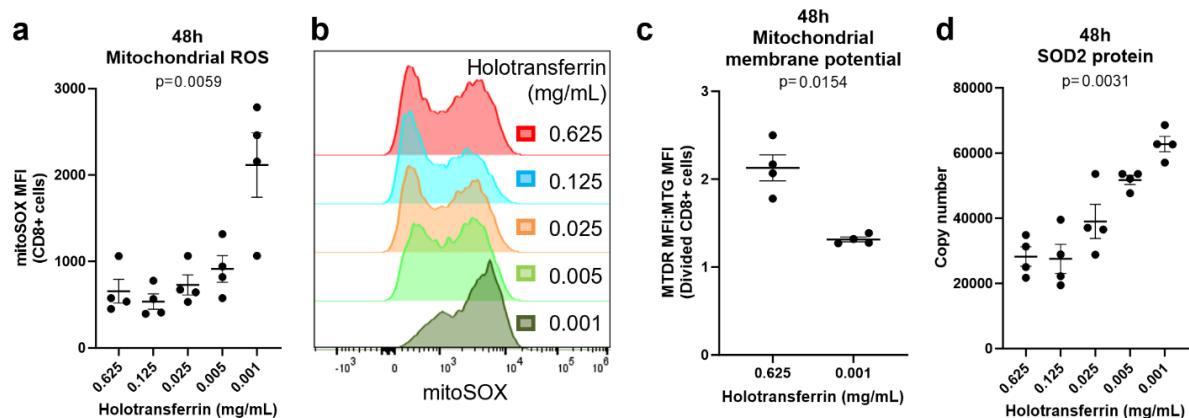

1326

Figure 1

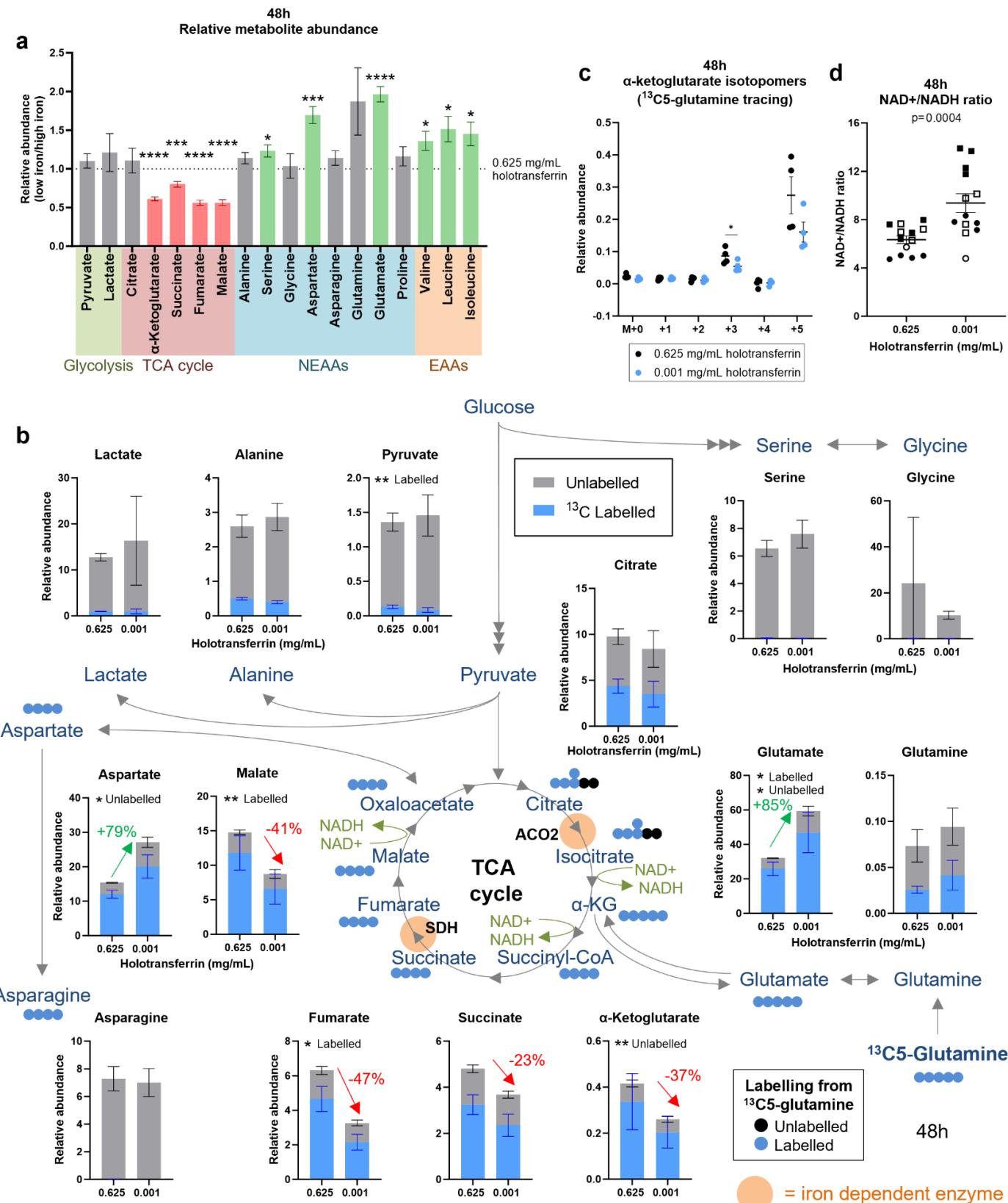

Fig. 1| Iron-deficiency induces changes to metabolic processes at the RNA and protein level. **(a)** CD8+ OT-I T-cells isolated from mice were activated with 5 µg/mL plate bound α-CD3, 1 µg/mL α-CD28 and 50 U/mL IL-2 for 48h in a titration of holotransferrin conditions. Naïve T-cells were collected on day 0. Where comparisons between high and low iron conditions are made, the holotransferrin concentrations used are 0.625 (high) and 0.001 (low) mg/mL. **(b-c)** Division assessed using CTV, n=5. **(d)** Volcano plot with the significance thresholds of $\log_2|FC| > 0.585$, p-value < 0.05, n=4. **(e)** Correlation plot of the $\log_2|FC|$ between high and low iron conditions by RNA-seq and protein-MS, n=4. **(f)** Hallmark GSEA for the protein-MS, n=4. **(g)** P53 induces CDKN1A expression which inhibits the G1-S phase transition. **(h-i)** CDKN1A protein expression and **(i)** percentage viable cells, n=4. **(j)** mTORC1 and MYC are metabolic regulators that enable biosynthesis downstream of TCR stimulation. **(k-l)** mTORC1 activity measured via its downstream target pS6, n=4. Controls were treated overnight with rapamycin (rapa; 1 µM). **(m)** Heatmap of proteins in selected metabolic pathways defined using GO terms where the p-value < 0.05, n=4. ETC = GO_RESPIRATORY_ELECTRON_TRANSPORT_CHAIN, β-oxidation = GO_FATTY_ACID_BETA_OXIDATION, ribosome = GO_CYTOSOLIC_RIBOSOME, amino acid (AA) transport = GO_AMINO_ACID_IMPORT. **(n)** PCA of the protein-MS given prior selection for proteins in the MitoCarta3.0 gene set, n=4. Data are mean ± SEM. Statistics are: **(a, h-i, k)** sampled matched one-way ANOVAs with the Geisser-Greenhouse correction; **(e)** Pearson correlation R^2 value.

Figure 2

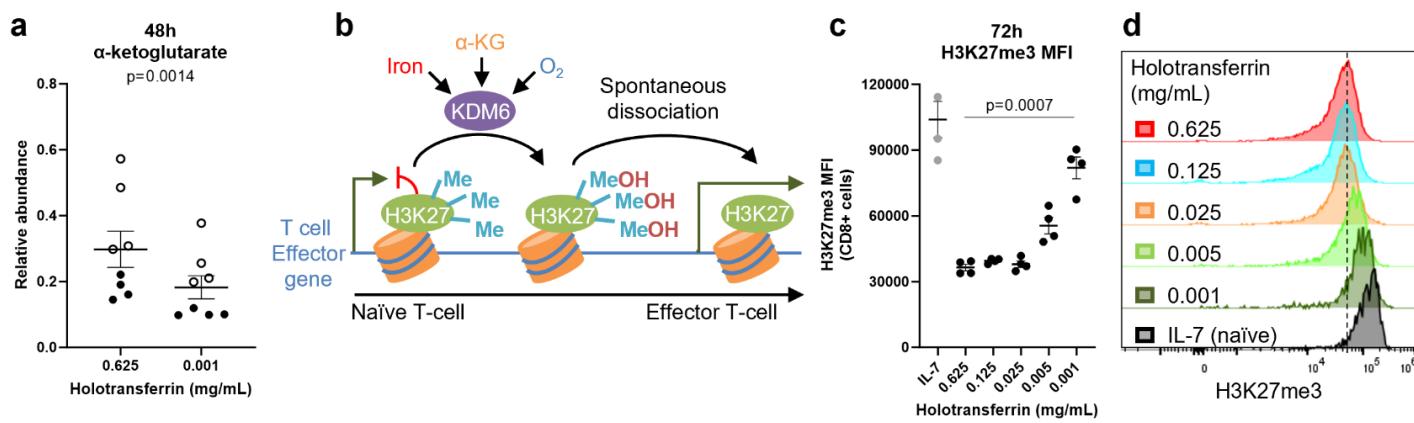

Fig. 2| Iron deprivation induces mROS production and loss of mitochondrial membrane potential. CD8+ T-cells were activated as described in Fig. 1a. **(a-b)** mROS MFI measured using MitoSOX red, $n=4$. **(c)** Mitochondrial membrane potential calculated as the ratio of Mitotracker deep red (MTDR) to Mitotracker green (MTG), $n=4$. **(d)** SOD2 protein expression by protein-MS, $n=4$. Data are mean \pm SEM. Statistics are: **(a, d)** matched one-way ANOVAs with the Geisser-Greenhouse correction; **(c)** matched two-tailed t-test.

Figure 3

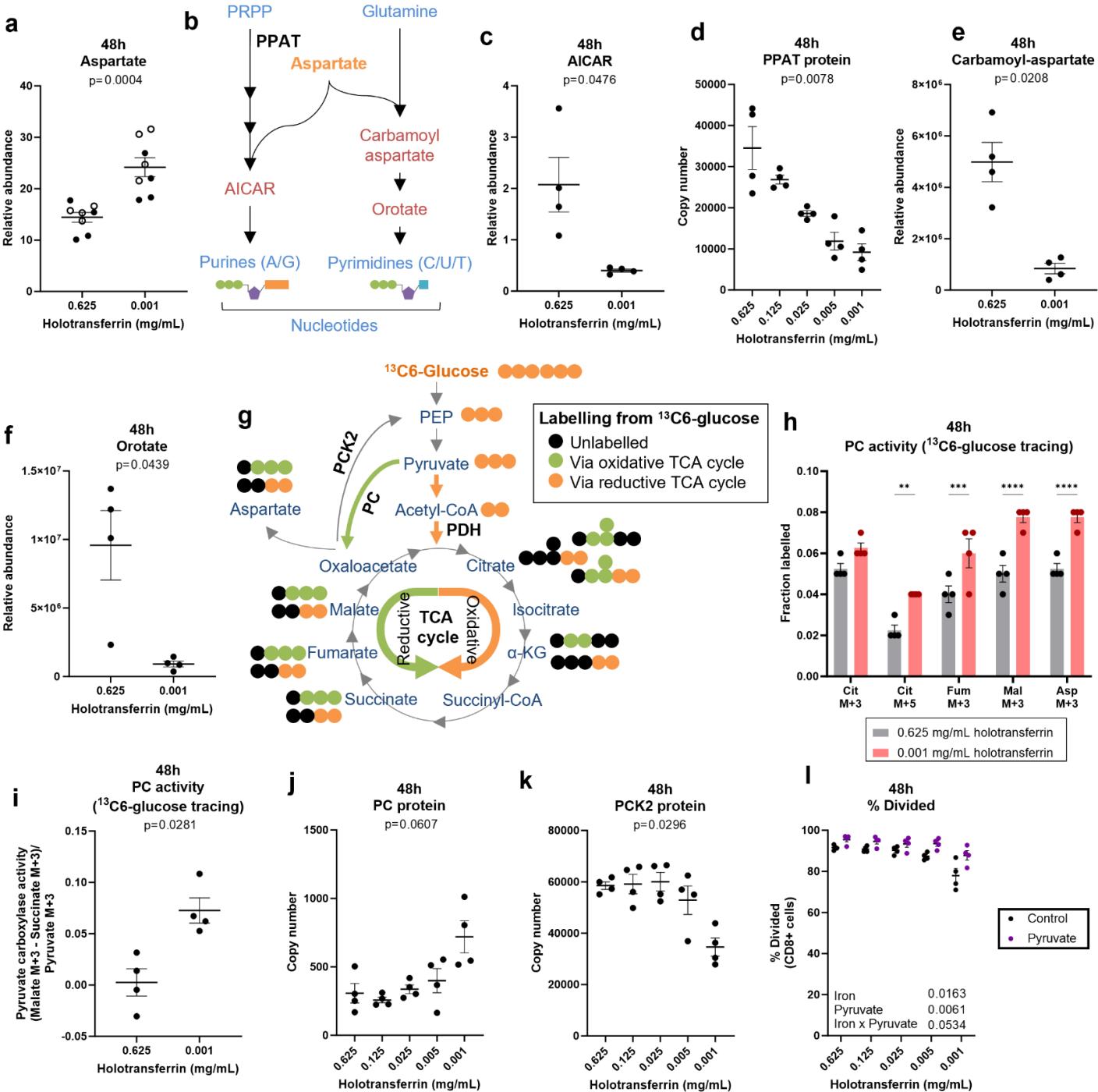

Fig. 3| Iron scarcity impairs TCA cycle activity at the iron-dependent enzymes ACO2 and SDH. CD8+ T-cells were activated as described in Fig. 1a. For tracing experiments, T-cells were activated in standard media for 24h and then incubated in media containing ¹³C6-glucose or ¹³C5-glutamine for a further 24h. **(a)** Relative metabolite abundance from T-cells cultured in low iron (0.001 mg/mL holotransferrin) versus high iron (0.625 mg/mL holotransferrin) normalised to spiked in glutaric acid. Pooled relative total abundances from the ¹³C6-glucose and ¹³C5-glutamine experiments, n=8. NEAA = non-essential amino acids, EAA = essential amino acids. **(b)** ¹³C5-glutamine tracing, n=4. Relative abundance of labelled and unlabelled metabolites calculated as the fraction labelled multiplied by the raw abundance. **(c)** Relative abundance of α-KG mass isotopomers from ¹³C5-glutamine tracing, n=4. **(d)** NAD+/NADH ratio. Data from independent experiments denoted by different symbols, n=13. Data are mean ± SEM. Statistics are: **(a)** matched t-tests between 0.625 and 0.001 mg/mL holotransferrin conditions for each metabolite; **(b, c)** matched two-way ANOVAs with the Geisser-Greenhouse correction and the Sidak correction for multiple comparisons; **(d)** matched two-tailed t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Figure 4

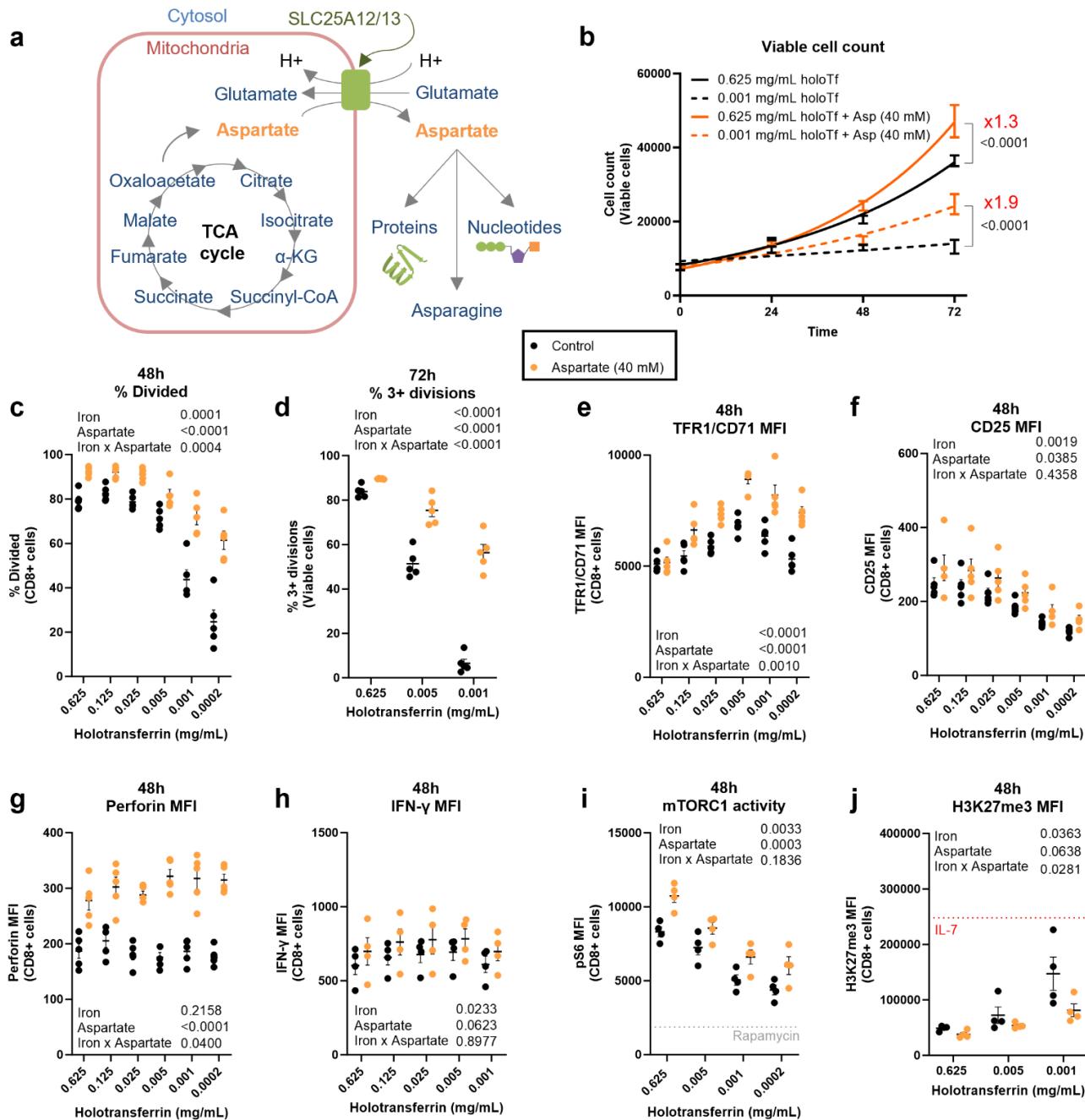

Fig. 4| Iron-deficiency permits accumulation of H3K27me3 in CD8+ T-cells. CD8+ T-cells were activated as described in Fig. 1a. **(a)** Relative abundance of α -KG. Data from independent experiments denoted by different symbols, $n=8$. **(b)** KDM enzymes use iron cofactors and α -KG and oxygen substrates to mediate the hydroxylation of methyl groups which spontaneously dissociate to leave a demethylated histone. KDM6 enzymes remove the repressive histone mark, H3K27me3, from effector gene loci upon T-cell activation. **(c-d)** H3K27me3 MFI. “Naïve” controls cells were cultured in IL-7 (5 ng/mL), $n=4$. Data are mean \pm SEM. Histograms are normalised to mode. Statistics are: **(a)** paired two tailed t-test; **(c)** matched one-way ANOVA with the Geisser-Greenhouse correction.

Figure 5

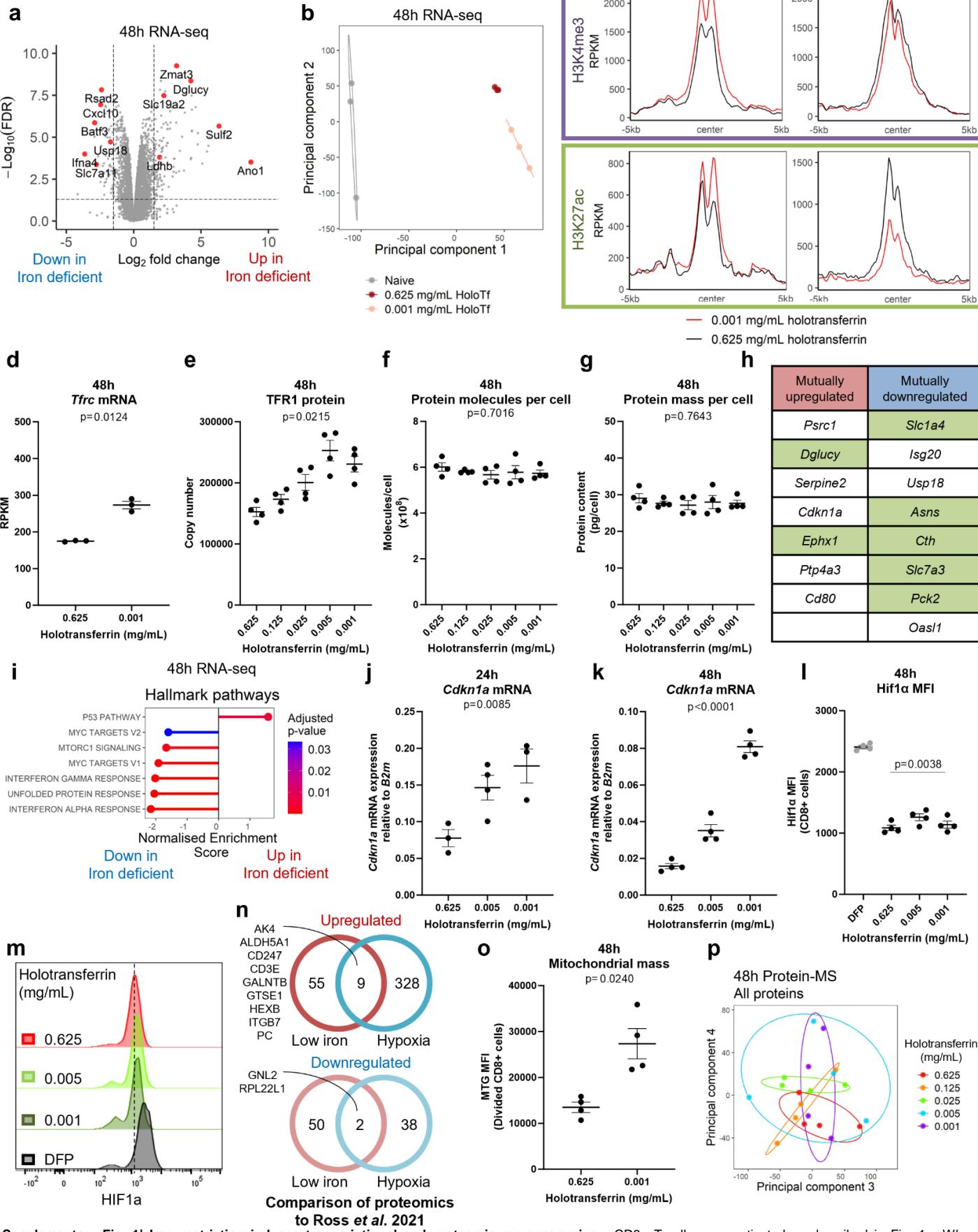
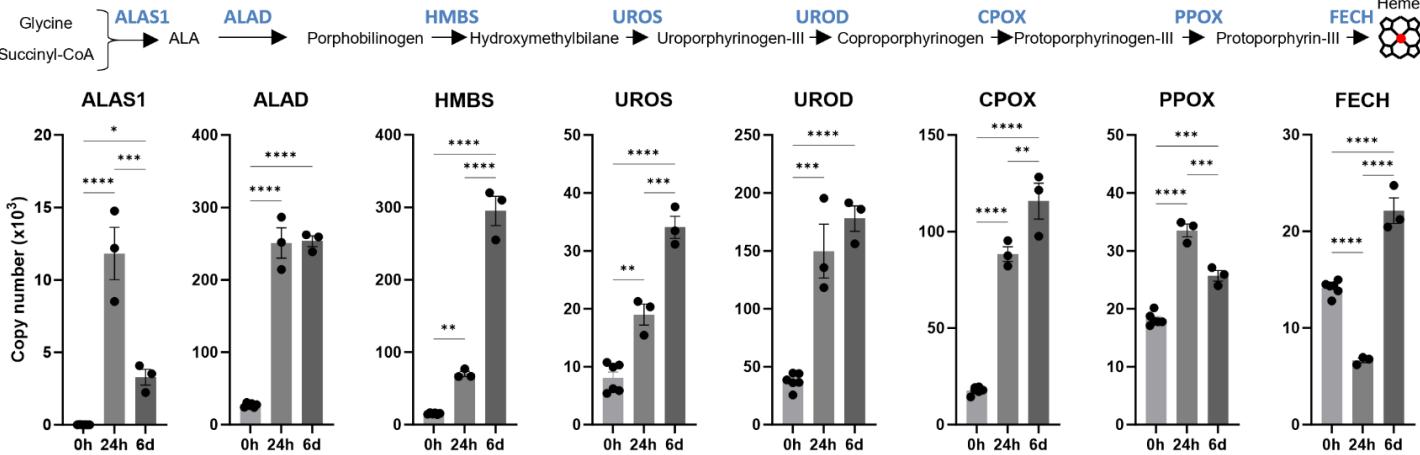
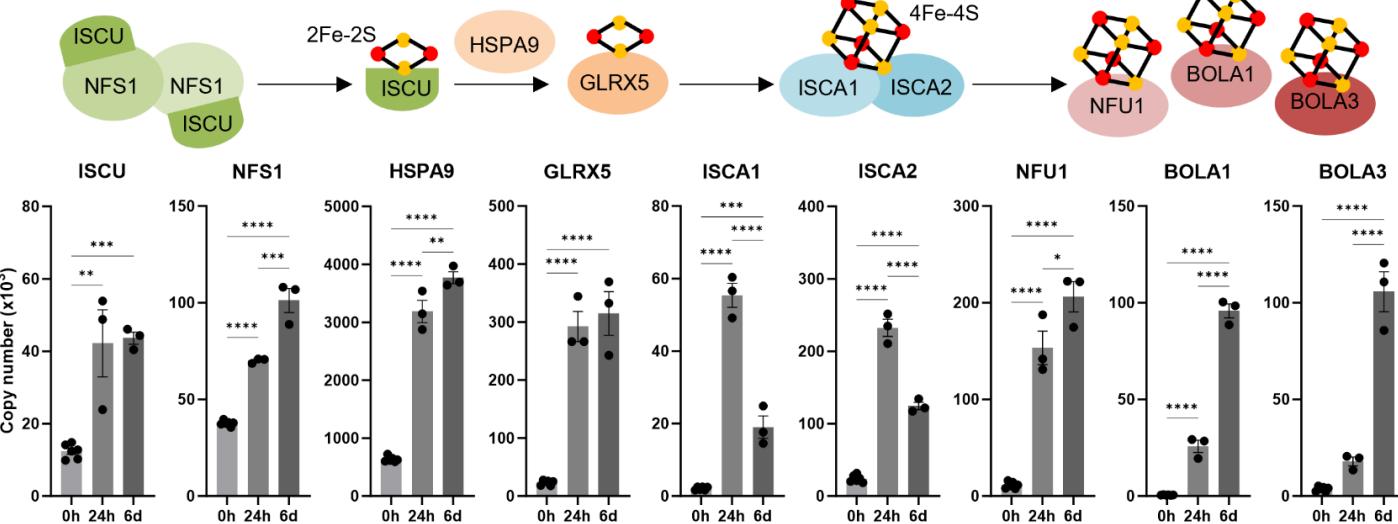

Fig. 5| Iron scarcity suppresses nucleotide synthesis downstream of aspartate incorporation. CD8+ T-cells were activated as described in Fig. 1a. For the ¹³C6-glucose tracing experiments, T-cells were activated for 24h and then incubated in media containing ¹³C6-glucose for a further 24h. **(a)** Relative abundance of aspartate. Data from independent experiments denoted by different symbols, n=8. **(b)** Aspartate is incorporated into purine and pyrimidine nucleotides. Relative abundance of **(c)** AICAR, n=4. AICAR was normalised to spiked in ¹⁵N-dT. **(d)** PPAT protein via protein-MS, n=4. Relative abundance of **(e)** carbamoyl-aspartate and **(f)** orotate, n=4. Carbamoyl-aspartate and orotate were normalised to spiked in glutaric acid. **(g)** Schematic of ¹³C6-glucose tracing. Orange and green circles indicate ¹³C labelled atoms. Orange circles show labelling expected from oxidative TCA cycling via PDH. Green circles indicate labelling from reductive TCA cycling via PC. PC activity measured via the **(h)** fractional labelling into heavy labelled metabolites expected from reductive TCA cycling and via **(i)** the ratio of (Malate M3 – Succinate M3)/Pyruvate M3, n=4. **(j)** PC protein expression via protein-MS, n=4. **(k)** PCK2 protein expression via protein-MS, n=4. **(l)** Division measured using CTV with or without pyruvate (10 mM), n=4. Data are mean \pm SEM. Statistics are: **(a, c, e-f, i)** paired two tailed t-tests; **(d, j-k)** one-way ANOVAs with the Geisser-Greenhouse correction; **(h)** matched two-way ANOVA with the Sidak correction for multiple comparisons; **(l)** matched two-way ANOVA with the Geisser-Greenhouse correction.

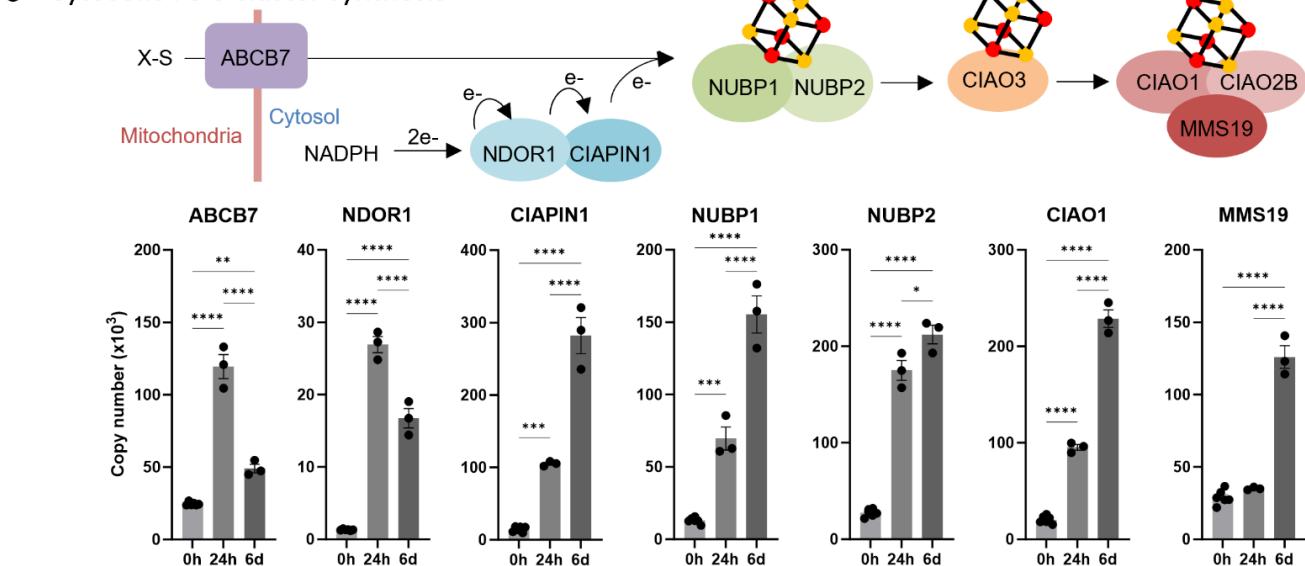
Figure 6

Fig. 6] Aspartate increases the carrying capacity of iron deprived CD8+ T-cell cultures. CD8+ T-cells were activated as described in Fig. 1a with or without aspartate (40 mM). (a) Aspartate is synthesised in the mitochondria but must be transported into the cytosol by the proton-dependent transporter, SLC25A12/13 for downstream metabolism. (b) Viable cell counts, n=5. (c) Percentage divided cells at 48h and (d) percentage of cells undergoing 3+ divisions at 72h assessed using CTV, n=5. (e) TFR1/CD71, (f) CD25 and (g) perforin MFI, n=5. (h) IFN-γ MFI, n=4. (i) mTORC1 activity measured via pS6, n=4. (j) H3K27me3 MFI, n=4. “Naïve” controls cells were cultured in IL-7 (5 ng/mL). Data are mean \pm SEM. Statistics are: (b) non-linear regressions using exponential growth equations with an extra sum-of-squares F test for either high or low holotransferrin concentrations between aspartate treated and untreated; (c-j) two-way ANOVAs with the Geisser-Greenhouse correction.

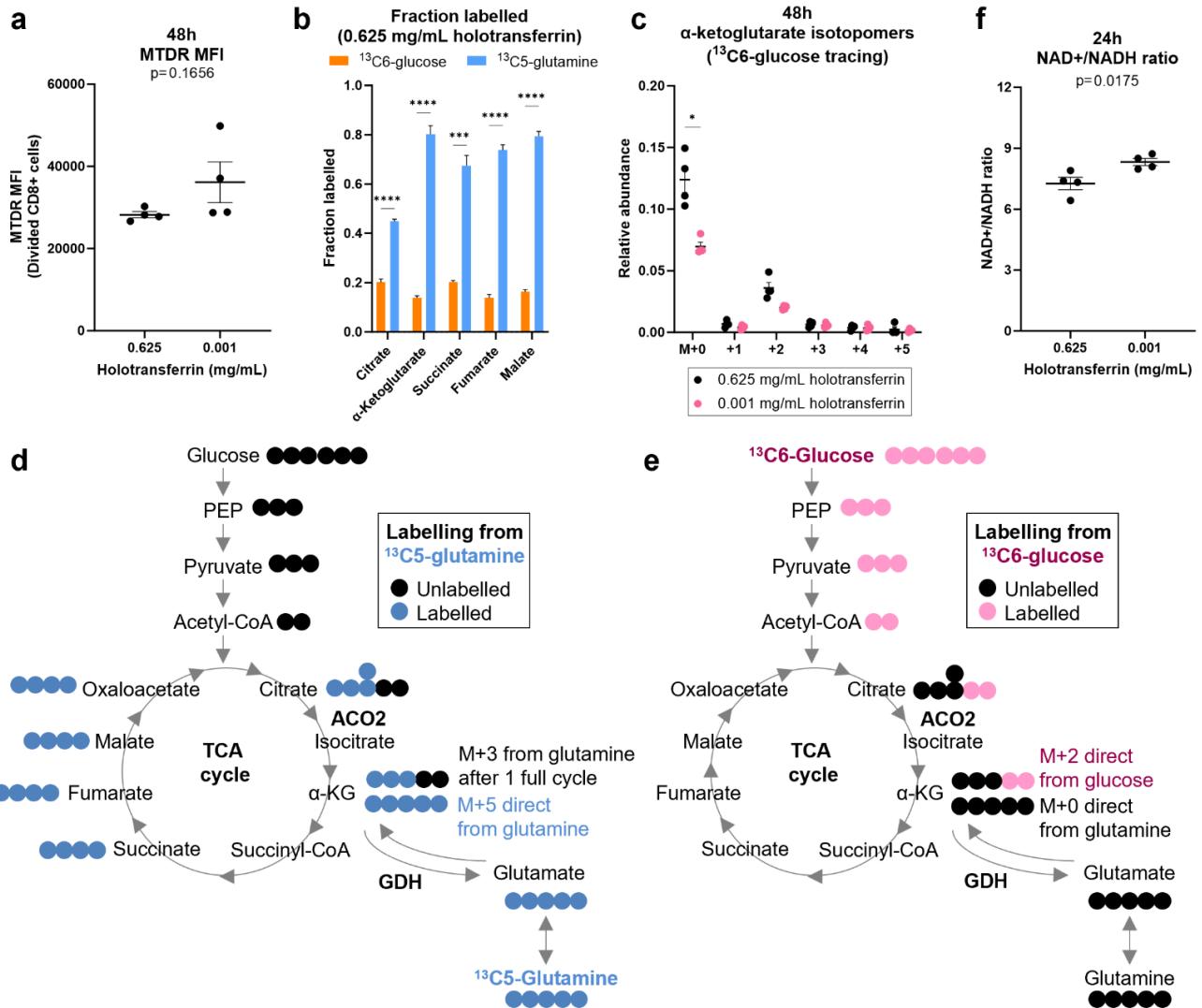

Supplementary Figure 1


Supplementary Fig. 1| Iron restriction induces transcriptional and proteomic reprogramming. CD8+ T-cells were activated as described in Fig. 1a. Where comparisons between high and low iron conditions are made, the holotransferrin concentrations used are 0.625 (high) and 0.001 (low) mg/mL. (a) Volcano plot of RNA-seq with significance thresholds of $FDR < 0.05$ and $\log_2|FC| > 1.5$, $n=4$. (b) PCA of RNA-seq samples, $n=4$. (c) H3K4me3 and H3K27ac enrichment at TSSs of genes identified to be up or downregulated by iron-deficiency, $n=1$. Center = TSS. RPKM = reads per kilobase of transcript per million mapped reads. *Tfrc*/*TFR1* (d) mRNA and (e) protein expression, $n=4$. (f) protein molecules and (g) protein mass per cell measured via protein-MS, $n=4$. (h) Genes and proteins mutually up or downregulated in low iron conditions, $n=4$. Metabolic genes are in green. (i) Hallmark GSEA for the RNA-seq, $n=4$. *Cdkn1a* mRNA expression assessed by qPCR at (j) 24h and (k) 48h, $n=4$. (l-m) HIF1α MFI, $n=4$. Controls were treated for 4h with deferoxiprone (DFP; 75 μ M). (n) Venn diagrams of proteins mutually up or downregulated in response to iron deficient conditions and hypoxia (1% O_2 relative to normoxia at 18% O_2) in CD8+ T-cells. Hypoxia data are derived from Ross et al²⁰. (o) Mitochondrial membrane mass measured using Mitotracker green (MTG) MFI, $n=4$. (p) Principal components analysis of all proteins, $n=4$. Statistics are: (d, o) paired t-test; (e-g, j-l) sample matched one-way ANOVAs with the Geisser-Greenhouse correction.

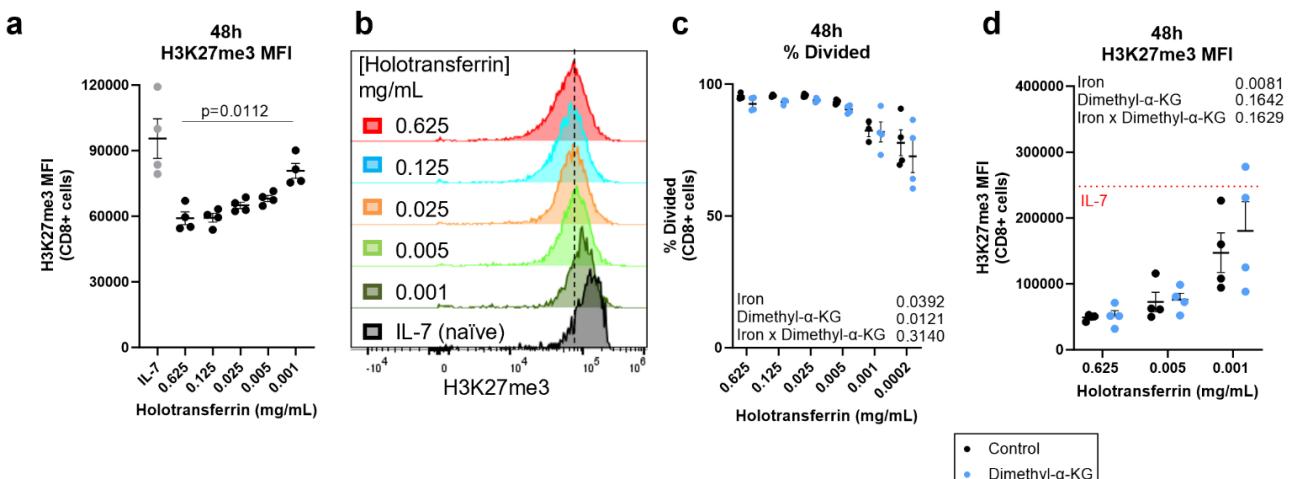
Supplementary Figure 2


a Heme synthesis

b Mitochondrial Fe-S cluster synthesis

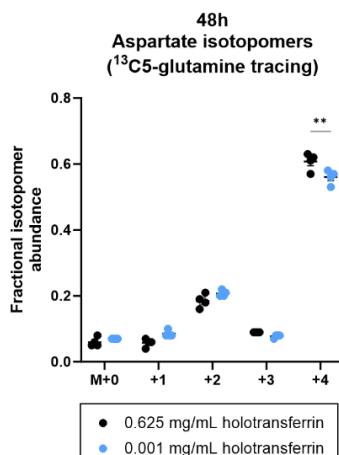


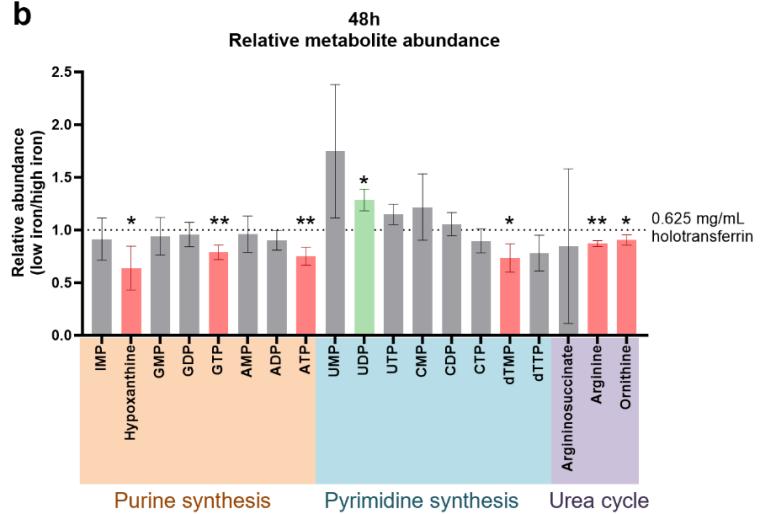
c Cytosolic Fe-S cluster synthesis


Supplementary Fig. 2| Heme and Fe-S cluster synthesis proteins are induced following CD8+ T cell activation. Data derived from Howden *et al*¹³. Protein copy numbers for proteins involved in (a) heme synthesis, (b) mitochondrial Fe-S cluster synthesis and (c) cytosolic Fe-S cluster synthesis. n=6 at 0h, n=3 at 24h and 6d. Data are mean \pm SEM. Statistics are: (a-c) ordinary one-way ANOVAs with multiple comparisons using Tukey's correction. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

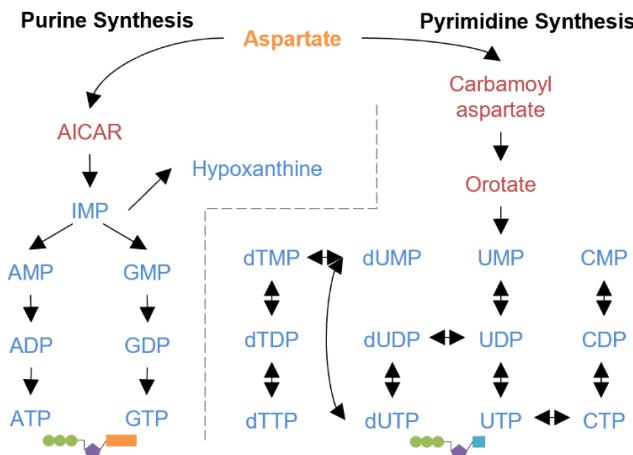
Supplementary Figure 3

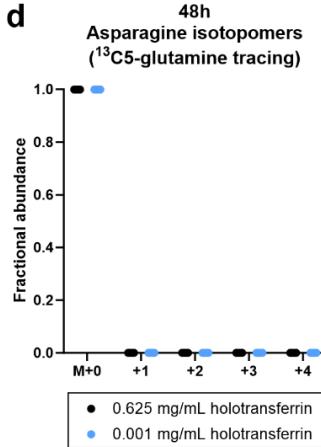
Supplementary Fig. 3| Iron-deficiency alters CD8+ T-cell mitochondrial metabolism. CD8+ T-cells were activated as described in Fig. 1a. (a) Mitotracker deep red (MTDR) MFI, n=4. (b) Metabolic fraction labelled by either $^{13}\text{C}_6\text{-glucose}$ or $^{13}\text{C}_5\text{-glutamine}$ in high iron conditions (0.625 mg/mL holotransferrin), n=4. (c) Relative abundance of $\alpha\text{-KG}$ mass isotopomers from $^{13}\text{C}_6\text{-glucose}$ tracing, n=4. Schematic of tracing into $\alpha\text{-KG}$ from (d) $^{13}\text{C}_5\text{-glutamine}$ and (e) $^{13}\text{C}_6\text{-glucose}$. Blue circles indicate ^{13}C labelled atoms from $^{13}\text{C}_5\text{-glutamine}$. Pink circles indicate ^{13}C labelled atoms from $^{13}\text{C}_6\text{-glucose}$. (f) NAD+/NADH ratio, n=4. Data are mean \pm SEM. Statistics are: (a, f) matched two-tailed t-test; (b) two-way ANOVA with sample matching between metabolites but not between the two carbon tracers. (c) matched two-way ANOVAs with the Geisser-Greenhouse correction and the Sidak correction for multiple comparisons. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

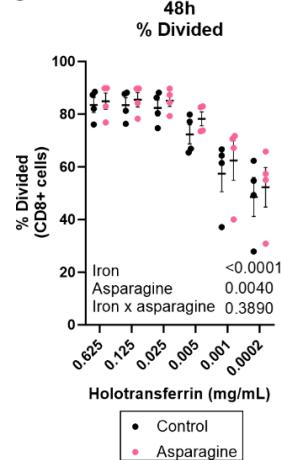

Supplementary Figure 4


Supplementary Fig. 4| H3K27me3 accumulates in iron deprived CD8+ T-cells by 48h. CD8+ T-cells were activated as described in Fig. 1a. **(a-b)** H3K27me3 MFI measured at 48h, n=4. “Naïve” controls cells were cultured in IL-7 (5 ng/mL). **(c)** Percentage divided cells and **(d)** H3K27me3 MFI of cells cultured with or without dimethyl- α -KG (1 mM), n=4. Data are mean \pm SEM. Histograms are normalised to mode. Statistics are: **(a)** matched one-way ANOVA with the Geisser-Greenhouse correction; **(c)** matched mixed effect analysis with the Geisser-Greenhouse correction; **(d)** two-way ANOVA with the Geisser-Greenhouse correction.

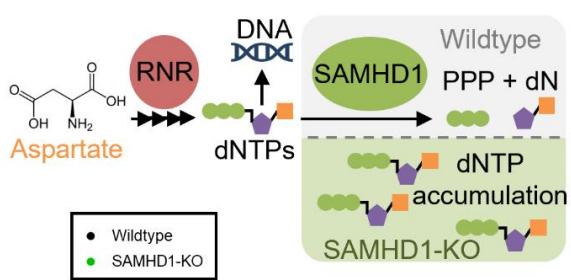
Supplementary Figure 5

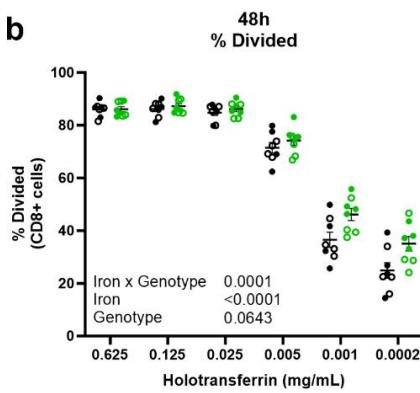

a


b

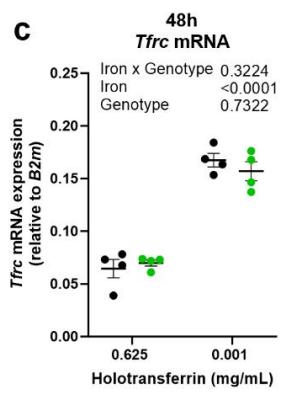

c

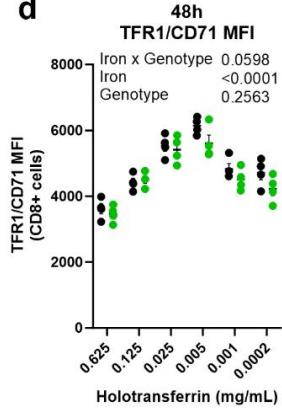
d

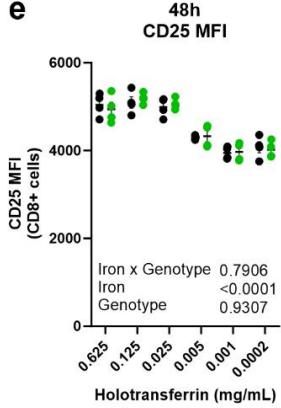

e

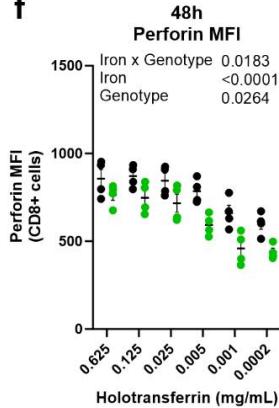

Supplementary Fig. 5| Iron deficient T-cells suppress aspartate utilising pathways. Isolated CD8+ T-cells were activated as described in Fig. 1a. For the ¹³C5-glutamine tracing experiments, T-cells were activated for 24h and then incubated in media containing ¹³C5-glutamine for a further 24h. (a) Aspartate and isotopomers labelled from ¹³C5-glutamine, n=4. M+1/2/3/4 indicate isotopomers derived from glutamine. (b) Relative metabolite abundance of T-cells in low iron (0.001 mg/mL holotransferrin) versus high iron (0.625 mg/mL holotransferrin) normalised to spiked in glutaric acid, n=4. (c) Aspartate is incorporated into ribonucleotides which can be interconverted between mono, di and tri-phosphorylated forms or converted to deoxy-ribonucleotides. (d) asparagine isotopomers labelled from ¹³C5-glutamine, n=4. M+1/2/3/4 indicate isotopomers derived from glutamine. (e) Division assessed with CTV with or without asparagine (100 μ M), n=4. Data are mean \pm SEM. Statistics are: (a, d) matched two-way ANOVAs with the Geisser-Greenhouse correction and the Sidak correction for multiple comparisons; (b) matched t-tests between 0.625 and 0.001 mg/mL holotransferrin conditions for each metabolite; (e) two-way ANOVA with the Geisser-Greenhouse correction.

Supplementary Figure 6


a

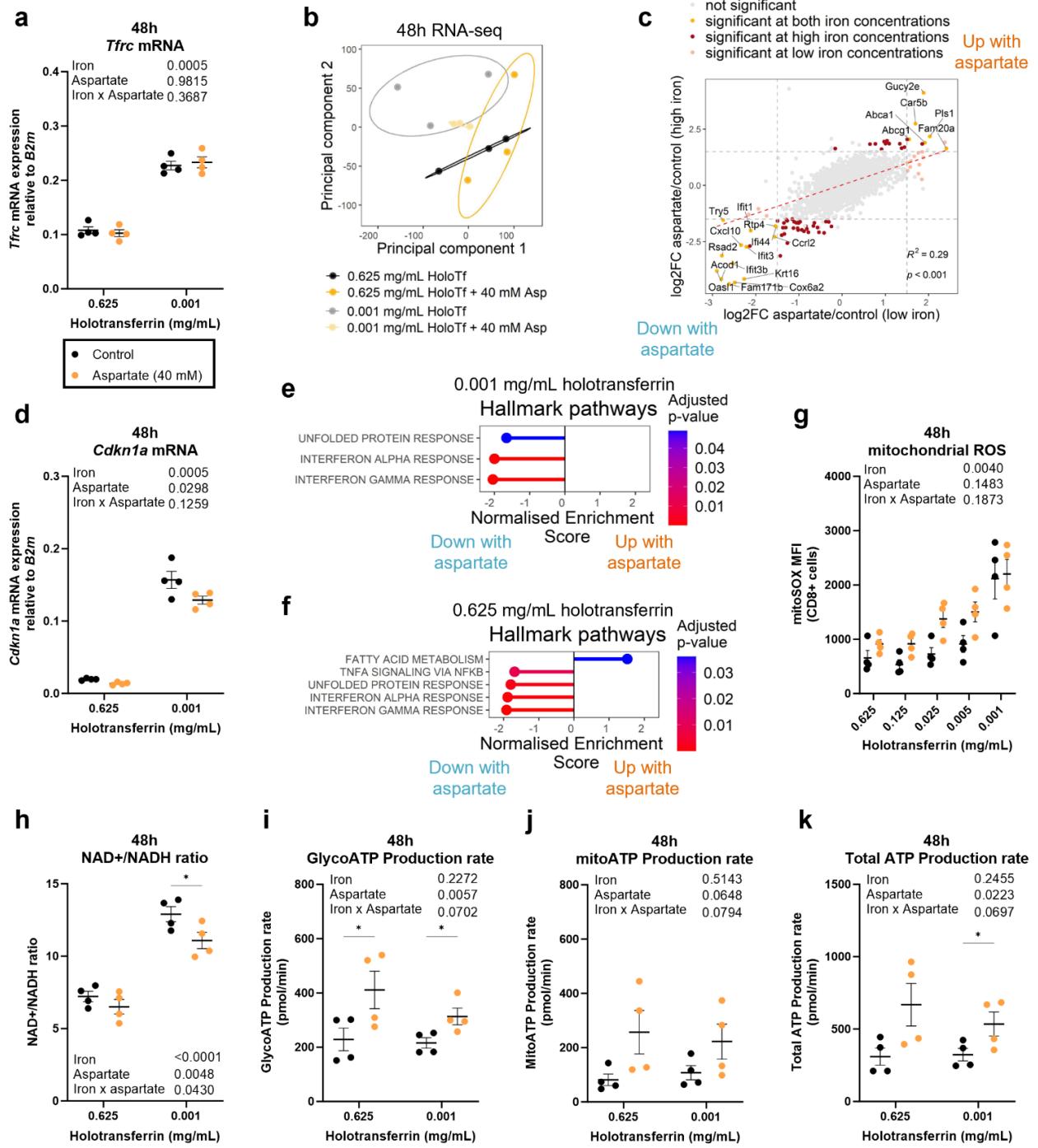

b


c


d


e

f



g

Supplementary Fig. 6| SAMHD1-KO T-cells show resistance to iron-deficiency suppressed proliferation. T-cells were isolated from SAMHD1-KO mice and wildtype littermate controls and were activated as described in Fig. 1a. (a) RNR enables dNTP production, SAMHD1 degrades dNTPs. SAMHD1-KO should result in dNTP accumulation. (b) Percentage divided cells measured using CTV. Data from independent experiments denoted by different symbols, n=8. *Tfrc*/TFR1/CD71 (c) mRNA and (d) surface protein MFI, n=4. (e) CD25 and (f) perforin MFI, n=4. (g) *Cdkn1a* mRNA expression by qPCR, n=4. Data are mean \pm SEM. Statistics are: (b-g) sample matched two-way ANOVAs with the Geisser-Greenhouse correction applied for (d-f).

Supplementary Figure 7

Supplementary Fig. 7| Aspartate has limited impact on cellular transcription but promotes a more metabolic state in CD8+ T-cells. CD8+ T-cells were activated as described in Fig. 1a with or without aspartate (40 mM). (a) *Tfrc* mRNA expression by qPCR, $n=4$. (b) RNA-seq PCA, $n=4$. (c) Correlation plot comparing the \log_2 FC between aspartate and control conditions at either low iron or high iron conditions, $n=4$. Significance thresholds of $|\log_2\text{FC}| > 1.5$ and an FDR < 0.05 were applied. (d) *Cdkn1a* mRNA expression, $n=4$. GSEA of aspartate treated CD8+ T-cells versus control in (e) low iron conditions or (f) high iron conditions, $n=4$. (g) mROS MFI, $n=4$. (h) NAD+/NADH ratio, $n=4$. (i) Glycolytic, (j) mitochondrial and (k) total ATP production rate measured using the ATP rate seahorse kit, $n=4$. Data are mean \pm SEM. Statistics are: (a, d, g-k) two-way ANOVAs with the Geisser-Greenhouse correction with Sidak's test for multiple comparisons for (h-k). (c) Pearson correlation R^2 value. $*p < 0.05$.