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A B S T R A C T
Structural changes to microvascular networks are increasingly highlighted as markers of patho-
genesis in a wide range of disease, e.g. Alzheimer’s disease, vascular dementia and tumour
growth. This has motivated the development of dedicated 3D imaging techniques, alongside the
creation of computational modelling frameworks capable of using 3D reconstructed networks
to simulate functional behaviours such as blood flow or transport processes. Extraction of 3D
networks from imaging data broadly consists of two image processing steps: segmentation
followed by skeletonisation. Much research effort has been devoted to segmentation field, and
there are standard and widely-applied methodologies for creating and assessing gold standards
or ground truths produced by manual annotation or automated algorithms.

The Skeletonisation field, however, lacks widely applied, simple to compute metrics for the
validation or optimisation of the numerous algorithms that exist to extract skeletons from binary
images. This is particularly problematic as 3D imaging datasets increase in size and visual
inspection becomes an insufficient validation approach. In this work, we first demonstrate the
extent of the problem by applying 4 widely-used skeletonisation algorithms to 3 different imaging
datasets. In doing so we show significant variability between reconstructed skeletons of the same
segmented imaging dataset. Moreover, we show that such a structural variability propagates
to simulated metrics such as blood flow. To mitigate this variability we introduce a new, fast
and easy to compute super-metric that compares the volume, connectivity, medialness, correct
bifurcation point identification and homology of the reconstructed skeletons to the original
segmented data. We then show that such a metric can be used to select the best performing
skeletonisation algorithm for a given dataset, as well as to optimize its parameters. Finally,
we demonstrate that the super-metric can also be used to quickly identify how a particular
skeletonisation algorithm could be improved, becoming a powerful tool in understanding the
complex implication of small structural changes in a network.
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Reconstructing microvascular network skeletons

Abbreviation Term
𝜒 Local Euler characteristic
𝜒𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 Classical Euler characteristic
𝜇 blood effective viscosity
𝜏𝑖𝑗 Tortuosity of a segment
𝜃 Branching angle
AS Auto Skeleton
𝐵 Bifircation point DICE score
BC Set of terminal nodes at which boundary conditions will be set
𝑐𝑐 Number of connected components
CL Centreline Tree
𝑐𝑙 Centreline sensitivity
CT Computed Tomography
DTHO Distance Transformed Homotopic Ordering
FN False negative
FP False positive
𝐺𝑠 conductance of subsegment
𝐻 Hausdorff distance
𝐻𝑑 Haematocrit
𝐻̌ Directed Hausdorff fistance
HiP-CT Hierarchal Phase Contrast Microcscopy
ICM Inflection count metric
IVD Intervessel distance
𝐿𝑠 Length sub-segment
LDR Length to diameter ratio
LS LS174T
𝑀𝑆 Super metric for algortihm S
MOST Micro Optical sectioning tomography
MR-HREM Multi-fluorescent High Resolution Episcopic Microscopy
MRI Magnetic resonance imaging
OPT Optical projection tomography
𝑃𝑖 Pressure at node i
𝑄𝑠 Flow rate in a subsegment
𝑅𝑠 Radius sub-segment
𝑠 Sub-segment
SOAM Sum of angle metric
STAPLE Simultaneous truth and performance level estimation
TEASAR Tree structure extraction algorithm
TP True positive
𝑉 Volume
𝑉𝑐 Volume consensus segmentation
𝑉𝑡 Volume of test segmentation
VV VesselVio

1. Introduction
Vascular networks are complex, interlinked, three-dimensional structures,which play a fundamental role in

homeostasis and can be biomarkers of disease. A range of imaging techniques and image processing methods have been
developed to image and quantitatively analyse them including magnetic resonance imaging (MRI), X-ray computed
tomography (CT) and ultrasound (1; 2; 3) for larger vessel, and multi-photon microscopy, ultra fast ultrasound and
photoacoustic imaging for the smaller microvasculature (3; 4). Recently, entire blood vessel networks in large tissue
samples have been reconstructed using three-dimensional microscopy methods such as lightsheet microscopy, optical
projection tomography (OPT), Multi-fluorescent high-resolution episcopic microscopy (MF-HREM) and Hierarchical
Phase-Contrast Tomography (HiP-CT) (5; 6; 7; 8; 9). Each of these imaging techniques generates images with contrast
of blood vessel location, alongside other structures and measurement noise. In order to utilise these data the vascular
network must be digitized from the images requiring a two stage process: 1) Segmentation - distinguishing voxels within
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Reconstructing microvascular network skeletons

a blood vessel from the background or noise, 2) Skeletonisation - reducing the 3D voxel representation to a skeleton
representation of segments, with each segment defined by start and end nodes, length, radius and the connections to
other segments.

These image processing steps are pivotal to understanding the link between structure and function for microvascular
networks in health and disease: a link that is often subtle and hard to fully characterise. For example, Alzheimer’s
Disease (AD) is know to have associated vascular dysfunction (10; 11), but the role that vascular changes play in the
progression of the disease is widely debated (12; 13). Likewise, a hallmark of tumours is chaotic blood vessel growth
(14), leading to leaky microvessels that severely hinder drug delivery, whilst promoting cancerous cell migration (15).

While reconstructed networks are critical tools to identify structural changes during pathogenesis, they are limited
in inferring the consequences on functional behaviours. Mathematical and computational frameworks can add valuable
insights by using digitally reconstructed networks as the structural basis for simulating physiological processes, e.g.
blood flow, molecule exchange (6; 16; 17; 18; 19). Such predictions can then be validated against in vivo functional
imaging, effectively recreating the structure-function relationship of microvascular networks in health and disease
(Figure 1A).

Combining imaging and modelling therefore results in powerful frameworks with the potential to interrogate
processes underlying parthenogenesis (16) as well as to accelerate the development of new treatment strategies,
through e.g. digital twins(20; 21). However, such frameworks are by nature, composite and therefore are subject to
multiple sources of error that can accumulate and propagate from the imaging component to the modelling component,
potentially leading to erroneous predictions.

For instance, an inaccurate estimation of vessel diameters during image processing will result in significant
variation of blood flow rate predictions, since the microvessel blood flow rates depend on the fourth power of the
vessel diameter (22). Blood flow being in turn one of the principal mechanisms underlying oxygen, nutrient and drug
delivery, it is therefore critical to be able to estimate the uncertainties associated with the outcome of the imaging
section of the framework in order to make quantitative and informative predictions.

The most straightforward approach to quantify such uncertainties is to validate the outcome of each component
against a ground-truth (23; 24). Whilst this can be done with physical or digital phantoms, the ability of phantoms to
replicate real structures, particularly complex microvascular networks, is limited by both physical phantom manufacture
and by the models used to create the synthetic networks (5; 23). In addition, whilst phantoms can provide overall error
bounds for a pipeline, they cannot do so for a specific real-world dataset. An alternative approach which acknowledges
the lack of the ’ground-truth’ for a real microvascular network (25; 26; 27) involves creating a gold-standard via a
consensus of experts. Such consensus approaches are a widely-applied method in segmentation (28). For spatial graph
objects which are the output of skeletonisation, such gold-standard consensus methods are not utilised, making it a
vulnerability in the imaging-modelling pipeline.

One reason for this lack of consensus approach in skeletonisation is the challenge of creating suitable metrics for
evaluating microvascular networks when represented as graph objects. Graphs contain the spatial location of nodes
and segment radii as well as connectivity information for the microvascular network. Averaging or combining this
information across multiple spatial graphs, to create an analogue in skeletonisation to the consensus segmentation
approach, requires a suitable distance metric to measure between graphs. Whilst some methods have been developed,
e.g. using graph edit distances and then looking for a Maximum Common Subgraph (29; 30; 31; 32), the graph
edit distances do not provide any way to assess the skeleton’s correctness given the raw image data, or a consensus
segmentation. Some metrics for comparison of the raw image data (or segmentation) and skeleton have been proposed,
including bifurcation position and number, connectivity, homology etc. (24; 33; 23; 34; 35), however there is no clarity
as to which of these metrics is most important or how differences in these metrics translate into differences in the
networks functional properties.

Therefore, it is critical to explore and acknowledge how the errors introduced into the image processing pipeline
(5; 29; 19; 23) translate into variation in the structural and functional properties of microvascular networks. Here we
focus on the variability in microvascular network properties and blood flow predictions that result from implementation
of different segmentation and skeletonisation approaches, and delineate a practically implementable super-metric to
assess skeleton ’correctness’.

The challenges to do this are two-fold: 1) to understand the extent to which skeletonisation variation can lead
to variation in structural and dynamic network properties; 2) to define a practically implementable metric for
validation of skeletons which takes into account salient geometric features. This work addresses these challenges by: 1.
Demonstrating the magnitude of uncertainties caused by skeletonisation to both predicted blood flow distributions and
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structural network measures, 2) Proposing a novel super-metric for skeletonisation evaluation based on comparison of
the skeleton to a gold standard binary image used to produce it. Furthermore we develop and introduce this super-metric
in a mathematical form that is simple to compute, captures multiple topological characteristics of vascular networks
which lead to dynamic functional behaviour discrepancies, and can be formally optimised.

To do this, we utilise three different imaging datasets of vessel networks that bridge different imaging modalities,
different scales, and both healthy and pathological networks (see Figure 1B). For each dataset, we create several valid
image processing pipelines; that is, pipelines which follow standard methodologies and implement parameterisation
methods where these exist. We then compare the outputs of these pipelines in terms of standard structural network
metrics, and implement blood flow simulations to gain insight into the link between image analysis tools and flow
predictions. This experimental design is summarised in Figure 1B. Imaging meta-data are provided in Supplementary
Table S1.

2. Sources of variability and mitigation strategies in image processing
Extracting microvascular networks from an image is a two-step process, i) segmentation (Section 2.1), ii)

skeletonisation (or meshing) (Section 2.2). We discuss each of these in turn, followed by network structural metrics
and the implementation of blood flow models.
2.1. Image Processing: Segmentation

Segmentation is the process of partitioning an image into separate segments, e.g. vessel and background, often
by assigning a class to every pixel in the image. Segmentation of microvascular networks is a vast research field.
Different approaches to microvascular segmentation include filtering for tube-like structures, seed-point growing or
flood filling approaches which group connected voxels together, as well as machine learning approaches (36; 37).
Validation and benchmarking of segmentation algorithms is done by comparing the output to a ground truth or gold
standard segmentation - typically either synthetic data or a portion of manually segmented data (38; 39). Metrics for
these comparisons are well-established including overlap based metrics such as DICE or Jaccard indices, surface based
metrics such as Hausdorff distances or volumetric based such as Volume similarity etc. (40; 41; 42). More recently
metrics which aim to include connectivity as well as voxel overlaps, such as cl-dice (33), have appeared; this metric
quantifies what proportion of the voxels that make up the centreline of a segmented vessel fall within the ground
truth segmentation. Segmentation algorithms often have many adjustable parameters which are formally or informally
optimised, using one or a combination of the above metrics and the ground truth.

Unfortunately, the manual or synthetic gold standard data can also be flawed: synthetic images or images of physical
phantoms rarely capture the full complexity of real tissues (28), while manual segmentations, generally performed
by expert annotators, are subjective, with factors such as alertness, environmental distractions or differing access
to segmentation tools contributing to inter and intra-annotator variation(28; 42). A common approach to mitigate
potential discrepancy between gold-standard manual segmentations is to aggregate several manual segmentations
through a voting or aggregation strategy. There are several such aggregation strategies of which the most commonly
used to for biomedical images is the STAPLE (Simultaneous truth and performance level estimation) algorithm
(28; 36; 42; 28; 43; 44).
2.2. Image Processing: Skeletonisation

Skeletonisation seeks to reduce the foreground pixels of an image to a thinned (single voxel width) line that largely
preserves the extent and connectivity of the original structure. A skeleton can in turn be represented as a spatial graph
structure, where meeting points of two or more lines, or end points are nodes and the connections between the meeting
points are segments. Such graph structures can serve as the basis for structural analyses as well as simulation of
functions such as blood flow.

Different approaches to skeletonisation can be distinguished: 1)thinning approaches which use either morphological
operations or distance transformations; 2) minimum cost paths; or 3) wave front propagation. In general the criteria
for a correct skeleton given a binary image are: thinness (single voxel thick), medialness (centerline is equidistant
from the original boundaries), and homology (a continuous mapping can be made from the 3D volume to the skeleton,
i.e. the number of connected components and loops of the original structure is preserved). Thinning approaches are
the most common. These iteratively remove pixels of a binary structure without changing the topology (i.e without
creating gaps, islands or removal of end points), until a single pixel centreline remains (thinness), which is located at
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the centre of the original object (mediallness). Medial axis thinning was widely adopted following the approach of Lee
et al. (45), which is implemented in many packages (e.g. Matlab, ImageJ, scikit-image and Vessel Vio (46; 47; 48)).
Whilst the medial thinning algorithm is highly efficient for 3D volumes it does not preserve homology (49). Alternative
thinning approaches were extended by Pudney et al. (50) and Palagyi et. al (51), with application of distance transform
ordering (Distance Transformed Homotopic Ordering) (DTHO). These approaches better preserve medialness and
have been proven mathematically to preserved homology. DTHO approaches and their derivatives are also widely
used and implemented in commercially available packages, e.g. Amira-Avizo Autoskeleton (AS), which implements a
parallelised DOHT of Fouard et al. (52).

Minimum cost path approaches such as the Djistrika or Tree spanning algorithms seek to move from one connected
node to another - making a (minimal cost) path, through an undirected graph object, i.e. a collection of nodes and edges.
These include algorithms such as the TEASAR algorithm (53) implemented in Amira-Avizo’s CentreLine Tree (CL)
module.

Wave-front methods simulate flow from initial sets of seed points. The vessel scooping algorithm of Rodriguez et
al. (54) adapted by Wu et al. (55) and implemented in an open source framework Vaa3D (56; 57; 58), uses such an
approach: starting with seed point(s); at each iteration of the algorithm, voxels within the 3D connected neighbourhood
(26 neighbourhood connectivity) of a seed voxel (a single voxel taken as the starting point for the algorithm) are added
to make a cluster. At each iteration, a connected component analysis identifies new clusters, which represent a branched
vessel, and the centre of mass of every cluster is calculated to define the centerline of the vessels.

These four different methods have been widely applied across different vascular or airway networks(59; 60; 48; 6;
61; 55; 34; 62). Each approach offers different advantages - Computational efficiency is often provided by minimum
cost path approaches(53), or parallelised thinning approached (52); better corner preservation is given by the use of
distance transformations (50), alongside better delineation of complex junctions etc. (27). Critically, each of these
algorithms also applies different constraints on the final topology of the network which will be explored in further
detail.

Metrics for comparison and evaluation of skeletonisation algorithms are less widely used or formalised than those
used for evaluating segmentation. The most common method found in the literature is to use visual inspection of the
skeleton superimposed on the image (52; 45; 63; 34; 27). Some methods or criteria do exist, such as comparison
using DICE between manual selection of bifurcation points (64; 65); however, most of these methods focus either on
connectivity preservation (a feature that should be assured if homology is preserved) or on volume similarity between
the graph and the 3D binary volume. To the best of our knowledge there is no method to rate the correctness of a
skeletonisation for a particular dataset which considers both structural and functional properties of the networks.

3. Methods for quantifying variability
3.1. Creation of skeletons
3.1.1. Dataset

We explore three raw datasets acquired using tow modalitied: MF-HREM with fluorescently labeled vasculature,
or microCT with microfilled vasculature (i.e. where the vasculature is injected with a radio opaque contrast agent
prior to microCT). For each dataset, we applied a consensus segmentation approach using multiple expert annotators
followed by skeletonisation using either Amira Autoskeleton (AS), Amira Centreline Tree (CL) or VesselVio (VV), or
the MOST algorithm, which is an end-to-end segmentation and skeletonisation method. The nine outputs from these
pipelines were compared via structural metrics and a blood flow simulation metric. Figure 1B summarised the pipeline.
The three datasets used were:

• Portion of a brain medulla network from a W/T Balb/c mouse, collected with MF-HREM (8))
• Portion of a subcutaneous FaDu tumour network from a Balb C mouse imaged with MF-HREM (8)
• Whole subcutaneous colorectal tumour (LS174T) (referred to hereafter as LS) imaged with microCT after

microfill filling on the vessels (66).
Raw datasets are available via the respective publications.
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Figure 1: (A) diagram showing the combination of imaging with mathematical modeling to simulate the structure-function
relationship of microvascular networks. (B) The image processing section of the imaging-modelling framework, showing
the three raw datasets used in this work - Brain medulla, FaDu tumour, LS tumour. Brain medulla and FaDu tumour were
acquired using MF-HREM; LS Tumour was acquired using Microfilled CT. Segmentations by individual expert annotations
collated via STAPLE algorithm and MOST pipeline (see Section 3.1.2). Skeletonisation of STAPLE segmentations done
with Auto Skeleton, Centreline Tree, and Vessel Vio (see Section 3.1.3).

3.1.2. Segmentation
Manual segmentation by two or more annotators (referred to as ’Expert annotator’ in Figure 1B) were performed

on all raw datasets using AmiraAvizo v2019.1-2021.2. The segmentations were performed using a manual local region
filling tool (magic wand). Using this tool, an annotator selects seed point(s) in any one of 3 orthogonal image planes,
as well as selecting and varying intensity and contrast thresholds; voxels connected in 3D to the seed point which
are within an annotator set threshold for intensity or contrast, can then be selected and added to the segmentation. In
addition a physical boundary or limit could be drawn by the annotator to limit the extent of the region growing, and
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manually corrected by voxel painting where can be used to correct the segmentation on individual slices. In this way it
is possible to for a trained annotator to manually segment relatively large 3D vascular datasets without being biased by
the plane of the image slice they are segmenting in (as created by interpolation methods in many manual approaches)

A total of four annotators participated; all, barring annotator 2, could be considered as experts for the specific
imaging modality. The STAPLE algorithm, an iterative weighted voting algorithm (28) was applied to the expert
annotations for each dataset. At each iteration this algorithm votes on every pixel in an image segmentation based on the
set of annotations provided by the experts. It then weights each annotator according to how closely their segmentation
corresponds to the voted image. This weighting is then used in the next iteration of the voting process. The algorithm
continues until the segmentation stops changing. This process creates a single segmentation for each dataset that is
considered to be a consensus segmentation between the expert annotators.

Widely used metrics were applied to compare each individual expert manual segmentation to the consensus
segmentation. Metrics recorded were Jaccard index, Dice score, Volume Difference and Haunsorff Distance:

Jaccard 𝐽 (𝐴,𝐵) = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

, (1)

Dice 𝐷(𝐴,𝐵) = 2 ∗ 𝑇𝑃
2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

, (2)

where 𝑇𝑃 is the voxel-wise true positive (the number of voxels where a vessel is detected in both the consensus and
test segmentation images at the same location), 𝐹𝑃 is voxel-wise false positive (the number of voxels identified as a
vessel in the the test segmentation but not in the consensus) and 𝐹𝑁 is the voxel-wise false negative (the number of
voxels where a vessel is not detected in the test segmentation but is in the consensus segmentation). Unused in these
metrics is the voxel-wise true negative, 𝑇𝑁 : the number of voxels where a vessel is not detected in both the consensus
and the test segmentations.

Volume difference is a typical volume-based metric that is based on the absolute difference in volumes of the
segmented structure and the ground truth, usually normalised by the ground truth volume:

Volume difference =
|𝑉𝑡 − 𝑉𝑐|

𝑉𝑐
, (3)

where 𝑉𝑡 is the volume of the test segmentation and 𝑉𝑐 is the volume of the consensus segmentation.
The Hausdorff distance is commonly used to compare two voxelised surface representations e.g. to compare

boundary points from the consensus segmentation 𝐴 and test segmentation boundary points 𝐵. It is defined as the
maximum distance between each point in 𝐴 to its nearest neighbour in 𝐵.

𝐻̌(𝐴,𝐵) = 𝑚𝑎𝑥𝑥∈𝐴{𝑚𝑖𝑛𝑦∈𝐵{||𝑥, 𝑦||}}, (4)
Where 𝐻̌ is the directional Hausdorff distance from which the absolute Hausdorff distance 𝐻 can be calculated.

𝐻(𝐴,𝐵) = 𝑚𝑎𝑥{𝐻̌(𝐴,𝐵), 𝐻̌(𝐵,𝐴)}. (5)
3.1.3. Skeletonisation

Skeletonisation reduces the network to a graph representation which describes the vessel network in terms of
‘nodes’, ‘points’, ‘segments’, and ’sub-segments’ (illustration for each of these structures are provided in Supplementary
Figure S1). A segment is defined by a start (𝑖) and end node (𝑗) (these nodes have an ID and a 3D spatial position
(x,y,z)); which could either be a branching node connecting several segments together or a terminal node where no
further branches were detectable. Between the start and end node of each segment lie sub-segments (𝑠), with ‘points’
marking the start and end of each sub-segment, able to capture the curvature of the segment. Each sub-segment has an
associated radius (𝑅𝑠) and length (𝐿𝑠)).We implement and compare a number of skeletonisation algorithms chosen according to the following criteria: i)
we chose not to apply any in-house codes that do not have a well maintained open-source platforms, ii) the algorithms
should be able to run on large (<100GB) image volumes, iii) they should have been used by other groups to produce
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segmentations of large blood vessel networks, iv) our choices should cover the range of methodological approaches
outlined in Section 2.2.

Using these criteria four skeletonisation methods were chosen, three of which were run with binary image inputs
and one which used raw image data as an input:

• Amira v2021.2 Autoskeleton (AS) plugin: a widely used skeletonisation package (6; 62; 67; 34), which
implements the a parallelised version of DOHT algorithm (52). Amira-Avizo’s implementation estimates the
radius of each subsegment using 1/5th of the maximum Chamfer distance and provides additional optional user
inputs to smooth the output of the spatial graph. If smoothing is selected, there are two associated parameters,
’smooth’ and ’attach to data’, smoothing is done via weighted average of a point’s location and the location of its
two neighbours; the ’smooth’ and ’attach to data’ provide the respective weights this averaging. This smoothing
can be performed iteratively and the iterations can also be defined by the user. Finally, a threshold value is
available for creating a binary image if the user input has not already been segmented (for a binary image this is
automatically detected).

• Amira v2021.2 Centerline Tree (CL) plugin: an implementation of the TESEAR algorithm (53), a shortest
distance path spanning approach which creates a strict tree structure. There are two user-defined parameters:
the zeroVal and slope parameters, which are used to restrict the voxels which are included in the search for end
points of the network, For any particular segments centerline, any voxels which fall within the critera: slope *
distance to boundary of vessel + zeroVal are excluded from the end point search. This reduces the sensitivity of
the algorithm to surface noise in the segmentation. The radius is estimated using a minimum inscribed sphere
algorithm(53). CL has been used to skeletonise various vascular networks (60; 59; 68; 69).

• VesselVio (VV): a recently released open-source package (48) for skeletonisation of large vessel networks. It
provides an implementation of the widely used medial thinning approach of Lee et al. (45), with automated
calculation of common structural metrics. In this case modifications have been developed to detect spurious
branches and to allow pruning of structures. These are controlled by three user inputs: length of end segments
to be pruned, length of isolated segments to be pruned and resolution of the image. The subsegment radii are
estimated using a Modified Euclidean Distance map (48).

• Micro-Optical Sectioning Tomography (MOST): an end-to-end pipeline, i.e., it does not require a binary input
image and instead can take a raw image data as an input. It performs a vessel scooping algorithm (54) adapted
by Wu et al. (55). Starting with seed point(s); at each iteration of the algorithm, voxels that are above a threshold
and are within the 26 neighbourhood connectivity of a seed point are added to make a cluster. At each subsequent
iteration, any voxels above the threshold, that are connected to the cluster and within the scooping radius
(parameter set by user), are added to the respective cluster. A connected component analysis on the clusters
at each iteration identifies new clusters (i.e. those not connected to each other) which delineate a branched
vessel. The centre of mass of every cluster is calculated at each iteration to define the centerline of the vessels.
The radius of the vessels is calculated using a radius-adjustable sphere algorithm, where radius of the vessel is
equal to the radius of the maximum sized sphere that fits entirely within the segmented vessel (58). This has
been implemented in the open-source Vaa3D software (56; 57; 58) and requires 4 user defined parameters: the
threshold, the seed size, the scooping distance and the size of the voxels (non-isotropic voxels are supported).
This pipeline has been applied to mouse brain vessel segmentation for the MOST imaging technique (55). Here,
this method was applied to only the medulla network.

The selection of parameter values for each skeletonisation algorithm is challenging when applying to large complex
network structures due to a lack of defined metrics which will be discussed later. For AS, CL and VV algorithms,
parameters were set via overlaying the skeleton on the image volume and visually inspecting the data for poor overlap,
including addition of spurious nodes or segments, or missing portions of network (See Supplementary Table S1 for
values). For the MOST pipeline, an existing methodology for parameter setting developed by (55) was followed and is
outlined in detail in the Supplementary information section 1.1.
3.2. Analysis of skeletons
3.2.1. Structural metrics

Many different structural metrics are used to characterise and compare microvascular networks. Table 1 lists a
number which are used extensively in the literature, organised into sub categories based on similar properties. These
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Structural Metric (as named by authors) Description References
Vessel diameter and volume metrics - Vessel diameter varies substantially throughout vessel networks and affects blood
flow and pressure. It has also been used as an identifier of pathology (70; 71)
Vessel diameter Vessel diameter (6; 72; 73;

74; 75)
Average radius Average vessel radius (34)
Number of dilated capillaries Number of vessels with a diameter above 40𝜇𝑚 (71)
Variation from mean vessel diameter Percentile variation from mean vessel diameter (70)
Length-to-diameter ratio Length to diameter ratio (76)
Vessel volume Total volume of all vessels can be calculated from area and lengths of all

vessel subsegments
-

Compactness Ratio of area/volume of convex hull containing vessels (polygon enclosing
all vessel) to the total area/volume of all vessels (density type metric)

(77)

Branching metrics - These look to quantify the properties of bifurcations within networks, which have been shown to differ
between healthy and pathological networks (72). Branching metrics also have a direct bearing on predictions of flow and
oxygen distributions, as hematocrit is unevenly split between daughter vessels based on the flow in each of them.
Branching number Number of daughter vessels connected to a parent at a branching node (6; 72; 73)
Branching angle Angle between two vessels at a branching point (6; 72; 73)
Branching order The level in the hierarchy of a branching structure a vessel is located, with

outermost vessel in this case considered as 1st Order.
(75)

Bifurcation index Ratio of diameters of two daughter vessels at a branching point (78)
Branching index /bifurcation density Number of branching points per unit area/volume (79; 34)
Ratio of length of daughter to parent Ratio of length of daughter vessel to parent vessel (78)
Interior node density Number of non-boundary nodes per volume (74)
Boundary nodes Number of boundary nodes per surface area of the region of interest (74)
% multiply–connected nodes Percentage of interior nodes with more than 3 connections (74)

Vessel spacing and density metrics - All cells in the body require oxygen and the intervessel distance is an indicator of the
diffusion distance from blood vessels to cells. Large intervessel distances are indicative of oxygen-deprived regions in the
tissue which can often be markers of pathological cell function or can identify different microenvironment niches.
Intervessel distance Distance between vessels (6; 72; 73)
Minimum intervessel distance Minimum distance between vessels (75)
Vessel density Vessel volume/ Whole volume (6; 72; 73;

80; 79; 81)
Interbranch distance Distance between branching points (i.e. vessel length) (6)
Highest microvascular density Highest vessel volume/whole volume (80)
Maximum extravascular distance Maximum distance between a vessel and a tissue point (74)
Convexity index Slope of linear fit to log-log scale histogram of extravascular distance

(inversely correlated with maximum extravascular distance)
(74)

Network shape metrics - these provide information on structures in the network including the number of loops, the number
of edges per vessel loop and the loop length. Computational complexity associated with most of these metrics is high (74),
with the exception of tortuosity. Blood vessel tortuosity is a sign of pathology, for example in oncology, ophthalmology,
cardiology and neurology (76). Tortuosity may be calculated in many ways including the distance metric, the Sum of Angles
Metric (SOAM) or the inflection count metric (ICM).
Tortuosity The ratio of the curved to straight line length of the vessel (76) (82)
Number of loops Number of loops created by vessels (75)
Mean no edge/loop Number of edges per vessel loop (74)
Mean loop length Mean loop length (74)
Total number of endpoints Total number of branch endpoints (e.g. boundary or deadend) (79)
Number of Subgraphs The number of subgraphs within the network (17)

Table 1
Morphometric measures of blood vessel networks presented in the literature. These are metrics that depend on vessel
diameter and volume, vessel length measure, branching parameters and vessel spacing and density measures.

categories are: vessel diameter and volume measures, branching measures, vessel spacing and density measures, and
network-shape measures.

As Table 1 indicates there are many metrics to choose from when analysing microvascular networks See
Supplementary Figure S1 for additional diagrams. Here we choose a subset that are frequently reported in the literature,
will provide comparative insights across our three networks and have a bearing or link to the network functionality:

• Radius - 𝑅𝑖𝑗 =
1
𝑛
∑𝑛

0𝑅𝑠 where 𝑛 denotes the number of subsegments comprising the segment {𝑖𝑗} linking node
𝑖 with node 𝑗.
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Figure 2: Categories of metrics computed for each network (medulla, FaDu, LS) and for each skeletonisation algorithm
(MOST, AS, VV, CL). See Supplementary Figure S1 for diagram.

• Length to Diameter Ratio - LDR𝑖𝑗 = 𝐿𝑖𝑗
2𝑅𝑖𝑗

, where 𝐿𝑖𝑗 =
∑𝑛

0 𝐿𝑠 denotes the length of the segment, i.e., the
cumulative length of each subsegment.

• Tortuosity - 𝜏𝑖𝑗 = ||𝑿𝑖−𝑿𝑗 ||

𝐿𝑖𝑗
where ||𝑿𝑖−𝑿𝑗|| represents the Euclidean distance between𝑿𝑖 and𝑿𝑗 the positions

of node 𝑖 and 𝑗 respectively.
• Number of sub-networks - 𝑐𝑐 the number of distinct sub networks, i.e. graphs not sharing a single node with one

another.
• Branching Angle - 𝜃𝑖𝑗𝑘 = cos−1

(

(

𝑿𝑖−𝑿𝑗
)

⋅
(

𝑿𝑘−𝑿𝑗
)

||𝑿𝑖−𝑿𝑗 ||⋅||𝑿𝑘−𝑿𝑗 ||

)

, the direct angle between segment 𝑖𝑗 and segment 𝑗𝑘

• Intervessel Distance - IVD𝑖𝑗 = min𝑣 ||𝑿 1
2 𝑖𝑗

− 𝑿 1
2 𝑣
|| where 𝑿 1

2 𝑖𝑗
represents the position of the midpoint of

segment 𝑖𝑗 and 𝑿 1
2 𝑣

represents the position of the midpoint of any other segment, so that IVD is the closest
midpoint to midpoint distance to another segment, for every segment.

These metrics are summarised in Figure 2 and diagrammatically shown in Supplementary Figure S1.
3.2.2. Blood flow simulations

A range of approaches exist to simulate blood flow in microvascular networks, from fully-resolved three-
dimensional implementations suited for small networks (83), to continuous formulations describing flow distribution
at the scale of entire organ (84; 85). In this work, we focus on a popular pore-network approach (6; 17; 86; 10) that does
not requires further processing and makes direct use of the network skeleton (indeed, this approach has already been
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used in imaging-modelling pipelines (16)). We describe blood as an effective fluid with non-Newtonian properties and
assume Poiseuille flow, reducing the problem to a pressure distribution associated to the nodes of the graph, and flow
rate distribution associated to the segments of the graph. First, flow rate conservation is imposed at every node of the
graph so that

∑

𝑗
𝑄𝑖𝑗 = 0, (6)

where 𝑄𝑖𝑗 represents the flow rate in segment 𝑖𝑗, where 𝑖 and 𝑗 are the nodes at each extremity of the segment. Then,
momentum conservation is prescribed between those two nodes assuming no leakage

𝑄𝑖𝑗 = 𝐺𝑖𝑗(𝑃𝑖 − 𝑃𝑗), (7)
where 𝑃𝑖 and 𝑃𝑗 represent the pressure at node 𝑖 and 𝑗 respectively. Here 𝐺𝑖𝑗 represents the conductance associated
with the segment 𝑖𝑗 and is defined as

𝐺𝑖𝑗 =
𝜋𝑅4

𝑖𝑗

8𝜇𝑖𝑗𝐿𝑖𝑗
, (8)

where 𝑅𝑖𝑗 is the segment radius, 𝐿𝑖𝑗 the segment length accounting for segment tortuosity (𝜏𝑖𝑗) and 𝜇𝑖𝑗 to the blood
effective viscosity. Such a viscosity depends non-linearly on both the segment diameter and local presence of red blood
cells, referred to as the haematocrit, and is described using a well-established relationship derived from experiments
(87). In this work, we consider that each segment has a constant haematocrit corresponding to the systemic haematocrit
(i.e. 𝐻𝑑 = 0.4 (88)), although this could be readily extended using additional semi-empirical relationships to account
for phase separation effects (89), with the trade-off of solving a coupled, non-linear problem.

We close the system formed by Equations (6)-(8) by applying boundary conditions at all terminal nodes, i.e. nodes
connected to exactly one segment. The assignment of boundary conditions in the absence of measured data is highly
challenging - here we seek a pragmatic approach which allows us to explore the role of vessel architecture on network-
scale functional metrics (rather than being able to make specific, quantitative predictions). Therefore we develop an
approach which is straightforward to implement and standardisable across the different networks:

• The Medulla and FaDu networks have a box-like shape, with a large number of terminal nodes near the box
faces. We apply a pressure drop Δ𝑃 = 50mmHg between opposite faces, observing that the blood flow model
(Equations (6)-(8)) is linear so that blood flow distribution is independent of pressure drop. We chose this value
so as to remain in a physiological range (10) and as a basis for discussions. We assume terminal nodes located
within 50 microns of a face belong to that face and that terminal nodes located close to the box corners were
associated with their closest face. For nodes lying on other faces we impose 𝑃𝑖 =

Δ𝑃
Δ𝐿𝑥𝑖 where Δ𝐿 is the distance

between the two opposite faces and 𝑥𝑖 the position of the node along the direction of the pressure drop. For
terminal nodes located within the network, i.e. dangling ends located far from the faces, we impose no flow, so
that inlet and outlets are located only on the network surfaces. To avoid favouring a specific direction we repeat
the simulations with the pressure drop applied on the remaining two pairs of opposite faces. See Supplementary
Figure 3 for diagrammatic representation.

• The LS network includes structures with larger diameters than the other two networks and is also less box-
like in shape. In particular, Figure 5vii shows that the LS network has a large segment dangling close to the
bottom. This segment is present in every reconstructed skeleton, regardless of the algorithm considered. The
terminal node associated with such a segment is then prescribed with a high pressure, and all other boundary
vertices are prescribed with a low pressure so that the pressure drop between high and low pressure vertices is
Δ𝑃 = 50mmHg.

We perform blood flow simulations for the Medulla, FaDu and LS networks for each image processing pipeline
presented in Figure 1B.

4. Results and Discussion
4.1. Segmentation

The segmentation metrics for the manual annotator segmentations of each dataset, which compare the overlap
between each expert annotator and the consensus STAPLE segmentation, are provided in Table 2. In all cases, the
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Figure 3: Segmentation outputs for each dataset from two independent annotators. The bottom row shows the STAPLE
output for each dataset.

different annotators produced substantively different segmentations from one another, with one segmentation being
quantitatively similar to the STAPLE consensus.

The Medulla brain network represents the simplest segmentation case - vessels are well labelled throughout and
imaging artefacts (anisotropic asymmetric resolution specific to the imaging modality MR-HREM) have been well
reduced (90) Figure 3. Additionally, the network is non-pathological and thus vasculature has a more ordered structure
(i.e. vessels appear tube-shaped with most branches have one parent and two daughter nodes).
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DataSet Annotator Jaccard Index Dice Score Volume Similarity Hausdorff Distance
MR-HREM Medulla Brain Non-Expert Annotator 0.52 0.68 0.6322 82.32
MR-HREM Medulla Brain Expert Annotator (1) 0.66 0.80 -0.40757 55.0
MR-HREM Medulla Brain Expert Annotator (1) 0.99 0.99 0.000137 57.2

LS Tumour CT Expert Annotator (3) 0.84 0.91 -0.171 83.21
LS Tumour CT Expert Annotator (1) 0.74 0.85 -0.31 72.01

FaDu Tumour MF-HREM Expert Annotator (4 ) 0.28 0.43 -1.13 100.3
FaDu Tumour MF-HREM Expert Annotator (1) 0.99 0.99 -0.006 77.6

Table 2
The Jaccard index, Dice Score, Volume similarity and Hausdorff Distance, of individual semi-manual segmentations
compared to a gold standard segmentation. The gold standard was constructed by combining the individual hybrid hand-
automated segmentations using the STAPLE algorithm.

The FaDu and the LS tumour networks both represent pathological microvascular networks, with highly disorgan-
ised vasculature where many vessels do not appear tube-like in structure, and complex branching points where many
vessels meet Figure 3.

The LS tumour annotators performed their segmentations Figure 3 in approximately 120hrs (Annotator 1) and
15hrs respectively (Annotator 3). Annotator 1’s segmentation shows better distinction of the fine vessels and this is
reflected in the metrics in Table 2. This highlights that not only is the level of expertise important to consider, but also
the conditions under which each expert annotator is working. As of yet, there is no widespread consensus for the best
approach to these challenges (91; 42).

The FaDU network represents the worst case scenario for segmentation: the network is pathological, meaning
deviations from tubular branching tree structures cannot be used to distinguish imaging artefacts from vascular
structures. Also the anisotropic resolution, characteristic of MF-HREM (90), is more pronounced owing to the lower
resolution Figure 3. These challenges are borne out in the differences between the two expert annotators (Table 2). In
this case experts had had similar levels of experience and completed the task over similar time frames.

The MOST algorithm combines both segmentation and skeletonisation, and utilises a different form of adaptive
threshold for the segmentation portion of the algorithm. The segmentation portion of this algorithm was not evaluated
separately to the skeletonisation portion, rather the final output was evaluated against the STAPLE segmentation using
overlap metrics, precision and recall, defined by the authors of the MOST algorithm (55). We combine the precision
and recall by taking the harmonic mean of these and refer to this as the F1 score (see Supplementary Materials Section
1.1). Our highest score was F1=0.83. This cannot be directly compared to the overlap metrics of DICE or Jaccard
indices of the manual segmentation in the previous sections, as it is based on the overlapping ’regions’ of vessel in
cross-sectional images throughout the stack, rather than voxel-to-voxel overlap on the full image volumes, and only
after a re-binarization of a skeletonised graph. Rather, the F1 score we obtain should be compared to 0.92, which is
calculated from the harmonic mean of precision and recall in (55). The lower F1 score here already suggests that there
will be high uncertainty in the final skeleton results for this algorithm.

In all cases it is clear that whilst there may be closer or further consensus between experts regarding the manual
segmentation of microvascular structures, one should be cautions of inferring ground-truth from consensus, and should
rather consider gold-standard consensus as a distinct case from e.g. a synthetic dataset ground truth.
4.2. Skeletonisation metrics

For all datasets each skeletonisation results in a spatial graph with the nodes, segments etc. as previously discussed.
The number of nodes, segments, subnetworks, total network volume, branched and terminal nodes are reported in
Supplementary Table S3. From these data alone, the wide variation produced by these different methods is clear. For
each dataset, the skeletonised network with highest number of nodes has more than double the number of nodes and
segments than that with the lowest. In addition, there is no clear pattern for any given algorithm: e.g. for the tumour
datasets, LS and FaDu, the CL algorithm produces the lowest number of branching nodes, whereas for the medulla
brain dataset the CL algorithm produces the highest number of branching nodes. This could be attributed to the number
of looping nodes that are broken by the CL algorithm which the medulla may have more of given that it is the highest
resolution dataset. Comparison of the network volume with the volume of the consensus segmentation (Supplementary
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Figure 4: (A) Medulla brain and (B) FaDu tumour network metrics. For both cases i-vi are the branching angle, radius,
LDR, tortuosity, IVD and number of subnetworks respectively, and vii shows the network with subnetworks coloured for
one of the three image processing pipelines.

Table S3-S5) demonstrates VV provides the closest volume approximate in the FaDu and LS cases, which can be linked
to the mean radius result in the structural metrics we now discuss.

The structural metrics comparison demonstrates the differences in the geometry of the networks using metrics
which are commonly applied in the field (section 4.2). Figures 4 and 5 show the distributions of structural metrics for
the spatial graphs produced by skeletonisation of the STAPLE segmentation and MOST output for all three datasets.
The radii, LDR, branching angle, IVD, number of subnetworks and tortuosity for each of the skeletonisation approaches
are statistically compared based on the differences in respective distributions (as measured by the Kruskall-Wallis test)
and are summarised in Table 3 (extended statistics in Supplementary Table S10-S12).

By looking across all datasets, the algorithm dependency of structural metrics becomes evident in some cases. For
example, in all cases the skeletonisation algorithm that produces the highest mean radius value produces the lowest
IVD. This is VV in all cases where it is applied and can be seen to be a consequence of the modified Euclidean
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Datasets Radius Branching IVD Tortuosity LDR Flow
Medulla
MOST vs. AS *** *** *** *** *** ***
MOST vs. CL *** ** *** *** *** ***

AS vs. CL *** *** *** *** *** ***
FaDu

VV vs. AS *** ns *** ** *** ***
VV vs. CL *** ** *** *** ** ***
AS vs. CL *** ** *** *** *** ***

LS
VV vs. AS *** ns *** ** *** ***
VV vs. CL *** ns *** *** *** ns
AS vs. CL ns ns *** *** *** ***

Table 3
Summary statistics for Kruskall-Wallis test between means of each structural metric across each skeletonisation method,
∗∗∗ p ≤ 0.0001, ∗∗ p ≤ 0.001, ∗ p ≤ 0.05, ns p ≥ 0.05

distance approach to radius estimation (48). Similarly the networks with the highest number of subnetworks tends to
have the highest IVD, although this can be countered by large radii. The majority of the metrics differ significantly
between skeletonisation methods. Considering the structural metric results in terms of the skeletonisation methods: the
CL algorithm, a shortest path approach following a distance ordered search, produces a less well connected network
(higher number of sub networks) compared to the thinning approaches of VV and AS (Figures 4Bvi and 5vi). The
AS algorithm consistently produces the lowest number of sub networks across all datasets, though it is not clear if
this is a ’better’ skeletonisation, we discuss this notion further section 5. For other metrics, there is no clear pattern
in the variation between CL and AS approaches across all datasets. For example, the mean IVD in the Medulla brain
network is significantly lower in the CL case than in the AS case, whereas the reverse is true for the FaDu network. For
tortuosity there is also not a clear pattern in the differences between the distributions across all three datasets (Figures
4Aiv, 4Biv and 5iv).

Other metrics, such as the radius distribution, display some patterns that can be linked back to assumptions or
limitations of the algorithms; for example, we note that the radius distribution for the CL has a hard-coded minimum
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radius value of twice the pixel size. This distorts the radius distribution where vessels approach the imaging system
resolution (Figures 4Ai, 4Bi and 5ii). Where the imaging resolution is lower, and thus the image captures mostly larger
vessels (such as the LS tumour dataset), the hard coded minimum is less apparent (Figure 5i).Similarly the radius
calculation for the AS algorithms has a simplistic approach which uses 1/5th the maximum of the Chamfer distance
map. This lead to generally lower radius values than other algorithms for the lower resolution datasets which use e.g.
maximum inscribed sphere approaches used in the CL (53) and MOST (58) or a modified Euclidean distance approach
in VV (48). In addition, the strict tree topology enforced by the CL algorithm, and the MOST breaks looping structures
within the network forcing the structure towards a more ’tree-like’ topology i.e single parent vessel with two child
vessels at nodes. This leads to a higher number of terminal nodes compared to all other skeletonisations algorithms
(Supplementary Table S3). In the CL case this also leads to distinctive bimodal distribution of branching angles with
the smaller angle between child vessels and a larger the angle between parent and child. This forcing of networks into a
strict tree-like topology may be appropriate for large calibre vessels or in networks that are purely an arterial or venous,
but is a highly questionable assumption in the case of capillary networks which have a more mesh-like structure (17)
such as the medulla brain. Moreover, is is not clear that such an assumption would hold for a pathological vessel
networks such as the tumour networks of the LS and FaDu. The MOST approach, the only approach which does
not share the same binary segmentation, produces even further disparity in metric results, including a reduction in
network connectedness, as evidenced by the high number of subnetworks (Figure 4Avi). This is likely influenced by
the absence of manual segmentation in this pipline; human annotators have a tendency to fill in connected regions
when segmenting even if there is faint or absent staining, due to the expectation of a connected tubular structure when
segmenting a microvascular network (36). The differences between network topologies for the AS and VV approaches
are of particular interest (Figure 4B and Figure 5) as both are thinning approaches with the same input segmentation.
This shows that these widely used algorithms with the same theoretical aims (e.g. medialness, homology, and thinness)
result in significantly different graph outputs. Furthermore it is not possible to visually assess the output correctness
through overlay methods alone, or to use the quantitative structural metrics of the outputted networks to determine
which algorithm performs ’better’ in either dataset. Indeed, neither of these methods produces a homotopic skeletons
which is shown simply by comparison of the number of connected components in the binary labelled volume and the
number of subnetworks (see Supplementary Tables S3 - S5 for values). Interestingly, the CL algorithm does preserve
the number of connected components when compared to the input segmentation. However, as previously discussed, it
does not preserve loops and thus will inevitable violate homology where looping structures are present in the segmented
micro-structure.

In some cases the comparison of the structural metrics does not achieves statistical significance, e.g. in the LS
network branching angle (Figure 5i). This could suggest that two algorithms are in closer agreement than a third which
differs significantly; and whilst this may be the case, a spatial encoding of the branching angles (as with the other
metrics) is necessary to understand if structural differences will result in a functional difference between two skeleton
structures. This is something which is rarely considered in spatial graph microvascular network analysis, but can be
born out through functional metrics such as the flow results we present below.

Overall the structural metric analysis highlights significant variability underpinned by skeletonisation algorithm
selection. Whilst we do not question that structural metrics do vary between networks in meaningful ways such as
in pathology and as such, are still clearly valuable to compute. We show that great care must be taken to ensure that
the measures extracted are not dominated by the skeletonisation algorithm used to compute and moreover that any
comparison of networks using different skeletonisation algorithms such as between different studies, should be treated
with extreme caution. It is also clear that structural metrics alone do not necessarily provide a clear indication of whether
any one skeletonisation algorithm is closer to an accurate representation of the imaged microvascular networks than
another.
4.3. Flow results

The flow model used here incorporates geometrical and topological network information with a standardised
approach to boundary condition assignment; therefore, we consider the flow predictions as a summary statistic on how
different structural interpretations of the same networks would influence functional measures rather than a quantitative
prediction about in vivo dynamics. In this context, Figures 6 and 7 show the simulated flows across the different
skeletonised networks (VV, AS, CT and MOST), with Figure 6A and B focusing on the medulla and FaDu networks,
and Figure 7 on the LS network.
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Figure 6: Flow simulation for (A) medulla and (B) FaDu networks for each skeletonisation algorithm. i) The flow distribution
for the case of a pressure drop applied in the x direction. ii) The perfusion flow rate, i.e. the total flow rate going through
the network, averaged over the three pressure drop directions, with the error bars representing the standard deviation. iii)
Fraction of nodes that are terminal (plain), fraction of nodes that are terminal with no flow (cross hatch). iv) v) and vi)
show the spatial flow distribution associated to the histogram displayed in i).

Figures 6Ai, 6Bi and 7i show the flow rate distribution histograms for each network (for the case of a pressure
drop along the ⃖⃗𝑥 direction for the Medulla and FaDu networks). We can see that the distributions vary widely
depending on the algorithm considered. Quantitatively, statistical comparisons (Table 3) show that flow distributions
were significantly different across all networks, except the LS network in the case of CL against VV algorithms
(Kruskall Wallis test with Dunn’s multiple comparisons, see details in Supplementary Table S10-S12). Such differences
in flow distribution impact integral quantities such as the perfusion flow rate, defined as 𝑄𝑃 = 1

2
∑

𝑖∈{𝐵𝐶} |𝑄𝑖𝑗|, i.e.
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Figure 7: Flow simulation for the LS network. i) shows the flow distribution. ii) The perfusion flow rate, i.e., the total flow
rate going through the network. iii) Fraction of nodes that are terminal (plain), fraction of nodes that are terminal with
no flow (cross hatch). iv) v) and vi) show the spatial flow distribution associated to the histogram displayed in i).

the total flow rate going through all terminal nodes (the set of terminal node being {𝐵𝐶}). Figures 6Aii and Bii, and
7ii show the resulting perfusion flow rate for the medulla, FaDu and LS networks respectively. We see that for each
network there is consistently one skeletonisation algorithm associated with a perfusion flow rate approximately an
order of magnitude larger than the others. We note, however, that there is no consistency across the three networks,
with the medulla network showing largest perfusion flow rate when the MOST algorithm is used, the FaDU network
when the VV algorithm is used and the LS network when the AS algorithm is used. Such differences also hold when
looking at the net flow rates going through each face of the box-like shaped network (medulla and FaDu networks,
see Supplementary Tables S7 and S8), regardless of the pressure drop direction considered. These differences in
flow distribution and perfusion flow rates can be attributed to the cumulative effects of radius distribution, network
connectivity and terminal node distribution.

As already mentioned in the Introduction and further illustrated by Equation (8), flow rates are particularly sensitive
to the radius of blood vessels. Consequently, we see that the simulations predicting the largest perfusion flow rates are
commonly associated with the algorithms reconstructing the network with the largest radii for the subsection networks
(MOST algorithm for the medulla network (Figure 4Aii), VV algorithm the FaDu network (Figure 4Bii). For the LS
network which is a complete network (as opposed to a box-like network) this pattern is broken; the AS algorithm despite
having a lower mean radius that the VV algorithm produces the highest flow. This case highlights the complexity of
linking network topology to dynamic behaviours, as can be seen from Figure 5iv there is a disconnect between one
of the largest vessels in the LS networks produced by the VV algorithm that is not present in the CL or AS networks
Fig. 5v and vi . This small change has a dramatic impact on the flow distribution in the skeleton produced by the VV
algorithm, (Figure 5ii)).

Figures 6Aiv-Avii, 6Biv-Bvi, (medulla and FaDu networks, pressure drop along the ⃖⃗𝑥 direction) and 7iv-vi (LS
network) show strikingly different spatial flow patterns obtained depending on the algorithm used, reflective of
the differences observed in flow rate distribution histograms. We see that in all cases the flow patterns are highly
heterogeneous, which is a hallmark of the microvascular system (92). Still, we note the existence of regions associated
with very small flow rates (dark blue for the medulla network, white for the FaDu network and red for the LS
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network), whose sizes vary depending on the algorithm considered. Such regions are the result of the combined
effect of connectivity (number and spatial distribution of subnetworks) and boundary conditions (number and spatial
distribution of terminal nodes). For instance, looking at the LS network and the flow prediction based on the VV
algorithm (Figure 7iv), we see a large region with no flow on the top-right corner. We see that such a region is perfused
with blood in the case of AS and CL algorithms (Figures 7v and 7vi). Recalling that we assigned the LS network with
only one high pressure node (the node at the very bottom), i.e. one inlet, this means that this region, with relatively
large segments, is actually considered by the VV algorithm as a disconnected, independent subnetwork.

Beyond highlighting the effect of radius distribution and network connectivity, the flow simulations demonstrate
how different skeletonisation algorithms will lead to different terminal node distributions, and therefore to different
boundary conditions. To illustrate this, Figures 6Aiii, Biii and 7iii show the number of terminal nodes, expressed as a
fraction of the total number of nodes, in each network and for each algorithm (plain bars). We see that consistently at
least 40% of nodes are terminal, increasing to 90% in the case of the CL algorithm and FaDu network. As already
mentioned in section 4.2, the CL algorithm breaks looped structures, creating microvascular trees instead, which
systematically increases the number of terminal nodes. Moreover, Figures 6Aiii, 6Biii and 7iii also show the number
of terminal node that are associated with no flow, expressed as a fraction of the total number of nodes (cross-hatched
bars), either because they are located far from the boundary or in a non perfusing, independent subnetwork. We see
that this fraction generally follows closely the fraction of terminal nodes, indicating that a large number of terminal
nodes are actually non perfusing, and therefore that most of the terminal nodes are not located close to the boundary
(for the case of the medulla and FaDu network specifically).

Linear or weakly non-linear problems such as the blood flow problem described in Section 3.2.2 are mostly
controlled by their initial and boundary conditions, which requires a degree of arbitrary decision whether motivated
by physiology or pragmatism. Strategies have been developed to mitigate the arbitrary aspect of boundary condition
assignment, such as periodic boundary condition for terminal nodes on the faces of box-shaped networks (10), or
formulating the blood flow model (Equations (6)-(8)) as a constrained minimization problem (93), or even setting
pressure or flow rate values on nodes associated with specific segments (e.g. arterioles, venules that are known
entry/exit points for the network). However, such strategies have their limits; e.g., they do not solve the problem of
dangling ends located far from the boundaries or disconnected subnetworks. An intuitive solution to solve that latter
issue could be to either remove/discard small subnetworks such as isolated segments, or include new segments to
artificially increase connectivity and obtain a single, all-connected network. However, dangling ends and disconnected
subnetworks can be features of pathologies, e.g. where parts of the original healthy network have atrophied leaving
isolated segments (10; 94) or where there is dis-regulated angiogenesis, e.g. caused by cancer cell angiogenic factor
secretion (14; 6), which makes it challenging to alter arbitrarily the network structure. In this context it is critical to
be able to quantify the uncertainties attached to a set of network skeletons, and be able to label their features as either
being the result of a physiopathological processes or the result of a gap in the skeletonisation algorithms. Beyond this
lies the propagation of such uncertainties to functional prediction. In particular, the perfusion flow rate underpins drug
delivery (95; 6; 18); given the range of values displayed in Figures 6 and 7, it is challenging to make informative
and quantitative predictions using such datasets. Similarly, net flow rates associated with faces for box-like shaped
networks (Supplementary Tables S7 and S8) can be used to infer the local permeability tensor of the tissue associated
with the reconstructed network. Such a permeability tensor, being a key player in multiscale models (84; 85), can easily
propagate the uncertainties generated by the network skeleton to predictions at courser length scales.

In summary, the flow simulations highlight the limited ability of the skeletonisation algorithms to consistently
recover key features of the flow, whether due to differences in the reconstructed segment radii, network connectivity or
terminal node distribution. This motivates the need for a quantitative and easy to apply metric to assess and optimise
skeletons produced by different algorithms.

5. A Metric for Skeleton validation
The creation of a full skeleton consensus ground-truth in an analogous manner to the segmentation fields is an overly

manually intensive approach which could not be widely applied (24). An alternative approach is to consider that the
skeletonization step should alter as little as possible the information contained in the segmented image. Doing so means
to consider the segmented image as a gold standard, so that metrics derived from the skeleton then need to be compared
to metrics derived from the segmented image. However, as revealed from our analysis in Section4.3 we should weight
our comparison with the segmented image towards the information content of the segmented image that most affects
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Datasets Volume
𝜇𝑚3

No. connected
components

Euler No.
of largest

connected component
Bifurcation DICE cl- sensitivity

Medulla
Binary Image 1.42 74 -381 1 1

VV 0.738 71 -381 0.5 0.9733
AS 0.337 62 -381 0.74 0.9999
CL 0.412 74 1 0.56 0.9997

FaDu
Binary Image 4.60 6067 -333 1 1

VV 3.80 3965 -264 0.2 0.8997
AS 1.12 836 -333 0.61 0.9499
CL 1.24 6067 1 0.35 0.9187

Table 4
Comparison of skeletonisations utilising individual metrics described above.

dynamic behaviour. This includes: radius of vessels, connectivity of vessels in particular the connectivity of the largest
single connected component of the networks which carries the majority of the blood flow (see Supplementary Figure
S2). In addition to this, spatial encoding of geometric similarity must be included to ensure dynamic similarity, (note the
principles of medialness and homology should ensure some spatial encoding of similarity). Such a comparison to the
segmented image leverages the methods from the segmentation field used to create gold-standard segmentations, and
provides a fixed point against which to assess a new skeletonised network in all cases. A number of other researchers
have also sought to validate skeletons by comparison to binary images, (23; 5; 35), but these only consider one or two
metrics in isolation, rather than formulating it as a collective. For example Table 4 shows comparison between the
STAPLE segmentation and the skeletons for the medulla and FaDu Tumour datasets, across four different measures:
Volume, number of connected components, Euler characteristic of the largest subnetwork (connected component),
DICE score for bifircation points, and cl-sensitivity(33). It can be seen that depending on which metric is chosen for
comparison, a different skeletonisation algorithm will appear to be superior. In the Medulla case, the CL algorithm
gives the closest number of connected components to the STAPLE segmentation, however CL is the least good when
the Euler number of the largest connected component or the bifurcations dice in a small subvolume is considered. The
AS algorithm, on the other hand, provides the highest bifurcation DICE and cl-sensitivity, but has the lowest similarity
in terms of volume and connected components compared to the other candidate skeletonization algorithms. These
differences are also apparent in the FaDu data, but to an even greater extent owing to the pathology of this network
and the lower resolution of the image data. This further highlights why a single metric which take into consideration
multiple properties of a microvascular network is needed.

We have developed a composite metric that combines several morphological measurements of a skeletonized
network and can be quickly computed from the network spatial graph. We term this the super-metric and it contains 5
measures each calculated by comparison to the binary image:

1. 𝑉 - Total network volume
2. 𝐵 - Number and location of bifurcation points in a small subset of the network, reported as a DICE score
3. 𝑐𝑐 -The number of connected components or subgraphs of the network.
4. 𝜒 - The local Euler characteristic, where we have reformulated the classical Euler characteristic to resolve the

special case of 𝜒𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = 0 . Our local Euler will always be positive 𝜒 = −𝜒𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 + 2. (35; 23; 96).
5. 𝑐𝑙 - A partial form of the cl-dice metric (only the sensitivity portion i.e. the overlap of the skeleton centreline

with the binary image following) (33; 5).
For the 𝑐𝑙 measure we consider only the overlap of the centreline from the skeleton with the binary image, i.e

the cl-sensitivity. 𝑉 , 𝑐𝑐 and 𝜒 have equivalence in both the binary image and the spatial graph form. For 𝑉 , 𝑐𝑐 the
equivalence is trivial and for the 𝜒 number we compute the number of holes or tunnels through the largest connected
component in the binary image, or equivalently, in the largest subgraph of the network, the number of nodes minus
number of segments(96). Our variation from the classical Euler characteristic resolves the valid but special case where
Euler characteristic would be zero, (e.g. a network with one single loop). For 𝐵 manual annotation of bifurcation
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points in a small subvolume of the binary data must be performed once, then the True positive, False Positive, and
False negative bifurcation points in the same subregion can be computed for any skeleton automatically. 𝑐𝑙 is calculated
by transformation of the spatial graph into a binary centreline image using Bresenham’s algorithm (97). The overlap
between the two images is then used to calculate the images where one is the centreline of the spatial graph and the
other the binary image. See supplementary Info section 7. and Supplementary Table 13 for calculation of each metric

These measures are combined the following way:

𝑀𝑆 =
∑

𝑖

1
𝑓 𝑛𝑖
𝑆,𝑖

⋅
|

|

Δ𝐼𝑆𝑓𝑖||
𝑓𝐼,𝑖

(9)

where 𝑓𝑆,𝑖 and 𝑓𝐼,𝑖 represent each of the metrics (as provided in Supplementary Table 13) computed from the
reconstructed skeleton or the initial segmented image respectively. Then Δ𝐼𝑆𝑓𝑖 represent the difference in metric
values between the two estimates. Finally, 𝑛𝑖 are integers representing the weight given to each individual metrics.
Taken together, we see that Equation 9 can be written as the projection (scalar product) of the distance vector between
the reconstructed skeleton and segmented image onto a weighted space representative of the priority given to the
different elementary metric.

The non-linear weighting for each term has been formulated to weight appropriately for the influence of each
measure on the dynamic properties of the network. 𝑉 , 𝜒 and 𝑐𝑐 all have 𝑛 = 0, i.e. they are assigned with unit weights.
On the other hand, the bifurcation DICE (𝐵) the cl-sensitivity (𝑐𝑙), elementary metric are weighted with 𝑛 = 2 and
𝑛 = 3 For the present case of the metric this gives a formulation:
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2

(10)

The practical affect of the weighting is that only a very minor reduction in 𝑐𝑙 from 1 will result in a high super-
metric value, which is intuitively understandable i.e. a skeletonisation algorithm may occasionally cut a corner and
still represent the network in the segmented image well, but large proportions of centreline outside of the binary
segmentation is not plausible. For𝐵, larger deviation from 1 in the DICE bifurcation are tolerated by the super metric as
the bifurcation points are annotated manually and hence may be slightly subjective. As 𝑐𝑙 or 𝐵 deviate from 1 the terms
can quickly become dominant in the overall metric leading to a rejection of the skeleton, even if other morphological
features are correct such as the number of connected components. This helps to enforce the spatial correctness which
was highlighted as critical for dynamic behaviour.

In order to assess the performance of the super-metric, we performed formal optimisation of the four algorithms
VV, CL, AS and MOST on a subsection of the medulla brain dataset See Supplementary information section 7 for
optimisation methods.

Fig 8A shows that the super metric was able to provide a clear optimal algorithm choice from amongst the four
algorithms- The AS algorithm had the lowest super metric score in the optimal case and indeed was generally lower
than all other algorithms for most of the parameter spaces explored. Fig 8B shows how each term of the super metric
contributes to the overall value of the super-metric for the baseline and optimal case for each algorithm. The very high
DICE bifurcation case can be seen for the MOST algorithm indicating the spatial inaccuracy of this skeletonisation
method. The super-metric also proves to be a highly useful tool in identifying, in which area an algorithm is performing
most poorly. For example in Fig 8B it is clear that for the AS algorithm the Volume term is the highest contributor
to the super-metric value. When we consider that this algorithm shows lower mean radius than its closest competitor
the VV algorithm (also show in Supplementary Figure 5; it indicates that the method for evaluation of radius in the
AS algorithm should be improved. Finally Figure8C shows how the absolute flow rate through the networks changes
in response to optimisation of the super metric. As can be seen the optimal flow rates of the network are more tightly
clustered as shown by the smaller 95% confidence intervals in the Optimal flow of Figure 8C.

In summary, we have defined a super-metric for the assessment of skeletonisation algorithms. The super-metric
can be considered a scalar product of a distance and weighting term for each component included. We have chosen to
include 5 features in the term guided by our previous dynamic and structural metric study. We show that the super-
metric can be easily and rapidly computed and applied to a wide range of skeletonisation algorithms. When this is done
it is simple to compare different skeletonisation algorithms and choose that which provides the minimum super-metric
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Figure 8: Showing how the supermetric optimisation impacts skeletons. A) the value of the supermetric in all 10 runs for
each algorithm, B) each term in the super metric is plotted for the baseline, optimal and worst case of the parameter
sets.C) The perfusion flow rate change i.e. the total flow rate going through the network between the initial and optimal
parameter values for all four algorithms. The mean and 95% CI for all four networks in the initial and optimal case.

value. In addition the individual terms of the super-metric can guide algorithm improvement. Whilst we believe this
initial super-metric captures and combines the critical measures that should be used to assess micro-vascular network
skeletons, the formulation is clearly amenable to being added to or adapted by others. In particular an addition that
would allow radius and length to be distinguished (rather than a global volume term) would be preferable. Furthermore
formulation of this metric in a numerically differentiable form could lead to its use as a loss function for machine-
learning based skeletonisation approached.

6. Conclusion
The critical role of vascular networks in healthy tissue function and as biomarkers of disease is indisputable.

This importance coupled to the increasing advances in 3D imaging techniques and computational frameworks for
simulating the functional properties of networks from geometric data has huge potential in the field of computational
medicine(20; 21). The image-processing pipeline is a key step in such image-based modelling frameworks of large
microvascular networks. Ensuring that there is robust and widely agreed upon validation methods in place for the image
processing portion of these frameworks is therefore crucial for their application in biological and medical scenarios.

In this work we have demonstrated the extent to which image processing variability, and in particular skeletonisa-
tion, can create variability in the structural properties measured from vascular networks and how this can propagate
into frameworks that seek to model the functional properties of microvascular networks from 3D imaging data.

These differences can be so large that substantively different biological conclusions regarding e.g. the tortuosity
or connectivity of any vascular network may be arrived at solely due to the selection of the skeletonisation algorithm
even where it has parameterised by accepted methods in the field. This is critical where multiple studies are assessing
how pathological changes in a vascular network may lead to functional differences in e.g. blood flow or oxygenation
and what the biological implications of this on tissue function may be. The differences in functional properties (such
as blood flow or perfusion) cannot be easily intuited from structural metrics owing to the complex dependencies on
overall network connectivity, individual vessel properties such as radius, and how boundary conditions and nodes are
identified and initialised.

Within the image processing pipeline the field of segmentation, has numerous widely applied metrics and strategies
to mitigate variation caused by different algorithms or expert annotations. For skeletonisation the validation landscape
is far less clear.

There are a wide variety of open source and commercial algorithms for performing skeletonisation with a vast and
widely spread body of literature on the various developments and implementations. As a global goal, many of these
algorithms have three guiding principles: homology preservation, thinness and medialness. Whilst these goals are, to
a greater or lesser extent, achieved by individual algorithms, there is increasingly a push to scale such algorithms to
handle the ever increasing size of 3D imaging data. With the added constraint of efficiency for data sets of 100GB
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and upwards, it may be that whilst the mathematical proof for e.g. homology holds in the original algorithm (50),
efficient computational implementation through parallelisation, for example, produces unexpected behaviour or breaks
assumptions of the original algorithm (52).

The fundamental challenge for skeletonisation, is that there is generally no gold-standard for a skeleton, or agreed
upon metrics for assessing skeletons. The creation of a gold standard for skeletons is a large challenge. To the authors
knowledge, the only published manually-defined consensus centreline datasets are the coronary artery datasets of
Schaap et al. (24), where the length of time required to produced consensus centrelines for just the first 3 branches of the
coronary artery tree was over 500 hours of expert time. Instead we have proposed a super-metric for skeletonisation that
utilised the binary input image as the gold-standard and seeks for the skeleton to most closely represent the binary image
with a weighting to features which most heavily affect the functional behaviour of the network. To that end we have
proposed a metric which consists of 5 terms each of which captures features that we have demonstrated are important
to the functional behaviour of microvascular networks, and we have combined these as a scalar product of a distance
from the binary image and a weighting term. This formulation is simple and fast to compute and thus is practically
usable by any researcher as well as providing intuitive insights into the ways in which a particular skeletonisation
algorithm differs from other algorithms or from the binary input image used to create it. We aim that this super-metric
become a standard metric for assessing microvascular skeletons as it will allow of a quantitative assessment of new
algorithms and will empower researchers to be able to effectively choose and optimise new skeletonisation algorithms.
Further development of the super-metric with the addition of new terms of the refinement of our existing terms would
be highly beneficial particularly in assessing how the radius of vessel is estimated, or by efficiently including functional
properties in the metric composition.
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