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ABSTRACT: Arsinothricin is a potent antibiotic secreted by soil bacteria. The biosynthesis of Arsinothricin was proposed to
involve two steps. The first step is C-As bond formation between trivalent As and the 3-amino-3-carboxypropyl (ACP) group
of S-adenosyl-L-methionine (SAM), which is catalyzed by the protein ArsL. However, the reaction has not been verified in
vitro, and ArsL has not been characterized in detail. Interestingly, ArsL contains a CxxxCxxC motif and thus belongs to the
radical SAM enzyme superfamily, the members of which cleave SAM and generate a 5°-deoxyadenosyl radical. Here, we
found that ArsL cleaves the C,met-S bond of SAM and generates an ACP radical that resembles Dph2, a noncanonical radical
SAM enzyme involved in diphthamid biosynthesis. As Dph2 does not contain the CxxxCxxC motif, ArsL is a unique
noncanonical radical SAM enzyme that contains this motif but generates an ACP radical. Together with the
methyltransferase ArsM, we successfully reconstituted arsinothricin biosynthesis in vitro. ArsL has a conserved RCCLKC
motif in the C-terminal sequence and belongs to the RCCLKC-tail radical SAM protein subfamily. By truncation, we showed
that this motif binds to the substrate arsenite and is highly important for its activity. Our results suggested that ArsL is a
noncanonical radical SAM enzyme with a canonical radical SAM enzyme motif, implying that more noncanonical radical

SAM chemistry may exist within the radical SAM enzyme superfamily.

Arsenic is a widely distributed toxic metalloid in nature
and is found mainly as inorganic arsenic species, such as
arsenite (III) and arsenate (V), which are toxic
contaminants in the environment.! Despite its toxicity,
inorganic arsenic has been successfully used to treat a
variety of human diseases?, such as acute promyelocytic
leukemia (APL)3 and multiple myeloma* As a detoxic
strategy,>¢ bacteria convert inorganic As to organic
compounds, such as methylarsenic, dimethyl arsenic,
trimethyl arsenic, arsenosugars’ and its derivatives
arsenobetaine® and arsenolipids.?1? Recently, researchers
discovered a natural arsenic compound arsinothricin
(AST), which is produced by soil bacteria in the rice
rhizosphere as a defensive compound.!! Arsinothricin is a
potent inhibitor of glutamine synthetase and a promising
antibiotic for various pathogenic microorganisms,
including drug-resistant species.1?13 Therefore,
arsinothricin is a promising drug candidate and its efficient
preparation and further study are highly desirable. The
biosynthesis of Arsinothricin was proposed to involve two
steps.'* The first step is the transfer of the 3-amino-3-
carboxyl propal (ACP) group from S-adenosinmethionine
(SAM) to arenite, generating the trivalent AST-OH. The
second step is the methylation of AST-OH by the SAM-
dependent methyltransferase ArsM to produce trivalent
arsinothricin, which is readily oxidized by air to form
arsinothricin (Figure 1). The second step of arsinothricin
biosynthesis has been studied both in vivo!S and with
chemically synthesized trivalent AST-OH and purified
ArsM in vitro.1® However, the intriguing first step in the
biosynthesis route for C-As bond formation with ArsL
catalysis remains unclear.
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Figure 1. (A) Proposed arsinothricin biosynthesis pathway.
(B) The radical SAM (RS) enzyme and noncanonical radical
SAM enzyme Dph2 catalyzed SAM cleavage reactions; to
simplify the scheme, organometallic intermediates that
function as stable radicals are not shown.

As the protein sequence of ArsL contains a CxxxCxxC
motif, the enzyme was predicted to be a member of the
radical SAM enzyme superfamily, which is the largest
protein family with more than 70,000 members.17-1° The
radical SAM enzyme binds to the 4Fe-4S cluster via the
conserved CxxxCxxC motif.2%2! The reduced 4Fe-4S cluster
cleaves SAM to generate the 5’-deoxyadenosyl (5°-dA)
radical, which mostly absorbs a hydride from the substrate
to produce a substrate radical;?! this radical catalyzes
numerous challenging reactions or directly adds to the
substrate in several cases.?223 Interestingly, the proposed
activity of ArsL in arsinothricin biosynthesis involves the
transfer of the ACP group from SAM to arsenite.l* This
unusual SAM cleavage resembles the noncanocial radical
SAM enzyme Dph2 in diphthamide biosynthesis.24-26 Dph2
cleaves SAM and generates a 4Fe-4S cluster-stabilized ACP
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radical to modify the histidine residue of the substrate
protein EF2 (Figure 1). Interestingly, the special SAM
cleavage activity of Dph2 resulted from the distinct
geometry of SAM binding with 4Fe-4S, which was
conjugated by three cysteines from different domains of
the protein instead of the CxxxCxxC motif.25 The Broderick
group?’ and our group?® recently demonstrated that
glycerol dehydrogenase-activating enzyme GD-AE, the only
previously assumed noncanonical radical SAM enzyme
with the CxxxCxxC motif, is a canonical radical SAM
enzyme that generates the 5’-dA radical. Moreover, many
enzymes, such as TWY22% Tsr330 and Aze]3!, cleave the
C,Met-S bond of SAM by a nucleophilic mechanism.32 To
date, no radical SAM enzymes with the CxxxCxxC motif
have been reported to cleave the C,me-S bond of SAM and
generate the ACP radical, as does Dph2. In terms of the
CxxxCxxC motif in ArsL, it remains unknown whether ArsL
is a radical SAM enzyme or only binds a 4Fe-4S cluster but
catalyzes a nucleophilic reaction, such as the SAM-
dependent methyltransferase TsrM3334in the biosynthesis
of thiostrepton.
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Figure 2. SAM cleavage reaction of ArsL. Left: HPLC traces
of the ArsL reactions. The full reaction mixture contained
ArsL, SAM and dithionite. SAM was not cleaved without
ArsL or dithionite. Right: HR-MS of the isolated MTA peak
in the full reaction.

The Burkholderia gladioli ArsL protein was
overexpressed in Escherichia coli and purified under
anaerobic conditions (Figure S1). The purified ArsL had a
brown color and UV absorption at 410 nm, which
disappeared when dithionite was added as the reductant,
typical for the [4Fe-4S]?* cluster of radical SAM enzymes
(Figure S2). Analyses of the iron and sulfur contents of
ArsL showed 1.2+0.1 and 2.3+0.4 equiv. of iron and sulfur,
respectively, per protein, suggesting the presence of 0.3
[4Fe-4S]?* cluster loading. We first tested the activity of
ArsL to determine whether it could cleave SAM to generate
5'-dA, MTA, or both products as 5'-dA and SAH detected in
the reaction of radical SAM methyltransferases.3>
Dithionite was used as the reductant in the reaction. High-
performance liquid chromatography (HPLC) showed that
in the reaction containing ArsL, SAM and dithionite, SAM
was completely converted to MTA, which was further
confirmed by high-resolution mass spectrometry (HR-MS)
(Figure 2). No MTA was formed in the control reaction
without dithionite, indicating that the SAM cleavage activi-
ty depends on the reduced [4Fe-4S]'* cluster. In the
control reaction without ArsL, only trace amounts of MTA
were detected due to SAM decomposition (Figure 2). This

result suggested that ArsL is different from the
conventional radical SAM enzyme, which cleaves SAM to
generate 5’-dA. The dependence on reductant suggested
that ArsL did not catalyze SAM cleavage by a nucleophilic
mechanism like TsrM3334 but rather through a radical
mechanism like Dph224-26, To confirm the radical mecha-
nism of ArsL, we detected the dithionite radical-quenched
ACP product, as has been detected for Dph2 and the
quenched product of the 5-dA radical in many conven-
tional radical SAM enzymes.3%37 Homocysteine sulphinic
acid (HSA) was detected in the reaction by LC-MS but was
not detected in the control reactions without dithionite.
The result was further validated by derivatizing the reac-
tion product with 2,4-dinitrofluorobenzene (DNFB) and
analysis by LC-HRMS. Derivatized HSA was detected only
in the reaction and not in the controls without dithionite or
ArsL (Figure 3).
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Figure 3. Detection of the dithionite-quenched ACP radical
product HSA. A) Extracted ion chromatographs monitoring
the formation of HSA in the reaction. B) Positive ionization
high-resolution mass spectrum of the HSA peak eluted at
13.3 min. C) Extracted ion chromatographs monitoring the
formation of the DNFB derivative from the HSA product.
No product formed in the negative controls without dithi-
onite or ArsL. D) Negative ionization high-resolution mass
spectrum obtained for the DNFB derivative of HSA.

We next investigated the ArsL reaction with the
substrate arsenite (As(III)). Due to the structural similarity
of dithionite with the substrate As(IIl) and the presence of
the quenched ACP product HAS with dithionite radicals, we
suspected that dithionite may compete with As(III).
Therefore, in addition to dithionite, we also performed
reactions with other small-molecule reductants used for
radical SAM enzyme reduction, including methylviologen
(MV)/NADPH and titanium citrate. HPLC showed that SAM
was converted to MTA in all three reactions with different
reductants, whereas no MTA was generated in the absence
of a reductant or ArsL (Figure 4). Interestingly, more MTA
was produced with dithiontie compared to the other two
reductants. Marfey’s method was used to produce L-FDAA
derivatives of the product3® Hydrogen peroxide was
subsequently used to oxidize As(III) and release the
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product from the protein. Derivatized AST-OH (V) was
detected by HR-MS in all three reactions with different
reductants. Interestingly, much less product was detected
in the reaction with dithionite than in the reactions with
MV/NADPH or titanium citrate. This result, together with
more MTA detected in the dithionite reaction, suggested
that dithionite competed with the substrate As(IIl) and
induced the redudant SAM cleavage reaction. Therefore,
we used titanium citrate or MV/NADPH as reductants in
our subsequent experiments. To further confirm the
product formation, we used HR-MS to directly detect AST-
OH(III) without derivatization. AST-OH(III) was detected
in the reaction and structurally confirmed by tandem MS,
which was identical to the results from a previous report
on AST-OH identification (Figure S3).11

MTA
A sandara B c 478.0193
s
_ 1.5x10" Ho_0
= MV/NADPH \K/\Qu
= - HN" As-OH
< g A
“ = MV/NADPH 3 Outé °
& S g J\'r\.h
- I -+ ‘] . 2
S Ti(ll1) citrate o 3 1.0x10 o, o
- - )1 460.0085
2 o Ti(l11) citrate 3 Thero.
=3 g 2 [M-H| =478.0197
£ = - 0.5x10° ] 441:9982
32 Dithionite &= Dithionite -
2 =
< Noreductant & No reductant
£
2 0 . al "
— - Y U t
140 160 180 20.0 2.0 22,0 400 500 600
Time(min) Time(min) ESI(-) m/z
D E Retention time:17.4min
227.9846
5 7 o 0
3x10 2.0x10" A
) 5] HO'! OH
o =1 OH S,
g = 1.5x10°4 Thero. N
S 510’4 < 7 [M+H]|'=227.9848
g 5 209.9741
2 S 1.0x10'4
< < 136.0617
1x10 7
No reductant 0.5x10 1
0 +—————v— 0 [NW TR .ll Al Al dia
10 15 20 25 30 120 160 200 240
Time(min) ESI(+) m/z

Figure 4. Detection of AST-OH from the ArsL reactions. A)
HPLC traces of the SAM cleavage reactions by ArsL in the
presence of As(I1I) with different reductants. B) HPLC elu-
tion profiles of the L-FDAA derivatives of AST-OH. C) Nega-
tive ionization high-resolution mass spectrum of the L-
FDAA derivatives of AST-OH. D) Extracted ion chromato-
graphs monitoring the formation of AST-OH in the ArsL
reaction. No products formed in the negative controls
without reductant. E) Positive ionization high-resolution
mass spectrum of the AST-OH peak eluting at 17.4 min.

With the active ArsL, we then tested the tandem
reaction between ArsL and BgArsM to reconstitute the
biosynthesis of AST in vitro. The reaction mixture
containing SAM, ArsL, ArsM, As(III) and titanium citrate
was incubated at 28°C for 5 h. The reaction mixture
without ArsM was used as a control for the cascade
reaction. HPLC showed that in the reaction with ArsL and
ArsM, SAM was converted to MTA and SAH, suggesting that
ACP and methyl transfer both occurred (Figure 5). In the
control reaction without ArsM, only MTA was produced.
These two reactions were then treated with H202 to
oxidize and release the products, which were subsequently
derivatized with L-FDAA to facilitate product detection.
The L-FDAA derivative of AST was detected in the cascade
reaction, together with the L-FDAA derivative of AST-OH.
No AST was detected, but only AST-OH was detected in the

ArsL reaction. To further confirm that AST formed, we
detected the product directly without derivatization. AST
was detected by HR-MS only in the cascade reaction. The
tandem mass spectrum of AST, which was identical to that
in the literature,!! verified the formation of the product
(Figure S4).
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Figure 5. Detection of AST from the cascade reaction of
ArsL with ArsM. A) HPLC traces of the SAM cleavage reac-
tions showing that both MTA and SAH were produced in
the cascade reaction involving ArsL and ArsM. Only MTA
was generated in the ArsL reaction. B) HPLC elution pro-
files of the L-FDAA derivatives of AST. No products formed
in the ArsL reaction. C) Negative ionization high-resolution
mass spectrum of the L-FDAA derivatives of AST. D) Ex-
tracted ion chromatographs monitoring the formation of
AST in the cascade reaction of ArsL with ArsM. No AST
formed in the ArsL reaction. E) Positive ionization high-
resolution mass spectrum of the AST-OH peak eluting at
19.3 min.

To further study the biosynthesis of AST, we
performed a stepwise cascade reaction with ArsL and
ArsM. Two identical reactions involving ArsL, SAM, As(I1I)
and titanium citrate were performed first. After the
mixture was incubated for 4 h, one reaction was directly
applied to ArsM for methyltransfer (reaction 1). Another
reaction was oxided by H:03, after which the mixture was
lyophilized to remove additional H202 and added to ArsM
(reaction 2). After reaction 2 was incubated for 8 h, these
two reactions were derivatized with L-FDAA for product
detection. HPLC and MS showed that AST-OH and AST
were produced in reaction 1 without oxidation after the
ArsL reaction. Reaction 2 produced only AST-OH (Figure
S6). This finding suggested that the product of ArsL was
AST-OH(III), which was the substrate of ArsM. After
treatment with H202, the ArsL product was oxidized to
AST-OH(IV), which was not a substrate of ArsM. A previous
study on ArsM with synthesized AST-OH(IV) showed that
ArsM methylated chemically reduced AST-OH(III).t6. Qur
results were consistent with these findings and provided
direct evidence that the product of ArsL was AST-OH(III).

Sequence alignment of ArsL proteins from different
species revealed a conserved RCCLKC motif at the C-
terminal end of the sequence (Figure S7). Many radical
SAM enzymes with extra cysteine motifs in the sequence
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bind to auxiliary 4Fe-4S clusters.3® To investigate the
function of the three conserved cysteines at the C-terminal
end of ArsL, we first prepared truncated ArsL without the
RCCLKC motif as ArsLyc. After iron-sulfur cluster
reconstitution and iron and sulfur content analyses, ArsL,c
was found to contain similar amounts of iron and sulfur as
the wild-type protein. This result suggested that the
RCCLKC motif did not bind to an auxiliary [4Fe-4S]%*
cluster. Studies on ArsM have shown that ArsM contains a
conserved four-cysteine motif for As(IlI) binding, which
facilitates the nucleophilic substitution of As for
methylation. Given that ArsL also uses As(Ill) as a
substrate, we speculated that the RCCLKC motif could also
serve as a binding site for As(III).
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Figure 6. Functional study of the RCCLKC motif of ArsL. A)
HPLC traces of the SAM cleavage reactions showing that
the wild-type ArsL and RCCLKC motif-truncated ArsLAC
can cleave SAM to MTA. B) HPLC elution profiles for the L-
FDAA derivatives of AST-OH in the ArsL wildtype reaction
and L-FDAA derivatives of ABA in the ArsLAC reaction. C)
Negative ionization high-resolution mass spectrum of the
L-FDAA derivatives of ABA.

To test the function of the RCCLKC motif of ArsL, we
first validated the SAM cleavage activity of ArsL,c without
the substrate As(III). Like wild-type ArsL, ArsL,c efficiently
cleaved SAM to MTA (Figure 6a). Derivatization with L-
FDAA, HPLC and HR-MS revealed that the wild-type ArsL
reaction and the ArsL,c reaction generated 2-aminobutyric
acid (ABA), the product of the ACP radical quenched by a
proton (Figure 6b, 6c). These results suggested that the
RCCLKC motif does not affect the SAM cleavage activity of
ArsL. without the substrate As(III). When the substrate
As(IIT) was present, ArsL produced AST-OH and a small
amount of ABA. However, ArsL,c only generated ABA and
not AST-OH. These results suggested that the RCCLKC
motif binds to the substrate As(III). Therefore, the function
of the RCCLKC motif in ArsL was clearly established. In
addition to As(IIl), we also tested phosphorous acid and
two other analogues to ArsL and ArsL,c, no desired
products were detected but only ABA (Figure S8).
Apparently, these phosphorus analogues of As(III) were
not substrates of ArsL.

In the NCBIfam database, a subfamily of the radical
SAM enzyme superfamily was named the RCCLKC-tail
radical SAM protein (NCBI HMM accession NF040542.1).
This subfamily included 147 sequences, 39 of which were
annotated as the arsinothricin biosynthesis radical SAM
protein ArsL. The other 108 sequences were listed as
RCCLKC-tail radical SAM proteins with unknown function
(Figure S9). Our study on the activity of ArsL, especially
the function of the RCCLKC motif in As binding, suggested
that these 108 sequences could all encode noncanonical
radical SAM enzymes as ArsL that trasfer the ACP group to
As(110).
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Figure 7. The proposed reaction mechanism of ArsL

In summary, we demonstrated that ArsL is a
noncanonical radical SAM enzyme that transfers the ACP
group from SAM to arsenic acid by a radical mechanism for
C-As bond formation in arsinothricin biosynthesis. For the
first time, we purified ArsL and identified the reaction
products (Figure 7). We further reconstituted the
biosynthesis of Arsinothricin in vitro with the
methyltransferase ArsM. All three C-S bonds of SAM were
used for the biosynthesis of arsenic derivatives in nature,
as demonstrated by the nucleophilic mechanism that
underlies Cmetny-S bond cleavage of ArsM, the radical
mechanism that underlies Cad-S bond cleavage of ArsS in
arsenosugar biosynthesis??, and the radical mechanism
that underlies C,me-S bond cleavage of ArsL. More
importantly, ArsL is the second noncanonical radical SAM
enzyme that catalyzes the ACP transfer reaction through a
radical mechanism but is the only noncanonical radical
SAM enzyme with the CXXXCXXC motif. This motif is the
characteristic sequence for the radical SAM enzyme and
was used to identify over 700,000 members of the radial
SAM enzyme superfamily. Based on our research on ArsL,
these members could contain additional noncanonical
radical SAM enzymes with stunning and interesting
chemistry.
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