

1                   **MXRA8 promotes adipose tissue whitening to drive obesity**

2  
3                   **Wentong Jia<sup>1</sup>, Rocky Giwa<sup>1</sup>, John R. Moley<sup>1</sup>, Gordon I. Smith<sup>2</sup>, Max C. Petersen<sup>2,3</sup>, Rachael**  
4                   **L Field<sup>1</sup>, Omar Abousaway<sup>1</sup>, Arthur S. Kim<sup>1,3</sup>, Sarah R. Coffey<sup>1</sup>, Stella Varnum<sup>1</sup>, Jasmine**  
5                   **M. Wright<sup>1</sup>, Xinya Zhang<sup>1</sup>, Samantha Krysa<sup>1</sup>, Irfan J. Lodhi<sup>3</sup>, Nada A. Abumrad<sup>2,4</sup>, Samuel**  
6                   **Klein<sup>2</sup>, Michael S. Diamond<sup>1,3,5</sup>, Jonathan R. Brestoff<sup>1\*</sup>**

7  
8  
9                   <sup>1</sup> Department of Pathology and Immunology, Washington University School of Medicine, St  
10                   Louis, MO 63110, USA

11                   <sup>2</sup> Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, 63110,  
12                   USA

13                   <sup>3</sup> Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110,  
14                   USA

15                   <sup>4</sup> Department of Cell Biology and Physiology, Washington University School of Medicine, St.  
16                   Louis, MO, 63110, USA

17                   <sup>5</sup> Department of Molecular Microbiology, Washington University School of Medicine, St Louis,  
18                   MO, 63110, USA

19  
20                   \*Correspondence: [brestoff@wustl.edu](mailto:brestoff@wustl.edu)

21  
22  
23  
24                   **Key Words:** MXRA8, obesity, beige adipocytes, brown adipocytes, adipocyte progenitor cells,  
25                   adipocyte, thermogenesis, UCP1

26

27 **ABSTRACT**

28 Matrix-remodeling associated 8 (MXRA8), also known as Dual immunoglobulin domain cell  
29 adhesion molecule (DICAM), is a type 1 transmembrane protein that reportedly binds the  $\alpha_v\beta_3$   
30 integrin<sup>1</sup> and regulates the differentiation of osteoclasts<sup>2</sup> and chondrocytes<sup>3</sup>, tumor growth<sup>4</sup>, T cell  
31 trafficking<sup>5</sup>, and angiogenesis<sup>6</sup>. MXRA8 is also an essential entry receptor for chikungunya virus  
32 and other related arthritogenic alphaviruses.<sup>7-9</sup> We compared MXRA8 expression in 51 tissues in  
33 the Human Protein Atlas and found it is most highly expressed in white adipose tissue (WAT),  
34 however the function of MXRA8 in WAT is unknown. Here, we found that MXRA8 expression in  
35 WAT is increased in people with obesity and that this response is also observed in a mouse model  
36 of high fat-diet (HFD)-induced obesity. Single-nucleus RNA sequencing and high-dimensional  
37 spectral flow cytometry analyses revealed that MXRA8 is expressed predominantly by adipocyte  
38 progenitor (AP) cells and mature adipocytes. MXRA8 mutant primary adipocytes from inguinal  
39 (i)WAT exhibited increased expression of Uncoupling protein 1 (UCP1), a thermogenic protein  
40 expressed by beige and brown adipocytes that limits obesity pathogenesis.<sup>10-12</sup> Indeed, MXRA8  
41 mutant mice fed a HFD had preserved UCP1<sup>+</sup> beige and brown adipocytes and were protected  
42 from HFD-induced obesity in a UCP1-dependent manner. Collectively, these findings indicate that  
43 MXRA8 promotes whitening of beige and brown adipose tissues to drive obesity pathogenesis  
44 and identify MXRA8 as a possible therapeutic target to treat obesity and associated metabolic  
45 diseases.

46

47

48 **MAIN TEXT**

49 To identify organ systems where MXRA8 is most highly expressed, we first examined the Human  
50 Protein Atlas (HPA, **Extended Data Fig 1a**) and Genotype-Tissue Expression (GTEx, **Extended**  
51 **Data Fig 1b**) datasets and found that MXRA8 expression in WAT was ranked 1<sup>st</sup> of 51 tissues  
52 and 2<sup>nd</sup> of 27 tissues, respectively. Based on this finding, we compared *MXRA8* transcript levels  
53 in subcutaneous abdominal white adipose tissue (WAT) from people who were metabolically  
54 healthy lean (MHL, n=15), metabolically healthy obese (MHO, n=18), or metabolically unhealthy  
55 obese (MUO, n=19), as defined previously.<sup>13</sup> *MXRA8* expression was significantly increased in  
56 both obese groups compared with the metabolically healthy lean group and was highest in the  
57 metabolically unhealthy obese group (**Fig 1a**). The increase in WAT *MXRA8* expression in people  
58 with obesity was observed in both males and females (**Fig 1b**) and in individuals identifying as  
59 white, Black/African American, or Asian/Pacific Islanders (**Extended Data Fig 2**). Furthermore,  
60 *MXRA8* expression in WAT was positively correlated with whole-body adiposity (**Fig 1c**),  
61 subcutaneous abdominal white adipose tissue volume (**Fig 1d**), intra-abdominal adipose tissue  
62 volume (**Fig 1e**), and intrahepatic triglyceride content (**Fig 1f**). However, *MXRA8* expression in  
63 WAT did not correlate with lean body mass (**Fig 1g**) or bone mass (**Fig 1h**). These data indicate  
64 that *MXRA8* expression is highly expressed in WAT and is increased in people with obesity,  
65 suggesting an important biological function for *MXRA8* in adipose tissues.

66

67 As was the case in humans, mice also highly express *MXRA8* in adipose tissues (**Fig 2a**).  
68 Epididymal (e)WAT and inguinal (i)WAT had significantly higher *Mxra8* transcript levels than  
69 brown adipose tissue (BAT), and all three adipose depots had substantially higher levels of *Mxra8*  
70 than did the spleen (**Fig 2a**), an organ that we expected to have moderate expression of *MXRA8*  
71 based on the Human Protein Atlas dataset (ranked 10<sup>th</sup> of 51 tissues; Extended Data Fig 1a). In  
72 addition, wildtype C57BL6/J (WT) mice fed a high fat diet (HFD) for 8 weeks had increased levels  
73 of *MXRA8* protein in eWAT, iWAT, and BAT compared to control mice fed a normal chow diet  
74 (NCD, **Fig 2b-2c**). This result indicates that upregulation of *MXRA8* expression in WAT is a  
75 conserved characteristic of obesity in mice and humans.

76

77 To determine the cell types that express *MXRA8*, we first isolated eWAT adipocytes and stromal  
78 vascular fraction (SVF) cells from WT mice and observed significantly higher expression of *Mxra8*  
79 transcripts in the SVF compared to the floating adipocytes (**Fig 2d**). As the SVF contains  
80 numerous cell types, including all immune cell lineages and adipocyte progenitor (AP) cells, we  
81 used publicly available single nucleus RNA sequencing datasets (GEO accession number

82 GSE176171) and found that expression of MXRA8 mRNA was highest in AP cells in both mice  
83 (**Fig 2e**) and humans (**Fig 2f**). MXRA8 mRNA was also expressed by mature adipocytes and  
84 mesothelial cells to lesser degrees in both species (**Fig 2e-2f**). To verify the presence of MXRA8  
85 protein on the surface of AP cells, we conjugated anti-MXRA8 antibodies to Alexa Fluor 647  
86 (AF647) and performed flow cytometry of eWAT SVF from WT vs *Mxra8*<sup>Δ8/Δ8</sup> mice, which have an  
87 8bp frameshift deletion after domain 2 of the *Mxra8* gene.<sup>14</sup> We found that live CD45<sup>-</sup> PDGFR1 $\alpha$ <sup>+</sup>  
88 AP cells were MXRA8<sup>+</sup> in WT but not *Mxra8*<sup>Δ8/Δ8</sup> mice (**Fig 2g** and **Extended Data Fig 3a**).  
89 Although some T cell subsets express MXRA8 in humans<sup>5</sup>, we did not observe MXRA8  
90 expression on the surface of live CD45<sup>+</sup> NK1.1<sup>-</sup> TCR $\alpha\beta$ <sup>+</sup> T cells in eWAT from lean mice (**Fig 2g**  
91 and **Extended Data Fig 3a**). Next, we fed WT mice a normal chow diet (NCD) or HFD for 10  
92 weeks and observed higher percentages of MXRA8<sup>+</sup> AP cells in eWAT, iWAT, and BAT in the  
93 setting of HFD-induced obesity (**Fig 2h** and **Extended Data Fig 3b**). This result suggests that a  
94 subset of AP cells in white (eWAT), beige (iWAT), and brown fat (BAT) exhibit marked induction  
95 of MXRA8 expression in obese mice.

96  
97 To determine whether MXRA8 has a functional role in adipose tissues, we compared the  
98 metabolic characteristics of MXRA8 mutant mice and WT littermate controls. First, we confirmed  
99 their genotypes in eWAT, iWAT, and BAT using primers that fail to amplify *Mxra8* mRNA if the  
100 8bp deletion found in *Mxra8*<sup>Δ8/Δ8</sup> mice is present (**Extended Data Fig 4**). On a normal chow diet,  
101 WT and *Mxra8*<sup>Δ8/Δ8</sup> mice had similar body weights, lean mass, fat mass, and adiposity (**Extended**  
102 **Data Fig 5a-c**), and metabolic cage analyses indicated the two genotypes had similar energy  
103 expenditure, respiratory exchange ratios, activity levels, and food intake (**Extended Data Fig 5d-**  
104 **5h**). However, when fed a HFD *Mxra8*<sup>Δ8/Δ8</sup> mice gained less weight (**Fig 3a**), accumulated less  
105 whole-body fat mass (**Fig 3b**), and had lower adiposity (**Fig 3c**) than WT controls. Although eWAT  
106 mass did not differ between groups, iWAT and BAT masses were significantly lower in *Mxra8*<sup>Δ8/Δ8</sup>  
107 mice (**Fig 3d**). The reduction in fat mass accumulation was not limited to adipose tissues, as liver  
108 mass tended to be lower (**Fig 3e**) and liver adiposity was decreased in *Mxra8*<sup>Δ8/Δ8</sup> mice (**Fig 3f**).  
109  
110 The reduction in iWAT and BAT mass but not eWAT mass in *Mxra8*<sup>Δ8/Δ8</sup> mice fed a HFD  
111 suggested that MXRA8 may have adipose tissue-specific effects. Consistent with this possibility,  
112 histological analyses of eWAT, iWAT, and BAT revealed several prominent tissue-specific  
113 morphological features. In eWAT, there were no apparent differences in adipocyte size between  
114 groups, which is consistent with eWAT masses being similar. However, the eWAT contained  
115 numerous crown-like structures (CLS) in WT but not *Mxra8*<sup>Δ8/Δ8</sup> mice fed a HFD (**Fig 3g**). CLS are

116 highly enriched in immune cells and are strongly correlated with WAT inflammation in obesity.<sup>15,16</sup>  
117 High-dimensional spectral flow cytometric analyses confirmed that eWAT from *Mxra8*<sup>Δ8/Δ8</sup> mice  
118 had fewer total immune cells, macrophages, monocytes, neutrophils, natural killer/group 1 innate  
119 lymphoid cells, T cells and B cells compared to WT controls, whereas eosinophil and group 2  
120 innate lymphoid cell abundances did not differ (**Fig 3h** and **Extended Data Fig 3a**). In iWAT,  
121 there were relatively few CLS in both genotypes, and the adipocytes were smaller with more  
122 abundant cytoplasm in *Mxra8*<sup>Δ8/Δ8</sup> than WT mice (**Fig 3g**). These morphological features are  
123 suggestive of increased beige adipocytes in iWAT of *Mxra8*<sup>Δ8/Δ8</sup> mice. Similarly, the BAT of  
124 *Mxra8*<sup>Δ8/Δ8</sup> mice exhibited less lipid accumulation, smaller brown adipocytes, and more abundant  
125 cytoplasm compared to WT mice (**Fig 3g**).  
126

127 The reduction in numerous immune cell populations in eWAT and high expression of MXRA8 on  
128 AP cells led us to examine whether MXRA8 regulates the abundance of an AP subset known as  
129 fibroinflammatory progenitors (FIPs). Recent studies indicate that FIPs are CD45<sup>−</sup> PDGFR1 $\alpha$ <sup>+</sup>  
130 APs that express Ly6C and CD9 and produce numerous factors that drive inflammation and  
131 fibrotic remodeling of WAT in obesity.<sup>17,18</sup> This tissue remodeling process is believed to be  
132 pathological and contribute to metabolic abnormalities in obese mice and humans, including  
133 impaired glucose homeostasis.<sup>19,20</sup> There were fewer AP cells per gram of eWAT in *Mxra8*<sup>Δ8/Δ8</sup>  
134 than WT mice fed a HFD (**Fig 3i**), and this change was explained by a decrease in the proportion  
135 and numbers (per gram of fat) of APs that were Ly6C<sup>+</sup> CD9<sup>+</sup> FIPs (**Fig 3j-3k**). Consistent with this  
136 result, there was reduced fibrosis in eWAT, iWAT, and BAT, as indicated by Masson's trichrome  
137 staining in *Mxra8*<sup>Δ8/Δ8</sup> mice compared to WT controls (**Fig 3l**). These data suggest that MXRA8  
138 might regulate AP cell responses in adipose tissue and promote the inflammation and fibrosis that  
139 occur during tissue remodeling in obese WAT. However, it is also possible that these observed  
140 tissue remodeling phenotypes are explained by the reduction in weight gain in *Mxra8*<sup>Δ8/Δ8</sup> mice.  
141 Further research is needed to understand how MXRA8 regulates the function of AP cells and  
142 associated tissue remodeling.  
143

144 Next, we sought to understand the mechanisms by which *Mxra8*<sup>Δ8/Δ8</sup> mice are protected from  
145 HFD-induced obesity. To begin studying this, we housed the mice in metabolic cages to  
146 characterize their energy expenditure and intake. We observed that *Mxra8*<sup>Δ8/Δ8</sup> mice had  
147 significantly higher energy expenditure in both phases of the light:dark cycle (**Fig 4a-4b**). There  
148 were no differences in the respiratory exchange ratio, suggesting that energy substrate utilization  
149 was similar between the groups (**Fig 4c**). In addition, there were no significant alterations in

150 activity levels (**Fig 4d**) or food intake (**Fig 4e**). These data suggest that *Mxra8*<sup>Δ8/Δ8</sup> mice may have  
151 increased adaptive thermogenesis in setting of HFD feeding and that this process might contribute  
152 to their protection from diet-induced obesity.

153  
154 One of the primary mechanisms of adaptive thermogenesis is UCP1-mediated heat generation.  
155 This protein is expressed by beige adipocytes in iWAT and brown adipocytes in BAT and is  
156 localized to the inner mitochondrial membrane, where UCP1 dissipates the proton gradient to  
157 generate large amounts of heat.<sup>21</sup> UCP1<sup>+</sup> beige and brown adipocytes thereby increase energy  
158 expenditure and limit the development of obesity in mice.<sup>22,23</sup> However, beige and brown  
159 adipocytes undergo “whitening” in obese mice and humans, a process in which these cells lose  
160 their thermogenic capacity and downregulate expression of UCP1. Indeed, beige and brown  
161 adipocyte activation is severely impaired in obese mice and humans<sup>21,24</sup>, and it has been reported  
162 that the loss of beige and brown adipocytes is associated with an increased risk of developing  
163 cardiometabolic diseases in humans.<sup>25</sup>

164  
165 As noted above, histological analyses of iWAT and BAT with hematoxylin and eosin staining  
166 suggested that *Mxra8*<sup>Δ8/Δ8</sup> mice exhibited less whitening of iWAT (beige fat) and BAT (brown fat)  
167 (Fig 3). Consistent with this observation, UCP1 expression tended to be higher in iWAT and BAT  
168 of HFD-fed *Mxra8*<sup>Δ8/Δ8</sup> mice than WT controls (**Fig 4f**). Furthermore, UCP1<sup>+</sup> beige adipocytes were  
169 more abundant in iWAT, and there was increased UCP1<sup>+</sup> signal intensity in brown adipocytes in  
170 BAT of *Mxra8*<sup>Δ8/Δ8</sup> mice (**Fig 4g**). Although these results could be explained by the less severe  
171 obesity phenotype in *Mxra8*<sup>Δ8/Δ8</sup> mice, an alternative possibility is that MXRA8 regulates the  
172 differentiation of thermogenic adipocytes. To investigate this question, we isolated AP cells from  
173 iWAT of WT or *Mxra8*<sup>Δ8/Δ8</sup> mice and differentiated them into primary adipocytes. Indeed, we found  
174 that primary adipocytes from *Mxra8*<sup>Δ8/Δ8</sup> mice exhibited significantly increased expression of *Ucp1*  
175 compared to WT adipocytes (**Fig 4h**). The transcription of *Ucp1* is mediated in part by the  
176 CCAAT/enhancer-binding protein α (C/EBPα, *Cebpa*)<sup>26,27</sup> and peroxisome proliferator-activated  
177 receptor-γ coactivator (PGC)-1α (*Ppargc1a*)<sup>28,29</sup>, both of which were also increased in *Mxra8*<sup>Δ8/Δ8</sup>  
178 primary adipocytes. The other thermogenic adipocyte-associated genes *Cidea* and *Prdm16* were  
179 not differentially expressed between groups. These transcriptional data suggest that MXRA8  
180 inhibits the differentiation of AP cells into thermogenic adipocytes or regulates the expression of  
181 *Ucp1* in differentiated adipocytes.

182

183 To test whether UCP1-dependent thermogenesis is required for the weight-gain protection in  
184 MXRA8 mutant mice, we generated WT, *Ucp1*<sup>-/-</sup>, *Mxra8*<sup>Δ8/Δ8</sup>, and *Ucp1*<sup>-/-</sup>; *Mxra8*<sup>Δ8/Δ8</sup> mice. We  
185 housed the 4 strains at thermoneutrality for 2 weeks prior to initiating a HFD because mice lacking  
186 UCP1 are profoundly cold-sensitive and activate behavioral and biochemical thermogenic  
187 mechanisms at room temperature that dramatically affect their response to diet-induced obesity.<sup>30</sup>  
188 As had been reported previously<sup>30-32</sup>, we found that *Ucp1*<sup>-/-</sup> mice gained more weight than WT  
189 controls when fed a HFD at thermoneutrality (**Fig 4i**). In addition, *Mxra8*<sup>Δ8/Δ8</sup> mice were still  
190 protected from weight gain at thermoneutrality on a UCP1-sufficient background (**Fig 4i**). However,  
191 there were no differences in weight gain between the *Ucp1*<sup>-/-</sup> and *Ucp1*<sup>-/-</sup>; *Mxra8*<sup>Δ8/Δ8</sup> groups (**Fig**  
192 **4i**). Body composition analyses further indicated that *Mxra8*<sup>Δ8/Δ8</sup> mice accumulated less whole-  
193 body fat than WT mice, but this effect was ablated in the absence of UCP1 (**Fig 4j**). Similar trends  
194 were observed for eWAT, iWAT and BAT masses (**Fig 4k-4m**). Collectively, these data indicate  
195 that the MXRA8 mutant mice are protected against HFD-induced weight gain in a UCP1-  
196 dependent manner.

197

198 In summary, we find that MXRA8 is highly expressed in WAT and upregulated in this tissue in  
199 obesity in both mice and humans. This protein is primarily expressed by AP cells and adipocytes  
200 and functions, in part, to inhibit the differentiation or thermogenic potential of beige and/or brown  
201 adipocytes. Mice that lack intact, full-length MXRA8 (*Mxra8*<sup>Δ8/Δ8</sup>) are protected from HFD-induced  
202 obesity, exhibit decreased iWAT (beige fat) and BAT (brown fat) masses, have reduced  
203 fibroinflammatory changes that are characteristic of pathological adipose tissue remodeling in  
204 obesity, and have increased UCP1 expression in iWAT and BAT. Furthermore, expression of  
205 UCP1 was required for *Mxra8*<sup>Δ8/Δ8</sup> mice to be protected from HFD-induced obesity.

206

207 These findings suggest a model in which upregulation of MXRA8 promotes whitening of beige  
208 and brown adipose tissues in obesity, leading to a loss of UCP1-mediated thermogenic potential  
209 of adipose tissues and increased obesity in mice. Although our data suggest that MXRA8 impairs  
210 the differentiation or thermogenic function of adipocytes, there may be additional mechanisms by  
211 which MXRA8 regulates adipose tissue physiology and obesity pathogenesis. One possibility is  
212 that MXRA8 may lead to whitening of beige and brown adipose tissues by disrupting angiogenesis  
213 in adipose tissues. Indeed, MXRA8 has been reported to inhibit angiogenesis<sup>6</sup>, and the loss of  
214 vascular density drives whitening in beige and brown adipose tissues in obesity.<sup>33,34</sup> Another  
215 possibility is that MXRA8 may bind extracellular matrix proteins or integrins, as was suggested  
216 for  $\alpha_v\beta_3$  integrin<sup>2</sup>, to mediate adipose tissue remodeling and the progression of metabolic

217 dysfunction in obesity. This possibility is supported by our observation that WAT from *Mxra8*<sup>Δ8/Δ8</sup>  
218 mice had markedly reduced fibrosis compared to WT controls. Additional studies are needed to  
219 determine the role of MXRA8 in regulating angiogenesis and remodeling of the extracellular matrix  
220 in adipose tissues.

221

222 MXRA8 has been implicated in several diseases, including the progression of several types of  
223 cancer<sup>35,36</sup>, colitis<sup>37</sup>, and autoimmunity<sup>5</sup>, and also serves as an entry receptor for some  
224 arthritogenic alphaviruses, such as chikungunya virus.<sup>7</sup> Our studies are the first to demonstrate a  
225 role for MXRA8 in regulating adipose tissue function and obesity pathogenesis and suggest that  
226 MXRA8 may be a previously unappreciated therapeutic target to treat obesity and potentially other  
227 metabolic diseases.

228

229 **Acknowledgements**

230 J.R.B. is supported by the National Institutes of Health (NIH) Office of the Director (DP5  
231 OD028125) and Burroughs Wellcome Fund (CAMS #1019648). W.J. is supported by an American  
232 Heart Association (AHA) Postdoctoral Fellowship (24POST1244220). R.G. is supported by an  
233 AHA Predoctoral Fellowship (24PRE1189775). J.M.W. is supported by NIH T32 AI007163. S.K.  
234 is supported by a W.M. Keck Foundation Postdoctoral Fellowship in Molecular Medicine. The  
235 study was supported by the Musculoskeletal Research Center histology core facility (P30  
236 AR074992) and the Nutrition Obesity Research Center (P30 DK56341).

237

238 **Author Contributions**

239 WJ performed experiments, analyzed data, interpreted results, and wrote the manuscript. RG,  
240 JRM, OA, RLF, SV, SRC, JW, XZ, and SK performed experiments, analyzed data, and interpreted  
241 results. GIS, MP, and SK performed experiments, analyzed data, and interpreted results. IJL and  
242 NAA contributed to experimental designs and interpreted results. MSD and ASK generated and  
243 provided mouse strains and reagents, provided guidance on experimental design, and interpreted  
244 results. JRB conceived of the project, secured funding, performed experiments, interpreted results,  
245 and wrote the manuscript. All authors contributed to writing, editing, and/or revising this  
246 manuscript and approved the final version.

247

248 **Conflict of Interest**

249 JRB, MSD, and WJ are co-inventors on a pending patent application related to this work. JRB is  
250 a member of the Scientific Advisory Board for LUCA Science, Inc., has consulted for DeciBio  
251 within the past 12 months, and receives royalties from Springer Nature Group. The other authors  
252 declare no conflicts of interest.

253

254 **Data Availability Statement**

255 All data supporting the findings of this study are available within the paper and its Supplementary  
256 Information or are available by request to the corresponding author.

257

258

259

260

261

262

263 **REFERENCES**

264 1 Jung, Y. K. *et al.* DICAM, a novel dual immunoglobulin domain containing cell adhesion  
265 molecule interacts with alphavbeta3 integrin. *J Cell Physiol* **216**, 603-614,  
266 doi:10.1002/jcp.21438 (2008).

267 2 Jung, Y. K. *et al.* DICAM inhibits osteoclast differentiation through attenuation of the  
268 integrin alphaVbeta3 pathway. *J Bone Miner Res* **27**, 2024-2034, doi:10.1002/jbmr.1632  
269 (2012).

270 3 Han, S. *et al.* Dicam promotes proliferation and maturation of chondrocyte through Indian  
271 hedgehog signaling in primary cilia. *Osteoarthritis Cartilage* **26**, 945-953,  
272 doi:10.1016/j.joca.2018.04.008 (2018).

273 4 Simpson, K. E., Staikos, C. A., Watson, K. L. & Moorehead, R. A. Loss of MXRA8 Delays  
274 Mammary Tumor Development and Impairs Metastasis. *Int J Mol Sci* **24**,  
275 doi:10.3390/ijms241813730 (2023).

276 5 Charabati, M. *et al.* DICAM promotes TH17 lymphocyte trafficking across the blood-brain  
277 barrier during autoimmune neuroinflammation. *Sci Transl Med* **14**, eabj0473,  
278 doi:10.1126/scitranslmed.abj0473 (2022).

279 6 Han, S. W. *et al.* DICAM inhibits angiogenesis via suppression of AKT and p38 MAP  
280 kinase signalling. *Cardiovasc Res* **98**, 73-82, doi:10.1093/cvr/cvt019 (2013).

281 7 Zhang, R. *et al.* Mxra8 is a receptor for multiple arthritogenic alphaviruses. *Nature* **557**,  
282 570-574, doi:10.1038/s41586-018-0121-3 (2018).

283 8 Basore, K. *et al.* Cryo-EM Structure of Chikungunya Virus in Complex with the Mxra8  
284 Receptor. *Cell* **177**, 1725-1737 e1716, doi:10.1016/j.cell.2019.04.006 (2019).

285 9 Song, H. *et al.* Molecular Basis of Arthritogenic Alphavirus Receptor MXRA8 Binding to  
286 Chikungunya Virus Envelope Protein. *Cell* **177**, 1714-1724 e1712,  
287 doi:10.1016/j.cell.2019.04.008 (2019).

288 10 Cohen, P. *et al.* Ablation of PRDM16 and Beige Adipose Causes Metabolic Dysfunction  
289 and a Subcutaneous to Visceral Fat Switch. *Cell* **156**, 304-316,  
290 doi:<https://doi.org/10.1016/j.cell.2013.12.021> (2014).

291 11 Wu, J. *et al.* Beige Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and  
292 Human. *Cell* **150**, 366-376, doi:<https://doi.org/10.1016/j.cell.2012.05.016> (2012).

293 12 Sidossis, L. & Kajimura, S. Brown and beige fat in humans: thermogenic adipocytes that  
294 control energy and glucose homeostasis. *The Journal of Clinical Investigation* **125**, 478-  
295 486, doi:10.1172/JCI78362 (2015).

296 13 Petersen, M. *et al.* Cardiometabolic characteristics of people with metabolically healthy  
297 and unhealthy obesity. *Cell Metabolism* (2024, [In Press]).

298 14 Zhang, R. *et al.* Expression of the Mxra8 Receptor Promotes Alphavirus Infection and  
299 Pathogenesis in Mice and Drosophila. *Cell Rep* **28**, 2647-2658 e2645,  
300 doi:10.1016/j.celrep.2019.07.105 (2019).

301 15 Murano, I. *et al.* Dead adipocytes, detected as crown-like structures, are prevalent in  
302 visceral fat depots of genetically obese mice. *J Lipid Res* **49**, 1562-1568,  
303 doi:10.1194/jlr.M800019-JLR200 (2008).

304 16 Cinti, S. *et al.* Adipocyte death defines macrophage localization and function in adipose  
305 tissue of obese mice and humans. *J Lipid Res* **46**, 2347-2355, doi:10.1194/jlr.M500294-  
306 JLR200 (2005).

307 17 Marcellin, G. *et al.* A PDGFRalpha-Mediated Switch toward CD9(high) Adipocyte  
308 Progenitors Controls Obesity-Induced Adipose Tissue Fibrosis. *Cell Metab* **25**, 673-685,  
309 doi:10.1016/j.cmet.2017.01.010 (2017).

310 18 Hepler, C. *et al.* Identification of functionally distinct fibro-inflammatory and adipogenic  
311 stromal subpopulations in visceral adipose tissue of adult mice. *Elife* **7**,  
312 doi:10.7554/eLife.39636 (2018).

313 19 Sun, K., Tordjman, J., Clement, K. & Scherer, P. E. Fibrosis and adipose tissue dysfunction.  
314 *Cell Metab* **18**, 470-477, doi:10.1016/j.cmet.2013.06.016 (2013).

315 20 Sun, K. *et al.* Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. *Nat  
316 Commun* **5**, 3485, doi:10.1038/ncomms4485 (2014).

317 21 Chouchani, E. T., Kazak, L. & Spiegelman, B. M. New Advances in Adaptive  
318 Thermogenesis: UCP1 and Beyond. *Cell Metabolism* **29**, 27-37,  
319 doi:10.1016/j.cmet.2018.11.002 (2019).

320 22 Brestoff, J. R. *et al.* Group 2 innate lymphoid cells promote beiging of white adipose tissue  
321 and limit obesity. *Nature* **519**, 242-246, doi:10.1038/nature14115 (2015).

322 23 Cohen, P. *et al.* Ablation of PRDM16 and beige adipose causes metabolic dysfunction and  
323 a subcutaneous to visceral fat switch. *Cell* **156**, 304-316, doi:10.1016/j.cell.2013.12.021  
324 (2014).

325 24 van Marken Lichtenbelt, W. D. *et al.* Cold-Activated Brown Adipose Tissue in Healthy  
326 Men. *New England Journal of Medicine* **360**, 1500-1508, doi:10.1056/NEJMoa0808718  
327 (2009).

328 25 Becher, T. *et al.* Brown adipose tissue is associated with cardiometabolic health. *Nature  
329 Medicine* **27**, 58-65, doi:10.1038/s41591-020-1126-7 (2021).

330 26 Yubero, P. *et al.* CCAAT/enhancer binding proteins alpha and beta are transcriptional  
331 activators of the brown fat uncoupling protein gene promoter. *Biochem Biophys Res  
332 Commun* **198**, 653-659, doi:10.1006/bbrc.1994.1095 (1994).

333 27 Carmona, M. C. *et al.* Mitochondrial biogenesis and thyroid status maturation in brown fat  
334 require CCAAT/enhancer-binding protein alpha. *J Biol Chem* **277**, 21489-21498,  
335 doi:10.1074/jbc.M201710200 (2002).

336 28 Lin, J., Handschin, C. & Spiegelman, B. M. Metabolic control through the PGC-1 family  
337 of transcription coactivators. *Cell Metabolism* **1**, 361-370,  
338 doi:<https://doi.org/10.1016/j.cmet.2005.05.004> (2005).

339 29 Pettersson-Klein, A. T. *et al.* Small molecule PGC-1α1 protein stabilizers induce adipocyte  
340 Ucp1 expression and uncoupled mitochondrial respiration. *Molecular Metabolism* **9**, 28-  
341 42, doi:<https://doi.org/10.1016/j.molmet.2018.01.017> (2018).

342 30 Feldmann, H. M., Golozoubova, V., Cannon, B. & Nedergaard, J. UCP1 ablation induces  
343 obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by  
344 living at thermoneutrality. *Cell Metab* **9**, 203-209, doi:10.1016/j.cmet.2008.12.014 (2009).

345 31 Rowland, L. A., Maurya, S. K., Bal, N. C., Kozak, L. & Periasamy, M. Sarcolipin and  
346 uncoupling protein 1 play distinct roles in diet-induced thermogenesis and do not  
347 compensate for one another. *Obesity (Silver Spring)* **24**, 1430-1433,  
348 doi:10.1002/oby.21542 (2016).

349 32 Zou, W. *et al.* Myeloid-specific Asxl2 deletion limits diet-induced obesity by regulating  
350 energy expenditure. *J Clin Invest* **130**, 2644-2656, doi:10.1172/jci128687 (2020).

351 33 Sung, H. K. *et al.* Adipose vascular endothelial growth factor regulates metabolic  
352 homeostasis through angiogenesis. *Cell Metab* **17**, 61-72, doi:10.1016/j.cmet.2012.12.010  
353 (2013).

354 34 Shimizu, I. *et al.* Vascular rarefaction mediates whitening of brown fat in obesity. *J Clin  
355 Invest* **124**, 2099-2112, doi:10.1172/JCI71643 (2014).

356 35 Xu, Z., Chen, X., Song, L., Yuan, F. & Yan, Y. Matrix Remodeling-Associated Protein 8  
357 as a Novel Indicator Contributing to Glioma Immune Response by Regulating Ferroptosis.  
358 *Frontiers in Immunology* **13**, doi:10.3389/fimmu.2022.834595 (2022).

359 36 Simpson, K. E., Staikos, C. A., Watson, K. L. & Moorehead, R. A. Loss of MXRA8 Delays  
360 Mammary Tumor Development and Impairs Metastasis. *International Journal of  
361 Molecular Sciences* **24**, 13730 (2023).

362 37 Han, S. W. *et al.* DICAM Attenuates Experimental Colitis via Stabilizing Junctional  
363 Complex in Mucosal Barrier. *Inflamm Bowel Dis* **25**, 853-861, doi:10.1093/ibd/izy373  
364 (2019).

365 38 Dieckmann, S. *et al.* Susceptibility to diet-induced obesity at thermoneutral conditions is  
366 independent of UCP1. *Am J Physiol Endocrinol Metab* **322**, E85-E100,  
367 doi:10.1152/ajpendo.00278.2021 (2022).

368 39 Brestoff, J. R. *et al.* Intercellular Mitochondria Transfer to Macrophages Regulates White  
369 Adipose Tissue Homeostasis and Is Impaired in Obesity. *Cell Metab* **33**, 270-282 e278,  
370 doi:10.1016/j.cmet.2020.11.008 (2021).

371 40 Borcherding, N. *et al.* Dietary lipids inhibit mitochondria transfer to macrophages to divert  
372 adipocyte-derived mitochondria into the blood. *Cell Metab* **34**, 1499-1513 e1498,  
373 doi:10.1016/j.cmet.2022.08.010 (2022).

374

375

376

377 **METHODS**

378

379 *Human subjects*

380 A total of 52 males and females participated in this study. The following criteria were used for  
381 inclusion in one of the three groups: i) metabolically healthy lean (MHL, n=15) defined as having  
382 a body mass index (BMI) of 18.5-24.9 kg/m<sup>2</sup>, and normal fasting plasma glucose (<100 mg/dL),  
383 oral glucose tolerance (2-h glucose <140 mg/dL), liver fat content (<5%), plasma triglycerides  
384 (<150 mg/dL), and normal whole-body insulin sensitivity, defined as the glucose infusion rate (GIR)  
385 per kg fat-free mass divided by the plasma insulin concentration (GIR/I) during a  
386 hyperinsulinemic-euglycemic clamp procedure (>40 µg/kg FFM/min/µU/mL); metabolically  
387 healthy obese (MHO, n=18) defined as having a BMI of 30.0-49.9 kg/m<sup>2</sup> and normal fasting  
388 plasma glucose, oral glucose tolerance, plasma triglycerides, and liver fat content and normal  
389 whole-body insulin sensitivity; and metabolically unhealthy obese (MUO, n=19) defined as having  
390 a BMI of 30.0-49.9 kg/m<sup>2</sup>, impaired fasting glucose or oral glucose tolerance, high liver fat content  
391 (≥6%) and impaired whole-body insulin sensitivity, defined as a GIR/I ≤40 (µg/kg  
392 FFM/min)/(µU/mL). All subjects provided written, informed consent before participating in this  
393 study, which was approved by the Institutional Review Board of Washington University School of  
394 Medicine in St. Louis, MO and registered in ClinicalTrials.gov (NCT02706262). The assessments  
395 of body composition, oral glucose tolerance, and insulin sensitivity, and the acquisition of  
396 perumbilical subcutaneous abdominal adipose tissue for bulk RNA-sequencing analyses were  
397 conducted as previously described.<sup>13</sup> MXRA8 mRNA counts were extracted from the RNAseq  
398 dataset for targeted analyses.

399

400 *Mice*

401 *Mxra8*<sup>Δ8/Δ8</sup> (Δ8) mice were generated as previously described<sup>14</sup>, and were maintained by crossing  
402 *Mxra8*<sup>+/Δ8</sup> to *Mxra8*<sup>+/Δ8</sup> mice to generate wildtype (WT) and Δ8 littermates. *Ucp1*<sup>-/-</sup> mice were  
403 obtained from Jackson Laboratories (strain #003124) and crossed Δ8 mice to generate  
404 *Mxra8*<sup>Δ8/Δ8</sup>/*Ucp1*<sup>-/-</sup> (Δ8/*Ucp1*<sup>-/-</sup>) mice. These double mutants were maintained by homozygous  
405 breeding, as were their single-gene knockout counterparts, with timed breeding to ensure that  
406 cohorts of cousins were the same age. Wildtype C57BL6/J mice were either purchased from The  
407 Jackson Laboratory (strain #000664) and bred in-house for experimental use. All mice were  
408 housed in a specific pathogen-free facility with a 12h:12h light:dark cycle (lights on from 06:00am  
409 to 06:00pm) and *ad libitum* access to food and water. Normal Chow Diet was utilized for routine  
410 feeding, and 60% kcal fat HFD made from lard (cat# D12492, Research Diets, Inc.) was employed

411 for establishing diet-induced obese mouse models with the indicated feeding timelines. Studies  
412 involving *Ucp1*<sup>-/-</sup> strains were singly housed at thermoneutrality (30°C) for 2 weeks prior to HFD  
413 feeding.<sup>30,38</sup> All other mice were housed in groups at room temperature (22°C). Animals were  
414 randomly assigned to n=2-5 mice/group per experiment depending on the numbers of available  
415 mice, and data from at least 2 independent experiments were pooled for analyses. Mice were  
416 euthanized using isoflurane inhalation immediately prior to harvesting inguinal white adipose  
417 tissue (iWAT), epididymal (e)WAT (males), ovarian (o)WAT (females), interscapular brown  
418 adipose tissue (BAT), liver, and spleen. All experiments were performed according to the  
419 guidelines of the Institutional Animal Care and Use Committee (IACUC) at Washington University  
420 in St. Louis and in accordance with IACUC-approved protocol 22-0286.

421

#### 422 *Metabolic cage analyses*

423 Metabolic cage analyses were performed using a 16-metabolic cage Comprehensive Laboratory  
424 Animal Monitoring System (CLAMS) (Columbus Instruments, Columbus, OH) as previously  
425 described.<sup>39</sup> Briefly, mice were weighed and body composition was measured using an EchoMRI  
426 2n1 with a horizontal configuration. The mice were placed in the CLAMS cages (one mouse per  
427 cage) with a 12h:12h light-dark cycle and were provided free access to food and water, both of  
428 which were hung on a load cell. Mice were arranged in a staggered manner in CLAMS to ensure  
429 horizontally and vertically equal distribution of groups. Mice were allowed to acclimate for 1 day.  
430 Data were analyzed on the first full 24h period inclusive of a complete 12h light phase followed  
431 by a complete 12h dark phase. During the measurement period, cumulative food and water intake,  
432 spontaneous activity, oxygen (O<sub>2</sub>) consumption and carbon dioxide (CO<sub>2</sub>) production were  
433 monitored. The respiratory exchange ratio (RER) was calculated by dividing the volume of CO<sub>2</sub>  
434 produced by the volume of O<sub>2</sub> consumed. Energy expenditure was computed using the standard  
435 equation and normalized to body weight.

436

#### 437 *Body composition and liver adiposity analyses in mice*

438 Body composition was measured using an EchoMRI-100H 2n1 featuring a horizontal probe  
439 configuration (EchoMRI, Houston, TX). Whole-body adiposity was calculated as the ratio of fat  
440 mass to body weight. To determine liver adiposity, the entire liver was harvested, weighed, and  
441 analyzed using the EchoMRI 2n1 tissue probe. Liver fat mass was divided by liver mass to  
442 calculate liver adiposity.

443

444

445 *Isolation of stromal vascular fraction from adipose tissues*

446 The stromal vascular fraction (SVF) from mouse adipose tissues were isolated as previously  
447 described.<sup>39,40</sup> After euthanasia, eWAT, iWAT, and BAT were immediately dissected, finely  
448 minced, and subjected to digestion in 4 mL high glucose DMEM (Gibco) containing 1 mg/mL  
449 collagenase type II (cat# C6885, Sigma-Aldrich). Digestion was carried out at 37 °C for 1 hr in an  
450 orbital shaker with rotation at 140 rpm while tilted at a 90° angle. The resulting single-cell  
451 suspensions were filtered through a 100 µm nylon mesh cells strainer followed by two washes of  
452 filter with 5 mL of Wash Media (high glucose DMEM with 5% FBS, 2 mM L-glutamine, and 100  
453 U/mL Penicillin-Streptomycin). After centrifugation at 500 x g for 5 min at 4°C, the floating  
454 adipocytes on the top of the media were removed (in some cases they were collected), as was  
455 the media. The SVF pellet was resuspended in 1 mL of Red Blood Cell ACK Lysis Buffer (Gibco)  
456 and incubated at room temperature for 3-5 min to lyse red blood cells. After quenching with 10  
457 mL Wash Media, SVF cells were pelleted by centrifugation at 500 x g for 5 min at 4°C and  
458 resuspended in appropriate volume of wash media for subsequent experiments such as flow  
459 cytometry staining and primary adipocyte differentiation.

460

461 *Spectral flow cytometry*

462 Cell staining for spectral flow cytometry was performed as previously described.<sup>40</sup> Isolated SVF  
463 cells were plated into 96-well round-bottom plates, washed with 200 µL DPBS, and then  
464 resuspended in 50 µL Zombie Near Infrared (Zombie-NIR; 1:1,000; BioLegend) in DPBS. After a  
465 5 min incubation on ice while protected from light, the Zombie viability dye was quenched with  
466 200 µL FACS Buffer (DPBS supplemented with 2.5% heat-inactivated FBS and 2.5 mM EDTA).  
467 Cells were then pelleted at 500 x g for 3 min at 4°C and resuspended in 25 µL of 5 mg/mL FcBlock  
468 (rat anti-mouse CD16/32, clone 2.4G2, BD Biosciences) diluted in FACS Buffer and incubated on  
469 ice for 10-15 min. An equal volume of 2X stain cocktail was made in Brilliant Stain Buffer (BD  
470 Biosciences) and added on top, with gentle mixing by pipetting up and down 4-5 times. The 2X  
471 stain cocktail included the following antibodies (final dilutions are all 1:300 unless otherwise  
472 indicated): rat anti-mouse SiglecF-BV421 (1:400, clone E50-2440, cat# 562681 BD Horizon), rat  
473 anti-mouse/human CD11b-Pacific Blue (clone M1/70, cat# 101224, BioLegend), rat anti-mouse  
474 ST2/IL-33R-biotin (clone DIH9, cat# 145308, BioLegend), rat anti-mouse MHC-II-BV510 (clone  
475 M5/114.15.2, cat# 107636, BioLegend), rat anti-mouse Ly6C-BV570 (1:400, clone HK1.4, cat  
476 #128030, BioLegend), rat anti-mouse F4/80-BV650 (clone BM8, cat#123149, BioLegend), rat  
477 anti-mouse Ly6G-BV711 (clone 1A8, cat# 127643, BioLegend), Armenian hamster anti-mouse  
478 TCRβ-Alexa Fluor 488 (clone H57-597, cat# 109215, BioLegend), rat anti-mouse CD45-PerCP

479 (1:200, clone 30-F11, cat#103130, BioLegend), mouse anti-mouse CD64-PE/Dazzle594 (clone  
480 X54-5/7.1, cat# 139320, BioLegend), rat anti-mouse PDGFR $\alpha$ -PE/Cy5 (clone APA5, cat# 135920,  
481 BioLegend), Armenian hamster anti-mouse CD11c-PE/Cy5.5 (clone N418, cat#35-0114-82,  
482 Invitrogen/eBioscience), rat anti-mouse CD25-PE/Cy7 (1:200, clone PC61, cat#1026, BioLegend),  
483 Armenian hamster anti-mouse MXRA8-Alexa Fluor 647 (1:200, clone 9G2.D6, conjugated using  
484 the Alexa Fluor<sup>TM</sup> 647 Antibody Labeling Kit by Invitrogen), rat anti-mouse CD19-Spark NIR 685  
485 (clone 6D5, cat# 115568, BioLegend), rat anti-mouse CD9-APC/Fire 750 (clone MZ3, cat#  
486 124814, BioLegend) or mouse anti-mouse NK1.1-APC/Fire750 (clone PK136, cat#  
487 108752, BioLegend), and rat anti-mouse/human B220-APC/Fire810 (clone RA3-6B2, cat#  
488 103278, BioLegend) in Brilliant Stain Buffer (BD Biosciences) supplemented with 5  $\mu$ g/mL  
489 FcBlock. Cells were stained for 30 min on ice while protected from light followed by 2-to-3 washes  
490 in 200  $\mu$ L FACS Buffer. Cells were then stained with 50  $\mu$ L Streptavidin-BV480 (1:300, BioLegend)  
491 in FACS Buffer for 20 min on ice while protected from light. After 2 washes in 200  $\mu$ L FACS Buffer,  
492 the cells were resuspended in 200  $\mu$ L FACS Buffer and subjected to flow cytometric analysis on  
493 a Cytek Aurora spectral flow cytometer configured with 4 lasers (violet, blue, yellow/ green, and  
494 red lasers), with 100  $\mu$ L acquired to enable cell count enumeration.  
495

#### 496 *Primary Adipocyte Differentiation and Culture*

497 Freshly isolated SVF from iWAT of *Mxra8*<sup>Δ8/Δ8</sup> and WT littermate controls were resuspended in  
498 preadipocyte culture media (DMEM/F12 (1:1) supplemented with 10% heat-inactivated FBS, 2  
499 mM L-glutamine, and 100 U/mL Penicillin-Streptomycin) and cultured in a humidified incubator at  
500 37°C with 5% CO<sub>2</sub>. After 2 days growth, cells were washed twice with sterile DPBS and lifted by  
501 0.05% trypsin-0.44 mM EDTA in DPBS (Gibco) with 3-minute incubation at 37°C. The  
502 trypsinization was quenched by collecting the cells into a 50 mL conical tube containing 5 mL  
503 preadipocyte culture media. Cells were then pelleted by centrifugation at 400 x g for 3 min at 4°C,  
504 resuspended in preadipocyte culture media, and counted using a Countess II (Invitrogen). 3 x 10<sup>5</sup>  
505 cells were plated into each well of a 6-well plate and maintained in a humidified incubator at 37°C  
506 with 5% CO<sub>2</sub>. Two days after the cell confluence reached 100%, the differentiation was initiated  
507 by replacing the culture media with adipocyte differentiation media (DMEM/F12 (1:1)  
508 supplemented with 10% heat-inactivated FBS, 5  $\mu$ M dexamethasone (Sigma), 850 nM insulin  
509 (Sigma), 1  $\mu$ M rosiglitazone (Cayman Chemical), 1 nM 3,3',5-Triiodo-L-thyronine (Sigma), 125  
510  $\mu$ M indomethacin (Sigma), 0.5 mM 3-Isobutyl-1-methylxanthine (Sigma), and 100 U/mL Penicillin-  
511 Streptomycin) for 48 hr. The adipocyte differentiation media was then replaced by maintenance  
512 media (DMEM/F12 (1:1) supplemented with 10% heat-inactivated FBS, 850 nM insulin, 1 nM

513 3,3',5-Triiodo-L-thyronine, and 100 U/mL Penicillin-Streptomycin). Primary adipocytes were  
514 obtained after 8 days incubation in maintenance media (refreshed every 2 days) and were  
515 harvested for RNA extraction and RT-qPCR using TRIzol.

516

517 *Histological Analyses*

518 Freshly dissected eWAT, iWAT, BAT, and liver tissues were immediately immersed in 4%  
519 paraformaldehyde (PFA) in PBS (cat# sc-281692, Santa Cruz Biotechnology, Dallas, TX) and  
520 kept at 4°C for at least 3 days while protected from light. Fixed tissues were transferred into 75%  
521 ethanol and submitted to the WashU Musculoskeletal Research Center Morphology Core for  
522 paraffin embedding, sectioning, and hematoxylin and eosin (H&E) staining and Masson's  
523 Trichrome staining. Unstained sections were used for immunohistochemistry (IHC) staining with  
524 the use of ImmPRESS HRP Universal PLUS Polymer Kit (cat# MP-7800, Vector Laboratories,).  
525 Briefly, the slides were sequentially subjected to dehydration in xylene and rehydration in 100%  
526 ethanol, 95% ethanol, 75% ethanol, and distilled water followed by heat-induced antigen retrieval  
527 in citrate buffer (cat# C9999, Sigma-Aldrich) using a 2100 Retriever (Electron Microscopy  
528 Sciences). After citrate buffer cooled down, slides were rinsed 3 times in Tris-Buffered Saline  
529 (TBS) and then incubated in BLOXALL Endogenous Enzyme Blocking Solution (cat# SP-6000,  
530 Vector Laboratories) for 15 min in dark to quench endogenous peroxidase. Slides were then  
531 rinsed 3 times in TBS and incubated in 2.5% Normal Horse Serum for 30 min at room temperature.  
532 The slides were stained overnight with rabbit anti-mouse UCP1 antibody (cat# ab10983, Abcam)  
533 diluted in 2.5% Normal Horse Serum (1:1000) at 4°C. Sections were rinsed 3 times in TBS and  
534 incubated in ImmPRESS HRP Universal Polymer Reagent (Horse Anti-Mouse/Rabbit IgG) for 30  
535 minutes at room temperature. After 3 washes with TBS, ImmPACT DAB EqV working solution  
536 (mixture of equal volume of ImmPACT DAB EqV Reagents 1 and 2) were gently pipetted onto the  
537 sections and incubated until sharp brown signals developed, typically within 1-2 min. Slides were  
538 then rinsed in tap water 3 times and counterstained with hematoxylin (cat# H-3401, Vector  
539 Laboratories). Images were captured with a 40X Apochromat N.A. 0.95 objective using an Echo  
540 Rebel brightfield microscope (Discover ECHO, San Diego, CA) configured with a 10X flip-out  
541 Achromat condenser.

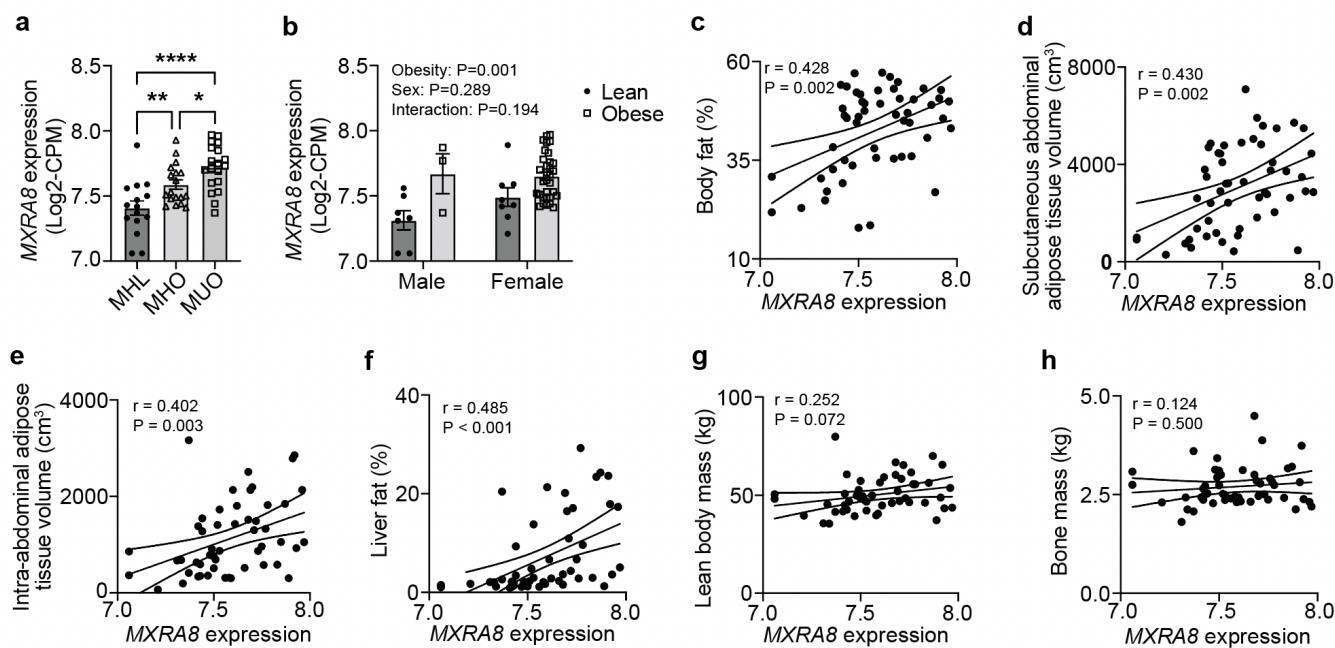
542

543 *RNA extraction and quantitative RT-PCR from mouse specimens*

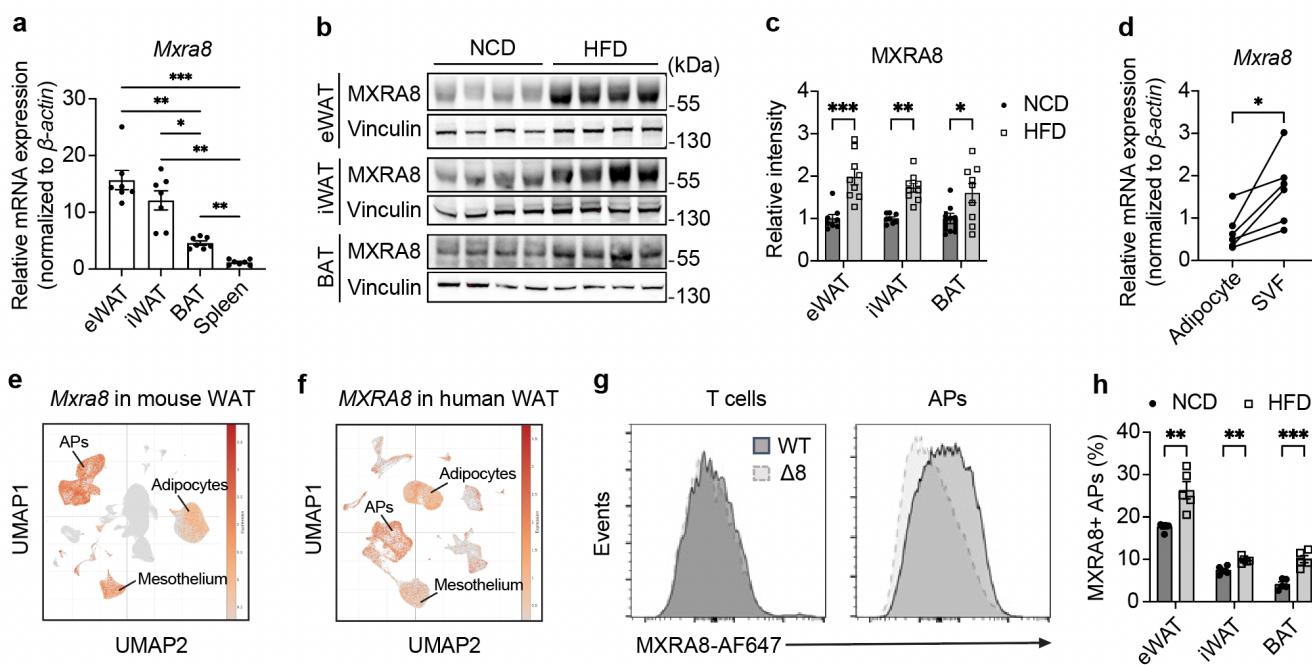
544 Total RNA was extracted from mouse tissues or cells, including mature adipocytes, SVF, and  
545 primary adipocytes, using the Direct-zol RNA Miniprep Plus Kit (Zymo Research; Orange, CA)  
546 based on the manufacturer's instructions, with a chloroform extraction step added to remove the

547 lipids prior to application to the columns. Frozen mouse tissues were lysed and homogenized in  
548 Direct-zol by a Bead mill homogenizer (Thermo Fisher, Waltham, MA). Cells were lysed by directly  
549 adding Direct-zol into the collecting tubes or culture wells. A half volume of chloroform was then  
550 added into the lysates, thoroughly mixed by vortexing, and centrifuged for 15 min at 16,000 x g at  
551 4°C. The clear aqueous phase was collected into a fresh set of Eppendorf tubes that contained  
552 equal volumes of 100% molecular grade ethanol and gently mixed by inversion followed by  
553 applying the mixture onto the Zymo-Spin IIICG column for centrifugation. Total RNA was then  
554 purified according to the manufacturer's instructions and quantified by absorbance on a BioTek  
555 Synergy H1 microplate reader (Biotek). Depending on the amount of RNA obtained, 100-2000 ng  
556 RNA were reverse-transcribed into cDNA using SuperScript™ IV VILO™ Master Mix (Applied  
557 Biosystems). Quantitative real-time PCR was performed using PowerUp™ SYBR™ Green Master  
558 Mix (Applied Biosystems) and on a QuantStudio 3 Real-Time PCR System (Applied Biosystems).  
559 The primers were all purchased from Millipore Sigma with sequences listed as below, *Mxra8(8bp)*-  
560 fwd: 5'-TCGTGCTTCTCCTGGCAATG-3', *Mxra8(8bp)*-rev: 5'-  
561 GGAAGAAATGTGTGGTCCTC-3'; *Ucp1*-fwd: 5'- CAACTTGGAGGAAGAGATACTGAACAT-  
562 3', *Ucp1*-rev: 5'-TTTGGTTGGTTTATTCTGGTC-3'; *Cebpa*-fwd: 5'-  
563 TTCACATTGCACAAGGCACT-3', *Cebpa*-rev: 5'-GAGGGACCGGAGTTATGACA-3'; *Cidea*-fwd:  
564 5'-TGCTCTTCTGTATGCCAGT-3', *Ppargc1a*-fwd: 5'-CCCTGCCATTGTTAACGACC-  
565 3', *Ppargc1a*-rev: 5'-TGCTGCTGTTCCCTGTTTC-3'; *Cidea*-rev: 5'-  
566 GCCGTGTTAAGGAATCTGCTG-3'; *Prdm16*-fwd: 5'-CAGCACGGTGAAGCCATT-3', *Prdm16*-  
567 rev: 5'-GCGTGCATCCGCTTGTG-3'; and  $\beta$ -*actin*-fwd: 5'-CTAAGGCCAACCGTGAAAAG-3',  $\beta$ -  
568 *actin*-rev: 5'- ACCAGAGGCATACAGGGACA-3'.  
569

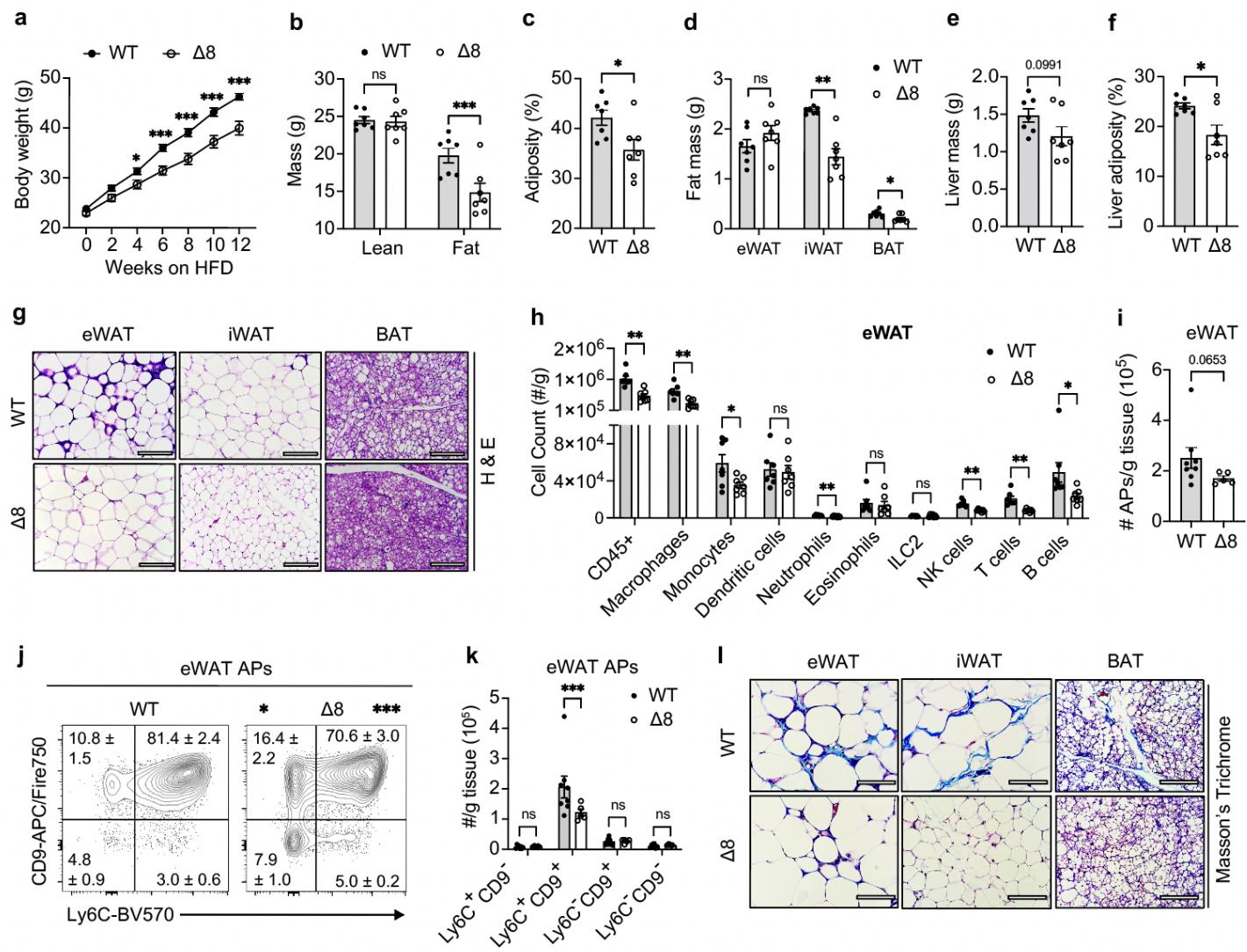
#### 570 *Protein Extraction and Western Blotting*


571 Total proteins were extracted from eWAT, iWAT, and BAT using the Minute™ Total Protein  
572 Extraction Kit for Adipose Tissue/Cultured Adipocytes (Invent Biotechnologies; Plymouth, MN)  
573 according to the manufacturer's instructions. Homogenization/lysis buffer was prepared prior to  
574 use by adding Halt™ Protease and Phosphatase Inhibitor Single-Use Cocktail (Thermo Scientific)  
575 and 1mM PMSF (Cell Signaling Technology; Danvers, MA) into the Buffer A provided by the  
576 above-mentioned kit. Proteins were precipitated from the lysates by acetone with overnight  
577 incubation at -20°C and resolubilized in 50-200  $\mu$ L of resolubilization buffer (1% SDS, 1 mM EDTA,  
578 and 100 mM HEPES (pH7.5) in molecular biology-grade water). BCA Protein Assay Kit (Thermo  
579 Fisher; Waltham, MA) was utilized for protein quantification. For SDS-PAGE, 10  $\mu$ g protein from  
580 each sample were prepared in Bolt™ LDS Sample Buffer (Invitrogen) under reducing (with 1 mM

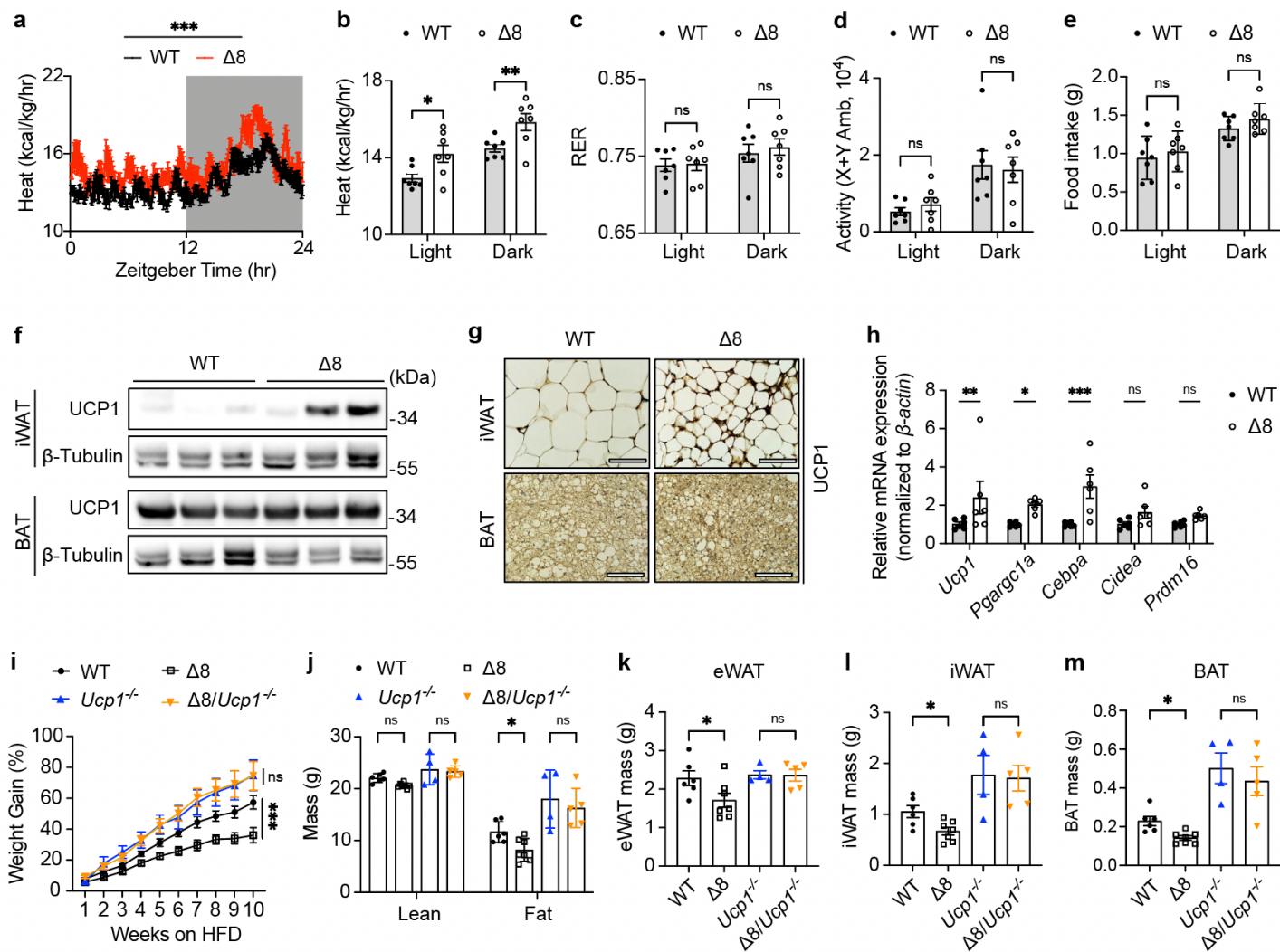
581 DTT) conditions and were heated at 70 °C for 10 min. Protein samples were then electrophoresed  
582 using Bolt™ 4-12% Bis-Tris Plus Gels (Invitrogen) and transferred onto nitrocellulose membranes  
583 using a Power Blotter System (Invitrogen). After washing with deionized water, membranes were  
584 stained with 0.01 % (w/v) Ponceau S (Sigma) in 1% aqueous acetic acid and imaged in an iBright  
585 CL1500 imaging system (Invitrogen). Membranes were then washed 3 times in Tris-buffered  
586 saline containing 0.1% Tween-20 (TBST, Cell Signaling Technology) prior to 1-hr blocking with  
587 blocking buffer (5% Blotting Grade Blocker (Bio Rad; Hercules, CA) in TBST) at room temperature.  
588 Membranes were probed overnight at 4°C with Armenian hamster anti-mouse MXRA8 (Clone  
589 9G2.D6, 0.5 µg/ml), rabbit anti-mouse UCP1 (cat# ab10983, 1:1000, Abcam), β-tubulin (clone  
590 9F3, cat# 2128, Cell Signaling Technology), or Vinculin (clone E1EV9, cat# 13901, Cell signaling  
591 Technology) diluted in blocking buffer supplemented with 0.01% NaN<sub>3</sub> (Sigma). After three  
592 washes with TBST, membranes were incubated with horseradish peroxidase (HRP)-conjugated  
593 goat anti-rabbit (cat# 7074, Cell Signaling Technology) or goat anti-hamster (cat# 127-035-160,  
594 Jackson ImmunoResearch) secondary antibodies for 1 hr at room temperature. Blots were then  
595 developed using SuperSignal West Pico Chemiluminescent Substrate (Invitrogen) or SuperSignal  
596 West Atto Chemiluminescent Substrate (Invitrogen) and imaged with an iBright CL1500 Imaging  
597 System (Invitrogen). The densitometric analyses of Western blot bands was performed on iBright  
598 Analysis Software version 5.2.0. Vinculin or β-tubulin served as internal reference control for the  
599 normalization of target protein bands. Relative intensities were calculated by dividing each  
600 normalized intensity by the average normalized intensity of the control (WT) lanes.


601

#### 602 *Statistical analyses*


603 Data are presented as mean ± standard error of the mean in all panels with a pool from at least  
604 2 independent experiments. Statistical analyses were performed in Prism v10 or v11 (Graphpad,  
605 La Jolla, CA) unless otherwise specified. Paired or unpaired Student's t-tests were used for two-  
606 group comparisons, with Welch's correction applied when the standard deviations between  
607 groups differed. One-way analysis of variance (ANOVA) with Tukey or Fisher's LSD post-hoc  
608 testing was used for three-or-more group comparisons, and two-way ANOVA with Sidak or  
609 Fisher's LSD posthoc testing was used for 2 x 2 or 2 x n designs, including experimental designs  
610 that involve repeated measures. Metabolic cage analyses were performed on OxyMax CI-Link  
611 software for CLAMS Cages. Immunoblot densitometric analyses were conducted on iBright  
612 CL1500 software. Spectral flow cytometry data were acquired using SpectroFlo v2.0 (Cytek) and  
613 analyzed on SpectroFlow v2.0 and FlowJo v10.8.1 (BD). Statistical significance was set at P<0.05.




**Figure 1. MXRA8 expression in white adipose tissue is upregulated in people with obesity and is associated with increased adiposity.** Subcutaneous white adipose tissues (WAT) were obtained from people who were metabolically healthy lean (MHL,  $n=15$ ), metabolically healthy obese (MHO,  $n=18$ ), and metabolically unhealthy obese (MUO,  $n=19$ ) for RNA-sequencing. **(a)** WAT MXRA8 gene expression in MHL, MHO, and MUO groups. **(b)** WAT MXRA8 expression in people who were lean or obese stratified by male or female biological sex, where the people with obesity included both MHO and MUO groups. **(c-h)** Linear regression analyses of WAT MXRA8 expression and **(c)** adiposity expressed as percent body fat, **(d)** subcutaneous abdominal adipose tissue volume, **(e)** intra-abdominal adipose tissue volume, **(f)** liver fat, **(g)** lean body mass, and **(h)** bone mass. Data are expressed as mean  $\pm$  standard error of the mean in panels a and b. For panel a, one-way ANOVA with Fisher's LSD post hoc test. For panel b, two-way ANOVA with Fisher's LSD post hoc test. For panels c-h, linear regression with Pearson correlation coefficients shown.  $*P<0.05$ ,  $**P<0.01$ ,  $****P<0.0001$ .



**Figure 2. MXRA8 is highly expressed in adipocyte progenitor cells and is induced in obesity in mice.** (a) Relative *Mxra8* mRNA expression in epididymal (e)WAT, inguinal (i)WAT, brown adipose tissue (BAT), and spleen from wildtype (WT, n=7) mice at age of 8-12-weeks-old. (b) Representative Western blot images and (c) densitometric quantification of MXRA8 protein levels in eWAT, iWAT, and BAT of WT mice that were fed a normal chow diet (NCD, n=8) or high fat diet (HFD, 60% kcal fat, n=9) for 8 weeks. Densitometric analyses are normalized to vinculin. (d) Relative *Mxra8* mRNA expression in mature, floating adipocytes and stromal vascular fraction (SVF) isolated from NCD-fed WT mice (n=6) at age of 8-12 weeks. (e-f) Uniform Manifold Approximation and Projection (UMAP) analyses on MXRA8 expression at a single cell level in (e) mouse and (f) human WAT based on a published single nucleus RNA sequencing dataset (GSE176171). (g) Representative flow cytometry histograms showing the surface expression of MXRA8 in T cells (gated as singlet live CD45 $^+$  NK1.1 $^-$  TCR $\alpha\beta^+$ ) and adipocyte progenitor cells (APs, gated as singlet live CD45 $^-$  CD11b $^-$  PDGFR1 $\alpha^+$ ) in NCD-fed WT and  $\Delta 8$  mice. (h) Frequencies of MXRA8 positive APs in eWAT, iWAT, and BAT of WT mice fed a NCD (n=5) or HFD (60% kcal fat, n=5) for 10 weeks starting at age 8-12-weeks-old. Data are expressed as mean  $\pm$  standard error of the mean for panels a, c, and h. For panel d, paired specimens are linked with a line. For panel a, one-way ANOVA with Tukey post hoc test. For panel d, paired Student's t-test. For panels c and h, two-way ANOVA with Sidak post hoc tests. \*P<0.05, \*\*P<0.01, \*\*\*P<0.001.



**Figure 3. MXRA8 deficiency is associated with protection from HFD-induced obesity in mice.** 8-10-week-old male wildtype (WT, n=7) or *Mxra8*<sup>Δ8/Δ8</sup> (Δ8, n=7) mice were fed a HFD (60% kcal fat) for 12 weeks. **(a)** Body weight over time, **(b)** body composition analyses, **(c)** whole-body adiposity, **(d)** eWAT, iWAT, and BAT masses, **(e)** liver mass, and **(f)** liver adiposity. **(g)** Representative histologic images of eWAT, iWAT, and BAT with hematoxylin and eosin (H&E) staining, imaged at 400X magnification. Scale bar is 100  $\mu$ m. **(h)** Numbers of total immune cells (CD45<sup>+</sup>) and immune cell populations per gram of eWAT based on spectral flow cytometric analyses. **(i-k)** 8-10-week-old male WT (n=8) and Δ8 (n=5) mice were fed a HFD for 12 weeks. **(i)** Numbers of singlet live CD45<sup>-</sup> CD11b<sup>+</sup> PDGFR1 $\alpha$ <sup>+</sup> adipocyte progenitor cells (APs) per gram of eWAT and **(j)** representative flow cytometry plots of eWAT AP cell subsets gated based on expression of CD9 and Ly6C. **(k)** Number of AP subsets per gram of eWAT. **(l)** Representative histologic images of eWAT, iWAT, and BAT with Masson's Trichrome staining, imaged at 400X magnification. Scale bar is 100  $\mu$ m. Data are expressed as mean  $\pm$  standard error of the mean. For panels a, c, e, g, and j, two-way ANOVA with Fisher's LSD post hoc test. For panel b, two-way ANOVA with repeated measures and Fisher's LSD post hoc test. For panel d, Student's t test. For panel h, Mann-Whitney U test. NS, not significant. \*P<0.05, \*\*P<0.01, \*\*\*P<0.001.



**Figure 4. UCP1 is required for MXRA8 deficiency to protect against diet-induced obesity.** (a-g) 8-10-week-old male wildtype (WT, n=7) and *Mxra8*<sup>Δ8/Δ8</sup> (Δ8, n=7) mice were fed a high fat diet (HFD) for 12 weeks and housed in metabolic cages. (a) Energy expenditure over time, with the light phase unshaded and the dark phase shaded. (b) Average energy expenditure, (c) respiratory exchange ratio (RER), (d) ambulatory activity, and (e) food intake during the light and dark phases. (f) Representative Western blots of Uncoupling protein 1 (UCP1) in iWAT and BAT and (g) immunohistochemistry of UCP1 in iWAT and BAT. (h) Primary adipocytes were cultured from WT (n=6) or Δ8 (n=6) mice, and relative mRNA expression of the indicated genes on day 8. (i-m) 8-10-week-old male WT (n=6), Δ8 (n=7), *Ucp1*<sup>-/-</sup> (n=4), and Δ8/*Ucp1*<sup>-/-</sup> (n=5) mice were acclimated to thermoneutrality (30°C) for 2 weeks prior to being fed a HFD (60% kcal fat) for 10 weeks at thermoneutrality. (i) Weight gain over time, expressed as a percentage of starting body weight. (j) Body composition analyses, (k) eWAT mass, (l) iWAT mass, and (m) BAT mass. Data are expressed as mean ± standard error of the mean. For panels a-e and i, two-way ANOVA with repeated measures and LSD post hoc tests. For panel h and j-m, two-way ANOVA with LSD post hoc test. NS, not significant. \*P<0.05, \*\*P<0.01, \*\*\*P<0.001.