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Abstract 12 

Genetic manipulation of cells to couple byproduct production and growth rate is important in 13 

bioengineering and biotechnology. In this way, we can use growth rate as a selective 14 

pressure, where the mutants with higher growth have higher production capacity. 15 

Computational methods have been proposed to find knockouts that couple growth and 16 

byproduct production. However, none of these methods consider the energetic and 17 

thermodynamic feasibility of such knockout strategies. Furthermore, there is no 18 

computational study of how variations in metabolite concentrations affect the coupling 19 

between growth and byproduct formation. One of the computational methods to find 20 

knockouts that couple growth and byproduct formation is OptKnock. OptKnock is a bi-level 21 

optimization problem. Here, we integrated thermodynamic constraints into the bilevel 22 

formulation of OptKnock to create TOptKnock. We show that the computational efficiency 23 

of TOptKnock is comparable to that of OptKnock. TOptKnock can account for the 24 

thermodynamic viability of the knockouts and examine how variations in metabolite 25 

concentrations affect the coupling. We have shown that the coupling between growth and 26 

byproduct formation can change in response to variations in concentrations. Thus, a knockout 27 

strategy might be optimal for one intracellular condition but suboptimal for another. If 28 

metabolomics data are available, TOptKnock can search for optimal knockout interventions 29 

under the given condition. We also envision that the TOptKnock framework will help 30 

develop strategies for manipulating metabolite concentrations to couple growth and 31 

byproduct formation.  32 
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Introduction 33 

Redesigning and engineering microorganisms to produce valuable biochemicals is an 34 

important goal of metabolic engineering. Assuming that microorganisms have evolved to 35 

maximize their growth, engineering approaches that genetically couple product formation and 36 

growth are more robust. In addition, because biomass formation is accompanied by product 37 

formation, microorganisms engineered by such approaches will produce more products over 38 

generations by maximizing their growth. 39 

Many computational tools have been developed to find optimal strategies to enhance 40 

biochemical production in a host organism. Such methods can suggest strategies for adding 41 

heterologous genes1-3, performing gene knockouts4,5, and suppressing or activating native 42 

genes6. Many of these methods use constraint-based optimization, where an objective 43 

function is optimized, subject to physicochemical constraints. 44 

Bilevel optimization, the optimization of two nested problems, is a popular 45 

framework for designing strains with improved product yield. This structure allows searching 46 

for optimal interventions with the outer problem while considering that the organism 47 

optimizes its physiological objective (usually growth rate) with the inner problem. In this 48 

way, we find the interventions that couple product yield with biomass yield. Bilevel problems 49 

are nonlinear; however, some can be reformulated into linear problems, such as Linear 50 

Programming (LP) or Mixed-Integer Linear Programming (MILP). There are two 51 

reformulations for bilevel problems. Two reformulations exist for bilevel problems. One 52 

reformulation uses the strong duality7, and the other uses Karush-Kuhn-Tucker conditions8. 53 

OptKnock is a bilevel method for finding reaction knockout strategies that couple 54 

biochemical production and growth rate7. OptKnock has been used to design mutant 55 

Escherichia coli to overproduce malonyl-CoA9 and 1,4-butanediol10 and mutant 56 

Saccharomyces cerevisiae to overproduce 2,3-butanediol11. Several other methods have been 57 

derived from OptKnock with variations in intervention strategy, such as reaction suppression 58 

and activation6, heterologous reaction addition12, and gene deletion4. 59 

The OptKnock formulation includes constraints that account for (i) reaction removals, 60 

(ii) mass balances, (iii) reaction capacities, (iv) substrate availability, and (v) reaction 61 

reversibilities. The latter is imposed as they are in the Genome-scale Metabolic Models 62 

(GEMs). The reversibility of the reactions in a GEM is determined based on the standard 63 

Gibbs free energies or other available information about the directionality of the reactions13. 64 

However, assigning reaction directionality in this way can be inaccurate in some cases 65 
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because the thermodynamic properties of living organisms differ from the standard condition. 66 

Thermodynamic-based Flux Balance Analysis (TFA) is a formulation for determining 67 

directionalities based on Gibbs free energy under biological conditions14. 68 

Here, we integrated thermodynamic constraints into the OptKnock formulation to 69 

develop TOptKnock. Then, we recast the nonlinear formulation of TOptKnock as a MILP 70 

and used it to find thermodynamically feasible knockout strategies to couple succinate 71 

production with growth rate in E. coli under anaerobic conditions. Finally, we investigated 72 

how the concentration of metabolic cofactors affects the coupling between growth and 73 

product secretion. We showed that the performance of a knockout strategy depends on 74 

metabolite concentrations and that different strategies may be optimal depending on the 75 

abundance of key metabolites. TOptKnock is the first bilevel formulation to consider 76 

thermodynamic feasibility, and its development paves the way for incorporating 77 

thermodynamics into other bilevel formulations.  78 
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 5 

Results 79 

Computational performance 80 

TOptKnock has additional variables compared to OptKnock, including metabolite 81 

concentrations, Gibbs free energies, and reaction directionalities. The number of constraints 82 

is also higher due to the thermodynamic constraints. Therefore, solving TOptKnock requires 83 

more computational resources. Table 1 lists the number of variables and constraints in the 84 

reformulated OptKnock and TOptKnock for iJO1366. 85 

To increase the computational efficiency, we used a numerical trick. We constrained 86 

the slack variables for the dual problem (see Methods) to be in the range [0,1]. Based on the 87 

formulation, the slack variables are unbounded from above. However, random sampling of 88 

the slack variables in the dual problem showed that these variables are usually much smaller 89 

than 1. We observed that tightening the bounds on these variables significantly affected the 90 

solution time, such that the solution time of TOptKnock was comparable to the original 91 

OptKnock (Figure 1). 92 

Using TOptKnock to find knockout strategies 93 

We used TOptKnock to find knockout strategies to couple the biomass and product 94 

yield. Such knockout strategies are thermodynamically feasible due to the inclusion of 95 

thermodynamic constraints. As a case study, we investigated the overproduction of succinate 96 

in E. coli under anaerobic conditions. Wild-type E. coli scarcely produces succinate at its 97 

maximum growth rate (Figure 2). We generated mutant E. coli strains with single, double, 98 

and triple knockouts.  99 

Removal of the fumarase reaction (FUM), which converts fumarate to L-malate in the 100 

TCA cycle, resulted in the only single-knockout mutant with higher succinate production at 101 

maximal growth rate (Figure 2). Increasing the number of reaction knockouts to two and 102 

three resulted in more mutant strains with significantly higher succinate yields. Most of these 103 

strategies focused on interrupting the conversion of phosphoenolpyruvate (PEP) to pyruvate 104 

and diverting PEP towards the reductive branch of the TCA cycle (Figure 2a). 105 

In all mutant strains, succinate yield was improved at the expense of a reduced 106 

biomass yield. We defined the following score to find the knockout mutants with a good 107 

trade-off between the biomass and product yields (Figure 3): 108 

 OH �  ������������� �������	   
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where ���� is the maximum growth rate of the mutant strain. To find ��������  and �������	 , the 109 

growth was fixed at its maximum, i.e., ����, and product (succinate) production was 110 

maximized and minimized, respectively. We included �������	  in the definition of OH because 111 

higher values of �������	  indicate that the coupling between the product and biomass production 112 

is forced. In other words, the mutant organism can only increase its growth rate by increasing 113 

the production of the product. The OH score for the single knockout mutant with FUM 114 

removed was 7.40. The double- and triple-knockout mutants had significantly higher OH 115 

scores (Figure 2b). The highest OH for the double-knockout mutants was 11.91, which was 116 

obtained by removing pyruvate kinase (PYK) and fructose-6-phosphate aldolase (F6PA). 117 

However, the highest OH, 131.89, was obtained for a triple knockout strategy in which 118 

succinate production was tightly coupled to biomass production (Figure 2b). This strategy 119 

prevented the flux from being diverted to the production of alternative byproducts. Removal 120 

of pyruvate formate lyase (PFL), D-lactate dehydrogenase (LDH_D), and alcohol 121 

dehydrogenase (ALCD2x) blocked the production of formate, lactate, and ethanol, 122 

respectively. 123 

The impact of metabolite concentrations on the solution space  124 

 The intracellular concentration of key metabolites such as NADH and acetyl-CoA 125 

(AcCoA) has been shown to influence succinate production15,16. In addition, metabolomic 126 

analyses showed that the NAD+/NADH and NADP+/NADPH ratios differ significantly 127 

between aerobic and anaerobic conditions17-19. Mainly due to an inactive electron transfer 128 

chain, an increased level of NADH is observed under the anaerobic condition20. On the other 129 

hand, the reduced flux through the oxidative pentose phosphate pathway and the reduced 130 

need for protection against superoxide radicals caused a decrease in the level of NADPH20. 131 

AcCoA/CoA, however, remains almost unchanged20.  132 

Such results show how metabolite concentrations can vary in response to changes in 133 

metabolism. We performed a sensitivity analysis to evaluate the optimality of different 134 

mutants to variations in metabolite concentrations. We generated three mutant strains using 135 

the knockout strategies found by TOptKnock to couple succinate production and growth: (i) 136 

strain α contains PYK and GLCptspp knockouts, (ii) strain β contains PFL, LDH_D, and 137 

ALCD2x knockouts, and (iii) strain γ contains PFL, PYK, and GLCptspp knockouts.  These 138 

three mutants were the best double knockout (strain �), the best triple knockout (strain 	), 139 

and the second-best triple knockout (strain 
) mutants. We then constrained the relative 140 
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concentrations of NAD+/NADH, AcCoA/CoA, and NADP+/NADPH to be within specified 141 

ranges. 142 

In total, we considered 1000 different intracellular conditions, each specified by 143 

defining a range for the variation of the key cofactors (Supplementary Table S1). Figure 4 144 

shows the solution space with the highest OH score for each strain and the cofactor ratios for 145 

which this solution space is obtained. We assumed that succinate production and growth were 146 

tightly coupled if �������	  was more than 50% of  ��������  under that condition, and ��������  was 147 

more than 50% of the maximum succinate production under all conditions. Strains �, 	, and 148 


 showed tight coupling between succinate production and growth in 23, 34, and 52 149 

conditions (Supplementary Table S1), respectively, suggesting that the 
 strain is more robust 150 

against perturbations in intracellular concentrations.  151 

We specifically explored the solution space for four intracellular conditions (Table 2) 152 

by fixing the growth at different values and minimizing/maximizing the succinate production 153 

(Figure 5). These four conditions were chosen based on our sensitivity analysis 154 

(Supplementary Table S1) to demonstrate how an optimal solution under one condition might 155 

be suboptimal or non-optimal under another condition. The wild-type organism produces and 156 

secretes formate as the main byproduct. However, formate production is blocked in the 	 and 157 


 strains because both strains are knocked out for PFL, which in turn causes succinate to be 158 

an essential byproduct of growth under condition A. On the other hand, the � strain can 159 

produce formate; thus, succinate production is not essential under this condition. We 160 

performed a variability analysis to find the reaction directions affected after imposing the 161 

concentration ranges. Such changes are shown in Supplementary Tables S2-S4.  162 

Condition B, however, forced a much lower availability of AcCoA. As a result, only 163 

the reverse direction of the phosphotransacetylase reaction (PTAr) was thermodynamically 164 

feasible due to the positive Gibbs free energy. This adversely affected the ability of the cell to 165 

produce and secrete acetate and formate, even in the α strain, leaving the cells no choice but 166 

to produce succinate.  Thus, succinate production was tightly coupled to growth in all 167 

mutants in condition B. 168 

Like condition B, condition C featured a low relative concentration of AcCoA, which 169 

helped couple growth and succinate production. However, condition C also had lower 170 

NAD+/NADH than condition B, and it has been previously reported that NADH 171 

accumulation negatively affects the growth rate16,21. As a result of the reduced growth rate, 172 

the coupling between growth and succinate production was not tight in the 	 strain (i.e., 173 
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�������	  is close to zero). According to the model, the 	 strain can produce L-alanine from 174 

pyruvate as an alternative byproduct. On the other hand, strains � and 
 cannot produce L-175 

alanine at maximum growth because the removal of GLCptspp and PYK interrupted the 176 

conversion of PEP to pyruvate in these strains. Variability analysis showed that reaction 177 

directionalities are identical between conditions B and C except for one reaction 178 

(Supplementary Tables S2-S4). The reaction with the changed directionality was 2Fe-2S 179 

regeneration (S2FE2SR) in the � strain and Octanoate non-lipoylated apo domain ligase 180 

(OCTNLL) in the 	 and 
 strains. 181 

In condition D, the NAD+/NADH ratio was the same as in condition C, but the 182 

NADP+/NADPH ratio was significantly lower. This caused changes in reaction 183 

directionalities such that ��������  decreased strongly. Thus, succinate production and growth 184 

were not coupled in any of the strains under condition D. 185 

We also examined the effect of changing the relative concentrations of each cofactor 186 

on the OH score (Figure 6). We observed no significant differences between different strains 187 

in response to the variation in NAD+/NADH and NADP+/NADPH. The middle ranges of 188 

NAD+/NADH, i.e., 1� ln 
���


��

� 5, resulted in the highest OH scores. Succinate production 189 

was reduced at the higher ratios, while the organisms failed to grow at the lower ratios. On 190 

the other hand, we observed a switch-like behavior in response to the change in 191 

NADP+/NADPH, where at high ratios, i.e., 3 � ln 
����


���

, the growth vanished.  192 

Below a certain AcCoA/CoA, i.e., ln ������������

�����
� �1, none of the strains could 193 

grow. At the higher ratios, however, the strains responded differently to the variations in 194 

AcCoA/CoA. Strain � had the highest OH scores for the range �1 � ln ������������

�����
� 5. 195 

Then, the OH score decreased by increasing the AcCoA/CoA since formate could be 196 

produced as the alternative byproduct when AcCoA was sufficiently available. In strains 	 197 

and 
, the OH score increased gradually by increasing the AcCoA/CoA due to the increase in 198 

the minimum and maximum succinate production.  199 
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Discussion 200 

In this work, we integrated the thermodynamic constraints into the bilevel framework 201 

of OptKnock to create a new formulation called TOptKnock. We then recast the bilevel 202 

formulation of TOptKnock as a MILP that is solvable using conventional solvers with similar 203 

computational resources as the original OptKnock. TOptKnock searches for optimal 204 

knockout interventions that (i) are thermodynamically feasible and (ii) couple byproduct 205 

production and growth. We have shown that variations in the abundance of key metabolites 206 

can significantly affect the coupling between growth and byproduct formation, either by 207 

inhibiting growth or affecting the ability to produce the byproduct. The different behavior of 208 

the knockout strains under different metabolite concentrations indicates the importance of 209 

including thermodynamic constraints in the search for optimal interventions. We observed 210 

that a strategy may be optimal under one condition but suboptimal under another. We also 211 

observed that some knockout mutants are more robust to perturbations in metabolite 212 

concentrations.  213 

In the TOptKnock formulation, the reaction directionalities are determined based on 214 

the metabolite concentrations. If metabolomics data are available, TOptKnock can find 215 

appropriate interventions for the current cellular state. Furthermore, the TOptKnock 216 

framework helps to develop strategies to manipulate metabolite concentrations instead of or 217 

in combination with gene knockouts to couple biomass and product yields. Finally, the 218 

integration of thermodynamic constraints into OptKnock paves the way for incorporating 219 

these constraints into other bilevel methods. This incorporation is of greater importance for 220 

methods that involve the addition of novel reactions to a host organism, as the directionality 221 

of such reactions in the host is usually not known1.  222 
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 10

Methods 223 

Integration of thermodynamic constraints into the bilevel problem 224 

To determine the directionality of the reactions based on their corrected Gibbs free energy to 225 

the biological condition, we integrated thermodynamic constraints to the OptKnock 226 

formulation to construct TOptKnock: 227 

max
��

������
� � �����

� �    

subject to:    

 max
��

��	��
��
� � �	��
��

� �   
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  � 	
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where ��  is the logarithmic concentration of metabolite i, ∆����° is the Gibbs free energy of 228 

reaction j. To account for the forward and backward directions, respectively, each flux is 229 

represented by two non-negative variables ��� and ���. Also, two binary variables ��� and ��� 230 

are added to ensure that only one direction is active. Met� is the set of metabolites with 231 
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known Gibbs free energy of formation, and Rxn�  represents the reactions for which 232 

thermodynamic constraint is applied. 233 

Reformulation of TOptKnock 234 

Like OptKnock, we used the strong duality theorem and added the dual constraints and 235 

variables of the inner problem to recast ThermoOpKnock as a MILP. However, the 236 

reformulation of TOptKnock is not as straightforward as OptKnock since the fluxes are split 237 

into forward and backward directions, and additional binary variables are integrated to 238 

determine the active directionality. We assumed that ��� and ��� are variables for the outer 239 

problem but parameters for the inner problem. A similar assumption was made for reaction 240 

knockout variables �� in OptKnock7,22. The following is the reformulated TOptKnock: 241 

max
��

������
� � �����

� �    
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where Equations (1-6 are the primal constraints, Equation (7 enforces the equality of primal 242 

and dual objectives, Equations (8-13 are the dual constraints, and Equations (14-19 are the 243 

constraints of the outer problem. To increase the computational efficiency, we constrained 244 

��� �, ��� �, ��! �, and ��! � to be in the range [0, 1], which highly reduced the searching 245 

space without impacting the optimal solutions. 246 

Setting up the model for the simulations 247 

The latest version of iJO1366 was obtained from the BiGG database23. Uptake of all carbon 248 

sources except glucose was blocked. The glucose uptake was constrained to be at most 100 249 

mmol h-1 gDW-1. The uptake of oxygen was blocked to simulate the anaerobic condition. The 250 

lower bound of growth was set to 10% of the maximum growth rate to prevent lethal 251 

knockout strategies. All simulations were performed in python 3.7 using the commercial 252 

solver CPLEX. 253 
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Table 1: Number of constraints and variables in OptKnock and TOptKnock 259 

 
Number of 

continuous variables 

Number of binary 

variables 

Number of 

constraints 

OptKnock 12137 2583 12760 

TOptKnock 18420 7749 29569 

 260 

 261 
Table 2: the four intracellular conditions defined by setting bounds on the relative concentrations of key metabolites 262 

 � � ln �AcCoA#
�CoA#  � � ln �NAD�#

�NADH# & � ln �NADP�#
�NADPH# 

Condition A 7 � � � 9 3 � � � 5 �3 � & � �1 
Condition B 1 � � � 3 3 � � � 5 �3 � & � �1 
Condition C 1 � � � 3 1 � � � 3 �3 � & � �1 
Condition D 7 � � � 9 1 � � � 3 1 � & � 3 

  263 
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 264 

Figure 1: Comparison of the computational performance of OptKnock and TOptKnock. Despite having more constraints and 265 
variables, the solution time of TOptKnock was on par with the original OptKnock after tightening the upper bounds of slack 266 
variables in the dual problem.  267 
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Figure 2: The solution space of different mutant strains. (a) The mutants with the highest succinate production at the 268 
maximum growth are compared with the wild-type organism. The only single-knockout mutant with improved succinate 269 
production was obtained by removing fumarase (FUM). The strain with removed glucose transport through pyruvate 270 
phosphotransferase (GLCptspp) and pyruvate kinase (PYK) had the highest succinate production among the double-271 
knockout mutants. A triple-knockout mutant with removed GLCptspp and PYK (GLCptspp-PYK-*) in addition to either 272 
dihydroxyacetone phosphotransferase (DHAPT) or fructose 6-phosphate aldolase (F6PA) had the highest rate of succinate 273 
production. (b) The solution space of the mutant strains with the highest OH scores is compared with the wild-type 274 
organism. The strain with removed fructose 6-phosphate aldolase (F6PA) and pyruvate kinase (PYK) had the highest OH 275 
score (~11.91) among the double-knockout mutants. The highest OH score (~131.89) was obtained by the removal of 276 
pyruvate formate lyase (PFL), D-lactate dehydrogenase (LDH_D), and alcohol dehydrogenase (ALCD2x). 277 
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 278 

Figure 3: Schematic representation of the OH score. The OH score is defined to rank the solutions, where higher OH scores 279 
are preferred. The OH score can increase by increasing the maximum/minimum production rate  or the 280 

maximum growth ( ). (a)  is the same, but the mutant α has the highest OH score due to the higher .  281 
The mutant β shows a higher maximum but lower minimum production rate; in the mutant γ, both minimum and maximum 282 
are lower than the mutant α. The mutant δ has the lowest OH score. (b)  is identical, but the mutant α has the 283 
highest OH score due to the higher . Similarly, the OH score for the mutant β is more than the mutant γ. 284 
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 285 

Figure 4: The optimal solution with the highest OH score for each strain. The highest OH score for the  strain was obtained 286 
when 3 , -1 , and . The highest OH score for the  strain was obtained when 287 
3 , 5 , and . The highest OH score for the  strain was obtained when 1 , 288 
3 , and .  289 
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Figure 5: The solution space of the mutant strains under different cellular conditions. (a) The  strain was generated by 290 
removing GLCptspp and PYK, which interrupted the PEP conversion to pyruvate. Since this strain could produce formate, 291 
the succinate production was not tightly coupled to the growth under condition A. In conditions B and D, the AcCoA was 292 
less available, adversely impacting the acetate and formate production. Therefore, succinate production was an essential 293 
byproduct of the growth in these two conditions. (b) The  strain was knocked out for PFL, LDH_D, and ALCD2x. Under 294 
conditions C and D, the NAD+/NADH was low, which reduced the maximum growth. NADP+/NADPH was high under 295 
condition C, which diminished the capacity of the cell to produce succinate. The cell could produce succinate under 296 
condition D due to the lower NADP+/NADPH. However, as the maximum growth rate was lower than the other conditions, 297 
other byproducts could be secreted, and succinate production was not essential. (c) The  strain was generated by removing 298 
PFL, GLCptspp, and PYK. The removal of PFL blocked the formate production, and succinate was an essential byproduct of 299 
growth under conditions A and B. The removal of GLCptspp and PYK interrupted the PEP conversion to pyruvate, which in 300 
turn removed the capacity of the cell to produce other byproducts despite the reduced growth under condition D. 301 
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Figure 6: The variation in OH score in response to the changes in AcCoA/CoA, NAD+/NADH, and NADP+/NADPH ratios. 302 
(a) The  strain showed a switch-like response to the changes in NADP+/NADPH. In response to the variation in 303 
NAD+/NADH, the OH had a peak for the middle ratios, i.e., 1 . The  strain requires lower AcCoA 304 
availability to tightly couple the growth and succinate production since this strain is not knocked out for formate production. 305 
(b) The  strain responded similarly to the  strain to the variation in NAD+/NADH and NADP+/NADPH. Since the  strain 306 
is knocked out for PFL, this strain cannot produce formate as an alternative byproduct. As a result, even at high AcCoA/CoA 307 
ratios, succinate production is tightly coupled to growth. (c) The  strain showed a similar trend to the  strain. 308 
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