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12 Abstract

13 Genetic manipulation of cells to couple byproduct production and growth rate is important in
14  bioengineering and biotechnology. In this way, we can use growth rate as a selective
15 pressure, where the mutants with higher growth have higher production capacity.
16 Computational methods have been proposed to find knockouts that couple growth and
17  byproduct production. However, none of these methods consider the energetic and
18 thermodynamic feasibility of such knockout strategies. Furthermore, there is no
19 computational study of how variations in metabolite concentrations affect the coupling
20  between growth and byproduct formation. One of the computational methods to find
21  knockouts that couple growth and byproduct formation is OptK nock. OptKnock is a bi-level
22  optimization problem. Here, we integrated thermodynamic constraints into the bilevel
23  formulation of OptKnock to create TOptKnock. We show that the computational efficiency
24 of TOptKnock is comparable to that of OptKnock. TOptKnock can account for the
25 thermodynamic viability of the knockouts and examine how variations in metabolite
26  concentrations affect the coupling. We have shown that the coupling between growth and
27  byproduct formation can change in response to variations in concentrations. Thus, a knockout
28 dtrategy might be optimal for one intracellular condition but suboptima for another. If
29  metabolomics data are available, TOptKnock can search for optimal knockout interventions
30 under the given condition. We also envision that the TOptKnock framework will help
31 develop strategies for manipulating metabolite concentrations to couple growth and
32  byproduct formation.
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33 Introduction

34 Redesigning and engineering microorganisms to produce valuable biochemicals is an
35 important goa of metabolic engineering. Assuming that microorganisms have evolved to
36  maximize their growth, engineering approaches that genetically couple product formation and
37  growth are more robust. In addition, because biomass formation is accompanied by product
38  formation, microorganisms engineered by such approaches will produce more products over
39  generations by maximizing their growth.

40 Many computational tools have been developed to find optimal strategies to enhance
41  biochemical production in a host organism. Such methods can suggest strategies for adding

42  heterologous genes'®, performing gene knockouts™®

, and suppressing or activating native
43 genes’. Many of these methods use constraint-based optimization, where an objective
44 function is optimized, subject to physicochemical constraints.

45 Bilevel optimization, the optimization of two nested problems, is a popular
46  framework for designing strains with improved product yield. This structure allows searching
47  for optima interventions with the outer problem while considering that the organism
48  optimizes its physiological objective (usually growth rate) with the inner problem. In this
49  way, we find the interventions that couple product yield with biomass yield. Bilevel problems
50 are nonlinear; however, some can be reformulated into linear problems, such as Linear
51 Programming (LP) or Mixed-Integer Linear Programming (MILP). There are two
52  reformulations for bilevel problems. Two reformulations exist for bilevel problems. One
53  reformulation uses the strong duality’, and the other uses Karush-Kuhn-Tucker conditions®.
54 OptKnock is a bilevel method for finding reaction knockout strategies that couple
55  biochemical production and growth rate’. OptKnock has been used to design mutant

1 and mutant

56 Escherichia coli to overproduce malonyl-CoA® and 1,4-butanedio
57  Saccharomyces cerevisiae to overproduce 2,3-butanediol*!. Several other methods have been
58 derived from OptKnock with variations in intervention strategy, such as reaction suppression
59  and activation®, heterologous reaction addition'?, and gene deletion”.

60 The OptKnock formulation includes constraints that account for (i) reaction removals,
61 (i) mass balances, (iii) reaction capacities, (iv) substrate availability, and (v) reaction
62 reversbilities. The latter is imposed as they are in the Genome-scale Metabolic Models
63 (GEMS). The reversibility of the reactions in a GEM is determined based on the standard
64  Gibbs free energies or other available information about the directionality of the reactions®.

65 However, assigning reaction directionality in this way can be inaccurate in some cases
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66  because the thermodynamic properties of living organisms differ from the standard condition.
67  Thermodynamic-based Flux Balance Analysis (TFA) is a formulation for determining
68  directionalities based on Gibbs free energy under biological conditions™.

69 Here, we integrated thermodynamic constraints into the OptKnock formulation to
70  develop TOptKnock. Then, we recast the nonlinear formulation of TOptKnock as a MILP
71 and used it to find thermodynamically feasible knockout strategies to couple succinate
72 production with growth rate in E. coli under anaerobic conditions. Finaly, we investigated
73  how the concentration of metabolic cofactors affects the coupling between growth and
74  product secretion. We showed that the performance of a knockout strategy depends on
75 metabolite concentrations and that different strategies may be optimal depending on the
76  abundance of key metabolites. TOptKnock is the first bilevel formulation to consider
77  thermodynamic feasibility, and its development paves the way for incorporating

78  thermodynamicsinto other bilevel formulations.
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79 Results

80 Computational performance

81 TOptKnock has additional variables compared to OptKnock, including metabolite
82  concentrations, Gibbs free energies, and reaction directionalities. The number of constraints
83 isalso higher due to the thermodynamic constraints. Therefore, solving TOptKnock requires
84  more computational resources. Table 1 lists the number of variables and constraints in the
85 reformulated OptKnock and TOptKnock for iJO1366.

86 To increase the computational efficiency, we used a numerical trick. We constrained
87  the slack variables for the dual problem (see Methods) to be in the range [0,1]. Based on the
88 formulation, the slack variables are unbounded from above. However, random sampling of
89 the dlack variablesin the dual problem showed that these variables are usually much smaller
90 than 1. We observed that tightening the bounds on these variables significantly affected the
91 solution time, such that the solution time of TOptKnock was comparable to the original
92  OptKnock (Figure 1).

93 Using TOptKnock to find knockout strategies
94 We used TOptKnock to find knockout strategies to couple the biomass and product
95 yield. Such knockout strategies are thermodynamically feasible due to the inclusion of
96 thermodynamic constraints. As a case study, we investigated the overproduction of succinate
97 inE. coli under anaerobic conditions. Wild-type E. coli scarcely produces succinate at its
98 maximum growth rate (Figure 2). We generated mutant E. coli strains with single, double,
99  andtriple knockouts.
100 Removal of the fumarase reaction (FUM), which converts fumarate to L-malate in the
101 TCA cycle, resulted in the only single-knockout mutant with higher succinate production at
102 maxima growth rate (Figure 2). Increasing the number of reaction knockouts to two and
103  three resulted in more mutant strains with significantly higher succinate yields. Most of these
104  strategies focused on interrupting the conversion of phosphoenolpyruvate (PEP) to pyruvate
105 and diverting PEP towards the reductive branch of the TCA cycle (Figure 2a).
106 In al mutant strains, succinate yield was improved at the expense of a reduced
107  biomass yield. We defined the following score to find the knockout mutants with a good
108 trade-off between the biomass and product yields (Figure 3):

— max ,,min
OH = Hmax ’Uprodvprod
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109 where g,y is the maximum growth rate of the mutant strain. To find v;55 and vg;igld, the

110 growth was fixed at its maximum, i.e., .., and product (succinate) production was

111  maximized and minimized, respectively. We included vg;i;‘d in the definition of OH because

112  higher values of vgi;‘d indicate that the coupling between the product and biomass production

113 isforced. In other words, the mutant organism can only increase its growth rate by increasing
114  the production of the product. The OH score for the single knockout mutant with FUM
115 removed was 7.40. The double- and triple-knockout mutants had significantly higher OH
116  scores (Figure 2b). The highest OH for the double-knockout mutants was 11.91, which was
117  obtained by removing pyruvate kinase (PYK) and fructose-6-phosphate aldolase (F6PA).
118 However, the highest OH, 131.89, was obtained for a triple knockout strategy in which
119  succinate production was tightly coupled to biomass production (Figure 2b). This strategy
120 prevented the flux from being diverted to the production of alternative byproducts. Removal
121  of pyruvate formate lyase (PFL), D-lactate dehydrogenase (LDH_D), and alcohol
122  dehydrogenase (ALCD2x) blocked the production of formate, lactate, and ethanal,
123 respectively.

124 The impact of metabolite concentrations on the solution space

125 The intracellular concentration of key metabolites such as NADH and acetyl-CoA
126 (AcCoA) has been shown to influence succinate production*>*°. In addition, metabolomic
127  analyses showed that the NAD/NADH and NADP'/NADPH ratios differ significantly
128  between aerobic and anaerobic conditions'*°. Mainly due to an inactive electron transfer
129  chain, an increased level of NADH is observed under the anaerobic condition®. On the other
130 hand, the reduced flux through the oxidative pentose phosphate pathway and the reduced
131  need for protection against superoxide radicals caused a decrease in the level of NADPH?.
132 AcCoA/CoA, however, remains almost unchanged®.

133 Such results show how metabolite concentrations can vary in response to changes in
134  metabolism. We performed a sensitivity analysis to evaluate the optimality of different
135 mutants to variations in metabolite concentrations. We generated three mutant strains using
136  the knockout strategies found by TOptKnock to couple succinate production and growth: (i)
137 drain a contains PYK and GLCptspp knockouts, (ii) strain p contains PFL, LDH_D, and
138 ALCD2x knockouts, and (iii) strain y contains PFL, PYK, and GLCptspp knockouts. These
139 three mutants were the best double knockout (strain «), the best triple knockout (strain f8),
140 and the second-best triple knockout (strain y) mutants. We then constrained the relative
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141  concentrations of NAD*/NADH, AcCoA/CoA, and NADP'/NADPH to be within specified
142 ranges.

143 In total, we considered 1000 different intracellular conditions, each specified by
144  defining a range for the variation of the key cofactors (Supplementary Table S1). Figure 4
145  shows the solution space with the highest OH score for each strain and the cofactor ratios for

146  which this solution space is obtained. We assumed that succinate production and growth were

147  tightly coupled if vg;i(?d was more than 50% of v;.55 under that condition, and vy;5q was

148  more than 50% of the maximum succinate production under all conditions. Strains a, 8, and
149 y showed tight coupling between succinate production and growth in 23, 34, and 52
150 conditions (Supplementary Table S1), respectively, suggesting that the y strain is more robust
151  against perturbationsin intracellular concentrations.

152 We specifically explored the solution space for four intracellular conditions (Table 2)
153 by fixing the growth at different values and minimizing/maximizing the succinate production
154 (Figure 5). These four conditions were chosen based on our sensitivity analysis
155  (Supplementary Table S1) to demonstrate how an optimal solution under one condition might
156  be suboptimal or non-optimal under another condition. The wild-type organism produces and
157  secretes formate as the main byproduct. However, formate production is blocked in the g and
158 y strains because both strains are knocked out for PFL, which in turn causes succinate to be
159 an essential byproduct of growth under condition A. On the other hand, the a strain can
160 produce formate; thus, succinate production is not essential under this condition. We
161 performed a variability analysis to find the reaction directions affected after imposing the
162  concentration ranges. Such changes are shown in Supplementary Tables S2-4.

163 Condition B, however, forced a much lower availability of AcCCoA. As aresult, only
164  the reverse direction of the phosphotransacetylase reaction (PTAr) was thermodynamically
165 feasible due to the positive Gibbs free energy. This adversely affected the ability of the cell to
166  produce and secrete acetate and formate, even in the a strain, leaving the cells no choice but
167 to produce succinate. Thus, succinate production was tightly coupled to growth in all
168 mutantsin condition B.

169 Like condition B, condition C featured a low relative concentration of AcCoA, which
170  helped couple growth and succinate production. However, condition C also had lower
171 NAD'/NADH than condition B, and it has been previously reported that NADH
172 accumulation negatively affects the growth rate'®. As a result of the reduced growth rate,

173  the coupling between growth and succinate production was not tight in the g strain (i.e.,
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174 vg;gld is close to zero). According to the model, the 8 strain can produce L-aanine from

175 pyruvate as an aternative byproduct. On the other hand, strains @ and y cannot produce L-
176 aanine a maximum growth because the removal of GLCptspp and PYK interrupted the
177  conversion of PEP to pyruvate in these strains. Variability analysis showed that reaction
178 directiondlities are identical between conditions B and C except for one reaction
179  (Supplementary Tables S2-$4). The reaction with the changed directionality was 2Fe-2S
180 regeneration (S2FE2SR) in the a strain and Octanoate non-lipoylated apo domain ligase
181 (OCTNLL) inthe g and y strains.

182 In condition D, the NAD*/NADH ratio was the same as in condition C, but the
183 NADP'/NADPH ratio was significantly lower. This caused changes in reaction

184  directiondlities such that vy,,54 decreased strongly. Thus, succinate production and growth

185 were not coupled in any of the strains under condition D.

186 We also examined the effect of changing the relative concentrations of each cofactor
187  on the OH score (Figure 6). We observed no significant differences between different strains
188 in response to the variation in NAD*/NADH and NADP'/NADPH. The middle ranges of

NAD*

189 NAD'/NADH, i.e, 1<In
NADH

< 5, resulted in the highest OH scores. Succinate production

190 was reduced at the higher ratios, while the organisms failed to grow at the lower ratios. On

191 the other hand, we observed a switch-like behavior in response to the change in
NADP*
NADPH’
In [acetyl—CoA]
[CoA]

192 NADP'/NADPH, where at high ratios, i.e., 3 < In the growth vanished.

193 Below a certain AcCoA/CoA, i.e, < —1, none of the strains could

194  grow. At the higher ratios, however, the strains responded differently to the variations in

[acetyl—CoA] <5,
[CoA]

196 Then, the OH score decreased by increasing the AcCoA/CoA since formate could be

195 AcCoA/CoA. Strain a had the highest OH scores for the range —1 < In

197  produced as the alternative byproduct when AcCoA was sufficiently available. In strains 8
198 andy, the OH score increased gradually by increasing the AcCoA/CoA dueto the increasein

199  the minimum and maximum succinate production.
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200 Discussion

201 In this work, we integrated the thermodynamic constraints into the bilevel framework
202 of OptKnock to create a new formulation called TOptKnock. We then recast the bilevel
203  formulation of TOptKnock asaMILP that is solvable using conventional solvers with similar
204  computational resources as the original OptKnock. TOptKnock searches for optimal
205  knockout interventions that (i) are thermodynamically feasible and (ii) couple byproduct
206  production and growth. We have shown that variations in the abundance of key metabolites
207  can significantly affect the coupling between growth and byproduct formation, either by
208 inhibiting growth or affecting the ability to produce the byproduct. The different behavior of
209  the knockout strains under different metabolite concentrations indicates the importance of
210 including thermodynamic constraints in the search for optimal interventions. We observed
211 that a strategy may be optimal under one condition but suboptimal under another. We aso
212 observed that some knockout mutants are more robust to perturbations in metabolite
213  concentrations.

214 In the TOptKnock formulation, the reaction directionalities are determined based on
215 the metabolite concentrations. If metabolomics data are available, TOptKnock can find
216  appropriate interventions for the current cellular state. Furthermore, the TOptKnock
217  framework helps to develop strategies to manipulate metabolite concentrations instead of or
218 in combination with gene knockouts to couple biomass and product yields. Finaly, the
219 integration of thermodynamic constraints into OptKnock paves the way for incorporating
220  these constraints into other bilevel methods. This incorporation is of greater importance for
221  methods that involve the addition of novel reactions to a host organism, as the directionality

222  of such reactions in the host is usually not known'.
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223  Methods

224  Integration of thermodynamic constraints into the bilevel problem

225 To determine the directionality of the reactions based on their corrected Gibbs free energy to
226 the biological condition, we integrated thermodynamic constraints to the OptKnock
227  formulation to construct TOptKnock:

+ u—
n}ax(vprod - vprod)
J

subject to:

+
n}}ax(vg'rowth - vg'rowth)
]

subject to:
Z'Si,j W -v)=0 Vi € Met
J
0<vj <Mb; Vj € Rxn
0< 17]-+ < Mb]-+ Vj € Rxn
v < M(1-y) Vj € Rxn
v <M1 -y)) Vj € Rxn

+
Vatpm = VaTeMm

vS_ubs < Vupt

m
i=1

Vj € Rxng
+A.G =0
vj € {j|UB;
AGf < M1 = b}) € 1o,
= M}
vj € {j|LB;
—A.G/ <M - b)) € UlL,
= M}
ClE<c <cl® Vi € Met,
AGET < AGE < 8,6 Vj € Rxng
+ u—
b, b €{0,1}

yje{0,1}, v, v 20

J

228 where C; is the logarithmic concentration of metabolite i, ATG]-’° is the Gibbs free energy of
229 reaction j. To account for the forward and backward directions, respectively, each flux is
230  represented by two non-negative variables v and v; . Also, two binary variables b;” and b;”

231 are added to ensure that only one direction is active. Met,, is the set of metabolites with

10
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232 known Gibbs free energy of formation, and Rxn, represents the reactions for which

233  thermodynamic constraint is applied.

234 Reformulation of TOptKnock

235 Like OptKnock, we used the strong duality theorem and added the dual constraints and
236 variables of the inner problem to recast ThermoOpKnock as a MILP. However, the
237  reformulation of TOptKnock is not as straightforward as OptKnock since the fluxes are split
238 into forward and backward directions, and additional binary variables are integrated to
239  determine the active directionality. We assumed that b]-+ and b;” are variables for the outer
240  problem but parameters for the inner problem. A similar assumption was made for reaction
241 knockout variables y; in OptKnock”#. The following is the reformul ated TOptK nock:

Hjl]ax(vprod prod)
subject to:
ZSi,j (w—v7)=0 Vi € Met (1)
j

U]-+ =MA-y) Vj € Rxn 2
SM(-y) Vj € Rxn 3
0 <v/ <Mb/ vj € {j|UB; = M} (4)
0 <v;j <Mb; vj € {jILB; = M} (5)
Vsubs = Vupe: Vatem = Vatem (6)
vgrowth'vg_rowth = upt”glllgb_s + (7)

VatpmiATEM — VATPMUATEM
ZS” A+uPr =t =0 vj € Rxn\{growth} (8)
Z S; ,growth A — Mér]?ot/vth =1 (9)
Z =S j A+t — P =0 Vj € Rxn\{growth}  (10)

LB—  _
Z _Si,growth A — Hgrowth = -1 (11)
“}B+ < #}B+ max(1 _ b]ﬂ') vj € {/lUB] = M} (12)
W < u BT - b)) vj € {j|LB; = M} (13)
+RTZ niC; + A,G) = Vj € Rxng (14)

11
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A.Gf < M(1—-b}) Vj € Rxng (15)
—A,Gl <M1 —b)) Vj € Rxng (16)
0 < uf®t < pPrmy, vj € {j|UB; = M} (17)
0 < pf® < py® oM™y, vj € {j|LB; = M} (18)
> =k (19)
J
CH<c <cYB Vi € Metg
ATGj,oLB < ATG]_,O < ATGj,oUB Vj € Rxng
b}, bj €{0,1} Vj € Rxn
4 ER Vi € Met
0< uf™*, ui® Vj € Rxn
yje{(), 1} Vj € Rxn

242  where Equations (1-6 are the primal constraints, Equation (7 enforces the equality of primal
243  and dual objectives, Equations (8-13 are the dual constraints, and Equations (14-19 are the
244  constraints of the outer problem. To increase the computational efficiency, we constrained
245 pi®*, i, WP, and uf® to be in the range [0, 1], which highly reduced the searching
246  space without impacting the optimal solutions.

247  Setting up the model for the simulations

248  The latest version of iJO1366 was obtained from the BiGG database®. Uptake of all carbon
249  sources except glucose was blocked. The glucose uptake was constrained to be at most 100
250 mmol h™ gDW™. The uptake of oxygen was blocked to simulate the anaerobic condition. The
251 lower bound of growth was set to 10% of the maximum growth rate to prevent lethal
252  knockout strategies. All simulations were performed in python 3.7 using the commercial
253  solver CPLEX.
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259

260

261
262

263

Table 1: Number of constraints and variables in OptKnock and TOptK nock

Number of Number of binary Number of

continuous variables variables constraints
OptKnock 12137 2583 12760
TOptKnock 18420 7749 29569

Table 2: the four intracellular conditions defined by setting bounds on the relative concentrations of key metabolites

. [AcCoA] [NAD*] [NADP™]

X = oA Y = N INADH] 2= In o appm
Condition A 7<x<9 3<y<5 -3<z<-1
Condition B 1<x<3 3<y<5 —-3<z<-1
Condition C 1<x<3 1<y<3 —-3<z<-1
Condition D 7<x<9 1<y<3 1<z<3

13
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264

265 Figure 1: Comparison of the computational performance of OptKnock and TOptKnock. Despite having more constraints and
266 variables, the solution time of TOptKnock was on par with the original OptKnock after tightening the upper bounds of slack
267  variablesin the dual problem.
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268 Figure 2: The solution space of different mutant strains. (a) The mutants with the highest succinate production at the
269 maximum growth are compared with the wild-type organism. The only single-knockout mutant with improved succinate
270  production was obtained by removing fumarase (FUM). The strain with removed glucose transport through pyruvate
271 phosphotransferase (GLCptspp) and pyruvate kinase (PYK) had the highest succinate production among the double-
272  knockout mutants. A triple-knockout mutant with removed GLCptspp and PYK (GLCptspp-PYK-*) in addition to either
273 dihydroxyacetone phosphotransferase (DHAPT) or fructose 6-phosphate aldolase (F6PA) had the highest rate of succinate
274  production. (b) The solution space of the mutant strains with the highest OH scores is compared with the wild-type
275  organism. The strain with removed fructose 6-phosphate aldolase (F6PA) and pyruvate kinase (PYK) had the highest OH
276  score (~11.91) among the double-knockout mutants. The highest OH score (~131.89) was obtained by the removal of
277  pyruvate formate lyase (PFL), D-lactate dehydrogenase (LDH_D), and alcohol dehydrogenase (ALCD2x).
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279 Figure 3: Schematic representation of the OH score. The OH score is defined to rank the solutions, where higher OH scores
280  are preferred. The OH score can increase by increasing the maximum/minimum production rate or the
281  maximumgrowth (). (a is the same, but the mutant o. has the highest OH score due to the higher

282  Themutant p shows a higher maximum but lower minimum production rate; in the mutant y, both minimum and maximum
283  are lower than the mutant a. The mutant & has the lowest OH score. (b) is identical, but the mutant o has the
284  highest OH score dueto the higher . Similarly, the OH score for the mutant B is more than the mutart .
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286 Figure 4: The optima solution with the highest OH score for each strain. The highest OH score for the  strain was obtained
287 when3 —— -1 —— ,and —— .Thehighest OH scorefor the strain was obtained when
28868 3 — |5 —— ad —— . Thehighest OH scoreforthe strainwasobtainedwhenl — ——

280 3 —ad ——
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290  Figure 5: The solution space of the mutant strains under different cellular conditions. (a) The  strain was generated by
291 removing GLCptspp and PYK, which interrupted the PEP conversion to pyruvate. Since this strain could produce formate,
292  the succinate production was not tightly coupled to the growth under condition A. In conditions B and D, the AcCoA was
293  less available, adversely impacting the acetate and formate production. Therefore, succinate production was an essential
294 byproduct of the growth in these two conditions. (b) The strain was knocked out for PFL, LDH_D, and ALCD2x. Under
295  conditions C and D, the NAD*/NADH was low, which reduced the maximum growth. NADP*/NADPH was high under
296 condition C, which diminished the capacity of the cell to produce succinate. The cell could produce succinate under
297 condition D due to the lower NADP*/NADPH. However, as the maximum growth rate was lower than the other conditions,
298  other byproducts could be secreted, and succinate production was not essential. (c) The  strain was generated by removing
299 PFL, GLCptspp, and PYK. The removal of PFL blocked the formate production, and succinate was an essential byproduct of
300  growth under conditions A and B. The removal of GLCptspp and PYK interrupted the PEP conversion to pyruvate, whichin
301 turn removed the capacity of the cell to produce other byproducts despite the reduced growth under condition D.


https://doi.org/10.1101/2024.01.31.578201
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.31.578201; this version posted February 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

strain a

100
80
60

OH score

40
20

D [ A—— ]
-0 8 -6 -4 -2 0 2 4 6 8 10

—+—In(AcCOA/CoA) - = -In(NAD/NADH) —+—In(NADP/NADPH)

strain

140
120
100
80
60
40
20
0

OH score

10 8 6 4 -2 0 2 4 6 8 10
—a—In(AcCoA/CoA) - = -In(NAD/NADH) ——In(NADP/NADPH)

strain y
140

120
100

OH score
N O @
oo o o

o

-0 8 6 4 -2 0 2 4 6 8 10
—+—In(AcCoA/CoA) - = -In(NAD/NADH) In(NADP/NADPH)

302  Figure 6: The variation in OH score in response to the changes in AcCoA/CoA, NAD*/NADH, and NADP*/NADPH ratios.
303 (3 The strain showed a switch-like response to the changes in NADP*/NADPH. In response to the variation in
304 NAD'/NADH, the OH had a pesk for the middle ratios, i.e, 1 ~—— . The strain requires lower AcCoA
305 availability to tightly couple the growth and succinate production since this strain is not knocked out for formate production.
306 (b) The strainresponded similarly to the  strain to the variation in NAD*/NADH and NADP*/NADPH. Sincethe  strain
307 is knocked out for PFL, this strain cannot produce formate as an aternative byproduct. As aresult, even at high AcCoA/CoA
308 ratios, succinate production is tightly coupled to growth. (c) The  strain showed asimilar trend tothe ~ strain.
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