

1 **Community context influences the conjugation efficiency of *E. coli***

2 Misshelle Bustamante¹, Floor Koopman¹, Jesper Martens¹, Jolanda K. Brons¹, Javier DelaFuente²,
3 Oscar P. Kuipers¹, Sander van Doorn¹, Marjon G.J. de Vos^{1,*}

4 ¹GELIFES, University of Groningen, 9747 AG, Groningen, The Netherlands

5 ²Centro Nacional de Biotecnología (CNB), CSIC, 28049 Madrid, Spain

6 *Corresponding author. GELIFES, University of Groningen, 9747 AG, Groningen, The
7 Netherlands. E-mail: m.g.j.de.vos@rug.nl

8 **Abstract**

9 In urinary tract infections different bacteria can live in a polymicrobial community, it is unknown
10 how such community members affect the conjugation rate of uropathogenic *Escherichia coli*. We
11 investigated the influence of the polymicrobial urinary tract infection (UTI) community context
12 on the conjugation rate of *E. coli* isolates in artificial urine medium. Pairwise conjugation rate
13 experiments were conducted between a donor *E. coli* strain containing pOXA-48 and six
14 uropathogenic *E. coli* isolates in the presence and absence of five community members to elucidate
15 their effect on the rate of conjugation. We found that the basal conjugation rates in the absence of
16 community members are genotype dependent. Interestingly, bacterial interactions have an overall
17 positive effect on *E. coli* conjugation rates. Particularly Gram-positive enterococcal species were
18 found to enhance the conjugation rates of most uropathogenic *E. coli* isolates. We hypothesize that
19 the nature and co-culture of the interactions is important for these increased conjugation rates in
20 AUM.

21 **Introduction**

22 Antimicrobial resistance (AMR) poses a significant challenge to global public health (Murray et
23 al., 2022). The intense use of antibiotics has led to the emergence and spread of multidrug
24 resistance in pathogenic bacteria (Polianciuc et al., 2020). This threatens the effectiveness of
25 antibiotics, and therefore our ability to cure infections (Aslam et al., 2018; Prestinaci et al., 2015).

26 Bacteria can acquire antimicrobial resistance by horizontal exchange of genetic material among
27 related or unrelated bacterial species, in a process referred to as ‘horizontal gene transfer’ or HGT
28 (Hall et al., 2017; Ochman et al., 2000). The exchange of genetic material between microbes can
29 occur in various ways, often by a process called conjugation (Furuya & Lowy, 2006). Conjugation

30 involves the physical contact between donor and recipient cells and typically a self-transmissible
31 or mobilizable plasmid (Ochman et al., 2000).

32 Conjugative or mobilizable plasmids are the most common transmission vectors for AMR genes
33 (Ares-Arroyo et al., 2022; Boerlin & Reid-Smith, 2008; Partridge et al., 2018) and the major
34 drivers of HGT within bacterial communities (Bottery, 2022). AMR genes and HGT have been
35 observed within the human microbiome. A major hotspot for antibiotic resistance is, for instance,
36 the gut microbiome of humans and animals (San Millan, 2018), where rich dynamics of plasmid
37 transfer have been observed (Frazão et al., 2023).

38 Although the ecology (Smillie et al., 2011) and functioning of microbial communities are typically
39 studied in one specific environment at a time, it is known that the rate of HGT is strongly dependent
40 on the environment (Sessitsch et al., 2023). For instance, resource availability or other abiotic
41 factors can significantly affect the rate at which HGT via conjugation occurs (Pallares-Vega et al.,
42 2021). Biotic factors, such as the presence of ecological interaction partners, can affect the spread
43 of conjugative plasmids within and between host species (Bottery, 2022), as well as the horizontal
44 transmission of plasmids can be limited by bacterial diversity (Kottara et al., 2021). The microbial
45 context can also determine the cost and benefits of conjugative plasmid maintenance (Sünderhauf
46 et al., 2023). Moreover, ecological interactions can alter factors such as growth rate, and population
47 densities, which together can affect the cost of plasmid carriage and conjugation rates (Duxbury
48 et al., 2021).

49 It is an open question to what extent bacterial interactions affect the transfer of antibiotic resistance
50 by HGT via conjugation in bacterial communities. Given that complex communities are difficult
51 to study, we answer this question for a simple and tractable, yet relevant system of polymicrobial
52 communities isolated from elderly patients diagnosed with urinary tract infections (UTIs) (Croxall
53 et al., 2011). The prevalence of AMR in such communities is high (Croxall et al., 2011), and there
54 has been an increase in AMR and multi-drug resistance in recent years (Trautner et al., 2022).

55 In such communities Gram-positive species live together with Gram-negative species (de Vos et
56 al., 2017; Zandbergen et al., 2021), but the importance of Gram-positive species for UTIs is often
57 overlooked. Yet, Gram-positive bacteria are an important cause of nosocomial infections (Cong et
58 al., 2019; Furuno et al., 2005). Enterococci, for instance, have been shown to facilitate

59 polymicrobial infections, leading to more complicated pathogenesis and poorer prognoses
60 (Barshes et al., 2022; Chong et al., 2017), and they can compromise the efficacy of antimicrobial
61 agents by promoting the colonization, proliferation, and persistence of diverse pathogenic bacteria
62 (Xu et al., 2023). Furthermore, they can act as reservoirs for the transmission of antimicrobial
63 resistance and virulence determinants (Coburn et al., 2007; Xu et al., 2021).

64 Here, we investigate the effect of ecological interactions between *E. coli* and other bacterial species
65 isolated from polymicrobial UTI on the conjugation rate of pOXA-48 towards uropathogenic *E.*
66 *coli*. pOXA-48 is a plasmid with a broad host range, carrying the resistance gene *bla_{OXA-48}* that
67 confers resistance to multiple β -lactam antibiotics (Poirel et al., 2004, 2012), including
68 carbapenems, which are last resort antibiotics used to treat multidrug resistant infections (Bradley
69 et al., 1999; Papp-Wallace et al., 2011). It is an important conjugative plasmid in the clinical
70 setting, known for its rapid dissemination within hospital patients and has a world-wide
71 distribution (León-Sampedro et al., 2021; Pitout et al., 2019).

72 Specifically, we study the effect of ecological interactions on the conjugation rate in uropathogenic
73 *E. coli* isolates, by performing pairwise conjugation assays in the presence of *Enterococcus*
74 *faecium*, *Enterococcus faecalis*, *Staphylococcus simulans*, *Pseudomonas aeruginosa*, and *Proteus*
75 *mirabilis* in artificial urine medium. All isolates were collected from elderly patients that were
76 diagnosed with polymicrobial UTIs (Croxall et al., 2011).

77 Materials and methods

78 Bacterial isolates

79 Nine *E. coli* isolates were selected from a previous study where samples were collected from
80 elderly patients diagnosed with polymicrobial urinary tract infections UTI (Croxall et al., 2011).
81 They were selected based on their sensitivity to ampicillin. Initial conjugation experiments aimed
82 at testing their ability to take up pOXA-48 plasmid resulted in six final uropathogenic *E. coli*
83 isolates that were used in pairwise mating assays in the presence of UTI community members.
84 Plasmid transfer in these isolates was confirmed by PCR with specific primers for pOXA-48
85 plasmid (see section DNA extraction and PCR in Materials and Methods).

86 The donor strain β 3914 was a diaminopimelic acid (DAP) auxotrophic *E. coli* strain, exhibiting
87 resistance to various antibiotics, including kanamycin (Roux et al., 2007) and harboring the

88 pOXA-48 plasmid (Alonso-del Valle et al., 2021). This plasmid codes for the *bla_{OXA-48}* gene which
89 confers resistance to β -lactam antibiotics (Poirel et al., 2004), including penicillins and
90 carbapenems (Poirel et al., 2012).

91 The community members were collected from the same study as the uropathogenic *E. coli* isolates
92 (Croxall et al., 2011), and were also selected upon their sensitivity to ampicillin. These belonged
93 to three Gram-positive species: *E. faecium*, *E. faecalis*, *S. simulans*, and two Gram-negative
94 species: *P. aeruginosa*, and *P. mirabilis*.

95 Artificial urine medium (AUM)

96 We use a modified version of AUM (Brooks & Keevil, 1997; de Vos et al., 2017). It contained
97 bacto peptone L37 1 g/L (Sigma), sodium bicarbonate 2.1 g/L (Roth), urea 7.5 g/L (Roth), sodium
98 chloride 5.2 g/L (Sigma), sodium sulfate anhydrous 1.2 g/L, ammonium chloride 1.3 g/L (Sigma),
99 and potassium dihydrogen phosphate 0.95 g/L added as solids; yeast extract 0.1 mL/L from 5g/100
100 mL stock, lactic acid 0.1 mL/L (Roth), citric acid 0.8 mL/L from 10g/20 mL stock, uric acid 7
101 mL/L from 1g/100mL in 1M NaOH stock, creatinine 16 mL/L from 5g/100mL stock, calcium
102 chloride dihydrate 29.60 μ L/L from 1g/10mL stock, iron(II) sulfate heptahydrate 12 μ L/L from
103 10g/100mL stock, magnesium sulfate heptahydrate 2.45 mL/L from 1g/10mL stock were added as
104 liquids.

105 Conjugation on LB

106 This protocol was adapted from (Alonso-del Valle et al., 2021, 2023). Donor β 3914 and recipient
107 *E. coli* strains were streaked on CHROMagar plates supplemented with kanamycin 30 μ g/mL
108 (Sigma) and 300 μ M DAP (Sigma), for the donor; and no antibiotic for the recipients, given that
109 they were sensitive to most antibiotics used for the treatment of UTIs. The plates were incubated
110 overnight at 37°C. The next day, 3 independent colonies were picked from each genotype and
111 grown overnight in glass tubes with 2 mL of LB at 37°C and shaking at 200 rpm. Donor tubes
112 were added 1 μ L/mL of DAP.

113 The following day, 50 μ L of the donors and 10 μ L (5:1 donor to recipient ratio) were gently mixed
114 in 0.5 mL tubes. The controls were isolated cultures of donor and recipients. The full 60 μ L
115 droplets were plated on independent LB agar (Sigma) plates without antibiotics but with 300 μ M

116 DAP (Sigma), and left to air-dry in the flow cabin, after which they were incubated at 37°C for 4
117 hours to recover transconjugants.

118 After incubation, a loop was used to scoop the biomass of the droplet, which was washed and
119 resuspended in an Eppendorf tube with 2 mL of sterile 0.9% NaCl solution. The mix and controls
120 were further diluted in serial dilutions from 10¹ until 10⁷ using a 96-well plate: 200 µL of
121 resuspension was added to the first well and the remaining wells contained 180 µL of 0.9% NaCl
122 solution. Then, 20 µL from the first well was taken and mixed with the next well. This step was
123 repeated for all columns of the well plate. A multichannel pipette was used to plate 10 µL from
124 each dilution at the first quarter of an LB agar (Sigma) plate. The plate was tilted 90° to let the 8
125 droplets slide down until the end of the plate. Every donor and recipient mix, as well as the
126 controls, were plated on LB plates with ampicillin 100 µg/mL and on LB plates with kanamycin
127 30 µg/mL (Sigma) without DAP, to make sure that neither donor nor recipients in isolation would
128 grow.

129 After overnight incubation, glycerol stocks were made from the transconjugants. Given that this
130 was a relatively crude, qualitative method to assess conjugation, a more quantifiable method was
131 later applied to determine *E. coli* conjugation rates in the presence and absence of UTI community
132 members.

133 DNA extraction and PCR

134 To confirm plasmid transfer of the six *E. coli* isolates, DNA was extracted using the fast DNA
135 extraction method described by (Brons et al., 2020). Primers for amplifying the resistance gene
136 *bla_{OXA-48}* for β-lactam antibiotics on the pOXA-48 plasmid were adopted from (Poirel et al., 2004).
137 A 20-mer forward primer, designated Oxa-48 Fw (5'-TTG GTG GCA TCG ATT ATC GG-3')
138 was combined with a 21-mer reverse primer, designated Oxa-48 Rev (5'-GAG CAC TTC TTT
139 TGT GAT GGC-3'). This primer combination was tested and optimized.

140 PCR mixtures were prepared with the following components: 5.0 µl of 10x Roche buffer (Roche,
141 Basel, Switzerland), 0.8 µl of 50mM MgCl₂ (Merck, Darmstadt, Germany), 1.0 µl of 100%
142 dimethyl sulfoxide (DMSO), 0.5 µl of 20 mg/ml bovine serum albumin (Merck, Darmstadt,
143 Germany), 1.0 µl of 10 mM deoxyribonucleoside triphosphate mix, 1.0 µl of 10µM of each primer,
144 and 0.2 µl of 5U/µl Taq DNA Polymerase (Roche, Basel, Switzerland). Molecular biology-grade

145 water (Thermo Fisher Scientific, Waltham, United States) was added to a total volume of 50 μ l in
146 a 0.2-ml microfuge tube. Finally, 1.0 μ l of template DNA was added. The mixtures were incubated
147 in a Mastercycler Nexus PCR thermal cycler (Eppendorf, Hamburg, Germany) with the following
148 program: initial denaturation of double-stranded DNA for 5 min at 95 °C; 35 cycles consisting of
149 1 min at 95 °C, 30 s. at 56 °C, and 2 min at 72 °C; and extension for 7 min at 72 °C.

150 All amplification products were analyzed by electrophoresis in 1.0% (wt/vol) agarose gels,
151 followed by ethidium bromide staining (1.2 mg/ 1 ethidium bromide in 1 \times Tris-acetate-EDTA)
152 (Mullis, 1990; Sambrook et al., 1989), destaining (1 \times Tris-acetate), and visualization under UV.
153 Amplicons of 743 bp in size were detected, and no side products were observed, confirming
154 plasmid transfer of the six *E. coli* isolates.

155 Conjugation rate *E. coli* with community members on AUM

156 We performed a quantifiable method based on (Alonso-del Valle et al., 2023; DelaFuente et al.,
157 2022; León-Sampedro et al., 2021) to determine the rates of conjugation of six *E. coli* isolates in
158 the presence and absence of five polymicrobial UTI community members in AUM media. A scoop
159 from -80°C glycerol stocks was taken to grow overnight cultures of donor, recipient *E. coli* and
160 community members into glass tubes with 2 mL of 1x AUM. The donor strain β3914 with pOXA-
161 48 plasmid was grown with 30 μ g/mL kanamycin (Sigma) and 300 μ M DAP (Sigma). The
162 recipient and community member strain cultures had no additives. They were incubated for 24
163 hours at 37°C shaking at 200 rpm. For each experiment, the basal conjugation rate of a particular
164 uropathogenic *E. coli* (donor and recipient only) was measured, as well as the community
165 conjugation rate (donor, recipient and community member).

166 After 24 hours, the population size, as inferred from optical density measurements at 600 nm
167 (OD600), was assessed for all strains and the cultures were diluted below 0.4 OD to obtain an
168 accurate OD600 reading. They were then further diluted to obtain a 5:1:1 OD600 ratio between
169 donor, recipient and community members with the OD600 values being 1, 0.2 and 0.2,
170 respectively; except in the case of *E. faecium* and *E. faecalis*, where the OD was always lower than
171 0.2.

172 For the assessment of the basal conjugation rate of the *E. coli* in the absence of community
173 members, 50 μ L of donor and 50 μ L of recipient were added and gently mixed in a 0.5 mL tube,

174 keeping a 5:1 OD600 ratio. For the assessment of the community conjugation rate, 50 μ L of donor
175 and recipient were also added to a 0.5 mL tube with an additional volume from the community
176 member culture that was dependent on the OD, preserving the 5:1:1 OD600 ratio of donor,
177 recipient and community members. If the OD of the undiluted culture was <0.2, which was always
178 the case with *E. faecium* and *E. faecalis*, then 50 μ L of it was added to the tube. For mixing, vortex
179 was avoided, and the tubes were gently struck several times. All 100 μ L droplets were plated on
180 1x AUM agar plates containing DAP. These plates were prepared using 50% Micro agar (15 g/L)
181 (Duchefa Biochemie), 50% 2x AUM and 300 μ M DAP. The droplets were left to dry and incubated
182 for conjugation at 37°C for 1 hour. This was performed in triplicates for every combination of
183 donor + recipient + community member.

184 After 1 hour of incubation, the plates were removed from the incubator. A sterile toothpick was
185 used to cut out the piece of agar with the droplet. Subsequently, the agar segment was crushed and
186 resuspended in 1 mL sterile 0.9% NaCl solution. Each tube was inverted and gently shaken 30
187 times to wash off the cells from the agar. Further tenfold dilutions until 10^4 were made before
188 plating 100 μ L of the re-suspensions to obtain countable colonies. Transconjugant colonies were
189 obtained either at undiluted or 10^1 diluted re-suspensions. The selective plates that were used to
190 obtain donor, recipient and community members CFU/mL counts were LB agar (Sigma) with 30
191 μ g/mL kanamycin and DAP, CHROMagar (without DAP) (Condalab), and CHROMagar
192 (Condalab) with 100 μ g/mL ampicillin; respectively. They were left overnight at 37°C and
193 colonies were counted the next day.

194 The *E. coli* conjugation rate when community members are present was estimated using the
195 formula: $T / (D \cdot R \cdot \Delta t)$ (Huisman et al., 2022; Lopatkin et al., 2016) where the CFU/mL of the
196 transconjugants is represented by T ; D are CFU/mL the donor, and R are CFU/mL of the recipient.
197 The time in which conjugation took place is represented by Δt , and it was always 1 hour; the
198 approximate time needed for pOXA-48 to produce transconjugants (León-Sampedro et al., 2021),
199 yet keeping on-plate growth to a minimum.

200 Spent media

201 Spent media were recovered from two UTI isolates; *E. faecalis* and *E. faecium* by inoculating
202 bacterial glycerol stocks in 200 mL 1x AUM in Erlenmeyer flasks shaking at 200 rpm at 37°C for
203 48 hours. Afterwards, cultures were distributed into 50 mL culture tubes and centrifuged for 15

204 minutes at 4,800 g at room temperature. The resulting supernatants were filtered twice with bottle
205 filter tops; 0.45 μ m and 0.2 μ m filters, respectively. To make sure that all bacteria were filtered
206 out, spent medium was plated on CHROMagar plates, and incubated at 37°C for 24 hours,
207 whereafter the plates showed no bacterial growth.

208 Conjugation plates for spent media experiment

209 The spent media plates were prepared using 50% Micro agar (15 g/L) (Duchefa Biochemie), 25%
210 spent media, and 25% 3x AUM (including 1x concentration AUM salts). Control plates consisted
211 of 50% Micro agar (15 g/L), 25% 1x AUM, and 25% 3x AUM (including 1x concentration AUM
212 salts). The end concentration of AUM in the spent media plates depended on how much nutrients
213 were depleted by the bacteria, between 0,75x AUM (if all nutrients were consumed) and 1x AUM
214 depending (if no nutrients were consumed). All plates contained 300 μ M DAP to ensure survival
215 of donor bacteria.

216 Statistical analysis

217 All statistical analyses were performed in Rstudio2023.12.0+369 (2023.12.0+369). ANOVA was
218 used on log transformed data to obtain the significant differences among the *E. coli* isolates,
219 followed up by a Tukey-Kramer test. Pearson correlation coefficient measured the correlation
220 between the basal conjugation rates for the six uropathogenic *E. coli* isolates and the effect of the
221 community on the conjugation rate.

222 **Results**

223 To investigate the impact of other community members isolated from polymicrobial UTIs on the
224 conjugation rate in uropathogenic *E. coli*, we compared the pOXA-48 reception rate through
225 conjugation of isolated uropathogenic *E. coli* with that of uropathogenic *E. coli* in the presence of
226 other species isolated from polymicrobial UTIs.

227 Specifically, we performed conjugation experiments between donor strain β 3914 and nine
228 uropathogenic *E. coli* isolates, using plasmid pOXA-48; initially on LB media (Materials and
229 Methods). Three out of these nine *E. coli* isolates didn't take up the plasmid (Supplementary Table
230 1). Of the six uropathogenic *E. coli* isolates that did take the plasmid up (Figure 1 A-F, Materials
231 and Methods), they did so with different conjugation efficiencies; indicated by the qualitative
232 assessment of the maximum dilution that obtained transconjugants.

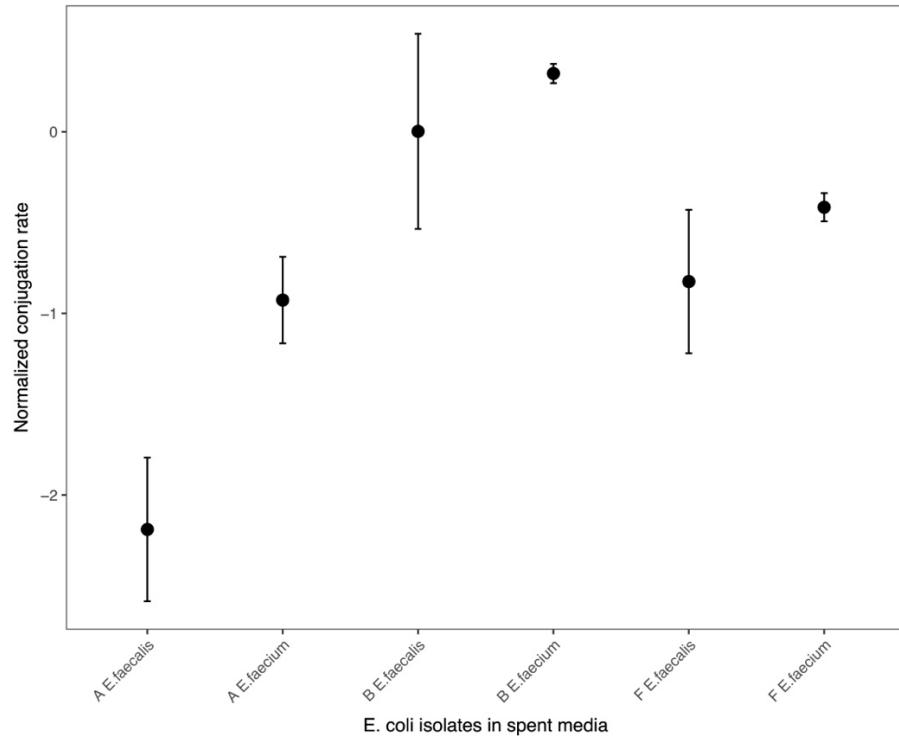
233 With this in mind, we tested the differential effects on the conjugation rate of six *E. coli* isolates
234 with donor strain β 3914 in the absence and in the presence of five other UTI community members
235 individually in AUM: *E. faecium*, *E. faecalis*, *S. simulans*, *P. aeruginosa* and *P. mirabilis*.
236 Conjugation rate experiments were performed by bringing bacteria together in a droplet of
237 conjugation mix, as described by (Alonso-del Valle et al., 2023; DelaFuente et al., 2022; León-
238 Sampedro et al., 2021) on artificial urine medium (AUM) agar plates (Materials and Methods).
239 For the community conjugation rate experiments, the donor and recipient *E. coli* pairs were spotted
240 on the AUM agar plates, in the presence of one of the bacterial community members.

241 We found that the basal conjugation rates, in the absence of community members, differ between
242 the six *E. coli* isolates. The conjugation rates in isolation range within two orders of magnitude
243 between the different isolates; from 4.7×10^{-14} for *E. coli* isolate A, to 4.6×10^{-12} for *E. coli* isolate
244 F (Figure 1). Assessing the effect of the bacterial interactions on the conjugation rate, we did not
245 find that any of the other tested isolates inhibit the growth of either donor or recipient
246 (Supplementary Table 2).

247 Rather, we interestingly found that bacterial interactions generally have a positive effect on the
248 conjugation rates. Particularly the Gram-positive species *E. faecium* and *E. faecalis*, but also *S.*
249 *simulans* contribute to this effect. For five of the six *E. coli* isolates, at least one Enterococcus
250 species has a significant positive effect on the conjugation rate, whereas *S. simulans* has a positive
251 effect on the conjugation rate of three of the *E. coli* isolates. The Gram-negative species *P.*
252 *aeruginosa* and *P. mirabilis* generally have a less prominent effect. *P. mirabilis* alters the
253 conjugation rate of two of the six *E. coli* species, whereas *P. aeruginosa* only affects the
254 conjugation rate of one *E. coli* isolate (Figure 1; Supplementary Table 2).

255 The extent to which pairwise interactions changed the conjugation rate varied substantially
256 between isolates. For instance, for *E. coli* isolate A, three UTI community members increased the
257 conjugation rate by three orders of magnitude. For isolate C, the presence of both *Enterococcus*
258 species increased the conjugation rate by two orders of magnitude. Yet, for isolate E we could not
259 detect any significant changes to the conjugation rate due to the influence of the other community
260 members (Figure 1). The magnitude of the variability of the conjugation rates was constant
261 throughout the tested conditions (Supplementary Figure 1).

262 To assess whether the pairwise-interaction-dependent conjugation rate was correlated with the
263 basal conjugation rate in isolation, we correlated the average effect of all pairwise interactions of
264 each isolate to the basal conjugation rate. We do not find a significant correlation (Supplementary
265 Figure 2 and 3). This shows that, regardless of the basal conjugation rate, the conjugation
266 efficiency depends on the specific isolate, and the interaction with specific community members.



267
268 Figure 1. Conjugation rate of six *E. coli* isolates (A-F) in the presence and absence of other
269 polymicrobial UTI isolates: *E. faecium*, *E. faecalis*, *S. simulans*, *P. aeruginosa* and *P. mirabilis*.
270 Circles illustrate the mean per experiment. Controls represent the basal conjugation rate in the
271 absence of community members. Solid circles indicate a significant difference between the
272 controls and the experiments with each of the UTI community members (ANOVA on log-
273 transformed data followed by Tukey-Kramer test).

274 To investigate whether the increased conjugation rates, particularly due to the presence of
275 Enterococci, were due to their exudates (for instance metabolic products produced), we tested
276 whether the presence of conditioned media of *E. faecium* and *E. faecalis* can recapitulate the
277 findings. Conjugation experiments were performed with three *E. coli* isolates (isolate A, B, F) on
278 conditioned medium agar plates (Materials and Methods), with the spent media from the two
279 Enterococci. Pairwise interactions were assessed by normalizing the conjugation rates on the
280 conditioned medium agar plates to the conjugation rate in the absence of conditioned medium
281 (Materials and Methods).

282 We found that the conditioned media experiments cannot explain the marked increase of the
283 conjugation rate in the presence of *E. faecium* and *E. faecalis* (Figure 2). This indicates that the
284 production of primary or secondary metabolites present in this cell-free medium conditioned by *E.*
285 *faecium* and *E. faecalis* is unlikely to be the leading cause of the increased conjugation rates
286 observed in the co-culture experiments. This suggests that Gram-positive bacteria affect the

287 conjugative transfer or AMR in uropathogenic *E. coli*, in a manner that is likely dependent on the
288 physical interaction of *E. coli* and the Gram-positive species.

289
290 Figure 2. Conjugation rates of three of the *E. coli* isolates; A, B and F on spent media agar plates
291 from *E. faecium* and *E. faecalis*. Black points represent the average conjugation rates, normalized
292 to control (conjugation rate on agar plates with no spent media), and are given as log (fold change)
293 from three replicates per experiment with standard deviation.

294 Discussion

295 Nine uropathogenic *E. coli* isolates were initially selected for conjugation with pOXA-48. Only
296 six of these *E. coli* isolates took up the plasmid, as verified by PCR with pOXA-48 specific primers
297 (Materials and Methods). The fact that each of them had a unique basal conjugation rate indicates
298 that there are host-dependent genetic background interactions that determine these rates, which is
299 in accordance with other findings (Alonso-del Valle et al., 2023; Benz & Hall, 2023).

300 The conjugation rate experiments were performed in the low-nutrient artificial urine media (AUM)
301 to recapitulate an environment that is closer to the *in vivo* environment of the uropathogens.
302 Otherwise, similar conjugation experiments are often performed in Lysogeny broth LB (Alonso-
303 del Valle et al., 2021; DelaFuente et al., 2022; León-Sampedro et al., 2021) or viande-levure VL
304 (Duxbury et al., 2021; Huisman et al., 2022), which are rather rich media and yield mostly higher

305 conjugation rates. The conjugation rates we find are similar to conjugation of pOXA-48 in one
306 strain of *E. coli*, cultured under anaerobic conditions and in rather poor M9 minimal media (León-
307 Sampedro et al., 2021). We therefore hypothesize that the similarly low basal conjugation rates
308 result from the low nutrient environment. This hypothesis was confirmed by testing the ability to
309 take-up pOXA-48 plasmid through conjugation via the rather crude qualitative droplet-droplet
310 method in a rich LB medium (Materials and Methods; Supplementary Table 1).

311 Interestingly, the Gram-positive Enterococci hardly grow in the artificial urine medium (10^3 - 10^4
312 CFU/ml), these relatively low counts mimic their growth in urine (Flores-Mireles et al., 2015).
313 Their cells are therefore present in low numbers in the conjugation rate experiments on the AUM
314 agar plates. Yet, despite these low numbers they are able to induce this increase in conjugation
315 rate.

316 Conditioned medium experiments indicate that metabolic compounds in the exudates of the co-
317 cultured Enterococcal species are unlikely to be the cause of the increased transfer. Thus,
318 population size effects mediated by such exudates of Enterococci are also unlikely to be involved
319 (Keogh et al., 2016). Moreover, to limit such potential growth effects we performed the incubation
320 step of the conjugation rate experiments for only one hour, where other studies often use longer
321 incubation times (Alonso-del Valle et al., 2023). And lastly, because the conjugation efficiency is
322 calculated based on the numbers of donors, recipients and transconjugants at the end of the one-
323 hour conjugation incubation time (after the co-growth of the donor β 3914, recipient *E. coli* and
324 community member on the agar plate), we conclude that growth rate differences are not the cause
325 of the marked increase in conjugation rate in the presence of these species.

326 Our findings suggest that the nature and co-culture of the interactions is important for these
327 increased conjugation rates in artificial urine medium. This suggests that physical contact or
328 proximity, potentially mediated by signaling molecules (Lin et al., 2021) between these species
329 may play a role. Various types of cell-to-cell contact have shown to be involved in promoting the
330 transfer of genetic material within species (Morawska & Kuipers, 2022). For example, pheromone-
331 inducible aggregation substance of Enterococci, a virulence factor that promotes the aggregation
332 and therefore proximity of Enterococci, has shown to have a positive effect on the conjugation
333 efficiency of Enterococcus species (Waters & Dunny, 2001). Potentially such aggregation also
334 increases the proximity of other conjugating species, such as *E. coli*, in mixed cultures.

335 One alternative hypothesis would be that the presence of some Gram-positive species is
336 strengthening the interaction between the two *E. coli* strains (donor and recipient) as a sort of
337 defense mechanism, limiting the direct interaction of the Gram-positive ‘intruder’ with the
338 interacting *E. coli* strains. This is reminiscent of biofilm formation as a defense mechanism
339 (Donlan & Costerton, 2002; Kumar et al., 2017).

340 The fact that the uropathogenic *E. coli* are conjugatable at these levels in the AUM medium
341 suggests that the urinary tract and its urobiome, is a potential location where HGT takes place
342 (Jones et al., 2021; Kuznetsova et al., 2022; Montelongo Hernandez et al., 2022; Wolfe &
343 Brubaker, 2019).

344 Finally, our findings on the increased conjugation rates in uropathogenic *E. coli* in the presence of
345 Gram-positive species underscore that ecological interactions are relevant for the conjugative
346 transfer of AMR, also in a urine-like environment.

347 **Supplementary data**

348 Supplementary data files are available as separate files.

349 **Acknowledgements**

350 We kindly thank Thomas Hackl for the help with Figures 1 and Figure S1, and Alvaro San Millan
351 for donating donor strain, plasmid and protocol and discussions, and for reading the manuscript.

352 **Funding sources**

353 MB is part of the Faculty of Science and Engineering - Adaptive Life PhD Scholarship from the
354 University of Groningen, awarded by GELIFES.

355

356 **Conflict of interest**

357 None declared.

358 **References**

359 Alonso-del Valle, A., León-Sampedro, R., Rodríguez-Beltrán, J., DelaFuente, J., Hernández-
360 García, M., Ruiz-Garbajosa, P., Cantón, R., Peña-Miller, R., & San Millán, A. (2021).
361 Variability of plasmid fitness effects contributes to plasmid persistence in bacterial
362 communities. *Nature Communications*, 12(1), 2653.

363 Alonso-del Valle, A., Toribio-Celestino, L., Quirant, A., Pi, C. T., DelaFuente, J., Canton, R.,
364 Rocha, E. P. C., Ubeda, C., Peña-Miller, R., & San Millan, A. (2023). Antimicrobial
365 resistance level and conjugation permissiveness shape plasmid distribution in clinical
366 enterobacteria. *Proceedings of the National Academy of Sciences*, 120(51).

367 Ares-Arroyo, M., Coluzzi, C., & Rocha, E. P. C. (2022). Origins of transfer establish networks of
368 functional dependencies for plasmid transfer by conjugation. *Nucleic Acids Research*,
369 51(7), 3001–3016.

370 Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A.,
371 Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M. K. F., & Baloch, Z. (2018).
372 Antibiotic resistance: A rundown of a global crisis. *Infection and Drug Resistance*,
373 Volume 11, 1645–1658.

374 Barshes, N. R., Clark, N. J., Bidare, D., Dudenhoeffer, J. H., Mindru, C., & Rodriguez-Barradas,
375 M. C. (2022). Polymicrobial foot infection patterns are common and associated with
376 treatment failure. *Open Forum Infectious Diseases*, 9(10).

377 Benz, F., & Hall, A. R. (2023). Host-specific plasmid evolution explains the variable spread of
378 clinical antibiotic-resistance plasmids. *Proceedings of the National Academy of Sciences
379 of the United States of America*, 120(15), e2212147120.

380 Boerlin, P., & Reid-Smith, R. J. (2008). Antimicrobial resistance: Its emergence and
381 transmission. *Animal Health Research Reviews*, 9(2), 115–126.

382 Bottery, M. J. (2022). Ecological dynamics of plasmid transfer and persistence in microbial
383 communities. *Current Opinion in Microbiology*, 68, 102152.

384 Bradley, J. S., Garau, J., Lode, H., Rolston, K. V. I., Wilson, S. E., & Quinn, J. P. (1999).
385 Carbapenems in clinical practice: A guide to their use in serious infection. *International
386 Journal of Antimicrobial Agents*, 11(2), 93–100.

387 Brons, J. K., Vink, S. N., de Vos, M. G. J., Reuter, S., Dobrindt, U., & van Elsas, J. D. (2020).
388 Fast identification of *Escherichia coli* in urinary tract infections using a virulence gene
389 based PCR approach in a novel thermal cycler. *Journal of Microbiological Methods*, 169,
390 105799.

391 Chong, K. K. L., Tay, W. H., Janel, B., Yong, A. M. H., Liew, T. H., Madden, L., Keogh, D.,
392 Barkham, T. M. S., Ginhoux, F., Becker, D. L., & Kline, K. A. (2017). *Enterococcus
393 faecalis* modulates immune activation and slows healing during wound infection. *The
394 Journal of Infectious Diseases*, 216(12), 1644–1654.

395 Coburn, P. S., Baghdayan, A. S., Dolan, G., & Shankar, N. (2007). Horizontal transfer of
396 virulence genes encoded on the *Enterococcus faecalis* pathogenicity island. *Molecular
397 Microbiology*, 63(2), 530–544.

398 Cong, Y., Yang, S., & Rao, X. (2019). Vancomycin resistant *Staphylococcus aureus* infections:
399 A review of case updating and clinical features. *Journal of Advanced Research*, 21, 169–
400 176.

401 Croxall, G., Weston, V., Joseph, S., Manning, G., Cheetham, P., & McNally, A. (2011).
402 Increased human pathogenic potential of *Escherichia coli* from polymicrobial urinary
403 tract infections in comparison to isolates from monomicrobial culture samples. *Journal of
404 Medical Microbiology*, 60(1), 102–109.

405 de Vos, M. G. J., Zagorski, M., McNally, A., & Bollenbach, T. (2017). Interaction networks,
406 ecological stability, and collective antibiotic tolerance in polymicrobial infections.
407 *Proceedings of the National Academy of Sciences*, 114(40), 10666–10671.

408 DelaFuente, J., Toribio-Celestino, L., Santos-Lopez, A., León-Sampedro, R., Valle, A. A.,
409 Costas, C., Hernández-García, M., Cui, L., Rodríguez-Beltrán, J., Bikard, D., Cantón, R.,
410 & Millan, A. S. (2022). Within-patient evolution of plasmid-mediated antimicrobial
411 resistance. *Nature Ecology & Evolution*, 10.1038/s41559-022-01908-7.

412 Donlan, R. M., & Costerton, J. W. (2002). Biofilms: Survival mechanisms of clinically relevant
413 microorganisms. *Clinical Microbiology Reviews*, 15(2), 167–193.

414 Duxbury, S. J. N., Alderliesten, J. B., Zwart, M. P., Stegeman, A., Fischer, E. A. J., & de Visser,
415 J. A. G. M. (2021). Chicken gut microbiome members limit the spread of an
416 antimicrobial resistance plasmid in *Escherichia coli*. *Proceedings of the Royal Society B:*
417 *Biological Sciences*, 288(1962), 20212027.

418 Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract
419 infections: Epidemiology, mechanisms of infection and treatment options. *Nature*
420 *Reviews. Microbiology*, 13(5), 269–284.

421 Frazão, N., Seixas, E., Barreto, H. C., Mischler, M., Güleresi, D., & Gordo, I. (2023). *Massive*
422 *lateral gene transfer under strain coexistence in the gut* [Preprint]. Evolutionary Biology.

423 Furuno, J. P., Perencevich, E. N., Johnson, J. A., Wright, M.-O., McGregor, J. C., Morris, J. G.,
424 Strauss, S. M., Roghman, M.-C., Nemoy, L. L., Standiford, H. C., Hebden, J. N., &
425 Harris, A. D. (2005). Methicillin-resistant *Staphylococcus aureus* and vancomycin-
426 resistant Enterococci co-colonization. *Emerging Infectious Diseases*, 11(10), 1539–1544.

427 Furuya, E. Y., & Lowy, F. D. (2006). Antimicrobial-resistant bacteria in the community setting.

428 *Nature Reviews Microbiology*, 4(1), 36–45.

429 Hall, J. P. J., Brockhurst, M. A., & Harrison, E. (2017). Sampling the mobile gene pool:

430 Innovation via horizontal gene transfer in bacteria. *Philosophical Transactions of the*

431 *Royal Society B: Biological Sciences*, 372(1735), 20160424.

432 Huisman, J. S., Benz, F., Duxbury, S. J. N., de Visser, J. A. G. M., Hall, A. R., Fischer, E. A. J.,

433 & Bonhoeffer, S. (2022). Estimating plasmid conjugation rates: A new computational

434 tool and a critical comparison of methods. *Plasmid*, 121, 102627.

435 Jones, J., Murphy, C. P., Sleator, R. D., & Culligan, E. P. (2021). The urobiome, urinary tract

436 infections, and the need for alternative therapeutics. *Microbial Pathogenesis*, 161,

437 105295.

438 Keogh, D., Tay, W. H., Ho, Y. Y., Dale, J. L., Chen, S., Umashankar, S., Williams, R. B. H.,

439 Chen, S. L., Dunny, G. M., & Kline, K. A. (2016). Enterococcal metabolite cues facilitate

440 interspecies niche modulation and polymicrobial infection. *Cell Host & Microbe*, 20(4),

441 493–503.

442 Kottara, A., Carrilero, L., Harrison, E., Hall, J. P. J., & Brockhurst, M. A. (2021). The dilution

443 effect limits plasmid horizontal transmission in multispecies bacterial communities.

444 *Microbiology*, 167(9).

445 Kumar, A., Alam, A., Rani, M., Ehtesham, N. Z., & Hasnain, S. E. (2017). Biofilms: Survival

446 and defense strategy for pathogens. *International Journal of Medical Microbiology*,

447 307(8), 481–489.

448 Kuznetsova, M. V., Maslennikova, I. L., Pospelova, J. S., Žgur Bertok, D., & Starčić Erjavec, M.

449 (2022). Differences in recipient ability of uropathogenic *Escherichia coli* strains in

450 relation with their pathogenic potential. *Infection, Genetics and Evolution*, 97, 105160.

451 León-Sampedro, R., DelaFuente, J., Díaz-Agero, C., Crellén, T., Musicha, P., Rodríguez-Beltrán,

452 J., de la Vega, C., Hernández-García, M., López-Fresneña, N., Ruiz-Garbajosa, P.,

453 Cantón, R., Cooper, B. S., & Millán, Á. S. (2021). Pervasive transmission of a

454 carbapenem resistance plasmid in the gut microbiota of hospitalised patients. *Nature*

455 *Microbiology*, 6(5), 606–616.

456 Lin, Y.-C., Chen, E. H.-L., Chen, R. P.-Y., Dunny, G. M., Hu, W.-S., & Lee, K.-T. (2021).

457 Biofilm-related infections: Bridging the gap between clinical management and

458 fundamental aspects of recalcitrance toward antibiotics. *Applied and Environmental*

459 *Microbiology*, 87(13), e00442-21.

460 Lopatkin, A. J., Huang, S., Smith, R. P., Srimani, J. K., Sysoeva, T. A., Bewick, S., Karig, D., &

461 You, L. (2016). Antibiotics as a selective driver for conjugation dynamics. *Nature*

462 *Microbiology*, 1(6), 16044.

463 Montelongo Hernandez, C., Putonti, C., & Wolfe, A. J. (2022). Profiling the plasmid conjugation

464 potential of urinary *Escherichia coli*. *Microbial Genomics*, 8(5), mgen000814.

465 Morawska, L. P., & Kuipers, O. P. (2022). Cell-to-cell non-conjugative plasmid transfer between

466 *Bacillus subtilis* and lactic acid bacteria. *Microbial Biotechnology*, 16(4), 784–798.

467 Mullis, K. B. (1990). The unusual origin of the polymerase chain reaction. *Scientific American*,

468 262(4), 56–61, 64–65.

469 Ochman, H., Lawrence, J. G., & Groisman, E. A. (2000). Lateral gene transfer and the nature of

470 bacterial innovation. *Nature*, 405, 299–304.

471 Pallares-Vega, R., Macedo, G., Brouwer, M. S. M., Hernandez Leal, L., van der Maas, P., van
472 Loosdrecht, M. C. M., Weissbrodt, D. G., Heederik, D., Mevius, D., & Schmitt, H.
473 (2021). Temperature and nutrient limitations decrease transfer of conjugative IncP-1
474 plasmid pKJK5 to wild *Escherichia coli* strains. *Frontiers in Microbiology*, 12.
475 Papp-Wallace, K. M., Endimiani, A., Taracila, M. A., & Bonomo, R. A. (2011). Carbapenems:
476 Past, present, and future . *Antimicrobial Agents and Chemotherapy*, 55(11), 4943–
477 4960.
478 Partridge, S. R., Kwong, S. M., Firth, N., & Jensen, S. O. (2018). Mobile genetic elements
479 associated with antimicrobial resistance. *Clinical Microbiology Reviews*, 31(4), e00088-
480 17.
481 Pitout, J. D. D., Peirano, G., Kock, M. M., Strydom, K.-A., & Matsumura, Y. (2019). The global
482 ascendency of OXA-48-type Carbapenemases. *Clinical Microbiology Reviews*, 33(1),
483 e00102-19.
484 Poirel, L., Bonnin, R. A., & Nordmann, P. (2012). Genetic features of the widespread plasmid
485 coding for the Carbapenemase OXA-48. *Antimicrobial Agents and Chemotherapy*, 56(1),
486 559–562.
487 Poirel, L., Héritier, C., Tolün, V., & Nordmann, P. (2004). Emergence of Oxacillinase-mediated
488 resistance to imipenem in *Klebsiella pneumoniae*. *Antimicrobial Agents and*
489 *Chemotherapy*, 48(1), 15–22.
490 Polianciuc, S. I., Gurzău, A. E., Kiss, B., řtefan, M. G., & Loghin, F. (2020). Antibiotics in the
491 environment: Causes and consequences. *Medicine and Pharmacy Reports*, 93(3), 231–
492 240.

493 Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: A global multifaceted
494 phenomenon. *Pathogens and Global Health*, 109(7), 309–318.

495 Roux, F. L., Binesse, J., Saulnier, D., & Mazel, D. (2007). Construction of a *Vibrio*
496 *splendidus* mutant lacking the metalloprotease gene *vsm* by use of a novel
497 counterselectable suicide vector. *Applied and Environmental Microbiology*, 73(3), 777.

498 Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). *Molecular Cloning: A Laboratory Manual*
499 (2nd ed.). Cold Spring Harbor Laboratory Press.

500 San Millan, A. (2018). Evolution of plasmid-mediated antibiotic resistance in the clinical
501 context. *Trends in Microbiology*, 26(12), 978–985.

502 Sessitsch, A., Wakelin, S., Schloter, M., Maguin, E., Cernava, T., Champomier-Verges, M.-C.,
503 Charles, T. C., Cotter, P. D., Ferrocino, I., Kriaa, A., Lebre, P., Cowan, D., Lange, L.,
504 Kiran, S., Markiewicz, L., Meisner, A., Olivares, M., Sarand, I., Schelkle, B., ... Kostic,
505 T. (2023). Microbiome interconnectedness throughout environments with major
506 consequences for healthy people and a healthy planet. *Microbiology and Molecular
507 Biology Reviews*, 87(3), e00212-22.

508 Smillie, C. S., Smith, M. B., Friedman, J., Cordero, O. X., David, L. A., & Alm, E. J. (2011).
509 Ecology drives a global network of gene exchange connecting the human microbiome.
510 *Nature*, 480, Article 7376.

511 Sünderhauf, D., Klümper, U., Gaze, W. H., Westra, E. R., & van Houte, S. (2023). Interspecific
512 competition can drive plasmid loss from a focal species in a microbial community. *The
513 ISME Journal*, 1–9.

514 Trautner, B. W., Kaye, K. S., Gupta, V., Mulgirigama, A., Mitrani-Gold, F. S., Scangarella-
515 Oman, N. E., Yu, K., Ye, G., & Joshi, A. V. (2022). Risk factors associated with

516 antimicrobial resistance and adverse short-term health outcomes among adult and
517 adolescent female outpatients with uncomplicated urinary tract infection. *Open Forum*
518 *Infectious Diseases*, 9(12), ofac623.

519 Waters, C. M., & Dunny, G. M. (2001). Analysis of functional domains of the *Enterococcus*
520 *faecalis* pheromone-induced surface protein aggregation substance. *Journal of*
521 *Bacteriology*, 183(19), 5659–5667.

522 Wolfe, A. J., & Brubaker, L. (2019). Urobiome updates: Advances in urinary microbiome
523 research. *Nature Reviews. Urology*, 16(2), 73–74.

524 Xu, W., Fang, Y., Hu, Q., & Zhu, K. (2021). Emerging risks in food: Probiotic Enterococci pose
525 a threat to public health through the food chain. *Foods*, 10(11), 2846.

526 Xu, W., Fang, Y., & Zhu, K. (2023). Enterococci facilitate polymicrobial infections. *Trends in*
527 *Microbiology*.

528 Zandbergen, L. E., Halverson, T., Brons, J. K., Wolfe, A. J., & de Vos, M. G. J. (2021). The
529 good and the bad: Ecological interaction measurements between the urinary microbiota
530 and uropathogens. *Frontiers in Microbiology*, 12, 659450.

531