

1 Somatic gene delivery for flexible *in vivo* modeling of high-risk 2 sarcoma

3 Roland Imle^{1,2,3,4,5}, Daniel Blösel^{1,2,5}, Felix K.F. Kommooss^{1,6}, Eric Stutheit Zhao^{1,7}, Robert
4 Autry^{1,7}, Christina Blume^{8,9}, Dmitry Lupar^{1,2}, Lukas Schmitt^{1,2}, Claudia Winter^{1,2}, Lena
5 Wagner^{1,2}, Sara Placke^{1,2}, Malte von Eicke^{1,2}, Michael Hertwig^{10,11}, Heike Peterziel^{1,12,13}, Ina
6 Oehme^{1,12,13}, Sophia Scheuerman^{14,15,16}, Christian Seitz^{14,15,16}, Florian H. Geyer^{1,17}, Florencia
7 Cidre-Aranaz^{1,17}, Thomas G. P. Grünwald^{1,6,17}, Christian Vokuhl¹⁸, Priya Chudasama¹⁹,
8 Claudia Scholl²⁰, Claudia Schmidt²¹, Patrick Günther⁴, Martin Sill^{1,7}, Kevin B. Jones^{22,23},
9 Stefan M. Pfister^{1,3,7}, Ana Banito*^{1,2}

10 ¹ Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany

11 ² Soft-tissue sarcoma research group (B380), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany

12 ³ Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany

13 ⁴ Division of Pediatric Surgery, Department of General, Visceral and Transplantation Surgery, University Hospital
14 Heidelberg, 69120 Heidelberg, Germany

15 ⁵ Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany

16 ⁶ Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany

17 ⁷ Division of Pediatric Neurooncology (B062), Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer
18 Research Center (DKFZ), 69120 Heidelberg, Germany

19 ⁸ Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany

20 ⁹ Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ) and German Cancer
21 Consortium (DKTK), Im Neuenheimer Feld 224, 69120, Heidelberg, Germany

22 ¹⁰ European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany

23 ¹¹ Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg,
24 Germany

25 ¹² Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer
26 Consortium (DKTK), 69120, Heidelberg, Germany

27 ¹³ National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany

28 ¹⁴ Department of Pediatric Hematology and Oncology, University Hospital Tuebingen, Tuebingen, Germany

29 ¹⁵ German Cancer Consortium (DKTK), partner site Tuebingen, a partnership between German Cancer Research Center
30 (DKFZ) and University Hospital Tuebingen, Germany

31 ¹⁶ DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (iFIT), University of
32 Tuebingen, Tuebingen, Germany

33 ¹⁷ Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer
34 Consortium (DKTK), 69120 Heidelberg, Germany

35 ¹⁸ Section of Pediatric Pathology, Department of Pathology, University of Bonn, Bonn, Germany

36 ¹⁹ Precision Sarcoma Research Group, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases,
37 Heidelberg, Germany.

38 ²⁰ Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), National Center for Tumor Diseases
39 (NCT) Heidelberg, Heidelberg, Germany.

40 ²¹ Core Facility Light Microscopy, German Cancer Research Center (DKFZ), Heidelberg, Germany.

41 ²² Department of Orthopedics, University of Utah School of Medicine, Salt Lake City, UT, USA.

42 ²³ Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City,
43 UT, USA.

44
45 *Correspondence to: a.banito@kitz-heidleberg.de

46 Key words: Sarcoma, tissue electroporation, Mouse model, GEMM, Syngeneic allograft,
47 Immunotherapy, CAR-T cells, Gene fusion, NTRK, Infantile fibrosarcoma, Synovial
48 Sarcoma, Alveolar Soft Part Sarcoma, UPS, Alveolar rhabdomyosarcoma.

49 ABSTRACT

50 A particular challenge hampering therapeutic advancements for high-risk sarcoma patients is
51 the broad spectrum of molecularly distinct sarcoma entities and the corresponding lack of
52 suitable model systems to recapitulate and study these diseases. To overcome this
53 predicament, we developed a novel genetically-controlled, yet versatile mouse modeling
54 platform allowing delivery of different genetic lesions by electroporation (EPO) of the thigh
55 muscle wildtype mice. This optimized sarcoma EPO-GEMM (EPO-based genetically
56 engineered mouse model) platform allowed the generation of ten biologically distinct
57 sarcoma entities, including Synovial Sarcoma (SS), fusion-positive and fusion-negative
58 Rhabdomyosarcoma (RMS), Alveolar Soft Part Sarcoma (ASPS), Undifferentiated
59 Pleomorphic Sarcoma (UPS) and Infantile Fibrosarcoma (IFS). Comprehensive molecular
60 profiling and cross-species analyses confirmed faithful recapitulation of the human disease,
61 including the expression of relevant immunotherapy targets. Syngeneic allografting enabled
62 reliable preservation and scalability of Sarcoma-EPO-GEMMs for treatment trials, such as
63 B7-H3-directed CAR-T cell therapy in an immunocompetent background.

64 INTRODUCTION

65 Sarcomas are a group of mesenchymal cancers arising in soft tissues or bone that
66 disproportionately often affect children, adolescents, and young adults (Grünewald et al.,
67 2020). While sarcomas arising from bone mostly fall into the categories of Osteosarcoma
68 (OS), Ewing Sarcoma (EwS) and Chondrosarcoma (CS), Soft-tissue Sarcomas (STS) are
69 significantly more diverse with more than 50 genetically distinct entities and even more
70 subtypes. They are broadly classified into Rhabdomyosarcomas (RMS) which retain some
71 skeletal muscle differentiation and Non-Rhabdomyosarcomas STS (NRSTS) consisting of all
72 remaining STS entities with diverse subtypes (Antonescu et al., 2020; Pfister et al., 2022).
73 Many sarcoma entities display a low tumor mutational burden (TMB) and are often driven by
74 dominant fusion oncproteins involving chromatin associated regulators and transcription
75 factors (Perry et al., 2019). Others are characterized by chromosomal instability and high
76 TMB. Unlike many other cancers, substantial therapeutic and prognostic advances have
77 largely been lacking for sarcomas for several decades across all age groups. This is a result of
78 various factors including their immense heterogeneity and lack of clinically actionable targets
79 (Sandler et al., 2019). Clinical management of sarcomas essentially relies on extensive
80 empirical experience in multiagent chemotherapy combined with surgery and irradiation.
81 Although few targeted therapies or immunotherapies have proven efficacious against
82 sarcomas (van Tilburg et al., 2021), they exhibit differential responses to cytotoxic agents
83 stemming from unknown entity-specific mechanisms of oncogenesis and progression.

84 A major bottleneck to achieve long-sought therapeutic advances for sarcoma patients is the
85 lack of adequate model systems for mechanistic and preclinical studies (Jones et al., 2019).
86 Modeling sarcoma is particularly challenging. Due to their rarity and heterogeneity, patient
87 tissue is notoriously scarce, making derivative models poorly available. Genetically-
88 engineered mouse models (GEMMs) are difficult to establish given that the exact cell of
89 origin remains elusive for most entities (Kannan et al., 2021) and widespread expression of
90 many sarcoma drivers results in embryonic lethality (Haldar et al., 2007). Yet, several
91 sarcoma GEMMs could be established by introducing mutations into the germline (Imle et
92 al., 2021), often requiring conditional Cre recombinase expression in defined lineages and
93 developmental windows (Han et al., 2016). Germline GEMMs typically exhibit multifocal
94 tumor onset under mixed genetic backgrounds and have generally been impractical for
95 preclinical testing. Aiming to overcome these challenges in sarcoma modeling, we utilized *in*
96 *vivo* electroporation (EPO) of CRISPR and transposon vectors as a somatic gene delivery

97 approach (Lima and Maddalo, 2021) to murine soft-tissue in wildtype mice. We envisioned
98 that the speedy and cell-type-agnostic nature of this technique would allow us to model
99 genetically-defined sarcomas of myogenic (RMS) and non-myogenic (NRSTS) origin with
100 localized onset in the physiological context of a fully competent immune system. We applied
101 this optimized method to study various sarcoma-associated genetic alterations and
102 successfully generated a broad range of more than ten fusion-positive and -negative sarcoma
103 mouse models, including the first NTRK-driven GEMM. We also provide novel experimental
104 evidence that *Bcor*, which is inactivated in 15-20% of RMS (Shern et al., 2021), can function
105 as a tumor suppressor in fusion-negative RMS. The array of models recapitulates diverse
106 tumorigenic mechanisms ranging from rewiring of epigenetic machinery by gene fusions
107 (*SS18::SSX1/2*), to uncoupled tyrosine kinase activation (*ETV6::NTRK3*), to aberrant
108 transcription factors (*ASPSCR1::TFE3*), and even multistep tumorigenesis based on *Trp53*-
109 mutation-related genomic instability and second hit mutations (e.g. *Nfl* or *Smarcb1*). After
110 validating the reliability of EPO-GEMMs by multiomic cross-species analysis, we further
111 derived syngeneic allograft models (SAMs) to preserve, share and scale this one-of-a-kind
112 collection of newly established sarcoma GEMMs. We demonstrate the feasibility of
113 preclinical testing in mouse sarcoma cell lines and immunocompetent sarcoma SAMs using
114 NTRK inhibitor treatment in Infantile Fibrosarcoma (IFS), as well as chimeric antigen
115 receptor T lymphocyte (CAR-T) immunotherapy targeting B7-H3 in alveolar RMS (aRMS).

116 RESULTS

117 **An optimized protocol allows efficient *in vivo* genetic manipulation of mouse muscle**
118 **tissue** To establish an optimized protocol for orthotopic induction of murine STS by
119 electroporation, we chose a vector combination conveying overexpression of oncogenic *RAS*
120 and inactivation of *Trp53*, which have been shown to co-occur in several high-risk sarcoma
121 entities, such as embryonal RMS (eRMS) and have previously been validated to efficiently
122 drive sarcoma in mice from the *Rosa26* locus upon Cre-LoxP recombination (Dodd et al.,
123 2015). We performed survival surgery to expose the thigh muscle in 4–6-week-old mice
124 (referred to as P30 hereafter) and delivered a plasmid mix containing (i) Sleeping Beauty
125 (SB13) transposase, (ii) a transposon vector expressing oncogenic *KRAS* (K), and
126 luciferase/GFP reporter genes (either as an all-in-one vector (KGL) or in separate plasmids
127 (K+L), (iii) a CRISPR/Cas9 vector expressing Cas9 endonuclease and a single-guide RNA
128 (sgRNA) targeting *Trp53* (**Fig. 1A-C**). The procedure was performed bilaterally, and
129 methylene blue dye was used to demarcate the quadriceps muscles before EPO with two 5
130 mm plate electrodes. To expand the range of accessible cell types and the developmental
131 window for oncogenic transformation, the EPO procedure was also established in neonatal
132 (P0) animals. Here, plasmid injection and EPO were performed transcutaneously (**Fig. 1A**).
133 These initial electroporation attempts were unsuccessful in inducing tumors, underscoring the
134 previously noted low efficiency of muscle transfection (Wang et al., 2005) (**Table S1**). We
135 therefore optimized a dedicated protocol for somatic muscle engineering to induce
136 sarcomagenesis using *in vivo* bioluminescence imaging (IVIS) two days and one week post
137 EPO as a surrogate for transfection efficiency using different EPO conditions (**Fig. S1A**).
138 Optimal EPO conditions were determined as five unilateral pulses of 100V for 35ms for P30
139 and 70V for P0 animals. Pre-treatment with hyaluronidase (Hyal) to temporarily loosen up
140 the extracellular matrix (McMahon et al., 2001), as well as delivering oncogenes and reporter
141 genes on separate plasmids (K+L versus KGL) further increased transfection efficiency (**Fig.**
142 **S1A**). The additionally tested resuspension of plasmid DNA in cationic polymer Poly-L-
143 glutamate (Glut) (Nicol et al., 2002) did not show added benefit in this setting (**Fig. S1A**).
144 This optimized protocol resulted in highly efficient tumorigenesis in 2-3 weeks with 100%
145 penetrance and 100% bilateral tumor onset for the *KRAS/Trp53* model for both P30 and P0
146 EPO (**Fig. 1D, S1B-C**). Resulting tumors displayed sarcoma-like morphology with mostly
147 spindle or mixed spindle/epithelioid features (**Fig. 1E-F**). Uniformly strong expression of the
148 driving *RAS* oncogene was accompanied by high levels of proliferation marker Ki-67 across

149 all tumors (50-70%). About 70% of tumors showed focal positivity for myogenin indicating
150 some myogenic differentiation (**Fig. 1F**). As expected, the tumors were positive for the *KRAS*
151 transgene and displayed *Trp53* insertion-deletion mutations (indels) (**Fig. 1G-H**).
152 Surprisingly, the initially present IVIS signal was often lost during tumor progression (**Fig.**
153 **S1D**), despite successful genomic integration of the reporter gene transposons (**Fig. S1E**).
154 This was particularly evident when reporter genes were expressed from the same vector as
155 the oncogene (KGL) and was accompanied by significantly reduced tumorigenesis (**Fig.**
156 **S1F**). This phenomenon suggests immunoediting against reporter genes. Therefore we
157 switched from the outbred CD1 strain, initially chosen due to large litter sizes and good foster
158 qualities, to the inbred C57BL/6J strain which is less susceptible towards immunogenicity to
159 Luciferase and GFP (Han et al., 2008; Skelton et al., 2001). Indeed, no signs of reporter gene
160 silencing were observed in C57BL/6J mice, whereas tumorigenesis efficiency further
161 improved to a mean latency of 14 days (P30) and 21 days (P0) with 100% penetrance and
162 bilateral tumor onset (**Fig. S1G**). Since SB13 transposase has previously been shown to be
163 limited in transposable cargo size, we further adapted the system to PiggyBac transposase,
164 which showed improved tumorigenesis efficiency for the larger KGL vector in P0 mice (**Fig.**
165 **S1H-I**). In summary, we generated an optimized protocol and set of tools to efficiently
166 deliver transgenes and edit tumor suppressors in murine skeletal muscle tissue.

167

168 **A versatile genetic toolbox successfully generates several types of fusion-driven sarcoma**
169 Given the high efficiency of the established sarcoma EPO-GEMM system, we next aimed to
170 investigate a broader spectrum of human sarcoma drivers toward their tumorigenic potential
171 (**Fig. 2A**). For this purpose, we generated a versatile toolbox of transposon and CRISPR
172 vectors with a focus on sarcoma-typical fusion oncogenes, allowing rational combination
173 based on human sarcoma profiling data (**Fig. 2B, S2A-B**). Reporter genes were omitted to
174 avoid any immunogenicity and maximize tumorigenesis efficiency. Since many fusion-driven
175 sarcomas exhibit few or no co-occurring alterations, oncogenes were tested alone (together
176 with an empty sgRNA vector) and in combination with sgRNAs targeting tumor suppressors,
177 such as *Trp53* to overcome oncogene-induced stress and facilitate cell cycle progression.

178 A bona fide example of a clinically aggressive fusion-driven STS is fusion-positive RMS,
179 also known as alveolar RMS (aRMS), which is mainly driven by the *PAX3/7::FOXO1* fusion
180 gene. In our model system, *PAX3::FOXO1*-induced tumorigenesis was more efficient with

181 concurrent inactivation of *Trp53* compared to *PAX3::FOXO1* alone which is in line with
182 previous studies showing that inactivation of *Trp53* or *Ink4a/Arf* critically accelerates aRMS
183 development (**Fig. 2C, S2C-D**) (Keller et al., 2004). *PAX3::FOXO1*/sg*Trp53* tumors
184 occurred unilaterally, with an average tumor-free survival time of 100 days and 40%
185 penetrance rate. Only one of six mice developed a tumor without simultaneous *Trp53*
186 inactivation. Notably, tumors exclusively emerged in P30 mice, but not in P0 animals,
187 suggesting a larger reservoir of cells permissive to *PAX3::FOXO1*-driven oncogenic
188 transformation in this age group. This corroborates earlier observations in conventional
189 GEMMs that maturing rhabdomyoblasts are more susceptible to *PAX3::FOXO1*-driven
190 transformation than embryonic or postnatal muscle stem cells (Keller and Capecchi, 2005).
191 Histologically, tumors were highly cellular and mitotically active, consisting of sheets of
192 primitive small blue round cells with hyperchromatic nuclei and small nucleoli, akin to
193 histological features observed in human aRMS (Antonescu et al., 2020) (**Fig. 2D**) and
194 conventional mouse models of this disease (Keller et al., 2004). Myogenin was only partly
195 positive and less pronounced compared to *KRAS*/sg*Trp53* tumors.

196 The most common NRSTS in adolescents and young adults, also occurring in children is
197 Synovial Sarcoma (SS) (Sultan et al., 2009). The driving oncofusion *SS18::SSX1* or the less
198 commonly occurring *SS18::SSX2* were electroporated in combination with sgRNAs targeting
199 *Pten* and *Apc*, both of which show loss of function mutations in patient specimens. Notably,
200 SS formation was significantly more efficient in P0 animals where even the fusion alone (+
201 sg-empty) led to tumorigenesis with 100% penetrance, albeit with mean latencies of about
202 230 days and 37% bilateral tumor fraction. Inactivation of *Pten* accelerated tumorigenesis to
203 a mean latency of 112 days, 100% penetrance and 100% bilateral tumor fraction (**Fig. 2E,**
204 **S2C-D**). Histologically, tumors were highly reminiscent of SS (**Fig. 2F**). Tumors generally
205 displayed monophasic differentiation, characterized by cellular sheets and at times fascicular
206 growth of uniform spindle cells with scanty cytoplasm and a delicate “chicken-wire”
207 vasculature. A subset of tumors showed a pronounced collagenous stroma with conspicuous
208 bundles of “wiry” collagen. Notably, 53% of tumors demonstrated areas with epithelial,
209 gland-like structures alongside the spindle cell population, which is the characteristic
210 histological feature of biphasic SS in humans (Antonescu et al., 2020). Anti-HA staining
211 confirmed nuclear expression of *SS18::SSX* in tumor cells (**Fig. S2E**). Overall SS EPO-
212 GEMMs were highly reminiscent the human disease and conventional mouse models (Barrott

213 et al., 2016), further highlighted by nuclear positivity for SS marker TLE-1 (El Beaino et al.,
214 2020) (**Fig. S2F**).

215 Another successfully established fusion-driven EPO-GEMM model was Alveolar Soft Part
216 Sarcoma (ASPS), characterized by the *ASPSCR1::TFE3* oncofusion. Similar to aRMS, tumor
217 induction was dependent on *Trp53* inactivation and was more efficient in mice electroporated
218 at P30 rather than at P0 (100% versus 22% penetrance, 33% versus 0% bilateral tumor
219 fraction, 200 versus 269 days of mean latency) (**Fig. 2G, S2C-D**). Human ASPS is
220 characterized by its pathognomonic nest-like, alveolar growth pattern with large, polygonal
221 cells with vesicular nuclei and abundant eosinophilic cytoplasm, typically staining positive in
222 Periodic Acid Staining (PAS). This pathognomonic phenotype, reminiscent of pulmonary
223 alveoli was remarkably well reflected in our model (**Fig. 2H**), making it indistinguishable
224 from the only hitherto published conventional mouse model (Goodwin et al., 2014) and the
225 human disease (Antonescu et al., 2020).

226 Lastly, we also applied our new EPO-GEMM system to test gene fusions for which no
227 conventional mouse models have yet been described. A relevant example are *NTRK*
228 translocations, which are considered the characteristic alteration of Infantile Fibrosarcoma
229 (IFS), but also occur in a broad spectrum of malignancies with diverse tissue origin (e.g. soft
230 tissue, brain, thyroid, breast or uterus). *NTRK* inhibitors have recently been approved as
231 entity-agnostic therapeutics, yet suitable models to optimize treatment to prevent or
232 circumvent resistance mechanisms are largely lacking. To bridge this gap, we delivered the
233 *ETV6::NTRK3* fusion gene alone or in combination with a sgRNA targeting *Trp53*, which led
234 to tumors with 100% penetrance in both P30 and P0 animals, with a moderately higher
235 efficiency in P30 mice (45 days versus 52 of mean latency, 100% versus 0% bilateral tumor
236 fraction). Except for one mouse in the P30 group, tumorigenesis was dependent on *Trp53*
237 inactivation (**Fig. 2I, S2C-D**). Unsupervised clustering based on gene expression and DNA
238 methylation classified *NTRK* tumors into two groups (**Fig. 5A-B**), correlating with distinct
239 histological features (**Fig. 2J**). 65% (9/14) of tumors showed a fascicular growth pattern
240 consisting of uniform spindle cells with scant cytoplasm and only mild to moderate cytologic
241 atypia. In contrast, 35% (5/14) of tumors showed areas of diffuse growth of spindle to
242 epithelioid cells with a more pronounced eosinophilic cytoplasm and in part (3/5 tumors)
243 severe cytologic atypia, reminiscent of *KRAS/Trp53* tumors. For simplicity, the two groups
244 will be referred to as Fusion-dominated IFS (FD-IFS) and P53-dominated IFS (P53-IFS)
245 hereafter.

246 Altogether, these results show that the EPO-GEMM approach can be applied to model
247 several gene fusion-driven sarcomas. In each case, the tumors closely recapitulate their
248 human disease counterparts as well as previous conventional GEMMs at the histological
249 level. From all gene fusions tested, only *FUS::TFCP2*, *EWSR1::TFCP2*, and *EWSR1::WT1*
250 did not induce tumors using the current protocol and developmental window. Given the
251 remarkable flexibility of the EPO-GEMM approach, it can be applied to any gene fusion,
252 alone or in combination with relevant sgRNAs, allowing to further optimize tumorigenesis
253 for different subtypes. The successful generation of a mouse model driven by *ETV6::NTRK3*
254 illustrates the potential of this method for many other alterations that have not yet been
255 modeled *in vivo*.

256

257 ***Bcor* inactivation cooperates with oncogenic *RAS* to drive fusion-negative RMS**

258 The flexible somatic gene delivery using the EPO-GEMM system allows to probe the
259 cooperativity of different sarcoma-related genetic alterations observed in patient tumors with
260 a short turnaround time. Molecular profiling studies have revealed inactivating, truncating or
261 point mutations of the BCL6 corepressor (*BCOR*) gene, encoding a component of the
262 Polycomb repressive complex 1.1 (PRC1.1), in about 15-20% of eRMS and about 5% of
263 aRMS (Astolfi et al., 2019; Shern et al., 2021). Consistent with a role of BCOR in the context
264 of PRC1.1, *BCOR* mutations are concentrated at the C-terminus containing the PUFD (PCGF
265 Ub-like fold discriminator) domain, which is responsible for interaction with the PRC1.1-
266 defining subunit PCGF1 (**Fig. S3A**) (Shern et al., 2021). Experimental studies have
267 demonstrated a tumor suppressor function of *Bcor* in subsets of leukemia and
268 medulloblastoma (Kutscher et al., 2020; Schaefer et al., 2022), but its role in RMS
269 tumorigenesis remains unclear. We made use of our system to test the hypothesis that *Bcor*
270 inactivation cooperates with oncogenic *RAS* in fusion-negative RMS. A sgRNA directed at
271 exon 3 of *Bcor* resulted in increased tumorigenic efficiency (5/8 mice, 62.5% penetrance)
272 compared to *KRAS*^{G12V} alone (1/8 mice, 12.5% penetrance). As expected, the effect was not
273 as strong as with *Trp53* inactivation (100% penetrance) (**Fig. 3A**). Combination with
274 *PAX3::FOXO1* or inactivation of *Bcor* alone did not lead to tumors (0/8 each). While the
275 histology of *KRAS*/sg*Trp53* tumors was consistent with patient specimens of *TP53*-mutated
276 eRMS, exhibiting focal or diffuse anaplasia (Pondrom et al., 2020), *KRAS*/sg*Bcor* tumors
277 were predominantly monomorphic with few signs of pleomorphism and showed focal

278 rhabdomyoblastic differentiation, consistent with *TP53* wildtype eRMS morphology (**Fig.**
279 **3A**). This was reflected in a lower rate of genomic instability and DNA double strand breaks
280 in *KRAS*/*sgBcor* tumors when compared to *KRAS*/*sgTrp53* (**Fig. 3E-F**). Interestingly, in
281 contrast to *KRAS*/*sgTrp53* tumors, *KRAS*/*sgBcor* tumors were negative for mesenchymal
282 markers desmin and myogenin (**Fig. S3B**) and showed a decreased average DNA
283 methylation, possibly indicative of a different cell of origin, differentiation state or as a result
284 of epigenetic reprogramming during the transformation process (**Fig. S3C-D**). Taken
285 together, these results provide experimental confirmation of *Bcor*'s role as a tumor
286 suppressor gene in eRMS.

287

288 ***Trp53* inactivation cooperates with second hit mutations to drive a spectrum of**
289 **pleiomorphic sarcomas**

290 CRISPR-mediated inactivation of *Trp53* alone led to unilateral tumor formation in 50% of
291 cases with a mean latency of 210 days (**Fig. 3C**), essentially mimicking pleiomorphic sarcoma
292 formation in germline-mediated mouse models of Li-Fraumeni syndrome (Lang et al., 2004;
293 Olive et al., 2004). While the models described above each have clearly delineated oncogenic
294 drivers, *Trp53*-mediated genomic instability and diachronous acquisition of second hit
295 mutations over time are the likely cause of oncogenic transformation in this context
296 (Gerstung et al., 2020). This was reflected in pronounced copy number variations (CNVs)
297 (**Fig. 3F**) and the highest rate of DNA double strand breaks across the sarcoma EPO-GEMM
298 cohort (**Fig. 3E**), qualifying this model system to study the nature of mut*Trp53*-mediated
299 genome evolution in the future (Baslan et al., 2022). Synchronous *Smarcb1* inactivation,
300 pathognomonic for Malignant Rhabdoid Tumors (MRT) and Epithelioid Sarcomas (EpS),
301 accelerated tumor formation to a mean latency of 173 days with 100% penetrance and 17%
302 bilateral tumor fraction, which is significantly more efficient compared to a previously
303 reported Myf5-Cre-mediated *Smarcb1*-inactivation model exhibiting 40% and latency longer
304 than 12 months (Li et al., 2021). The efficiency of tumorigenesis was even higher upon
305 synchronous *Nfl* loss, conveying indirect activation of RAS/MAPK signaling (**Fig. 3C**),
306 typically observed in patients suffering from Neurofibromatosis Type 1 (NF-1), who exhibit
307 an increased risk for malignant peripheral nerve sheath tumors (MPNST) or *Nfl*-deleted
308 eRMS (Maude et al., 2018). Combined *Nfl*/*Trp53* inactivation, yielded tumors with a mean
309 latency of 68 days, 100% penetrance and 86% bilateral tumor fraction, exceeding the

310 efficiency of a previously reported CRISPR-mediated somatic mouse model of combined
311 *Nfl/Trp53* inactivation which exhibited a median latency of approximately 100 days (Huang
312 et al., 2017).

313 Histologically, tumors from all three groups were reminiscent of their human counterparts.
314 sg*Nfl*/sg*Trp53* tumors were compatible with MPNST or *Nfl*-inactivated eRMS with a
315 fascicular growth pattern of spindle or spindle/epithelioid cells (**Fig. 3D**). The S100 protein
316 neuronal marker was only focally positive in 3/5 tumors, while the myogenic marker
317 myogenin showed stronger focal positivity in 4/5 tumors, suggesting a predominantly
318 myogenic differentiation (**Fig. 4A**). sg*Smarcb1*/sg*Trp53* tumors consisted of sheets of large
319 epithelioid tumor cells with vesicular and eccentric nuclei amidst an abundant eosinophilic
320 cytoplasm, reminiscent of the characteristic rhabdoid cell morphology of human MRT or EpS
321 (**Fig. 3D**). While highly positive for mesenchymal marker desmin, they were negative for
322 myogenin and heterogeneous in the expression of other differentiation markers such as
323 ASMA, cytokeratin, and S100 protein (**Fig. 4A**). Murine UPS (sg*Trp53*-only tumors) were
324 strongly positive for desmin and showed heterogeneous expression of other differentiation
325 markers (**Fig. 4A**). Anaplasia was noted in all three groups, but was most pronounced in
326 sg*Trp53*-only tumors (sg*Trp53* > sg*Smarcb1*/sg*Trp53* > sg*Nfl*/sg*Trp53*) where giant cells and
327 atypical mitoses were also frequently found (**Fig. 3D**). In conclusion, the sarcoma EPO-
328 GEMM system provides an excellent platform to study *Trp53*-mediated genome evolution
329 and pleomorphic sarcomas driven by tumor suppressor gene inactivation.

330

331 **Fusion gene and *Trp53* status determine sarcoma biology and microenvironment**

332 Given the unique opportunity to systematically compare a large number of different sarcoma
333 types established under identical genetic and experimental background, we performed an in-
334 depth assessment of their histological phenotypes. A blinded expert pathology review of
335 H&E stains and ten IHC markers was performed across the mouse sarcoma cohort,
336 systematically assessing signs of anaplasia, growth pattern and cellular phenotype as well as
337 immunoreactivity (**Fig. 4A-B**). While necrosis was generally low except for MRT, all models
338 were highly proliferative as quantified by Ki-67 staining. aRMS, UPS and MRT showed
339 particularly high proliferation rates in line with their human counterparts (**Fig. 4C**)
340 (Antonescu et al., 2020).

341 Correlation analysis of quantified features (**Fig. 4B**) confirmed that fusion gene and *Trp53*
342 mutation status are major determinants of sarcoma biology. Compared to non-fusion-driven
343 models, fusion-driven sarcomas typically consisted of rather uniform, spindle cells. In these
344 tumors, occurrences of anaplasia and tumor giant cells were rarely observed. They were also
345 characterized by lower proliferation (Ki-67) and DNA double strand break rates
346 (phosphorylated H2AX/jH2AX) and reduced immune infiltrates as quantified by CD45
347 staining. Exceptions were the predominantly small round cell, but likewise uniform growth
348 pattern in aRMS and the higher immune infiltrate in ASPS, also reported for the human
349 disease (Brohl et al., 2021). In contrast, and as observed in human tumors (Demicco et al.,
350 2017), non-fusion driven models frequently consisted of irregular and spindle to epithelioid
351 tumor cells, frequently exhibiting anaplasia, as well as higher rates of DNA double strand
352 breaks, proliferation and immune infiltration (**Fig. 4B-D**). Importantly, the positive
353 correlation between genomic stability and immune infiltration found in human sarcoma
354 cohorts, was preserved across sarcoma EPO-GEMMs (Tazzari et al., 2021). Although the
355 general degree of immune infiltration was rather low, as to be expected for sarcomas,
356 leukocyte aggregations up to tertiary lymphocytic structures were occasionally observed (**Fig.**
357 **S4A-B**).

358 To further validate the immunophenotype observed by IHC, we employed CibersortX as an
359 algorithm for immune cell deconvolution from bulk RNA sequencing of tumors (**Fig. S5A-**
360 **B**). There was a modest but statistically significant correlation for the total leukocyte fraction
361 across IHC and CibersortX (**Fig. S5C**), which is likely due to the sampling bias for bulk RNA
362 seq and the overall low immune infiltration observed across sarcoma subtypes. Whereas both
363 SS and aRMS were noticeably immune-cold across both methods and across further immune
364 cell subpopulations, RNA-sequencing-based deconvolution failed to detect increased immune
365 infiltration in ASPS (**Fig. S5D-G**).

366 Of note, EPO-GEMM primary tumors and derived cell lines, recapitulated the expression
367 patterns of various immunotherapy targets antigens (**Fig. S6A-F**), currently explored for
368 human sarcoma treatment (Baldauf et al., 2018). The immune checkpoint surface marker PD-
369 L1 was not upregulated compared to muscle controls in most tumors, indicating absence of
370 immunoediting (**Fig. S6A**). However, several pan-cancer immunotherapy target antigens
371 including B7-H3/CD276, GD2 and Erbb2/HER2/neu were markedly upregulated in sarcoma
372 GEMMs (**Fig. S6B-D**). Particularly B7-H3 was strongly upregulated across the entire
373 spectrum of sarcoma EPO-GEMMs (**Fig. S6B and F**), further supporting ongoing clinical

374 approaches of anti-B7-H3 immunotherapy in solid tumors. Additionally, some target antigens
375 were upregulated in subtype-specific fashion, including MCAM (Melanoma cell adhesion
376 molecule) in FD-IFS or FGFR4 in aRMS, both of which are currently being explored as
377 immunotherapy approaches in Malignant Melanoma (Rapanotti et al., 2021) and aRMS
378 (Sullivan et al., 2022) respectively. Taken together, unsupervised molecular and histological
379 analyses of sarcoma EPO-GEMMs confirmed fusion gene status and *Trp53* mutation status as
380 the major determinants of sarcoma biology.

381

382 **Mouse sarcomas exhibit distinct genotype-dependent molecular signatures**

383 Unsupervised tumor classification based on DNA methylation profiling has significantly
384 expanded the means to accurately classify human brain tumors (Capper et al., 2018) and
385 sarcomas (Koelsche et al., 2021). We adopted this approach to our sarcoma EPO-GEMM
386 cohort by using the recently released 285k mouse methylation array (Zhou et al., 2022).
387 Clustering of EPO-GEMM tumors based on all or the top 10,000 differentially methylated
388 probes led to genotype-dependent clustering, which was particularly evident for the fusion-
389 driven tumor types aRMS, SS, ASPS and FD-IFS (**Fig. 5A, S3D**). Consistent with
390 overlapping microscopic features, non-fusion driven tumors and P53D-IFS exhibited a more
391 diffuse distribution compared to fusion-driven models. Tumor specimens from a conventional
392 mouse model of SS where *SS18::SSX2* is expressed from the *Rosa26* locus upon Cre
393 recombination (Barrott et al., 2016), clustered together with SS EPO-GEMMs, indicating
394 conservation of *SS18::SSX*-mediated biology between these two modeling approaches (**Fig.**
395 **5A, S3D**). One notable phenomenon observed was a broad hypomethylation phenotype in the
396 Synovial Sarcoma group (**Fig. 3C-D**) as previously demonstrated by (Demicco et al., 2017)
397 for human SS. This is consistent with the hypothesis that the *SS18::SSX* fusion mediates
398 epigenetic rewiring and oncogenic transformation through binding to unmethylated CpG
399 islands (Banito et al., 2018). Tumors from a previously published conventional GEMM of
400 ASPS, expressing *ASPSCR1::TFE3* from the *Rosa26* locus, exhibited distinct DNA
401 methylation profiles (**Fig. 5A, S3D**), possibly reflecting a different cell of origin, given their
402 strictly heterotopic onset in the cranial vault (Goodwin et al., 2014).

403 Transcriptome-based clustering corroborated these results with fusion-driven mouse
404 sarcomas forming distinct clusters each corresponding to genotype-specific expression
405 patterns (**Fig. 5B**). *KRAS*/*sgTrp53*/*sgBcor* and *sgNfl*/*sgTrp53* models showed fairly similar

406 transcriptomes, consistent with the commonly underlying upregulation of RAS/MAPK
407 signaling (**Fig. 5C**). While FD-IFS formed a very distinct cluster, PD53-IFS clustered in a
408 rather scattered fashion adjacent to eRMS and UPS tumors. To further explore the biology
409 underlying induced murine sarcomas, RNA sequencing data was further subjected to k-means
410 clustering and Gene Set Enrichment Analysis (GSEA), using ten different gene set
411 collections from the Molecular Signature Database (MSigDB) (**Fig. 5C, Table S2**). As
412 expected, muscle control tissue (k-means clusters 4 and 5) was clearly distinct from all tumor
413 types and identified genes related to skeletal muscle organization and contraction.
414 Upregulation of embryonal developmental pathways (k-means group 8) was shared between
415 various tumor types while muscle development and adaptation were specifically upregulated
416 in aRMS, consistent with mechanistic studies identifying *PAX3/7::FOXO1*-induced
417 activation of myogenic super enhancers (Gryder et al., 2017). Consistent with the underlying
418 *NTRK* fusion, signaling pathways of neuron myelination and synapse signaling were
419 specifically upregulated in FD-IFS (k-means group 1), whereas enrichment of neuro- and
420 synaptogenesis, Wnt, Hippo, and cAMP signaling were shared with SS (k-means group 7).
421 SS displayed a unique expression signature (k-means group 6), including developmental
422 pathways known to be enriched in human tumors, such as axon development, Sonic
423 Hedgehog (SHH) and FGFR2 signaling (Banito et al., 2018). ASPS shared signatures with
424 other entities which included upregulation of genes involved in lipid and carbohydrate
425 metabolism, consistent with findings in a previous conventional mouse model of ASPS
426 (Goodwin et al., 2014).

427 These results vividly demonstrate how the diversity of underlying genetic perturbations
428 drives transcriptomically diverse tumors with a clear genotype-phenotype association.
429 Particularly, sarcoma-driving oncofusions elicit profoundly specific tumor transcriptomes
430 that reflect their respective underlying oncogenic mechanisms.

431

432 **Murine sarcomas faithfully recapitulate the human sarcoma spectrum**

433 To systematically assess whether sarcoma EPO-GEMMs recapitulate their human
434 counterparts, we used an unbiased cross-species bioinformatic approach with correction for
435 species and dataset (**Fig. 6A**). To represent all relevant human sarcoma subtypes, we
436 integrated and harmonized RNA sequencing data from the ‘The Cancer Genome Atlas’
437 (TCGA) Sarcoma study (Demicco et al., 2017), St. Jude Cloud (McLeod et al., 2021), and the

438 INFORM registry (van Tilburg et al., 2021), yielding a total of 397 human sarcoma samples
439 that were compared to 63 mouse sarcoma samples. After restricting genes to cross-species-
440 conserved orthologues, differential gene expression analysis between each entity versus all,
441 and each entity versus control tissue was performed for both human and murine datasets. The
442 resulting list of 2636 genes that were present in both mouse and human genomes (**Table S3**)
443 was batch-corrected for species effects and used for hierarchical clustering (**Fig. 6B**). Mouse
444 sarcomas, in particularly bona fide fusion-driven sarcomas, clustered together with their
445 human counterparts.

446 Overall, cross-species comparison of transcriptome, methylome, and histology data revealed
447 a coherent picture, indicating conservation of human sarcoma biology across the sarcoma
448 EPO-GEMM cohort, especially for bona-fide fusion-driven sarcomas SS, FD-IFS, aRMS and
449 ASPS.

450

451 **Syngeneic allograft models preserve GEMMs for long-term application**

452 In terms of therapeutic predictive value, both patient derived xenografts (PDX) models and
453 GEMMs (Stewart et al., 2017) are regarded as superior when compared to conventional
454 human cancer cell lines which are still used for about 80% of preclinical therapy trials
455 (Gengenbacher et al., 2017; Stewart et al., 2017) Most GEMMs have predominantly been
456 used to study the pathobiology of tumors, leaving their translational potential vastly
457 unexplored. The typically mixed genetic backgrounds of conventional GEMMs are
458 hampering immunocompetent allografting and cross-institutional model sharing. Hence, the
459 broad panel of genetically heterogeneous sarcoma GEMMs established here on genetically
460 identical C57BL/6J background provided an excellent opportunity to explore the appropriate
461 methodology to systematically preserve GEMMs for preclinical treatment trials.

462 First we tested whether primary tissue allografts would be superior to *in-vitro*-propagated
463 cells (Jung et al., 2018) and tumor spheres superior to conventional 2D cultures (LeSavage et
464 al., 2022) in preserving the biological properties of the original tumor tissue. Four different
465 syngeneic allograft model (SAM) types were compared upon orthotopic unilateral
466 engraftment: dissociated primary cells (C), 50-200 μ m tumor fragments (F), cells cultured *in*
467 *vitro* under 2D conditions (2D) and tumor spheres cultured *in vitro* under 3D serum-free
468 conditions (3D) (**Fig. 7A**). All four methods substantially reduced mean TFS from about 78
469 to 15 days across a variety of genotypes (**Fig. 7B, S7A**) with engraftment success rates of

470 about 90%, which is significantly higher than in PDX models (Stewart et al., 2017). Blinded
471 expert pathology review of H&E and IHC sections revealed accurate histomorphology
472 preservation (**Fig. S7B**). While necrosis and proliferation rates were slightly increased, no
473 signs of immune rejection could be observed in any of the four SAM methods tested (**Fig.**
474 **S7C-E**). Importantly, all SAMs and cell lines clustered together with their respective GEMM
475 upon DNA methylation analysis and showed remarkably high conservation of the underlying
476 methylome features (**Fig. 7C-D**). Broad hypomethylation in SS and aRMS for example was
477 highly preserved across all SAM types as were CNV profiles (**Fig. S7F-G**). To our surprise,
478 none of the four methods emerged superior in preservation of histotype, genomic stability and
479 DNA methylome as all models recapitulated the original molecular makeup remarkably well.
480 Even 2D-cultured allografts reflected the distinct histomorphology of fusion-driven sarcoma
481 GEMMs (**Fig. 7E**). In summary, both primary and cell culture-based allograft methods were
482 well suited for the preservation of sarcoma EPO-GEMMs for preclinical testing.

483 Finally, we leveraged the flexibility of *in vitro* propagation and syngeneic *in vivo* allografting
484 of sarcoma EPO-GEMMs to apply some of our models to small molecule and
485 immunotherapy applications. NTRK inhibitor therapy with first (Larotrectinib) and second
486 generation (Repotrectinib) agents showed specific and significant activity in FD-IFS and
487 P53D-IFS lines, comparable to response rates in a rare patient-derived cell model acquired
488 from a patient suffering from NTRK-driven Inflammatory Myofibroblastic Tumor (IMT)
489 (**Fig. S8A-B**).

490 We also exploited our system to assess immunotherapy approaches by *in vitro* modifying a
491 murine *PAX3::FOXO1*-driven EPO-GEMM sarcoma cell line to express luciferase and
492 human B7-H3 and CD19 as target antigens (**Fig. S8C**). Treatment with murine CAR-T
493 engineered to detect either human B7-H3 or human CD19 showed highly efficient tumor cell
494 killing *in vitro* (**Fig. 7F, S7D**). *In vivo* treatment of the same tumor model resulted in only
495 moderate dose-dependent anti-tumor responses (**Fig. 7G-H**), indicative of immune escape,
496 well known to be hampering cellular immunotherapy approaches for solid tumors in humans.
497 Thus, this translationally relevant model system is excellently suited to optimize cellular
498 immunotherapies for solid tumors in the future, thereby addressing a critical and unmet
499 clinical need in the field of immunotherapy.

500 DISCUSSION

501 The lack of sarcoma models has hindered our understanding of sarcomagenesis and the
502 development and testing of new therapeutic approaches for patients over the last decades.
503 Here we describe an efficient and highly versatile approach to probe any genetic alterations
504 by *in vivo* somatic engineering of mouse muscle tissue. Besides the dramatic reduction in
505 animal numbers by avoiding extensive intercrossing, there are several advantages to EPO-
506 GEMMs when compared to previously derived sarcoma models. Perhaps the most pertinent
507 is that it bypasses the need for conditional transgenic lines and therefore a predetermined
508 assumption of a suitable lineage or cellular background for transformation. While Cre-
509 transgenic mouse lines have been elegantly used in the past to show different outcomes when
510 certain gene fusions are expressed in various cellular backgrounds (Abraham et al., 2014;
511 Haldar et al., 2007), EPO-GEMMs or in alternative the delivery of exogenous Cre (e.g. TAT-
512 Cre injection), allow to hit any cell of interest in a given tissue, contingent that the
513 transfection efficiency is high enough. This was a key step in the successful establishment of
514 these models. We substantially optimized muscle electroporation in P30 mice compared to
515 previous studies (Huang et al., 2017; Young and Dean, 2015), but also adapted the procedure
516 to apply it for the first time in neonatal mice, marking the earliest murine soft-tissue
517 electroporation to date. Of note, *in utero* EPO can be applied to brain tissue, but relies on
518 injections into the lumen of cerebral ventricles (Feng et al., 2018), a structural feature not
519 present in other tissues. In assessing the conditions for the highest transfection efficiency of
520 muscle tissue at two postnatal developmental time points, we increased the probability of
521 hitting cells permissive for transformation even if they are rare. This is particularly relevant
522 for gene-fusion driven sarcomas where a precise initial cellular state is thought to be required
523 to allow oncogenic transformation (Davis and Meltzer, 2007). Indeed, our approach could be
524 applied to several gene fusion sarcomas, each exhibiting a defined DNA methylation profile
525 most probably primarily reflective of alternative cells of origin. One could argue that as long
526 as a given cell of origin is present at the time of tissue transfection, the method can be applied
527 to any genetic alteration in the future. Still, there are limitations. Some oncogenes did not
528 give rise to tumors within the observation period of one year post electroporation. These
529 included *TFCP2* fusions (*FUS::TFCP2* and *EWSR1::TFCP2*) and *EWSR1::WT1*, alone or in
530 combination with *Trp53* inactivation. Given that sg*Trp53* alone eventually led to tumors with
531 about 50% penetrance, one would expect similar rates when combining sg*Trp53* with these
532 oncogenes. However, the actually observed rates of sg*Trp53*-only tumors were significantly

533 lower (*TFCP2*-fusions: 2/24 (8%); *EWSR1*::*WT1* fusion: 1/12 (8%), indicating that most of
534 the transfected cells were probably cleared due to oncogene-induced stress, cell death or
535 immune-related responses. Precisely why these alterations were unsuccessful in generating
536 tumors could be due to a variety of reasons. One of the most important certainly is
537 availability of permissive cells of origin. DSRCT, driven by *EWSR1*::*WT1*, presents mostly
538 in the abdomen, possibly originating from mesothelial (Tsoukalas et al., 2020) or other non-
539 myogenic cells (Wu et al., 2022). Similarly, *TFCP2*-fused RMS typically occur intraosseously
540 or are bone-associated, suggesting a non-myogenic origin (Schöpf et al., 2024). For some
541 entity-specific alterations, embryonic cell states may be required for oncogenic
542 transformation, as previously described for induction of brain tumors by in utero
543 electroporation (IUE) (Feng et al., 2018). This likely explains why *Smarcb1*-inactivation
544 alone was not sufficient for tumorigenesis in our model system, and concomitant *Trp53*-
545 inactivation was required to drive EpS/MRT-like tumors (Han et al., 2016; Li et al., 2021).
546 For some subtypes one cannot rule out the need to co-deliver additional alterations to enable
547 tumorigenesis or the requirement to finetune oncogene expression levels by the use of
548 strength-variable or endogenous promoters. Finally, some oncogenes may never work simply
549 due to functional divergence between human and mouse genomes. Nevertheless, the fact that
550 it was successful for most entities, including the first IFS model and orthotopic ASPS model
551 outside the cranial vault (Goodwin et al., 2014), clearly suggests that this method is
552 applicable to many other sarcoma subtypes.

553 The procedure also allows multiplexing different genetic alterations and can be applied to
554 mice of any genetic background. An obvious application is to test cooperation between
555 genetic events. In RMS, *BCOR* harbors inactivating mutations in up to 15-20% of cases being
556 the second most frequent mutated gene in this disease after *NRAS* (Shern et al., 2021). Our
557 approach was able to show for the first time that *Bcor* inactivation enables *KRAS*^{G12V}-driven
558 tumorigenesis in the muscle. The tumors exhibited reduced expression of myogenic markers,
559 and lower overall DNA methylation when compared to *KRAS*^{G12V}/sg*Trp53* tumors, arguing in
560 favor of a *Bcor* inactivated-specific phenotype related to induction of permissiveness in
561 alternative cells of origin and/or to an active epigenetic reprogramming that favors
562 transformation. Further studies are needed to mechanistically understand the role of *BCOR*
563 loss of function in RMS and other pediatric tumors where it is frequently observed (Astolfi et
564 al., 2019).

565 Overall, this flexible approach allowed to model a very heterogeneous and diverse spectrum
566 of sarcomas. It generated a genetically diverse set of subtypes that are clinically relevant and
567 span from fusion-driven uniform and immune cold sarcomas to more pleiomorphic,
568 genetically unstable tumors, with a tendency towards increased immune infiltrates, dominated
569 by *TP53* mutations. Most importantly, the somatically induced sarcoma models were faithful
570 representatives of previously established conventional GEMMs and the human disease. They
571 reproduced entity-specific histologies with remarkable accuracy and activated expression
572 programs that reflect the biology of the human disease. Another key point of this study was to
573 preserve the variety of new immunocompetent mouse models for use in preclinical treatment
574 studies. Re-engraftment of GEMM tumor material into syngeneic C57BL/6J mice was very
575 efficient without signs of immune rejection. Systematic comparison of four different model
576 preservation methods demonstrated that both primary as well as cell-culture based
577 allografting was suitable for EPO-GEMM preservation and expansion. It should be noted
578 however that we did not perform a thorough analysis of immune infiltration profiles in these
579 syngeneic models and previous studies showed distinct immune landscapes in autochthonous
580 sarcomas and their corresponding transplants (Wisdom et al., 2020). Still, syngeneic models
581 are critical not only for preservation but to allow the scalability required for preclinical
582 studies. This was well demonstrated by their use in recapitulating barriers to efficient CAR-T
583 cell activity *in vivo*.

584 In summary, our study meets a crucial gap in sarcoma and solid tumor research. It not only
585 presents a suite of models ready for immediate application in both basic and translational
586 research but also introduces an approach that unlocks vast possibilities for a deeper
587 comprehension of sarcoma biology.

588 MATERIALS AND METHODS

589 Tissue culture and GEM model preservation

590 Human Embryonic Kidney HEK293T cells (RRID:CVCL_0063), human alveolar RMS cell
591 line Rh30 (CVCL_0041) and murine neuroblastoma cells N2A (CCL-131) were purchased
592 from the American Type Culture Collection (ATCC) and maintained in DMEM (Gibco)
593 supplemented with 10% Fetal Bovine Serum and 1% Penicillin/Streptomycin (P/S).
594 IMT_NTRK1/INF_R_153 carrying ETV6-NTRK3 was generated from a primary tumor
595 biopsy obtained from an inflammatory myofibroblastic tumor (IMT) enrolled in the INFORM
596 registry study and cultured in RPMI (Gibco) + 10% FCS + 1% MEM (minimal essential
597 amino acids) + 1% P/S.

598 For tumor cell purification of mouse sarcoma EPO-GEMMs, existing protocols for primary
599 human sarcomas (Peterziel et al., 2022) were adapted to mouse specimens. GEMM tumors
600 were thoroughly minced with scissors, taken up in 40ml of FCS-free DMEM supplemented
601 with 480 μ l of 10 mg/ml Trypsin (Sigma, T9935) and 800 μ l of 50 mg/ml Collagenase II
602 (Thermo Fisher, 17101015) and subjected to digestion in a water bath at 37°C for one hour
603 under repeated swirling. If tumor fragments were also desired for allografting, minced tumor
604 fragments were resuspended in FCS-free DMEM and filtered through 200 μ m (PluriSelect,
605 43-50200-50) and 50 μ m (PluriSelect, 43-50050-50) cell strainers arranged on a 50 ml falcon
606 tube. This process isolated tumor cell fragments ranging from 50-200 μ m, which were then
607 washed into an additional falcon and stored at 4°C until allografting or freezing. To halt
608 enzymatic digestion, 240 μ l of 10 mg/ml Trypsin inhibitor (Sigma, T6522) was added. Next,
609 extracellular DNA was digested by a 1:1 mix of 2mg/ml DNase (Sigma, D4527) and 1M
610 magnesium chloride (Fisher Scientific, 15493679) added in 1 to 4 steps of 60 μ l each until
611 viscosity decreased and tumor fragments settled. The solution was filtered through a 40 μ m
612 cell strainer (Corning, 352340), centrifuged at 400g for 5 minutes, and then resuspended in
613 2ml ACK lysis buffer (Thermo Fisher, A1049201) for 2-5 minutes for red blood cell lysis.
614 After two washes with 10 ml of FCS-free DMEM, cells were counted (Countess 3 cell
615 counter, Invitrogen, AMQAF2000) and resuspended for seeding or re-engraftment in suitable
616 media. About 0.5 to 1×10^6 were seeded in 2ml of full DMEM (2D culture) or a spheroid
617 TSM-complete for 3D culture (Peterziel et al., 2022) into 6 well plates (Greiner, 657160 for
618 adherent culture and Thermo Fisher, 174932 for suspension culture). Collagen coating was
619 employed for 2D culture to facilitate attachment for the first passage. After six *in vitro*

620 passages, cell lines were considered established. Dissociation of cells was performed with
621 Trypsin (Sigma, T4049) for 2D cultures and TrypLE (Invitrogen, 12604-013) for 3D cultures.
622 For cryopreservation, about 1-2 million cells, or 1000-3000 tumor spheroids or fragments,
623 were suspended in Synth-a-Freeze Cryopreservation Medium (Gibco, A1254201), placed in
624 gradual freezing aid (Thermo Fisher, #5100-0001), and moved to -80°C before transferal to
625 liquid nitrogen for long-term storage. All *in vitro* lines were cultured in a humidified
626 incubator at 37°C with 5% CO₂. The MycoAlert Kit (Biozym 883103) was regularly
627 employed to verify the absence of bacterial contamination with mycoplasma, in all cell lines.

628 **Plasmids and vectors**

629 Constructs cloned for and used in this study are listed in **Table S4**. For most electroporation
630 experiments, pSB_EF1a_MCS or pPB_EF1a_MCS vectors were used to insert oncogenic
631 open reading frames amplified from human cDNA or ordered as gene strands based on
632 publicly available coding sequences. Assembly was achieved by restriction insertion cloning
633 or Gibson assembly using the NEB Hifi kit (E2621L). For luciferase vectors, a point-mutated
634 version reported to be less immunogenic, albeit slightly less bright was used (Gürlevik et al.,
635 2016). Whole-plasmid sequencing was employed to ensure that plasmids maintained the
636 correct sequences. KRAS expression was validated in HEK293T cells via Western Blot after
637 transfection with PEI (Thermo Fisher, BMS1003-A). The ASPS model was generated in a
638 collaborative project with Priya Chudasama on “Immunogenomics characterization of
639 alveolar soft part sarcoma”.

640 sgRNAs were ordered as oligonucleotides from Sigma-Aldrich and inserted into the PX330
641 CRISPR vector (Addgene 42230) by digestion with BbsI. Correct insertion was validated by
642 Sanger Sequencing. sgRNAs were designed using Benchling.com, aiming to target the first
643 common exon across all isoforms with highest on- and lowest off-target scores. Five guides
644 per target gene were tested *in vitro* for their editing efficiency in N2A cells after transfection
645 using Lipofectamine 3000 (Thermo Fisher, L3000001). Where available previously published
646 guides were included. sgRNA sequences are listed in **Table S5**.

647 For *in vivo* electroporation, vectors were amplified by endotoxin-free Giga prep (Qiagen
648 12391 or Zymo Research D4204). NEB Stable chemically competent E. coli (NEB C3040H)
649 were used and cultured at 32°C. Giga preps were started from validated glycerol stocks in
650 6ml LB cultures, cultured overnight and used to inoculate 2.5l cultures, harvested the

651 following day for preparation. Final DNA pellets were taken up in about 200 μ l of PBS and
652 diluted to about 5-10 μ g/ μ l. For some experiments

653 the PBS was adjusted to a final concentration of 6 mg/ml of poly-L-glutamate (Sigma-
654 Aldrich, P4761). Plasmids were stored at 4°C for short-term and -20°C for long-term storage.
655 For electroporation, 4 μ g of transposase was mixed with 8 μ g of each transposon vector, 8 μ g
656 of each CRISPR vector and 8 μ g of each reporter vector as outlined in results. For P30 EPO
657 the plasmid mixture was adjusted to 1:100 with methylene blue dye (Sigma 50484) in PBS in
658 a final volume of 25 μ l per leg. For P0 EPO, methylene blue was used at 1:25 with a final
659 volume of 5 μ l. For Sleeping Beauty vectors (SB) SB13 transposase was used as *in vitro*
660 experiments did not show superiority of SB100X over SB13. For PiggyBac (PB) vectors,
661 PiggyBac transposase was used.

662 **Western blotting**

663 Cells were harvested, washed with PBS, and resuspended in RIPA buffer (Cell Signaling,
664 8906) with protease inhibitors (Sigma-Aldrich, 11836170001) for 30 minutes on ice under
665 regular vortexing. After centrifugation (15 minutes at 17,000 g, 4°C), protein lysates were
666 quantified using the BCA protein assay (Thermo Fisher, 23227). Samples were adjusted,
667 denatured in 2X Laemmli at 95°C for 5 minutes, and loaded onto 4-15% protein gels (Biorad,
668 Biorad 456-1084) at 30 μ g per well. Semi-dry blotting (Biorad, #1704150) transferred
669 proteins to a PVDF membrane, pre-activated with methanol. The membrane was blocked,
670 incubated with primary antibody overnight, washed, and incubated with a secondary
671 antibody. After a final wash, the membrane was incubated with ECL solution (Perkin-Elmer,
672 NEL103001EA) and developed on an Amersham Imager 680. For β -actin antibody (already
673 HRP-coupled), the secondary antibody step could be omitted. A list of utilized antibodies is
674 delineated in **Table S6**.

675 **Animal studies**

676 All animal experiments conducted in this study were carefully planned and approved by the
677 government of North Baden as the responsible legal authority (G-36/19, G-2/20, G-3/20).
678 The study adhered to the ARRIVE guidelines, European Community and GV-SOLAS
679 recommendations (86/609/EEC), and United Kingdom Coordinating Committee on Cancer
680 Research (UKCCCR) guidelines for the welfare and use of animals in cancer research.
681 Conscientious application of the 3R guideline (replacement, reduction, refinement) was

682 emphasized, prioritizing the reduction of potential suffering for the animals. Animals for this
683 study were purchased from Janvier laboratories and housed at the central DKFZ animal
684 facility under Specific Opportunist Pathogen-Free (SOPF) conditions, utilizing individually
685 ventilated cages. Animals had *ad libitum* access to food and water. Daily assessments of their
686 well-being were carried out by certified animal caretakers. Details on utilized mouse strains
687 (CD-1 and C57BL6/J) are given in **Table S7**.

688 ***In vivo* electroporation**

689 Electroporation of P30 (4-6 weeks old) animals: Preemptive oral analgesia (4 mg/ml
690 Metamizol in drinking water *ad libitum*, sweetened to achieve a final concentration of 1.5%
691 glucose) commenced one day before surgery and persisted for three days thereafter.
692 Additionally, animals received a single dose of 200 mg/kg metamizole subcutaneously under
693 anesthesia. Anesthesia was induced with 1.5-2.5% isoflurane under close monitoring of vital
694 functions before shaving the legs, disinfecting the operation field, and initiating the
695 procedure. A warming mat maintained stable body temperature. Bepanthen ointment
696 protected eyes from drying or keratitis. Mice were positioned on their backs on a sterile drape
697 with limbs gently secured. The quadriceps femoris muscle was surgically exposed bilaterally.
698 For most experiments, 25 μ l of hyaluronidase was intramuscularly injected to enhance
699 transfection efficiency before temporarily closing the skin with wound clips. After a two-hour
700 rest, clips were removed under anesthesia. In experiments without hyaluronidase pre-
701 treatment, muscle exposure was directly followed by electroporation. The blue plasmid
702 mixture was injected into the thigh muscle perpendicularly to the muscle fiber direction under
703 visual control using a calibrated Hamilton glass syringe (25 μ l, Model 702 RN, CAL7636-01)
704 with a 28G needle (Removable needle, 28G, point style 4, 7803-02). Thereafter, the exposed
705 muscle was directly placed between two 5 mm platinum plate electrodes (Nepagene,
706 CUY650P0.5-3), and 5 unidirectional 100V pulses of 35 ms length with 500 ms intervals (or
707 other conditions as outlined in results) were applied using a calibrated electroporator
708 (Nepagene, NEPA21). The procedure concluded with a final disinfection of the operation
709 field and wound closure through continuous suturing before the animals were placed in a
710 separate cage to recover under close supervision. The procedure was well-tolerated.

711 Electroporation of P0 (newborn) animals: Mother animals received additional nesting
712 material approximately one week before birth to mitigate the risk of offspring rejection post-
713 procedure. Following birth, pups underwent a brief separation of approximately 10-15

714 minutes from the dam, during which EPO was conducted under anesthesia with 1.5-2.5%
715 isoflurane. Pups were collectively placed on a warming mat beneath a sterile drape to
716 maintain stable body temperature. For EPO, mice were positioned on their backs, and limbs
717 were gently secured with sterile tape after gentle disinfecting the operation field. Due to the
718 delicate nature of newborn skin, surgical exposure of the muscle was omitted. Instead, 5 μ l of
719 plasmid mix, with 1:25 diluted methylene blue, was transcutaneously injected into the thigh
720 muscle of both legs using a calibrated Hamilton glass syringe (5 μ l, Model 75 RN, CAL7634-
721 01) with a 30G needle (Removable needle, point style 4, 7803-07). The higher concentration
722 of methylene blue allowed visually controlled injection, albeit slightly less precise than in
723 P30 mice. Subsequently, the leg was placed between two 5mm platinum plate electrodes, and
724 5 unidirectional 70 V pulses of 35 ms length with 500 ms intervals (or other conditions as
725 outlined in results) were applied using the Nepa21 electroporator. Post EPO, mouse pups
726 were reunited with their mother and left undisturbed. The procedure was well-tolerated. All
727 offspring from both CD1 and C57BL6/J mice were consistently well-accepted.

728 **Tumor surveillance *in vivo***

729 Caliper measurements: In addition to daily health assessments by certified animal caretakers,
730 comprehensive weekly examinations were carried out by scientific staff to detect tumors
731 through thigh palpation and identify associated signs of disease. Regular weight
732 measurements were also performed. Once a palpable tumor emerged, its length and width
733 were consistently measured using a digital caliper (Fine Science Tools, 30087-00), typically 3
734 times per week, with daily monitoring for rapidly growing tumors. Tumor volume was
735 determined using the formula: (length * width²)/2. Animals were observed for up to one year
736 post-electroporation unless tumor growth reached a maximum of 15mm in one dimension or
737 other termination criteria were met, which included weight loss of up to 20%, apathy,
738 abnormal posture, piloerection, respiratory problems, and specific signs on the Grimace Scale
739 (constricted eyelids, sunken eyes, flattened ears) (Whittaker et al., 2021), invasive growth
740 into thigh muscles causing functional limitations (lameness), disability, or pain, exulcerations
741 or automutilations. Neonatal mice were terminated if they exhibited the absence of a milk
742 spot, cannibalism, rejection by the mother, color change (from pink to blue or pale), or lack
743 of locomotion in response to touch stimuli. Mice were killed by cervical dislocation with or
744 without deep narcosis or increasing CO₂ concentrations. Newborns until P5 were killed by
745 decapitation.

746 *In vivo* bioluminescence imaging: When utilizing luciferase as a reporter gene, regular
747 monitoring of gene expression, transfection efficiency, and tumor growth was conducted
748 using IVIS (*In vivo* imaging system) bioluminescence imaging. D-luciferin (Enzo, 45784443)
749 was prepared in PBS (15 mg/ml), sterile-filtered, aliquoted into light-protected vials, and
750 stored at -20°C until use. Mice were anesthetized with 1.5-2.5% isoflurane, injected
751 intraperitoneally (i.p.) with luciferin (10 µl/g of mouse weight), and positioned in the IVIS
752 chamber on their backs with isoflurane administered through a mouthpiece. Bepanthen
753 ointment was used to protect their eyes. A 10-minute incubation period was followed by 7
754 minutes of image acquisition, determined to be optimal during the plateau phase of the IVIS
755 signal based on pilot experiments. Typically, three animals were imaged simultaneously.
756 When four to five animals were imaged concurrently, an XFOV-24 lens was used. After
757 imaging, mice were placed in a separate cage to recover. Living Image software
758 (PerkinElmer, version 4.5.5) was used for analysis. Regions of interest (ROIs) were defined
759 around the electroporated regions to quantify IVIS signal intensity as photons/second.

760 **Syngeneic allografting of mouse tumors**

761 Primary and *in vitro* cultured murine tumor material from EPO-GEMMs was purified and
762 dissociated as outlined above (cell culture section), quantified and re-engrafted syngeneically
763 into wildtype C57BL6/J recipient mice. Dissociated cells were counted using an automated
764 cell counter (Countess 3, Invitrogen, AMQAF2000), while 50-200µm sized and tumor
765 fragments and spheroids were manually counted in 10*5 µl droplets on a petri dish under a
766 light microscope (Zeiss, 491237-9880-010). The mean count of five droplets was used to
767 estimate the total number of fragments or spheroids. Cells, spheroids, and fragments were
768 then centrifuged and resuspended at concentrations of 1*10⁶ primary or cultured cells and
769 1000 spheroids or fragments per 12.5µl of FCS-free DMEM, which were kept on ice until
770 injection. Perioperative preparation was performed analogously to P30 EPO, except for
771 shaving, which was exclusively performed on the left leg. Mice were placed on their backs,
772 and extremities were gently fixed with sterile tape. A sterile pen was positioned diagonally
773 beneath the left leg to expose the thigh muscle. Just before engraftment, solutions containing
774 tumor fragments, tumor cells, or tumor spheroids were resuspended ice in 1:1 ratio with
775 Matrigel (Corning, 354277 or Thermo Fisher, A1413202) and loaded into a calibrated
776 Hamilton glass syringe (25 µl, Model 702 RN, CAL7636-01) equipped with a 28G needle
777 (Removable needle, 28G, point style 4, #7803-02). The injection was performed

778 transcutaneously into the thigh muscle perpendicularly to the muscle fiber direction under
779 visual control. Subsequently, mice were placed in a separate cage to recover.

780 **Genetic manipulation of murine tumor lines *in vitro***

781 Murine tumor lines were equipped with human B7-H3 target antigen
782 (ENST00000318443.10) or human CD19 antigen ([ENST00000538922.8](https://doi.org/10.1101/2024.01.30.577924)) by lentiviral
783 transduction and puromycin selection using standard protocols. In short, human CD276 or
784 CD19 was amplified from cDNA and truncated to contain only the first 10-15 intracellular
785 amino acids. The PCR product was cloned via HiFi DNA Assembly into the pCDH lentiviral
786 backbone to form pCDH-hCD276t/hCD19t-P2A-Pac-T2A-FlucL272A. Murine SAM cell
787 lines were transduced using standard lentivirus practice and continuously selected with 2
788 µg/ml puromycin.

789 **Generation of murine CAR-T cells**

790 Murine T lymphocytes were isolated from the spleens of 8-12 week-old wildtype C57BL/6J
791 mice using the Pan T Cell Isolation Kit II, mouse (Miltenyi Biotec, 130-095-130) following
792 the manufacturer's instructions. After isolation, cells were cultured in complete TexMACS
793 medium (Miltenyi Biotec, 130-097-196) supplemented with 10 % FBS, 1 % PenStrep, 50 µM
794 β-Mercaptoethanol (Gibco, 31350010) and 50 IU/ml premium-grade human IL2 (Miltenyi
795 Biotec, 130-097-746) at 1x10⁶ cells per mL and cm². Cells were stimulated using the T Cell
796 Activation/Expansion Kit, mouse (Miltenyi Biotec, 130-097-627) with a 2:1 bead:cell ratio.

797 The chimeric antigen receptor against human CD276 (Du et al., 2019) and CD19 (Maude et
798 al., 2018) together with the Thy1.1 surface antigen (Addgene 154194) (Umkehrer et al., 2021)
799 was cloned into pMSCV-U6sgRNA(BbsI)-PGKpuro2ABFP (Addgene 102796) (Henriksson
800 et al., 2019) in place of the puro2ABFP sequences, resulting in pMSCV-U6-sgRNA(BbsI)-
801 pgk-CD276_CAR-P2A-Thy1.1 and pMSCV-U6-sgRNA(BbsI)-pgk-CD19_CAR-P2A-
802 Thy1.1.

803 Ecotropic retrovirus was produced using the Platinum Eco cell line (Morita et al., 2000)
804 (Biocat, RV-101-GVO-CB). Briefly, cells were harvested and seeded with 10.5 x10⁶ cells per
805 15-cm-dish in complete DMEM without Pen/Strep 24 h prior to transfection. Cells were
806 transfected using Turbofect (Thermo Scientific, R0532) with 40 µg plasmid. Medium was
807 changed after 12-18 h post transfection and cells were incubated for another 24-30 h before
808 virus harvest. Virus was harvested, cleared once by centrifugation (800 g, 10 min, 32 °C),

809 pelleted overnight using Retro-X-Concentrator (Takara Bio, 631456) and resuspended in
810 complete TexMACS the next morning. Meanwhile, untreated 6-well cell culture plates
811 (Falcon, 351146) were coated with 15 μ g/ml retronectin solution (Takara Bio, T100A)
812 overnight at 4 °C. 24 h after T cell stimulation, T cells were pelleted and resuspended in
813 complete TexMACS. Per one retronectin-coated 6-well, 3.3×10^6 T cells were resuspended in
814 2 mL medium, and 2 ml concentrated virus supernatant (equaling virus yield from one 10-
815 cm-dish) was added. Cells were then spin-infected by centrifugation at 2,000 g for 90 min at
816 32 °C and incubated for another 12-24 h before transfer to 12 well plates at 2×10^6 cells per
817 well 2 ml of fresh medium. At day 5 cells were transferred to larger culture flasks for further
818 expansion. Experiments were performed at day 10. Control T cells underwent the same
819 procedure in the absence of any virus.

820 **Flow Cytometry**

821 Human B7-H3 expression on murine tumor cells and expression of immune cell markers
822 CD3 and Anti-B7-H3-CAR markers CD90.1 and myc-tag on murine T cells were quantified
823 using FACS. For B7-H3 FACS, tumor cells were harvested by incubation with PBS and
824 EDTA (20mM). Cells were stained with ZombieViolet (Biolegend, 423113, 1:500) and anti-
825 CD276-FITC (Miltenyi Biotec, 130-118-697, 1:50) following the manufacturer's
826 recommendations. CAR-T cells were stained using anti-CD90.1-VioBlue (Miltenyi Biotec,
827 130-112-878, 1:50), anti-c-myc-biotin and anti-biotin-PE (Miltenyi Biotec, 130-124-899 and
828 130-111-068, 1:50 each) and Helix NP NIR (Biolegend, 425301) following the
829 manufacturer's instructions. Fc block was performed using FcR blocking reagent (Miltenyi
830 Biotec, 130-092-575). Staining buffer consisted of PBS with 2 mM EDTA and 0.5% BSA,
831 except for ZombieViolet where PBS with EDTA was used. All samples were measured on a
832 LSR Fortessa (BD Bioscience), compensated on the cytometer using single-stain controls or
833 beads (Miltenyi Biotec, 130-104-693; and Biolegend, 424602) and analyzed in FlowJo v10
834 (BD Life Science). For analysis, cells were gated based on FSC/SSC signals and only live
835 cells were used for marker analysis.

836 **Preclinical treatment studies**

837 NTRK inhibitor treatment *in vitro*: 500-1000 cells per well cultured in full DMEM were
838 seeded into black flat-bottom 384 well plates (Greiner, 781091) for each cell line based on
839 preliminary experiments to determine the appropriate cell numbers based on baseline growth
840 rates. Each drug was pre-printed into 384 well plates in 10 doses, ranging from 0 to 10,000

841 nM of Larotrectinib (Medchem Express, HY-12866) and Repotrectinib (Medchem Express,
842 HY-103022) taken up in 99.9% DMSO (Sigma, D8418) in semi-logarithmic increments (in
843 amounts of 0, 1, 3.16, 10, 31.6, 100, 316, 1000, 3160, 10000 nM). 100 μ M of Benzethonium
844 chloride (Sigma, PHR1425) was used as a positive control. Staurosporin (TargetMol, T6680)
845 as a dose-dependent therapy response control with one technical replicate per dose and cell
846 line (in amounts of 0.1, 1, 10, 100, 1000 nM). For all other groups, four technical replicates
847 were used per dose and drug for each cell line. Edges of the plates were filled with PBS to
848 avoid edge effects. Order of drugs and doses was based on a random distribution to avoid
849 batch effects. Treatment effects were quantified 72 hours after cell seeding using calorimetric
850 ATP measurement with CellTiterGlo 2.0 (Promega, G7572) according to the manufacturer's
851 protocol and as described previously (Peterziel et al., 2022) using an Infinite M Plex plate
852 reader (Tecan). Data was analyzed with using the previously described iTrex algorithm
853 (ElHarouni et al., 2022) for quality control and to condense dose-response curves into
854 representative drug sensitivity scores (DSS) ranging from 0-50, 0 indicating resistance, >10
855 indicating sensitivity.

856 CAR-T treatment *in vitro*: 10^4 target cells (SA797_tll_2D-hCD276t) were seeded in 96-well
857 plates (Greiner, 655098) 24 h prior to addition of T cells. After 24 h of incubation, control T-
858 or anti-CD276-CAR-T cells were added to each well with indicated ratios relative to the
859 initially seeded tumor cell numbers. D-luciferin (Abcam, 143655) was added to a final
860 concentration of 150 μ g/ml. Luminescence was measured every 24 h using an Infinite M Plex
861 plate reader (Tecan) with 1 second integration time. Blank values were subtracted from all
862 other values, and percentage of killed cells was calculated as (1-(mean treated wells / mean
863 control wells)).

864 CAR-T treatment *in vivo*: Tumors were induced by engrafting 150,000 murine aRMS
865 previously transduced with human B7-H3 with 1:1 mixture of matrigel (Corning, 356234)
866 into the left thigh muscle of 7-week old female C57BL/6J mice. Treatment was started 10
867 days post tumor cell engraftment using *in vitro* expanded T cells at day 8 of expansion.
868 Activation beads were removed using the MACSiMag magnet (Miltenyi Biotec, 130-092-
869 168) and cells were taken up in PBS. Cell density was adjusted to indicated numbers based
870 on live cells and corrected for the fraction of CAR-positive T cells in 100 μ l injection
871 volume, applied via tail vein injection. Tumor-bearing mice were randomized for treatment.

872 **Tissue removal and processing**

873 Euthanized mice were carefully examined for metastatic disease of internal organs after
874 removing the skin. Tumors were photographed. Some animals underwent macroscopic
875 examination of GFP expression using a fluorescent dissection microscope (Leica, 25716).
876 Tumors were surgically separated from the femur and surrounding organs. To prevent cross-
877 contamination between tumors, all instruments were meticulously disinfected before handling
878 a new tumor. The tumor was dissected into multiple sections on an inverted Petri dish using a
879 microtome blade (VWR, 720-2369). One cross-section was placed in a histo cassette (Sigma,
880 H0792-1CS) and fixed in formalin for 2-3 days before transfer to 50% (v/v) ethanol at 4°C
881 until further processing. Another cross-section was embedded in cryo-embedding resin (OCT
882 compound, Tissue-Tek, 14291) and placed in a cryomold (Tissue-Tek, 14292), which was set
883 on a metal rack over dry ice for homogeneous snap freezing before transfer to -80°C. The
884 remaining tissue was sectioned into small tumor pieces (20-30mg), with portions allocated
885 for nucleic acid purification for molecular analysis (snap-frozen on dry ice) and tumor cell
886 isolation for cell culture and allografting into recipient mice.

887 **Nucleic acid extraction**

888 Before nucleic acid extraction, all surfaces and instruments underwent cleaning with RNase
889 decontamination reagent (Thermo Fisher, 7000TS1). DNA and RNA were extracted from the
890 same tumor tissue piece, approximately 20-30 mg in weight, using Qiagen's DNA/RNA
891 AllPrep kit (80204) following the manufacturer's protocol. If only DNA was required, the
892 Qiagen DNeasy kit (69506) was employed for purification. Tissue homogenization was
893 accomplished using DNase/RNase-free pestles (Carl Roth, CXH7.1), swirled in 1.5ml
894 Eppendorf tubes with a cordless pestle motor (DWK Life Sciences, 749540-0000). Lysates
895 were subsequently passed through a QIAshredder column (Qiagen, 79654) to eliminate debris
896 before proceeding with nucleic acid purification. Purified DNA and RNA were maintained on
897 ice, concentration was determined using Nanodrop and Qubit, and then stored at -20°C
898 (DNA) and -80°C (RNA) for subsequent analyses.

899 **Oncogene PCR from genomic DNA**

900 Genomic DNA, extracted from tumor samples and plasmid DNA as positive controls, served
901 as the template for polymerase chain reaction (PCR). 1 µl of genomic or plasmid DNA,
902 containing 10-100 ng of DNA, was combined with 12.5 µl of 2X Red HS Mastermix
903 (Biozym, #331126L), 1.25 µl of the forward primer, 1.25 µl of the reverse primer, and 9 µl of
904 water. PCR products were loaded onto 0.7-1% (w/v) agarose gels, along with 1 kb (NEB,

905 N3232L) and 100 bp (NEB, N3231) DNA ladders. Electrophoresis was conducted at 80-
906 110V until satisfactory separation was achieved, followed by imaging using a Gel doc imager
907 (Biorad, 170-8170). Primer sequences and PCR conditions for genotyping PCRs are outlined
908 in **Table S8**.

909 **Indel analysis from genomic DNA**

910 To assess the efficacy of CRISPR-mediated editing of tumor suppressor genes, primers were
911 designed to amplify the corresponding genomic loci spanning approximately 500-700 base
912 pairs around the sgRNA target site. PCR products were purified using NucleoSpin Gel and
913 PCR Clean-up Kit (MACHEREY-NAGEL, 740.609.250) and subsequently subjected to
914 Sanger sequencing through Microsynth Seqlab services, utilizing the corresponding forward
915 primer. The obtained sequences were aligned with the wildtype sequences derived from
916 mouse tail genomic DNA, using the TIDE algorithm (Tracking of Indels by Decomposition)
917 (Brinkman et al., 2014) (<http://shinyapps.datacurators.nl/tide/>) to calculate the percentage of
918 insertions and deletions. Primer sequences and PCR conditions for TIDE PCRs are outlined
919 in **Table S5**.

920 **Immunohistochemistry and multiplexed immunofluorescence imaging**

921 Immunohistochemistry: After fixation in 10% (v/v) buffered formalin (Sigma, HT501128)
922 for 2-3 days, tissue sections underwent a stepwise rehydration process in an alcohol series
923 using an automated tissue processor (Leica, ASP300S) until reaching a concentration of
924 ≥99% (v/v) ethanol. Subsequently, the tissue cassettes were transferred to intermediate
925 xylene and embedded in paraffin (Leica, 14039357258). 3-4 µm paraffin sections were
926 prepared with a HM 355S microtome (Fisher Scientific, 10862110), deparaffinized and
927 rehydrated up to 96% ethanol (v/v). H&E and PAS stainings were performed with standard
928 protocols. For H&E, 5 minutes of Haemalaun nuclear staining (Carl Roth, T865.3) was
929 followed by 5 minutes of rinsing with water and 20-30 seconds of Eosin solution (Merck,
930 115935, 100ml supplemented with one drop of acetic acid, Merck, 1.00063). For PAS
931 staining, periodic acid (Merck, 100524) was applied for 10 minutes, Schiff's reagent (Merck,
932 1.09033) for 5 minutes, Haemalaun nuclear staining (Carl Roth, T865.3) for 1 minute, and 5
933 minutes of rinsing. For immunohistochemistry, primary antibodies were typically diluted in
934 antibody Diluent (DAKO, S2022) with 2% milk (v/v) for 90 minutes at 37°C, followed by
935 four washes with TBST-T and application of biotinylated secondary antibodies against the
936 species of the primary antibody, typically diluted 1:500 in TBS-T for 30 minutes at 37°C.

937 This was followed by three washes and treatment with 1:200 alkaline phosphatase
938 streptavidin (Vector, SA-5100) in TBS-T for 30 minutes at 37°C. Signal amplification, if
939 necessary, involved another round of secondary antibody and alkaline phosphatase
940 streptavidin treatment. Finally, substrate red (Dako, K5005) was applied for 10 minutes at
941 room temperature before slides were washed, counterstained with Haemalaun (Carl Roth,
942 T865.3), and mounted with Aquatex (Sigma, 1.08562.0050). Antibodies and corresponding
943 antigen retrieval methods are listed in **Table S6**. Slides were scanned using the Aperio AT2
944 slide scanner (Leica, 23AT2100) at 40x magnification. Morphological assessment and
945 quantification of immunohistochemistry and morphological tumor features were conducted
946 with the expertise of pathologist Felix Kommoos in blinded fashion. Digitized image files
947 were analyzed using QuPath software (version 0.4.1) and assembled into final figures using
948 Affinity Designer software (version 1.10.5).

949 Multiplexed immunofluorescence imaging: Cryo-embedded mouse tumors (OCT compound,
950 Tissue-Tek, #14291) were cut to 4-5µm with a cryostat (Leica CM 1950, Leica Biosystems)
951 and positioned onto SuperFrost plus slides (R.Langenbrinck, 03-0060). Slides were stored at -
952 80 °C until use. Tissue fixation was performed with 4 % paraformaldehyde (Thermo
953 Scientific, J19943.K2) for 10 minutes at room temperature. Subsequently, slides were
954 mounted onto the respective MACSwell imaging frame (Miltenyi Biotec, 130-124-673),
955 washed 3 times with MACSima™ Running Buffer (Miltenyi Biotec, 130-121-565) before
956 nuclear staining was performed with DAPI (Miltenyi Biotec, 130-111-570) diluted 1:10 in
957 running buffer. Slides were washed three times with running buffer and submitted to MICS
958 (MACSima™ imaging cyclic staining). Antibodies were diluted with Running Buffer in a
959 MACSwell™ Deepwell Plates (Miltenyi Biotec, 130-126-865) in a total volume of 1050 µl.
960 Spatial analysis using MICS comprised fully automated iterative cycles of ultra-high content
961 immunofluorescence based on fluorochrome-labelled antibody staining, image acquisition,
962 and fluorochrome removal. Images were generated according to the manufacturer's
963 instructions and as described before (Kinkhabwala et al., 2022). In brief, regions of interest
964 were defined based on the DAPI signal and the focus was set using hardware autofocus
965 settings. Raw data was processed with the MACS® iQ View image analysis software
966 (Version 1.2.2) as described before (Kinkhabwala et al., 2022). Processing included
967 automated optimal exposure time selection, calibration correction, stitching of fields of view
968 (FoVs), and subtraction of pre-stain bleach images. Image quality control was assessed, data

969 was analyzed, and MICS data was visualized using MACS® iQ. Utilized antibodies and
970 dilutions are detailed in **Table S6**.

971 **DNA methylation and CNV analysis of murine tumors and tissue**

972 Genome-wide methylation profiling was performed using the Illumina Infinium Mouse
973 Methylation BeadChip covering > 285,000 CpG sites distributed over the mouse genome. A
974 minimum of 500ng of genomic DNA extracted from frozen tissue was submitted per sample.
975 DNA quality was ensured by digital gel electrophoresis (Agilent, G2939BA). IDAT files
976 were obtained and processed using the R package sesame, version 1.16.1 (SEnsible Step-wise
977 Analysis of DNA MEthylation BeadChips)(Zhou et al., 2018) to generate normalized beta
978 values. Probe intensities underwent background correction using the p-value with the out-of-
979 band array hybridization approach, followed by a normal-exponential out-of-band approach.
980 Dye bias correction was performed by aligning green and red to the midpoint using the
981 dyeBiasCorrTypeINorm method in sesame. Probes targeting the X and Y chromosomes were
982 excluded. Clustering analysis was performed with R packages Rtsne and umap based on the
983 2,000 or 10,000 most variably methylated probes, with perplexity values set to 5 for tSNE
984 and 15 for umap clustering. To infer CNV profiles, the method described in R package
985 conumee, version 1.32.0, was adapted for the mouse array. Specifically, a panel of n=60
986 normal tissue idat files from C57BL6 mice, kindly provided by Marc Zuckermann and Tuyu
987 Zheng (DKFZ) underwent the same sesame correction pipeline, and total probe intensities
988 were quantified across all probes in tumor and normal samples. The background ratio of
989 cancer sample to normal control intensities was determined using the slope of a linear model.
990 Subsequently, the log base 2 ratio of observed vs. expected intensity was calculated for every
991 probe. Probes were binned using sesame according to their mm285 array manifest, utilizing
992 the getBinCoordinates function. For heatmap visualization of copy number variation, the
993 color range representing the log fold change in probe intensities was set to -1 to +1.

994 **RNA sequencing analysis of murine tumors and tissue**

995 RNA exclusively sourced from fresh frozen tissues was, quality-controlled by digital gel
996 electrophoresis (Agilent, G2939BA). Only samples with RNA integrity scores (RIN)
997 exceeding 7 proceeded to library preparation using the TruSeq Stranded total mRNA
998 protocol, starting with 50 µl of undegraded RNA at concentrations ranging from 50 to 80
999 ng/µl per sample. Sequencing was carried out on Illumina's NovaSeq 6000 S1 or S4 flow cell

1000 with paired-end 50 bp reads, yielding an average of approximately 20 million reads per
1001 sample. Sequencing reads were aligned to the mouse reference genome (GRCm38mm10) by
1002 DKFZ's Omics IT and Data Management Core Facility (ODCF) using the One Touch
1003 Pipeline (OTP)264 / RNAseq workflow pipeline, version 1.3.0 (STAR Version 2.5.3a,
1004 Merging/duplication marking program: Sambamba Version 0.6.5. SAMtools program:
1005 Version 1.6.), resulting in raw counts, RPKM, and TPM values. Initial exploratory data
1006 analysis utilized the iDEP web collection of R packages (Ge et al., 2018). Further differential
1007 gene expression analysis was conducted with DeSeq2 in R Studio, version 2022.07.1.
1008 Additional R packages such as fgsea, clusterProfiler, biomaRt, and org.Mm.eg.db were
1009 employed for Gene Set Enrichment Analysis (GSEA) using publicly available gene set
1010 collections downloaded from MSigDB (Molecular Signatures Database). For cell
1011 deconvolution, RNA Seq data was processed using CibersortX in accordance with the
1012 developer's manual (<https://cibersortx.stanford.edu>)(Newman et al., 2019). The 'Tabula
1013 muris' dataset, a publicly accessible collection of single-cell RNA sequencing data from
1014 mice, including >100,000 annotated single cells representing more than 130 cell types across
1015 20 different organs (Tabula Muris Consortium et al., 2018) was used to create a reference
1016 matrix for cell type annotation. Batch correction parameters were set to S mode
1017 (recommended for single cell reference data).

1018 **Cross-species transcriptome analysis of mouse EPO-GEMMs and human sarcomas**

1019 To compare RNA-sequencing profiles between mouse and human sarcoma specimens, data
1020 of 2222 human sarcomas (TCGA, St. Judes and INFORM), representing more than 20
1021 common and rare soft-tissue and bone sarcoma entities, was assessed for the top 500 most
1022 differentially expressed genes in DEseq2 v1.30.1 ($\log_2FC > 2$, $FDR < 0.05$) in each subtype vs
1023 all other subtypes. The top 500 most differentially expressed genes were determined in the
1024 same way for n=63 mouse samples of primary GEMMs representing 10 subtypes entities. All
1025 selected human genes were matched to orthologs in mouse genes. In cases with no orthologs
1026 these genes could not be considered in the comparative analysis. The lists of mouse genes and
1027 orthologs from human genes were combined to a total of 2636 genes. This gene list was
1028 subsequently used to create matrix and batch correction was performed for species and
1029 sample type ("Muscle control" and dataset (St. Jude, TCGA and INFORM) using Harmony
1030 v0.10 (Korsunsky et al., 2019), implemented in R v4.0.3. These batch corrected values were
1031 then subjected to t-SNE clustering, excluding non-relevant entities that could not be clearly

1032 assigned to one entity or did not have matching mouse samples (e.g. Liposarcoma,
1033 Osteosarcoma or EwS).

1034 **Statistical analysis**

1035 Statistical analysis was performed as outlined in the respective figure captions for each
1036 experiment using R v4.0.3. Wherever suitable the Bonferroni-Holm method was used to
1037 correct for multiple testing. The provided sample size (n) indicates biological replicates.
1038 Group sizes for *in vivo* experiments were determined through statistical consultation in the
1039 Department of Biostatistics at the DKFZ, which included in silico simulations. Group
1040 allocation for preclinical treatment studies was determined through random distribution.
1041 Outcome assessment for preclinical treatment trials were done in blinded fashion. Other
1042 group allocations and outcome assessments were performed in non-blinded fashion. Survival
1043 was measured using the Kaplan-Maier method and log-rank tests. The threshold for
1044 significance was set to $P < 0.05$.

1045 **Figure preparation**

1046 Data was plotted using R v4.0.3 and Graphpad Prism version 8.4.3. Affinity Designer version
1047 1.10.5. and Biorender.com were used to generate graphical illustrations and arrange panels
1048 into final figures.

1049

1050 **CONFLICTS OF INTEREST**

1051 Ina Oehme receives research grants from PreComb, BVD and Day One Therapeutics.

1052

1053 **AUTHORS' CONTRIBUTIONS**

1054 R.I. conceived the study, designed, performed, and analyzed the experiments, and wrote the
1055 manuscript. A.B. conceived and coordinated the study, designed experiments, acquired
1056 funding and wrote the manuscript. S.M.P. acquired resources, funding and writing-review.
1057 D.B., S.P., M.H., S.S., C.S., F.H.G., M.v.E., and F.C-A. performed and analyzed some
1058 experiments. F.K.F.K., T.G.P.G., and C.V. performed expert histopathology review. E.S.Z.,
1059 R.A., M.S., and C.B. performed bioinformatic analyses. D.L., L.S., L.W., C.W., and C.Schm.
1060 assisted with experiments. I.Oe., H.P., K.J., P.Ch., C. Scho., and P.G. provided essential
1061 materials and information. All authors read, revised and approved the final manuscript for
1062 publication.

1063

1064 **ACKNOWLEDGEMENTS**

1065 We thank Daisuke Kawauchi, Joseph Leibold and Kerstin Dell for insightful discussions
1066 regarding the development of a muscle-specific electroporation method and members of the
1067 soft-tissue sarcoma lab for feedback and fruitful discussions. Darjus Tschaharganeh, Hsuan-
1068 An Chen (Scott Lowe lab) and Rienk Offringa for sharing reagents. We thank the light
1069 microscopy core facility, the genomics and proteomics core facility and the small animal
1070 imaging center, along with the outstanding and dedicated team of animal caretakers at the
1071 DKFZ, for their exceptional support and services. We thank Tim Holland-Letz and the
1072 Department of Biostatistics of the DKFZ for statistical consultation. We thank Veronika
1073 Eckel and Alexander Brobeil from the Tissue Bank of the National Center for Tumor
1074 Diseases (NCT) Heidelberg, Germany for their excellent services in scanning of histology
1075 slides. We express our gratitude to Marie Koloseus for her preliminary work in establishing a
1076 mouse antibody panel for multiplexed immunofluorescence imaging. We thank Veronika
1077 Bahlinger, Christian Schürch and Benjamin Mayer for supplying additional human histology
1078 specimens. We express our gratitude to Katharina Hartwig for her valuable contribution to
1079 graphic design. This project has received funding from the European Research Council
1080 (ERC) under the European Union's Horizon 2020 research and innovation program (grant

1081 agreement n° 805338) (A.B.) as well as the Physician-Scientist Program of the University of
1082 Heidelberg, Faculty of Medicine (R.I.). D.B. is supported by the DKFZ International PhD
1083 Program. Work in the laboratories of A.B., T.G.P.G., S.M.F., P.C. and C.S. is supported by
1084 the HEROES-AYA (Heterogeneity, Evolution, and Resistance in Oncogenic Fusion Gene-
1085 Expressing Sarcomas Affecting Adolescents and Young Adults) consortium within the
1086 National Decade Against Cancer of the German Federal Ministry of Education and Research
1087 (01KD2207). T.G.P.G. acknowledges support of the Barbara and Wilfried Mohr foundation.
1088 P.C. receives support from an Emmy Noether Program Grant CH2302 of the DFG (German
1089 Research Foundation). Finally, we express our deepest gratitude to all pediatric and adult
1090 patients affected by sarcomas who have provided us with inspiration and motivation to
1091 pursue this work.

1092 **REFERENCES**

1093 Abraham, J., Nuñez-Álvarez, Y., Hettmer, S., Carrió, E., Chen, H.I.H., Nishijo, K., Huang,
1094 E.T., Prajapati, S.I., Walker, R.L., Davis, S., et al. (2014). Lineage of origin in
1095 rhabdomyosarcoma informs pharmacological response. *Genes Dev.* 28, 1578–1591.

1096 Antonescu, C., Blay, J., and WHO Classification of Tumours Editorial Board eds. (2020).
1097 World Health Organization classification of soft tissue and bone tumours.

1098 Astolfi, A., Fiore, M., Melchionda, F., Indio, V., Bertuccio, S.N., and Pession, A. (2019).
1099 BCOR involvement in cancer. *Epigenomics* 11, 835–855.

1100 Baldauf, M.C., Gerke, J.S., Kirschner, A., Blaeschke, F., Effenberger, M., Schober, K.,
1101 Rubio, R.A., Kanaseki, T., Kiran, M.M., Dallmayer, M., et al. (2018). Systematic
1102 identification of cancer-specific MHC-binding peptides with RAVEN. *Oncoimmunology* 7,
1103 1–10.

1104 Banito, A., Li, X., Laporte, A.N., Roe, J.-S., Sanchez-Vega, F., Huang, C.-H., Dancsok, A.R.,
1105 Hatzi, K., Chen, C.-C., Tschaharganeh, D.F., et al. (2018). The SS18-SSX Oncoprotein
1106 Hijacks KDM2B-PRC1.1 to Drive Synovial Sarcoma. *Cancer Cell* 33, 527-541.e8.

1107 Barrott, J.J., Kafchinski, L.A., Jin, H., Potter, J.W., Kannan, S.D., Kennedy, R., Mosbruger,
1108 T., Wang, W.-L., Tsai, J.-W., Araujo, D.M., et al. (2016). Modeling synovial sarcoma
1109 metastasis in the mouse: PI3'-lipid signaling and inflammation. *J. Exp. Med.* 213, 2989–
1110 3005.

1111 Baslan, T., Morris, J.P., Zhao, Z., Reyes, J., Ho, Y.J., Tsanov, K.M., Bermeo, J., Tian, S.,
1112 Zhang, S., Askan, G., et al. (2022). Ordered and deterministic cancer genome evolution after
1113 p53 loss. *Nature* 608, 795–802.

1114 El Beaino, M., Jupiter, D.C., Assi, T., Rassy, E., Lazar, A.J., Araujo, D.M., and Lin, P.P.
1115 (2020). Diagnostic Value of TLE1 in Synovial Sarcoma: A Systematic Review and Meta-
1116 Analysis. *Sarcoma* 2020, 7192347.

1117 Brinkman, E.K., Chen, T., Amendola, M., and van Steensel, B. (2014). Easy quantitative
1118 assessment of genome editing by sequence trace decomposition. *Nucleic Acids Res.* 42, e168.

1119 Brohl, A.S., Sindiri, S., Wei, J.S., Milewski, D., Chou, H.-C., Song, Y.K., Wen, X., Kumar,
1120 J., Reardon, H. V., Mudunuri, U.S., et al. (2021). Immuno-transcriptomic profiling of
1121 extracranial pediatric solid malignancies. *Cell Rep.* 37, 110047.

1122 Capper, D., Jones, D.T.W., Sill, M., Hovestadt, V., Schrimpf, D., Sturm, D., Koelsche, C.,
1123 Sahm, F., Chavez, L., Reuss, D.E., et al. (2018). DNA methylation-based classification of
1124 central nervous system tumours. *Nature* *555*, 469–474.

1125 Davis, S.R., and Meltzer, P.S. (2007). Modeling synovial sarcoma: timing is everything.
1126 *Cancer Cell* *11*, 305–307.

1127 Demicco, E., Ding, L., Ladanyi, M., Lazar, A.J., and Singer, S. (2017). Comprehensive and
1128 Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. *Cell* *171*, 950-965.e28.

1129 Dodd, R.D., Añó, L., Blum, J.M., Li, Z., Van Mater, D., and Kirsch, D.G. (2015). Methods to
1130 generate genetically engineered mouse models of soft tissue sarcoma. *Methods Mol. Biol.*
1131 *1267*, 283–295.

1132 Dow, L.E., Fisher, J., O'Rourke, K.P., Muley, A., Kastenhuber, E.R., Livshits, G.,
1133 Tschaharganeh, D.F., Soccia, N.D., and Lowe, S.W. (2015). Inducible in vivo genome editing
1134 with CRISPR-Cas9. *Nat. Biotechnol.* *33*, 390–394.

1135 Du, H., Hirabayashi, K., Ahn, S., Kren, N.P., Montgomery, S.A., Wang, X., Tiruthani, K.,
1136 Mirlekar, B., Michaud, D., Greene, K., et al. (2019). Antitumor Responses in the Absence of
1137 Toxicity in Solid Tumors by Targeting B7-H3 via Chimeric Antigen Receptor T Cells.
1138 *Cancer Cell* *35*, 221-237.e8.

1139 ElHarouni, D., Berker, Y., Peterziel, H., Gopisetty, A., Turunen, L., Kreth, S., Stainczyk,
1140 S.A., Oehme, I., Pietiäinen, V., Jäger, N., et al. (2022). iTReX: Interactive exploration of
1141 mono- and combination therapy dose response profiling data. *Pharmacol. Res.* *175*, 105996.

1142 Feng, W., Herbst, L., Lichter, P., Pfister, S.M., Liu, H.-K., and Kawauchi, D. (2018).
1143 CRISPR-mediated Loss of Function Analysis in Cerebellar Granule Cells Using In Utero
1144 Electroporation-based Gene Transfer. *J. Vis. Exp.* *2018*, 1–8.

1145 Ge, S.X., Son, E.W., and Yao, R. (2018). iDEP: an integrated web application for differential
1146 expression and pathway analysis of RNA-Seq data. *BMC Bioinformatics* *19*, 534.

1147 Gengenbacher, N., Singhal, M., and Augustin, H.G. (2017). Preclinical mouse solid tumour
1148 models: Status quo, challenges and perspectives. *Nat. Rev. Cancer* *17*, 751–765.

1149 Gerstung, M., Jolly, C., Leshchiner, I., Dentro, S.C., Gonzalez, S., Rosebrock, D., Mitchell,
1150 T.J., Rubanova, Y., Anur, P., Yu, K., et al. (2020). The evolutionary history of 2,658 cancers.
1151 *Nature* *578*, 122–128.

1152 Goodwin, M.L., Jin, H., Straessler, K., Smith-Fry, K., Zhu, J.-F., Monument, M.J.,
1153 Grossmann, A., Randall, R.L., Capecchi, M.R., and Jones, K.B. (2014). Modeling alveolar
1154 soft part sarcomagenesis in the mouse: a role for lactate in the tumor microenvironment.
1155 *Cancer Cell* *26*, 851–862.

1156 Grünewald, T.G., Alonso, M., Avnet, S., Banito, A., Burdach, S., Cidre-Aranaz, F., Di
1157 Pompo, G., Distel, M., Dorado-Garcia, H., Garcia-Castro, J., et al. (2020). Sarcoma
1158 treatment in the era of molecular medicine. *EMBO Mol. Med.* *12*, 1–33.

1159 Gryder, B.E., Yohe, M.E., Chou, H.-C., Zhang, X., Marques, J., Wachtel, M., Schaefer, B.,
1160 Sen, N., Song, Y., Gualtieri, A., et al. (2017). PAX3-FOXO1 Establishes Myogenic Super
1161 Enhancers and Confers BET Bromodomain Vulnerability. *Cancer Discov.* *7*, 884–899.

1162 Gürlevik, E., Fleischmann-Mundt, B., Brooks, J., Demir, I.E., Steiger, K., Ribback, S.,
1163 Yevsa, T., Woller, N., Kloos, A., Ostroumov, D., et al. (2016). Administration of
1164 Gemcitabine After Pancreatic Tumor Resection in Mice Induces an Antitumor Immune
1165 Response Mediated by Natural Killer Cells. *Gastroenterology* *151*, 338–350.e7.

1166 Haldar, M., Hancock, J.D., Coffin, C.M., Lessnick, S.L., and Capecchi, M.R. (2007). A
1167 Conditional Mouse Model of Synovial Sarcoma: Insights into a Myogenic Origin. *Cancer*
1168 *Cell* *11*, 375–388.

1169 Han, W.G.H., Unger, W.W.J., and Wauben, M.H.M. (2008). Identification of the
1170 immunodominant CTL epitope of EGFP in C57BL/6 mice. *Gene Ther.* *15*, 700–701.

1171 Han, Z.-Y., Richer, W., Fréneaux, P., Chauvin, C., Lucchesi, C., Guillemot, D., Grison, C.,
1172 Lequin, D., Pierron, G., Masliah-Planchon, J., et al. (2016). The occurrence of intracranial
1173 rhabdoid tumours in mice depends on temporal control of Smarcb1 inactivation. *Nat.*
1174 *Commun.* *7*, 10421.

1175 Henriksson, J., Chen, X., Gomes, T., Ullah, U., Meyer, K.B., Miragaia, R., Duddy, G.,
1176 Pramanik, J., Yusa, K., Lahesmaa, R., et al. (2019). Genome-wide CRISPR Screens in T
1177 Helper Cells Reveal Pervasive Crosstalk between Activation and Differentiation. *Cell* *176*,
1178 882–896.e18.

1179 Huang, J., Chen, M., Whitley, M.J., Kuo, H.-C., Xu, E.S., Walens, A., Mowery, Y.M., Van
1180 Mater, D., Eward, W.C., Cardona, D.M., et al. (2017). Generation and comparison of
1181 CRISPR-Cas9 and Cre-mediated genetically engineered mouse models of sarcoma. *Nat.*

1182 Commun. 8, 15999.

1183 Imle, R., Kommoß, F.K.F., and Banito, A. (2021). Preclinical In Vivo Modeling of Pediatric
1184 Sarcoma—Promises and Limitations. *J. Clin. Med.* *10*.

1185 Jones, D.T.W., Banito, A., Grünwald, T.G.P., Haber, M., Jäger, N., Kool, M., Milde, T.,
1186 Molenaar, J.J., Nabbi, A., Pugh, T.J., et al. (2019). Molecular characteristics and therapeutic
1187 vulnerabilities across paediatric solid tumours. *Nat. Rev. Cancer* *19*, 420–438.

1188 Jung, J., Seol, H.S., and Chang, S. (2018). The Generation and Application of Patient-
1189 Derived Xenograft Model for Cancer Research. *Cancer Res. Treat.* *50*, 1–10.

1190 Kannan, S., Lock, I., Ozenberger, B.B., and Jones, K.B. (2021). Genetic drivers and cells of
1191 origin in sarcomagenesis. *J. Pathol.* *254*, 474–493.

1192 Keller, C., and Capecchi, M.R. (2005). New genetic tactics to model alveolar
1193 rhabdomyosarcoma in the mouse. *Cancer Res.* *65*, 7530–7532.

1194 Keller, C., Arenkiel, B.R., Coffin, C.M., El-Bardeesy, N., DePinho, R.A., and Capecchi,
1195 M.R. (2004). Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of
1196 Ink4a/ARF and Trp53 loss of function. *Genes Dev.* *18*, 2614–2626.

1197 Kinkhabwala, A., Herbel, C., Pankratz, J., Yushchenko, D.A., Rüberg, S., Praveen, P., Reiß,
1198 S., Rodriguez, F.C., Schäfer, D., Kollet, J., et al. (2022). MACSima imaging cyclic staining
1199 (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid
1200 tumors. *Sci. Rep.* *12*, 1911.

1201 Koelsche, C., Schrimpf, D., Stichel, D., Sill, M., Sahm, F., Reuss, D.E., Blattner, M., Worst,
1202 B., Heilig, C.E., Beck, K., et al. (2021). Sarcoma classification by DNA methylation
1203 profiling. *Nat. Commun.* *12*, 498.

1204 Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y.,
1205 Brenner, M., Loh, P.-R., and Raychaudhuri, S. (2019). Fast, sensitive and accurate integration
1206 of single-cell data with Harmony. *Nat. Methods* *16*, 1289–1296.

1207 Kutscher, L.M., Okonechnikov, K., Batora, N. V., Clark, J., Silva, P.B.G., Vouri, M., van
1208 Rijn, S., Sieber, L., Statz, B., Gearhart, M.D., et al. (2020). Functional loss of a noncanonical
1209 BCOR-PRC1.1 complex accelerates SHH-driven medulloblastoma formation. *Genes Dev.*
1210 *34*, 1161–1176.

1211 Lang, G.A., Iwakuma, T., Suh, Y.A., Liu, G., Rao, V.A., Parant, J.M., Valentin-Vega, Y.A.,
1212 Terzian, T., Caldwell, L.C., Strong, L.C., et al. (2004). Gain of function of a p53 hot spot
1213 mutation in a mouse model of Li-Fraumeni syndrome. *Cell* *119*, 861–872.

1214 LeSavage, B.L., Suhar, R.A., Broguiere, N., Lutolf, M.P., and Heilshorn, S.C. (2022). Next-
1215 generation cancer organoids. *Nat. Mater.* *21*, 143–159.

1216 Li, J., Mulvihill, T.S., Li, L., Barrott, J.J., Nelson, M.L., Wagner, L., Lock, I.C., Pozner, A.,
1217 Lambert, S.L., Ozenberger, B.B., et al. (2021). A role for SMARCB1 in synovial
1218 sarcomagenesis reveals that SS18–SSX induces canonical BAF destruction. *Cancer Discov.*
1219 *11*, 2620–2637.

1220 Lima, A., and Maddalo, D. (2021). SEMMs: Somatically Engineered Mouse Models. A New
1221 Tool for In Vivo Disease Modeling for Basic and Translational Research. *Front. Oncol.* *11*,
1222 667189.

1223 Maude, S.L., Laetsch, T.W., Buechner, J., Rives, S., Boyer, M., Bittencourt, H., Bader, P.,
1224 Verneris, M.R., Stefanski, H.E., Myers, G.D., et al. (2018). Tisagenlecleucel in Children and
1225 Young Adults with B-Cell Lymphoblastic Leukemia. *N. Engl. J. Med.* *378*, 439–448.

1226 McLeod, C., Gout, A.M., Zhou, X., Thrasher, A., Rahbarinia, D., Brady, S.W., Macias, M.,
1227 Birch, K., Finkelstein, D., Sunny, J., et al. (2021). St. Jude Cloud: A Pediatric Cancer
1228 Genomic Data-Sharing Ecosystem. *Cancer Discov.* *11*, 1082–1099.

1229 McMahon, J.M., Signori, E., Wells, K.E., Fazio, V.M., and Wells, D.J. (2001). Optimisation
1230 of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase --
1231 increased expression with reduced muscle damage. *Gene Ther.* *8*, 1264–1270.

1232 Morita, S., Kojima, T., and Kitamura, T. (2000). Plat-E: an efficient and stable system for
1233 transient packaging of retroviruses. *Gene Ther.* *7*, 1063–1066.

1234 Newman, A.M., Steen, C.B., Liu, C.L., Gentles, A.J., Chaudhuri, A.A., Scherer, F.,
1235 Khodadoust, M.S., Esfahani, M.S., Luca, B.A., Steiner, D., et al. (2019). Determining cell
1236 type abundance and expression from bulk tissues with digital cytometry. *Nat. Biotechnol.* *37*,
1237 773–782.

1238 Nicol, F., Wong, M., MacLaughlin, F.C., Perrard, J., Wilson, E., Nordstrom, J.L., and Smith,
1239 L.C. (2002). Poly-L-glutamate, an anionic polymer, enhances transgene expression for
1240 plasmids delivered by intramuscular injection with in vivo electroporation. *Gene Ther.* *9*,

1241 1351–1358.

1242 Olive, K.P., Tuveson, D.A., Ruhe, Z.C., Yin, B., Willis, N.A., Bronson, R.T., Crowley, D.,
1243 and Jacks, T. (2004). Mutant p53 gain of function in two mouse models of Li-Fraumeni
1244 syndrome. *Cell* *119*, 847–860.

1245 Perry, J.A., Seong, B.K.A., and Stegmaier, K. (2019). Biology and Therapy of Dominant
1246 Fusion Oncoproteins Involving Transcription Factor and Chromatin Regulators in Sarcomas.
1247 <Https://Doi.Org/10.1146/Annurev-Cancerbio-030518-055710> *3*, 299–321.

1248 Peterziel, H., Jamaladdin, N., ElHarouni, D., Gerloff, X.F., Herter, S., Fiesel, P., Berker, Y.,
1249 Blattner-Johnson, M., Schramm, K., Jones, B.C., et al. (2022). Drug sensitivity profiling of
1250 3D tumor tissue cultures in the pediatric precision oncology program INFORM. *NPJ Precis.*
1251 *Oncol.* *6*, 94.

1252 Pfister, S.M., Reyes-Múgica, M., Chan, J.K.C., Hasle, H., Lazar, A.J., Rossi, S., Ferrari, A.,
1253 Jarzemowski, J.A., Pritchard-Jones, K., Hill, D.A., et al. (2022). A Summary of the
1254 Inaugural WHO Classification of Pediatric Tumors: Transitioning from the Optical into the
1255 Molecular Era. *Cancer Discov.* *12*, 331–355.

1256 Pondrom, M., Bougeard, G., Karanian, M., Bonneau-Lagacherie, J., Boulanger, C., Boutroux,
1257 H., Briandet, C., Chevreau, C., Corradini, N., Coze, C., et al. (2020). Rhabdomyosarcoma
1258 associated with germline TP53 alteration in children and adolescents: The French experience.
1259 *Pediatr. Blood Cancer* *67*, e28486.

1260 Rapanotti, M.C., Cugini, E., Nuccetelli, M., Terrinoni, A., Di Raimondo, C., Lombardo, P.,
1261 Costanza, G., Cosio, T., Rossi, P., Orlandi, A., et al. (2021). MCAM/MUC18/CD146 as a
1262 Multifaceted Warning Marker of Melanoma Progression in Liquid Biopsy. *Int. J. Mol. Sci.*
1263 *22*, 1–22.

1264 Sandler, G., Yokoi, A., and Hayes-Jordan, A. (2019). An update in the management of
1265 pediatric sarcoma. *Curr. Opin. Pediatr.* *31*, 368–377.

1266 Schaefer, E.J., Wang, H.C., Karp, H.Q., Meyer, C.A., Cejas, P., Gearhart, M.D., Adelman,
1267 E.R., Fares, I., Apffel, A., Lim, K., et al. (2022). BCOR and BCORL1 Mutations Drive
1268 Epigenetic Reprogramming and Oncogenic Signaling by Unlinking PRC1.1 from Target
1269 Genes. *Blood Cancer Discov.* *3*, 116–135.

1270 Schöpf, J., Uhrig, S., Heilig, C.E., Lee, K., Walther, T., Carazzato, A., Dobberkau, A.M.,

1271 Weichenhan, D., Plass, C., Hartmann, M., et al. (2024). Multi-omic and functional analysis
1272 for classification and treatment of sarcomas with FUS-TFCP2 or EWSR1-TFCP2 fusions.
1273 *Nat. Commun.* *15*, 51.

1274 Shern, J.F., Selfe, J., Izquierdo, E., Patidar, R., Chou, H.-C., Song, Y.K., Yohe, M.E., Sindiri,
1275 S., Wei, J., Wen, X., et al. (2021). Genomic Classification and Clinical Outcome in
1276 Rhabdomyosarcoma: A Report From an International Consortium. *J. Clin. Oncol.* *39*, 2859–
1277 2871.

1278 Skelton, D., Satake, N., and Kohn, D.B. (2001). The enhanced green fluorescent protein
1279 (eGFP) is minimally immunogenic in C57BL/6 mice. *Gene Ther.* *8*, 1813–1814.

1280 Sorokin, M., Kholodenko, I., Kalinovsky, D., Shamanskaya, T., Doronin, I., Konovalov, D.,
1281 Mironov, A., Kuzmin, D., Nikitin, D., Deyev, S., et al. (2020). RNA Sequencing-Based
1282 Identification of Ganglioside GD2-Positive Cancer Phenotype. *Biomedicines* *8*.

1283 Stewart, E., Federico, S.M., Chen, X., Shelat, A.A., Bradley, C., Gordon, B., Karlstrom, A.,
1284 Twarog, N.R., Clay, M.R., Bahrami, A., et al. (2017). Orthotopic patient-derived xenografts
1285 of paediatric solid tumours. *Nature* *549*, 96–100.

1286 Sullivan, P.M., Kumar, R., Li, W., Hoglund, V., Wang, L., Zhang, Y., Shi, M., Beak, D.,
1287 Cheuk, A., Jensen, M.C., et al. (2022). FGFR4-Targeted Chimeric Antigen Receptors
1288 Combined with Anti-Myeloid Polypharmacy Effectively Treat Orthotopic
1289 Rhabdomyosarcoma. *Mol. Cancer Ther.* *21*, 1608–1621.

1290 Sultan, I., Rodriguez-Galindo, C., Saab, R., Yasir, S., Casanova, M., and Ferrari, A. (2009).
1291 Comparing children and adults with synovial sarcoma in the Surveillance, Epidemiology, and
1292 End Results program, 1983 to 2005: an analysis of 1268 patients. *Cancer* *115*, 3537–3547.

1293 Tabula Muris Consortium, Overall coordination, Logistical coordination, Organ collection
1294 and processing, Library preparation and sequencing, Computational data analysis, Cell type
1295 annotation, Writing group, Supplemental text writing group, and Principal investigators
1296 (2018). Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. *Nature* *562*,
1297 367–372.

1298 Tazzari, M., Bergamaschi, L., De Vita, A., Collini, P., Barisella, M., Bertolotti, A., Ibrahim,
1299 T., Pasquali, S., Castelli, C., and Vallacchi, V. (2021). Molecular Determinants of Soft Tissue
1300 Sarcoma Immunity: Targets for Immune Intervention. *Int. J. Mol. Sci.* *22*.

1301 van Tilburg, C.M., Pfaff, E., Pajtler, K.W., Langenberg, K.P.S., Fiesel, P., Jones, B.C.,
1302 Balasubramanian, G.P., Stark, S., Johann, P.D., Blattner-Johnson, M., et al. (2021). The
1303 Pediatric Precision Oncology INFORM Registry: Clinical Outcome and Benefit for Patients
1304 with Very High-Evidence Targets. *Cancer Discov.* *11*, 2764–2779.

1305 Tsoukalas, N., Kiakou, M., Nakos, G., Tolia, M., Galanopoulos, M., Tsapakidis, K.,
1306 Kamposioras, K., Christofyllakis, C., Dimitrakopoulos, G., and Sambaziotis, D. (2020).
1307 Desmoplastic small round-cell tumour of the peritoneal cavity: case report and literature
1308 review. *Ann. R. Coll. Surg. Engl.* *102*, e77–e81.

1309 Umkehrer, C., Holstein, F., Formenti, L., Jude, J., Froussios, K., Neumann, T., Cronin, S.M.,
1310 Haas, L., Lipp, J.J., Burkard, T.R., et al. (2021). Isolating live cell clones from barcoded
1311 populations using CRISPRa-inducible reporters. *Nat. Biotechnol.* *39*, 174–178.

1312 Wang, X.-D., Tang, J.-G., Xie, X., Yang, J.-C., Li, S., Ji, J.-G., and Gu, J. (2005). A
1313 comprehensive study of optimal conditions for naked plasmid DNA transfer into skeletal
1314 muscle by electroporation. *J. Gene Med.* *7*, 1235–1245.

1315 Whittaker, A.L., Liu, Y., and Barker, T.H. (2021). Methods Used and Application of the
1316 Mouse Grimace Scale in Biomedical Research 10 Years on: A Scoping Review. *Anim. an*
1317 Open Access J. from MDPI *11*, 1–27.

1318 Wisdom, A.J., Mowery, Y.M., Hong, C.S., Himes, J.E., Nabet, B.Y., Qin, X., Zhang, D.,
1319 Chen, L., Fradin, H., Patel, R., et al. (2020). Single cell analysis reveals distinct immune
1320 landscapes in transplant and primary sarcomas that determine response or resistance to
1321 immunotherapy. *Nat. Commun.* *11*, 6410.

1322 Wu, C.-C., Beird, H.C., Lamhamdi-Cherradi, S.-E., Soeung, M., Ingram, D., Truong, D.D.,
1323 Porter, R.W., Krishnan, S., Little, L., Gumbs, C., et al. (2022). Multi-site desmoplastic small
1324 round cell tumors are genetically related and immune-cold. *NPJ Precis. Oncol.* *6*, 21.

1325 Young, J.L., and Dean, D.A. (2015). Electroporation-Mediated Gene Delivery.

1326 Zaneti, A.B., Yamamoto, M.M., Sulczewski, F.B., Almeida, B. da S., Souza, H.F.S., Ferreira,
1327 N.S., Maeda, D.L.N.F., Sales, N.S., Rosa, D.S., Ferreira, L.C. de S., et al. (2019). Dendritic
1328 Cell Targeting Using a DNA Vaccine Induces Specific Antibodies and CD4+ T Cells to the
1329 Dengue Virus Envelope Protein Domain III. *Front. Immunol.* *10*, 59.

1330 Zhou, W., Triche, T.J., Laird, P.W., and Shen, H. (2018). SeSAMe: Reducing artifactual

1331 detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids
1332 Res. 46, 1–15.

1333 Zhou, W., Hinoue, T., Barnes, B., Mitchell, O., Iqbal, W., Lee, S.M., Foy, K.K., Lee, K.-H.,
1334 Moyer, E.J., VanderArk, A., et al. (2022). DNA methylation dynamics and dysregulation
1335 delineated by high-throughput profiling in the mouse. Cell Genomics 2.

1336

1337 **FIGURE LEGENDS**

1338 **Figure. 1 |An optimized protocol allows efficient *in vivo* genetic manipulation of mouse**
1339 **muscle tissue**

1340 **A)** Scheme of electroporation procedure in P30 and P0 animals. **B)** Illustration of utilized
1341 transposon and CRISPR vectors. KGL = EF1a-KRAS-IRES-eGFP-P2A-Luc; K+L = EF1a-
1342 KRAS + PGK-Luc; **C)** Western blot of HEK293T cells transfected with vectors used for
1343 electroporation **D)** Kaplan-Meier curves of tumor-free survival after electroporation (K+L) **E)**
1344 Exemplary images of mice during the electroporation procedure, upon removal of tumors and
1345 bioluminescence imaging. Scale bars equal 5mm. **F)** H&E histographs exemplifying typical
1346 histological appearance of tumors driven by oncogenic *KRAS* and *Trp53* inactivation. Scale
1347 bars equal 100 μ m. **G)** Agarose gel electrophoresis from tumor gDNA for transposed *RAS* **H)**
1348 TIDE analysis knockout efficiency in tumor compared to wildtype (tail) control tissue.

1349 **Figure 2 | Modeling diverse subtypes of fusion-driven sarcoma**

1350 **A)** Scheme of versatile vector combination for *in situ* sarcoma induction. Reporter genes
1351 were not utilized here. **B)** Matrix of vector combinations chosen based on human sarcoma
1352 profiling studies. **C)** Kaplan-Meier curves of murine aRMS induction and representative
1353 histographs compared to human aRMS (**D**). **E)** Kaplan-Meier curves of murine SS induction
1354 and representative histographs compared to human SS (**F**). **G)** Kaplan-Meier curves of
1355 murine ASPS induction and representative histographs compared to human ASPS (**H**). **I)**
1356 Kaplan-Meier curves of murine IFS induction and representative histographs compared to
1357 human IFS and the emerging WHO entity of NTRK-rearranged spindle cell neoplasm
1358 (NRSCN) (**J**). Murin tumors clustered into two distinct groups, named Fusion-dominated IFS
1359 and P53-dominated IFS. If not specified otherwise, histographs were stained by H&E. P-
1360 values were determined by log-rank test and corrected for multiple testing with the
1361 Bonferroni-Holm method where necessary. Scale bars = 50 μ m.

1362 **Figure 3 | Modeling sarcomas driven by oncogenic RAS and gene inactivation.**

1363 **A)** Kaplan-Meier curves of *RAS*-driven mouse sarcomas and representative H&E histographs
1364 compared to human eRMS (**B**). **C)** Kaplan-Meier curves of mouse sarcomas driven by *Trp53*-
1365 inactivation and secondary mutations and representative histographs compared to human
1366 MPNST, MRT and UPS (**D**). **E)** Integrated score for jH2AX IHC stainings, depicted as
1367 boxplots ordered by median from low to high. P-values of boxplots were determined by

1368 unpaired two-sided Wilcoxon tests and corrected for multiple testing by Bonferroni-Holm
1369 method. **F**) CNV profiles derived from DNA methylation data, condensed as Percent altered
1370 ($\leq/\geq .1$) and Genomic Index. N ≥ 3 tumors per group. Scale bars = 50 μm .

1371 **Figure 4 | Fusion gene and TP53 mutation status determine sarcoma biology and**
1372 **microenvironment**

1373 **A**) Heatmap view of mouse sarcomas, quantified for six morphological and based on H&E
1374 staining and integrated expression scores for 10 antigens determined by
1375 immunohistochemistry. Asymmetric color scale for combined visualization of low (CD45,
1376 CD3, cCas3) and high-scoring antigens. Quantification by blinded expert pathology review.
1377 **B**) Pearson correlation matrix based on data from panel **A**. Insignificant p-values (≥ 0.05)
1378 were plotted. Blue indicates positive, red negative correlation, point size reflects effect size.
1379 **C-D**) IHC scores of Ki-67 and CD45 from panel **A** visualized as boxplots ordered by median
1380 from low to high. P-values of boxplots were determined by unpaired two-sided Wilcoxon
1381 tests and corrected for multiple testing by Bonferroni-Holm method. N ≥ 3 tumors per group.

1382 **Figure 5 | Mouse sarcomas exhibit distinct genotype-dependent molecular signatures**

1383 **A**) tSNE clustering based on the top 10,000 differentially methylated CpG sites. **B**)
1384 Correlation clustering based on the top 2,000 differentially expressed genes. **C**) k-means
1385 clustering based on the top 2,000 differentially expressed genes, annotated with summarized
1386 GSEA data (Gene set enrichment analyses) from ten gene set collections, i.e. GO Biological
1387 Process, GO Molecular function, GO cellular component, KEGG, Reactome, Wiki pathways,
1388 Jenssen Compartments, Jenssen Tissues, GeneSetDB and TF Regulatory Networks.

1389 **Figure 6 | Murine sarcomas faithfully resemble the human sarcoma spectrum**

1390 **A**) Analysis scheme of cross-species sarcoma analysis based on RNA sequencing. **B**) tSNE
1391 clustering based on cross-species transcriptome analysis of mouse (n=63) and human (n=397)
1392 sarcoma specimens.

1393 **Figure 7 | Syngeneic allograft models enable scalability for *in vivo* testing**

1394 **A**) Schematics of Syngeneic Allograft Modeling (SAM) procedure, systematically comparing
1395 four different allograft types. **B**) Tumor-free survival of SAMs compared to corresponding
1396 GEMMs. **C**) tSNE clustering based on the top 10,000 differentially methylated CpG sites of
1397 SAMs, mouse-tumor-derived cell lines and corresponding GEMMs. **D**) Median-ordered

1398 boxplots of Pearson correlation coefficients based on DNA-methylation data from GEMMs
1399 and corresponding SAMs. **E)** Representative H&E histographs of GEMMs and
1400 corresponding SAMs after on orthotopic engraftment of 2D-cultured mouse tumor lines.
1401 Scale bars equal 100 μ m. **F)** *In vitro* co-culture assay of murine aRMS tumor cells and Anti-
1402 hCD19 and Anti-hB7-H3-CAR-T cells or untransduced control T cells for 24 and 48 hours.
1403 **G)** Tumor volume of orthotopically allografted aRMS tumors, treated i.v. with CAR-T cells
1404 (3×10^6 / 10×10^6 / 30×10^6 per mouse) or untransduced control T cells (30×10^6), compared to
1405 untreated control group. I.v. injection of T cells was performed on day 10 after tumor
1406 allografting. **F)** Boxplots of weights (g) of extracted tumors 20 days post engraftment. P-
1407 values refer to unpaired two-sided t-test. N=3 mice per group.

1408

1409

1410

1411

1412

1413 **SUPPLEMENTAL FIGURE LEGENDS**

1414 **Figure S1 | Optimization of transfection efficiency and tumor take in CD1 and**
1415 **C57BL/6J mice**

1416 **A)** Quantification of IVIS signal at day 2 and 7 after electroporation as a surrogate for muscle
1417 transfection efficiency in P30 and P0 CD1 mice (IVIS at day 2 was not feasible in P0 group).
1418 Electroporation settings labelled Huang et al (Huang et al., 2017) and Zanetti et (Zanetti et al.,
1419 2019) al were obtained from literature. **B-C)** Boxplots of tumor-free survival in CD1 mice
1420 ordered by median from high to low with attached heatmaps of penetrance and laterality of
1421 tumor onset in P30 (**B**) and P0 (**C**) animals. Mean plotted on top of boxplot. **D)** IVIS
1422 positivity of tumors in CD1 mice before necropsy. **E)** Detection of Luciferase transposon in
1423 tumor gDNA by PCR. **F)** Tumor-free survival between K+L and KGL tumors in CD1 mice.
1424 **G)** Tumor-free survival using K+L vectors in B6J compared to CD1 mice upon P30 and P0
1425 EPO. **H)** Tumor-free survival in B6J mice using K+L vs KGL vectors and SB13 vs PBT
1426 transposase upon P30 and P0 EPO. **I)** Boxplots of tumor-free survival in B6J and CD1 mice
1427 using the ideal electroporation procedure as determined in panels **A-C**, ordered by median
1428 from high to low with attached heatmaps of penetrance, laterality of tumor onset and IVIS
1429 positivity before necropsy in P30 and P0 animals. Mean plotted on top of boxplot.

1430 **Figure S2 | Efficiency of sarcoma induction in mice**

1431 **A)** Exemplary genotyping PCRs of transposon vectors used to induce tumors *in vivo*. **B)**
1432 Knockout scores quantified using TIDE analysis in N2A cells (murine neuroblastoma line),
1433 three days after transient transfection with PX330 vectors carrying the respective sgRNAs.
1434 *Trp53* guide 1 (Dow et al., 2015) shows a falsely low knockout score due to a base mismatch
1435 in the *Trp53* target region in N2A cells. Experiments for *Trp53* were performed with n = 3
1436 (SD depicted) to ensure reproducibility of the assay. **C)** Kaplan-Meier curves of tumor free
1437 survival of all genetic combinations that were successful in tumor induction (n=18). **D)**
1438 Tumor-free survival across the mouse sarcoma cohort from panel **C** as boxplots sorted by
1439 median onset with attached heatmaps of penetrance and bilateral tumor fraction. Mean
1440 plotted on top of boxplot. **E)** Anti-HA IHC staining of murine SS, driven by *Flag-HA-*
1441 *SS18::SSX2*. **F)** Anti TLE-1 IHC staining of murine SS.

1442 **Figure S3 | BCOR inactivation in RMS and DNA methylation patterns in mouse**
1443 **sarcomas**

1444 **A)** BCOR mutations identified in human rhabdomyosarcoma, re-analysis of previously

1445 published data (Shern et al., 2021). **B)** Exemplary IHC histograms for mesenchymal and
1446 muscle-differentiation markers desmin and myogenin, across *KRAS*^{G12V}/sg-*Bcor* and
1447 *KRAS*^{G12V}/sg-*Trp53* tumors. **C)** Mean methylation beta values as boxplots ordered by median.
1448 **D)** Heatmap view of DNA methylation based on the top 10,000 differentially methylated
1449 CpG sites across the mouse sarcoma cohort. N ≥ 3 tumors per group.

1450 **Figure S4 | Immune infiltration phenotypes of mouse sarcomas**

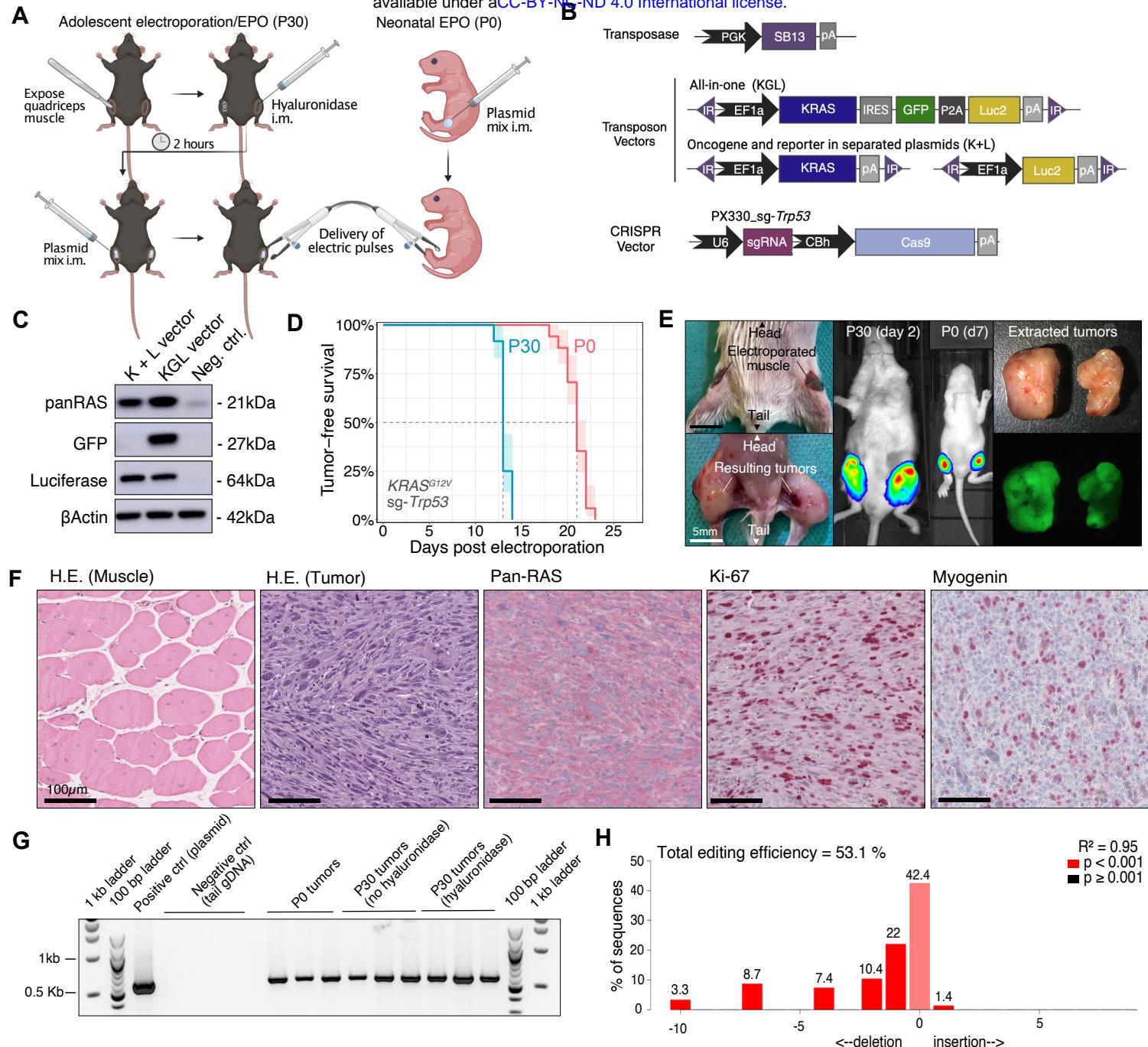
1451 **A)** Exemplary IHC histograms of immune infiltration in mouse sarcomas. TLF refers to
1452 tertiary lymphoid follicles, which were occasionally observed. Matching tumor regions in
1453 neighboring slides are depicted as H&E and IHC for Ki-67, CD45, CD3, demonstrating
1454 decreased proliferation rate of tumors cells in TLF proximity. **B-C)** Exemplary multiplex IF
1455 histograms of mouse sarcomas. Panels in **B** show structural markers, using DAPI for nuclear
1456 staining, mesenchymal marker desmin, cytoskeletal markers smooth muscle actin and
1457 collagen IV, endothelial marker CD105 and CD45 for immune cells. Panels in **C** illustrate
1458 immune cell subpopulations in matching regions using DAPI for nuclear staining, CD2 and
1459 CD90.2 for T cells, CD79 for B cells, CD138 for plasma cells, CD68 as a pan macrophage
1460 marker, CD169 for CD169-positive macrophages, Ly-6G and Ly-6C for granulocytic and
1461 monocytic myeloid-derived suppressor cells (g-/m-MDSCs) and MHCII. Scale bars=100μm.

1462 **Figure S5 | Immune cell deconvolution in mouse sarcomas**

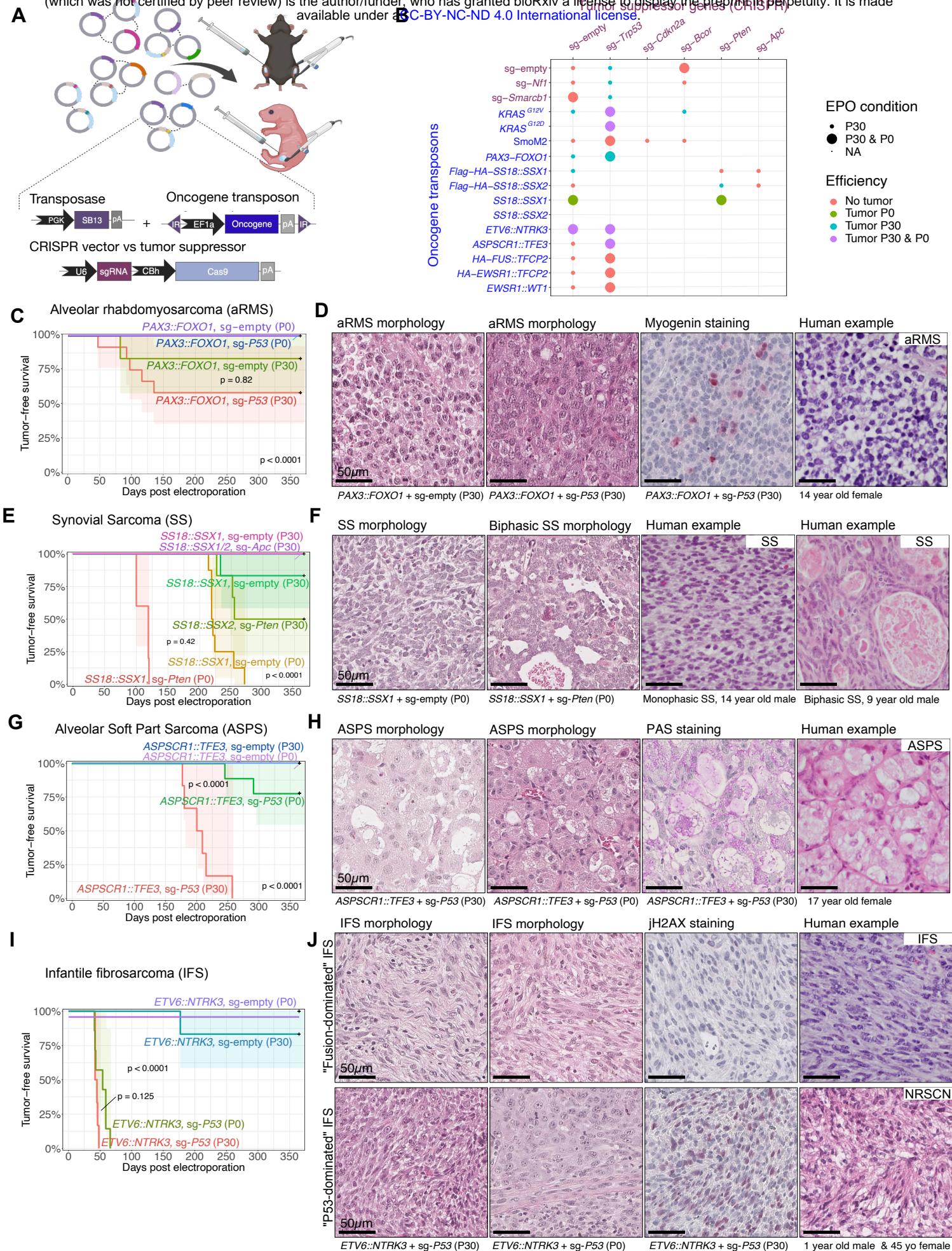
1463 **A-C)** Comparison of leukocyte quantification based on IHC (**A**) and cell type deconvolution
1464 (**B**) based on RNA sequencing using CibersortX and the publicly available single-cell RNA-
1465 seq Tabula muris data set as a reference matrix (Tabula Muris Consortium et al., 2018). Panel
1466 **C** shows a Pearson correlation between the two methods. **D)** Heatmap view of immune and
1467 non-immune cells using CibersortX and Tabula muris. **E-G)** Monocyte, macrophage and
1468 granulocyte fractions from panel **D** depicted as median-sorted boxplots. P-values of boxplots
1469 were determined by unpaired two-sided Wilcoxon tests and corrected for multiple testing by
1470 Bonferroni-Holm method. N ≥ 4 tumors per group.

1471 **Figure S6 | Expression of immunotherapy targets in mouse sarcomas**

1472 **A-F)** Median-ordered boxplots, depicting normalized immunotherapy target gene expression
1473 across mouse sarcomas based on RNA-sequencing. The chosen pan-cancer and entity-
1474 specific targets, were previously identified in human cancer cohorts. For Ganglioside GD2,
1475 expression of producing enzyme B4galnt1 was plotted, previously established as a highly


1476 correlative marker gene (Sorokin et al., 2020). N ≥ 4 tumors per group. **G**) Exemplary
1477 multiplexed IF histograms depicting B7-H3 expression amidst DAPI for nuclear staining,
1478 CD45 for immune cells, jH2AX for DNA double strand breaks and proliferation markers Ki-
1479 67. Scale bars equal 100 μ m.

1480 **Figure. S7 | Syngeneic allograft models faithfully recapitulate GEMMs**


1481 **A)** Tumor-free survival of SAMs compared to corresponding GEMMs. **B)** Heatmap view of
1482 mouse sarcomas of three different entities, systematically compared across original GEMM
1483 and different engraftment types, quantified for six morphological and IHC features by
1484 blinded expert pathology review. Asymmetric color scale for combined visualization of low
1485 (CD45) and high-scoring antigens. **C-E)** Histological features (Necrosis, Ki-67 and CD45
1486 score) from panel **A** visualized as boxplots. P-values of boxplots were determined by
1487 unpaired two-sided Wilcoxon tests and corrected for multiple testing by Bonferroni-Holm
1488 method. N = 3 tumors per engraftment group. **F)** Heatmap view of DNA methylation based
1489 on the top 10,000 differentially methylated CpG sites comparing GEMMs and corresponding
1490 SAMs. N=1 tumor per group. **G)** Genomic stability in SAMs compared to GEMMs,
1491 visualized as copy number variations (CNV) profiles derived from DNA methylation data,
1492 condensed as Percent altered ($\leq\geq .1$) and Genomic Index. N=1 tumor per group.

1493 **Figure S8 | Translational model application**

1494 **A & B)** Drug sensitivity scores from *in vitro* drug sensitivity testing for individual models
1495 (**A**) and grouped by entity (**B**). IMT refers to a human tumor cell line derived from an
1496 Inflammatory myofibroblastic tumor driven by *ETV6::NTRK3* used to clone the mouse
1497 transposon vectors for electroporation. P-values refer to unpaired two-sided t-tests, corrected
1498 for multiple testing using the Bonferroni-Holm method. **C)** Schematics of generation of
1499 murine CAR-T cells targeting human target antigens B7-H3 and CD19 used to treat a murine
1500 aRMS mouse tumor line lentivirally modified to express human B7-H3 and CD19. **D)** FACS
1501 analysis of mouse T lymphocytes (untransduced or transduced with B7-H3 CAR vector)
1502 stained for CAR markers CD90.1 and myc-tag and corresponding histograms.

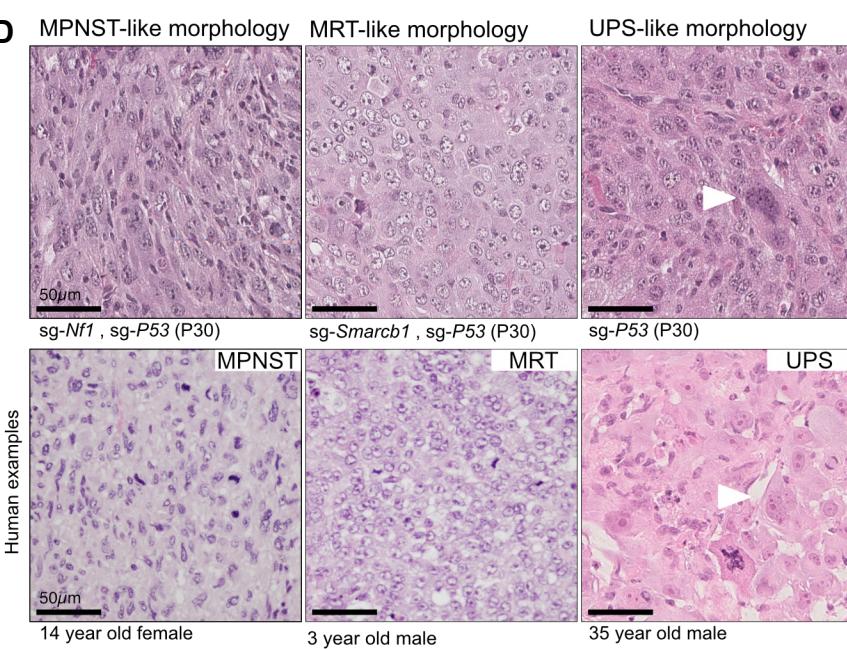
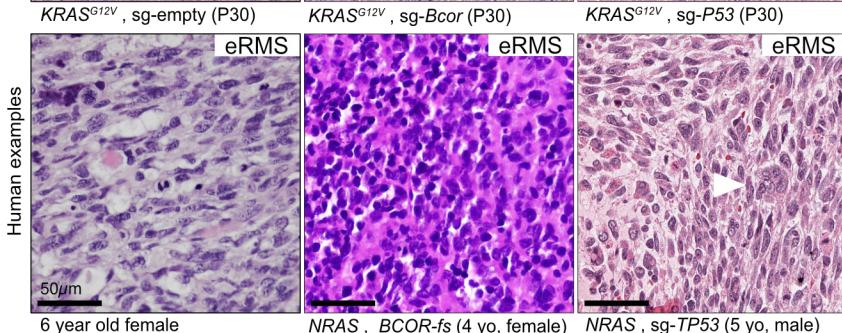
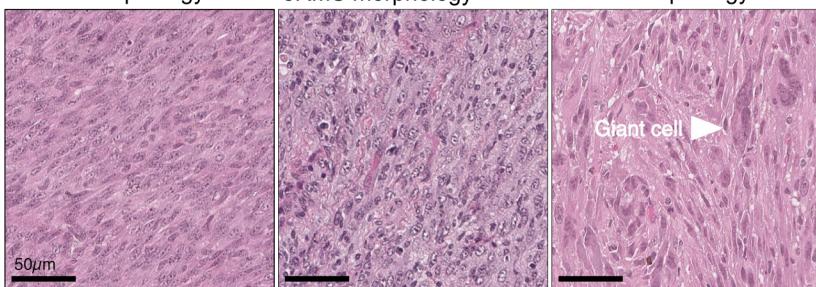
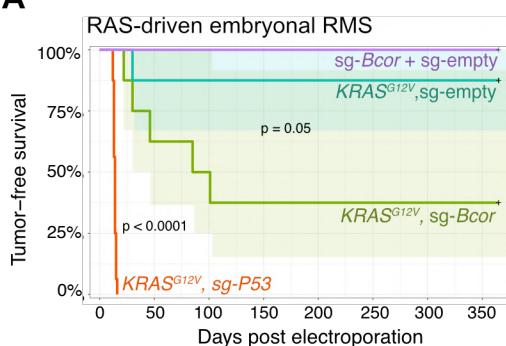





Figure 1. An optimized protocol allows efficient *in vivo* genetic manipulation of mouse muscle tissue

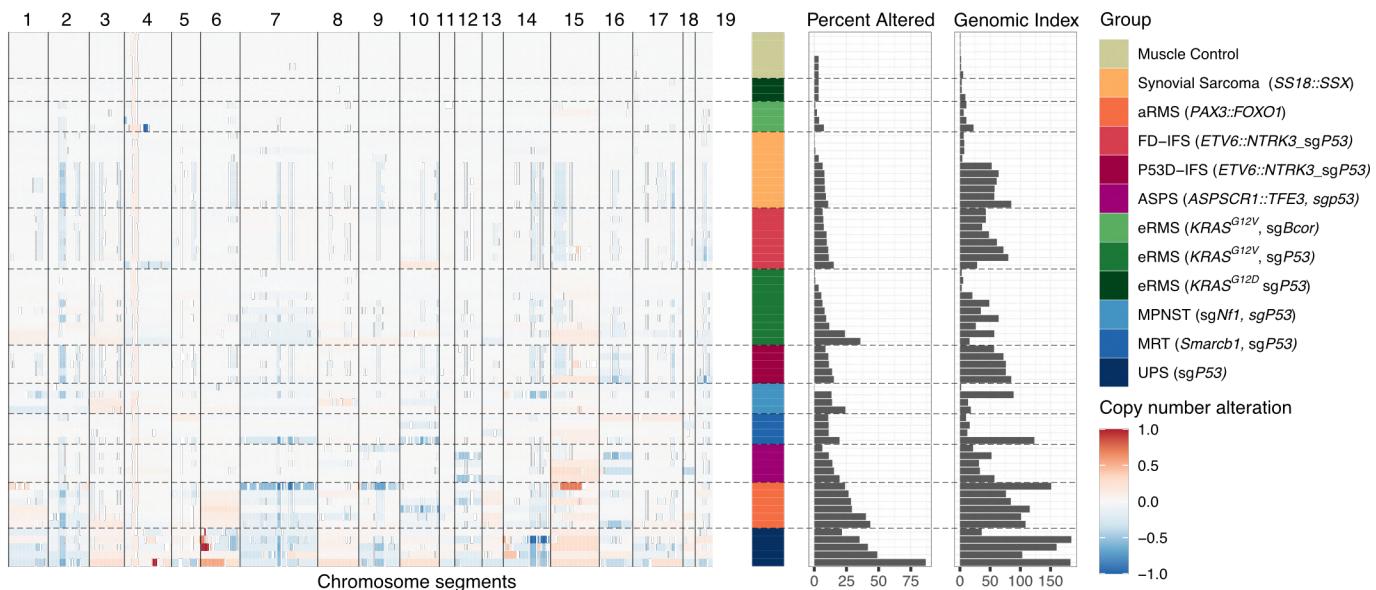
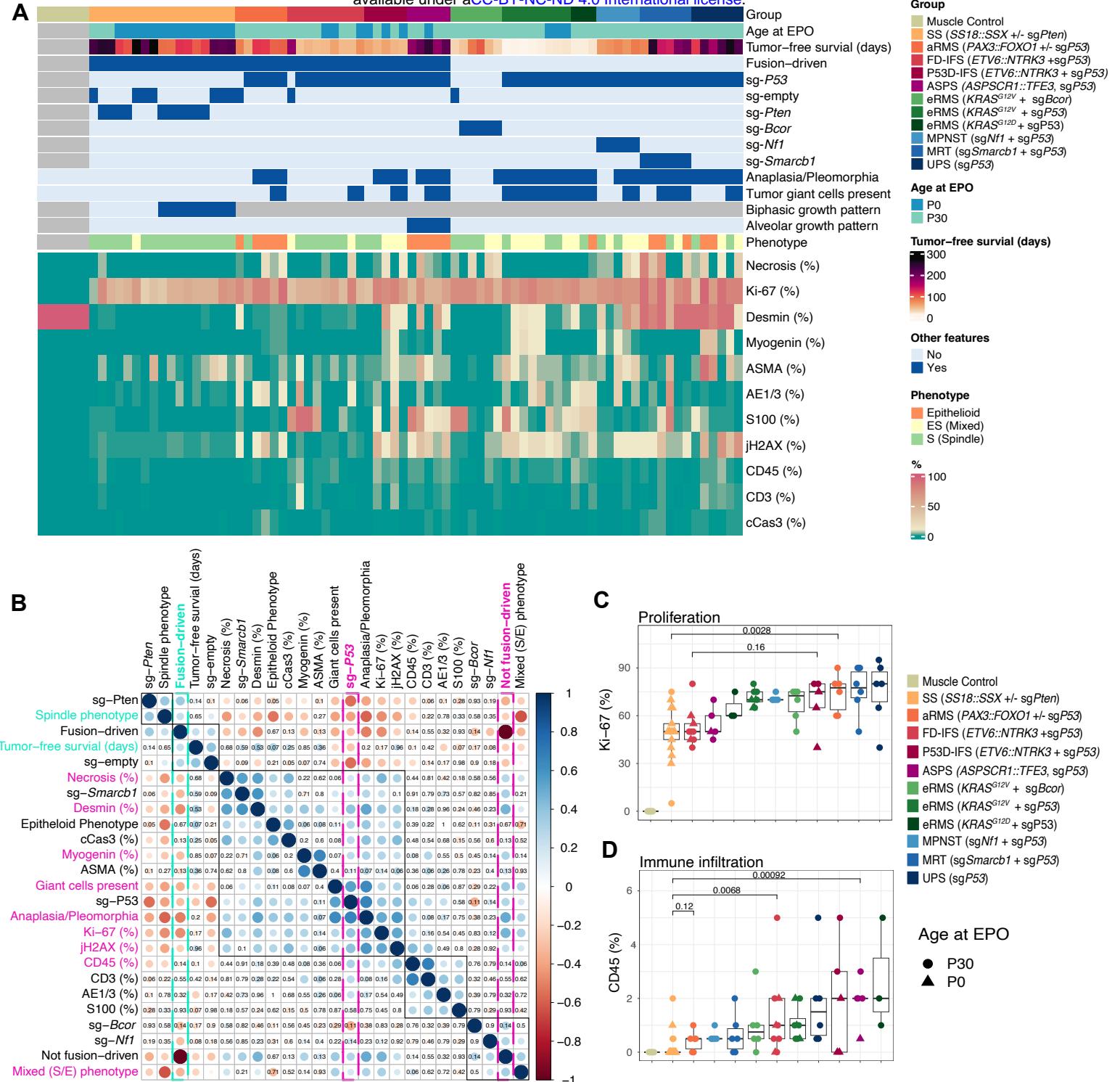


Figure 2. Modeling diverse subtypes of fusion-driven sarcomas


A

F

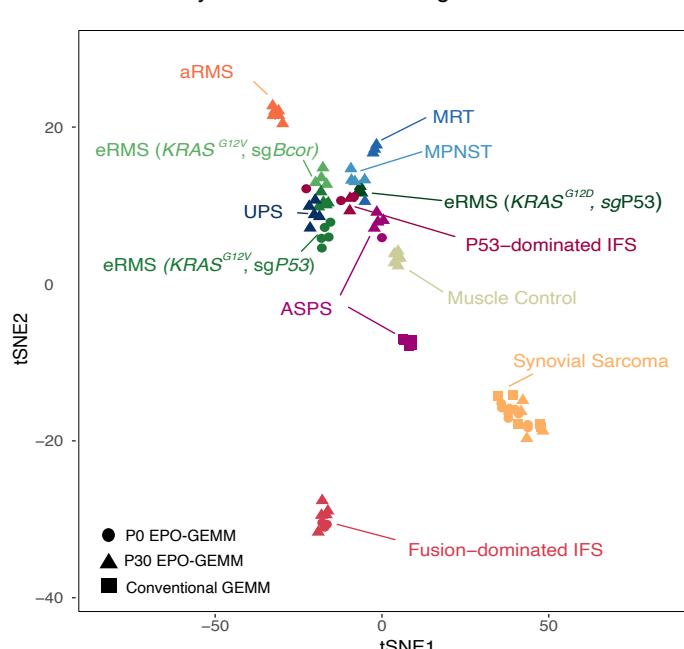
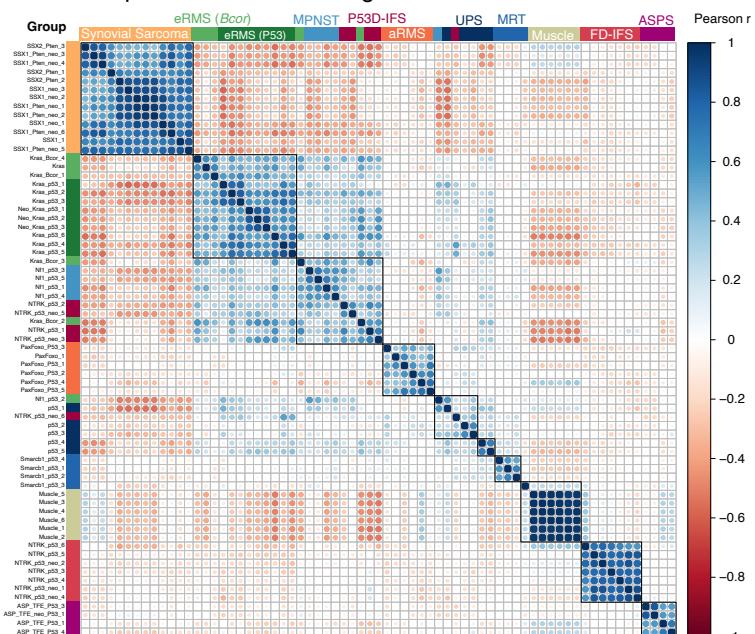
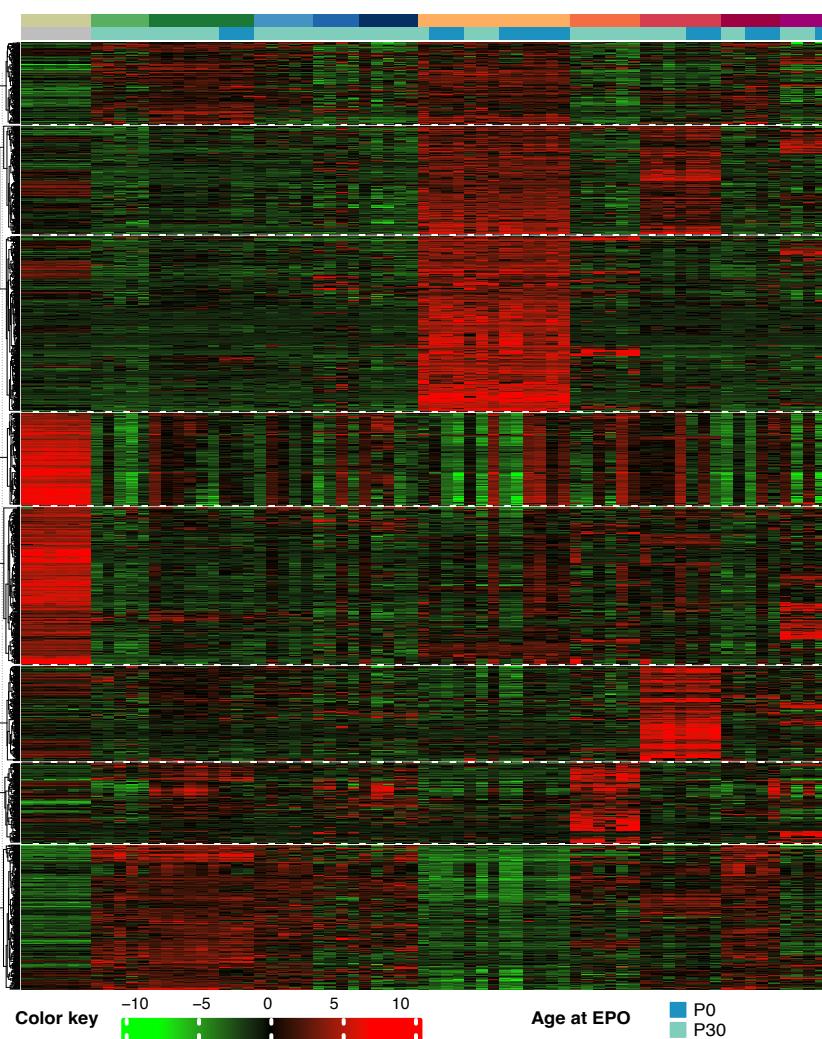

Figure 3. Modeling sarcomas driven by oncogenic RAS and gene inactivation

Figure 4. Fusion gene and TP53 mutation status determine sarcoma biology and microenvironment


A

DNA-methylation-based clustering


B

Transcriptome-based clustering

C

Functional annotation

kmeans

GROUP

PATHWAY

8

SS & eRMS/MPNST

Embryonal development
Morphogenesis

7

SS & FD-IFS

Neurogenesis
Synapse formation
Cell adhesion
Wnt-, Hippo- & cAMP signaling

6

ss

Axon development
Regionalization
SHH & FGFR2 signaling

5

Muscle

Skeletal muscle organization & contraction

4

Muscle & ASPS (partial)

Lipid & carbohydrate metabolism
AMPK signaling

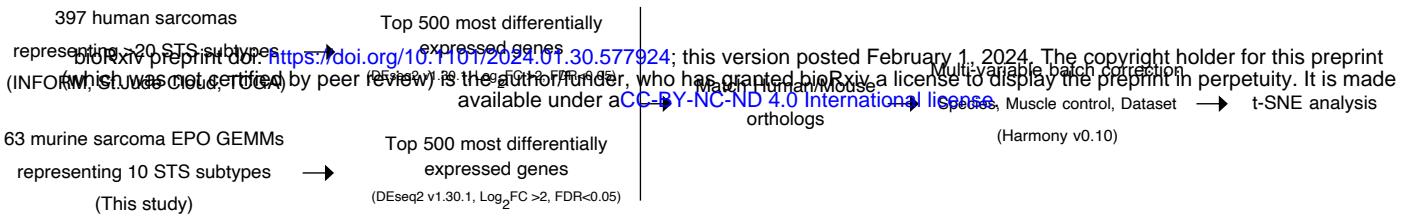
1

FD-IFS

Neuron myelination
and synaptic signaling

2

aRMS (Pax-Foxo)


Skeletal muscle development
and adaption

3

eRMS/P53-IFS
MPNST/MRT/UPS

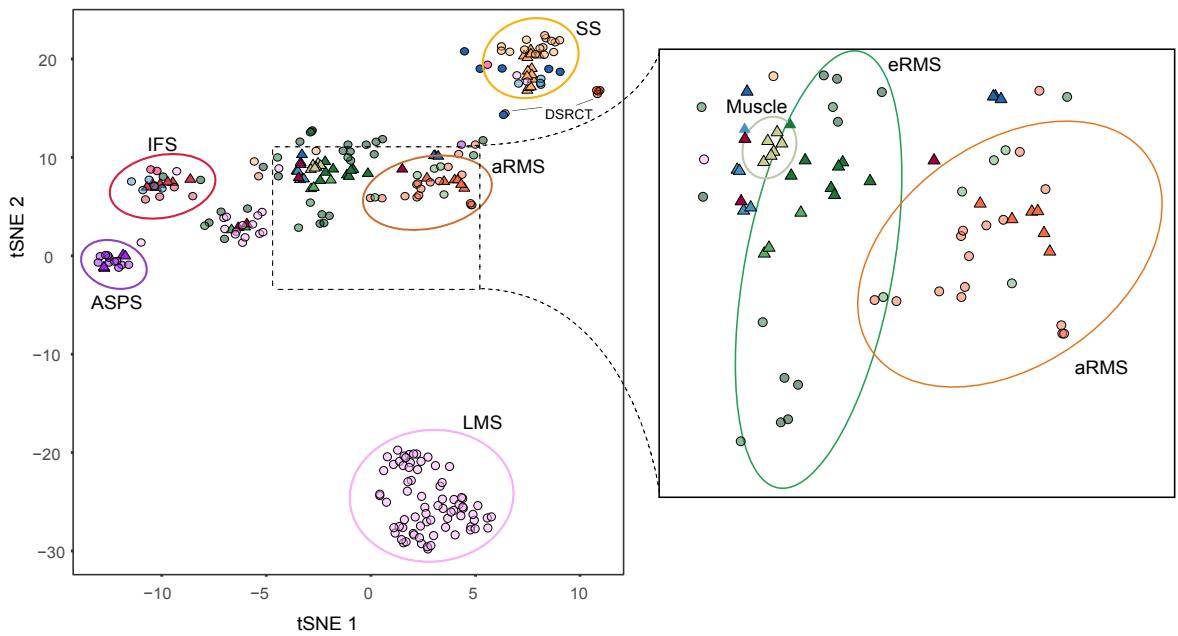
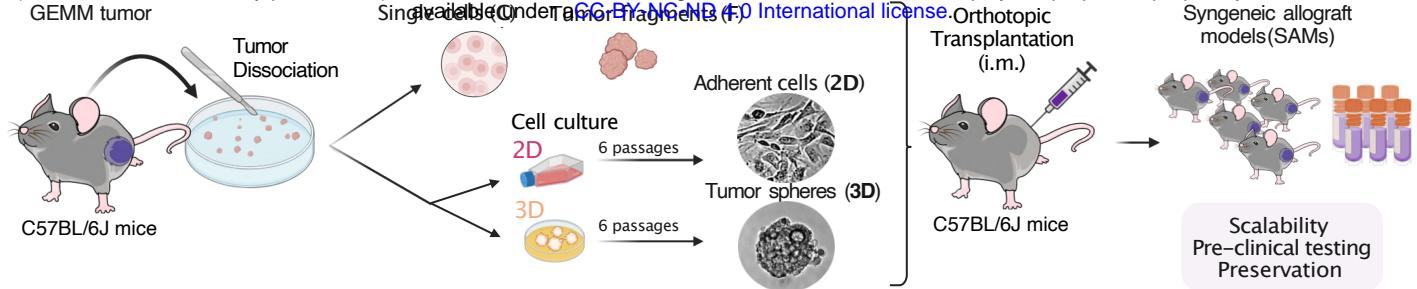

MAPK & PI3K-Akt signaling
Inflammatory/Chemokine response
Cell & Leukocyte migration
Prostaglandin biosynthesis

Figure 5. Mouse sarcomas exhibit distinct genotype-dependent molecular signatures

A**B**


Species
● Human
▲ Mouse

Subtype
● Muscle
● SS
● aRMS
● IFS (Fusion-dominated)
● IFS (sgP53-dominated)
● ASPS
● eRMS (mut KRAS, sgBcor)
● eRMS (mut KRAS, sgP53)
● eRMS (non-RAS)
● MPNST
● MRT
● ASPS
● LMS
● DSRCT
● GIST

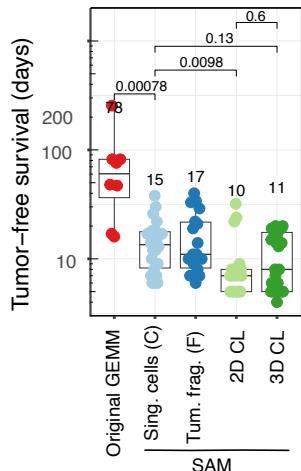
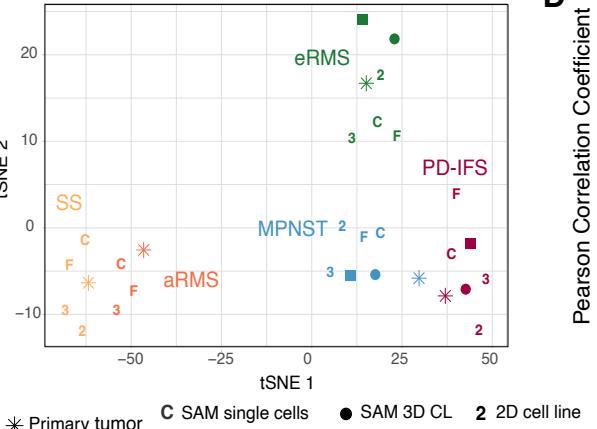
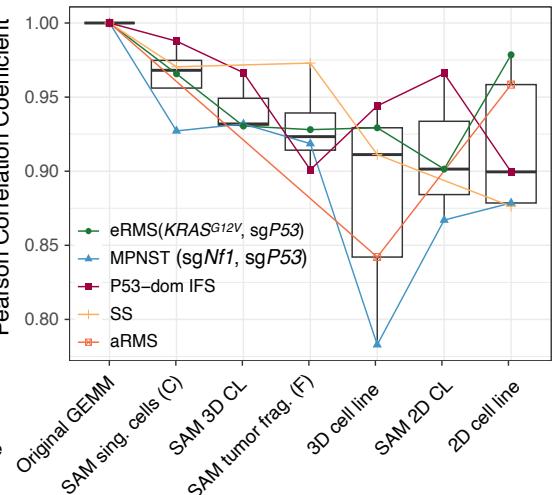
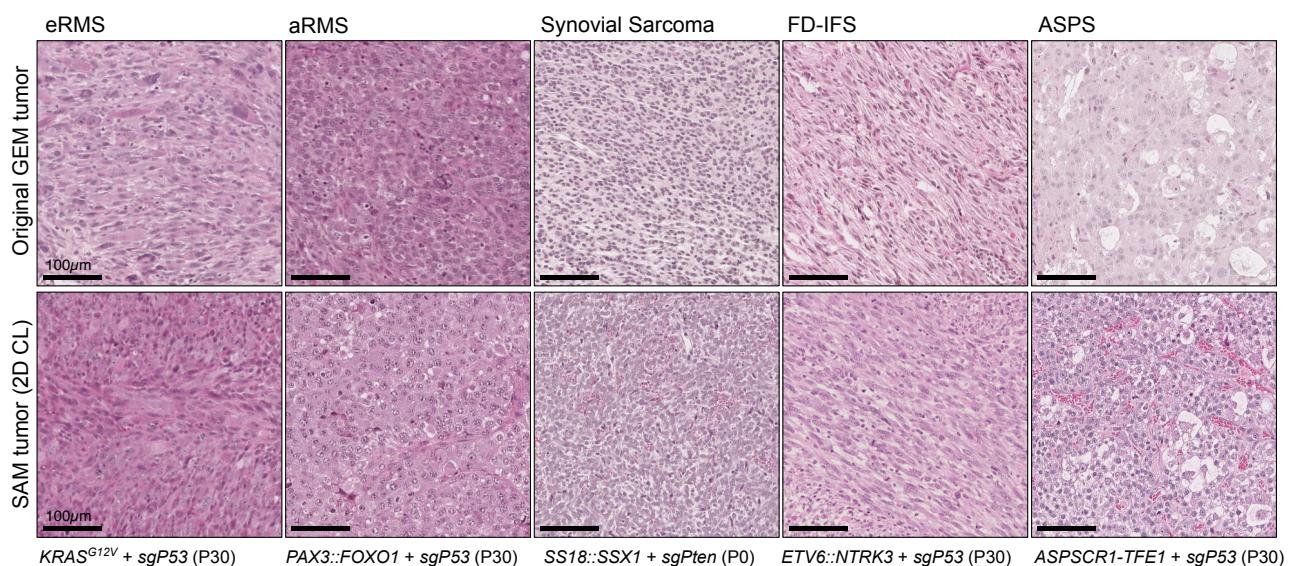
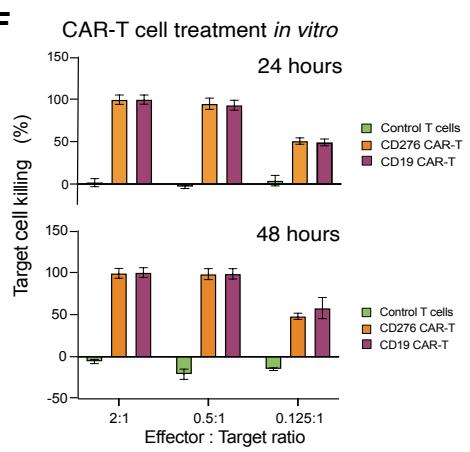


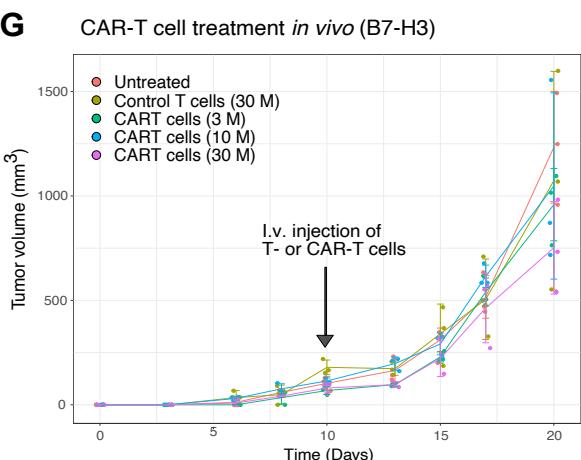
Figure 6. Murine sarcomas faithfully resemble the human sarcoma spectrum

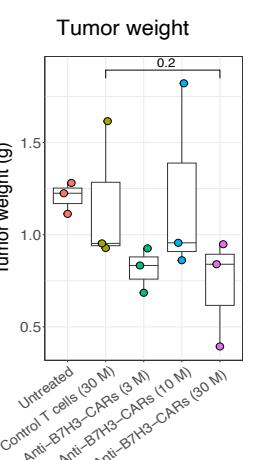

A


B

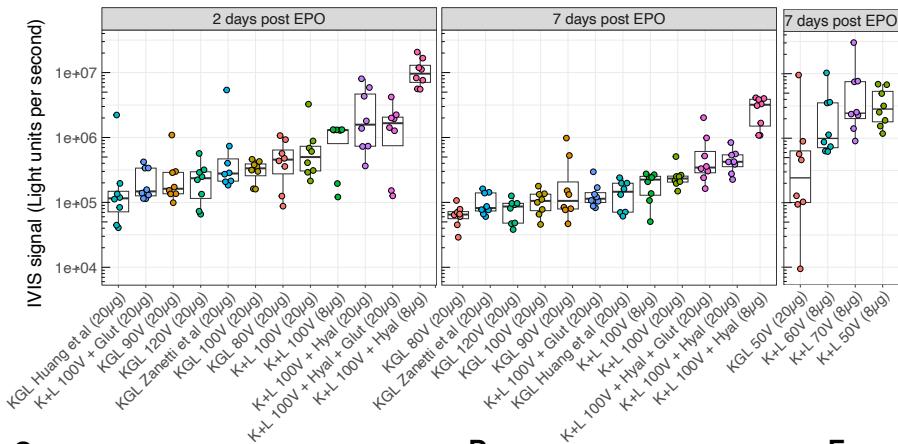

C


D


E


F

G



H

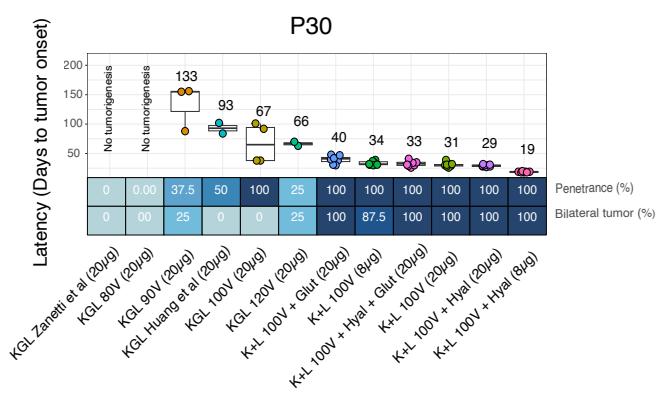
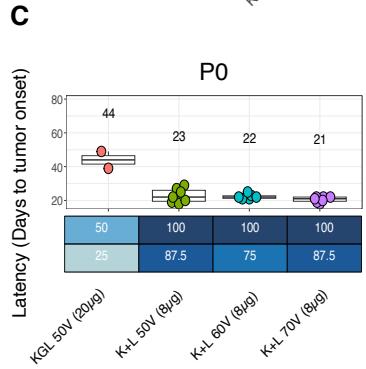
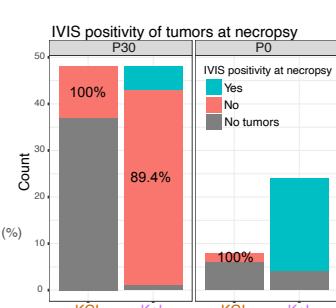
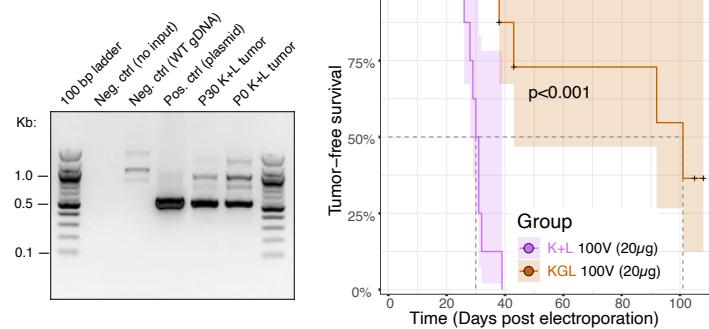
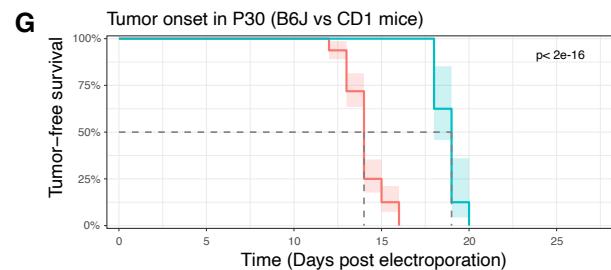


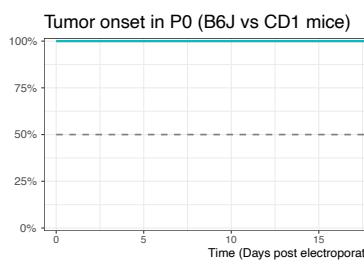
Figure 7. Syngeneic allograft models enable scalability for *in vivo* testing


A

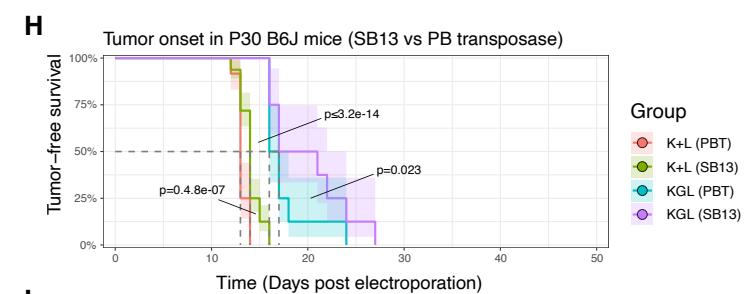

B


C

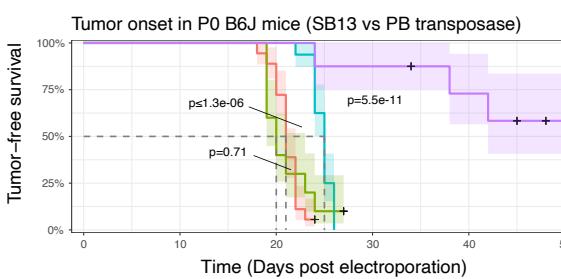

D


E

G

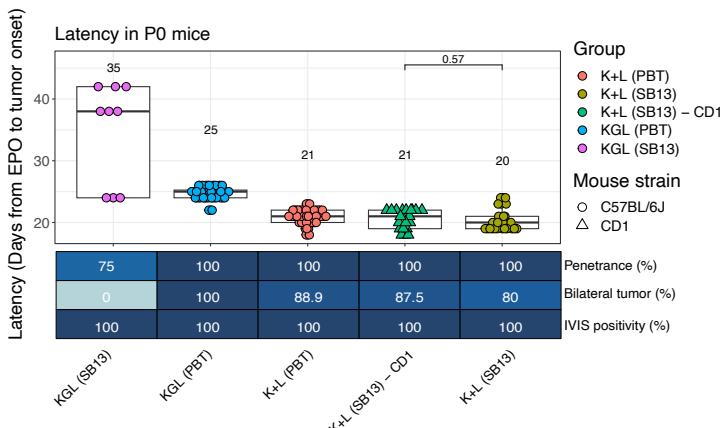
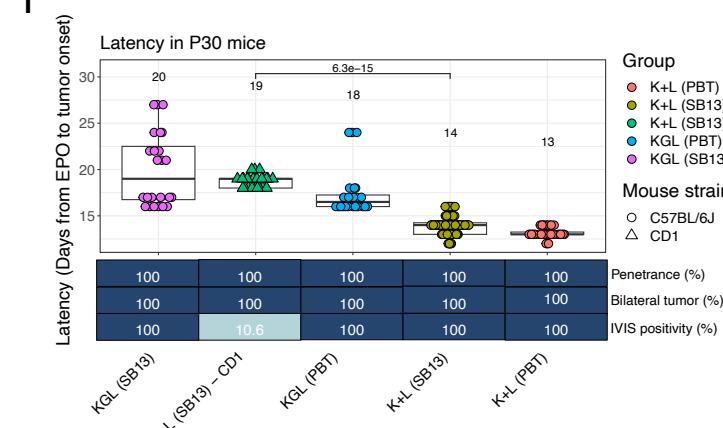


Group
K+L (B6J)
K+L (CD1)

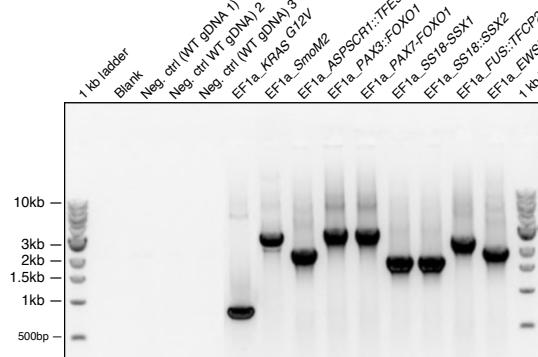


Group
K+L (B6J)
K+L (CD1)

H

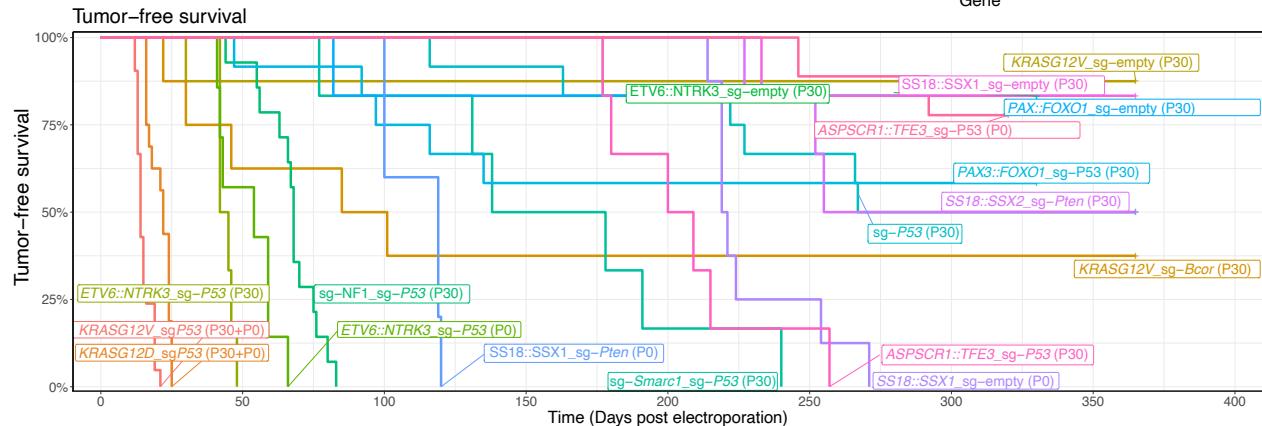



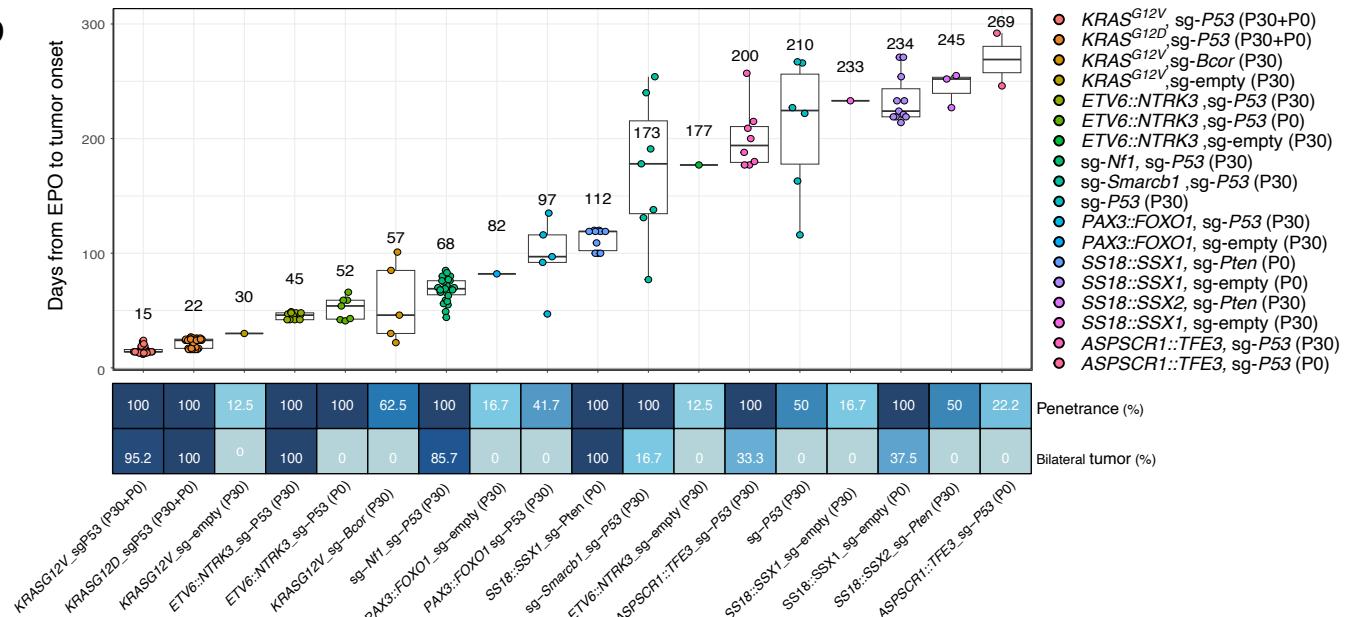
Group
K+L (PBT)
K+L (SB13)
KGL (PBT)
KGL (SB13)

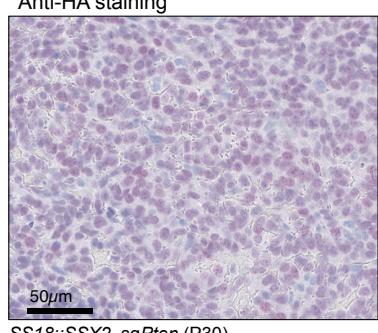

Group
K+L (PBT)
K+L (SB13)
KGL (PBT)
KGL (SB13)

I

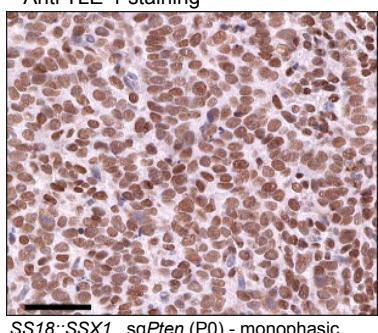
Figure S1. Optimization of transfection efficiency and tumor take in CD1 and C57BL/6J mice


A

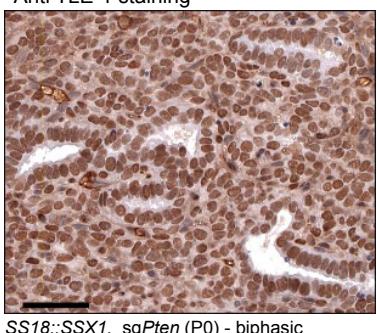

B


C

D

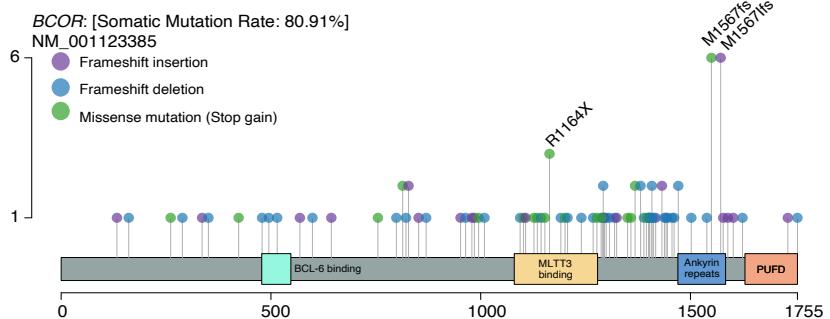


E


SS18::SSX2, sgPten (P30)

F

SS18::SSX1, sgPten (P0) - monophasic


Anti TLE-1 staining

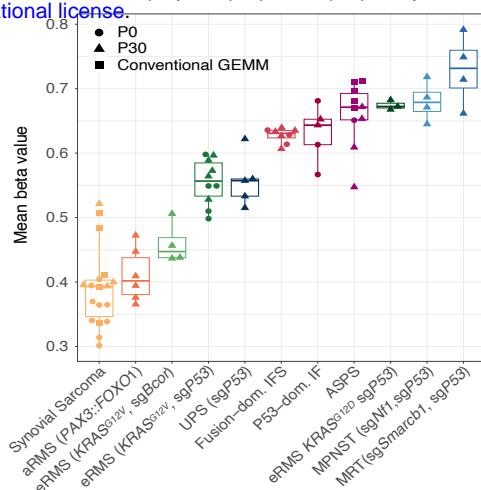
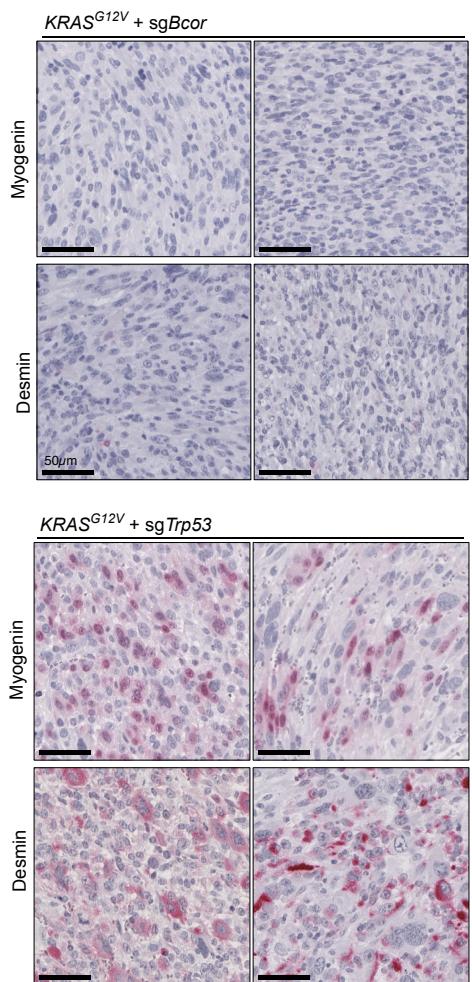
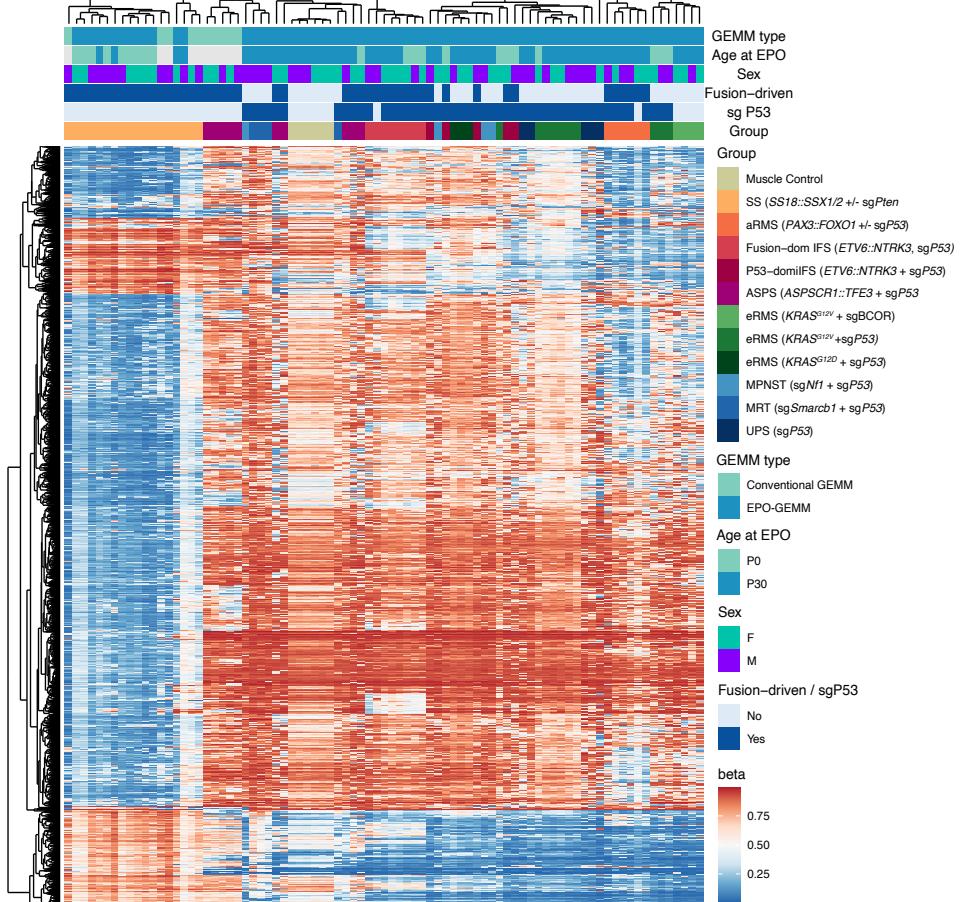
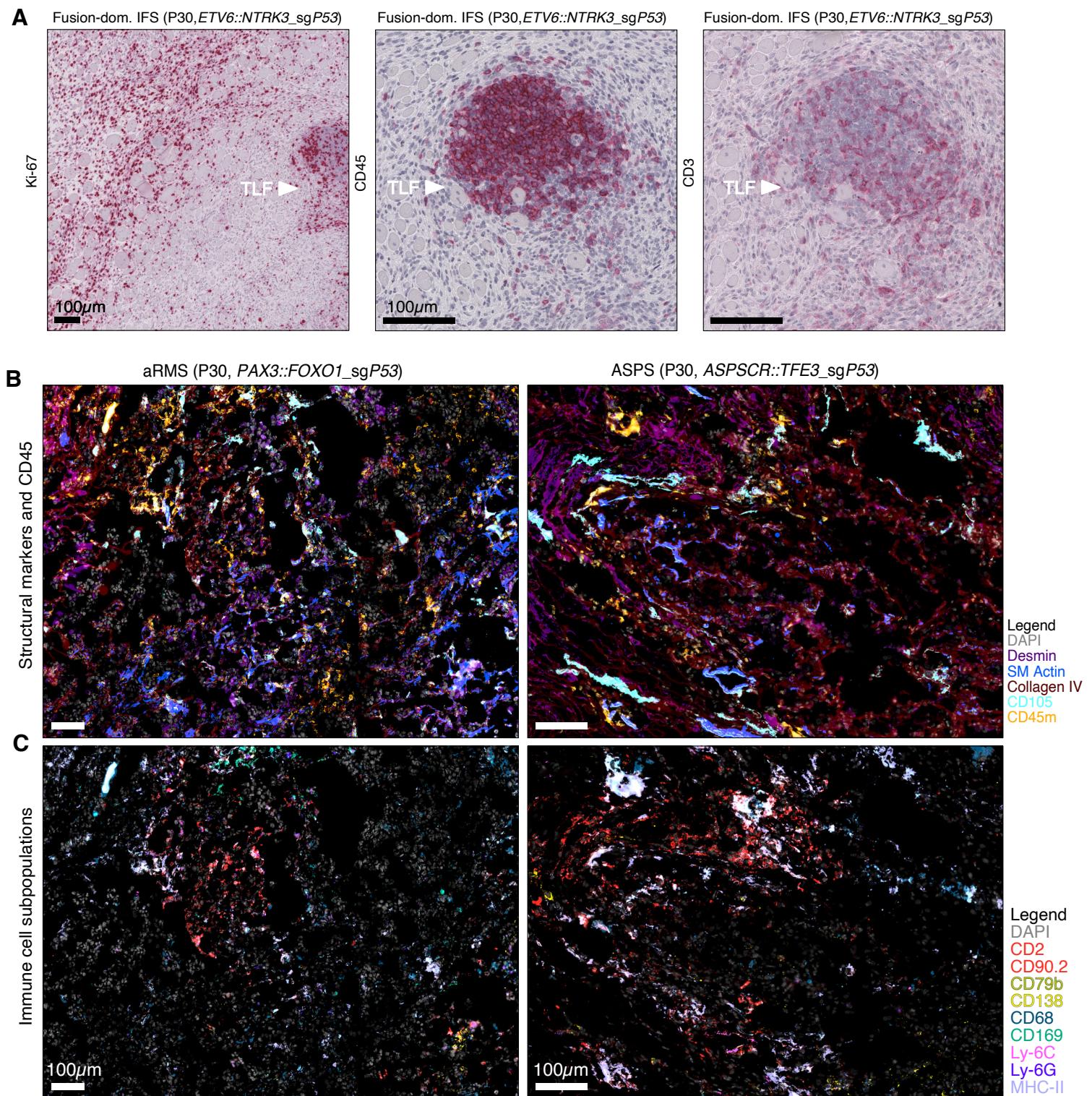

SS18::SSX1, sgPten (P0) - biphasic

Figure S2. Efficiency of sarcoma induction in mice


A


C


B

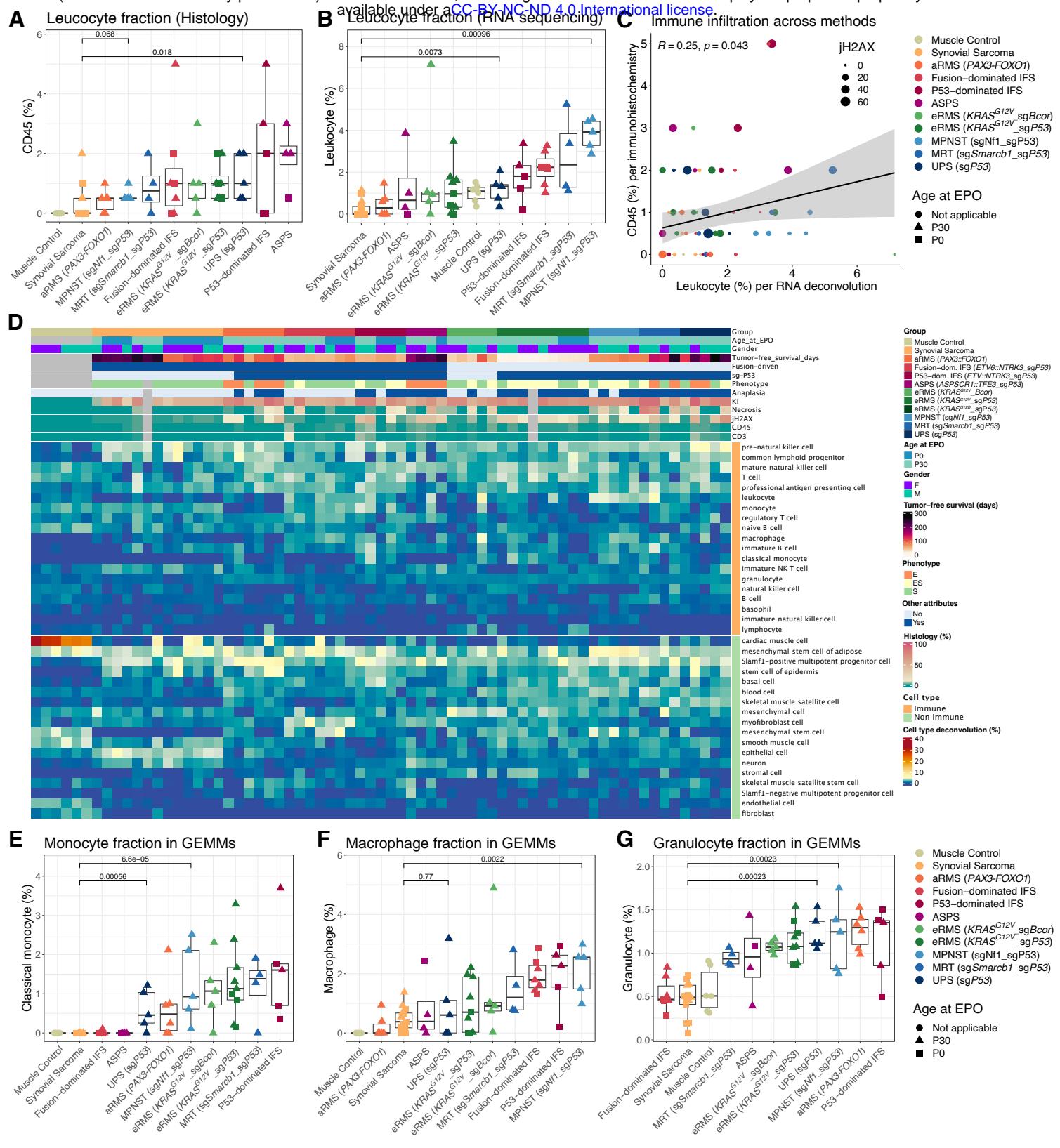

D

Figure S3 . *BCOR* inactivation in RMS and DNA methylation patterns in mouse sarcomas

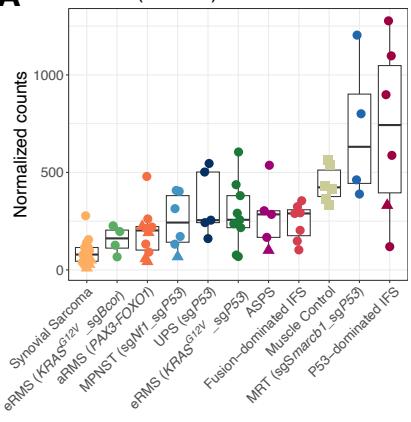


Figure S4. Immune infiltration phenotypes of mouse sarcomas

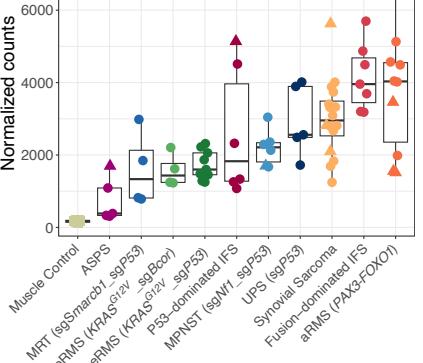
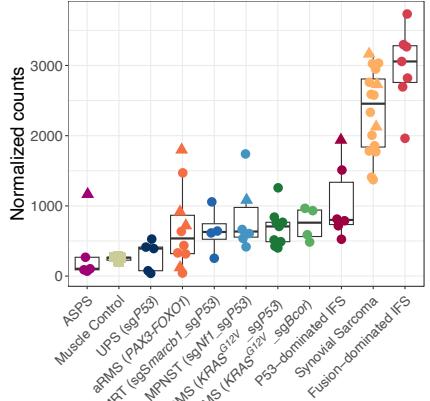
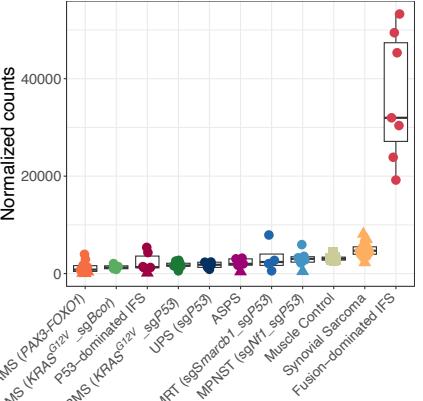
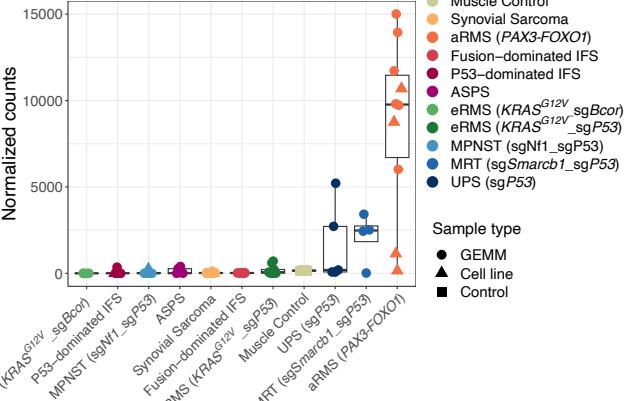


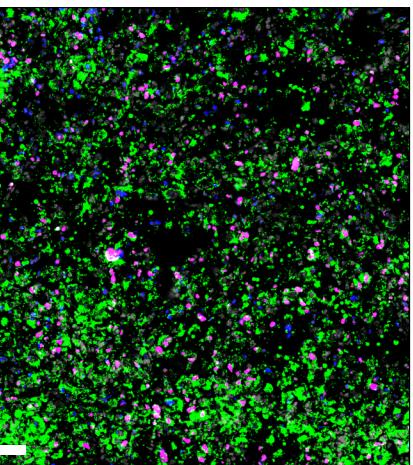
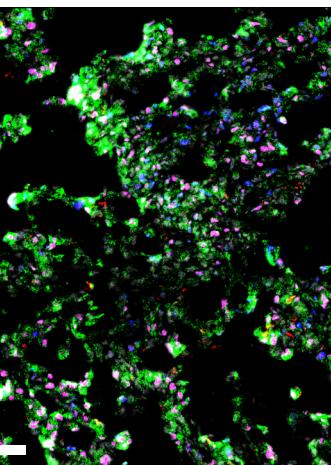
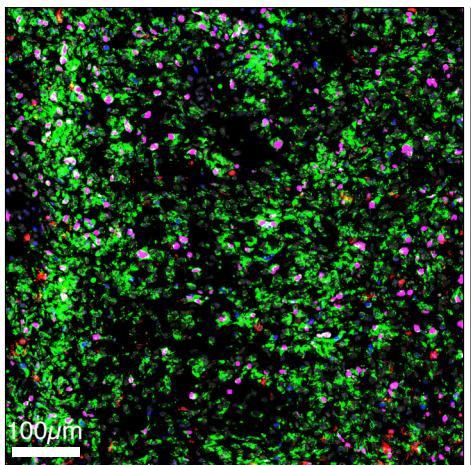
Figure S5. Immune cell deconvolution in mouse sarcomas


A

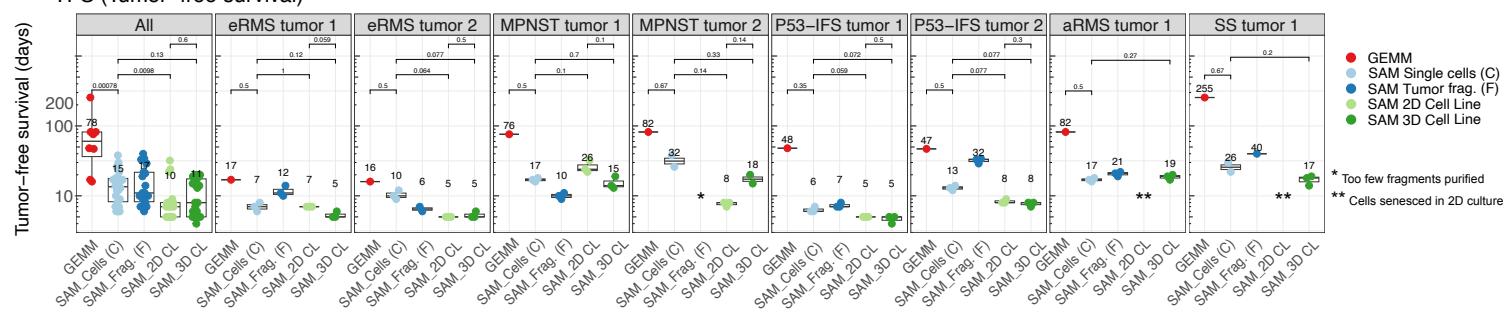

B *Beta catenin (TCF4)* (Surrogate for CD2)


C *Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)* (Surrogate for GD2)


D *Erbb2 (HER2/neu, CD340)*




E *Mcam (CD146)*

F *Fgfr4 (CD334)*


G *Fusion-dom. IFS (P30, ETV6::NTRK3_sgP53)*

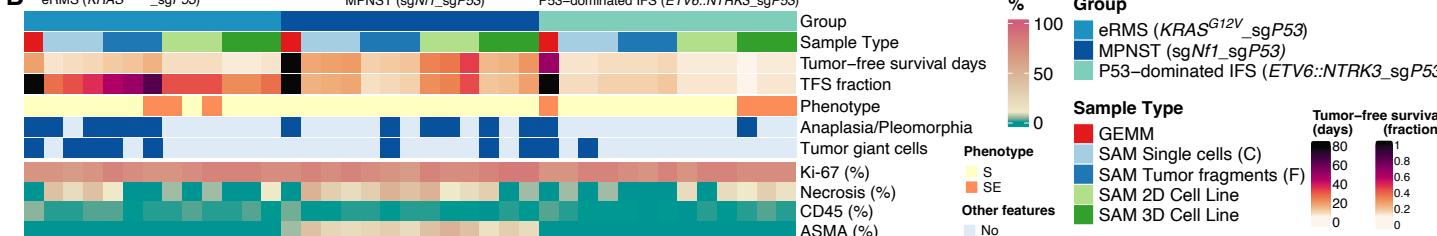
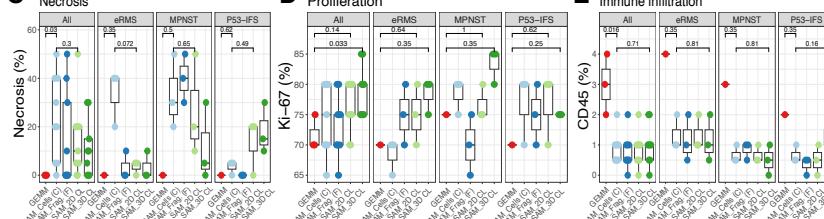
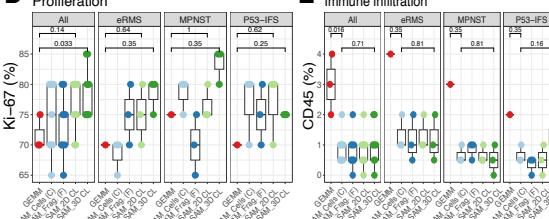
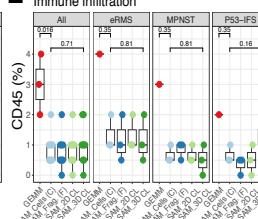
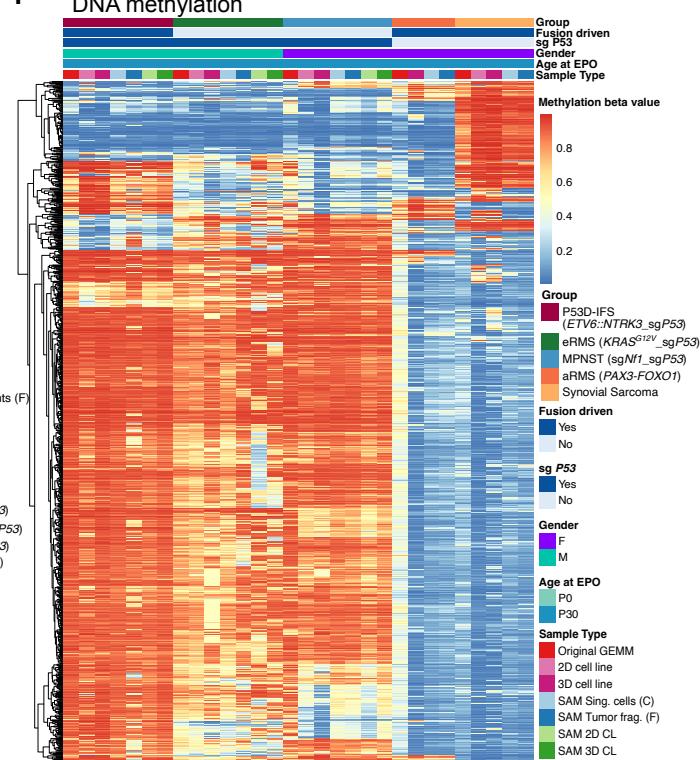

Legend
DAPI
B7-H3
CD45
Ki67
jH2AX

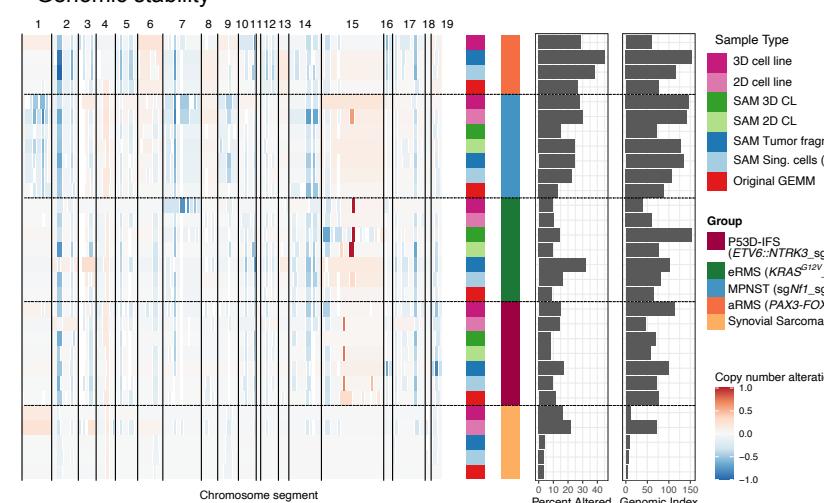
Figure S6. Expression of immunotherapy targets in mouse sarcomas

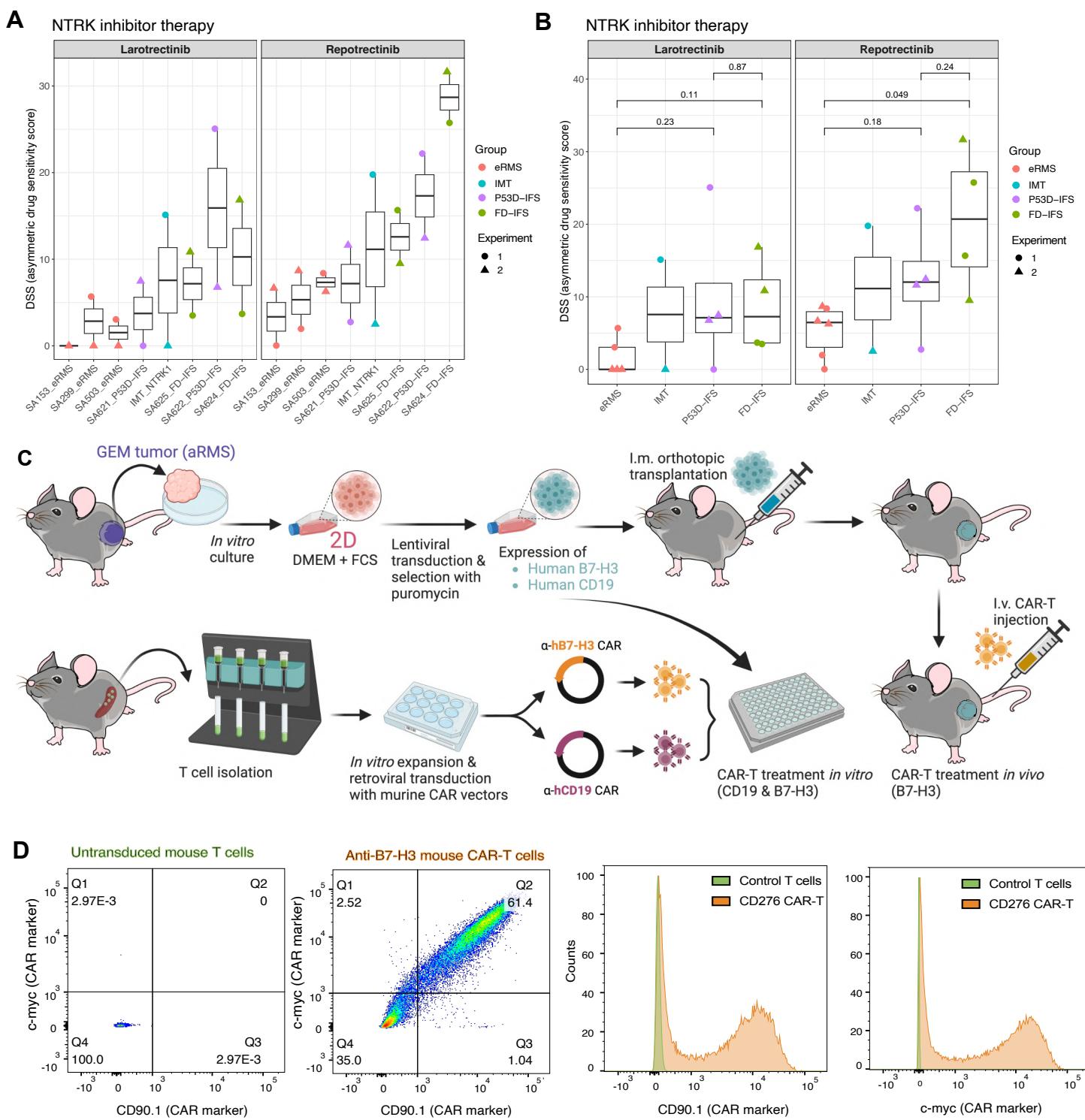

A TFS (Tumor-free survival)


B eRMS (*KRAS*^{G12V} _sgP53)


C Necrosis


D Proliferation


E Immune infiltration


F DNA methylation

G Genomic stability

Figure S7. Syngeneic allograft models faithfully recapitulate GEMMs

Figure S8. Translational model application