

1 Global genomic diversity of *Pseudomonas aeruginosa* in 2 bronchiectasis

3

4 N.E. Harrington¹, A. Kottara², K. Cagney¹, M.J. Shepherd², E.M. Grimsey², T. Fu², R.C.
5 Hull³, D.Z. Childs⁴, J.L. Fothergill¹, J.D. Chalmers³, M.A. Brockhurst² and S. Paterson¹

6

7 1: Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK

8 2: Division of Evolution and Genomic Sciences, School of Biological Sciences, University of
9 Manchester, UK

10 3: Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and
11 Medical School, Dundee, UK

12 4: Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK

13

14 **Summary**

15 The largest genomic study of *Pseudomonas aeruginosa* bronchiectasis isolates to-date,
16 providing an unprecedented global genomic resource. We highlight important differences
17 between bronchiectasis and cystic fibrosis, including key genes under selection.

18

19 **Abstract**

20

21 **Background.** *Pseudomonas aeruginosa* is the dominant pathogen causing lung infections in
22 people with both cystic fibrosis (CF) and bronchiectasis, associated with poorer outcomes.
23 Unlike CF, bronchiectasis has been a neglected disease. More extensive genomic studies of
24 larger bronchiectasis patient cohorts and within patient sampling are needed to improve
25 understanding of the evolutionary mechanisms underpinning *P. aeruginosa* infections to
26 guide novel and improved treatments.

27

28 **Methods.** We have performed genome sequencing of 2,854 *P. aeruginosa* isolates from 180
29 patients attending clinics worldwide to analyse the genomic diversity between and within
30 patient infections.

31

32 **Results.** We observed high genetic diversity between infections with low incidence of highly
33 transmissible strains. Our genomic data provide evidence for the mutational targets driving
34 *P. aeruginosa* evolution in bronchiectasis. Some functions found to gain mutations were
35 comparable to CF, including biofilm and iron acquisition, whilst others highlighted distinct
36 evolutionary paths in bronchiectasis such as pyocin production and resistance, and a novel
37 efflux pump gene (PA1874). We also show a high incidence of antimicrobial resistance-
38 associated mutations and acquired resistance genes, in particular multidrug efflux and
39 fluoroquinolone resistance mechanisms.

40

41 **Conclusions.** Our findings highlight important differences between *P. aeruginosa* infections
42 in bronchiectasis and CF and provide evidence of the relatively minor role transmissible
43 strains play in bronchiectasis. Our study provides a 10-fold increase in the available genomic
44 data for these infections and is a global resource to improve our knowledge and
45 understanding, to facilitate better patient outcomes.

46

47 **Introduction**

48

49 Bronchiectasis is a chronic respiratory disease where people suffer ongoing symptoms of
50 cough, sputum production and frequent respiratory infections, leading to progressive lung
51 function decline and reduced quality of life^{1–3}. The disease is defined by abnormal,
52 permanent dilation of the bronchi resulting in impaired clearance of mucus from the airways.
53 The impaired mucociliary clearance leads to chronic infection and inflammation, which
54 further exacerbates lung damage, establishing a progressive, vicious cycle⁴. In contrast to

55 cystic fibrosis (CF), a rare genetic cause of bronchiectasis caused by mutations in the cystic
56 fibrosis transmembrane conductance regulator (CFTR) gene, most cases of non-CF
57 bronchiectasis (hereafter referred to as bronchiectasis) are of unknown cause and are not
58 monogenic⁵.

59

60 Over time, the lungs of most people with bronchiectasis become chronically infected with
61 bacterial pathogens, predominantly *Pseudomonas aeruginosa*. In a recent analysis of the
62 European bronchiectasis registry, involving 16,963 patients from 28 countries, *P. aeruginosa*
63 infection was identified in ~25% of all patients⁶. However, there was marked regional
64 variation, with more than 50% of patients infected with *P. aeruginosa* being in Southern
65 European countries, and lower rates observed in Northern Europe. Outside of Europe, *P.*
66 *aeruginosa* has been shown to be the dominant pathogen in the United States⁷, China⁸,
67 India and Australia⁹. The presence of *P. aeruginosa* infection in people with bronchiectasis is
68 associated with poorer outcomes, and patients with *P. aeruginosa* infection have been found
69 to have a nearly 7-fold higher risk of hospitalisation and 3-fold increased risk of mortality
70 compared to patients without¹⁰.

71

72 Bronchiectasis has been a neglected disease with limited research, consequently there are
73 far fewer genomic studies characterising the associated *P. aeruginosa* infections than in CF.
74 To date there have been only two single-country genomic epidemiology studies solely
75 focused on *P. aeruginosa* in bronchiectasis. A recent investigation of 130 genomes isolated
76 from 110 adult patients attending a single bronchiectasis clinic in Germany¹¹ suggested that
77 bronchiectasis infections are caused by diverse sequence types (STs), representative of the
78 global diversity of *P. aeruginosa*. The incidence of multiple patients with an infection caused
79 by the same ST was rare. Similarly, a study of 189 *P. aeruginosa* genomes from 91 adult
80 patients attending 16 clinics in the UK¹² showed a high diversity of STs. This study also
81 reported ~30% of patients for whom multiple *P. aeruginosa* genomes were obtained that had
82 mixed ST infections, suggesting multiple acquisition events. As mixed ST *P. aeruginosa*
83 infections have been shown to more readily acquire antimicrobial resistance (AMR)¹³, this
84 could pose a clinical risk to patient health and urgently requires further study.

85

86 In CF, *P. aeruginosa* undergoes a characteristic suite of genomic changes enabling
87 adaptation to the lung environment. This process drives extensive genetic diversification of
88 the infecting population through mutations commonly affecting traits such as AMR, biofilm
89 formation and motility, and regulatory systems controlling a range of functions including
90 virulence factor production. These genomic changes are believed to directly impact patient
91 health, by prolonging infection and reducing the effectiveness of antimicrobial treatments^{14,15}.

92 Whether such evolutionary diversification occurs in bronchiectasis *P. aeruginosa* infections is
93 unclear due to the extremely limited data¹². Given the more variable aetiology, disease
94 phenotypes, and treatment responses of bronchiectasis compared to CF¹⁶, it is probable that
95 the evolutionary pathways of bronchiectasis infections are less predictable than for CF
96 infections. More extensive genomic studies that sample the within patient diversity of *P.*
97 *aeruginosa*, across a larger number of bronchiectasis patients, have been urgently required
98 to better understand the evolutionary mechanisms operating in bronchiectasis infections to
99 guide improved treatment.

100
101 We have used genome sequencing to analyse a unique global collection of 2,854 *P.*
102 *aeruginosa* bronchiectasis isolates, obtained during the ORBIT3 Phase III clinical trial for
103 inhaled liposomal ciprofloxacin¹⁷. Here we analyse the genomic diversity of *P. aeruginosa*
104 within and between 180 patient infections sampled at baseline prior to antibiotic treatment.
105

106 Materials and Methods

107

108 *Pseudomonas aeruginosa* isolation and growth

109 Sputum samples were collected from a cohort of 180 patients with bronchiectasis at the start
110 of the ORBIT3 clinical trial¹⁷, and stored at -80 °C. To isolate *P. aeruginosa* from the sputum,
111 an equal volume of Sputasol solution (SR0233, Oxoid) was added to each sample, mixed
112 until liquefaction was complete, and then incubated in a 37 °C shaking incubator (240 rpm)
113 for 30 min. Subsequently, 100 µl was spread onto Cetrimide Agar (22470, NutriSelect®
114 Plus) plates and incubated in a static incubator at 37 °C for 24 - 48 h. These populations
115 were further streaked onto Cetrimide Agar plates and incubated in a static incubator at 37°C
116 for 24 – 48 h, and *P. aeruginosa* colonies were then isolated from each population. These
117 selected colonies were grown in King's B medium consisting of 20 g l⁻¹ Bacto proteose
118 peptone No.3 (Gibco), 1.5 g l⁻¹ Potassium phosphate dibasic trihydrate (P5504, Sigma), 1.5
119 g l⁻¹ Magnesium sulfate heptahydrate (M1880, Sigma) and 10 g l⁻¹ Glycerol (49770,
120 Honeywell) in a static incubator at 37 °C for 48 h. The presence of *P. aeruginosa* was
121 confirmed using polymerase chain reaction (PCR) and primers targeting the species-
122 specific 16S rRNA gene of *P. aeruginosa*¹⁸. The primer sequences used were: forward, 5' -
123 GGG GGA TCT TCG GAC CTC A - 3'; reverse, 5' - TCC TTA GAG TGC CCA CCC G - 3'.
124 The PCR protocol included the following thermocycling program: initial denaturation at 95 °C
125 for 5 min, followed by 35 cycles of denaturation at 95 °C for 20 s, annealing at 58 °C for 20
126 s, extension at 72 °C for 40 s, and a final extension at 72 °C for 10 min.
127

128 **DNA extraction and sequencing**

129 Isolates for sequencing were cherrypicked using an Opentrons OT-2 Liquid Handler and
130 DNA extraction was then performed using the Quick-DNA Fecal/Soil Microbe Kit (Zymo
131 Research) on a KingFisher Flex instrument (Thermo Fisher Scientific), following the
132 manufacturers protocol. Eluted DNA was quantified using a Qubit Flex Fluorometer (Thermo
133 Fisher Scientific) and samples kept at -80 °C for storage. Samples were then normalized to
134 7.7 ng μ l⁻¹ using a MANTIS Liquid Handler (Formulatrix) and library preparation performed
135 for 20 ng of input DNA using NEBNext Ultra II FS DNA Library Prep Kit for Illumina (New
136 England Biosciences) on a Mosquito HV liquid handling instrument (SPT Labtech), following
137 the manufacturers protocol, miniaturized to 0.1 recommended volume. Library fragments
138 were then amplified and 10 bp index sequences (Integrated DNA Technologies) were
139 incorporated using polymerase chain reaction (PCR).

140

141 Following library preparation, the libraries were quantified using a Qubit Flex Fluorometer
142 and size analysis was performed on a Fragment Analyser (Agilent). The average library
143 length and concentration of each library was used to pool the libraries in an equimolar
144 manner using a Mosquito X1 (SPTLabtech). The final pooled libraries cleaned and
145 concentrated using AMPure XP beads (Beckman Coulter) to remove any remaining adaptor
146 sequences. The average length of the final pool of libraries was analysed using a
147 Bioanalyzer (Agilent) and the concentration was quantified using a Qubit fluorometer.
148 Samples were then sequenced on an Illumina NovaSeq 6000 150 bp paired-end run by the
149 Centre for Genomics Research, University of Liverpool, who then trimmed the raw fastq files
150 using Cutadapt v1.2.1¹⁹.

151

152 **Assembly, annotation and MLST analysis**

153 All reads were then quality checked with FastQC v0.11.9²⁰, and *de novo* assembly
154 performed using Unicycler v0.5.0²¹. Each genome was annotated with Bakta v1.6.0²², and
155 quality checked using the quality control (QC) pre-processing script as part of Panaroo
156 v1.2.10²³, QUAST v5.2.0²⁴ and Busco v5.4.3²⁵, and any isolates with poor assemblies were
157 removed. Panaroo QC was also used to detect samples contaminated with reads from other
158 species (indicative of initial sample contamination) or non-*P. aeruginosa* isolates, which were
159 then removed from the analyses. All remaining assemblies were sequence typed with mlst
160 v2.11²⁶, using the PubMLST database (<https://pubmlst.org/>)²⁷.

161

162 **Pangenome and phylogeny**

163 The pangenome of each sample group of interest: all isolates, each phylogroup and
164 individual patients, was constructed using Panaroo v1.2.10²⁸ with mafft alignment. The core

165 genome produced was then used to determine the core SNP phylogeny for each group
166 using SNP-sites v2.5.1²⁹. Maximum likelihood phylogenetic trees were then constructed
167 based on these using IQ-Tree v2.0.0.3³⁰ (1000 bootstraps) with ModelFinder for model
168 selection³¹ and ascertainment bias correction.

169

170 **Prophage and plasmid detection**

171 To screen for viral DNA and detect prophage regions in each genome, VirSorter v1.0.5³²
172 was used. Viral sequences detected in each assembled genome assigned to prophage
173 category 1 (#4) and prophage category 2 (#5) were considered prophage regions, selected
174 at random for confirmation using PHASTEST³³⁻³⁵. To detect possible plasmids in
175 assemblies, Abricate v0.7³⁶ was used to identify any plasmid replicons against the
176 PlasmidFinder database³⁷.

177

178 **Mutation diversity**

179 To investigate mutational diversity, all SNPs in each genome were first identified against the
180 annotation file for the closest reference strain for each phylogenetic group (group 1: *P.*
181 *aeruginosa* PAO1, group 2: PA14, group 3+: PA7) using Snippy v4.6.0³⁸. The 'snippy-core'
182 script, part of Snippy, was then used to determine core SNPs amongst the different groups
183 of isolates described. This identified all SNPs in core sites amongst each group of isolates
184 (e.g. phylogenetic groups/patient populations). SNP pairwise distance matrices were then
185 produced using.snp-dists v0.8.2 and visualised as heatmaps using the *pheatmap* package in
186 R v4.3.1³⁹. SnpEff v5.0e⁴⁰ was subsequently used to annotate the core SNPs identified.
187 Comparisons to determine polymorphic genes and fixed mutations were performed using
188 these outputs in R. Ancestral state reconstruction, under an equal-rates model, of loss of
189 function core SNPs observed in multiple isolates was performed and mapped to the
190 phylogeny using SIMMAP⁴¹ and the *phytools* package⁴² in R v4.3.1.

191

192 **Antimicrobial resistance**

193 To detect the presence of antimicrobial resistance genes in each genome assembly,
194 ResFinder 4.0⁴³ was used. There was one isolate from a patient where OXA-50, expected in
195 all *P. aeruginosa* genomes, was not detected by ResFinder, however visual inspection using
196 IGV v2.16.1⁴⁴ confirmed this was a false negative. To detect AMR-associated mutations,
197 RGI was used against the Comprehensive Antibiotic Resistance Database (CARD)⁴⁵.

198

199 **Reference strains and gene information**

200 Four reference strain genomes were included in this work: *P. aeruginosa* PAO1 (NCBI,
201 GCF_000006765.1), *P. aeruginosa* PA14 (NCBI, GCF_000014625.1), *P. aeruginosa*

202 LESB58 (NCBI, GCF_000026645.1) and *P. aeruginosa* PA7 (NCBI, GCF_000017205.1). All
203 gene information was sourced from pseudomonas.com⁴⁶.

204

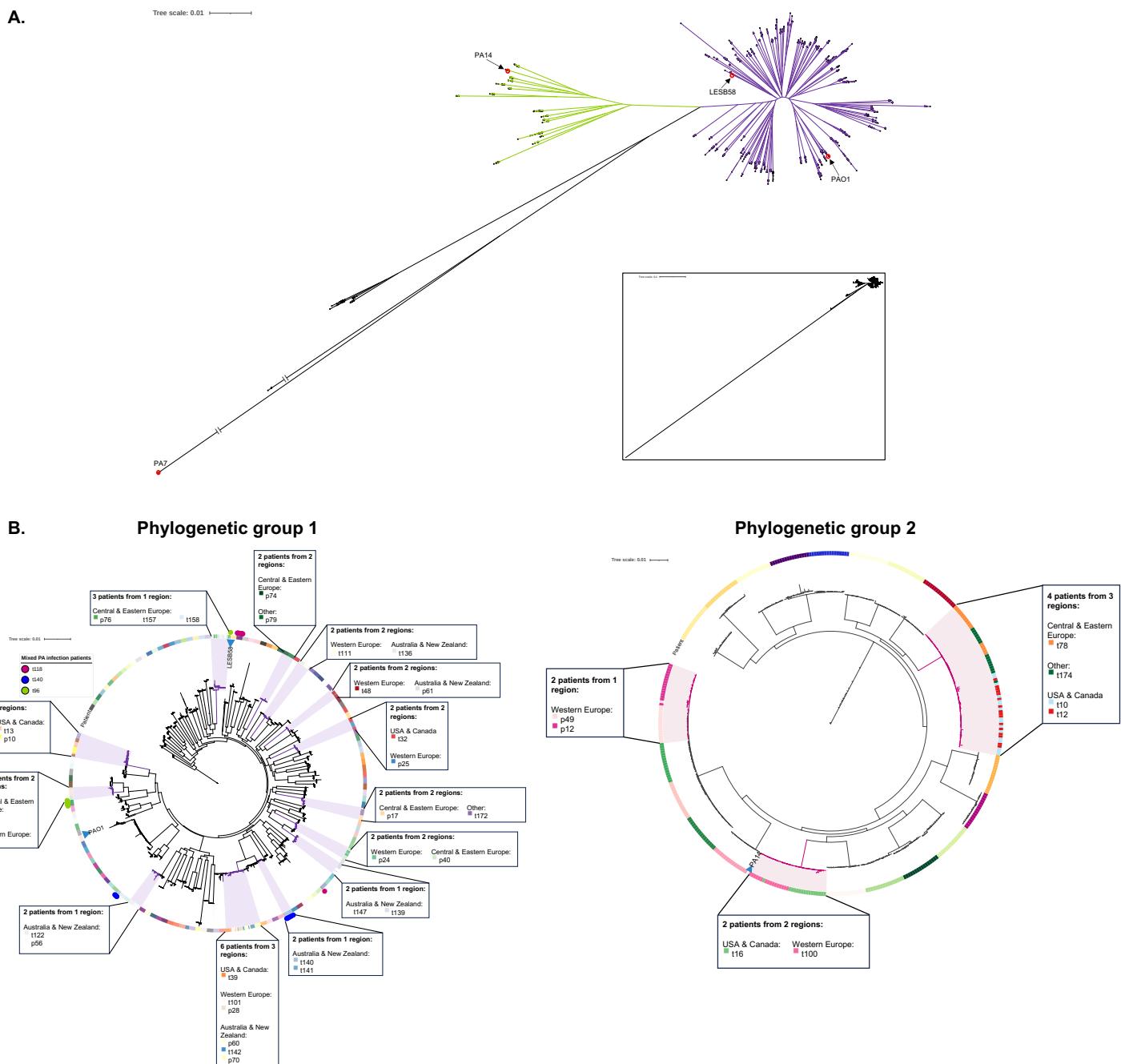
205 **Statistical analysis**

206 All statistical analyses were performed using R v4.3.1. The *pegas* package⁴⁷ was used to
207 conduct AMOVAs (1000 permutations), and to calculate nucleotide diversity (π) alongside
208 the *vcfR* package⁴⁸.

209

210 **Data availability**

211 All sequencing data (reads and assemblies) are available at the European Nucleotide
212 Archive (ENA) (accession number: PRJEB65845).

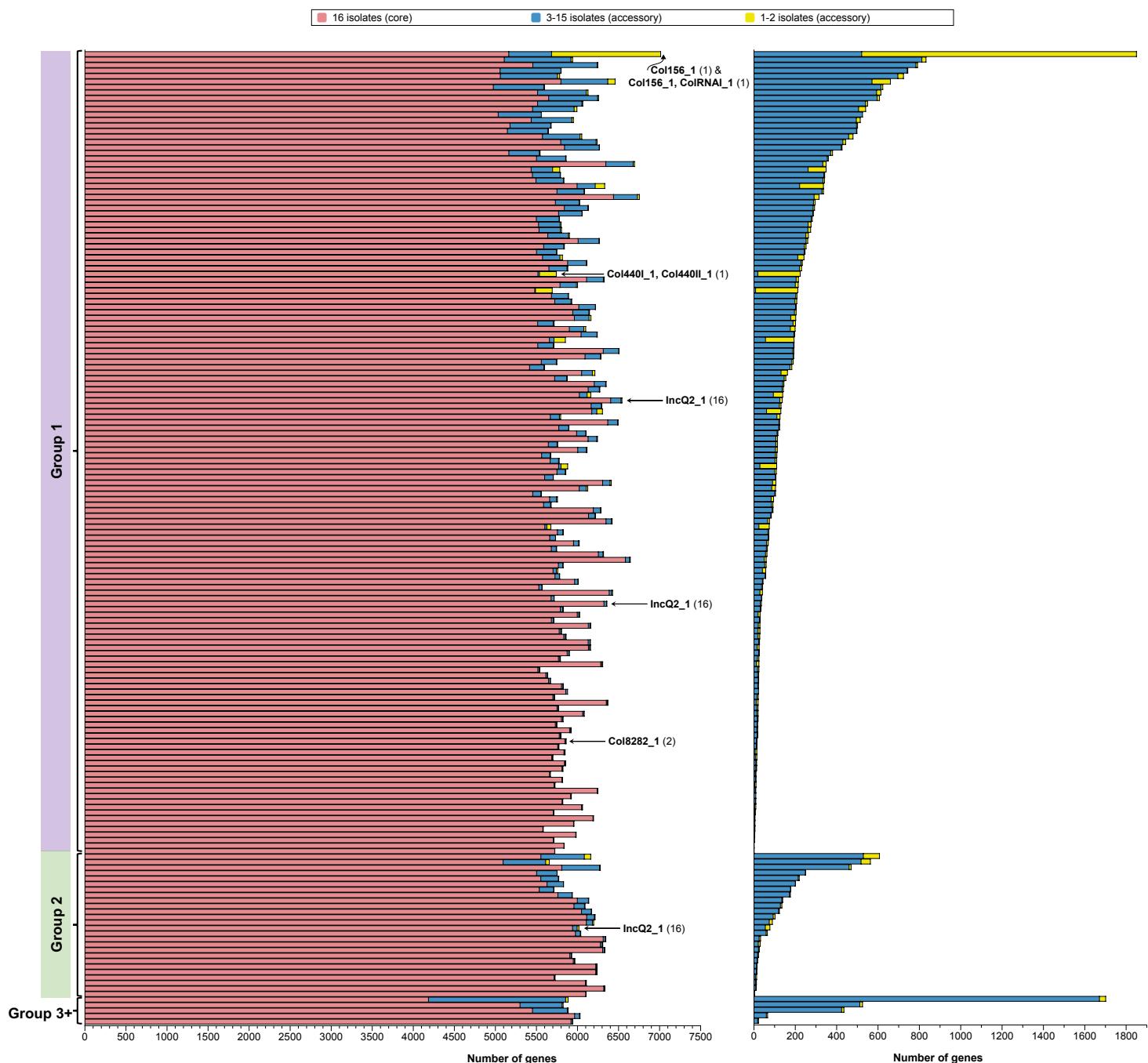

213

214 **Results**

215

216 We sequenced 2,854 *P. aeruginosa* isolates from 180 patients, representative of the
217 bronchiectasis demographic (~16 isolates per patient; Fig S1), and performed *de novo*
218 assembly (median number of contigs = 80; see Table S1) and annotation for each genome.
219 A phylogeny of all isolates and the common reference strains PAO1, PA14, LESB58 and PA7
220 was constructed based on single nucleotide polymorphisms (SNPs) in the 4,344 core genes;
221 83% of isolates belonged to phylogenetic group 1 (PAO1-like), and 14% belonged to
222 phylogenetic group 2 (PA14-like) (Table S2). The remaining 3% of isolates from 5 patients
223 branched distantly from group 1 and group 2 isolates, closest to the reference strain PA7
224 (Fig 1A) and were classified within group 4 or 5⁴⁹. We observed strong phylogenetic
225 clustering of isolates by patient, but there was no clear evidence of clustering driven by
226 geographic region (Fig 1B). Most patients (77%) contained a single, distinct ST (Fig S2).
227 Only 18 patients had infections caused by clonal STs, most commonly Clone C, and CF
228 epidemic STs were rare (6 patients; Table S3). There were only 3 patients (2%) that had
229 mixed ST infections (Fig S2). Together these data suggest that transmissible strains and
230 superinfection by multiple strains do not play a major role in bronchiectasis.

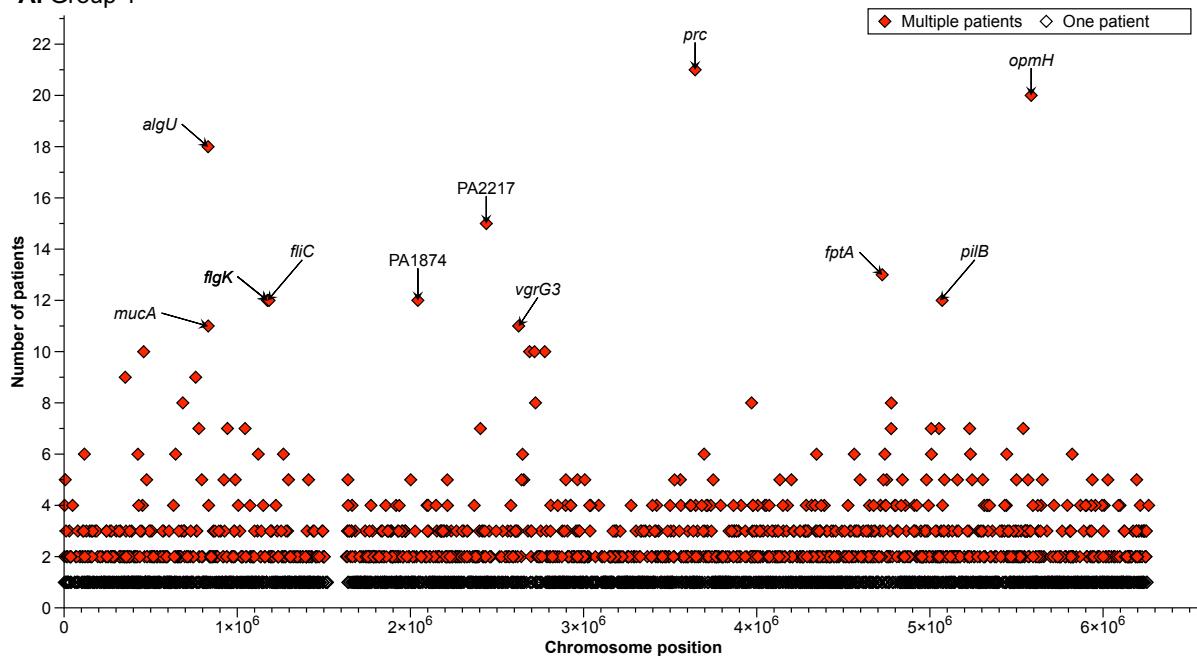
231

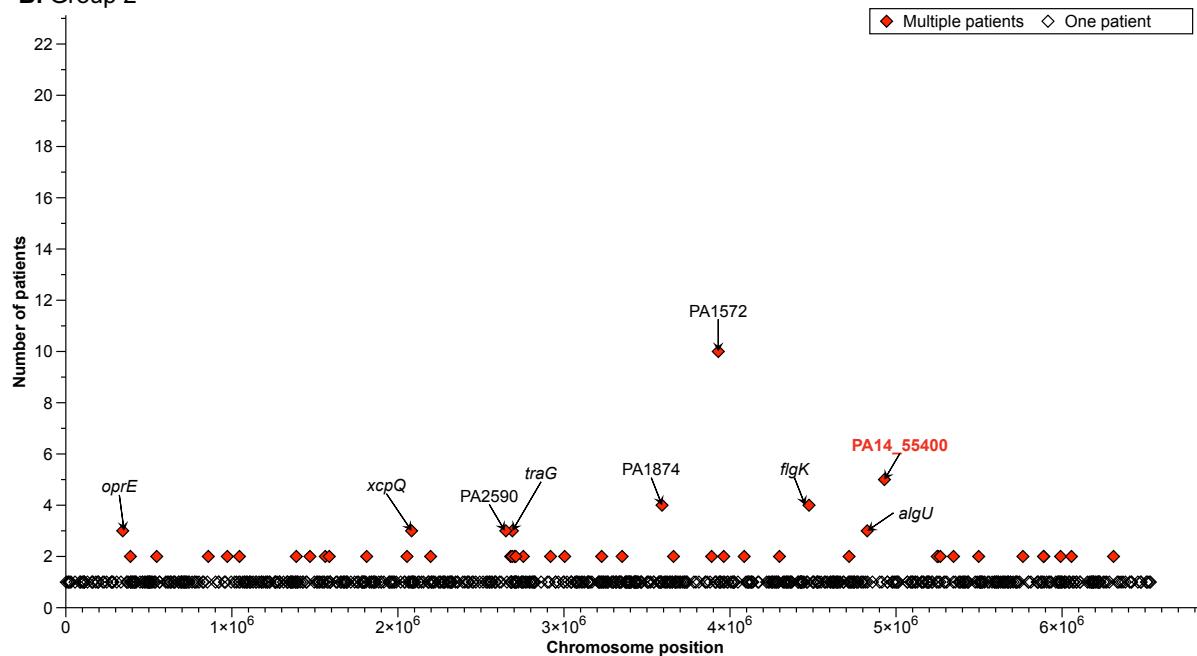


232 **Figure 1.** Core single nucleotide polymorphism (SNP)-based phylogenetic trees of
233 *Pseudomonas aeruginosa* isolates from people with bronchiectasis and 4 reference strains:
234 PAO1, LESB58, PA14 and PA7. **(A)** Phylogenetic tree including all isolates and reference
235 strains, each group is denoted by coloured branches (group 1: right, purple, group 2: left,
236 green, group 3+: down, black), and the reference strains are circled and labelled. **(B)**
237 Phylogenetic trees of the two dominant phylogenetic groups, group 1 (PAO1-like) and group
238 2 (PA14-like). The coloured rings show the patient each isolate was taken from, and the
239 circles in the outer ring on the group 1 tree show the possible mixed infection isolates (see
240 legend). The labelled boxes and highlighted regions show clusters of patients whose isolates
241 branched together and detail the clinic region these patients attended.

242

243 Group 2 isolates had higher nucleotide diversity than group 1 isolates (group 2 $\pi=6.11\times10^{-3}$;
244 average 1 SNP per 164 bases; group 1 $\pi=2.93\times10^{-3}$; average 1 SNP per 342 bases) and
245 genetic diversity between patients far exceeded that observed within patients, accounting for
246 99.9% of total genetic diversity in both group 1 (df = 145, $\sigma < 0.01$, $P < 0.01$) and group 2 (df
247 = 25, $\sigma < 0.01$, $P < 0.01$). Similarly, gene content varied extensively in both phylogenetic
248 groups (group 1: 4,580 core genes and 14,138 accessory genes, n=2,349 isolates; group 2:
249 4,627 core genes and 6,817 accessory genes, n=415 isolates) and showed greater variation
250 between than within patients (1-sample t-tests: group 1 $t_{145} = -725.53$, $P < 0.01$; group 2 $t_{25} = -$
251 202.15, $P < 0.01$; Fig 2). Nonetheless, we did observe strong evidence supporting within-
252 patient diversification. Focusing on single ST infections, where genetic diversity can be
253 assumed to have arisen by mutation *in situ*, average pairwise core SNP distance between
254 co-existing isolates per patient ranged from 3.86×10^{-5} (1 SNP per 25,926 bases) to 2.81×10^{-7}
255 (1 SNP per 3,555,101 bases) for group 1, and from 2.08×10^{-5} (1 SNP per 48,045 bases) to
256 1.95×10^{-7} (1 SNP per 5,127,358 bases) for group 2 (Fig S3), and did not differ between the
257 phylogenetic groups (T test: $t_{45.04} = 0.26$, $P = 0.80$). In some patients, elevated within-patient
258 genetic diversity was associated with mutations in genes encoding DNA mismatch repair
259 (MMR) or break excision repair (BER) likely to cause hypermutation (Fig S3). Mobile genetic
260 elements also played a role generating within patient diversity: Prophage regions (20 to 433
261 genes in size; mean = 135 genes) were observed in all isolates (range 1 to 9 regions per
262 genome; mean = 3; Table S4), and coexisting isolates from the same patient often varied in
263 their prophage number (50%; n = 89 patients) and/or the gene content of prophage regions
264 (86%; n = 153 patients). Plasmids were comparatively much rarer across all isolates,
265 detected in only 53 isolates from 6 patients, but variable plasmid carriage between
266 coexisting isolates caused the highest level of within patient gene content variation
267 observed.

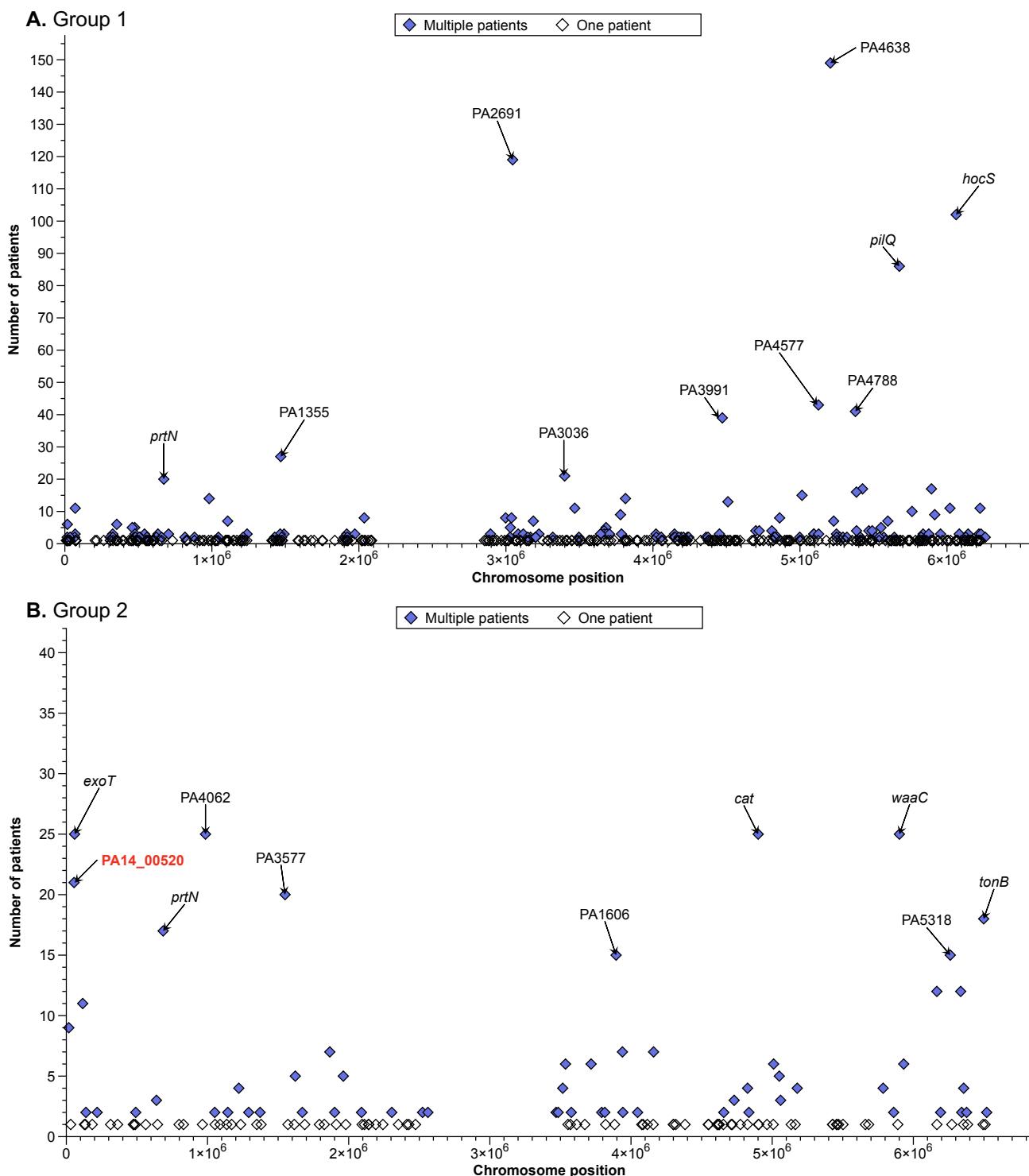

268


269 **Figure 2. (A)** The number of genes in the core and accessory *Pseudomonas aeruginosa*
270 genome in sequenced populations from people with bronchiectasis. **(B)** The number of
271 genes in the accessory genome of each population, in the same patient order as graph A. In
272 both graphs, each bar represents a patient and ordered by phylogenetic group. The patients
273 with plasmids detected are labelled with the replicon and the number in brackets indicates
274 how many sequenced isolates carried the replicon/s from that patient.
275

276 Putative targets of diversifying selection within patients were determined by identifying genes
277 that harboured non-synonymous polymorphisms across multiple patients. Polymorphic
278 genes (Table S5) identified in both group 1 and group 2 (Fig 3) included a novel efflux pump
279 gene (PA1874), sigma factor-encoding gene *algU* (PA0762) and the flagellar-associated
280 gene *flgK* (PA1086). Additionally, in group 1, polymorphic genes associated with a range of
281 key functions were identified, including motility (*fliC*, *chpA* and *pilB*), cell envelope (*oprE*,
282 *oprH*, *oprD*, *pagL*, *migA*), alginate production (*mucA*, *algG*) and iron acquisition (*fptA*, *pvdL*,
283 *pvdS*, *pchE*, *hemA*, *pvdP*), as well as *pdtA*, encoding a filamentous haemagglutinin linked
284 with adhesion and virulence. For group 2, the most common polymorphic gene was PA1572
285 (Fig 3B), also known as *nadK1*, which encodes an ATP-NAD kinase associated with
286 response to reactive oxygen species⁵⁰.
287

A. Group 1

B. Group 2

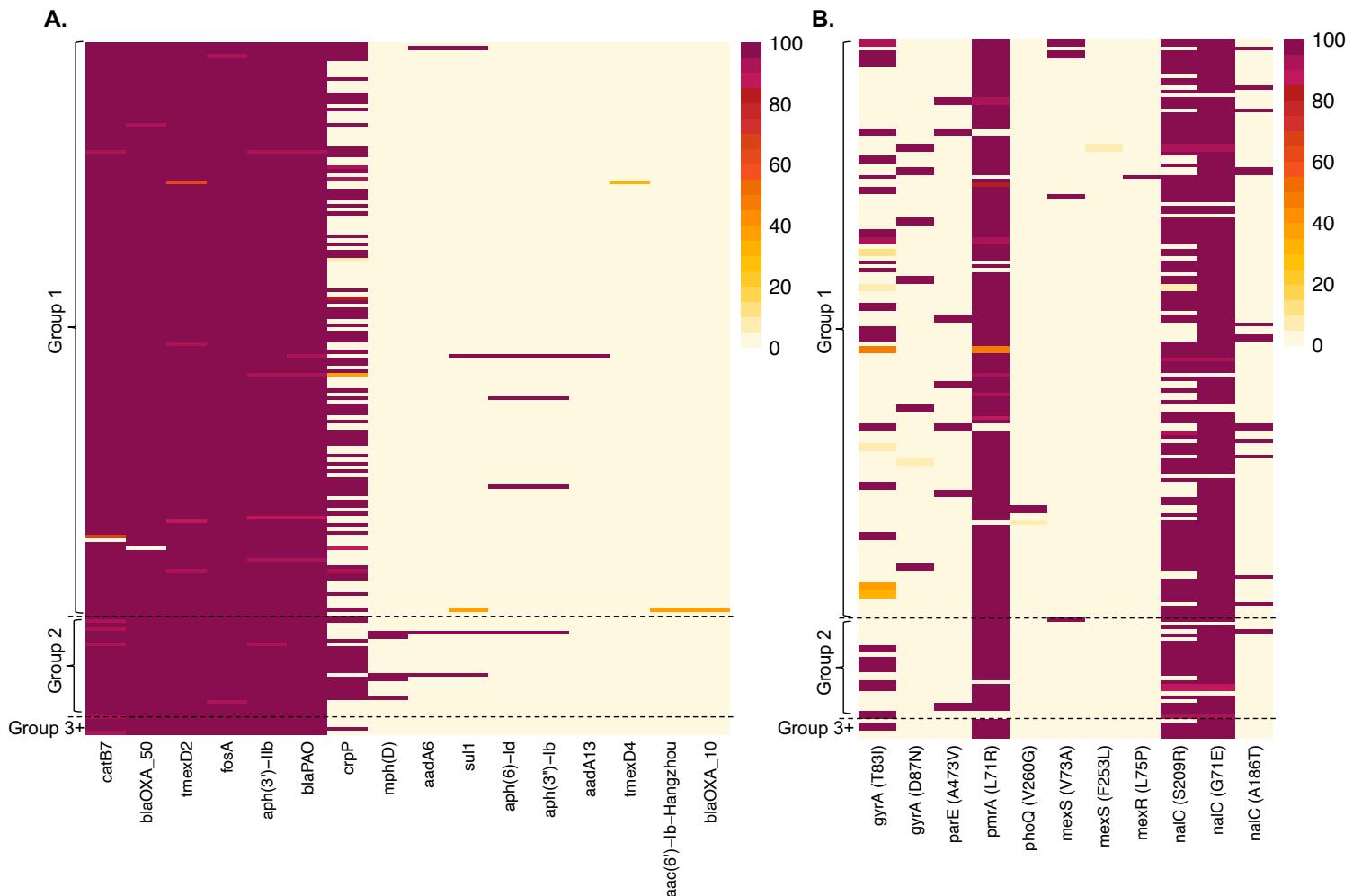


288 **Figure 3.** Within patient polymorphism. Each data point represents a gene with non-
 289 synonymous mutations between *Pseudomonas aeruginosa* isolates from the same
 290 bronchiectasis patient. They are filled if a mutation in the gene separates isolates in more
 291 than one patient (see legend). The y axis shows the number of patients with mutations
 292 between their sequenced isolates in each gene. The dataset has been split into phylogenetic
 293 group 1 (**A**) and group 2 (**B**) as different reference strains were used for each (group 1:
 294 PAO1, group 2: PA14). The top genes are labelled. The PA14 locus tags have been
 295 converted to PAO1 where possible for group 2, the red highlighted gene is not present in
 296 PAO1.

297

298 We next determined putative targets of positive selection, potentially involved in adaptation
299 to the lung environment, by identifying phylogenetically independent SNPs that had become
300 fixed in multiple patients (i.e., parallel evolution). Focusing on high impact mutations (e.g.
301 interruption of start/stop codons) likely to cause loss of gene function (LoF), we observed
302 putative parallel evolved mutations affecting 135 genes in group 1 isolates (Fig 4A) and 60
303 genes in group 2 isolates (Fig 4B). These included *prtN* (PA0610) which positively regulates
304 pyocin expression⁵¹, the alginate biosynthesis regulator *algU*, and the cell-surface receptor
305 *tonB*, linked to iron uptake, biofilm formation and quorum sensing⁵². Additionally, we
306 observed evidence for parallel evolution in several hypothetical genes of unknown function,
307 including PA4577, which shares homology with the transcriptional regulator *traR* (Table 1),
308 and PA4788 and PA3036, which share homology with several dehydratases and
309 oxidoreductases respectively. A large chromosomal region with no core SNPs in either group
310 1 or 2 (Fig 4) indicated large deletions occurring in a proportion of isolates; similar deletions
311 have previously been associated with increased AMR in *P. aeruginosa* clinical isolates⁵³.

312


313 **Figure 4.** The number of bronchiectasis patients with at least one *Pseudomonas aeruginosa*
314 isolate with a high impact single nucleotide polymorphism (SNP) (likely causing loss of
315 function) in a gene. Each gene is represented by a data point. Group 1 (**A**) and group 2 (**B**)
316 are shown on separate graphs as different reference strains were used for each (group 1:
317 PAO1, group 2: PA14). The mutations in multiple patients are shown in blue, and the 10
318 most frequent amongst patients are labelled. The PA14 locus tags have been converted to
319 PAO1 where possible, the red highlighted gene is not present in PAO1.

320 **Table 1.** The most frequently occurring loss of function single nucleotide polymorphisms
321 (SNPs) across *Pseudomonas aeruginosa* phylogenetic groups 1 and 2, and gene
322 information. The phylogenetic group shows the group of isolates that carried the loss of
323 function mutation in the gene, the number of patients is the bronchiectasis patients with
324 isolates from that group that had the mutation, and the predicted number of independent
325 mutation events indicates the number of independent mutation events found on the
326 phylogeny for each mutation. There is one gene that appeared in the most frequent in both
327 groups (*prtN*).

Gene name	Gene product	Loss of function mutation	Phylogenetic group	Number of patients	Predicted number of independent mutation events
PA4638	Hypothetical protein	Stop lost	1	149	1
PA2691	Hypothetical protein	R87*	1	119	1
<i>hocS</i>	Short-chain O-acylcarnitine hydrolase	E322*	1	102	1
<i>pilQ</i>	Type 4 fimbrial biogenesis outer membrane protein PilQ precursor	S578*	1	85	1
PA4577	Hypothetical protein	Q77*	1	43	15
PA4788	Hypothetical protein	Q40*	1	41	22
PA3991	Hypothetical protein	Q138*	1	39	27
PA1355	Hypothetical protein	Start lost	1	21	9
PA3036	Hypothetical protein	Y220*	1	21	10
<i>prtN</i>	Transcriptional regulator	Start lost	1	20 (group 1)	16 (group 1)
		Start lost	2	17 (group 2)	1 (group 2)
<i>exoT</i>	Exoenzyme T	Stop lost	2	25	1
PA4062	Hypothetical protein		2	25	1
<i>cat</i>	Chloramphenicol acetyltransferase	Stop lost	2	25	1
<i>waaC</i>	Heptosyltransferase I	Stop lost	2	25	1
PA14_00520	Hypothetical protein	Stop lost	2	21	1
PA3577	Hypothetical protein	Stop lost	2	20	1
<i>tonB</i>	TonB1 (part of TonB complex)	S306*	2	18	1
PA1606	Hypothetical protein	S152*	2	15	3
PA5318	Hypothetical protein	Stop lost	2	15	1

328
329 The abundance and distribution of AMR determinants within and between *P. aeruginosa*
330 infections is poorly understood in bronchiectasis. Using the ResFinder database and the
331 Comprehensive Antibiotic Resistance Database (CARD), we identified 16 variable AMR
332 genes and 11 AMR-associated mutations across all isolates (Fig 5). Most were either fixed or

333 absent in all isolates per patient, with rare occurrences of within patient polymorphism.
334 Among the variable AMR genes likely to represent gain events, the most common was the
335 ciprofloxacin modifying enzyme *crpP*, present in 49% of patients (Fig 5A). Other probable
336 AMR gene gains were present in only one or a few patients, such as the aminoglycoside
337 nucleotidyltransferase gene *aadA6* seen in 3 patients. These cases highlight the potential for
338 the emergence of multidrug resistance in bronchiectasis. For example, 6 isolates from a
339 single patient had an OXA-10 like beta-lactamase and an aminoglycoside acetyltransferase
340 gene *aac(6')-Ib-Hangzhou*, typically seen in *Acinetobacter baumanii* (Fig 5A)⁵⁴, alongside the
341 full complement of *P. aeruginosa* core AMR genes and *crpP*. AMR associated SNPs were
342 found to commonly affect regulators of multidrug efflux systems, including *naIC*, *mexS* and
343 *mexR*, and would be likely to cause upregulation of multidrug efflux (Fig 5B). Additionally,
344 several common mutational targets were associated with resistance to fluoroquinolones,
345 including L71R in the response regulator *pmrA* that was present in >80% of patients, and
346 mutations in *gyrA* (T83I in 124 patients, and D87N in 14 patients) and *parE* (A473V in 14
347 patients), encoding topoisomerases targeted by ciprofloxacin. Whereas the *gyrA* mutations
348 were mutually exclusive, the *parE* mutation co-occurred with the *gyrA* mutation T83I in 2
349 patients (Fig 5B).
350

351 **Figure 5. (A)** The presence/absence of antimicrobial resistance (AMR) genes in each
352 bronchiectasis *Pseudomonas aeruginosa* isolate identified using ResFinder. The patient
353 without any OXA-50 beta-lactamases detected was found to have a large deletion in all
354 isolates in this region (Fig S4). **(B)** The presence of AMR-associated mutations in each
355 isolate based on Comprehensive Antibiotic Resistance Database (CARD) predictions,
356 identified using RGI. In both heatmaps, each row represents a patient, and the fill colour
357 shows the percentage of isolates from each patient that has the gene or mutation (see keys).
358 Groups shown are the phylogenetic groups.

359

360 **Discussion**

361

362 *P. aeruginosa* is the most common cause of respiratory infection in bronchiectasis
363 worldwide, contributing to higher morbidity and mortality rates, but the genomic diversity of
364 such infections is poorly understood. Our study provides a 10-fold increase in availability of
365 genomic data for such infections, whilst also expanding patient sampling beyond Europe.
366 Most infections were caused by a single, distinct ST and we found low rates of mixed ST

367 infections and low incidence of CF epidemic clones, as well as little evidence of geographic
368 variation in the causal STs. Accordingly, genetic diversity was higher between than within
369 patients, but we nonetheless observed strong evidence for recurrent *in situ* diversification. In
370 addition, we identified genes and functions undergoing parallel evolution independently in
371 multiple patients associated with adaptation to the bronchiectasis lung environment.

372 Although some of these functions, such as motility, biofilm and antimicrobial resistance,
373 overlap with those commonly mutated in CF infections, others appear more bronchiectasis-
374 specific, including several genes involved in pyocin production and a novel efflux pump.

375

376 Our findings provide strong evidence that *P. aeruginosa* undergoes evolutionary
377 diversification and adaptation to the bronchiectasis lung environment in common with CF.
378 Most patients are colonized with a single ST that diversifies *in situ* through both
379 accumulation of mutations and changes in mobile genetic elements, predominantly changes
380 in prophage number and gene content. Our evolutionary analysis revealed a suite of
381 pathways recurrently under selection in multiple patients. Some functions gaining mutations
382 are common to both bronchiectasis and CF, including regulators of alginate production
383 (*mucA* and *algU*) associated with mucoidy and biofilm, flagellum and type-IV pilus genes
384 (*flgK*, *fliC* and *piQ*) likely to cause loss of motility, and genes involved in iron acquisition
385 (including *tonB* and *fptA*) and cell envelope integrity (including *oprE*, *opmH* and *waaC*). In
386 contrast, other mutational targets appear to be more common in bronchiectasis than in CF.
387 These included mutations affecting pyocin production and resistance genes, perhaps
388 suggesting that bacteriocin-mediated interference competition may be less intense
389 compared to CF, and a novel efflux pump gene, PA1874, which was among the most
390 frequently mutated in our patients but is not commonly mutated in CF infections. Mutations in
391 this efflux pump have been linked to increased tobramycin resistance during biofilm
392 infection⁵⁵. Our finding of distinct evolutionary paths in bronchiectasis suggests that, despite
393 some shared features with CF, there exist potentially important differences.

394

395 Initial colonization by *P. aeruginosa* in bronchiectasis is often treated with antibiotic regimens
396 that include fluoroquinolone antibiotics⁵⁶. Consistent with this, we commonly observed
397 fluoroquinolone resistance genes (*crpP*) or mutations in targeted topoisomerases (*gyrA* and
398 *parE*) or regulatory genes (*pmrA*) associated with resistance. After becoming chronically
399 infected, bronchiectasis patients often receive long-term suppressive antibiotic therapy as
400 well as antibiotic treatment for exacerbations, thus infections potentially receive treatment
401 with a diversity of antibiotic classes. Accordingly, we commonly observed regulatory
402 mutations likely to cause upregulation of multidrug efflux systems. This included mutation of
403 a novel efflux pump (PA1874) as well as mutations affecting the MexAB-OprM that have not

404 been highlighted previously in CF infections, potentially suggesting bronchiectasis-specific
405 resistance mechanisms.

406

407 Consistent with prior single-country studies, our global genomic analysis revealed a high
408 diversity of STs causing bronchiectasis infections across patients. Although we cannot
409 distinguish the extent to which acquisition of infection is from patient-to-patient or
410 environmental routes, our data clearly show that – unlike CF – highly-transmissible strains
411 play only a minor role in the epidemiology of bronchiectasis infection. Unlike a previous UK
412 study, we did not observe high incidence of mixed ST infections in our far larger sample of
413 bronchiectasis infections which was each studied in greater depth than any previous study.
414 Indeed, the very low rate of mixed ST infections alongside the low prevalence of CF
415 epidemic STs implies that existing cohorting and isolation procedures for bronchiectasis are
416 broadly effective at preventing dissemination of and superinfection by transmissible clones.

417

418 Owing to the serious negative impact of *P. aeruginosa* on patient health, improving treatment
419 of such infections in bronchiectasis patients is a high priority. This study provides an
420 unprecedented global genomic resource improving our knowledge and understanding of *P.*
421 *aeruginosa* genetic diversity and evolution in bronchiectasis. Overall, our findings suggest
422 important differences between bronchiectasis and CF infections, notably the relatively minor
423 role that transmissible strains play in bronchiectasis relative to CF infections, and genes in
424 the *P. aeruginosa* genome that are targets of selection in bronchiectasis but not CF.

425

426 **Acknowledgements**

427

428 The ORBIT3 clinical trial was sponsored by Aradigm Corporation and samples kindly gifted
429 to the University of Dundee and the European Bronchiectasis Network (EMBARC). We
430 acknowledge the patients and investigators in the ORBIT programme. We thank all those
431 involved in the clinical trial, including patients and all hospital and clinical trial staff, for the
432 samples used for this work, as well as the Centre for Genomics Research (CGR) at the
433 University of Liverpool for all sequencing.

434

435

436 **Funding**

437

438 This work was funded by Wellcome award 220243/Z/20/Z. The funder had no role in the
439 study design, contents and preparation of this manuscript or the decision to publish.

440

441 **CRediT Statement**

442

443 NEH: Methodology; Software; Formal analysis; Validation; Investigation; Data

444 Curation; Writing - Original Draft; Writing - Review & Editing; Visualization

445 AK: Methodology; Validation; Investigation; Data Curation; Writing - Review & Editing

446 KC: Methodology; Validation; Investigation; Writing - Review & Editing

447 MJS: Investigation; Writing - Review & Editing

448 EMG: Methodology; Investigation

449 TF: Investigation

450 RH: Data Curation

451 DZC: Conceptualization; Writing - Review & Editing; Funding acquisition

452 JLF: Conceptualization; Methodology; Resources; Writing - Original Draft; Writing -

453 Review & Editing; Supervision

454 JDC: Conceptualization; Methodology; Resources; Writing - Original Draft; Writing -

455 Review & Editing; Supervision; Funding acquisition

456 MAB: Conceptualization; Methodology; Resources; Writing - Original Draft; Writing -

457 Review & Editing; Supervision; Project administration; Funding acquisition

458 SP: Conceptualization; Methodology; Software; Writing - Original Draft; Writing - Review &

459 Editing; Resources; Supervision; Funding acquisition

460 **References**

461

- 462 1. Dhar, R. *et al.* Clinical outcomes of bronchiectasis in India: data from the
463 EMBARC/Respiratory Research Network of India registry. *European Respiratory
464 Journal* **61**, 2200611 (2023).
- 465 2. McLeese, R. H. *et al.* Psychometrics of health-related quality of life questionnaires in
466 bronchiectasis: a systematic review and meta-analysis. *European Respiratory Journal*
467 **58**, 2100025 (2021).
- 468 3. Chang, A. B. *et al.* European Respiratory Society statement for defining respiratory
469 exacerbations in children and adolescents with bronchiectasis for clinical trials.
470 *European Respiratory Journal* **60**, 2200300 (2022).
- 471 4. Chalmers, J. D., Elborn, S. & Greene, C. M. Basic, translational and clinical aspects of
472 bronchiectasis in adults. *European Respiratory Review* **32**, 230015 (2023).
- 473 5. Shoemark, A. *et al.* Genome sequencing reveals underdiagnosis of primary ciliary
474 dyskinesia in bronchiectasis. *European Respiratory Journal* **60**, 2200176 (2022).
- 475 6. Chalmers, J. D. *et al.* Bronchiectasis in Europe: data on disease characteristics from the
476 European Bronchiectasis registry (EMBARC). *Lancet Respir Med* **11**, 637–649 (2023).
- 477 7. Aksamit, T. R. *et al.* Adult Patients With Bronchiectasis. *Chest* **151**, 982–992 (2017).
- 478 8. Guan, W.-J. *et al.* Sputum bacteriology in steady-state bronchiectasis in Guangzhou,
479 China. *The International Journal of Tuberculosis and Lung Disease* **19**, 610–619 (2015).
- 480 9. Visser, S. K. *et al.* Australian adults with bronchiectasis: The first report from the
481 Australian Bronchiectasis Registry. *Respir Med* **155**, 97–103 (2019).
- 482 10. Finch, S., McDonnell, M. J., Abo-Leyah, H., Aliberti, S. & Chalmers, J. D. A
483 Comprehensive Analysis of the Impact of *Pseudomonas aeruginosa* Colonisation on
484 Prognosis in Adult Bronchiectasis. *Ann Am Thorac Soc AnnalsATS*.201506-333OC
485 (2015) doi:10.1513/AnnalsATS.201506-333OC.
- 486 11. Rosenboom, I. *et al.* *Pseudomonas aeruginosa* population genomics among adults
487 with bronchiectasis across Germany. *ERJ Open Res* **9**, 00156–02023 (2023).
- 488 12. Hilliam, Y. *et al.* *Pseudomonas aeruginosa* adaptation and diversification in the non-
489 cystic fibrosis bronchiectasis lung. *European Respiratory Journal* **49**, 1602108 (2017).
- 490 13. Diaz Caballero, J. *et al.* Mixed strain pathogen populations accelerate the evolution of
491 antibiotic resistance in patients. *Nat Commun* **14**, 4083 (2023).
- 492 14. Winstanley, C., O'Brien, S. & Brockhurst, M. A. *Pseudomonas aeruginosa* Evolutionary
493 Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections. *Trends
494 Microbiol* **24**, 327 (2016).
- 495 15. Rossi, E. *et al.* *Pseudomonas aeruginosa* adaptation and evolution in patients with
496 cystic fibrosis. *Nature Reviews Microbiology* 2020 **19**:5 **19**, 331–342 (2020).
- 497 16. Sibila, O. *et al.* Heterogeneity of treatment response in bronchiectasis clinical trials.
498 *European Respiratory Journal* **59**, 2100777 (2022).
- 499 17. Haworth, C. S. *et al.* Inhaled liposomal ciprofloxacin in patients with non-cystic fibrosis
500 bronchiectasis and chronic lung infection with *Pseudomonas aeruginosa* (ORBIT-3 and
501 ORBIT-4): two phase 3, randomised controlled trials. *Lancet Respir Med* **7**, 213–226
502 (2019).
- 503 18. Spilker, T., Coenye, T., Vandamme, P. & LiPuma, J. J. PCR-Based Assay for
504 Differentiation of *Pseudomonas aeruginosa* from Other *Pseudomonas* Species
505 Recovered from Cystic Fibrosis Patients. *J Clin Microbiol* **42**, 2074–2079 (2004).

506 19. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing
507 reads. *EMBnet J* **17**, 10–12 (2011).

508 20. Andrews, S. FastQC: a quality control tool for high throughput sequence data.
509 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/> (2018).

510 21. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial
511 genome assemblies from short and long sequencing reads. *PLoS Comput Biol* **13**,
512 (2017).

513 22. Schwengers, O. *et al.* Bakta: rapid and standardized annotation of bacterial genomes
514 via alignment-free sequence identification. *Microb Genom* **7**, 685 (2021).

515 23. Tonkin-Hill, G. *et al.* Producing polished prokaryotic pangenomes with the Panaroo
516 pipeline. *Genome Biol* **21**, 1–21 (2020).

517 24. Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D. & Gurevich, A. Versatile genome
518 assembly evaluation with QUAST-LG. *Bioinformatics* **34**, i142–i150 (2018).

519 25. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M.
520 BUSCO: assessing genome assembly and annotation completeness with single-copy
521 orthologs. *Bioinformatics* **31**, 3210–3212 (2015).

522 26. Seemann, T. *mlst* GitHub. <https://github.com/tseemann/mlst>.

523 27. Jolley, K. A. & Maiden, M. C. J. BIGSdb: Scalable analysis of bacterial genome variation
524 at the population level. *BMC Bioinformatics* **11**, (2010).

525 28. Tonkin-Hill, G. *et al.* Producing polished prokaryotic pangenomes with the Panaroo
526 pipeline. *Genome Biol* **21**, 1–21 (2020).

527 29. Page, A. J. *et al.* SNP-sites: rapid efficient extraction of SNPs from multi-FASTA
528 alignments. *Microb Genom* **2**, e000056 (2016).

529 30. Quang, B. *et al.* IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
530 Inference in the Genomic Era. doi:10.1093/molbev/msaa015.

531 31. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A. & Jermiin, L. S.
532 ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. *Nat Methods*
533 **14**, 587 (2017).

534 32. Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: Mining viral signal from
535 microbial genomic data. *PeerJ* **2015**, e985 (2015).

536 33. Zhou, Y., Liang, Y., Lynch, K. H., Dennis, J. J. & Wishart, D. S. PHAST: A Fast Phage
537 Search Tool. *Nucleic Acids Res* **39**, W347 (2011).

538 34. Arndt, D. *et al.* PHASTER: a better, faster version of the PHAST phage search tool.
539 *Nucleic Acids Res* **44**, W16 (2016).

540 35. Wishart, D. S. *et al.* PHASTEST: faster than PHASTER, better than PHAST. *Nucleic Acids*
541 *Res* **51**, W443–W450 (2023).

542 36. Seemann, T. *Abriicate* GitHub. <https://github.com/tseemann/abricate>.

543 37. Carattoli, A. *et al.* In silico detection and typing of plasmids using PlasmidFinder and
544 plasmid multilocus sequence typing. *Antimicrob Agents Chemother* **58**, 3895–903
545 (2014).

546 38. Seemann, T. Snippy: fast bacterial variant calling from NGS reads.
547 <https://github.com/tseemann/snippy> (2015).

548 39. R Core Team. R: A Language and Environment for Statistical Computing.
549 <https://www.R-project.org/> (2023).

550 40. Cingolani, P. *et al.* A program for annotating and predicting the effects of single
551 nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster*
552 strain w1118; iso-2; iso-3. *Fly (Austin)* **6**, 80 (2012).

553 41. Bollback, J. P. SIMMAP: Stochastic character mapping of discrete traits on phylogenies.
554 *BMC Bioinformatics* **7**, 1–7 (2006).

555 42. Revell, L. phytools: an R package for phylogenetic comparative biology (and other
556 things). *Methods Ecol Evol* **3**, 217–223 (2011).

557 43. Bortolaia, V. *et al.* ResFinder 4.0 for predictions of phenotypes from genotypes.
558 *Journal of Antimicrobial Chemotherapy* **75**, 3491 (2020).

559 44. Robinson, J. T. *et al.* Integrative Genomics Viewer. doi:10.1038/nbt.1754.

560 45. Alcock, B. P. *et al.* CARD 2023: expanded curation, support for machine learning, and
561 resistome prediction at the Comprehensive Antibiotic Resistance Database. *Nucleic
562 Acids Res* **51**, D690–D699 (2023).

563 46. Winsor, G. L. *et al.* Enhanced annotations and features for comparing thousands of
564 Pseudomonas genomes in the Pseudomonas genome database. *Nucleic Acids Res* **44**,
565 D646 (2016).

566 47. Paradis, E. & Barrett, J. pegas: an R package for population genetics with an
567 integrated–modular approach. *Bioinformatics* **26**, 419–420 (2010).

568 48. Knaus, B. & Grünwald, N. vcfr: a package to manipulate and visualize variant call
569 format data in R. *Mol Ecol Resour* **17**, 44–53 (2016).

570 49. Freschi, L. *et al.* The Pseudomonas aeruginosa Pan-Genome Provides New Insights on
571 Its Population Structure, Horizontal Gene Transfer, and Pathogenicity. *Genome Biol
572 Evol* **11**, 109–120 (2019).

573 50. [dataset] Expression profiles of Pseudomonas aeruginosa TBCF10839 wild type and
574 nadk1 mutant under oxidative stress conditions. *geo V1*
575 <https://www.omicsdi.org/dataset/geo/GSE21704> (2010).

576 51. Matsui, H., Sano, Y., Ishihara, H. & Shinomiya, T. Regulation of pyocin genes in
577 Pseudomonas aeruginosa by positive (prtN) and negative (prtR) regulatory genes. *J
578 Bacteriol* **175**, 1257–1263 (1993).

579 52. Abbas, A., Adams, C., Scully, N., Glennon, J. & O’Gara, F. A role for TonB1 in biofilm
580 formation and quorum sensing in Pseudomonas aeruginosa. *FEMS Microbiol Lett* **274**,
581 269–278 (2007).

582 53. Wardell, S. J. T. *et al.* A Large-Scale Whole-Genome Comparison Shows that
583 Experimental Evolution in Response to Antibiotics Predicts Changes in Naturally
584 Evolved Clinical Pseudomonas aeruginosa. *Antimicrob Agents Chemother* **63**, (2019).

585 54. Zhu, J. *et al.* A novel aminoglycoside-modifying enzyme gene aac(6')-Ib in a pandrug-
586 resistant Acinetobacter baumannii strain. *Journal of Hospital Infection* **73**, 184–185
587 (2009).

588 55. Poudyal, B. & Sauer, K. The ABC of Biofilm Drug Tolerance: the MerR-Like Regulator
589 BrlR Is an Activator of ABC Transport Systems, with PA1874-77 Contributing to the
590 Tolerance of Pseudomonas aeruginosa Biofilms to Tobramycin. *Antimicrob Agents
591 Chemother* **62**, (2018).

592 56. Laska, I. F. & Chalmers, J. D. Treatment to prevent exacerbations in bronchiectasis:
593 macrolides as first line? *European Respiratory Journal* **54**, (2019).

594