

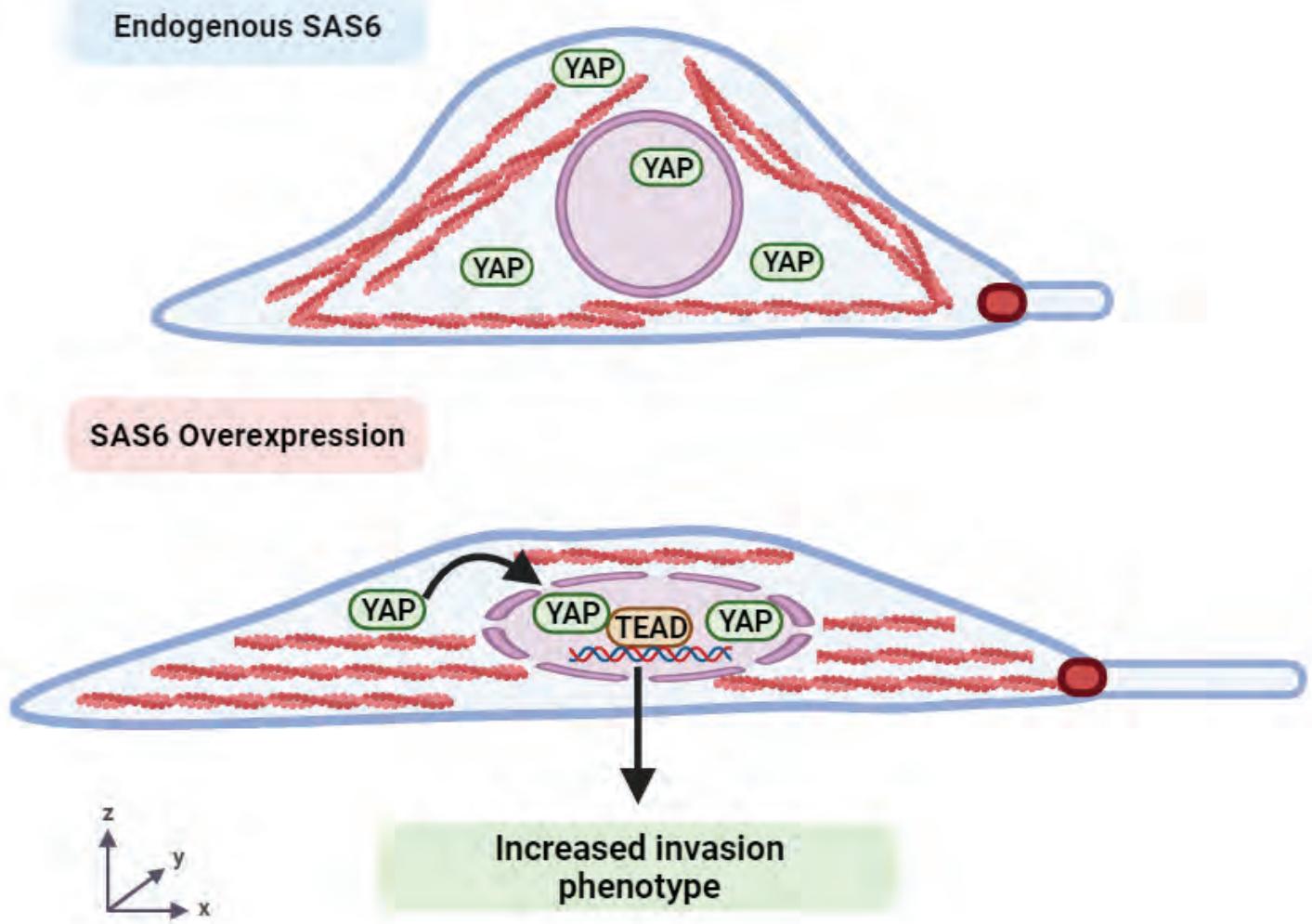
Title: Dysregulated SASS6 expression promotes increased ciliogenesis and cell invasion phenotypes

Eleanor Hargreaves¹, Andrew D Jenks², Adina Staszewski³, Athanasios Tsakalis³, Raquel Bodoque⁴, Mar Arias-Garcia⁵, Yasmin Abdi⁶, Abdulaziz Al-Malki⁷, Yinyin Yuan⁸, Rachael Natrajan⁹, Syed Haider⁹, Thomas Iskratsch¹⁰, Won-Jing Wang¹¹, Susana Godinho¹², Nicolaos J Palaskas¹³, Fernando Calvo¹⁴, Tobias Zech¹ and Barbara Tanos^{6*}

***barbara.tanos@brunel.ac.uk**

Affiliations:

1. Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK.
2. Division of Molecular Pathology, The Institute of Cancer Research, London, UK
3. Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
4. Translational Research Unit, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain.
5. Chester Beatty Laboratories, Institute of Cancer Research, London SW3 6JB, UK.
6. Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom.
7. Department of Pathology, George Washington School of Medicine and Health Sciences, Washington DC, USA.
8. Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
9. The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
10. School of Engineering and Materials Science, Faculty of Science and Engineering, Queen Mary University of London, Engineering Building, Mile End Road, E1 4NS.
11. Institute of Biochemistry and Molecular Biology, College of Life Science, National Yang-Ming University, Taipei, Taiwan.
12. Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
13. David Geffen School of Medicine, University of California, Los Angeles, California, USA.
14. Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain.


***Corresponding author:**

Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom

barbara.tanos@brunel.ac.uk

Dysregulated SASS6 expression promotes increased ciliogenesis and cell invasion phenotypes

Synopsis:

SAS-6 overexpressing cells show increased ciliation, actin cytoskeleton reorganization, cell flattening, YAP pathway activation and increased invasion

1 **Title: Dysregulated SASS6 expression promotes increased ciliogenesis and cell
2 invasion phenotypes**

3
4 **Eleanor Hargreaves¹, Andrew D Jenks², Adina Staszewski³, Athanasios Tsakalis³,
5 Raquel Bodoque⁴, Mar Arias-Garcia⁵, Yasmin Abdi⁶, Abdulaziz Al-Malki⁷, Yinyin
6 Yuan⁸, Rachael Natrajan⁹, Syed Haider⁹, Thomas Iskratsch¹⁰, Won-Jing Wang¹¹,
7 Susana Godinho¹², Nicolaos J Palaskas¹³, Fernando Calvo¹⁴, Tobias Zech¹ and
8 Barbara Tanos^{6*}**

9
10
11 *barbara.tanos@brunel.ac.uk

12
13
14 **Abstract**

15
16 Centriole and/or cilia defects are characteristic of cancer cells and have been linked to
17 cancer cell invasion. However, the mechanistic basis of these effects is unknown. Spindle
18 assembly abnormal protein 6 homolog (SAS-6) is essential for centriole biogenesis and cilia
19 formation. In cycling cells, SAS-6 undergoes APC^{Cdh1}-mediated targeted degradation by the
20 26S proteasome at the end of mitosis. Little is known about the function of SAS-6 outside
21 of centrosome biogenesis. To examine this, we expressed a non-degradable SAS-6 mutant
22 (SAS-6ND). Expression of SAS-6ND led to an increase in ciliation and cilia-dependent cell
23 invasion, and caused an upregulation of the YAP/TAZ pathway. YAP/TAZ or ciliogenesis
24 inhibition prevented SAS-6-induced invasion. SAS-6ND caused increased actin alignment
25 and stress fiber coherency, and nuclear flattening known to promote YAP nuclear import.
26 Finally, data from The Cancer Genome Atlas showed that SAS-6 overexpression is
27 associated with poor prognosis in various cancers. Our data provide evidence for a defined
28 role of SAS-6 in cancer cell invasion and offers mechanistic insight into the role of YAP/TAZ
29 in this cilia-sensitive process.

30
31
32 **Introduction**

33
34 Centrosome and cilia abnormalities have been shown to be involved in cancer progression
35 (Godinho & Pellman, 2014; Godinho *et al*, 2014; Han *et al*, 2009; Jenks *et al*, 2018; Wong
36 *et al*, 2009), and in breast cancer cell invasion(Godinho *et al.*, 2014).

37 Spindle assembly abnormal protein 6 homolog (SASS6 gene, SAS-6 protein), is a key
38 factor in centriole assembly and duplication (Leidel *et al*, 2005), a process that involves a
39 sequence of coordinated events involving a set of six proteins (Delattre *et al*, 2006; Pelletier

40 *et al*, 2006; Sugioka *et al*, 2017). SAS-6 together with SAS-5/STIL form the core of the
41 cartwheel structure, a geometric scaffold that defines procentriole radial symmetry
42 (Kitagawa *et al*, 2011) (Nakazawa *et al*, 2007) (van Breugel *et al*, 2011). The presence of
43 the cartwheel is essential for the 9-fold symmetry organization of centrioles, as basal bodies
44 lacking this structure are fragmented and disorganized (Nakazawa *et al*, 2007). The SAS-
45 6 structure displays an N-terminal head domain, a coiled-coil domain that assists with
46 dimerization and a C-terminal domain (van Breugel *et al*, 2011). SAS-6 dimers oligomerize
47 via the N-terminal heads to form the nine-fold cartwheel which will also anchor microtubules
48 (Kitagawa *et al*, 2011; van Breugel *et al*, 2011) as they elongate unidirectionally and form
49 centrioles (Leidel *et al*, 2005; van Breugel *et al*, 2011).

50 Although the function of SAS-6 in the context of centrioles has been well studied, whether
51 SAS-6 has any additional biological functions has not been explored.

52 Polo-like kinase 4 (PLK4), a kinase that phosphorylates STIL to promote STIL and SAS-6
53 recruitment to the cartwheel structure (Dzhindzhev *et al*, 2014; Moyer *et al*, 2015; Ohta *et*
54 *al*, 2014) (Arquint & Nigg, 2016), is deregulated in cancer (Godinho *et al*, 2014). PLK4 leads
55 to centrosome amplification, resulting in the formation of invasive structures in breast cancer
56 models (Godinho *et al*, 2014) as well as increased small vesicle secretion (Adams *et al*,
57 2021). Work by Shimamura *et al* showed that SASS6 overexpression was associated with
58 mitotic chromosomal abnormalities and poor prognosis in patients with colorectal cancer
59 (Shimamura *et al*, 2015). SASS6 is overexpressed in a number of human cancers, including
60 kidney cancer, bladder cancer and breast invasive carcinoma (Shimamura *et al*, 2015) and
61 reportedly promotes proliferation by inhibiting the p53 signaling pathway in esophageal
62 squamous carcinoma cells (Xu *et al*, 2020). Interestingly, knockdown of SASS6 reduced the
63 growth of MDA-MB-231 triple-negative breast cancer cells (Du *et al*, 2021).

64 Studies of the function of SAS-6 in cancer are complicated because SAS-6 is periodically
65 degraded at the end of mitosis/G1 by the APC-Cdh1 complex via its KEN box (Strnad *et al*,
66 2007). Here, we overexpressed a non-degradable SAS-6 KEN box mutant (SAS-6-ND)
67 which is expressed throughout the cell cycle. SAS-6 overexpression led to an increase in
68 cilia numbers and cilia length. Analysis of The Cancer Genome Atlas (TCGA) showed that
69 SAS-6 overexpression was consistent with poor prognosis in adrenocortical carcinoma, low
70 grade glioma, kidney, liver and lung cancer patients. This suggested a potential role for SAS-
71 6 in metastatic cancer. Consistently, SAS-6 overexpression showed increased invasion that
72 could be suppressed by blocking ciliogenesis. Transcriptome analysis revealed an
73 upregulation of the YAP/TAZ pathway following expression of SAS-6ND. Notably, blocking

74 YAP/TAZ function reverted SASS6-induced invasion. Analysis of cell morphology in SAS-6
75 overexpressing cells showed cell flattening and nuclear deformation, which causes opening
76 of the nuclear pore complex (NPC) and YAP nuclear import (Elosegui-Artola *et al*, 2017).
77 Our work shows a unique novel function of SAS-6 in invasion through the regulation of
78 YAP/TAZ and provides rationale for interrogating the therapeutic potential of targeting
79 SASS6 as a potential strategy to prevent metastatic disease.

80

81

82 **Results**

83

84 **SAS-6 promotes an increase in ciliogenesis**

85

86 SAS-6 is an integral component of centrioles, and it is a key protein in centriole duplication.
87 In cycling cells, SAS-6 is degraded in G1 by the APC^{Cdh1} complex (Strnad *et al*, 2007).
88 However, a mutation in the conserved KEN box domain (Figure 1A), results in the
89 stabilization of the protein (SAS-6 non degradable – ND-). It was previously shown by the
90 Tsou laboratory that a SAS-6 mutant lacking the KEN box can localize to the mother
91 centriole in G1 (Fong *et al*, 2014). Furthermore, in terminally differentiated cells of respiratory
92 epithelia and in unicellular eukaryotes, SAS-6 localizes to basal bodies (Kilburn *et al*, 2007;
93 Vladar & Stearns, 2007). Thus, we sought to understand whether SAS-6 would have any
94 additional functions besides centrosome duplication in S-phase. To do this, we stably
95 transduced RPE-1 cells with a SAS-6ND mutant under the regulation of a tetracycline-
96 inducible promoter (Fong *et al*, 2014) (Figure 1B). As expected, endogenous SAS-6 was
97 absent from centrioles in G1 (Figure 1C) whereas doxycycline induced SAS-6ND was
98 expressed throughout the cell cycle (Figure 1D). In ciliated cells SAS-6ND localized to the
99 proximal end of both mother and daughter centrioles (Figure 1E). Given the localization of
100 SAS-6 to mother centrioles, which can function as basal bodies, we examined whether SAS-
101 6 could affect cilia formation. Interestingly, SAS-6ND expression resulted in increased cilia
102 length and cilia number in RPE-1 cells (Figure 1F, G and Supplementary Figure 1A).
103 Additional experiments in human mammary epithelial cells (HMECs) and Ras-transformed
104 MCF10AT1 showed a similar increase in ciliogenesis (Supplementary Figure 1B, C). Over-
105 expression of WT-SAS-6 also promoted an increase in ciliogenesis, likely due to the
106 saturation of the degradation machinery (Supplementary Figure 1B, C).

107

108 **SAS-6 expression is associated with poor prognosis in adrenocortical carcinoma, low
109 grade glioma, kidney, liver and lung cancer**

110

111 Centriole and cilia proteins have been shown to play a role in cancer (Bettencourt-Dias *et*
112 *al*, 2011; Godinho & Pellman, 2014). Particularly, SASS6 overexpression was found to
113 correlate with poor prognosis in a number of tumor types (Shinmura *et al.*, 2015) (Xu *et al.*,
114 2020), highlighting the relevance of SAS-6 in cancer progression. Interestingly, knockdown
115 of SASS6 reduced proliferation of the highly aggressive/invasive MDA-MB-231 cell line (Du
116 *et al.*, 2021). Using recent data from The Cancer Genome Atlas (TCGA) database, we re-
117 examined whether the expression of SASS6 correlated with prognosis. We found that high
118 expression of SASS6 resulted in lower survival probability over a 10-year period in
119 adrenocortical carcinoma, low grade glioma, renal papillary cell carcinoma and
120 hepatocellular carcinoma (Figure 2A, B, C, D, E). Our results confirmed previous results by
121 Shinmura et al showing that SASS6 expression correlated with poor prognosis in kidney
122 clear cell carcinoma and lung adenocarcinoma (Figure 2E; Supplementary Table 1).
123 Metastatic disease is the primary cause of cancer death. Therefore, poor prognosis is often
124 associated with increased invasion and metastasis (Ridley, 2011), suggesting that
125 increased SAS-6 could be linked to an invasive phenotype in human cancer.

126

127 **SAS-6 overexpression leads to invasion that depends on the presence of cilia**

128

129 The ability of cancer cells to migrate to distant organs is a key process in metastasis
130 (Yamaguchi & Condeelis, 2007) and a hallmark of cancer (Hanahan & Weinberg, 2011).
131 Invasion requires cancer cells to leave the tissue of origin, enter blood vessels and colonize
132 distant tissues (Yamaguchi & Condeelis, 2007). Cell migration is a multistep process
133 initiated by cell protrusions (Ridley, 2011). Formation of protrusive structures is driven by
134 coordinated actin polymerization at the leading edge of the cell (Yamaguchi & Condeelis,
135 2007). We carried out a cell protrusion assay using microporous filters (Mardakheh *et al*,
136 2015). Briefly, cells were seeded on top of collagen-I coated 3 μ m polycarbonate transwell
137 filters in serum-free media. After cells were attached, media in the bottom chamber was
138 replaced with a 10% serum counterpart to signal cells to begin forming protrusions for a
139 period of four hours. Using three different clones of cells with inducible SAS-6ND we found
140 that upon doxycycline treatment, SAS-6ND expression showed an increase in cell
141 protrusions in all three clones, which was calculated as a protrusion index (fold) (Figure 3A).
142 We then carried out a three-dimensional collagen invasion assay (Gadea *et al*, 2008; Sanz-
143 Moreno *et al*, 2008). For this experiment, cells were plated in a mixture of collagen in serum
144 free media, spun down to the bottom of a 96-well filter and placed in an incubator at 37°C
145 to allow collagen to polymerize. After this, media with serum was added to the top of the
146 wells and cells were allowed to move towards serum for 24 hours before fixing them with
147 4%PFA. A higher number of SAS-6ND cells invaded through collagen towards serum
148 compared to the uninduced counterpart. This was calculated as an invasion index (fold)
149 (Figure 3B). This increase in invasion was also observed in Ras-transformed MCF10AT1
150 cells overexpressing both SAS-6WT and SAS-6ND (Figure 3C). Centriole and cilia signaling
151 pathways play a role in cell migration (Kazazian *et al*, 2017; Rosario *et al*, 2015). We asked
152 whether the invasion phenotype driven by SAS-6ND required the presence of primary cilia.
153 To test this, we depleted SCLT1, a protein that we have previously shown to be required for
154 ciliogenesis (Tanos *et al*, 2013) and carried out an invasion assay. Our results showed that
155 depletion of cilia via SCLT1 removal suppressed the invasion phenotype observed upon
156 expression of SAS-6ND (Figure 3D).

157

158

159 **SAS-6 invasion-phenotype is associated with the activation of the YAP/TAZ pathway**

160

161 To understand what molecular programs were activated by SAS-6 to promote invasion, we
162 carried out transcriptomic analysis. cDNA was obtained from untreated cells and
163 doxycycline induced cells expressing SAS-6ND and used as probes for DNA microarray
164 hybridization. Gene set enrichment analysis (GSEA) revealed significant enrichment of
165 genes involved in YAP/TAZ pathway activation following overexpression of SAS-6 (Figure
166 4A). YAP is a transcriptional coactivator that promotes TEAD-dependent gene transcription
167 leading to increased proliferation, invasion and stem cell differentiation (Piccolo *et al*, 2023).
168 We found that among the genes driving the enrichment of the YAP/TAZ gene set were CTGF
169 and CYR61. Both of these genes encode matricellular proteins upregulated downstream of
170 YAP (Piccolo *et al*, 2023) (Figure 4C). Their increased expression following induction of the
171 non-degradable SAS-6 mutant was confirmed by qPCR (Figure 4D). This analysis showed
172 a more than 20-fold increase in mRNA levels for cells treated with doxycycline expressing
173 SAS-6ND (Figure 4D).

174 To function as a transcriptional regulator, YAP requires nuclear translocation. We estimated
175 the extent of YAP accumulation in the nucleus by quantifying the nuclear/cytoplasmic ratio
176 of YAP using fluorescence microscopy. SAS-6ND-expressing cells showed a marked
177 increase of nuclear YAP (Figure 4F). Consistently, a luciferase-based reporter assay for
178 TEAD-dependent transcription showed an increase in reporter activity upon expression of
179 SAS-6ND (Figure 4H). Given that SAS-6 seemed to promote the activation of the YAP/TAZ
180 pathway and considering the reported role of this pathway in cell invasion, we reasoned that
181 blocking the YAP pathway would revert the invasion phenotype. To test this, we carried out
182 a collagen invasion assay in the presence of verteporfin, a YAP inhibitor that disrupts YAP-
183 TEAD interactions, decreases YAP expression and blocks transcriptional activation of
184 downstream targets of YAP (Brodowska *et al*, 2014; Liu-Chittenden *et al*, 2012). Treatment
185 with verteporfin decreased YAP levels in cells overexpressing SAS-6ND (Figure 4I), and
186 completely reverted the invasion phenotype (Figure 4J), supporting that SAS-6 mediated
187 invasion is dependent on YAP.

188

189 **Mechanism of SAS-6-regulated cell invasion**

190

191 Multiple solid cancers have shown an upregulation of YAP which correlates with increased
192 invasion, malignancy and relapse (Piccolo *et al*, 2023). Mechanical cues involving integrin
193 activation and actin cytoskeleton contraction have been shown to increase the rate of

194 nuclear accumulation of YAP (Piccolo *et al.*, 2023). YAP accumulation in the nucleus is
195 mediated by the opening of the nuclear pore complex (NPC) by nucleo-cytoskeletal coupling
196 (Elosegui-Artola *et al.*, 2017). However, a clear understanding of how the F-actin structure
197 in the cytoplasm controls YAP nuclear entry remains elusive. Analysis of the actin
198 cytoskeleton showed increased actin alignment, as measured with the orientation J plugin
199 for image J (Figure 5A, B, C). A simple microscopic observation showed that SAS-6ND-
200 expressing cells had a flattened morphology. Analysis of the nuclear height in these cells
201 showed a flattened nucleus, which resulted in a decreased nuclear aspect ratio (Figure 5D,
202 E). Further analysis showed decreased nuclear solidity and nuclear form factor and
203 increased nuclear compactness (Figure 5F, G, H), with a (non-significant) trend to an
204 increase in the nuclear area (Supplementary Figure 2E). Based on previous reports, nuclear
205 deformation would support the opening of the NPC (Elosegui-Artola *et al.*, 2017), which
206 could lead to the nuclear translocation of YAP in SAS-6 overexpressing cells.
207 Given these observations, we propose a model for SAS-6 regulation of invasion. We have
208 found that upon overexpression of SAS-6 there are changes in the actin cytoskeleton that
209 can lead to nuclear deformation. This nuclear deformation can lead to an increase in the
210 nuclear import of YAP, and the activation of TEAD-dependent transcription to support cell
211 invasion (Figure 5J).

212

213 Discussion

214

215 Our work shows a previously unknown role of SAS-6 in the regulation of invasion. SAS-6
216 has been extensively characterized as a key regulator of centriole structure, supporting the
217 initial steps of the establishment of the nine-fold symmetry and the recruitment of
218 microtubules during centriole assembly (Pelletier *et al.*, 2006) (Delattre *et al.*, 2006) (Leidel
219 *et al.*, 2005) (Kitagawa *et al.*, 2011; Nakazawa *et al.*, 2007) (van Breugel *et al.*, 2011).
220 Recent reports suggest a potential role for SAS-6 in cancer, including a correlation between
221 SAS-6 overexpression and poor prognosis (Shimura *et al.*, 2015) and the observation that
222 silencing SAS-6 in breast cancer cells can suppress their proliferation (Du *et al.*, 2021). SAS-
223 6 levels oscillate throughout the cell cycle, decreasing in G1 upon targeting by the
224 APC/Cdh1 complex via its KEN box. To maintain consistent levels of SASS6 throughout the
225 cell cycle, we transduced cells with a SAS-6 mutant where the KEN box has been replaced
226 with alanines (AAA), SAS-6ND (Figure 1). This SAS-6ND mutant was expressed throughout
227 the cell cycle and displayed increased ciliogenesis and cilia length. We also observed SAS-

228 6 localization in the basal bodies of ciliated cells (Figure 1). Interestingly, in terminally
229 differentiated cells, such as respiratory epithelia, as well as *Tetrahymena* and
230 *Chlamydomonas*, SAS-6 also concentrates at the base of cilia (Vladar & Stearns, 2007).
231 This suggests that there may be other functions of SAS-6 which are yet to be uncovered.
232 Plk4, the kinase upstream of SAS-6 has been shown to promote centrosome amplification,
233 chromosomal instability and cancer cell invasion (Godinho & Pellman, 2014; Godinho *et al.*,
234 2014). However, the levels of centrosome amplification with SAS-6 overexpression during
235 our experiments are not as significant as the ones observed upon overexpression of Plk4
236 (Kleylein-Sohn *et al.*, 2007), as SAS-6 was only expressed for 6 days.
237 Given the potential role of SAS-6 in cancer (Du *et al.*, 2021; Shinmura *et al.*, 2015), we
238 examined the TCGA (The Cancer Genome Atlas) database in search of any clinical
239 correlates. This analysis revealed that increased expression of SASS6 correlated with poor
240 prognosis in adrenocortical carcinoma, low grade glioma, renal papillary cell carcinoma and
241 hepatocellular carcinoma (Figure 2) and confirmed previous reports of poor prognosis in
242 kidney renal clear cell carcinoma and lung adenocarcinoma (Table 2) (Shinmura *et al.*,
243 2015). Given that poor patient outcome has been associated with metastasis in cancer, we
244 sought to interrogate the invasive process in cells overexpressing SASS6. Initial analysis in
245 RPE-1 cells showed increased cell protrusion in collagen coated filters (Figure 1A) and
246 increased invasion in soft agar upon expression of SAS-6ND, supporting a role for SAS-6
247 in invasion (Figure 3). This was confirmed in a MCF10AT1 a ras-transformed model of
248 cancer progression by expressing either SAS-6 WT and SAS-6ND (Figure 3D). This is
249 probably due to a saturation of the system, as the SAS-6 protein levels are higher upon
250 doxycycline treatment even in WT-overexpressing cells (Figure 3C). Removal of cilia via
251 knockdown of distal appendage protein SCLT1 (Tanos *et al.*, 2013) reverted the SAS-6
252 invasion phenotype (Figure 3D), suggesting that the presence of cilia could be involved in
253 this process. For instance, cilia-dependent signaling could promote the observed
254 morphological changes that lead to the nuclear translocation of YAP.
255 It has been found that SAS6-like (SAS6L), a paralog of SAS6, localizes to the apical complex
256 in Apicomplexa phylum, including *Toxoplasma*, *Trypanosoma* and *Plasmodium* (Wall *et al.*,
257 2016). This complex is assumed to play a mechanical and secretory role during invasion in
258 Apicomplexa to support host penetration and invasion. However, how SAS-6 contributes to
259 invasion in this context has not been addressed.
260 Cell invasion is a coordinated process that requires mechanical contributions of the actin
261 cytoskeleton as well as signaling cues (Olson & Sahai, 2009). Previous work by G. Gupta

262 uncovered an interaction between SAS-6 and FAM21 (Gupta *et al*, 2015), a protein
263 component of the WASH complex, which has been shown to have a direct role in Arp2/3
264 activation, cell protrusion, actin remodeling and invasion (Zech *et al*, 2011). Interestingly,
265 the WASH complex assembles at centrioles (Visweshwaran *et al*, 2018), reviewed in (Fokin
266 & Gautreau, 2021). Plk4 has been shown to regulate invasion by promoting the interaction
267 of STIL with CEP85, STIL localization to the leading edge of the cell and Arp2/3 complex
268 activation (Liu *et al*, 2020) (Kazazian *et al.*, 2017). Given its strong interaction with STIL, this
269 would support a role for SAS-6 in invasion. However, we only carried out SAS-6
270 overexpression for a maximum of 6 days, so, the level of centrosome amplification was
271 minimal compared to the overt rosettes and *de novo* formed centrioles with amplified Plk4
272 (Kleylein-Sohn *et al.*, 2007). Recently, Ofd1, a SAS-6 interacting protein (Go *et al*, 2021;
273 Gupta *et al*, 2015), was shown to regulate a centriole/cilia-dependent signal for Arp2/3
274 complex activation, which suggests that a signal from centrioles can coordinate invasion
275 (Cao *et al*, 2023). Future experiments will determine whether a SAS-6-mediated signal could
276 promote direct changes in the actin cytoskeleton or an effect on the Arp2/3 complex through
277 its interaction with the WASH complex component FAM21 (Gupta *et al.*, 2015).

278 To understand the invasion phenotype, we examined RNA expression in SAS-6 expression
279 in cells. Microarray and gene set enrichment analysis (GSEA) data showed that SAS-6ND
280 promoted the activation of the YAP/TAZ pathway (Figure 4). YAP is a transcriptional
281 coactivator promoting the transcription downstream of the TEAD promoter. The YAP/TAZ
282 pathway has been shown to be overexpressed in cancer and promote invasion and cell
283 proliferation (Piccolo *et al.*, 2023). We validated this result using qPCR for CTGF and Cyr61
284 (Figure 4D), two genes downstream of YAP. Active YAP localizes to the nucleus, whereas
285 cytoplasmic YAP is inactive and eventually phosphorylated by LATS and targeted for
286 degradation (Piccolo *et al.*, 2023). SAS-6 overexpression showed increased
287 nuclear/cytoplasmic ratio of YAP and increased TEAD-dependent transcription using a
288 fluorescent reporter assay in RPE-1, HMEC and MCF10AT1 cells, supporting a role of SAS-
289 6 in the activation of this pathway. Consistently, using verteporfin, a specific YAP inhibitor,
290 suppressed SAS-6 mediated invasion (Figure 4J). How could SAS-6 mediate this effect? To
291 understand this phenotype we examined the morphology of the actin cytoskeleton. SAS-
292 6ND expressing cells showed increased actin alignment and condensed stress fibers
293 (Figure 5A, B, and C), supporting an invasive phenotype. A simple observation revealed that
294 SAS-6 ND expressing cells appeared flattened. The YAP/TAZ pathway has been shown to
295 be activated by mechanical force (Piccolo *et al*, 2023) and by cell flattening, which was

296 proposed to promote the opening of the Nuclear Pore Complex (NPC) (Elosegui-Artola *et*
297 *al.*, 2017). Analysis of the vertical and horizontal axes in the nucleus revealed a decreased
298 nuclear aspect ratio, thus confirming cell flattening (Figure 5D, E). Further analysis
299 confirmed a decrease in nuclear solidity, form factor and an increase in nuclear
300 compactness, which are consistent with the nucleus appearing flat.
301 Thus, we have shown that SAS-6 overexpression leads to actin cytoskeleton/morphological
302 changes promoting a cilia-dependent invasive phenotype mediated by the YAP-pathway.
303

304 **Methods**

305

306 **Cell lines and reagents**

307

308 All cell lines were maintained at 37°C in a humidified atmosphere containing 5% CO₂.
309 Human telomerase-immortalized retinal pigment epithelial cells hTERT-RPE-1 or RPE-1
310 were purchased from American Type Culture Collection; ATCC, USA) and transduced with
311 pBABE retro GFP-centrin 2. RPE-1 Cells were cultured in Dulbecco's Modified Eagle
312 Medium/Nutrient Mixture F-12 Ham (DMEM/F-12; Sigma-Aldrich, UK) media containing
313 0.365 mg/ml L-glutamine (Lglut), 15 mM HEPES, 1.2 mg/ml sodium bicarbonate (NaHCO₃)
314 and supplemented with 10% fetal bovine serum (FBS; Gibco, UK) and 1%
315 penicillin/streptomycin (p/s; Gibco, UK). 1 µg/ml doxycycline was added to growth media
316 for 6 days prior to experiments to induce SAS-6 expression. Ras-transformed MCF10AT1
317 cells (Miller, 1996) were kindly provided by The Barbara Ann Karmanos Cancer Institute
318 (Detroit, MI, USA) and maintained in DMEM/F12 supplemented with 5% horse serum,
319 20ng/ml EGF, 0.5mg/ml Hydrocortisone, 100ng/ml Cholera toxin, 10mg/ml Insulin and 1%
320 penicillin/streptomycin. HMECs-hTERT (Clontech) were cultured in Mammary Epithelial Cell
321 Growth Medium with the addition of MEGM™ BulletKit (LONZA). HEK293T used for
322 lentiviral transduction were maintained in Dulbecco's Modified Eagle Medium (DMEM;
323 Sigma- Aldrich, UK) supplemented with 10% FBS and 1% penicillin/streptomycin.
324 Stable clones of RPE-1 cells, HMECs and MCF10AT1 expressing tetracycline- inducible
325 wild type SAS-6 or SAS-6ND were obtained via lentiviral gene transduction with the pLVX
326 tet-on Advanced inducible gene expression system (Clontech) (Fong *et al.*, 2014).
327 Lentiviruses were produced by transfecting 293T cells with the pLVX constructs together
328 with packaging and envelope vectors (Clontech) using the calcium phosphate precipitation
329 method. Stable expressors were derived by selection with 5 µg/mL puromycin (Sigma-

330 Aldrich, UK). Doxycycline was purchased from Sigma-Aldrich, UK and used at 1 μ g/ml.
331 Verteporfin (Cayman Chemical, UK) was used at 10 μ g/ml.
332

333 **Western blots**

334

335 Cells were lysed in ice-cold RIPA buffer (Sigma-Aldrich, UK) supplemented with a cocktail
336 of protease and phosphatase inhibitors (Thermo Fisher Scientific, UK). Lysates were
337 sonicated and cleared by centrifugation at 14,000 \times g for 15 min. Protein content was
338 determined using the DC Biorad Protein Assay (Biorad) following manufacturer instructions.
339 Protein samples were subsequently denatured at 95°C for 10 min, separated by SDS-PAGE
340 on a 4–12% polyacrylamide gradient gel and transferred to a nitrocellulose membrane. The
341 membrane was then blocked with 5% non-fat dry milk in TRIS-buffered saline and 0.05%
342 Tween-20 (TBST) for 1 hour before an overnight incubation at 4°C with the indicated
343 antibodies. After this, membranes were washed 3X in TBST before and after the addition of
344 horseradish peroxidase (HRP)-conjugated anti-mouse IgG secondary antibodies (1:2000;
345 Cell Signalling Technology, UK; 7076) for 1 hour. Immunoreactivity was visualized using
346 SuperSignal™ West Pico Chemiluminescent Substrate (Thermo Fisher Scientific, UK;
347 34080) and the BioRad ChemiDoc XRS+ imaging system.

348

349 **Immunofluorescence**

350

351 Cells grown on poly-L-lysine coated coverslips were fixed in 4% paraformaldehyde (PFA)
352 for 10 min at room temperature prior to permeabilization with 0.1% Triton X- 100 in
353 phosphate buffered saline (PBS) and blocking with 3% (w/v) bovine serum albumin and
354 0.1% Triton X-100 in PBS for 5 min. Primary antibodies and Alexa Fluor 594 Phalloidin
355 (1:100; Molecular Probes, UK; A12381) were diluted to desired concentrations in blocking
356 solution and allowed to incubate for 1 hour before three washes with 0.1% Triton X-100 in
357 PBS (PBST). For centriolar SAS-6, PFA fixation was preceded by a 2 min permeabilization
358 in PTEM buffer containing 20 mM PIPES (pH 6.8), 0.2% Triton X-100, 10 mM EGTA and 1
359 mM MgCl₂. Goat secondary antibodies conjugated to Alexa Fluor 594 (1:500 dilution;
360 Thermo Fisher Scientific, UK) were then incubated for 1 hour followed by three PBST
361 washes and DAPI staining (Invitrogen, UK) for DNA visualization. Coverslips were mounted
362 with ProLong Gold antifade reagent (Invitrogen, UK).

363

364 **Antibodies**

365

366 The following antibodies were used: Mouse monoclonal antibody to detect endogenous
367 SAS-6 (1:500) was purchased from Santa Cruz Biotechnology (sc-81431). Overexpressed
368 SAS-6 was detected with mouse anti-c-Myc (1:250; 9E10; Invitrogen, UK; 13-2500)
369 antibody. Mouse anti- γ -tubulin (1:500; Santa Cruz Biotechnology, Inc.) and mouse anti- α -
370 tubulin (1:2000; Sigma-Aldrich). Cilia were detected with mouse anti-acetylated-tubulin
371 (1:2000; Sigma-Aldrich) and with rabbit anti-Arl13B (1:500; Proteintech; 17711-1-AP).
372 Centrioles were detected with mouse anti-centrin (1:500; 3E6; Abnova; H00001070-M01).
373 Goat secondary antibodies conjugated to Alexa Fluor 488, 594 or 680 (1:500 dilution;
374 Thermo Fisher Scientific, UK) were used. For western blot, a Polyclonal rabbit anti-GAPDH
375 was also used (EMD Millipore/AB2302). Western blot Secondary antibodies were
376 horseradish peroxidase (HRP)-conjugated rabbit or mouse anti-IgG antibodies (1:2,000;
377 Cell Signaling).

378

379 **Image acquisition, processing, and analysis**

380

381 Fluorescent images were acquired on an Axio Imager M2 microscope (Zeiss, Germany)
382 equipped with 100x, 1.4 numerical aperture (NA) oil objective; an ORCA R2 camera
383 (Hamamatsu Photonics); and ZenPro processing software (Carl Zeiss). Images were
384 captured with similar exposure times and assembled into figures using Photoshop (CS5,
385 Adobe).

386 Deconvolution microscopy was carried out with the DeltaVision Elite (Applied Precision)
387 using an Olympus 100x, 1.4 NA oil objective; 405 nm, 488 nm, and 593 nm laser illumination;
388 and standard excitation and emission filter sets. Raw images were acquired using a 0.2 μ m
389 z-step size and reconstructed in three dimensions with the softWoRx 5.0.0 (Applied
390 Precision) software. To determine the nuclear aspect ratio, height and length measurements
391 of nuclei in the y-z plane were obtained using ImageJ.

392 Invasion assays were quantified in cells stained with Phalloidin and DAPI and an
393 ImageXpress Confocal High-Content Imaging System Confocal (Molecular Devices).

394 Cell morphology analysis and transwell cell protrusion assays imaged on a Zeiss LSM 710
395 confocal microscope with a 63x NA oil objective at optimal aperture settings. 4 times
396 averaging per image was used. Image segmentation and cell morphology analysis (as
397 shown in Figure 5) was performed using CellProfiler, ImageJ (OrientationJ), and MATLAB

398 as described previously (Swiatlowska *et al*, 2022). Briefly, OrientationJ produces a weighted
399 histogram for pixels per orientation. The weight is the coherency, which is defined through
400 the ratio of difference and sum of the tensor eigenvalues and is bounded between 0 and 1,
401 with 1 representing highly oriented structures (Rezakhaniha *et al*, 2012).

402

403 **Ciliogenesis experiments**

404

405 Cells were plated in poly-lysine-coated coverslips in 3.5-cm plates at 0.4×10^6 cells per well
406 and allowed to attach for 24 h. After this, cells were washed twice with serum-free medium,
407 and left in serum-free medium for an additional 48 h. Cilia were detected by staining with
408 antibodies for acetylated tubulin and ciliary membrane protein Arl13B.

409

410 **Protrusion assays and 3-D collagen invasion assays**

411

412 Transwell protrusion formation assays were carried out on 3-□m pore transwell filters coated
413 with 5 mg/ml collagen as described previously (Mardakheh *et al.*, 2015). To quantify
414 protrusions, a ratio of fluorescence intensity (measured with ImageJ) was calculated.
415 Collagen invasion assays were carried out as previously described (Sanz-Moreno *et al.*,
416 2008). Briefly, cells were trypsinized and resuspended in serum-free liquid bovine type I
417 collagen (3 mg/ml; CELLINK, UK; 5005) in DMEM, dispensed into PerkinElmer black 96-
418 well ViewPlates and centrifuged at 1000 RPM for 5 min to force cells toward the bottom of
419 each well. Collagen polymerization proceeded for 3 hours at 37°C, after which a final
420 concentration of 10% FBS in DMEM/F-12 media was added to promote cell invasion into
421 the collagen matrix. Each plate included vehicle-treated and doxycycline-treated cells as
422 controls. Cells were fixed with a final concentration of 4% PFA for 24 h, permeabilized for
423 30 min with 0.5% Triton X-100 in PBS and incubated with Alexa Fluor 594 Phalloidin (1:100;
424 Molecular Probes, UK; A12381) and DAPI for 1 hour. Confocal z-slices were captured every
425 10 µm (from 0-100 µm) and the number of nuclei in each plane was used to calculate an
426 invasion index.

427

428 **Luciferase reporter assays**

429

430 For the luciferase reporter assays, a TEAD-reporter construct (8xGTIIC-luciferase,
431 Addgene, Plasmid #34615) and a CMV-Renilla (pGL4.75[hRluc/CMV], Promega) were

432 used. Cells were seeded in 6-well plates at 70% confluence. Cells were co-transfected with
433 2 µg of TEAD-reporter and 100 ng of CMV-Renilla cDNA constructs using Lipofectamine
434 3000 according to the manufacturer's instructions. Cells were lysed 48 hours after
435 transfection in 100 µL of lysis buffer (Promega). Aliquots of the cell lysates were used to
436 read luciferase emission using Dual-Glo® Luciferase Assay System (Promega) according
437 to the manufacturer's instructions. Reporter firefly luciferase activity was normalized to
438 Renilla activity.

439

440 **RNA extraction**

441

442 RNA was isolated from RPE-1 cells using the RNeasy mini kit (Qiagen, CA) and cDNA was
443 generated using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
444 UK) according to the manufacturer's protocols.

445

446 **Gene-set enrichment analyses (GSEA)**

447

448 Gene expression was profiled using GeneChip™ Human Transcriptome Array 2.0. CEL file
449 image data were converted to raw values using the R statistical language package "oligo"
450 (Carvalho & Irizarry, 2010), available from <http://www.R-project.org/>. Pseudoimages were
451 generated and inspected for artifacts. Data were normalized by Robust Multi-array Average
452 (RMA). For Gene Set Enrichment Analysis (GSEA) (Mootha *et al*, 2003; Subramanian *et al*,
453 2005), the data were transformed back to linear scale from log2 values. A custom geneset
454 matrix curated to represent cell invasion was tested for enrichment using the online GSEA
455 module version 17 of the GenePattern platform for reproducible bioinformatics (Reich *et al*,
456 2006). The specific settings applied in all analyses were: Number of Permutations (1000),
457 Permutation Type (Gene set), Enrichment statistic (Weighted), and Metric for ranking genes
458 (t Test). Tables show the Normalized Enrichment Score (NES), nominal p-value and False
459 Discovery Rate (FDR) q-values. The list of the specific gene sets analyzed and their sources
460 are available in Supplementary Table 2.

461

462 **Reverse-transcription and quantitative polymerase chain reaction (qPCR)**

463

464 Thermocycling was performed on the QuantStudio 7 Flex Real-Time PCR machine (Applied
465 Biosystems, UK) using TaqMan Universal PCR Master Mix (Applied Biosystems, UK;

466 4366072) and predesigned TaqMan probes (Applied Biosystems, UK) for reference gene
467 glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Hs99999905) and YAP downstream
468 targets cysteine rich angiogenic inducer 61 (CYR61; Hs00155479) and connective tissue
469 growth factor (CTGF; Hs00170014). Relative quantification was performed according to the
470 $\Delta\Delta CT$ method (relative quantification, $RQ = 2^{-\Delta\Delta CT}$) and expression levels of target genes
471 normalized to GAPDH.

472

473 **TCGA data analysis**

474

475 Pre-processed TCGA mRNA abundance and clinical data were downloaded from TCGA
476 DCC (gdac), release: 2016_01_28. Patient groups were established by median
477 dichotomizing SASS6 expression profile resulting in low expression and high expression
478 groups. Cox proportional hazards model was used to estimate HR and 95% CIs with P
479 value estimated using the log rank test.

480

481 **Statistical analysis**

482

483 Statistical tests were performed with Graphpad PRISM. Statistical analyses and samples
484 sizes are defined in the figure legends. All data are presented as mean \pm standard error of
485 mean (SEM). Paired t-tests were performed to compare two experimental conditions. P-
486 values equal to or less than 0.05 are indicated using asterisks: * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq$
487 0.001, **** $p \leq 0.0001$.

488

489 **Acknowledgements**

490

491 We thank Andrew Holland (Johns Hopkins School of medicine) for discussions about this
492 work, Igor Vivanco (King's College London) for critically reading this manuscript. We thank
493 Faraz Mardakheh (Queen Mary University of London) for discussions and reagents, Khine
494 Nyein Myint (King's College London) and Elefterios Kostaras (Institute of Cancer Research)
495 for reagents. BT is funded by a Kidney Research UK Senior Fellowship.

496 The TCGA results reported here are based, in part, upon data generated by The Cancer
497 Genome Atlas pilot project established by the NCI and NHGRI. Information about TCGA
498 and the investigators and institutions who constitute the TCGA research network can be
499 found at <http://cancergenome.nih.gov/>.

500

501 **FIGURE LEGENDS**

502

503 **Figure 1** SAS-6 non degradable (SAS-6ND) is stable throughout the cell cycle and promotes
504 increased ciliogenesis.

505

506 **(A)** SAS-6 protein structure showing a stretch of human SAS-6 protein and the conserved
507 KEN box. hSAS-6ND was generated by replacing the KEN box by an alanine stretch. **(B)**
508 Western blot showing the expression of SAS-6ND (top) with alpha tubulin as a loading
509 control (bottom). **(C)** Endogenous SAS-6 expression at different cell cycle stages
510 (indicated). RPE-1 cells expressing GFP-centrin2 (green), stained with an antibody for
511 endogenous SAS-6 (red). DNA is marked with DAPI (blue). Note that endogenous SAS-6 is
512 absent in G1. **(D)** Non-degradable SAS-6 (SAS-6ND) expression throughout the cell cycle.
513 Centrin2-GFP is shown in green, Myc-tagged SAS-6ND (9E10-antibody) is shown in red.
514 DAPI is shown in blue **(E)** SAS-6ND expression in ciliated cells. The primary cilium is marked
515 with Arl13B (red in the main panel, blue in the inset). Centrin2-GFP is shown in green, Myc-
516 tagged SAS-6ND is shown in red. DAPI is shown in blue. An inset with both the mother
517 centriole (basal body) and the daughter centriole is shown with a cartoon depicting SAS-6
518 localization (right). **(F)** Ciliation in control cells and cells expressing SAS-6ND. A
519 quantification of cilia length is shown in the right panel. T test, $p < 0.0001$. Note the increase
520 in cilia length in the presence of SAS-6ND (T test, $p < 0.001$) **(G)**. Data is representative of
521 five independent experiments.

522

523

524 **Supplementary Figure 1** SAS-6 ND Promotes increased ciliogenesis in RPE-1 cells,
525 HMEC and MCF10-AT.

526

527 **(A)** Ciliation in control RPE-1 cells and different clones of cells overexpressing the SAS-6ND
528 mutant (indicated as C1, C2, C3, C7 and C8). Cells were treated with doxycycline (1ug/ml)
529 to induce expression. Cilia are marked with Arl13B (red) and acetylated tubulin (green). The
530 centrosome is labelled with γ -tubulin (blue). DNA is marked with DAPI in blue (indicated). T-
531 tests significance for one-way ANOVA are indicated (* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$,
532 **** $p < 0.0001$) **(B)** Ciliation in human mammary epithelial cells overexpressing SAS-6.
533 Cells were transduced with a stable tet-inducible vector for either wild type (WT) or non-
534 degradable SAS-6ND. Cells were treated with vehicle (water) or doxycycline as indicated.
535 Cilia is marked with Arl13B (red), centrin is shown in green and DNA is stained with DAPI
536 (blue). A quantification of ciliation (percent) is shown on the right-hand side. T test, $p < 0.001$.
537 **(C)** Ciliation in MCF10-AT1 cells overexpressing SAS-6. Cells were transduced as in B and
538 subjected to doxycycline treatment or control. Cilia is marked with Arl13B (red) and
539 Acetylated tubulin (green). The centrosome is labelled with γ -tubulin (blue). DNA is marked
540 with DAPI (indicated). A quantification of ciliated cells and cilia length is shown in the panels
541 below. T test, $p < 0.01$ and $p < 0.05$ (shown).

542

543

544 **Figure 2** SASS6 over expression correlates with poor prognosis.

545

546 **(A, B, C, D)** TCGA analysis. Kaplan-Meier curves of patient survival probability (OS)
547 correlated to high SAS-6 expression over time (years). High expression is indicated in red
548 and low expression in black. The number of patients remaining in each category (low versus

549 high) is shown below the graph. HR indicates hazard ratio, which measures the risk of
550 having SAS-6 overexpression compared to the low expressing group. An HR higher than 1
551 indicates high risk. P values are shown. Shown are analyses done in TCGA adrenocortical
552 carcinoma (**A**), low grade glioma (**B**), renal papillary cell carcinoma (**C**) and hepatocellular
553 carcinoma (**D**) cohorts. (**D**) Table summarizing TCGA data analysis. CI95L, CI95U. P values
554 and total patient numbers are shown. Note that our analysis also confirmed previous results
555 in kidney renal clear cell carcinoma and lung adenocarcinoma.

556

557

558 **Supplementary Table 1** TCGA analysis for SASS6.

559

560 TCGA analysis in full. Significant associations are highlighted. HR and P values are
561 indicated.

562

563

564 **Figure 3** SAS-6 overexpression leads to invasion that depends on the presence of cilia.

565

566 (**A**) Cell protrusion assay in cells transduced with tetracycline-inducible SAS-6ND. Confocal
567 image of cell protrusions in 3 μ m transwell filters for three different SAS-6ND overexpressing
568 clones (indicated). Panels show representative images of the top and the bottom of the filter.
569 A control non-doxycycline treated condition is shown. The actin cytoskeleton is marked with
570 Phalloidin (red). DAPI marks DNA (blue). Scale bar, 10 μ m. A western blot with the levels of
571 Myc-tagged SAS-6ND expression is shown on the top right. α -tubulin is used as a loading
572 control. A graph with the quantification of cell protrusions in the presence of SAS-6ND is
573 shown. Error bars represent SD. T test is indicated, ***p < 0.001. (**B**) Collagen invasion
574 assay in SAS-6ND overexpressing cells. Panels show confocal images at 5 micron and 40
575 micron. Actin is shown in red and DNA is marked with Hoesch in blue. Scale bar, 20 μ m. A
576 western blot with SAS-6ND levels is shown on the top right, GAPDH is used as a loading
577 control. A quantification of invasion is shown in the lower right. T test, ***p < 0.001. Data
578 representative of 4 independent experiments (**C**) Collagen invasion assay in MCF10AT1
579 cells, overexpressing either SAS-6WT or SAS-6ND (indicated). A western blot with the
580 expression of the Myc-tagged construct is shown (lower panels) with a c-Myc western blot
581 and α -tubulin loading control (indicated). T- test, **p < 0.01, ****p < 0.0001). Data
582 representative of two independent experiments with four replicas (**D**) Collagen invasion
583 assay in RPE-1 cells as shown in B, upon downregulation of SCLT1, a protein required to
584 form cilia. Invasion index is shown on the right. Error bars represent SD. T test is indicated,
585 ****p < 0.001. Data representative of two independent experiments with four replicas.
586 Western blots show the levels of SAS-6ND as well as SCLT1 levels (indicated). α -tubulin is
587 used as a loading control.

588

589

590 **Figure 4** SAS-6 invasion-phenotype is associated with the activation of the YAP/TAZ
591 pathway

592

593 (**A**) Geneset enrichment analysis of microarray data. Normalized Enrichment Score (NES),
594 Nominal P-value (NOM pval) and False Discovery Rate q-value (FDR qval) are shown for
595 each indicated geneset. Data is representative of two independent experiments. (**B**)
596 Enrichment plot for the dataset “TEAD DEPENDENT YAP TARGET GENES COMMON
597 BETWEEN YAP AND TAZ” showing an enrichment score curve. NES: 1.65291. (**C**) Heat
598 map with the list of genes driving the change. Note the increase in YAP downstream targets
599 CTGF and Cyr61. (**D**) qPCR showing the mRNA levels of YAP/TAZ target genes, CTGF (T

600 test, $p < 0.05$) (left) and CYR61 (T test, $p < 0.05$) (right). Ct values were normalized to GAPDH
601 and expression calculated as a fold change relative to controls. Data represent mean \pm SEM
602 of three independent experiments performed in triplicate. (E) Western blot showing
603 expression of SAS-6ND with and without doxycycline (indicated). (F) Immunostaining for
604 YAP in cells transduced with SAS-6ND, treated with vehicle control (top) or doxycycline
605 (lower panels). Note the increase in nuclear YAP in cells overexpressing SAS-6ND. Scale
606 bar, 10 μ m. (G) Quantification of the nuclear/cytoplasmic ratio in control cells (SAS-6ND -
607 dox) and cells overexpressing SAS-6ND (+dox). T test, $p < 0.001$. Note that SAS-6ND
608 overexpressing cells have increased nuclear YAP. (H) Tukey boxplots showing luciferase
609 activity of YAP reporter 8xGTIIC-luc (Firefly/Renilla) indicative of YAP/TAZ activation in
610 control or cells induced with doxycycline to express SAS-6ND (T test, $p < 0.05$). (I) Western
611 blot showing YAP protein levels upon treatment with vehicle control or verteporfin (10 μ g/ml)
612 in control cells or doxycycline-induced cells expressing SAS-6ND (indicated). (J) Collagen
613 invasion assay in control or doxycycline induced cells expressing SAS-6ND upon treatment
614 with YAP inhibitor verteporfin (10 μ g/ml). N= 4 experiments

615
616

617 **Supplementary Table 2** Curated genesets. Table containing geneset names, source, and
618 the list of associated genes.

619
620

621 **Figure 5** Mechanism of SAS-6-regulated cell invasion

622
623

623 (A) Actin cytoskeleton staining in uninduced cells or cells expressing SAS-6ND. Phalloidin-
624 Rhodamine is shown in orange. DNA is marked with DAPI (blue). (B) Actin alignment
625 analysis showing cells from inset selection in (A). The hue is related to the orientation and
626 the saturation is coding for the coherency. Note more aligned pixels and higher coherency
627 values in cells overexpressing SAS-6ND (right panel). (C) Actin alignment quantification with
628 Cell Profiler shows increased alignment in SAS-6ND expressing cells. N= 6 (D) Three-
629 dimensional rendering of cells overexpressing SAS-6ND. Cross-section is shown where
630 SAS-6ND expressing cells show decreased nuclear height. (E) Quantification of the nuclear
631 aspect ratio for cells shown in (B), as a ratio of the vertical/horizontal axis of the nucleus
632 (N=3). Additional Cell Profiler quantifications including nuclear solidity (as a ratio of the
633 nuclear area/convex hull area) (F) and nuclear form factor (as a ratio of the area/perimeter)
634 (G) show a significant decrease in SAS-6ND cells and a concomitant increase in nuclear
635 compactness (H). T test, $p < 0.05$ for all graphs shown. N=6

636
637
638

639 **Supplementary Figure 2** SAS-6ND overexpression does not result in overall changes in
640 cell area.

641
642

642 Cell profiler quantifications as described for Figure 5 in RPE-1 cells transduced with SAS-
643 6ND, either untreated (control) or treated with 1 μ g/ml of doxycycline (SAS-6ND). Phalloidin
644 staining was used to estimate additional parameters in cell profiler, including cell area (A),
645 cell compactness (B), cell form factor (C), solidity (D) and nuclear area (E). N=6

646
647
648
649

650 **References**

651 Adams SD, Csere J, D'Angelo G, Carter EP, Romao M, Arnandis T, Dodel M, Kocher HM,
652 Grose R, Raposo G *et al* (2021) Centrosome amplification mediates small extracellular vesicle
653 secretion via lysosome disruption. *Curr Biol* 31: 1403-1416 e1407

654 Arquint C, Nigg EA (2016) The PLK4-STIL-SAS-6 module at the core of centriole
655 duplication. *Biochem Soc Trans* 44: 1253-1263

656 Bettencourt-Dias M, Hildebrandt F, Pellman D, Woods G, Godinho SA (2011) Centrosomes
657 and cilia in human disease. *Trends Genet* 27: 307-315

658 Brodowska K, Al-Moujahed A, Marmalidou A, Meyer Zu Horste M, Cichy J, Miller JW,
659 Gragoudas E, Vavvas DG (2014) The clinically used photosensitizer Verteporfin (VP) inhibits
660 YAP-TEAD and human retinoblastoma cell growth in vitro without light activation. *Exp Eye
661 Res* 124: 67-73

662 Cao M, Zou X, Li C, Lin Z, Wang N, Zou Z, Ye Y, Seemann J, Levine B, Tang Z *et al* (2023)
663 An actin filament branching surveillance system regulates cell cycle progression, cytokinesis and
664 primary ciliogenesis. *Nat Commun* 14: 1687

665 Carvalho BS, Irizarry RA (2010) A framework for oligonucleotide microarray preprocessing.
666 *Bioinformatics* 26: 2363-2367

667 Delattre M, Canard C, Gonczy P (2006) Sequential protein recruitment in *C. elegans* centriole
668 formation. *Curr Biol* 16: 1844-1849

669 Du L, Jing J, Wang Y, Xu X, Sun T, Shi Y, Wang W, Tian B, Han C, Zhao X *et al* (2021)
670 Knockdown of SASS6 reduces growth of MDA-MB-231 triple-negative breast cancer cells
671 through arrest of the cell cycle at the G2/M phase. *Oncol Rep* 45

672 Dzhindzhev NS, Tzolovsky G, Lipinszki Z, Schneider S, Lattao R, Fu J, Debski J, Dadlez M,
673 Glover DM (2014) Plk4 phosphorylates Ana2 to trigger Sas6 recruitment and procentriole
674 formation. *Curr Biol* 24: 2526-2532

675 Elosegui-Artola A, Andreu I, Beedle AEM, Lezamiz A, Uroz M, Kosmalska AJ, Oria R,
676 Kechagia JZ, Rico-Lastres P, Le Roux AL *et al* (2017) Force Triggers YAP Nuclear Entry by
677 Regulating Transport across Nuclear Pores. *Cell* 171: 1397-1410 e1314

678 Fokin AI, Gautreau AM (2021) Assembly and Activity of the WASH Molecular Machine:
679 Distinctive Features at the Crossroads of the Actin and Microtubule Cytoskeletons. *Front Cell
680 Dev Biol* 9: 658865

681 Fong CS, Kim M, Yang TT, Liao JC, Tsou MF (2014) SAS-6 assembly templated by the
682 lumen of cartwheel-less centrioles precedes centriole duplication. *Dev Cell* 30: 238-245

683 Gadea G, Sanz-Moreno V, Self A, Godi A, Marshall CJ (2008) DOCK10-mediated Cdc42
684 activation is necessary for amoeboid invasion of melanoma cells. *Curr Biol* 18: 1456-1465

685 Go CD, Knight JDR, Rajasekharan A, Rathod B, Hesketh GG, Abe KT, Youn JY,
686 Samavarchi-Tehrani P, Zhang H, Zhu LY *et al* (2021) A proximity-dependent biotinylation map
687 of a human cell. *Nature* 595: 120-124

688 Godinho SA, Pellman D (2014) Causes and consequences of centrosome abnormalities in
689 cancer. *Philos Trans R Soc Lond B Biol Sci* 369

690 Godinho SA, Picone R, Burute M, Dagher R, Su Y, Leung CT, Polyak K, Brugge JS, Thery
691 M, Pellman D (2014) Oncogene-like induction of cellular invasion from centrosome
692 amplification. *Nature* 510: 167-171

693 Gupta GD, Coyaud E, Goncalves J, Mojarrad BA, Liu Y, Wu Q, Gheiratmand L, Comartin D,
694 Tkach JM, Cheung SW *et al* (2015) A Dynamic Protein Interaction Landscape of the Human
695 Centrosome-Cilium Interface. *Cell* 163: 1484-1499

696 Han YG, Kim HJ, Dlugosz AA, Ellison DW, Gilbertson RJ, Alvarez-Buylla A (2009) Dual
697 and opposing roles of primary cilia in medulloblastoma development. *Nat Med* 15: 1062-U1114

698 Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. *Cell* 144: 646-674

699

700 Jenks AD, Vyse S, Wong JP, Kostaras E, Keller D, Burgoyne T, Shoemark A, Tsalikis A, de la
701 Roche M, Michaelis M *et al* (2018) Primary Cilia Mediate Diverse Kinase Inhibitor Resistance
702 Mechanisms in Cancer. *Cell Rep* 23: 3042-3055

703 Kazazian K, Go C, Wu H, Brashavitskaya O, Xu R, Dennis JW, Gingras AC, Swallow CJ
704 (2017) Plk4 Promotes Cancer Invasion and Metastasis through Arp2/3 Complex Regulation of
705 the Actin Cytoskeleton. *Cancer Res* 77: 434-447

706 Kilburn CL, Pearson CG, Romijn EP, Meehl JB, Giddings TH, Jr., Culver BP, Yates JR, 3rd,
707 Winey M (2007) New Tetrahymena basal body protein components identify basal body domain
708 structure. *J Cell Biol* 178: 905-912

709 Kitagawa D, Vakonakis I, Olieric N, Hilbert M, Keller D, Olieric V, Bortfeld M, Erat MC,
710 Fluckiger I, Gonczy P *et al* (2011) Structural basis of the 9-fold symmetry of centrioles. *Cell* 144:
711 364-375

712 Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA (2007)
713 Plk4-induced centriole biogenesis in human cells. *Dev Cell* 13: 190-202

714 Leidel S, Delattre M, Cerutti L, Baumer K, Gonczy P (2005) SAS-6 defines a protein family
715 required for centrosome duplication in *C. elegans* and in human cells. *Nat Cell Biol* 7: 115-125

716 Liu Y, Kim J, Philip R, Sridhar V, Chandrashekhar M, Moffat J, van Breugel M, Pelletier L
717 (2020) Direct interaction between CEP85 and STIL mediates PLK4-driven directed cell
718 migration. *J Cell Sci* 133

719 Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, Liu JO, Pan D (2012)
720 Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic
721 activity of YAP. *Genes Dev* 26: 1300-1305

722 Mardakheh FK, Paul A, Kumper S, Sadok A, Paterson H, McCarthy A, Yuan Y, Marshall CJ
723 (2015) Global Analysis of mRNA, Translation, and Protein Localization: Local Translation Is a
724 Key Regulator of Cell Protrusions. *Dev Cell* 35: 344-357

725 Miller FR (1996) Models of progression spanning preneoplasia and metastasis: the human
726 MCF10AneoT.TGn series and a panel of mouse mammary tumor subpopulations. *Cancer*
727 *Treat Res* 83: 243-263

728 Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P,
729 Carlsson E, Ridderstrale M, Laurila E *et al* (2003) PGC-1alpha-responsive genes involved in
730 oxidative phosphorylation are coordinately downregulated in human diabetes. *Nat Genet* 34:
731 267-273

732 Moyer TC, Clutario KM, Lambrus BG, Daggubati V, Holland AJ (2015) Binding of STIL to
733 Plk4 activates kinase activity to promote centriole assembly. *J Cell Biol* 209: 863-878

734 Nakazawa Y, Hiraki M, Kamiya R, Hirono M (2007) SAS-6 is a cartwheel protein that
735 establishes the 9-fold symmetry of the centriole. *Curr Biol* 17: 2169-2174

736 Ohta M, Ashikawa T, Nozaki Y, Kozuka-Hata H, Goto H, Inagaki M, Oyama M, Kitagawa D
737 (2014) Direct interaction of Plk4 with STIL ensures formation of a single procentriole per
738 parental centriole. *Nat Commun* 5: 5267

739 Olson MF, Sahai E (2009) The actin cytoskeleton in cancer cell motility. *Clin Exp Metastasis*
740 26: 273-287

741 Pelletier L, O'Toole E, Schwager A, Hyman AA, Muller-Reichert T (2006) Centriole assembly
742 in *Caenorhabditis elegans*. *Nature* 444: 619-623

743 Piccolo S, Panciera T, Contessotto P, Cordenonsi M (2023) YAP/TAZ as master regulators in
744 cancer: modulation, function and therapeutic approaches. *Nat Cancer* 4: 9-26

745 Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP (2006) GenePattern 2.0. *Nat*
746 *Genet* 38: 500-501

747 Rezakhaniha R, Agianniotis A, Schrauwen JT, Griffa A, Sage D, Boutsen CV, van de Vosse
748 FN, Unser M, Stergiopoulos N (2012) Experimental investigation of collagen waviness and

749 orientation in the arterial adventitia using confocal laser scanning microscopy. *Biomech Model
750 Mechanobiol* 11: 461-473

751 Ridley AJ (2011) Life at the leading edge. *Cell* 145: 1012-1022

752 Rosario CO, Kazazian K, Zih FS, Brashavitskaya O, Haffani Y, Xu RS, George A, Dennis JW,
753 Swallow CJ (2015) A novel role for Plk4 in regulating cell spreading and motility. *Oncogene*
754 34: 3441-3451

755 Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall CJ
756 (2008) Rac activation and inactivation control plasticity of tumor cell movement. *Cell* 135: 510-
757 523

758 Shinmura K, Kato H, Kawanishi Y, Nagura K, Kamo T, Okubo Y, Inoue Y, Kurabe N, Du C,
759 Iwaizumi M *et al* (2015) SASS6 overexpression is associated with mitotic chromosomal
760 abnormalities and a poor prognosis in patients with colorectal cancer. *Oncol Rep* 34: 727-738

761 Strnad P, Leidel S, Vinogradova T, Euteneuer U, Khodjakov A, Gonczy P (2007) Regulated
762 HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome
763 duplication cycle. *Dev Cell* 13: 203-213

764 Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A,
765 Pomeroy SL, Golub TR, Lander ES *et al* (2005) Gene set enrichment analysis: a knowledge-
766 based approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A*
767 102: 15545-15550

768 Sugioka K, Hamill DR, Lowry JB, McNeely ME, Enrick M, Richter AC, Kiebler LE, Priess
769 JR, Bowerman B (2017) Centriolar SAS-7 acts upstream of SPD-2 to regulate centriole assembly
770 and pericentriolar material formation. *Elife* 6

771 Swiatlowska P, Sit B, Feng Z, Marhuenda E, Xanthis I, Zingaro S, Ward M, Zhou X, Xiao Q,
772 Shanahan C *et al* (2022) Pressure and stiffness sensing together regulate vascular smooth
773 muscle cell phenotype switching. *Sci Adv* 8: eabm3471

774 Tanos BE, Yang HJ, Soni R, Wang WJ, Macaluso FP, Asara JM, Tsou MF (2013) Centriole
775 distal appendages promote membrane docking, leading to cilia initiation. *Genes Dev* 27: 163-
776 168

777 van Breugel M, Hirono M, Andreeva A, Yanagisawa HA, Yamaguchi S, Nakazawa Y, Morgner
778 N, Petrovich M, Ebong IO, Robinson CV *et al* (2011) Structures of SAS-6 suggest its
779 organization in centrioles. *Science* 331: 1196-1199

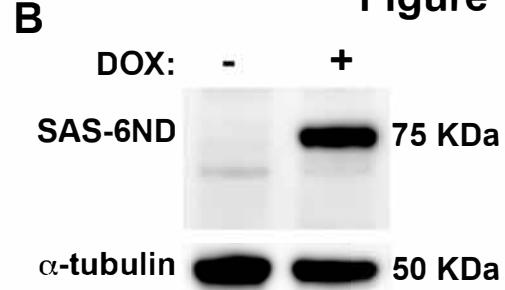
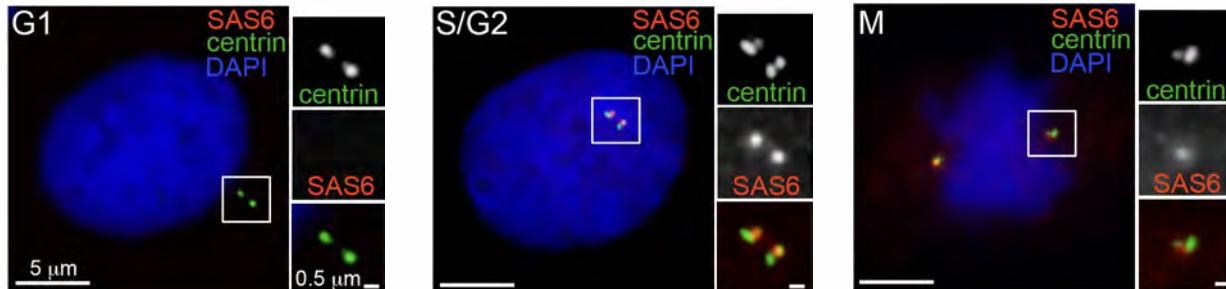
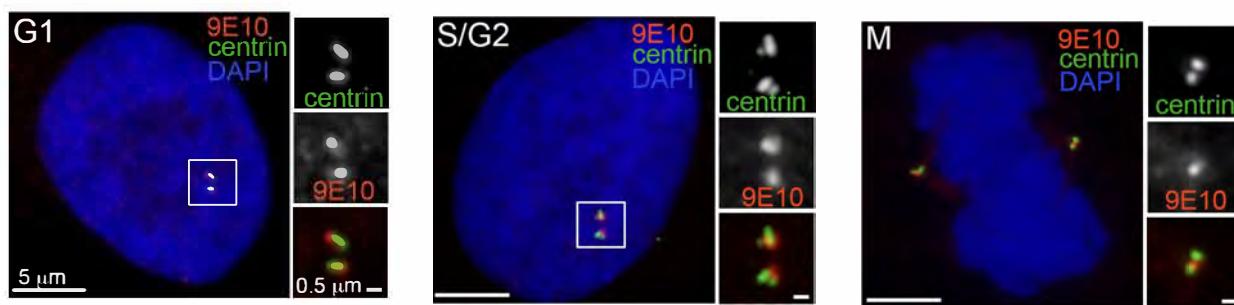
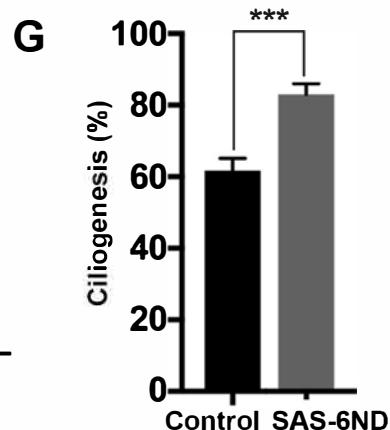
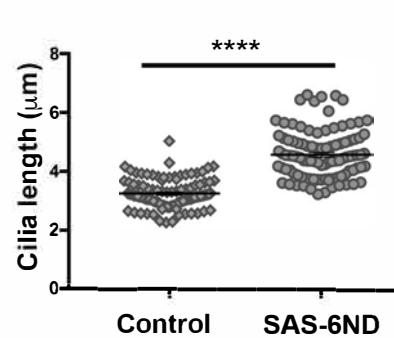
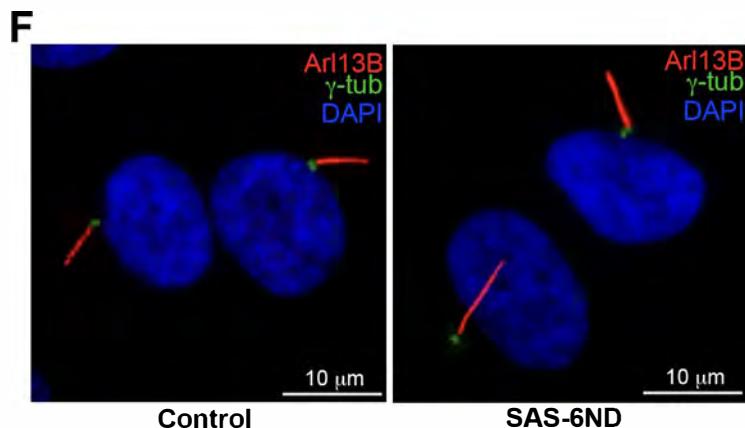
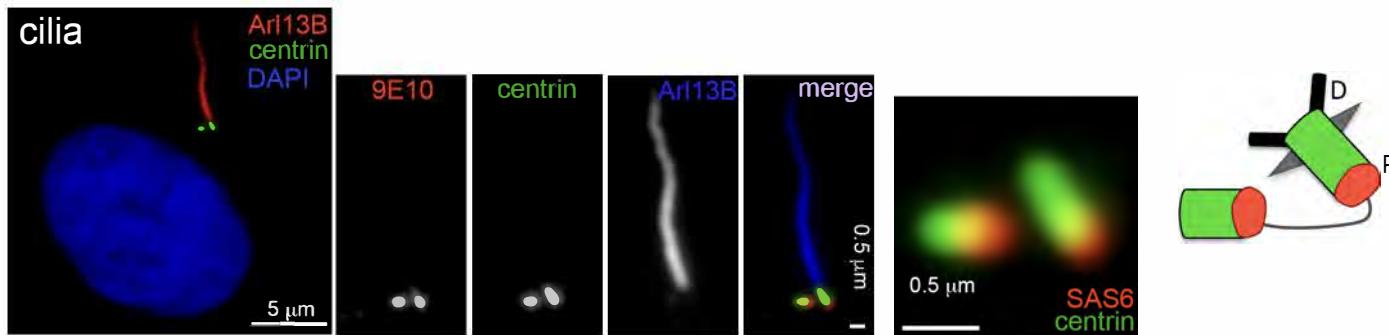
780 Visweshwaran SP, Thomason PA, Guerois R, Vacher S, Denisov EV, Tashireva LA, Lomakina
781 ME, Lazennec-Schurdevin C, Lakisic G, Lilla S *et al* (2018) The trimeric coiled-coil HSBP1
782 protein promotes WASH complex assembly at centrosomes. *EMBO J* 37

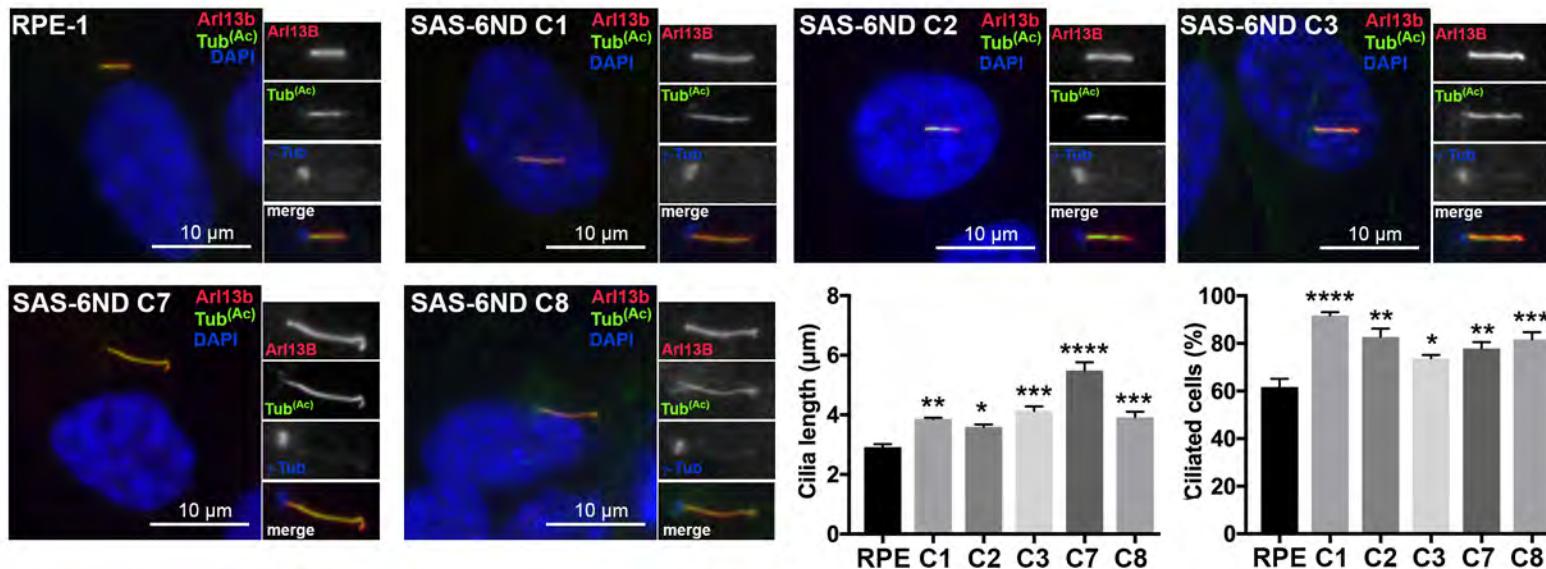
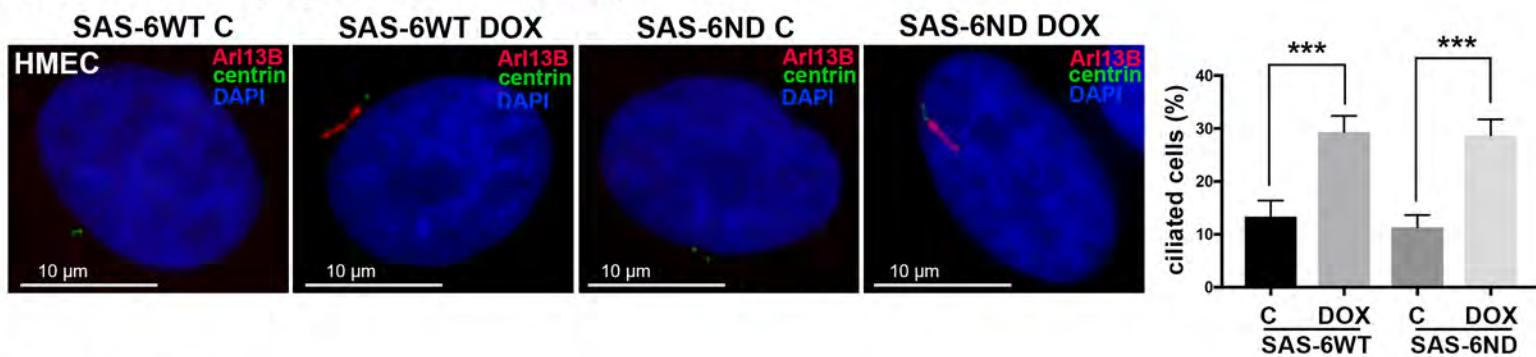
783 Vladar EK, Stearns T (2007) Molecular characterization of centriole assembly in ciliated
784 epithelial cells. *J Cell Biol* 178: 31-42

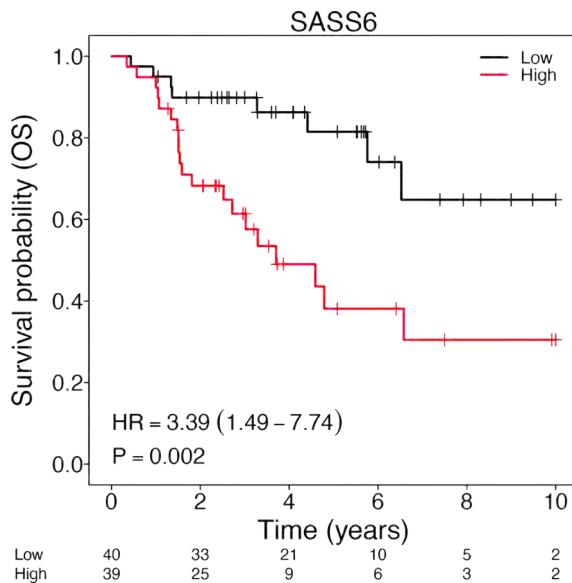
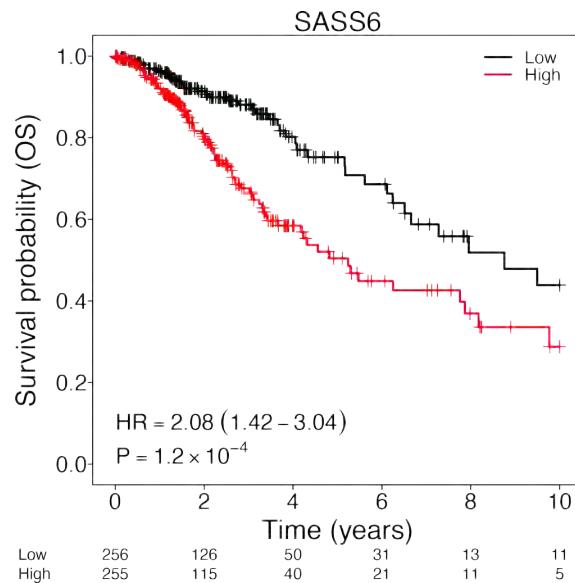
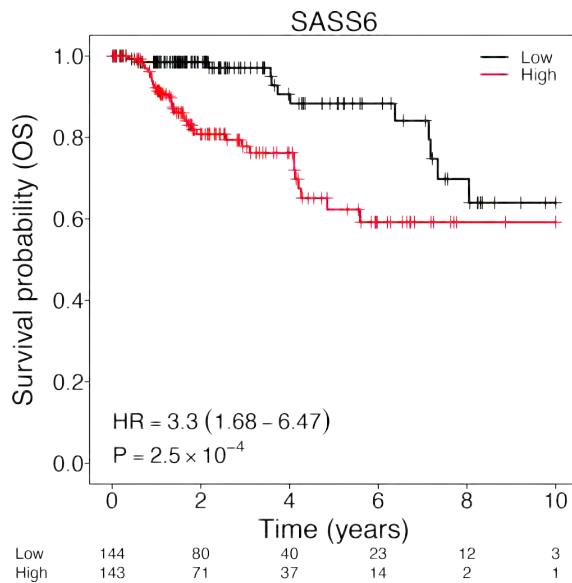
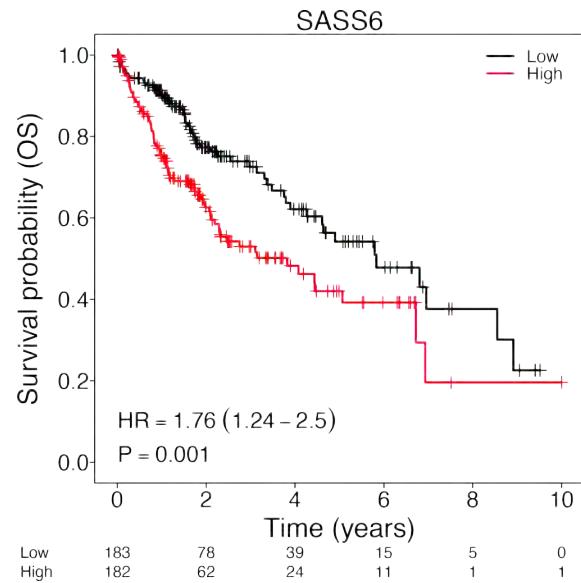
785 Wall RJ, Roques M, Katris NJ, Koreny L, Stanway RR, Brady D, Waller RF, Tewari R
786 (2016) SAS6-like protein in Plasmodium indicates that conoid-associated apical complex
787 proteins persist in invasive stages within the mosquito vector. *Sci Rep* 6: 28604

788 Wong SY, Seol AD, So PL, Ermilov AN, Bichakjian CK, Epstein EH, Jr., Dlugosz AA, Reiter
789 JF (2009) Primary cilia can both mediate and suppress Hedgehog pathway-dependent
790 tumorigenesis. *Nat Med* 15: 1055-1061

791 Xu Y, Zhu K, Chen J, Lin L, Huang Z, Zhang J, Chen Y (2020) SASS6 promotes
792 proliferation of esophageal squamous carcinoma cells by inhibiting the p53 signaling pathway.
793 *Carcinogenesis*

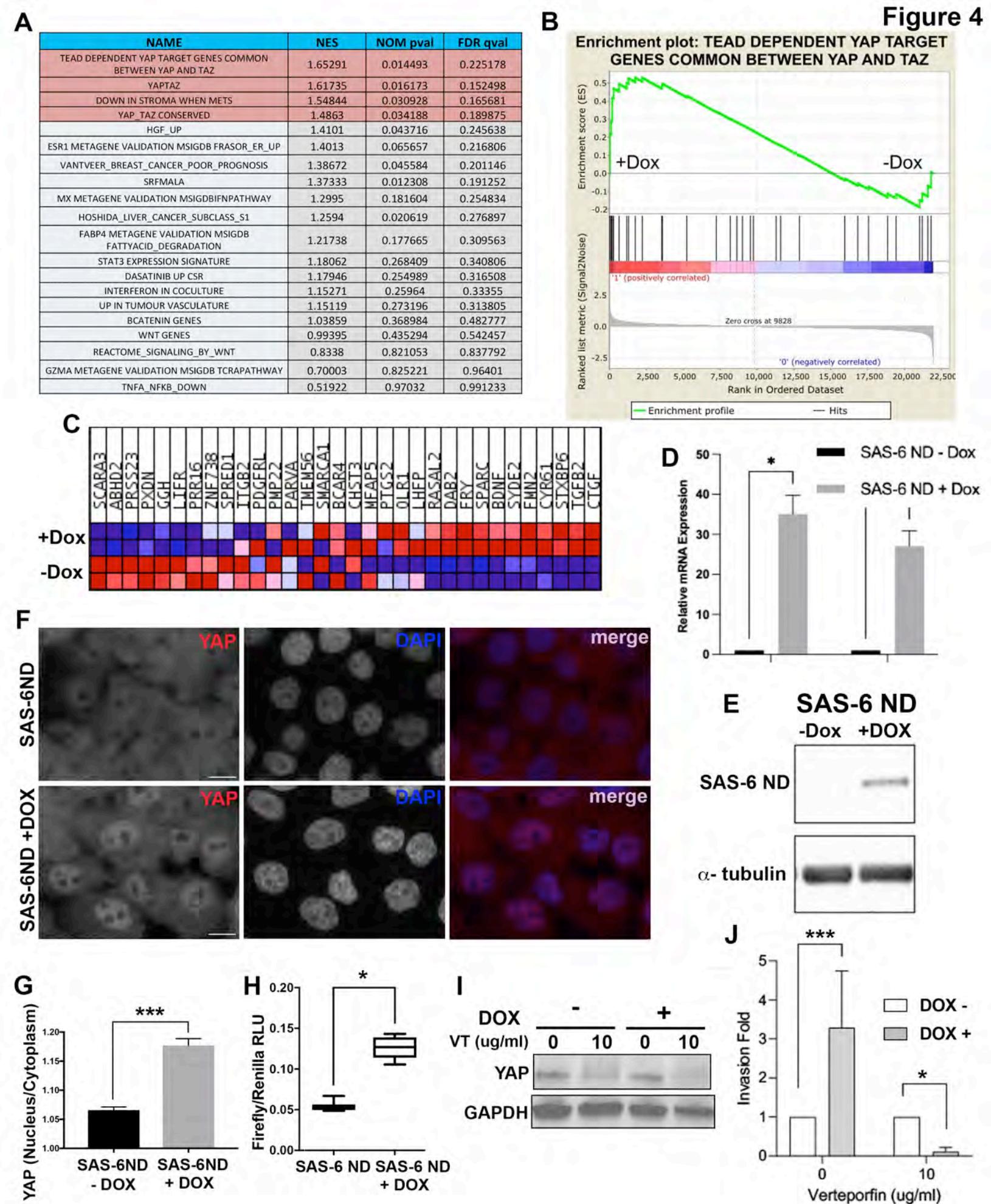







794 Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration
795 and invasion. *Biochim Biophys Acta* 1773: 642-652



796 Zech T, Calaminus SD, Caswell P, Spence HJ, Carnell M, Insall RH, Norman J, Machesky
797 LM (2011) The Arp2/3 activator WASH regulates alpha5beta1-integrin-mediated invasive
798 migration. *J Cell Sci* 124: 3753-3759





Figure 1

Human LQFTKPNASL GDVQSGATIS MPCSTD**KENG** ENVGLESKYL KKREDSIPLR
 C. elegans NLS RTPFRDNTTL NFQNSTIATP
 Drosophila **KENR** R.....


hSAS6 F.L. MPCSTD**KENG** ENVGLESKYL
 hSAS6 ND MPCSTD**AAAG** ENVGLESKYL


C Endogenous SAS-6**D Non-degradable SAS-6 (SAS-6ND)****E SAS-6ND in ciliated cells**

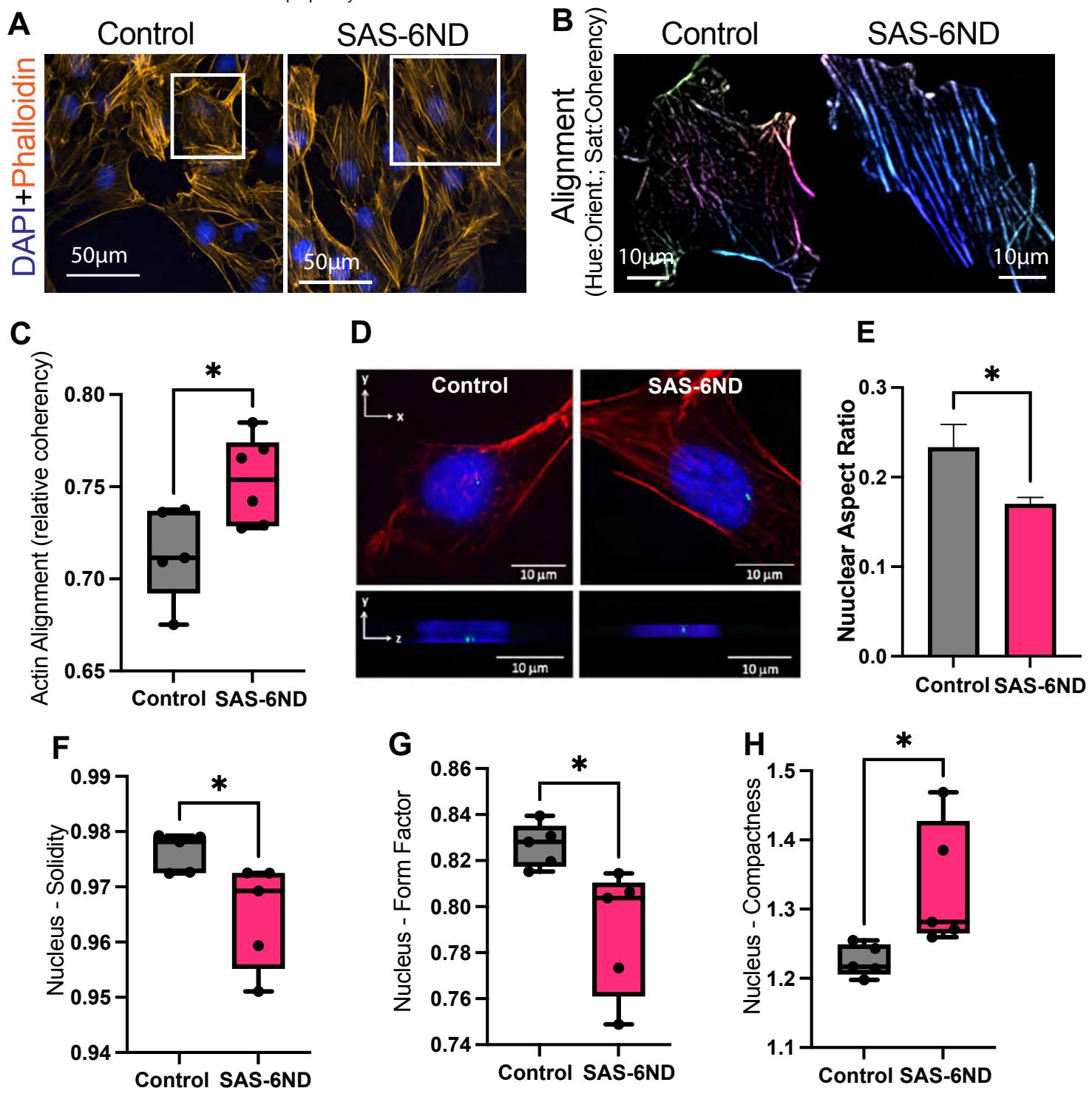

A RPE-1 cells**B Human mammary epithelial cells (HMEC)****C MCF10AT**

Figure 2**A Adrenocortical Carcinoma****B Low Grade Glioma****C Renal Papillary Cell Carcinoma****D Hepatocellular Carcinoma****E****TCGA- SASS6**

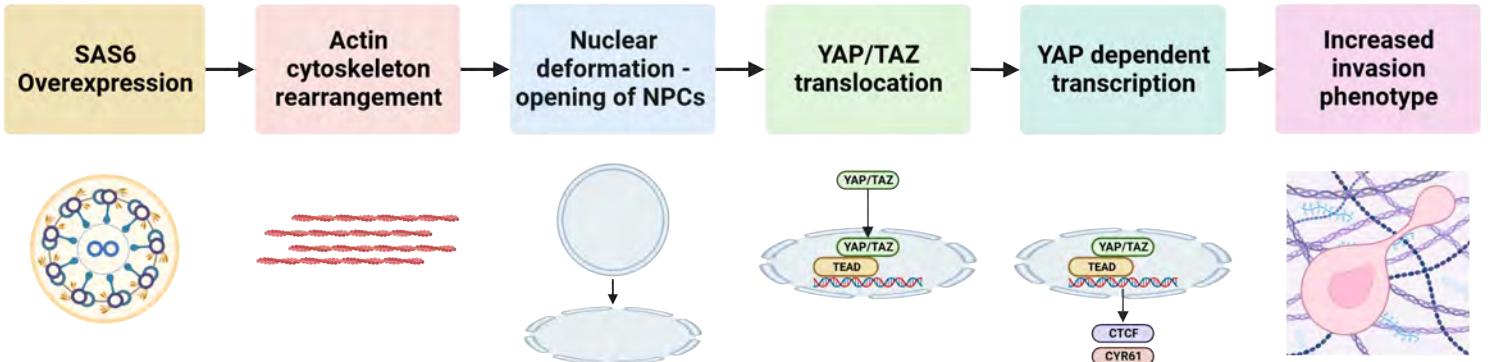
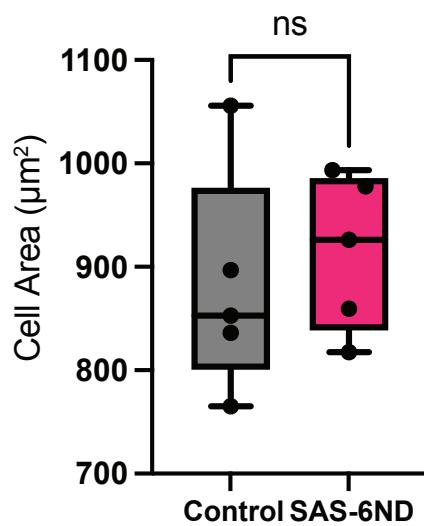
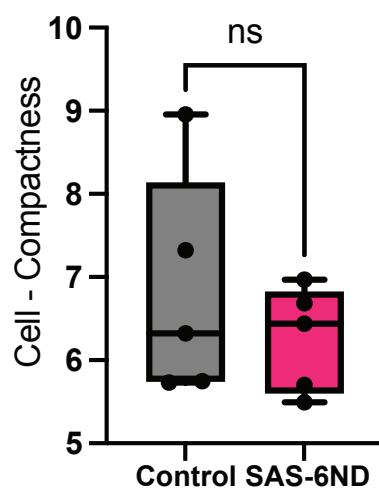

	HR	CI95L	CI95U	P	n
Adrenocortical carcinoma- ACC	3.392	1.487	7.737	0.00206	79
Kidney renal papillary cell carcinoma	3.298	1.681	6.47	0.00025	287
Brain lower grade glioma	2.078	1.421	3.04	0.00012	511
Liver hepatocellular carcinoma	1.761	1.238	2.503	0.00142	365
Kidney renal clear cell carcinoma	1.553	1.148	2.1	0.00396	531
Lung adenocarcinoma	1.425	1.063	1.91	0.01731	502

Figure 3

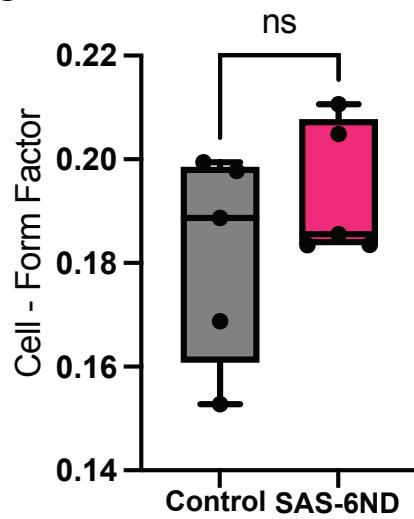
Figure 4

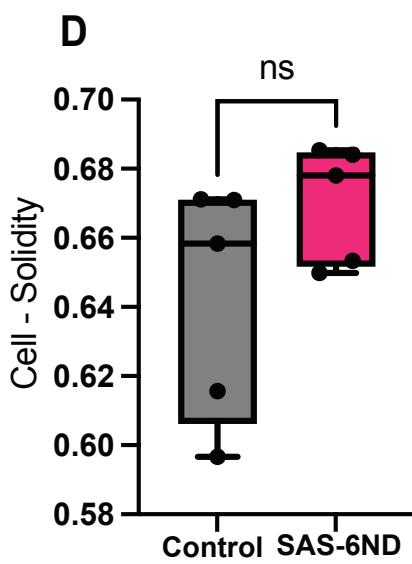


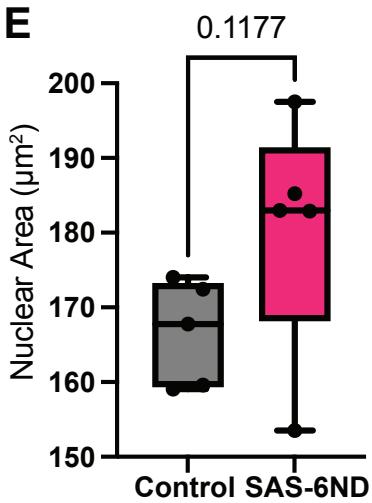
J



Supplementary Figure 2


A


B


C

D

E

