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ABSTRACT 

 

Because of vectorial protein production, residues that interact in the native protein structure 

but are distantly separated in the primary sequence are unavailable simultaneously. Instead, 

there is a temporal delay during which the N-terminal interaction partner is vulnerable to off-

pathway, non-native interactions. In this analysis, we introduce "FoldDelay" (FD), a metric 

that integrates the topological pattern of atomic interactions of the native structure with 

translation kinetics to quantify such time delays. The FD metric reveals that many proteins, 

particularly at eukaryotic translation rates, exhibit residues with FDs in the range of tens of 

seconds. These residues, predominantly in well-structured, buried regions, often coincide 

with predicted aggregation-prone regions. We show a correlation between FD and co-

translational engagement by the yeast Hsp70 chaperone Ssb, suggesting that fold-delayed 

regions have a propensity to misfold. In support of this, we show that proteins with high FDs 

are more frequently co-translationally ubiquitinated and prone to aggregate upon Ssb 

deletion. Finally, we find that FD cannot be adequately reduced through codon optimization, 

highlighting the importance of co-translational chaperones to shield these vulnerable regions. 

This work offers insights into co-translational proteostasis and the delicate balance between 

efficient folding and potential misfolding and aggregation during translation. 
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INTRODUCTION  

The functionality of globular proteins relies on adopting a three-dimensional shape 

known as the native structure. Achieving this structure involves folding an elongated 

polypeptide chain into a specific conformation. Although this process is intricate, it is widely 

acknowledged that all the necessary information for a protein to attain its native fold is 

encoded in its primary amino acid sequence [1]. Additionally, proteins can fold completely in 

physiologically relevant timescales, generally in the range of microseconds to seconds [2]. 

Most of these folding rates are derived from classic in vitro experiments in which the 

(re)folding of purified, full-length protein is monitored. These experiments yielded invaluable 

insights, including the realization that in vitro folding rates are partly determined by 

topological complexity [3].  

However, protein translation is an aspect that is overlooked in such experiments. 

Protein translation progresses at an average rate of about 20 aas/s in prokaryotes and around 

five aas/s in eukaryotes [4-6], meaning that the complete synthesis of proteins can take 

seconds and even up to minutes. Hence, in vivo, local folding events often take place while a 

polypeptide chain emerges from the ribosome, i.e. co-translationally. Indeed, it is estimated 

that one-third of the E. coli cytosolic proteome folds at least one entire domain co-

translationally [7], and this fraction is likely higher in eukaryotes, given their slower 

translation rates. The vectorial nature of translation is exploited in vivo to increase folding 

efficiency: the gradual addition of residues allows the growing polypeptide chain to sample 

stabilizing native interactions in a reduced conformation space, thereby avoiding kinetic traps 

associated with interactions with not yet formed residues towards the C-terminus in the 

sequence [8]. Indeed, some proteins fold more efficiently co- than post-translationally [9-13]. 

In line with this, co-translational folding has been put forth as one of the explanations for why 

a large portion of the E. coli cytoplasmic proteome does not reassemble back into their native 

folds after cell lysis and protein denaturation [14]. 

However, co-translational folding is a double-edged sword. While the incremental 

emergence of the nascent chain is beneficial, as it effectively promotes short-range native 

interactions in a reduced conformational space, the opposite is probably true for long-range 

interactors. Vectorial polypeptide production condemns residues with long-range interaction 

partners to idle while the remainder of the polypeptide chain is being produced, making them 
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more vulnerable to non-native intra- and intermolecular interactions that can potentially lead 

to “premature folding” – i.e. misfolding – and/or aggregation. In support of this, several 

sources report that newly synthesized proteins are more vulnerable to misfolding and 

aggregation than existing, matured proteins [15, 16], with topologically complex proteins 

being more at risk [16]. It is also widely understood that premature co-translational 

misfolding – before a critical nascent chain length is achieved – is indeed detrimental and 

must be avoided [17]. Proteins have, therefore, evolved to prevent premature intermolecular 

interactions. Natan et al., for example, show a systematic enrichment of multimerization 

domains near the C-terminus of proteins, whereas the artificial placement of those domains 

at the N-terminus gives rise to misfolding and aggregation [18]. To avoid premature co-

translational misfolding events, an entire branch of the proteostasis network (PN) exists that 

acts specifically at the translation stage, shielding vulnerable regions. Firstly, ribosomes 

themselves have a holdase function as their negatively charged surface interacts with nascent 

chains, preferentially with basic and aromatic residues, thereby preventing premature co-

translational folding by destabilizing the nascent chain [17, 19, 20]. Secondly, a host of 

dedicated chaperones engage nascent chains at the ribosome [21]. The typical example of 

this is Trigger Factor (TF) in E. coli, which directly interacts with both the nascent chain and 

the ribosome, thereby preventing off-pathway interactions [22]. In eukaryotes, co-

translational chaperones are most well-studied in S. cerevisiae, in which Nascent polypeptide 

Associated Complex (NAC) and Ribosome Associated Complex (RAC) directly engage the 

ribosome and interact with the nascent chain near the ribosome exit tunnel [21]. RAC recruits 

an Hsp70-type ribosome-associated chaperone called Ssb, which prevents premature folding 

through binding-release cycles [23-25]. Still, this mechanism is not foolproof as an estimated 

one-third of newly synthesized polypeptides are targeted for proteasomal degradation, either 

through mistakes in translation or inability to attain the native fold [26]. 

 Clearly, the vectorial nature of translation can benefit folding outcomes, but it also 

poses a risk as residues that idle for extended periods of time on the ribosome can potentially 

engage in off-pathway interactions, necessitating a dedicated co-translational proteostasis 

network. In this work, we describe a method to identify vulnerable regions in co-translational 

folding. To do this, we quantify the length of time between the translation of each residue 

and that of all its native interaction partners. Effectively, we calculate the delay on co-

translational folding experienced by individual residues, for which we coin the term 
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“FoldDelay” (FD). Using the FD algorithm, we show that many proteins contain residues with 

FDs in the range of minutes, especially at eukaryotic translation rates. Furthermore, we 

establish that residues with the strongest FDs tend to be in well-structured, buried parts of 

globular proteins and are often part of predicted aggregation-prone regions (APRs). In 

addition, we show that in vivo, the yeast co-translational Hsp70 chaperone Ssb preferentially 

engages fold-delayed regions. Aggregation propensity in these fold-delayed Ssb binding sites 

causes co-translational aggregation upon Ssb knockout. Both these findings suggest that 

regions of high FD are indeed at high risk of co-translational misfolding and aggregation. In 

support of this, we further show that proteins with high FDs are more frequently co-

translationally ubiquitinated. Finally, we address whether FD was mitigated evolutionarily 

through codon optimization. We conclude that this is an unlikely evolutionary strategy, and 

it is probably the co-evolution with co-translational chaperones that reduced the risk of 

increased FD associated with topologically complex proteins.  
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RESULTS 

Protein translation is orders of magnitude slower than protein folding 

To visualize the differences in timescales of protein folding and translation rates, we 

directly compare folding rates and estimated translation times for 133 proteins that have 

experimentally recorded in vitro refolding rates from denaturing conditions reported in the 

Protein Folding DataBase (PFDB) [27] (Figure 1A). The PFDB contains information on proteins 

from a wide array of species, and for a lot of these, an accurate translation rate has never 

been established. Therefore, translation times were estimated by multiplying protein lengths 

with an average translation rate. We assumed a relatively fast translation rate of 20 aas/s for 

all prokaryotic proteins and five aas/s for all eukaryotic proteins [4-6] .  

Despite this, the distributions of translation times and folding times are clearly 

separated (Figure 1A). Translation times are typically on the order of seconds, whereas 

folding times range from microseconds to seconds, and in 126 of 133 cases (95%), the in vitro 

refolding time of the full-length protein is shorter than the time estimated to complete its 

translation (Figure 1A). Moreover, we here consider the time it takes for an entire 

polypeptide chain to cooperatively fold to its native conformation. Local protein 

conformational dynamics are generally even faster, ranging from nanoseconds to 

microseconds [28]. As a result, for many proteins folding is a co-translational process that 

starts as soon as the N-terminal part of the protein emerges from the ribosome tunnel and 

long before the full-length protein chain has been synthesized and released from the 

ribosome.  

 

Vectorial protein translation imposes spatial and temporal constraints on folding 

 Protein folding studies, both in vitro and in the cell, have demonstrated that protein 

topology (i.e. the sequence order in which the structural elements of the tertiary fold occur 

in the primary sequence) is a key determinant of folding rates and efficiencies [29]. Protein 

topological complexity is often described by Contact Order (CO), a metric which calculates the 

average sequence distance separation of native interactions.  

As shown in Figure 1A, translation is relatively slow compared to folding. This means 

that during protein translation topology restricts folding not only spatially but also 

temporally: residues that are separated spatially in the primary sequence are also separated 
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temporally as interaction partners towards the C-terminal end of the protein will simply not 

exist until they have been translated. Inspired by and building on CO, we here propose a 

metric that accounts for these temporal topological constraints, for which we have coined 

the term “FoldDelay” (FD). For each residue (i) in a protein sequence, FD measures the 

sequence distance (DS) from its furthest away C-terminal interactor (j): 

𝐹𝑜𝑙𝑑𝐷𝑒𝑙𝑎𝑦!	(𝑎𝑎𝑠) = 	∆𝑆!" 

 In other words, FD measures the number of residues that need to be synthesized 

before residue (i) can engage with all its native interaction partners. The assumption is that 

until that moment, its folding is delayed (hence “FoldDelay”). FD can also be expressed in time 

units by factoring the decoding times (tdec) of the different residues between i and j: 

𝐹𝑜𝑙𝑑𝐷𝑒𝑙𝑎𝑦!	(𝑠) = 	 0 𝑡#$%,'

"

'(!)*

 

The FD calculation is schematically represented in Figures 1B-E. Figure 1B shows the 

native fold for a hypothetical small globular protein. From this native structure, all 

interactions are mapped, resulting in a contact map (Figure 1C). While in post-translational 

folding all these contacts are available simultaneously (Figure 1C), in the co-translational 

paradigm the contact map changes over time (Figure 1D and E). Residue 5, for example, 

interacts with residue 24 in the native structure (residues outlined in red in panels Figures 1B-

E). As residue 5 emerges from the ribosome, this interaction is not available, as residue 24 

has not been added to the polypeptide chain (Figure 1D). Therefore, residue 5 cannot form 

all its native interactions until residue 24 has emerged from the ribosome and becomes 

physically accessible (Figure 1E). Residue 5, therefore, incurs a FD of 19 aas. Importantly, 

residue 24 has practically no FD as all its long-range interaction partners (residues 5 and 6) 

have already been added to the polypeptide when it emerges from the ribosome exit tunnel.  

As an example, Figures 1F-H show the FD calculation for the E. coli peptidyl-prolyl 

isomerase B (PPI B, UniProt code P23869) protein. PPI B is an abundant cytoplasmic enzyme 

with a length of 164 amino acids. Its functional form is a globular shape comprised of beta 

sheets and alpha helices separated by several random coils (Figure 1F). While PPI B has an 

average folding time of about 600 µsits estimated translation time is eight seconds (assuming 
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an average translation rate of 20 aas/s). Clearly, the timescales of folding and translation here 

are vastly different, and PPI B is likely to start folding co-translationally. Figures 1G and 1H 

show the contact map calculated from the PPI B native structure and the per-residue FD 

profile, respectively. PPI B contains a beta-sheet comprised of a strand close to the N-

terminus (E1), and a strand close to the C-terminal end in the primary sequence (E8). Strand 

E1 cannot fully be stabilized in its native conformation until strand E8 has been produced, 

which takes about 160 aas. This means that strand E1 sits partially exposed for about eight 

full seconds. On the other hand, strand E8 has a negligible FD, as its interaction partners have 

all been produced when it emerges from the ribosome.  

 To explore general FD patterns across different protein topologies, we ran FD analyses 

on the protein domains of the SCOPe40 dataset. This dataset contains single-domain 

structures that have been manually classified based on their architectures and filtered so that 

no two domains in the set have more than 40% identical sequences [30, 31]. Reflecting the 

vectorial nature of protein translation, FD has both spatial and temporal implications. First, 

the FD profiles of proteins display an N- to C-terminal gradient: N-terminal elements generally 

incur larger FDs than more C-terminal elements (Figure 1I). In addition, domain size is a big 

determinant of FD, as the longer a polypeptide chain, the more potential there is for long-

range interactions, leading to high FDs (Figure 1J). On top of length, FD also reflects the 

topological specificity of the translated protein. Indeed, even when considering proteins of 

identical length (101 aas), proteins from different SCOPe classifications have different FD 

patterns (Figure 1J and K). More complex protein topologies have higher FDs and present 

more pronounced N- to C-terminal FD gradients, resulting in different profiles for alpha-

helical or beta-sheet structured domains (Figure 1K and L). Interestingly, FD profiles of large 

multi-domain proteins often display a sawtooth profile reflecting the domain dependence of 

N- to C-terminal FD gradients (figure S1). 

On top of topology, FD is also dependent on translation rates, which can vary strongly 

between species. Figure 1M shows the AlphaFold predicted structure of a peptidyl-prolyl cis-

trans isomerase (CPR1, UniProt code P14832) from S. cerevisiae, which is homologous and 

structurally very similar to PPI B from E. coli. As is the case for PPI B, the N-terminal domain 

has a strand near its N-terminus (E1) that forms contacts with a strand at the C-terminus of 

the domain (E8), resulting in high FD values for E1 (Figure 1N and O). Although the FDs for 
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the N-terminal strands in PPI B and CPR1 are similar when expressed in number of aas, the 

relatively slower translation rates of S. cerevisiae (estimated to be around 5 aas/s on average), 

means that strand E1 idles on the ribosome for about 32 seconds, as opposed to the 8 seconds 

estimated for strand E1 in PPI B. Therefore, differences in translation rates of different 

organisms can cause domains with very similar folds to incur vastly different FDs.  

 

Sequence segments with high FoldDelays often consist of aggregation-prone tertiary 

structural elements that stabilize the native structure  

Having established the FD algorithm, we next used it to explore FD patterns on a 

proteome-wide scale. The near-exhaustive availability of AlphaFold-predicted structures 

combined with the computationally inexpensive nature of our algorithm allows us to calculate 

FD for all residues across entire proteomes [32, 33]. In addition, AlphaFold models provide a 

confidence measurement to assess the relative position of two residues within the predicted 

structure, called the Predicted Aligned Error (PAE). We used this metric to filter out 

interactions between residues whose relative positions with respect to each other are 

predicted with low confidence since these interactions most probably do not occur in the 

actual structure, as is the case for contacts with disordered regions or some contacts between 

distinct domains. (figure S2).  

 We calculated the FD incurred by all residues in the E. coli and S. cerevisiae proteomes, 

assuming average translation rates of 20 aa/s and 5 aas/s, respectively. Interestingly, most 

proteins have at least one residue that has to wait for tens of seconds for the translation of 

all its native interacting residues (Figure 2A). Binning proteome-wide FD however, reveals 

that most residues have low FDs as they interact only with their neighbors (± 5 aa). While 

intermediate FDs are relatively rare, about 23% of residues in S. cerevisiae proteome incur 

FDs of more than 10 seconds (Figure 2B), while the same is true for 7% of E. coli residues 

(figure S3A). Specific secondary structures are more likely to incur FD (Figure 2C and figure 

S3B). Logically, residues in random coils (C) are depleted from the high FD groups as they 

barely make any contacts. On the other hand, helical structures (G, H and I) are dominated by 

short-range contacts, yielding average FDs. Pi-helices (I) have higher FDs than alpha-helices 

(H), which makes sense given that backbone interactions in pi-helices occur at an interval of 
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five residues, where this is four residues for alpha-helices and three for 3-turn helices (G). 

Finally, beta-structured elements (B, E), are enriched in residues with the highest FDs. Again, 

this makes sense given that contacts between beta strands are generally more long-range 

than those between residues in alpha helices. 

Looking at the sequence composition of segments with high FDs, we find them to be 

enriched in aromatic and aliphatic residues (Figure 2D and figure S3C). This makes sense as 

these residues are often buried in the hydrophobic cores of globular proteins, where they 

make many contacts. Exploring this further, we find that regions of high FD are often 

structurally ordered – as indicated by the AlphaFold pLDDT score, which inversely correlates 

with disorder – (Figure 2E and figure S3D) and indeed constituted of buried residues – as 

shown by their relatively low solvent accessibility (Figure 2F and figure S3E). Furthermore, 

regions of high FD are usually stabilizing to the domain structure, as shown by their low free 

energy (Figure 2G and figure S3F). Given their propensity for beta-sheet formation and 

hydrophobic nature, we asked whether regions of high FD tend to be aggregation-prone. 

Indeed, we find that the proportion of residues in aggregation-prone regions (APRs) 

substantially increases with FD (Figure 2H and figure S3G), although the distribution of their 

aggregation propensities is quite similar (Figure 2I and figure S3H).  

 

The co-translational chaperone Ssb binds to regions with high FoldDelays 

Aggregation-prone exposed regions of high hydrophobicity are the preferred binding 

sites of many molecular chaperones, including Hsp70s [24, 34, 35]. It is proposed that Hsp70s 

bind to these regions to delay the folding of newly forming polypeptides until the residues 

required for folding emerge from the ribosome, thus preventing the formation of non-native 

interactions [35, 36]. Given that FD reflects co-translational exposure and that regions of high 

FD tend to be hydrophobic, we hypothesized that FD could help explain the engagement of 

specific segments of the nascent chain by chaperones. To address this question, we used a 

dataset containing the binding footprints for the co-translational chaperone Ssb from S. 

cerevisiae, obtained by Döring et al. [24] using selective ribosome profiling (SeRP). These 

binding footprints indicate the codons that are being translated by ribosomes while Ssb is 

bound to the emerging polypeptide chain (Figure 3A). 
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We carried out a metagene analysis by aligning the starting site of Ssb binding 

footprints across the S. cerevisiae proteome and calculated the median FD value at each 

position. A distinct FD peak was revealed at around 50 aa towards the N-terminal side (Figure 

3B). This is the exact distance that has been reported to exist between the Ssb footprint, i.e., 

the sequence segment protected by the ribosome at the moment of Ssb engaging the nascent 

chain, and the actual Ssb binding site [24, 37]. This indicates that the observed FD peak is 

directly associated with the regions engaged by Ssb. Indeed, at these positions, we observed 

some of the characteristic sequence and structural properties of Ssb binding motifs [24, 25], 

including an enrichment in positively charged residues and β-sheet propensity (figures S4A 

and S4B), and an underrepresentation of intrinsically disordered regions (figure S4C). A 

similar FD pattern was observed using a different published dataset of Ssb binding regions 

[25] (figure S4D). On the other hand, a dataset of Ssb binding regions generated in the 

absence of RAC (RACΔ, [24]), a cochaperone that is required for high affinity binding of Ssb to 

its substrates, did not show any peak around these positions (figure S4E). Interestingly, there 

is an additional FD peak between -16 and -6 aa from the start of Ssb biding footprints, which 

is approximately 36 residues downstream of the main Ssb binding region (Figure 3B). This 

peak might correspond to other Ssb binding regions, as these have been previously described 

to occur in proteins every 36 amino acids, on average [38]. Together, these results indicate 

that Ssb binds to regions with high FD. 

Intriguingly, despite Ssb recognition motifs being extremely common within protein 

sequences [38], SeRP data showed that many putative binding sites in vitro are actually 

ignored in vivo [24, 25]. Thus, we investigated whether putative chaperone binding motifs 

with low FDs could be skipped co-transitionally by Ssb. To investigate this, we used the 

computational tool Limbo to predict chaperone binding sites in yeast proteins [39]. Although 

Limbo was trained to predict E. coli DnaK binding sites, these motifs have been shown to be 

very similar to Ssb binding regions [24]. In fact, Limbo regions are enriched around 50 residues 

upstream of Döring et al. [24] Ssb footprints (figure S3F) and match with half of the identified 

Ssb binding regions (Figure 3C). On the other hand, only 22% of all Limbo predicted regions 

matched with an Ssb binding region (P-value < 0.001 by Fisher exact test), suggesting that 

there is a higher level of regulation beyond the amino acid sequence. Comparing Limbo 

regions that matched and did not match with Ssb binding regions, we saw that those that are 
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not bound by Ssb co-translationally have lower FDs, even when analyzing regions with similar 

relative positions in both groups to avoid biases (Figure 3D and figures S4G and S4H). As an 

example, the protein S-methyl-5'-thioadenosine phosphorylase (MTAP) has six predicted 

chaperone binding sites based on Limbo (Figures 3E). Out of these, only two were 

experimentally identified in vivo and reside in regions with high FDs. Conversely, the other 

four predicted binding sites are in regions with lower or even negligible FDs. It seems then 

that Ssb not only engages target based on amino acid composition, but also on availability, 

which is aptly captured by the FD metric. The experimentally determined Ssb binding sites in 

MTAP have a FD of about 20 seconds during which time they are available for Ssb 

engagement. The more C-terminal Ssb binding sites, on the other hand, have no FD as all their 

interacting residues have already been translated.  

As discussed by Döring et al. in the original Ssb SeRP publication, the maximal lifetime 

of the Ssb-Nascent chain complex can be extrapolated from the width of Ssb-binding peaks 

[24]. The average width of the Ssb peaks we consider in our analysis is 6.9 aas, which 

corresponds to a translation time, and hence Ssb engagement time, of 1.38 seconds. 

Intriguingly, we found that FDs of experimentally confirmed Ssb binding regions are, on 

average, 1.44 s higher FDs than regions from the same proteins that were sampled at random 

(Figure 3G). This suggests that regions that have a FD that is equal to or higher than the Ssb 

binding time can actually be engaged by the chaperone. To corroborate this, we asked 

whether Ssb binding sites with longer engagement times, i.e., wider footprints, have higher 

FDs. For Ssb footprints ranging in size from 5 to 11 aas, we indeed observed a strong positive 

correlation between the FD values at positions -53 to -35 (Ssb binding region) and the 

footprint size (p-value = 0.04) (Figures 3G and 3H). Moreover, the slope of this correlation 

roughly corresponds to the addition of one amino acid (Figure 3H). Correlations outside the 

Ssb binding region were weaker and not significant (figures S4I and S4J). 

 

Proteins with high FoldDelays are associated with co-translational misfolding and 

aggregation  

We have shown that Ssb preferentially engages regions of high FD. To corroborate 

this, we used a dataset produced by Willmund et al., who mapped Ssb clients across the S. 
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cerevisiae proteome and showed that the deletion of Ssb leads to widespread aggregation of 

newly synthesized polypeptides [23]. We used this dataset to assess whether Ssb clients 

indeed have higher FDs and whether proteins with high FDs are disproportionately affected 

by Ssb deletion. To this end, we assigned a single value to each protein by simply summing 

the FDs of individual residues. As expected, Ssb clients generally have higher total FDs than 

proteins that are not engaged by the co-translational chaperone (Figure 4A). Furthermore,  

Ssb clients that aggregate upon deletion of Ssb (SSBΔ, [23]) have a higher total FD than Ssb 

substrates that remain soluble (Figure 4A). To examine this difference in more detail, we 

looked at the metagene FD profile of specific Ssb binding sites of aggregated and soluble Ssb 

substrates based on Döring et al. [24] ribosome footprints. Ssb binding regions in proteins 

that aggregate in SSBΔ cells have, on average, a one second higher FD compared to binding 

regions in proteins that do not aggregate (Figure 4B and figures S5A and S5B). We next 

investigated whether proteins in the aggregated fraction upon Ssb deletion have higher 

intrinsic aggregation propensities. Although these proteins have a similar number of APRs per 

length unit (Figure 4C), we found that proteins that aggregate upon Ssb deletion have a 

significantly higher proportion of APRs in their Ssb binding regions (positions -53 to -35) 

compared to other regions in the same proteins of the same size (Figure 4D). In contrast, 

proteins that remain soluble have a significantly lower proportion of APRs in their Ssb binding 

regions (P-value < 0.0001 by Fisher exact test), similarly to other regions from the same 

proteins (Figure 4E). This suggests that APRs are driving the aggregation of the aggregated 

proteins in SSBΔ cells.  

To further corroborate these findings,  we analyzed a dataset produced by Jacobson 

et al. who identified proteins that aggregate upon treatment of yeast cells with arsenite [40], 

a metalloid known to cause aggregation by interfering with the folding of nascent proteins 

[41]. Again, we found that arsenite stress disproportionately causes the aggregation of 

proteins with high total FD (Figure 4F). In eukaryotic cells, misfolded proteins are tagged 

through ubiquitination for degradation [42]. Duttler et al. [43] showed that a subset of 

cytoplasmic nascent polypeptides is often co-translationally ubiquitinated. Re-analysis of this 

dataset, revealed that proteins that are co-translationally ubiquitinated have a significantly 

higher total FD compared to other abundantly translated yeast proteins (Figure 4G).  
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FoldDelay cannot be fully compensated for through codon optimization  

Our previous analyses suggest that fold-delayed regions are weak spots in co-

translational folding that can jeopardize folding outcomes. We therefore asked whether 

genetic sequences are in any way optimized to reduce FD. In our analyses so far, we made 

use of flat translation rates across transcripts to estimate FDs in actual time units. However, 

during translation in vivo, codons are not translated at a flat rate. Instead, ribosome profiling 

studies revealed a variety in codon translation rates, even between codons encoding the 

same amino acid [44]. This means that FD can be reduced by preferentially using fast-

translating, “optimal” codons in regions that span long-range interactions. To test this, we 

attempted to find correlations between FD and several codon optimization metrics, including 

the Codon Adaptation Index and the more recently described %MinMax [45]. However, we 

were unable to find convincing evidence of codon optimization towards reducing FD (data 

not shown).  

We next asked what the actual reduction in FD would be, given perfect codon 

optimization. Using the typical codon translation rate tables for S. cerevisiae determined by 

Dana and Tuller [44] and Sharma et al [46] (Figure 5A and E, respectively), we recalculated 

the FD of the longest-range interaction in each S. cerevisiae protein using either the wild-type 

codon, yielding the “actual” FD or the synonymous codon with the fastest typical translation 

rate, giving the “minimal” FD (Figure 5B and F). In effect, the minimal translation rates 

represent the idealized situation where every codon between long-range interactors is 

optimized for speed. We then calculated the hypothetical time gained by fully optimizing 

sequences between long-range interactors (Figure 5C and G). Even at very high FDs, these 

gains seem to be marginal. Indeed, calculating the proportional reduction of FD given perfect 

optimization, we find that the actual FD could only be reduced by about 20% according to the 

Dana & Tuller decoding timetables, and around 15% according to the tables devised by 

Sharma et al. (Figure 5D and H). The reason we were unable to find codon optimization 

towards FD may, therefore, be that there is not much to gain. Moreover, optimizing long 

stretches of amino acids between interactors is evolutionarily a tall order, given that 

individual point mutations will have extremely marginal FD effects and are, therefore, unlikely 

to persist.  
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DISCUSSION 

The work presented here describes FD, a metric that quantifies the time nascent 

residues idle on the ribosome before their native interaction partners are physically available. 

Conceptually, FD resembles the simple yet widely used and validated CO metric in that it 

captures topological complexity by the separation between interacting residues in the native 

structure [3]. However, in contrast to CO, FD measures the temporal separation caused by 

the translation process. Hence, FD can be considered an extension of CO that is more 

informative for the co-translational paradigm.  

 In recent years, it has become clear that co-translational folding is a common folding 

mechanism across proteomes and is often beneficial to folding outcomes [17]. FD, however, 

lays bare a potential shortcoming of this folding mechanism: the nascent chain becoming 

available incrementally creates a delay between translation and folding. Although this was 

hitherto implicitly understood in the co-translational folding field, we provide a systematic 

quantification of this phenomenon and show that this delay can, in fact, last for tens of 

seconds and even minutes (Figure 2A and B), a vast period on a molecular timescale [47]. 

During this time, such segments are potentially vulnerable to non-native interactions such as 

misfolding and aggregation. Moreover, we have shown that the regions with the highest FDs 

often occur in structured, hydrophobic regions that are meant to be buried within the 

hydrophobic core of the structure of globular proteins (Figure 2 C-F). Exactly such regions are 

likely to engage in homotypic off-pathway interactions leading to aggregation (Figure 2H). 

This begs the question of whether fold-delayed APRs could aggregate co-translationally, 

especially in the context of polysomes where there is a higher local concentration of nascent 

polypeptides exposing identical APRs. Supporting the hypothesis that aggregation may 

already occur during translation, a recent study found that mRNAs coding for protein 

constituents of insoluble aggregates are inherent components of those aggregates in the 

brain tissue of Alzheimer’s disease patients [48].  

 We show a connection between FD and co-translational chaperone engagement and 

dependence. In particular, we show that Ssb, a co-translational chaperone in S. cerevisiae, 

preferentially targets regions of high FD (Figure 3). The authors who produced the Ssb data 

we analyzed here found that in an in vitro peptide array - where there is no potential of folding 

-  Ssb recognizes more binding sites than it does in vivo, suggesting that some interaction sites 
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are skipped in vivo [49]. The authors attribute this discrepancy to additional regulation by 

cochaperones in vivo. However, FD offers an alternative explanation: the skipped sites are 

simply not exposed long enough. In support of this, we show that the lifetime of the Ssb-

Nascent chain complex correlates directly to the FD of the bound segment (Figure 3G and H) 

and that predicted chaperone binding sites that do not match with those found in vivo have 

lower FDs (Figure 3D and E). Our proteome-wide analyses suggest that Ssb engagement to 

high FD regions is not merely opportunistic in the sense that Ssb binds simply because it has 

the time window to do so. We show that deletion of the Ssb chaperone or chemically 

disrupting translation disproportionately causes aggregation of proteins with high FDs (Figure 

4A and F). In fact, proteins that aggregate upon Ssb deletion not only have higher FDs around 

the Ssb binding site, but they often harbor predicted APRs in exactly those regions (Figure 

4D). This observation suggests again that Fold-delayed APRs may lead to co-translational 

aggregation or to off-pathway events that eventually result in protein aggregates, which are 

mitigated by Ssb. Moreover, proteins of high FDs are also more likely to be co-translationally 

ubiquitinated, indicating they tend to misfold more readily during translation, and are 

recognized as such by the cellular machinery (Figure 4G).  

 FD merges two important concepts: fold complexity and ribosome processivity. The 

latter varies vastly between organisms and conditions. One could argue that a slower 

translation rate allows for the successful co-translational folding of more complex structures. 

In support of this, it was shown decades ago that eukaryotic translation systems more 

efficiently produce modular proteins than their prokaryotic counterparts [50]. However, our 

FD analyses show that this comes at a cost: slower translation rates mean higher FDs, even 

for proteins with similar folds (e.g. Figure 1). Hence, while slowing down translation opened 

the door to more complex folds, it may have also necessitated the co-evolution of a more 

elaborate network of co-translational chaperones because of the associated increase in FD. 

This may be one of the reasons for the existence of a much more extensive co-translational 

chaperoning system in eukaryotes than in prokaryotes [51].  

Our analyses show that FD can be substantial and have dire consequences. A potential 

way of evolutionarily reducing FD is codon optimization between long-range interactors to 

reduce the actual waiting times incurred. Despite substantial efforts, however, we were 

unable to link FD to codon optimization. We therefore reasoned that perhaps the gain to be 
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made by codon optimization is negligible. Indeed, full optimization of codons theoretically 

reduces FD by 20% (Figure 5). This still leaves substantial FDs, which likely impair co-

translational folding. Therefore, we hypothesize that the main strategy for mitigating FD is 

likely not sequence optimization but chaperone co-evolution, as highlighted by the strong 

links between Ssb engagement and FD. We suspect that, with the emergence of more data 

describing in vivo binding sites of co-translational chaperones, these will strongly correlate to 

our FD parameter.   

Limitations of the study 

FD, much like CO, is conceptually straightforward. Contacts are simply defined 

through spatial proximity in the native structure, and it is assumed that folding is delayed until 

all native interaction partners become physically available. In its current form, the FD 

algorithm does not consider interactions with the ribosome [52] or intermediate structures, 

nor does it evaluate the relative contribution of each interaction. Arguably, a residue could 

adopt its native conformation with only a subset of its interaction partners available. A second 

limitation of the study is using average codon translation rates to investigate codon 

optimization. The decoding time of a codon depends on its context within a transcript and 

has been seen to be condition-dependent [53, 54]. Despite these limitations, FD already offers 

key biological insights. Moreover, the simplicity of the model makes it computationally 

inexpensive, allowing us to readily analyze entire proteomes. 
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METHODS 

Protein folding vs protein translation rates 

Protein folding rates were retrieved from the Protein Folding Database [27] (PFD2.0). This 

curated dataset contains folding rates derived from experimental data. From the reported 

folding rates at 25 degrees C (kf,), we calculated average folding times (calculated as 1/kf). For 

an estimation of the translation times, proteins from prokaryotic organisms were assigned 

translation rates of 20 aas/s, whereas proteins form eukaryotes were assigned translation 

rates of 5 aas/s [4-6]. For an estimation of the total translation time of a protein, we simply 

multiplied these translation rates by the number of residues in each protein studied.  

SCOPe40 analysis 

We analyzed FD profiles of protein domains in the SCOPe40 dataset. This dataset contains 

single-domain structures that have been manually classified based on their architectures and 

filtered so that no two domains in the set have more than 40% identical sequences [30, 31]. 

To establish a general pattern of FD from N- to C-term within domains (Figure 1I), residues 

were assigned relative positions by dividing their position in the domain by the domain length, 

multiplying by 100 and rounding off to the nearest integer. For each relative position, average 

FDs and standard deviations were calculated. The average (or mean) FD for a domain was 

calculated as the sum of the FD of all residues in a domain divided by the domain length.  

Proteome-wide analyses 

AlphaFold structures (version 4) and their corresponding predicted aligned error (PAE) 

matrices for the full proteomes of Escherichia coli and Saccharomyces cerevisiae (yeast) were 

retrieved from the AlphaFold Protein Structure Database [32, 33]. Genomic sequences for 

both species were retrieved from NCBI Genomes FTP server. AlphaFold structures were 

mapped to genomic sequences using the UniProt ID mapping tool. 3,929 and 4,363 proteins 

were successfully matched with their corresponding codon sequences for E. coli and yeast, 

respectively. The energies of the structures were minimized using the FoldX “RepairPDB” 

command, and stability calculations for each amino acid were performed using the 

“SequenceDetail” command [55]. Protein secondary structures and absolute solvent 

accessibility values were obtained with DSSP based on the AlphaFold structures [56, 57]. 

Then, the relative solvent accessibility (RSA) values were calculated by dividing the absolute 
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solvent accessibility values by residue-specific maximal accessibility values, as extracted from 

Tien et al [58]. Disordered regions were defined using the pLDDT score provided in the 

AlphaFold models, as regions with low confidence scores (pLDDT < 50) have been shown to 

overlap largely with intrinsically disorder regions [59]. To exclude biases arising from 

intrinsically disordered proteins, proteins with more than 90% disordered residues were 

filtered out of the data. Aggregation prone regions were defined with the TANGO algorithm 

(score > 5) [60] at physiological conditions (pH at 7.5, temperature at 298 K, protein 

concentration at 1 mM, and ionic strength at 0.15 M). 

FoldDelay 

FoldDelay (FD) profiles were determined from protein structures for all SCOPe40 domains and 

the E. coli and yeast proteomes based on AlphaFold models using the formulas described in 

the Results section. Residues were considered to interact if they contained non-hydrogen 

atoms within 6 Å. This threshold was chosen since it is commonly used to calculate other 

topological parameters, such as contact order [3]. For SCOPe40 domains, all residue 

interactions were considered as the structures were solved with experimental methods. 

Instead, for AlphaFold predicted models, interactions between two residues whose relative 

position to each other is low based on the Predicted Aligned Error (PAE) metric were filtered 

out. Specifically, we excluded interactions with an expected position error > 6 Å. 

We assigned a single FD value to each protein to facilitate the proteome-wide FD correlations 

in Figure 1 and Figure 4. The “mean FD” values correspond to the mean of the FD of individual 

residues in a structure. The “total FD” values reported are simply the sum of the FD of 

individual residues in a structure. These metrics provide a global view of the delay incurred 

by a polypeptide chain throughout its ribosomal production. 

Ssb binding footprints metagene analyses 

Ssb binding footprints were obtained from Döring et al. [24] and Stein et al. [25]. Nucleotide 

positions were transformed to amino acid positions by dividing them by three and rounding 

down. The lifetime of the Ssb-Nascent chain complex (engagement times) was extrapolated 

from the width of Ssb binding peaks. Specifically, only Ssb binding peaks with widths falling 

between 5 and 11 aas were selected for analysis. This range was chosen because higher 

widths might suggest additional binding and release cycles. A metagene analysis of the Ssb 
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binding footprints was done by aligning the starting site of Ssb binding footprints. The FD 

profile and the relative enrichment of different properties were calculated, across a range of 

-120 and 120 aas from the starting site of the Ssb footprints, per position using a rolling 

average of 3 and after removing empty positions.  

As a control measure, random positions were sampled from the same proteins containing the 

Ssb footprints and the metagene analyses were repeated but aligning on these random 

positions. 

Comparison between Ssb sites and Limbo regions  

Predicted Hsp70 binding regions, here referred to as Limbo regions, were identified with the 

computational tool Limbo (score > 5) [39]. Döring et al. [24] Ssb binding footprints with a 

width ranging from 5 to 11 aas were then compared to the Limbo regions. A Limbo region 

was considered to overlap with an Ssb site if it fell within a range of -55 aas from the starting 

residue to -35 aas from the ending residue of the Ssb footprints. Based on this criterion, Limbo 

regions were classified as either "Ssb binding" if there was an overlap or "No Ssb binding" if 

there was no overlap with any Ssb binding footprint. The difference in FoldDelay between 

these two groups was obtained by subtracting the median FD values of each group. 

FD of proteins aggregating in Ssb knockout strain 

We reanalyzed a dataset produced by Willmund et al. [23]. Through pulldowns of Ribosome 

Nascent Chain complexes followed by MS, the authors established the S. cerevisiae 

“translatome”. Through Ssb pulldowns, the translatome was then stratified into a group that 

interacts with Ssb co-translationally (“Ssb not bound” in Figure 4A), and a group that does 

not. The authors further determined which proteins aggregate upon deletion of the Ssb 

chaperone, indicating they are dependent on Ssb for their solubility. Using this information, 

we divided the group of Ssb binders into a “soluble” and an “aggregated” fraction as shown 

in Figure 4A.  

FD of proteins sensitive to Arsenite stress 

Ibstedt et al. report the identification of aggregated proteins in S. Cerevisiae both in 

physiological conditions (“Physiological” in Figure 4F), as well as upon exposure to Arsenite 

stress (“Arsenic” in Figure 4F) [41]. Aggregated fractions were separated through 

centrifugation and proteins in the aggregated fraction identified through LC-MS. As a 
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background, the authors used a previously established S. cerevisiae proteome, which we 

copied (“MS proteome” in Figure 4F).  

FD of proteins that are co-translationally ubiquitinated 

Duttler et al. produced a dataset of proteins that are co-translationally ubiquitinated under 

physiological conditions in S. cerevisiae [43].  They do not report a background proteome, so 

we compared total FD of the co-translationally ubiquitinated proteins with the translatome 

reported by Willmund et al [23].  

FD optimization through decoding times 

To assess whether codon optimization could alleviate FD, we recalculated it for S. cerevisiae 

using codon-specific decoding times as reported by Tuller et al [44], as well as by Sharma et 

al [46], the latter of which was based on data reported originally by Weismann et al [61]. For 

each protein, the maxFD was calculated as the furthest interaction in amino acids. To 

calculate the “actual” FDs reported in Figure 5, each codon was assigned its mean decoding 

time. To calculate “minimal” FD, each codon was assigned the minimal mean decoding time 

of the codons that encode the same amino acid as the original. Gain was calculated as the 

difference between the actual FD (s) and the minimal FD (s), representing by how much time 

FD could in theory be reduced by optimization of codons. The proportional differences were 

calculated as the gain (s) divided by the actual FD (s). 

Statistics  

GraphPad prism or R software were used to perform the different statistical tests. The tests 

used in each analysis are specified in the corresponding figure. P-values are represented as: 

* P-value ≤ 0.05, ** P-value ≤ 0.01, *** P-value ≤ 0.001 and **** P-value ≤ 0.0001. 

Visualizations 

Visualizations were performed with GraphPad prism or custom R scripts using the packages 

ggplot2 [62]. Contact maps were visualized using the circlize R package [63]. ChimeraX was 

used to visualize protein structures [64]. 
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Figure 1 – FoldDelay measures waiting times incurred by nascent residues during translation 

(A) Distribution of average folding times versus estimated average translation times of 133 

proteins in the Protein Folding Database (PFD2.0 [27]). Arrows show difference in folding and 

translation times for individual proteins. Yellow arrows indicate proteins for which average 

translation time is slower than average folding time, blue arrows indicate proteins for which 

average translation time is faster than average folding time. (B) Schematic representation of 

the globular native structure of a hypothetical protein. Amino acids are colored in a gradient 

from N-term (blue) to C-term (red). (C) Contact map of hypothetical structure in (A), with 

contacts indicated by solid lines. (D) Contact map as residue 5 emerges from the ribosome. 

Dotted lines indicate interactions that are not yet accessible as not all interaction partners 

have been added to the polypeptide chain. (E) Contact map as residue 24 emerges from the 

ribosome. Solid lines indicate interactions that are now available, dotted lines indicate 

interactions that are not. All contacts for residue 5 have at this point become available. The 

FD incurred by residue 5 is 19 amino acids, spanning the point where residue 5 emerged from 

the ribosome, until the point where its most C-terminal interaction partner, residue 24, 

emerges. (F) Cartoon representation of the native structure of the E. coli peptidyl-prolyl 

isomerase B (PPI B, UniProt code P23869) enzyme as predicted by AlphaFold. Residues are 

colored on a gradient from N-term (blue) to C-term (red). (G) Contact map of PPI B from the 

structure in (F). (H) Per-residue FD calculation for PPI B. (I) Mean FD of domains in the 

SCOPe40 dataset versus the relative residue position in the domain (scaled from 1 to 100). 

Error bars indicate standard deviation. (J) Domain length versus mean FD of the SCOPe40 

dataset. Red points indicate domains of exactly 101 amino acids, the domain length with the 

most datapoints in the SCOPe40 database. (K) Violin plots showing the distribution of mean 

FD for the domains of exactly 101 amino acids per SCOP class. Green points indicate a 

representative example in each group (domains with mean FD closest to the median of their 

respective SCOP class). (L) FD profiles of the representative examples for each SCOP class 

indicated in (K). (M) Cartoon representation of the native structure of a peptidyl prolyl cis-

trans isomerase from S. cerevisiae (UniProt code P14832) as predicted by AlphaFold. Residues 

are colored on a gradient from N-term (blue) to C-term (red). (N) Contact map of the structure 

in (F). (O) Per-residue FD calculation for the structure in (F).   
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Figure 2 – Exploring FoldDelay across proteomes. (A) Distribution of residues with the 

maximum FD (log scale) for each protein in E. coli (n = 3,910) and S. cerevisiae (yeast; n = 

5,812). Vertical dotted lines indicate 1 second, 10 seconds and 1 minute. (B) Number of 

residues for different FD bins in yeast proteins. (C) Enrichment of residues with FDs between 

1 and 10 seconds (or bigger than 10 seconds) versus background for the different DSSP 

secondary structure categories in yeast proteins. C = coil, B = β-bridge, E = extended strand in 

β-sheet conformation, G= 3-turn helix, H = 4-turn helix, I = 5-turn helix, S = bend and T = 

hydrogen bounded turn. (D) Enrichment of residues with FD between 1 and 10 seconds (or 

bigger than 10 seconds) versus background for all amino acid types in yeast proteins. (E-G) 

pLDDT scores (E), solvent accessibilities (F) and stabilities for residues in yeast proteins for 

different categories of FD. (H) Percentage of residues in APRs (TANGO score > 5) for different 

FD bins in yeast proteins. To avoid biases, residues in transmembrane domains and signal 

peptides were filtered out. (I) Aggregation strength (TANGO score) for residues in APRs of 

yeast proteins for different categories of FD. 
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Figure 3 – Ssb binds to regions with high FoldDelays. (A) Schematic representation of Ssb 

with a nascent chain during translation. Ssb is targeted to the nascent chain by the ribosome-

associated complex (RAC) once the nascent chain reaches a length of around 50 aas. (B) FD in 

the nascent chain at the start of Ssb binding for sites with a peak width between 6-8 aas (n = 

3,371), as compared to an equivalent number of randomly sampled positions (n = 4,000) from 

the same set of proteins. The line represents the median value at each position, while the 

shaded region is the 95% bootstrapped confidence interval (CI). (C) Overlap between limbo 

regions and Ssb binding sites (width of 5-11 aas) (D) Difference between the median FD values 

of Limbo regions that are also Ssb binding sites, and Limbo regions that are not Ssb binding 

sites. (E) FD profile of MTAP. Limbo regions that are also Ssb binding sites are shown in orange 

while those that are not Ssb binding sites are shown in grey. (F) Difference between the 

median FD values of the aligned Ssb footprints and of the randomly sampled positions showed 
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in B. Dotted line indicates the average peak width of Ssb binding sites in the dataset. (G) FD 

in the nascent chain at the start of Ssb binding for sites with a peak width of 5 aa (n = 1,412), 

6 aa (n= 1,277), 7 aa (n = 1,111), 8 aa (n = 983), 9 aa (n = 945), 10 aa (n = 897) and 11 aa (n = 

707). (H) Average median FDs between positions -53 and -35 (Ssb binding region) per width 

peak of aligned Ssb binding footprints with a peak width between 5-11 aas. Based on the 

linear model the average FD value at these positions increases with Ssb peak width. All 

experimental Ssb binding sites used in this figure are derived from [24]. 
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Figure 4 – Proteins with high FoldDelays are associated with co-translational misfolding and 

aggregation. (A) Total FD of proteins that are actively translated in S. cerevisiae (translatome), 

which have been stratified based on whether they interact co-translationally with Ssb (n = 

1,913) or not (n = 910) [23]. Proteins that interact with Ssb are further stratified on whether 

they remain soluble (n = 1,495)  or aggregate (n = 418) in SSBΔ cells. (B) FD in the nascent 

chain at the start of Ssb binding for sites with a peak width between 5-11 aas in proteins that 

aggregate or remain soluble in SSBΔ cells. There are 1,917 and 5,415 Ssb binding sites in 

proteins that aggregate or remain soluble, respectively. The line represents the median value 

at each position, while the shaded region is the 95% bootstrapped CI. (C) Number of APRs per 

100aa in proteins bound by Ssb that remain soluble (n = 1,495) or aggregate (n = 418) in SSBΔ 
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cells. (D,E) Percentage of APR starting sites in bins of equal length based on the start of Ssb 

binding footprints with a width between 5-11 aas in proteins that aggregate (D) or remain 

soluble (E) in SSBΔ cells. Fisher exact test with FDR correction was used to compare the 

proportion of APR starting sites at bin -55 to -35 (Ssb binding region) against the other bins. 

(F) Total FD of yeast proteins under physiological conditions (n = 107) or upon exposure to 

arsenite stress (n = 140) compared to background (MS proteome; n = 1,179) [40]. (G) Total 

FD of proteins that are co-translationally ubiquitinated under physiological conditions (n = 

600) [43]. As background we use the translatome (n = 1,790) reported by Willmund et at [23]. 

Statistical significance was determined by unpaired Wilcoxon test with Bonferroni correction 

for multiple comparisons (A, C, F and G).  
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Figure 5
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Figure 5 – Compensating FoldDelay through codon optimization is an implausible 

evolutionary strategy. (A) Distribution of codon decoding times per amino acid as reported 

by Tuller et al [44].  (B) Minimal FD vs. actual FD calculated per protein. For each protein’s 

furthest distance interaction, the actual and minimal translation times of the separating 

residues were calculated using the mean translation rates of the actual codons, and the mean 

translation rate for the fastest synonymous codon, respectively. (C) Gain in FD as calculated 

by the difference between the actual FD and the minimal FD in (B). (D) Distribution of the 

proportional differences, calculated as the ratio between the differences shown in (C) and the 

actual FD. (E-H) Identical analyses as those shown in (A-D), this time using the average 

decoding times reported by [46] based on data from [61].   
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