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Abstract
Time-course multi-omics data of a murine model of progressive heart failure induced by

transverse aortic constriction (TAC) provide insights into the molecular mechanisms that are

causatively involved in contractile failure and structural cardiac remodelling. We employ

Illumina-based transcriptomics, Nanopore sequencing, and mass spectrometry-based

proteomics on samples from the left ventricle (LV) and right ventricle (RV, RNA only) of the

heart at 1, 7, 21, and 56 days following TAC and Sham surgery. Here, we present TACOMA,

as an interactive web-application that integrates and visualizes transcriptomics and

proteomics data collected in a TAC time-course experiment. TACOMA enables users to

visualize the expression profile of known and novel genes and protein products thereof.

Importantly, we capture alternative splicing events by assessing differential transcript and

exon usage as well. Co-expression-based clustering algorithms and functional enrichment

analysis revealed overrepresented annotations of biological processes and molecular

functions at the protein and gene levels. To enhance data integration, TACOMA

synchronizes transcriptomics and proteomics profiles, enabling cross-omics comparisons.

With TACOMA (https://shiny.dieterichlab.org/app/tacoma), we offer a rich web-based

resource to uncover molecular events and biological processes implicated in contractile

failure and cardiac hypertrophy. For example, we highlight: (i) changes in metabolic genes

and proteins in the time course of hypertrophic growth and contractile impairment; (ii)

identification of RNA splicing changes in the expression of Tpm2 isoforms between RV and
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LV; and (iii) novel transcripts and genes likely contributing to the pathogenesis of heart

failure. We plan to extend these data with additional environmental and genetic models of

heart failure to decipher common and distinct molecular changes in heart diseases of

different aetiologies.

Database URL: https://shiny.dieterichlab.org/app/tacoma

Introduction

Background

Transverse Aortic Constriction (TAC), is a commonly used experimental technique to study

the pathophysiological mechanisms of heart failure (HF). TAC involves the partial occlusion

of the transverse aorta (mainly in mice) leading to pressure overload-induced cardiac

hypertrophy and HF in the end. The TAC-induced adverse effects typically depend on the

degree of the aorta constriction as well as its duration (1). Over time, the TAC-induced

pressure overload causes progressive remodelling of the heart in both left and right

ventricles (LV and RV) and some of such responses include changes in gene expression,

inflammatory responses, fibrosis, etc. (2). In this context, TAC has been established in

animal models to understand the dynamic changes in molecular mechanisms associated

with the transition from compensatory hypertrophy to heart failure. Multi-omics integration in

the context of transverse aortic constriction can provide a comprehensive understanding of

disease mechanisms, leading to potential insights into therapeutic strategies. Time-course

multi-omics studies are particularly suitable for TAC since they allow the identification of

dynamic changes and temporal patterns of key molecules involved in disease progression

(1). Such an approach would then allow us to identify early molecular markers that precede

HF as well as to propose potential therapeutic approaches.

In this study, we present a comprehensive multi-omics analysis based on a murine TAC

model to study molecular changes during the progression of pressure overload-induced

cardiac hypertrophy to heart failure (Figure 1). The study involved the collection of samples

from the left ventricle (LV) and right ventricle (RV) of the heart at 1, 7, 21, and 56 days

following TAC and Sham surgery. Besides TAC and Sham, we additionally have

measurements from healthy mouse tissues at time-point 0 days, referred to as the Control

samples. To comprehensively analyse the multi-layered molecular landscape of hypertrophy

progression, we employed three distinct omics techniques: Illumina RNA-seq and Nanopore

sequencing (long read cDNA sequencing) as well as proteomics (LV only). All were
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produced in triplicates. The Nanopore cDNA data was used to reconstruct a de novo

assembled transcriptome. This allows us to identify novel transcript isoforms and provide a

more comprehensive view of the alternative splicing landscape and isoform switching

dynamics during TAC progression. Furthermore, proteomics analysis was only performed on

the LV samples due to input material limitations. Proteomics is complementary to RNA-seq

approaches as it targets another molecular layer of TAC-induced hypertrophy across

different time points.

Figure 1: Workflow of multi-omics data analysis in TAC mouse model. Data consists of Illumina and

Nanopore cDNA transcriptomics of TAC, Sham and Control (RV and LV) as well as

Mass-spectrometry Proteomics (LV only) at time-points 0, Day 1, Day7, Day 21 and Day 56.

Differential gene/transcript/exon expression/usage analyses were performed over the transcriptomics

data along with enrichment and clustering analyses. Differential protein abundances were estimated

from raw mass-spectrometry proteomics upon processing of the data (normalisation, imputation,

batch effect correction) and enrichment analyses were performed. Cross-omics integration of

transcriptomics and proteomics allowed for a comparison between the two data modalities.

To advance the visualisation, interpretation and accessibility of our new data, we have

developed TACOMA as an online application, which allows any user to investigate the

molecular mechanisms behind HF progression. TACOMA provides functionalities which

allow the visualisation of analysis results with a special focus on differential gene expression

(DGE), function enrichment analysis, gene co-expression modules, differential exon and
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transcript usage analysis (DXE and DTU) as well as differential protein abundances. To the

best of our knowledge, TACOMA is the first interactive web application to encompass such a

wide range of analyses in the context of TAC and cardiomyopathy progression (Figure 2).

Figure 2: HF progression in the described TAC mouse model. A) Progression of Ejection Fraction

(EF) changes across time in TAC and Sham conditions. B) Progression of Heart-Weight to

Body-Weight (HW/BW) ratios across time in TAC and Sham conditions.

Methods

Sequencing data and processing

Illumina total RNA-seq

Total RNA from left and right ventricular tissue were rRNA depleted and subject to stranded

RNA-seq library preparation for the Illumina platform at the Cologne Center for Genomics

(CCG). All libraries were sequenced on a NovaSeq 6000 in paired-end mode (2x 100bp) at

an average depth of 50 million fragments per library.

Nanopore cDNA sequencing

Total RNA from left and right ventricular tissues were polyA-selected and subject to cDNA

library preparation on the ONT Nanopore platform (Kit: SQK-DCS109 and Flow cell:

FLO-MIN106). All libraries were sequenced on an ONT GridION X5 device at an average

depth of 1 million long reads per library.

Illumina read processing, mapping and counting

We first removed adaptors and low-quality bases with Flexbar (v3.5.0) (3). We then identified

reads that aligned to mouse tRNA or rRNA sequences using Bowtie2 (v2.3.5.1) (4) and

discarded them. The remaining reads were aligned to the mouse EnsEMBL 102 genome

with STAR (2.6.0c) (5). We observed an average proportion of unique mapping reads above
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70% throughout all libraries. We generated gene, transcript and exon count tables using

StringTie2 (v2.1.3b) (6) and ballgown (2.28.0) (http://bioconductor.org/packages/ballgown/).

Nanopore processing and mapping

Nanopore base calling was performed with Guppy 3.4.5 using the

dna_r9.4.1_450bps_hac.cfg model. Nanopore reads were mapped against the EnsEMBL

102 reference genome with minimap 2.22 (7).

Guided transcriptome assembly

The transcription assembly was performed using StringTie2 (v.2.1.7) on autosomes and sex

chromosomes, and features from other chromosomal regions were discarded. First, we

paired a cDNA library that had been sequenced with ONT and Illumina and executed

StringTie2 in the guided mode, using Ensembl as a reference. Next, we applied StringTie2 to

each individual library, using the merged annotation obtained from the first step as a guide.

Finally, the annotations were merged to create a unified annotation. We merged transcript

annotation with the StringTie2 merge command and removed transcript isoforms

representing less than 10% of relative transcript abundance or having less than 3 reads. The

reference gene and transcript names as well as the class codes were obtained by running

GffCompare (v0.12.2) (8) against the reference annotation GRCm38.102. Upon the

transcriptome assembly, transcript counts were quantified with salmon (v1.10.1) (9) and

gene counts were obtained from transcript counts by using the

DESeqDataSetFromTximport() function from DESeq2 R-package (v.140.2) (10).

Analysis of Gene Expression Data

Differential Gene Expression (DGE) analysis was performed with edgeR (v3.38.4) (11). The

analysis accounted for multiple variables, including Condition (TAC & Sham), Ventricle (RV &

LV) as well as Time/Day (Day 0, 1, 7, 21 & 56). A full model design matrix was formulated,

consisting of the ventricle, day, condition, interaction between ventricle and condition, and

the interaction between day and condition as follows: model.matrix(~ Ventricle + Day +

Condition + Ventricle:Condition + Day:Condition, data=metatada). In the design matrix, the

interaction terms capture the combined effects of Condition and Ventricle, as well as

Condition and Day, on gene expression. The interaction term between Condition and

Ventricle accounts for how the gene expression is influenced by TAC/Sham depending on

the sample position (RV or LV). Similarly, the interaction term between Condition and Day

reveals whether the effect of TAC/Sham on gene expression varies with the specific day of

measurement. By including these interaction terms in the design matrix, we aim to better

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.26.577333doi: bioRxiv preprint 

https://paperpile.com/c/o1G8uU/Vo1m
http://bioconductor.org/packages/ballgown/
https://doi.org/10.1101/2024.01.26.577333
http://creativecommons.org/licenses/by-nd/4.0/


capture the relationships between the variables and potentially identify dependent effects

among them. The details of the 'metadata' table used in the design matrix can be found in

the Supplementary Materials (Supplementary Table 1). To guide the selection of appropriate

comparisons for our DGE analysis, several key questions were considered:

i) which genes change by condition (TAC/Sham) globally?

ii) which genes change by ventricle (LV/RV) globally?

iii) which genes change in TAC for a day?

iv) which genes change at all time-points compared to control?

v) which genes change over time?

vi) which genes change on any day?

vii) which genes change in TAC for ventricle?

Considering the above, we have performed DGE analyses for a total of 12 comparisons and

details about each (design and description) have been provided in the Supplementary

(Supplementary Notes 1).

Differential Exon and Transcript Usage Analysis

Differential exon and transcript usage analyses (DEX or DTU) were conducted to examine

the variability of alternative splicing across different conditions or comparisons. First, we

compute exon and transcript counts for every expressed gene using ballgown. Then, for

example, testing for differential exon usage is equivalent to testing whether the exons in

each gene have the same log-fold-changes as the other exons in the same gene. To

perform DEX analysis, we utilised the edgeR v3.38.4 R-package (11), which allowed us to

identify exons with differential expression in the same comparisons as those used for

differential gene expression (DGE) analysis. Gene annotations were fetched from the

Ensembl BioMart database (version November 2020) using the biomaRt v2.54.0 R-package

(12), to associate gene symbols and descriptions with Ensembl gene IDs. Exon counts were

filtered to only include entries with a maximum unique read count greater than 20 across all

samples. The exon counts were then normalised by using the calcNormFactors() function

and a generalised linear model was fitted to the data using the glmFit() function from edgeR.

The differential exon usage was tested for the 12 comparisons by using the diffSpliceDGE()

function and the results were then filtered to identify genes with significant differential exon
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usage at an FDR threshold of 0.05 according to the Simes method. The same strategy was

used to test for DTU.

Analysis of Novel Genes

The assembled sequences were scanned for open reading frames (ORFs) using ORFik

(v1.20.2) (13) to identify potential coding sequences within the novel gene transcripts. The

predicted ORFs were then translated into protein sequences via Biostrings (v2.68.1). The

translated sequences were then used for the subsequent domain annotation step with

Interproscan (14) to provide insights into the potential functions of the novel proteins. The

domain annotations included the domain IDs from various primary databases (PFAM,

PantherDB, CATH-Gene3D), along with the signature name and description of each domain,

offering detailed insights into the protein characteristics.

Gene Co-expression Networks

To identify groups of genes with similar co-expression patterns, we have followed a similar

strategy as described in (15). To summarise, we have employed the WGCNA v1.72.1 R

package (16) to analyse gene co-expression from RNA-seq data, focusing on 13,197 genes

that met the criteria of being significantly regulated (adjusted p-value <= 0.05) in at least one

of the 12 DGE comparisons. By using topological overlap (TO), genes were clustered to spot

co-expression patterns. To ensure the reproducibility and robustness of clusters, a bootstrap

resampling was performed and final co-expression modules were identified using

hierarchical clustering, and their significance was validated through posthoc resampling and

a Z-test. Associations between co-expressed gene networks and observed phenotypes were

determined by calculating the biweight midcorrelation between genes and biological traits or

disease association for continuous physiological variables (i.e. Ejection Fraction -

Supplementary Table 2). For binary/discrete variable correlation such as the pathological

(TACvsSham), positional (RVvsLV) and temporal levels (Day7vsDay1, Day21vsDay7,

Day56vsDay21, etc.), the standard Pearson correlation was used instead of the biweight

midcorrelation.

Sample preparation for Proteomics

Reduction of disulphide bridges in cysteine-containing proteins was performed with

dithiothreitol (56°C, 30 min, 10 mM in 50 mM HEPES, pH 8.5). Reduced cysteines were

alkylated with 2-chloroacetamide (room temperature, in the dark, 30 min, 20 mM in 50 mM
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HEPES, pH 8.5). Samples were prepared using the SP3 protocol (17, 18) and trypsin

(sequencing grade, Promega) was added in an enzyme-to-protein ratio 1:50 for overnight

digestion at 37°C. Next day, peptide recovery in HEPES buffer by collecting supernatant on

magnet and combining with second elution wash of beads with HEPES buffer. Peptides were

labelled with TMT10plex (19) Isobaric Label Reagent (ThermoFisher) according to the

manufacturer’s instructions. Samples were combined for the TMT10plex and for further

sample clean up an OASIS® HLB µElution Plate (Waters) was used. Offline high pH reverse

phase fractionation was carried out on an Agilent 1200 Infinity high-performance liquid

chromatography system, equipped with a Gemini C18 column (3 μm, 110 Å, 100 x 1.0 mm,

Phenomenex) (20).

LC-MS/MS data acquisition

An UltiMate 3000 RSLC nano LC system (Dionex) fitted with a trapping cartridge

(µ-Precolumn C18 PepMap 100, 5µm, 300 µm i.d. x 5 mm, 100 Å) and an analytical column

(nanoEase™ M/Z HSS T3 column 75 µm x 250 mm C18, 1.8 µm, 100 Å, Waters). Trapping

was carried out with a constant flow of trapping solution (0.05% trifluoroacetic acid in water)

at 30 µL/min onto the trapping column for 6 minutes. Subsequently, peptides were eluted via

the analytical column running solvent A (0.1% formic acid in water, 3% DMSO) with a

constant flow of 0.3 µL/min, with increasing percentage of solvent B (0.1% formic acid in

acetonitrile, 3% DMSO). The outlet of the analytical column was coupled directly to an

Orbitrap Fusion™ Lumos™ Tribrid™ Mass Spectrometer (Thermo) using the Nanospray

Flex™ ion source in positive ion mode. The peptides were introduced into the Fusion Lumos

via a Pico-Tip Emitter 360 µm OD x 20 µm ID; 10 µm tip (New Objectives) and an applied

spray voltage of 2.4 kV. The capillary temperature was set at 275°C. Full mass scan was

acquired with mass range 375-1500 m/z in profile mode in the orbitrap with resolution of

120000. The filling time was set at a maximum of 50 ms with a limitation of 4x105 ions. Data

dependent acquisition (DDA) was performed with the resolution of the Orbitrap set to 30000,

with a fill time of 94 ms and a limitation of 1x105 ions. A normalized collision energy of 38

was applied. MS2 data was acquired in profile mode.

Proteomics Database search

IsobarQuant (21) and Mascot (v2.2.07) were used to process the acquired data, which was

searched against a customized database containing common contaminants and reversed

sequences. The following modifications were included into the search parameters:

Carbamidomethyl (C) and TMT10 (K) (fixed modification), Acetyl (Protein N-term), Oxidation
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(M) and TMT10 (N-term) (variable modifications). For the full scan (MS1) a mass error

tolerance of 10 ppm and for MS/MS (MS2) spectra of 0.02 Da was set. Further parameters

were set: Trypsin as protease with an allowance of maximum two missed cleavages: a

minimum peptide length of seven amino acids; at least two unique peptides were required

for a protein identification. The false discovery rate on peptide and protein level was set to

0.01.

Analysis of Protein Abundance Data

Data Preparation

Protein abundance data was prepared in a matrix format for analysis using the DEP2

v0.4.8.24 R-Package (22). The data was organised to include protein intensity levels

quantified across different samples or conditions. For the processing and analysis of the

protein abundance data, we have relied on an established workflow based on the DEP2

v0.4.8.24 R-Package (22).

Normalization

Protein intensities were normalised to mitigate the technical biases and variability. In this

case, the normalisation step was performed by using the Variance Stabilization

Normalization (VSN) method through the use of the normalize_vsn() function from the DEP2

package.

Imputation of missing values

As 16.85% of the data in our protein intensity matrix is missing, a data imputation strategy

from the DEP2 package was employed to estimate the missing values. In this case, we have

assumed that missing values originated from low-abundant proteins. Therefore, a strategy

was employed to impute the missing data by filling it with random values generated from a

Gaussian distribution centred around the lower 1% value of the distribution of existing data

through the use of the impute() function from DEP2.

Batch effect correction

Principal Component Analysis (PCA) of the normalised and imputed data set revealed

clustering of samples based on each replicate, thus suggesting the presence of batch effects

which needed to be corrected. Technical variations associated with the observed batch

effects were identified and removed from the dataset by applying the removeBatchEffect()

function from the limma R-package (23).
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Differential Protein Analysis (DPA)

DPA analyses were subsequently performed following batch effect correction to identify

proteins exhibiting significant changes in abundance for the TAC vs Control, Sham vs

Control and TAC vs Sham comparisons for all the time-points combined as well as at each

time-point separately. For this, we have used the test_diff() function from DEP2 as it

performs a differential enrichment test based on protein-wise linear models and empirical

Bayes statistics using limma. False discovery rates were estimated by using fdrtool (24) with

three adjustment methods: Benjamini-Hochberg, Strimmer’s and Storey’s q-values.

GO Enrichment Analysis

We have conducted Gene Ontology (GO) term enrichment analysis for each of the DGE and

DPA comparisons for the Biological Process (BP), Molecular Function (MF) and Cellular

Components (CC) ontologies. Integrated functional term enrichment analysis (of genes with

adjusted p-values <= 0.05), as well as visualization, was performed by using the CellPlot

R-package (https://github.com/dieterich-lab/CellPlot).

Over-Representation Analysis

Over-representation analysis (ORA) over gene sets has been performed by using the fora()

function from the fgsea v1.22.0 R-package (25). ORA was performed to identify which

Pathway and Hallmark sets (26) were enriched for each cluster obtained from the gene

co-expression network analysis.

TACOMA

We introduce TACOMA (https://shiny.dieterichlab.org/app/tacoma), an interactive web-based

tool designed to explore molecular signatures of TAC. TACOMA visualises the

above-mentioned analyses. The deployment strategy involves ShinyProxy and an internal

PostgreSQL database. We conceived TACOMA as an easily navigable dashboard,

intentionally designed to cater to a diverse audience of biomedical scientists delving into the

molecular underpinnings of heart disease progression. Similar to Magnetique (27), we

integrated an interactive tour outlining the functions of each module and the available

options within the application. TACOMA provides detailed and interactive results for ten

views:
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Phenotype View: Provides a table with phenotype information about each mouse sample

undergone transcriptomics analysis such as Condition (TAC or Sham), Ventricle (RV or LV),

Day (0, 1, 7, 21 and 56), Ejection Fraction (EF) as well as Heart Weight to Body Weight

ratios (HW.BW).

Expression Profile: Provides a time course view on gene and protein expression. A

cross-reference to their corresponding EnsEMBL (ensembl.org) web page is provided

whenever applicable (for the GRCm38.102 reference genome). Users may select each gene

to display the normalised expression profiles (mean expression and the standard deviation)

across all time points on gene and protein levels as well as a heatmap of Z-scaled

expressions at the protein (LV only) and gene level (LV and RV).

Gene View: Provides results from the DGE analysis: i) a table of genes sorted from the most

to the least significant (based on adjusted p-values); and ii) a volcano plot visualising the

direction, magnitude and significance of changes in gene expression. On the sidebar users

can select the question that they are interested in as well as the exact comparison that they

wish to visualise as described in the Methods section. Additionally, the users can select from

the table a desired gene to visualise as box-plots its CPM expression in groups of samples

tailored to the selected comparison.

Proteomics View: Provides results from the DPA analysis: i) a table of proteins sorted from

the most to the least significant (based on adjusted p-values); and ii) a volcano plot

visualising the direction, magnitude and significance of changes in protein abundances. On

the sidebar users can select the main comparison that they are interested in (TAC vs

Control/Day0, Sham vs Control/Day0 or TAC vs Sham for all combined samples or for each

time-point separately). Additionally, the users can select from the table a desired gene to

visualise its normalised abundance values in groups of samples tailored to the selected

comparison. Significantly regulated proteins have been highlighted in red in the volcano plots

and the users can select from three adjustment methods that have been applied

(Benjamini-Hochberg, Strimmer’s or Storey’s adjustment).

Gene Set View: Provides a tabulated representation of enriched Gene Ontology terms

specific to each chosen DGE and DPA comparison sorted from the most to the least

significantly enriched set. Gene-set enrichments were performed for three types of

ontologies: Biological Process (BP), Molecular Function (MF) or Cellular Component (CC).

After choosing a gene set, users can visualise the differential gene/protein

expression/abundance of its members as well as their normalised expression across each

sample grouped by their aetiology.

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.26.577333doi: bioRxiv preprint 

http://ensembl.org
https://doi.org/10.1101/2024.01.26.577333
http://creativecommons.org/licenses/by-nd/4.0/


WGCNA View: Provides a tabulated list of groups of modules of co-expressed genes based

on the WGCNA strategy described previously. This view additionally provides a heatmap

which shows the correlation of each gene cluster to a specific phenotype as well as the

significance of such correlation (with a cut-off p-value of 0.05). Once a gene cluster gets

selected, users receive a dot plot for Pathway (Reactome and BIOCARTA) and Hallmark

sets from MSigDB (26) enrichment (with adj-pvalue<=0.05).

DEX View: Provides a tabulated list of genes with differential exon usage sorted from the

most to the least significant adjusted p-value score for a selected gene comparison. Gene

structures are visualised through a ggtranscript plot (28), which shows the location and

expressions of each exon. Significant exons (adjusted p-value <= 0.05) are highlighted in

green in the top half of the exon depiction, while the level of its regulation (LogFC) is

depicted in the bottom half (blue for up-regulation and red for down-regulation). This is

complemented by a tabular representation below that contains the same exon-level

information.

DTU View: Provides a tabulated list of differential transcript abundance values and their

significance for a given gene comparison. Users may select a transcript from the table to

visualise transcript proportions of the corresponding gene.

Integration View: Provides cross-omics comparison functionality between the proteomics

and transcriptomics data for TAC vs Sham data at each time-point (LV only) as well as for all

the time-points combined. This view provides a tabulated list of genes which appear to be

significant in either DGE and DPA comparisons, or only in DGE’s or DPA’s (adjusted p-value

<= 0.05) or in neither. Additionally, a scatter plot shows LogFC values of the gene or protein

level of analysis. Finally, we provide gene set enrichment information on Pathway and

Hallmarks sets (adjusted p-value <= 0.05) based on differential expression data from the two

modalities.

Novel Genes: Provides an interface to display key information of novel genes i.e. not

overlapping any known gene locus, which are significantly regulated (adjusted p-value <=

0.05) in at least one of the 12 DGE comparisons. A table provides a list of gene symbols that

are novel; comparisons in which such a gene becomes significant; ID’s of its transcripts as

well as the number of exons and transcripts that are part of such gene. Similar to DEX View,

structures of novel genes can be visualized through ggtranscript upon the selection of a

desired gene ID. Additionally, after the selection of a specific gene, additional detailed

information will be displayed in a tabulated format, such as i) the DNA and protein

sequences of the predicted ORFs; ii) the domain IDs associated with each sequence; iii) the

signature name and iv) description for each predicted domain (when applicable). Lastly, the
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genomic context can be studied by using links to the respective locus in the EnsEMBL

genome browser.

Results
We demonstrate the utility of TACOMA by providing insights into potential biological

processes that could be associated with the progression of cardiomyopathies.

Enrichment of Oxidative Phosphorylation and Fatty Acid
Metabolism Hallmarks

From the cross-omics comparison of DGE and DPA in the Integration View of TACOMA, we

were able to identify the most significant enrichment at both proteomics and transcriptomics

levels (LV only) for the combined TAC vs Sham comparison: ‘fatty acid metabolism’ and

‘oxidative phosphorylation’ (Figure 3A). Alterations in myocardial metabolism are a hallmark

of heart failure, with a multitude of studies showing decreased cardiac mitochondrial ATP

production, reduced TCA cycle flux and decreased fatty acid beta-oxidation in preclinical

models and humans (29, 30). Herein, we focus on the time-dependent enrichment of the

above-mentioned gene sets over time in the left ventricle (Supplementary Figures 1-6 for

visualization of genes Figure 3, A-C for visualization of enrichment scores).

Figure 3: Enrichment scores from the differential gene (red dot) and protein (blue dot) expression

analyses for the significantly regulated MSigDB Hallmarks sets in DGE and DPA (Panel A, TAC vs

Sham). Time-resolved enrichment scores for 'Fatty Acid Metabolism’ (Panel B) and 'Oxidative
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Phosphorylation' (Panel C) across time. Significant enrichment scores (pval<=0.1) have been

highlighted with larger filled circles in the plot.

It can be observed that we have an altered regulation of fatty acid metabolism at the protein

level starting at the early time-point Day1 which is reflected more predominantly at the latter

time-point (Day21) (Figure 3B). Such regulation is of a negative sign when comparing the

average expression of gene-set members for the TAC condition when compared to Sham,

meaning that the above-mentioned gene-set is down-regulated. Similarly, we have a

significant down-regulation of the ‘Oxidative Phosphorylation’ processes at both gene and

protein levels, starting from the very early time-point (Day1). Another interesting observation

is that the majority of gene members (56.94%) of the ‘Fatty Acid Metabolism’ and ‘Oxidative

Phosphorylation’, seem to be associated with the paleturquoise cluster of genes that we

have obtained from the clustering analysis with WGCNA. Gene members of such a cluster

are shown to have a very strong and significant negative correlation with the TAC vs Sham

comparisons (at all time points individually as well as combined) as well as a significant

negative correlation with the HW/BW phenotype and a strong and significant positive

correlation with the EF phenotype.

To conclude, these time-course analyses illustrate that changes in the expression of

metabolic genes occur early in the development of pressure overload-induced heart failure

before the detection of massive hypertrophy and contractile impairment. Of note, these

findings are much in line with previous observations on early transcriptional alterations in the

heart under chronic catecholamine exposure, indicating a general principle of metabolic

gene regulation as an early response to chronic cardiac stress (31).

Differential transcript usage

Another aspect of gene regulation involves alternative RNA splicing. Generally, intronic

sequences get removed from pre-mRNA molecules during mRNA maturation. This process

may also affect the combination of exons, which get included in the final mRNA product. In

TACOMA, we have placed special attention on visualizing alternative splicing effects since

they play a critical role in cardiovascular diseases by modulating gene expression and

protein function, influencing processes such as heart muscle contraction and remodelling

(32).

We performed enrichment analyses over all DTU results using Gene Ontology (BP ontology)

and Hallmark gene sets from MSigDB (26) (Supplementary Figures 7-8) to identify biological

processes and pathways that may be enriched for alternative splicing and could have been

missed in a gene-level analysis. Our initial analysis revealed a distinct pattern of differential
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transcript usage between the TAC and Sham groups. For example, muscle contraction

(GO:0006936), which consists of genes that are involved in generating force for muscle

contraction, is one of the most significantly enriched gene sets for the main TAC vs Sham

comparison (FDR = 0.0257). Another interesting significant term was Cell Cycle

(GO:0007049) (FDR = 0.0072). Increased cell proliferation gene expression in adult

cardiomyocytes has also been observed after TAC, the functional relevance in the adult

heart however is not understood in detail (33). Further results pointed towards the regulation

of gene isoforms involved in particular aspects of the cell cycle such as the G2 to M

transition phase as witnessed by the statistically significant G2M Checkpoint hallmark set

(FDR = 1.0223e-05), thus suggesting an enhanced proliferative activity in response to TAC

(Figure 4).

Figure 4: Transcripts of genes involved in ‘Cell Cycle’ and ‘G2M Checkpoint’ gene-sets. A)
Enrichment scores of the ‘Cell Cycle’ and ‘G2M Checkpoint’ gene sets estimated as -Log (natural

logarithm) enrichment of p-value significance scores (in dashed lines is shown the significance

threshold - p.adj=0.05) B) Counts of significantly regulated transcripts of genes involved in the two

gene-sets. C) Volcano plot of the DTU analysis for Cell Cycle (top) and G2M checkpoint (bottom). Red

dots are significantly regulated transcripts, p.adj<=0.05). D) Significantly regulated transcripts

(p.adj<=0.05) that are members of both the ‘Cell Cycle’ and ‘G2M Checkpoint’ gene sets.

Among the genes with significantly regulated transcript usage, we have identified Racgap1

(ENSMUST00000023756 and ENSMUST00000171702) and Kif23

(ENSMUST00000214295, ENSMUST00000215743 and ENSMUST00000215965) which are

known to perform essential functions in central spindle formation (34). Interestingly, ‘Mitotic
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Spindle’ was also one of the Hallmark gene sets which appeared to have been significantly

regulated in the DTU analyses for the TAC vs Sham comparison which is an event

characteristic of cell division (35).

Alternative usage of Tpm2 variants between RV and LV

Differential transcript usage can lead to the production of different protein isoforms from the

same gene and may result in different functions of the RNA or protein product. Similar to our

DTU analysis in the previous section, enrichment analyses over genes with significant

changes in exon usage events were performed using Gene Ontology (BP ontology). So far,

we have not reported on changes between the right (RV) and left (LV) ventricles of the heart

following TAC. Our enrichment analysis for the RV vs LV comparison revealed two biological

processes, which were associated with alternative RNA splicing: cardiac muscle contraction

(GO:0060048) (FDR=0.00767). One of the most striking observations was the differential

expression of transcript isoforms of the Tropomyosin 2-beta (Tpm2) gene, another known

regulator of muscle contraction (Figure 5) which is shown to be commonly spliced in the

heart (36).

Figure 5: DEX and DTU Views of Tpm2 gene. A) Differential expression of individual exons of Tpm2
genes and transcripts for the RV vs LV comparisons. For each exon, the top half indicates whether

the differential expression is significant (green) or not (grey), while the bottom half indicates the level

of change (blue if we have a positive size effect and red for a negative size effect). B) Box plot

showing the differences in usage between RV and LV of Tpm2 transcripts.

Figure 5A shows the Tpm2 exon usage pattern, which differs significantly between the RV

and LV. Overall, we could identify six exons with an alternative usage pattern either pointing

towards a preferential inclusion or exclusion in RV over LV. In Figure 5B it is provided

additional details on the consequences with regard to transcript usage of robustly expressed

transcripts. The changes in ENSMUST00000107913 and ENSMUST00000107914 are the
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only significant after correction for multiple testing. Both transcripts express two different

proteins. While the first expresses a skeletal muscle isoform, the second produces a

smooth-muscle isoform. Tropomyosin plays a crucial role in regulating the contraction

process by facilitating the interaction between actin-containing thin filaments and

myosin-containing thick filaments within muscles. In non-muscle cells expressing various

tropomyosin isoforms, tropomyosins are actively involved in numerous cellular events

related to the cytoskeleton. These findings suggest a selective upregulation of one specific

Tpm2 isoform in the RV (ENSMUST00000107914), potentially contributing to the differential

contractile response of the ventricles under TAC-induced stress. To the best of our

knowledge, the functional implications of the two protein isoforms of Tpm2 are not fully

understood yet.

Novel Genes

Upon de-novo assembly of the GRCm38.102 reference genome with long-reads Nanopore

cDNA transcriptomics with StringTie2 (v2.2.1), we identified 84 genes with completely novel

transcripts i.e. no overlap with any annotated gene. Of these 84 genes, 33 of them were

significant in at least one of the DGE comparisons that we have tested. Upon the

identification of the novel genes, we then performed open reading frame (ORF) identification

over each novel gene sequence by using the findORFs() function from the ORFik R-package

(v1.20.2, citation needed). The ORF DNA sequences were then translated into protein

sequences by using the translate() function from Biostrings R-package (v2.68.1) which was

followed up by domain annotation analysis with Interproscan (v5.65-97.0) (14). From such

an analysis, Interproscan was able to predict functional domains for 26 out of 84 novel genes

which were significant in at least one of the DGE comparisons.

Discussions
TACOMA enables interactive online analysis, exploration, integration, and visualisation of a

new multi-omics time course dataset from a TAC mouse model. To the best of our

knowledge, there are no interactive web-applications for integrated proteomics and

transcriptomics data exploration in the cardiovascular field. However, the integration of

various gene expression datasets in heart failure was recently addressed by the ReHeat (37)

and the Magnetique (27) portals, which are also available as online applications. ReHeat

comprises a comprehensive meta-analysis of public human HF microarray and RNA-seq

datasets, while Magnetique used mRNA-seq data from the Myocardial Applied Genomics

Network (MAGNet) consortium. While ReHeat focused on the analysis at the gene level,
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Magnetique added special attention to the analysis at the transcript level by providing

differential RNA transcript isoform usage (DTU) changes and predicting RNA-binding protein

(RBP) to target transcript interactions using a Global test approach.

TACOMA goes beyond a simple exploration of a new multi-omics data-set by identifying

clusters of co-expressed genes and putting special emphasis on exon- and transcript-level

analysis. Evidently, the interplay between the proteomics and transcriptomics layers is well

represented as well. Additionally, we enhanced the known cardiac transcriptome by a de

novo assembly, which we obtained from Illumina and cDNA Nanopore reads.

Several known and novel findings have been presented by example. First, we reported on a

notable shift in energy metabolism within hypertrophied hearts, transitioning from fatty acid

metabolism to glucose and glycolysis. This metabolic shift was initiated at the gene level by

Day 7 and completed by Day 21 after TAC, as evidenced by the significant regulatory

patterns in gene and protein expressions associated with fatty acid oxidation. Similar to fatty

acids, through TACOMA, we were able to demonstrate a significant down-regulation of the

tricarboxylic acid (TCA) cycle gene set in cardiac tissue post-TAC, particularly evident at

week 8, suggesting a link between TCA cycle disruption and the progression to heart failure,

corroborated by consistent gene and protein expression patterns. Second, through TACOMA

we were able to identify differential exon-skipping events in key cardiac genes, notably in

Tpm2 isoforms, between the right and left ventricles post-TAC, suggesting contractile

differences and providing potential new insights into the molecular mechanisms of heart

contraction under stress.

In the future, we will expand TACOMA in terms of new functionalities and data sets.

Additional animal models of heart disease will be added and several other functional

analysis methods of multi-omics data analysis will be included.

Conclusions
In this study, we have produced and analysed a comprehensive time-series proteomics and

transcriptomics data set from a TAC mouse model and provided subsequent analysis results

through the TACOMA web-application (https://shiny.dieterichlab.org/app/tacoma). The

design included three factors (TAC vs Sham, time and LV vs RV) and we paid special

attention to the details of the statistical modelling. TACOMA is unique in integrating

proteomics and transcriptomics data for a pressure-overload mouse model of heart failure in

a user-friendly web application. We anticipate that TACOMA will be adopted by clinician

scientists and cardiovascular research as an exploratory tool to further uncover relevant
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molecular mechanisms associated with HF progression and/or to make comparisons with

their own independent studies. Future work about TACOMA will focus on the addition of

other functional analysis methods and more layers of omes. We also plan to open up

TACOMA to integrate private data from users through authentication-based mechanisms.
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