

Characterisation of laminar and vascular spatiotemporal dynamics of CBV and BOLD signals using VASO and ME-GRE at 7T in humans

Sebastian Dresbach^{1,2,*}, Renzo Huber^{1,3}, Omer Faruk Gulban^{1,4}, Alessandra Pizzuti^{1,4}, Robert Trampel², Dimo Ivanov¹, Nikolaus Weiskopf^{2,5,6}, Rainer Goebel^{1,4}

1 Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands

2 Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

3 National Institutes of Health, Bethesda, MD, USA

4 Brain innovation, Maastricht, the Netherlands

5 Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth System Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany

6 Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, UK

* corresponding author

Abstract

Interpretation of cortical laminar functional magnetic resonance imaging (fMRI) activity requires detailed knowledge of the spatiotemporal haemodynamic response across vascular compartments due to the well-known vascular biases (e.g. the draining veins). Further complications arise from the spatiotemporal hemodynamic response that differs depending on the duration of stimulation. This information is crucial for future studies using depth-dependent cerebral blood volume (CBV) measurements, which promise higher specificity for the cortical microvasculature than the blood oxygenation level dependent (BOLD) contrast. To date, direct information about CBV dynamics with respect to stimulus duration, cortical depth and vasculature is missing in humans. Therefore, we characterized the cortical depth-dependent CBV-haemodynamic responses across a wide set of stimulus durations with 0.9 mm isotropic spatial and 0.785 seconds effective temporal resolution in humans using slice-selective slab-inversion vascular space occupancy (SS-SI VASO). Additionally, we investigated signal contributions from macrovascular compartments using fine-scale vascular information from multi-echo gradient-echo (ME-GRE) data at 0.35 mm isotropic resolution. In total, this resulted in >7.5h of scanning per participant (n=5). We have three major findings: (I) While we could demonstrate that 1 second stimulation is viable using VASO, more than 12 seconds stimulation provides better CBV responses in terms of specificity to microvasculature, but durations beyond 24 seconds of stimulation may be wasteful for certain applications. (II) We observe that CBV responses show dilation patterns across the cortex. (III) While we found increasingly strong BOLD signal responses in vessel-dominated voxels with longer stimulation durations, we found increasingly strong CBV signal responses in vessel-dominated voxels only until 4 second stimulation durations. After 4 seconds, only the signal from non-vessel dominated voxels kept increasing. This might explain why CBV responses are more specific to the underlying neuronal activity for long stimulus durations.

Introduction

Cortical layers are a key feature of mesoscopic scale brain organization. Recent developments in functional magnetic resonance imaging (fMRI) have enabled the non-invasive mapping of

activation in distinct layer-compartments in humans (Dumoulin et al., 2018). One such technique, Vascular Space Occupancy (VASO, Lu et al., 2003), is a promising cerebral blood volume (CBV)-sensitive signal. In recent years, this method (specifically slice-selective slab-inversion [SS-SI] VASO [Huber et al., 2014], henceforth referred to as VASO) has gained popularity for investigations of cortical depth-dependent signal changes at ultra-high fields (>7 T) due to its high specificity to the microvasculature and hence the underlying neural activity (e.g. Faes et al., 2023; Haenelt et al., 2023; Huber et al., 2017; Koiso et al., 2023; Persichetti et al., 2020; Pizzuti et al., 2023; Yu et al., 2019; for other VASO variants at ultra-high field, see e.g. Chai et al., 2020; Hua et al., 2013). 29
30
31
32
33
34
35
36
37

The high microvascular weighting of VASO was established by using long stimulus durations (Beckett et al., 2020; de Oliveira et al., 2023; Jin and Kim, 2008), which were also beneficial for mitigating the challenging signal-to-noise ratio (SNR) and sampling efficiency (Huber et al., 2019). However, for neuroscience, the possibility of using short stimuli is often crucial (Huettel, 2012). For example, it allows accounting for carryover effects, enables researchers to study fleeting phenomena such as surprise, or correlate additional factors such as task performance with brain activity. Recently, we have shown that it is feasible to use VASO with short (2 seconds) stimuli and event-related paradigms (Dresbach et al., 2023; for an earlier example of stimuli shorter than 20 seconds, see Persichetti et al., 2020). In this context, we found that stimuli with a duration of 2 seconds had a lower microvascular weighting compared to long stimuli. However, the relationship between (pial) macro- versus (intracortical) microvascular weighting at intermediate, or even shorter stimulus durations is currently unknown for the human VASO signal. 38
39
40
41
42
43
44
45
46
47
48
49
50

While inferring the micro- or macrovascular weightings of the VASO signal from cortical depth measurements might provide initial insights, detailed information on the vascular architecture would enhance our understanding of signal origins even further. In animal models, this work has been pioneered in the rat somatosensory cortex by various groups. For example, Yu et al. (2016) established intracortical vessel maps by using multi-echo gradient-echo (ME-GRE) images and showed that blood oxygenation level dependent (BOLD) and CBV responses originate from venules and arterioles, respectively. On the other hand, Tian et al. (2010) used two-photon microscopy to measure the dilation of individual arterioles and capillaries and 51
52
53
54
55
56
57
58

showed a backpropagation of arterial vessel dilation. They further compared the microscopy 59 findings to BOLD data acquired with the same stimulation protocol and found good agreement. 60 Although these investigations clearly demonstrate the benefit of combining vascular information 61 with high resolution functional imaging, comparable investigations in humans have been 62 hindered so far by the difficulties of acquiring adequate vascular information in combination 63 with multimodal functional data. Recently, Gulban et al. (2022) showed that acquiring high- 64 quality ME-GRE images is feasible at the mesoscale in living humans. Specifically, the authors 65 provided a scanning protocol that gives high-quality T2* maps acquired at 0.35 mm isotropic 66 resolution and demonstrated that human vascular information can be resolved non-invasively 67 down to the level of intracortical diving vessels (for an alternative approach with time-of-flight 68 magnetic resonance angiography, see Bollmann et al., 2022). Combining this detailed vessel in- 69 formation with high-resolution BOLD and CBV fMRI allows us to investigate the neurovascular 70 coupling in humans. 71

Therefore, the purpose of this study is twofold. First, we characterized the canonical haemo- 72 dynamic response function of the layer-dependent VASO signal across stimulus durations com- 73 mon in neuroscience and at high spatiotemporal resolution in humans. Second, we showed a 74 first step in the detailed investigation of submillimeter VASO and BOLD fMRI signals across 75 stimulus durations in vascular compartments by using cutting edge high-resolution anatomical 76 information from ME-GRE data acquired at 0.35 mm isotropic. 77

Materials and Methods 78

Participants 79

5 participants without any known neurological condition (3 female, age range: 22-35 years, 80 mean: 26.8 years) took part in the study after providing written informed consent. The study 81 was approved by the Ethics Committee of the Medical Faculty of Leipzig University and the 82 principles expressed in the Declaration of Helsinki were followed. 83

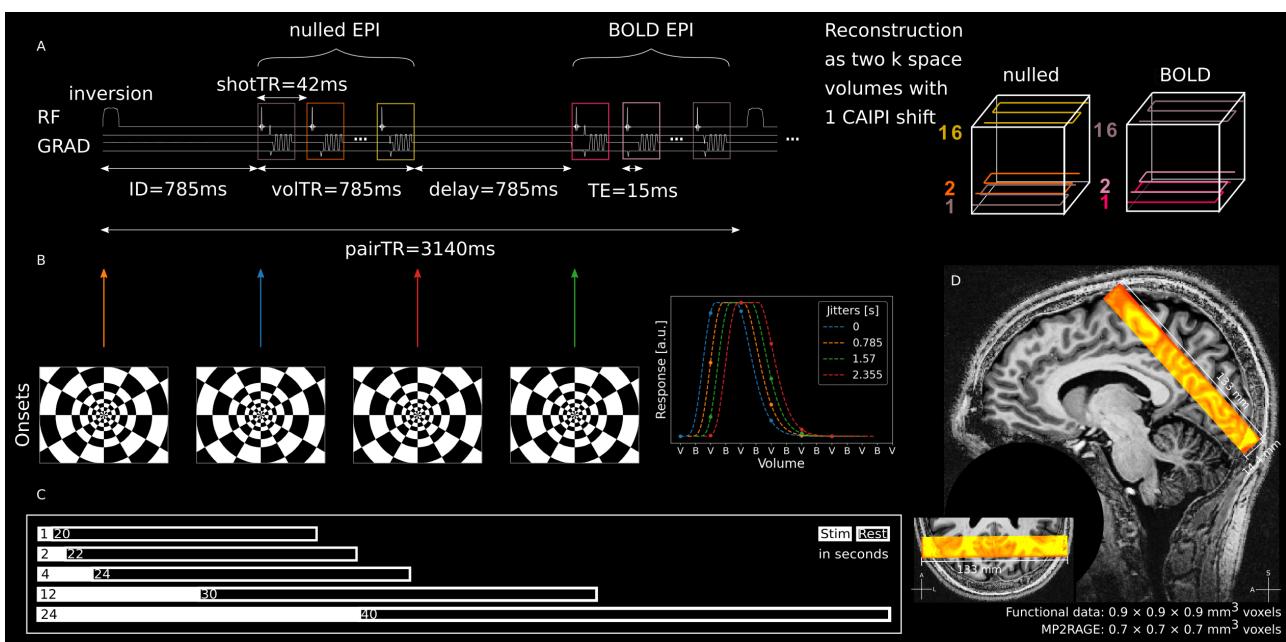
Data Acquisition

84

Scanning was performed in five 90-min sessions per participant (25 sessions in total) using a 7T
85 MRI scanner (Magneton Terra, Siemens Healthineers, Erlangen, Germany), equipped with a
86 8Tx, 32Rx RF head coil (NOVA Medical, Wilmington, DE, USA) at the Max Planck Institute
87 for Human Cognitive and Brain Sciences in Leipzig, Germany.
88

Functional scans were performed in 4 sessions with a 3D echo-planar imaging (EPI) se-
89 quence, with SS-SI VASO preparation (Huber et al., 2019; Stirnberg and Stöcker, 2021; VASO
90 version 26dc5a59) and a nominal resolution of 0.9 mm isotropic (16 slices time of inversion [TI]1/
91 TI2/shot repetition time [shotTR]/echo time [TE] = 1047/2462/42/15 ms, partial Fourier factor
92 = 6/8, variable flip angle scheme with reference flip angle = 33°, 3-fold generalized autocalibrat-
93 ing partially parallel acquisitions (GRAPPA) acceleration [Talagala et al., 2016] in z-direction
94 with a “controlled aliasing in parallel imaging results in higher acceleration” (CAIPIRINHA)
95 shift of 1, bandwidth = 1126 Hz/Px, FoV = 133 mm, matrix size = 148 × 148; (**Figure**
96 **1A&D**). B1 shimming was performed in Trueform mode (CP-mode) and the shimming volume
97 included the circle of Willis, to ensure proper nulling of incoming blood. Slice position and
98 orientation were chosen individually and aligned with the left calcarine sulcus (**Figure 1D**, for
99 the functional coverage in all participants, see **Supplementary Figure S1**). To ensure similar
100 slice positions between sessions, we made use of the head scout provided by the vendor.
101

Importantly, we implemented a ‘symmetric’ VASO acquisition, in which an additional delay
102 of 785 ms was inserted between the blood-nulled (further referred as nulled) and BOLD EPI
103 readouts (**Figure 1A**). This delay was as long as the inversion delay and the volume TR, thus
104 creating 4 equally spaced blocks (inversion delay, nulled EPI, additional delay, BOLD EPI) of
105 785 ms, each, within one acquisition cycle. This had multiple benefits. Firstly, having 4 equally
106 spaced blocks within the acquisition period allowed us to systematically jitter the onset of our
107 stimuli, thereby sampling the haemodynamic response to our stimuli with an effective sampling
108 rate of 785 ms, uncoupling pair TR and effective temporal resolution. Secondly, including the
109 delay before the BOLD EPI acquisition increased the temporal SNR (tSNR) of the BOLD data
110 in previous experiments with a similar setup (Dresbach et al., 2023). Thirdly, the longer T1
111 relaxation period between inversion pulses led to a better structural T1 contrast in the mean
112 VASO EPI image despite a short volume TR (Dresbach et al., 2023). This was especially
113


important in our case, because it would facilitate the registration of images across sessions. 114

In a fifth session, we acquired 4 3D ME-GRE images at 0.35 mm isotropic resolution (104 115 slices; TEs = [3.8, 7.6, 11.4, 15.2, 19, 22.8 ms]; TR = 30 ms, no partial Fourier, flip angle = 12°, 116 GRAPPA factor for in-plane phase encoding = 2; bandwidth = 310 Hz/Px, FoV = 173 mm, 117 matrix size = 496 × 496; volume acquisition time = 13 min, **Figure 6A**). Acquiring 4 images 118 at each echo had 2 purposes. First, we registered and averaged the images to increase SNR. 119 Second, we rotated the phase-encoding orientation by 90° between acquisitions for blood motion 120 artifact mitigation (Gulban et al., 2022; Larson et al., 1990). The slabs of these high-resolution 121 images were centered on the functional coverage (see **Figure 1A** and **Figure 6A**). 122

Finally, whole-brain images (0.7 mm isotropic, 240 slices, TI1/TI2/TR/TE = 900/2750/ 123 5000/2.47 ms, flip angle 1/flip angle 2 = 5°/3°, bandwidth = 250 Hz/Px, GRAPPA acceleration 124 factor = 3, FoV = 224 × 224 mm) were acquired in one or two of the sessions using MP2RAGE 125 (Marques et al., 2010). For a full overview of the scanning sessions of all participants, see 126 **Supplementary Table S1**. Scanning protocols are available on github under <<https://github.com/sdres/neurovascularCouplingVASO/blob/main/protocols>>. 127

Stimulation 129

In a total of 21-25 runs spread over 4 sessions per participant, flickering checkerboards (contrast 130 reversals at 8 Hz; **Figure 1B**) were presented for 1, 2, 4, 12 and 24 seconds. Stimulus onset 131 was systematically jittered 4 fold with respect to the TR, resulting in an effective stimulus 132 sampling of 0.785 seconds (**Figure 1B**), assuming stationarity of neurovascular responses. Each 133 stimulus duration was presented once per jitter and run, resulting in at least 21 repetitions per 134 participant. Based on a previous study (Dresbach et al., 2023), 20 repetitions per stimulus 135 constitute a good trade-off between efficiency and data stability. Inter-trial intervals (ITIs) 136 were either 10, 12, 14, 20, and 24 seconds (short ITIs) or 20, 22, 24, 30, and 40 seconds (long 137 ITIs, **Figure 1C**). For an overview of which sessions contained runs with short or long ITIs see 138 **Supplementary Table S1**. For sessions with short ITIs, we generated a stimulation design 139 per session and used it for all runs of the session. For the long ITI, we created one stimulation 140 pattern per participant and used it for all runs with long ITIs. We argue that in the latter case, 141 rest durations are sufficiently long to avoid carryover effects. On the other hand, using the same 142

Figure 1: Functional data acquisition and stimulation. **A** Left: Sequence diagram of symmetric VASO acquisition. Right: Illustration of k-space trajectories for nulled and BOLD volumes. **B** Left: Stimulation onsets with respect to acquisition scheme and resulting in sub-second sampling of the stimulus. Right: Illustration of acquired data points of an arbitrary stimulus response per jitter. **C** Stimulus- and corresponding rest durations. Note that in a few sessions (5/20) of individual participants, shorter ITIs were used. For a full description of the scanning sessions, see **Supplementary Table S1**. **D** Coverage of functional slab overlaid on UNI of MP2RAGE (sub-05).

stimulation across more runs allows the averaging of nulled and not-nulled runs across sessions. 143

This might help to reduce noise before dividing nulled by not-nulled time courses during the 144

BOLD-correction. Initially, we had included short ITI sessions for higher efficiency but then 145

opted for long ITIs due to higher signal integrity. 146

To keep participants' attention, we implemented a cued button press task. To this end, a 147

gray fixation dot (0.075 degree radius) surrounded by a yellow ring (0.15 degree radius) was 148

presented in the center of the screen. In semi-random intervals, the yellow ring turned into a 149

red target for 500 ms. Participants were instructed to press a button on a button box with 150

their right index finger in a 2 second window after the target. Intervals between targets were 151

chosen randomly between 40 and 80 seconds. The stimulation was controlled with scripts using 152

Psychopy3 (v2022.1.3, Peirce, 2007), which can be found at <<https://github.com/sdres/neurovascularCouplingVASO/blob/main/code/stimulation/stimulationParadigm.py>>. 153

154

Data processing and analysis

155

MP2RAGE processing

156

Bias field correction was performed using N4BiasFieldCorrection as implemented in ANTs (Tustison et al., 2010; v2.3.5). Brain extraction was performed based on the second inversion image of the MP2RAGE sequence, using bet (v2.1) as implemented in the FMRIB Software Library (FSL; v6.0.5). The resulting brain mask was applied to the T1w UNI image and the image was further cropped to the region of interest (ROI) to reduce data processing demands.

157

158

159

160

161

An initial tissue segmentation was performed on the MP2RAGE UNI using FSL FAST (Zhang et al., 2001; v6.0.5). The initial segmentation was manually corrected in the ROI using ITK-SNAP (Yushkevich et al., 2006; v3.8.0) after upsampling to 0.175 mm isotropic using cubic interpolation. Layerification was performed at the upsampled resolution using the LN2_LAYERS program implemented in LayNii (Huber et al., 2021a; v2.2.1) and the equivolume option. For the analysis of temporal data, we estimated 3 layers. To plot layer profiles, we estimated 11 layers.

162

163

164

165

166

167

168

Definition of ROIs

169

All ROIs were defined manually using the macro-anatomical landmark of the calcarine sulcus, indicating primary visual cortex (V1). Specifically, we used the high-quality segmentation and the LN2_MULTILATERATE program in LayNii to grow discs with a cortical parametrization (U,V coordinates), centered on the calcarine sulcus, for each participant. To validate that our ROIs were indeed located in V1, we made use of the fact that V1 is easily identifiable on inflated cortical surfaces and compared the definition to an atlas (Glasser et al., 2016). To define V1 for each participant individually, we followed a standard procedure in BrainVoyager (Goebel, 2012; Version 22.4.4.5188 for macOS) to obtain cortical surfaces. The pipeline is described in detail in the Supplementary Materials. Finally, V1 outlines were drawn corresponding to the definition in the Glasser atlas (Glasser et al., 2016) by author SD and quality controlled by author OFG. Manually drawn outlines of individual participants' V1 are shown in **Supplementary Figure S2**. To check whether the ROIs fell within the definition of V1, we transformed the resulting surface representation of V1 to voxel space and visually checked the overlap of the V1 definition with our ROIs.

170

171

172

173

174

175

176

177

178

179

180

181

182

183

Functional data processing

The VASO sequence provides two time series. The first consists of ‘nulled’ images, in which the blood signal is as much minimized as possible - ideally 0, giving them a CBV-weighting. The second consists of T2*-weighted BOLD images. If not indicated otherwise, the two time series were treated individually. Data from individual sessions were motion-corrected in a multi-step procedure using ANTsPy (Avants et al., 2011; v0.3.3). First, all volumes of a run were aligned to the first volume of the run using 6 degrees of freedom and rigid body alignment. To guide the registration, we used a brain mask generated automatically using 3dAutomask in AFNI (Cox, 1996; v22.1.13). We then computed run-wise T1w images from the motion-corrected functional data by dividing 1 by the coefficient of variation of the concatenated nulled and BOLD time series on a voxel-by-voxel level. The resulting T1w image of each run was registered to that of the first run of the first session. Finally, the motion correction was performed again by concatenating the transformation matrices of each volume within a run and the transformation matrix generated by the between-run registration. This process was done to minimize consecutive interpolation steps which might introduce unnecessary blurring of the data. Then, the functional images were cropped to the caudal half to reduce computing and storage demands and we averaged all runs within each session. After averaging, we temporally upsampled the data by a factor of 4 to match the stimulus onset grid, duplicated the first volume of the BOLD time series to match the nulled and BOLD data, and divided the nulled by the BOLD data to correct for BOLD-contamination. This resulted in the BOLD-corrected VASO data. Furthermore, we calculated tSNR maps using the LN_SKEW program in LayNii and, finally, we now computed a T1w image as before, but now based on the averaged session data to increase SNR.

To estimate spatial stimulus responses, we ran a general linear model (GLM) analysis for the average run of each session using FSL (Woolrich et al., 2001). Here, we used an individual predictor for each stimulation time, convolved with a standard gamma haemodynamic response function without temporal derivative (mean lag: 6 seconds, std. dev: 3 seconds), applied a high-pass filter (cutoff = 0.01 Hz) and no additional smoothing. A second level analysis across sessions was run for each participant. No averaging of statistical maps was performed across participants.

To investigate spatio-temporal responses, we computed voxel-wise event-related averages for 214 each participant. To do so, we averaged responses from the onset of each individual stimulus 215 duration until the end of the respective rest period in each voxel across all sessions. We then 216 computed the baseline as the average activity in the first and last 30 seconds averaged across 217 all sessions. Finally, we calculated % signal changes of the average event-related averages with 218 respect to the average baseline. Note that for VASO, an increase in CBV is shown by negative 219 signal changes. For easier visual comparison with the BOLD data, we inverted the signal 220 changes in all plots. 221

Due to this averaging procedure, we observed an offset between the time points of the 222 event-related average that were extracted from all runs (until the last volume of the sessions 223 with short ITIs) and the time points that were only extracted from the runs with long ITIs 224 (**Supplementary Figure S3**). To account for this, we subtracted the difference in signal 225 change between the last time point of the short ITI sessions and the first time point of the 226 long ITI sessions from the time points only present in the long ITI sessions. This results in 227 two time points with the same value for each participant and stimulus duration, which is not 228 visible in the group data. Finally, we set the value of the first time point of a given event- 229 related average to 0 and normalized the remaining time points to this. This procedure was 230 done for each participant, layer and stimulus duration independently before averaging across 231 participants (For a graphical representation, see **Supplementary Figure S3**). 232

ME-GRE data processing 233

ME-GRE data were processed as described in Gulban et al. (2022). Key points of the analysis 234 are the blood motion artifact mitigation and the correction of head motion between acquisitions. 235 The blood motion artifact is a displacement of signal from arterial vessels due to the read 236 phase encoding direction (Larson et al., 1990). This issue was mitigated by acquiring data 237 with four different phase encoding directions and compositing new images with less influence 238 of the artifact. To correct for head motion between acquisitions, we registered the averaged 239 echoes of individual runs to the first run and applied the resulting transformation matrix to the 240 individual echoes. In this process, we also upsampled the images to 0.175 mm isotropic using 241 cubic interpolation and finally averaged images from four acquisitions to boost SNR. From the 242

resulting images, we calculated T2* and S0 values. Based on the T2* data, we performed 243 a manual vessel segmentation in ITK-SNAP restricted to our ROI. Specifically, we selected 244 low-intensity voxels arranged in tube-like structures (**Figure 6B**). 245

Registration 246

The statistical maps from the functional data analysis and the vessel segmentation based on the 247 ME-GRE data were registered to the upsampled anatomical MP2RAGE data. To register the 248 functional data, the upsampled UNI images of the MP2RAGE data were first registered to the 249 T1w image in EPI space derived from all sessions. The registration was performed using the 250 cross-correlation metric and the non-linear SyN algorithm of antsRegistration as implemented 251 in the ANTS toolbox (Avants et al., 2011; v2.3.5) to account for the geometric distortions in 252 the functional data. Furthermore, the brain mask generated during the motion correction was 253 used to guide the registration. The resulting linear and non-linear transformation matrices were 254 then used to inversely register the statistical maps and event-related averages to the anatomical 255 MP2RAGE data at upsampled resolution (0.175 mm isotropic). 256

To register the ME-GRE data, the upsampled MP2RAGE inv-2 images were registered to 257 the upsampled S0 images resulting from the ME-GRE data. Here, we first manually matched 258 the images using ITK-SNAP. This initial alignment was then improved by registering the images 259 using ITK-SNAP with the mutual information metric and a mask covering the posterior 260 brain border generated during the ME-GRE processing pipeline. Finally, we used the inverse 261 registration matrix to register the vessel segmentation to the anatomical data. 262

Results 263

Behavioral performance, functional data quality, and head motion 264

To keep participants' attention during the functional sessions, they performed a cued button 265 press task. Analysis of the attention task revealed that participants consistently performed 266 well (**Supplementary Figure S4A**). Only in 3 runs, the ratio of detected/total targets was 267 <0.75. Given that targets could be presented alongside the task stimulus and therefore hard to 268 detect, we did not exclude any data based on isolated undetected targets. We further examined 269

how many consecutive targets were missed within runs, as missing multiple targets in a row 270 could be indicative of participants falling asleep. We found that in 2 runs 2 targets, and in two 271 other runs 3 consecutive targets were not detected. Given this low number and an average of 272 11 targets per run, we did not exclude data based on attention task performance. 273

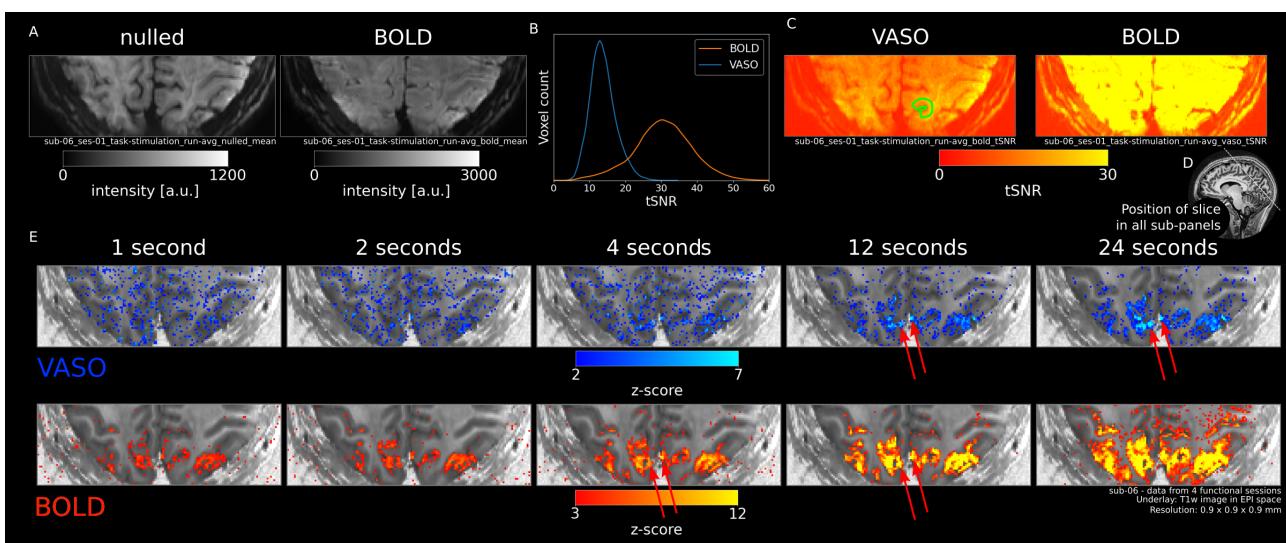

Participant head motion is a common problem in fMRI, especially for high resolution data. 274 To assess head motion, we computed framewise displacements (FDs) from the rigid motion 275 parameters given by the motion correction (Power et al., 2012). The distribution of volumes 276 which were displaced with respect to the previous volume by more than the voxel size (0.9 mm) 277 is shown for nulled and BOLD timecourses separately in **Supplementary Figure S4B**. Only 278 a small number of volumes (92; <0.08 %) showed FDs greater than our voxel size (0.9 mm). 279 40 of those (in 16 individual runs) were in BOLD and 52 (in 12 individual runs) were in nulled 280 time series and FD never exceeded 1.88 mm (2× voxel size). We therefore did not exclude any 281 data based on motion. 282

Figure 2A shows the high data quality in a representative participant (sub-06) after averaging 283 data from an individual session. Both mean nulled and BOLD echo planar images look 284 crisp with minimal artifacts. Note the outstanding anatomical contrast in the mean nulled 285 images. This helped in the correction of motion within runs and especially the registration 286 between runs and sessions. 287

Figure 2B shows the tSNR across participants for VASO and BOLD within the ROIs 288 (for an example ROI, see **Figure 3A**). tSNR values were well above 10 for VASO and above 289 30 for BOLD. For tSNR values of individual participants and sessions within the ROI, see 290 **Supplementary Figure S5**. Individual tSNR values are mostly uniform across sessions with 291 minor differences between participants. **Figure 2C** shows an example of VASO and BOLD 292 tSNR maps of one individual participant (sub-06) after averaging one session. 293

Taken together, we concluded that the functional data was of sufficient quality to proceed 294 with further analyses. 295

Obtaining high quality statistical maps is often difficult in layer-fMRI. Therefore, investigating 296 voxel-wise results from the GLM analysis constitutes a rigorous assessment of data quality. 297 For VASO, longer stimuli (12 seconds) evoked clear responses in visual cortices (**Figure 2E**, 298 top) showing the high data quality. Notably, the activation is centered in gray matter, as ex- 299

Figure 2: Quality assessment and activation. **A** Mean nulled and BOLD images of all runs in the first session ($n=6$) of a representative participant (sub-06). **B** BOLD and VASO tSNR across all participants extracted from ROI (see **Figure 3A** and outline on a single slice in **Figure 2C**). **C** VASO (left) and BOLD (right) tSNR maps of one participant (sub-06) averaged across all runs of the first session ($n=6$). Green outline shows the ROI on the slice. Note that ROIs extend across multiple slices (see **Figure 3A**). **D** Position of the slice shown in all sub-panels illustrated on a whole-brain MP2RAGE UNI image. **E** VASO (upper) and BOLD (lower) z-maps of one participant (sub-06) resulting from GLM (contrast: stimulus duration rest) for all stimulus durations separately, averaged across all sessions. Red arrows indicate likely position of large pial vessels.

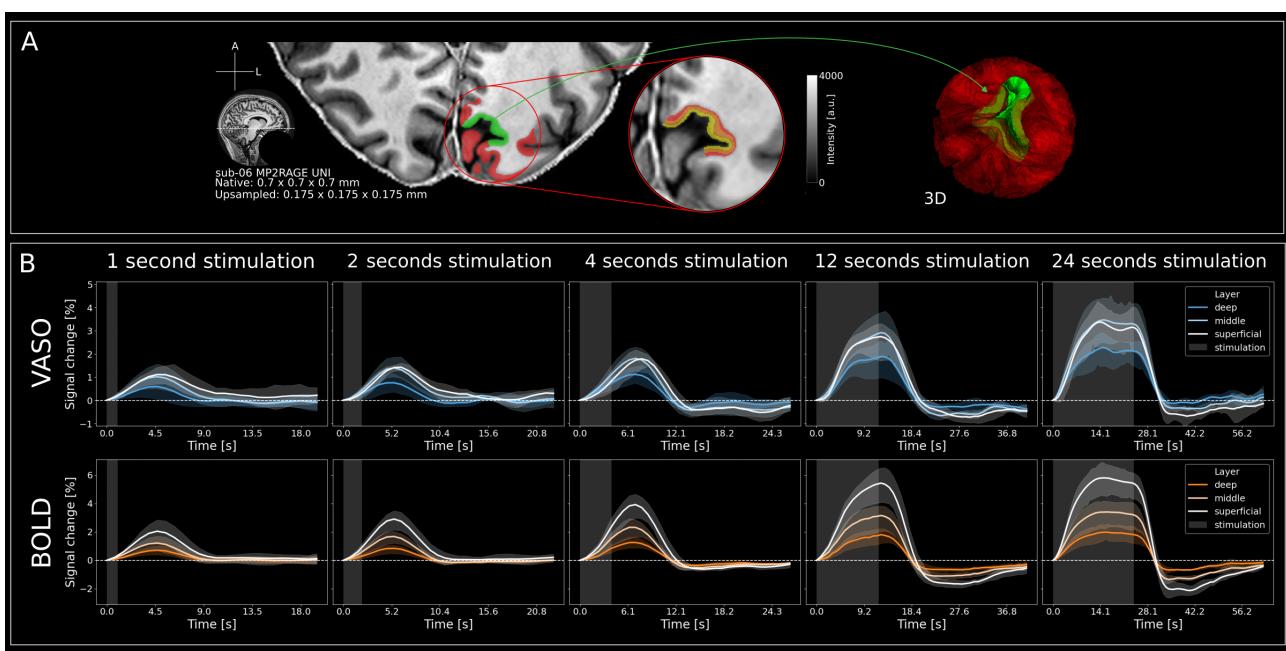
pected based on the high specificity of CBV measurements. However, we also observed sparse occurrences of highly active regions for VASO in cerebrospinal fluid (CSF), likely reflecting a dilation of pial vessels (red arrows in **Figure 2E**). While in response to 4 seconds stimulation, some activation can be found in gray matter for VASO, only weak to no visible patterns can be observed for stimuli with a duration of 1 or 2 seconds. For BOLD, all stimulus durations lead to clear responses whose amplitudes increased with stimulus duration (**Figure 2E**, bottom). As expected for BOLD, strongest responses can be observed in CSF due to the draining vein effect. Taken together, the results from the statistical maps are in line with our expectations due to the limited number of trials and low tSNR of VASO compared to BOLD (**Figure 2B/C**).

Temporal stimulus evoked responses across layers in V1

To quantify the signal changes across cortical depth and time, we performed a high quality semi-manual segmentation of cortical gray matter (**Figure 3A**). We then extracted event-related averages from 3 cortical layers in V1. Specifically, we computed a geodesic cylindrical ROI centered in the calcarine sulcus using LN2_MULTILATERATE as implemented in LayNii

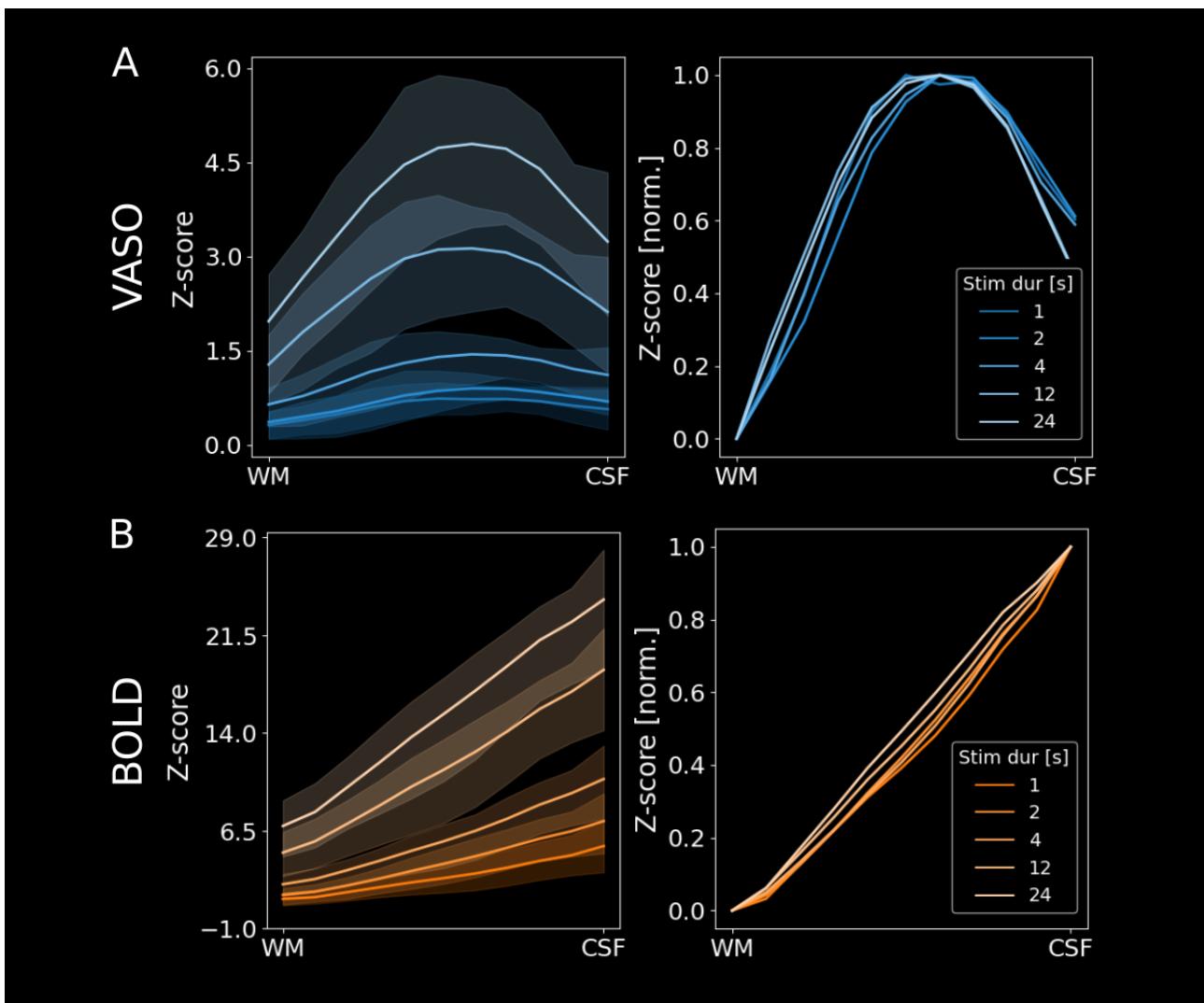
(green and layered shapes in **Figure 3A**). The responses of individual participants are shown 314 in **Supplementary Figure S6** for VASO and **Supplementary Figure S7** for BOLD. Most 315 participants showed clear stimulus evoked responses for all stimulus durations and layer 316 compartments for both VASO and BOLD. However, we did not observe reliable VASO activation 317 in response to stimulation of 1 and 2 seconds for one participant (sub-08, see **Supplementary** 318 **Figure S6**). This participant was therefore excluded from further analyses. Group-level (n=4), 319 time-resolved VASO and BOLD responses for 3 cortical depths and all stimulus durations are 320 shown in **Figure 3B**. 321

Most notably, VASO has slightly stronger responses in superficial compared to middle and 322 deep layers for short stimuli (≤ 4 seconds). On the other hand, longer stimulus durations 323 evoked slightly stronger VASO responses in middle layers, which became more pronounced 324 with increasing stimulus duration. For a more conventional representation of depth-dependent 325 activity, we extracted laminar profiles from VASO and BOLD z-maps resulting from a GLM 326 analysis with a predictor for each stimulus duration contrasted against the rest periods (**Figure** 327 **4**). For VASO, the results show clear peaks in middle layers for all stimulus durations (**Figure** 328 **4A** left), whereas BOLD peaks are located in superficial layers (**Figure 4B** left). To show 329 differences in profile shape irrespective of activation amplitude, we min-max normalized the 330 responses across cortical depth (**Figure 4A&B** right). Also here, it can be seen that short 331 stimulus durations show a slightly stronger response in superficial layers than long stimuli for 332 VASO. 333


Note, that the clearer middle layer peaks for all stimulus durations in VASO based on the 334 layer profiles (**Figure 4A**) compared to the event-related averages (**Figure 3B**) stems from 335 the fact that the former are based on z-scores whereas the latter are based on raw % signal 336 change. As superficial layers usually exhibit higher noise levels compared to middle or deep 337 layers, responses close to the cortical surface are attenuated when the signal is plotted in terms 338 of z-scores. For completeness, z-scored event-related averages are shown on the group level 339 in **Supplementary Figure S8** for VASO and BOLD (see **Supplementary Figure S9** and 340 **Supplementary Figure S10** for individual participants' z-scored VASO and BOLD event- 341 related averages, respectively). Here, middle layer activity for VASO is clearly strongest for all 342 stimulus durations, resembling the layer profiles. 343

Remaining apparent differences between event-related average and layer profile representations stem from the higher partial voluming when extracting signals from 3 (as done for the event-related averages) rather than 11 layers (as done for the layer profiles). For BOLD, response-strength increases from deep to superficial layers, irrespective of stimulus duration, or form of representation, as expected based on the draining vein effect. 344
345
346
347
348

We also find delayed VASO peaks in superficial layers compared to middle and deep layers for short stimuli (**Figure 3B**). To quantify this delay, we defined the time to peak (TTP) as the time between stimulus onset and the time point of highest signal change for each stimulus duration and layer compartment separately. The results for VASO and BOLD are shown in **Figure 5**. For VASO, there are 3 noteworthy observations. Firstly, as described based on visual assessment above, the TTP was the highest in superficial layers for short stimuli. Secondly, the highest TTP is located in the middle layers for long stimuli. Thirdly, we find that for stimuli up to 12 seconds, the response peaks after stimulus cessation for all layers, while the response to 24 second stimulation drops off before the stimulation ends. For BOLD, the response to stimuli with a duration of 24 seconds also peaks before stimulus cessation and shows the longest TTP in middle layers. 349
350
351
352
353
354
355
356
357
358
359


VASO and BOLD signal in vessel dominated voxels

In order to investigate the origin of VASO and BOLD responses, we computed signal changes in vascular structures compared to gray matter. For this, we manually delineated vessels based on the ME-GRE data **Figure 6B**, which can be for example identified by voxels with very short apparent T2* values (due to strong dephasing inside the blood) and an arrangement in a tube-like fashion. **Figure 6C** shows the group level (n=4) responses for gray matter and vessel dominated voxels. Data from individual participants are shown in **Supplementary Figures S11** and **S12** for VASO and BOLD, respectively. There are several noteworthy observations. Firstly, the vessel-dominated VASO signal change shows delayed peak times compared to signals originating predominantly from gray matter for all stimulus durations up to and including 12 seconds (**Figure 6C**). This could explain the delayed peak in superficial layers of gray matter as observed in **Figure 3B**. Secondly, for short stimuli, the superficial vessel response is stronger than that of gray matter. On the other hand, gray matter VASO signals dominate for stimuli 360
361
362
363
364
365
366
367
368
369
370
371
372

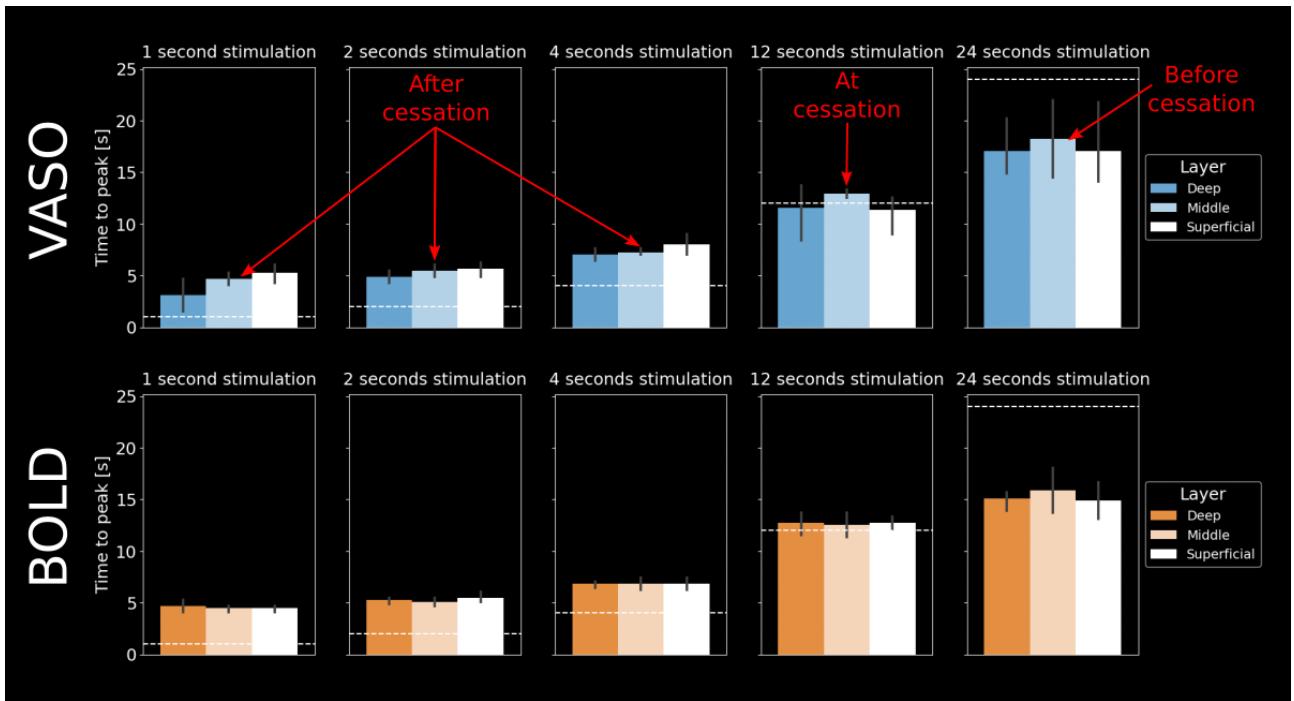


Figure 3: Segmentation and event-related averages across cortical depth. **A** Left: Cortical gray matter segmentation (red & green) overlaid on a single slice of the MP2RAGE UNI image of one participant (sub-06). The ROI in the calcarine sulcus (V1) is indicated by green color. Middle: Zoomed in section of the segmentation in ROI with layering. Right: 3D-representation of the segmentation. Red translucent shape is general gray matter while green refers to the ROI. Note that here, only 3 layers are shown. For the layer profiles in **Figure 4**, we estimated 11 layers. **B** Group level ($n=4$) VASO (upper) and BOLD (lower) signal changes [%] in response to all stimulus durations separately for superficial, middle and deep layer compartments. Note the subtle differences of the response time, magnitude, and HRF shape across layers, stimulus durations and contrasts. Stimulation period is indicated by gray shaded areas and error bands indicate 95% confidence interval across participants.

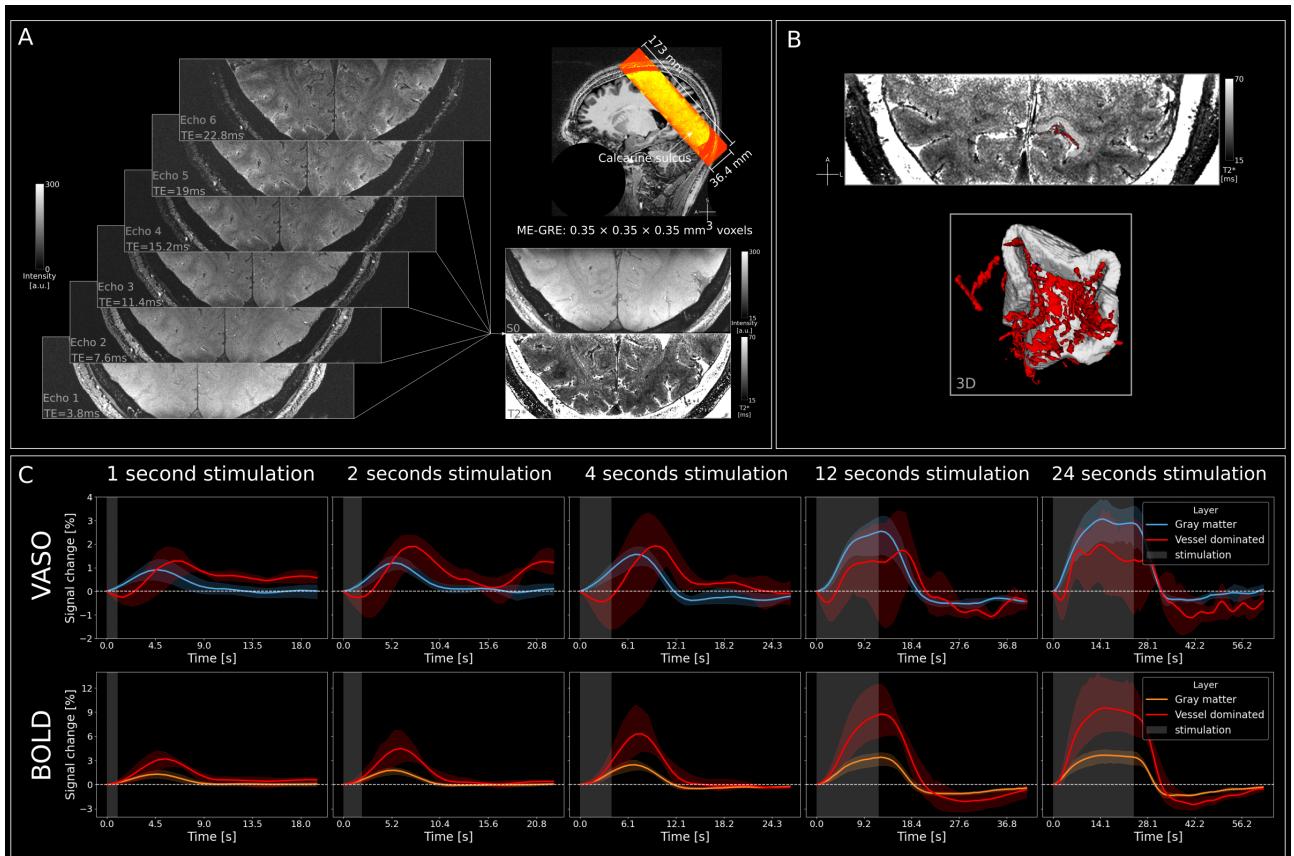

of 12 and 24 seconds. This is driven by a slow increase of VASO gray matter activity from 373
short to long stimulus durations, while the response in vessel dominated voxels is saturated 374
after 2 seconds of stimulation and does not rise even for 24 second stimuli. For BOLD, vessel 375
dominated voxels show a markedly larger response than gray matter, irrespective of the stimulus 376
duration, with responses that keep increasing for longer stimuli. **Figure 7** illustrates the ratio 377
between macrovascularly dominated and gray matter peak-signal changes for both VASO and 378
BOLD, separately for each stimulus duration. For VASO, the data show again that only for 379
long, and not short stimuli, the gray matter response is larger than the response in macroscopic 380
vessels. For BOLD, the data show that the relationship between BOLD activity in vessels and 381
gray matter stays very similar, irrespective of stimulus duration. 382

Figure 4: Depth-dependent profiles show clear peaks in middle cortical layers and modulation of microvascular weighting for VASO. A Left: Group level ($n=4$) VASO layer profiles showing z-scores across cortical depth for all stimulus durations separately. It can be seen that the VASO response decreases less strongly in superficial layer groups for shorter stimulus durations. Error bands indicate 95% confidence intervals across participants. Right: Same data as on the left, but min-max normalized to show differences in profile shape irrespective of activation amplitude. It can be seen that the VASO response has a relatively stronger weighting towards superficial layer groups for short stimuli (more concave). Error bands were omitted for better visibility because of the large overlap. **B** Same as A but for BOLD data.

Figure 5: Time-to-peak analysis. VASO (upper) and BOLD (lower) time to peak (TTP) for all stimulus durations (indicated by white dashed line) and layers independently. For short stimuli, the TTP is after stimulus cessation. For stimuli with a duration of 12 seconds, the TTP is around stimulus cessation. For stimuli with a duration of 24 seconds, the TTP is after stimulus cessation. Furthermore, it can be seen that the layer-specific distributions of TTPs change across stimulus durations. For short stimuli, the superficial layers peak later, whereas for longer stimuli the middle layers tend to peak later. This could be explained by different relative weighings of various vascular compartments (see **Figure 6**). For BOLD, we could not see any trends of layer-dependent TTPs across any stimulus durations. TTP was defined as the highest signal change between the initial deflection above 0 and falling off below 0. Error bars indicate 95% confidence intervals across participants.

Figure 6: Signal in vessel dominated voxels shows additional signal dynamics. **A** Acquisition of ME-GRE data at 0.35 mm isotropic resolution. Acquired slab overlaid on the MP2RAGE UNI image (sub-05). **B** Quantitative $T2^*$ map and segmentation of vessels and ROI in a representative participant (sub-06, top) and a 3D representation of the same data (bottom). **C** Group Level ($n=4$) VASO (top) and BOLD (bottom) signal changes in percent for gray matter and vessel dominated voxels separately for each stimulus duration. It can be seen that for short stimuli VASO shows slightly larger responses in large vessels compared to gray matter. For longer stimuli, parenchyma responses are stronger than vessel responses. BOLD shows strong vessel responses, markedly exceeding gray matter across all stimuli. Stimulation period is indicated by gray shaded areas and error bands indicate 95% confidence interval across participants.

Figure 7: Signal in vessel dominated voxels shows additional signal dynamics. VASO (left) and BOLD (right) peak signal change of vessel dominated voxels divided by the peak signal change in gray matter for each stimulus duration independently. For VASO, the ratio depends on the stimulus duration, whereas for BOLD, this influence is negligible. Overall, the vessel bias is smaller for VASO than for BOLD across stimulus durations. It can be seen that for VASO, long stimuli result in responses that are more confined to gray matter.

Discussion

383

Summary of results

384

In the present study, we characterized laminar CBV responses to visual stimuli with a range of 385 durations that are common in neuroscientific investigations. To do so, we used high spatiotem- 386 poral resolution (effective temporal sampling: 785 ms; spatial resolution: 0.9 mm isotropic) 387 VASO fMRI, in combination with cutting-edge anatomical ME-GRE data acquired at 0.35 mm 388 isotropic to glean vascular information. With these data, we showed that the microvascular 389 weighting of the VASO signal depends on stimulus duration and could attribute this effect to 390 the ratio between activity in gray matter and superficial, vessel-dominated voxels. 391

Implications for neuroscientific applications

392

Our results have several implications for neuroscientific applications of layer-specific VASO, es- 393 pecially with respect to the stimulus duration. Firstly, we were able to obtain reliable responses 394 to stimuli with a duration of 1 second in 4 out of 5 participants. After Persichetti et al. (2020) 395 with a stimulus duration of 6 seconds and Dresbach et al. (2023) with a stimulus duration 396 of 2 seconds, to our knowledge, this is the shortest stimulation duration with which VASO 397 responses have been seen at submillimetre resolution in humans. For neuroscientific purposes, 398 shorter stimulus durations are often desired, as they, for example, allow to investigate transitory 399 phenomena like surprise or enable better modulation of stimulus detectability in cases where 400 detection at threshold is desired (Huettel, 2012). Therefore, our results may facilitate future 401 investigations of novel research questions using laminar-specific VASO. 402

However, the shorter stimulation time seems to come at the cost of spatial specificity to the 403 underlying neural populations. Specifically, we further showed that the laminar weighting of 404 VASO differed between stimulus durations. Shorter stimulation durations (≤ 4 seconds) showed 405 highest % signal changes in superficial layers, whereas during longer stimulation (≥ 12 seconds) 406 signal changes in middle layer activity were highest (**Figure 3B**). Note that in contrast to 407 raw % signal changes, the peak z-scores were in middle layers for all stimulation durations 408 (**Figure 4A**), however with a more shallow decrease towards the cortical surface for short 409 stimuli. This can be explained by the higher noise level in superficial layers which downscals- 410

the response at the cortical surface when interpreting the data in terms of z-scores (for z-scored 411 event-related averages, see **Supplementary Figures S8-S10**). These findings are in line with 412 our previous VASO results comparing block- to event-wise stimulation in humans (Dresbach 413 et al., 2023) and animal work using MION contrast agent (e.g. Jin and Kim, 2008). However, 414 in our previous study, we used either short (2 second), event-related or long (30 seconds), block- 415 wise stimulation and could not determine the stimulation duration at which the relationship 416 between micro- and macrovascular weighting changes is optimal. Based on the present study, 417 stimulus durations of 12-24 seconds or longer might be necessary for the VASO signal to develop 418 the maximal weighting towards the microvasculature. However, the gap between the 4 second 419 stimulus and the 12 second stimulus studied here is still substantial. Therefore, future studies 420 could investigate whether other durations within this range are sufficient to develop the desired 421 spatial specificity. 422

Finally, we found that for stimuli up to and including 12 seconds, the VASO TTP was 423 after stimulus cessation (**Figure 5**). However, for 24 second stimuli, the response reached its 424 highest point before the stimulus ended. Note that the TTP was longest in superficial layers 425 for short stimulation durations, probably due to the largest contribution of larger vessels that 426 react slightly slower than the microvasculature close to the neuronal tissue in gray matter. On 427 the other hand, TTP was longest in middle layers for longer stimuli, hypothetically due to 428 the slow, passive dilation of the capillary bed. However, this effect is rather small and is best 429 interpreted with caution. 430

Taken together, several factors need to be considered when choosing the stimulus duration 431 in future VASO experiments. Based on our experiments, longer stimuli (≥ 24 seconds) are 432 advisable for higher signal amplitudes, superior detection sensitivity and good microvascular 433 weighting. On the other hand, to capture transient brain activity dynamics, shorter stimuli are 434 better suited. Finally, if one is interested in obtaining the highest possible magnitude of the 435 response while being temporally efficient, stimuli with a duration between 12 and 24 seconds 436 might be advisable. 437

Superficial vessel contributions in BOLD and VASO

438

In line with various studies using BOLD as measured with gradient-echo (Bause et al., 2020; Kay 439 et al., 2019; Kemper et al., 2018; Moerel et al., 2018), spin-echo (Koopmans and Yacoub, 2019), 440 or 3D-GRASE (Moerel et al., 2018), we find that BOLD signal changes are much larger in vessel 441 dominated voxels than in gray matter. Furthermore, our results show that the relationship 442 between BOLD signal changes in vessel dominated voxels and gray matter does not change 443 substantially across stimulus durations **Figure 7**. As a result, the specificity of BOLD responses 444 seems to be somewhat independent of the duration of stimulation. For VASO, we also find signal 445 changes in vessel dominated voxels. VASO responses in pial vessels have been highlighted in 446 the past by us and other groups in numerous conference abstracts (Handwerker et al., 2016; 447 Huber et al., 2015; Venzi et al., 2019), user manuals (Huber, 2018a, 2018b), and in a previous 448 paper (Huber et al., 2021b). However, they have never been systematically investigated. In the 449 following we will discuss three main observations. 450

Firstly, we find consistently delayed onsets of vessel dominated compared to gray matter 451 VASO signal changes for all stimulus durations. This matches our previous results in humans 452 (Dresbach et al., 2023) and results from Tian et al. (2010) who found earliest dilation of 453 capillaries in middle gray matter, followed by a backpropagation towards the cortical surface 454 and later activation of larger feeding vessels in rats, using two-photon microscopy. 455

Secondly, we find consistently delayed peaks of vessel dominated compared to gray matter 456 VASO signal changes for short stimuli only. In a previous study (Dresbach et al., 2023), we 457 found similarly delayed VASO response peaks of superficial, compared to middle and deep 458 layers. Potentially, the current finding indicates that this effect could have been (in part) 459 driven by partial voluming with pial vessels. However, we cannot exclude a gradual process in 460 line with the serial backpropagation proposed by Tian et al. (2010). 461

Finally, we find that vessel dominated activity saturates after 2-4 seconds of stimulation. 462 This large initial VASO response in superficial vessels may result from the actively muscle- 463 controlled dilation of superficial arteries, which reaches its maximum already after short stim- 464 ulation times (Kennerley et al., 2012). On the other hand, we found that gray matter VASO 465 activity continued to rise with stimulus duration, potentially through the slow and passive di- 466 lation of the capillary bed. As a result, the ratio of vessel-dominated over gray matter VASO 467

activation is variable, with highest gray matter weighting for longer stimuli. 468

In summary, this leads to three phases of the VASO response. An early gray matter response 469
that is mostly free of superficial vessel activity for all stimulus durations. Although the signal 470
is small, this phase is in theory very specific to the underlying neuronal activity as it is not 471
contaminated by pial vessel dilation. This could lead to interesting applications of fast imaging 472
protocols with short stimulation and highly jittered paradigms using VASO. In the second 473
phase, activation is mostly dominated by larger vessels. This is the least specific phase, as the 474
macrovascular component exceeds that of gray matter. In the third phase, specificity is high 475
again with larger gray matter than macrovascular weighting. 476

Limitations & Future directions 477

As discussed in the previous section, we have explored the combined use of high resolution func- 478
tional VASO data with ME-GRE data at 0.35 mm isotropic to investigate CBV and BOLD 479
responses in superficial vessel dominated voxels - so far without differentiation between arterial 480
and venous contributions, as this was outside the scope of the current investigation. Import- 481
antly, previous studies in animals were able to differentiate (intracortical) arteries from veins 482
and showed that CBV responses mainly originate from the arterial vasculature, whereas BOLD 483
responses mainly originate from venous vasculature (Bolan et al., 2006; Chen et al., 2019, 2021; 484
Yu et al., 2012, 2016). Therefore, future studies could investigate the contributions of superfi- 485
cial and intracortical arteries and veins to the CBV and BOLD signal acquired with VASO in 486
humans. 487

Identifying signal changes in the vasculature is, however, hindered by the functional spatial 488
resolution of 0.9 mm isotropic employed in the present study. Specifically, superficial cortical 489
arteries and veins were found to have diameters up to 280 and 350 μm , respectively (Duvernoy 490
et al., 1981).¹ Furthermore, intracortical vessels were found to have diameters up to 125 491
 μm and have been shown to be organized in vascular units with central veins (separated by 492
approximately 1-1.5 mm), surrounded by rings of smaller arteries (Bolan et al., 2006; Duvernoy 493
et al., 1981; Harel et al., 2010). Assuming that the arterial rings are roughly centered between 494
two veins, this would yield an artery-vein distance of about 0.5-0.75 mm. As a result, both the 495
superficial and intracortical vessels are significantly smaller and/or closer together than we can 496

resolve with our voxel size of 0.9 mm isotropic. Therefore, partial voluming effects have to be 497 taken into account for functional responses from superficial vessels investigated in the present 498 study, and will limit the distinction between signal changes originating from arteries and veins 499 in future investigations. 500

Finally, the VASO signal is usually optimized to obtain functional responses in gray matter and the sequence protocol used here is exceptional in various ways; potentially leading to 501 inflated signal changes above the cortical surface. For example, the use of very short TEs (15 502 ms) and incorporation of data from multiple sessions may lead to mis-corrections of BOLD 503 contaminations in large superficial vessels due to BOLD-overcompensation and potential mis- 504 registration (Chaimow et al., 2019; Devi et al., 2022; Genois et al., 2021; Huber, 2014, 2018a). 505 Furthermore, the strong, (flip angle dependent) contrast between CSF and gray matter in our 506 data may lead to apparent signal changes in superficial vessels due to volume redistributions 507 upon activation (Donahue et al., 2006; Jin and Kim, 2010; Piechnik et al., 2009). Finally, the 508 relatively short TR may lead to CBF-dependent outflow of not-inverted water into the post- 509 capillary vasculature, resulting in lower gray matter signals (Wu et al., 2010) and incomplete 510 nulling of draining veins (Huber, 2014 - Thesis chapter 5). Taken together, future studies with 511 shorter experiments to avoid the integration of multiple sessions or different combinations of 512 TEs, flip angles and TRs will help with the interpretation of the presented results and with 513 determining how far they generalize. 514

Conclusion 516

We characterized the spatiotemporal dynamics of CBV and BOLD responses across cortical 517 depth and vessel dominated voxels at 0.9 mm spatial, 0.785 seconds effective temporal reso- 518 lution and >7.5h of (f)MRI scanning per participant. We demonstrated that it is feasible to 519 obtain reliable VASO responses to stimuli with a duration of 1 second and showed differences 520 in vascular weighting of CBV signal changes depending on stimulus durations, which are fun- 521

¹From Gulban et al., 2022 Supplementary Figure 9: ‘The vessel diameters reported here are known to be imprecise measurements. As Duvernoy states, (I) ”The diameter of cortical arteries is difficult to evaluate; the results of measurements are debatable and are a function of the pressure of injection and modifications caused by the fixation. Even *in vivo* ... there are large variations in the diameter of cortical vessels according to physiological conditions.”; and (II) ”Fixation and embedding often greatly deform veins, due to the thinness of their walls; thus, diameter measurements taken after India ink injection are of little value and are often lower than those obtained with vascular casts.”’.

damental to future neuroscientific applications of VASO. Furthermore, we found differences in 522 signal dynamics across time, space and stimulus duration for VASO and BOLD, which might 523 inform laminar models of the haemodynamic response. Finally, we found strong VASO signal 524 changes in superficial vessel-dominated, compared to gray matter voxels for short stimuli and 525 stronger gray matter activity for long stimuli, which gives fundamental insights into mechanisms 526 of the VASO contrast. 527

Acknowledgments

We thank Domenica Klank and her team of medical technical assistants at the Max Planck 528 Institute for Cognitive and Neuroscience in Leipzig for their help with participant handling, 529 booking and general assistance while scanning. We thank Rüdiger Stirnberg and Tony Stöcker 530 from DZNE in Bonn for sharing, optimizing, and supporting us with the 3D-EPI VASO 531 sequence used here. We thank Vojtěch Smekal, Till Steinbach and Maite van der Miesen for 532 helpful discussions on the manuscript. Special thanks goes to the remaining “Maastricht layer- 533 seminar” members Lonike Faes, Lasse Knudsen and Kenshu Koiso, for countless discussions on 534 topics related to layer-fMRI. Finally, we thank Kamil Uludag for the inspiring discussions on 535 neurovascular coupling. 537

SD is supported by the ‘Robin Hood’ fund of the Faculty of Psychology and Neuroscience 538 and the department of Cognitive Neuroscience. RG is partly funded by the European Research 539 Council Grant ERC-2010-AdG269853 and Human Brain Project Grant FP7-ICT-2013-FET- 540 F/604102. OFG is funded by Brain Innovation. NW has received funding from the European 541 Research Council under the European Union’s Seventh Framework Programme (FP7/2007- 542 2013) / ERC grant agreement n° 616905; from the European Union’s Horizon 2020 research and 543 innovation programme under the grant agreement No 681094; from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project no. 347592254 (WE 5046/4-2); from 544 the Federal Ministry of Education and Research (BMBF) under support code 01ED2210. AP 546 is funded by the EU-project H2020-860563 euSNN. Renzo Huber was supported by the NIMH 547 Intramural Research Program (#ZIAMH002783) and by NWO VENI project 016.Veni.198.032 548 during this project. 549

Data and Software availability statement

550

Analysis code is available on GitHub: <<https://github.com/sdres/neurovascularCouplingVA>> 551
SO>. Raw data is available on OpenNeuro: <[https://openneuro.org/datasets/ds004943/vers](https://openneuro.org/datasets/ds004943/versions/1.0.2) 552
ions/1.0.2>. 553

Declaration of interests

554

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. 555
556

Author Contributions

557

According to the CRediT (Contributor Roles Taxonomy) system. 558

558

Conceptualization	S.D. R.H. O.F.G. D.I. A.P. R.T. N.W. R.G.
Data curation	S.D. R.H. O.F.G. A.P. R.T. D.I.
Formal analysis	S.D.
Funding acquisition	R.G. N.W.
Investigation	S.D. R.H. R.T. R.G. A.P. O.F.G.
Methodology	S.D. R.H. O.F.G. D.I. R.G.
Project administration	S.D. R.H. R.G.
Resources	S.D. R.H. R.T. R.G. N.W.
Software	S.D. R.H. O.F.G. R.G.
Supervision	R.H. R.T. O.F.G. N.W. D.I. R.G.
Validation	S.D.
Visualization	S.D. R.H. O.F.G. A.P. D.I. R.G.
Writing - original draft	S.D.
Writing - review and editing	S.D. R.H. R.T. O.F.G. A.P. D.I. N.W. R.G.

559

References

Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. *NeuroImage*, 54(3), 2033–2044. <https://doi.org/10.1016/j.neuroimage.2010.09.025>

Bause, J., Polimeni, J. R., Stelzer, J., In, M.-H., Ehses, P., Kraemer-Fernandez, P., Aghaeifar, A., Lacosse, E., Pohmann, R., & Scheffler, K. (2020). Impact of prospective motion correction, distortion correction methods and large vein bias on the spatial accuracy of cortical laminar fMRI at 9.4 Tesla. *NeuroImage*, 208, 116434. <https://doi.org/10.1016/j.neuroimage.2019.116434>

Beckett, A. J., Dadakova, T., Townsend, J., Huber, L., Park, S., & Feinberg, D. A. (2020). Comparison of BOLD and CBV using 3D EPI and 3D GRASE for cortical layer functional MRI at 7 T [Publisher: John Wiley and Sons Inc.]. *Magnetic Resonance in Medicine*, 84(6), 3128–3145. <https://doi.org/10.1002/mrm.28347>

Bolan, P. J., Yacoub, E., Garwood, M., Ugurbil, K., & Harel, N. (2006). In vivo micro-MRI of intracortical neurovasculature. *NeuroImage*, 32(1), 62–69. <https://doi.org/10.1016/j.neuroimage.2006.03.027>

Bollmann, S., Mattern, H., Bernier, M., Robinson, S. D., Park, D., Speck, O., & Polimeni, J. R. (2022). Imaging of the pial arterial vasculature of the human brain in vivo using high-resolution 7T time-of-flight angiography. *eLife*, 11, e71186. <https://doi.org/10.7554/elife.71186>

Chai, Y., Li, L., Huber, L., Poser, B. A., & Bandettini, P. A. (2020). Integrated VASO and perfusion contrast: A new tool for laminar functional MRI [Publisher: Elsevier Ltd]. *NeuroImage*, 207(November 2019), 116358. <https://doi.org/10.1016/j.neuroimage.2019.116358>

Chaimow, D., Dresbach, S., & Huber, L. (2019). Technical aspects of the BOLD correction in SS-SI VASO. Retrieved November 9, 2023, from <https://layerfmri.com/2019/08/12/baddi/>

Chen, X., Jiang, Y., Choi, S., Pohmann, R., Scheffler, K., Kleinfeld, D., & Yu, X. (2021). Assessment of single-vessel cerebral blood velocity by phase contrast fMRI (A. Das, Ed.). *PLOS Biology*, 19(9), e3000923. <https://doi.org/10.1371/journal.pbio.3000923>

Chen, X., Sobczak, F., Chen, Y., Jiang, Y., Qian, C., Lu, Z., Ayata, C., Logothetis, N. K., & Yu, X. (2019). Mapping optogenetically-driven single-vessel fMRI with concurrent neuronal calcium recordings in the rat hippocampus. *Nature Communications*, 10(1), 5239. <https://doi.org/10.1038/s41467-019-12850-x>

Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. *Computers and Biomedical Research*, 29(3), 162–173. <https://doi.org/10.1006/cbmr.1996.0014>

de Oliveira, I. A. F., Siero, J. C. W., Dumoulin, S. O., & van der Zwaag, W. (2023). Improved Selectivity in 7 T Digit Mapping Using VASO-CBV. *Brain Topography*, 36(1), 23–31. <https://doi.org/10.1007/s10548-022-00932-x>

Devi, R., Mildner, T., Schlumm, T., & Möller, H. E. (2022). CBV-Based fMRI at 3T with SS-SI-VASO: Multi-Echo DEPICTING vs Multi-Echo EPI. *Proceedings of the International Society of Magnetic Resonance in Medicine*, p. 2111.

Donahue, M. J., Lu, H., Jones, C. K., Edden, R. A., Pekar, J. J., & Van Zijl, P. C. (2006). Theoretical and experimental investigation of the VASO contrast mechanism [Publisher: John Wiley and Sons Inc.]. *Magnetic Resonance in Medicine*, 56(6), 1261–1273. <https://doi.org/10.1002/mrm.21072>

Dresbach, S., Huber, L. (, Gulban, O. F., & Goebel, R. (2023). Layer-fMRI VASO with short stimuli and event-related designs at 7 T. *NeuroImage*, 279, 120293. <https://doi.org/10.1016/j.neuroimage.2023.120293>

Dumoulin, S. O., Fracasso, A., van der Zwaag, W., Siero, J. C., & Petridou, N. (2018). Ultra-high field MRI: Advancing systems neuroscience towards mesoscopic human brain function [Publisher: Elsevier]. *NeuroImage*, 168(September 2016), 345–357. <https://doi.org/10.1016/j.neuroimage.2017.01.028>

Duvernoy, H. M., Delon, S., & Vannson, J. L. (1981). Cortical blood vessels of the human brain. *Brain Research Bulletin*, 7(5), 519–579. [https://doi.org/10.1016/0361-9230\(81\)90007-1](https://doi.org/10.1016/0361-9230(81)90007-1)

Faes, L. K., De Martino, F., & Huber, L. ((2023). Cerebral blood volume sensitive layer-fMRI in the human auditory cortex at 7T: Challenges and capabilities (J. Ahveninen, Ed.). *PLOS ONE*, 18(2), e0280855. <https://doi.org/10.1371/journal.pone.0280855>

Genois, É., Gagnon, L., & Desjardins, M. (2021). Modeling of vascular space occupancy and BOLD functional MRI from first principles using real microvascular angiograms. *Magnetic Resonance in Medicine*, 85(1), 456–468. <https://doi.org/10.1002/mrm.28429>

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C. F., Jenkinson, M., Smith, S. M., & Van Essen, D. C. (2016). A multi-modal parcellation of human cerebral cortex. *Nature*, 536(7615). <https://doi.org/10.1038/nature18933>

Goebel, R. (2012). BrainVoyager — Past, present, future. *NeuroImage*, 62(2), 748–756. <https://doi.org/10.1016/j.neuroimage.2012.01.083>

Gulban, O. F., Bollmann, S., Huber, L. (, Wagstyl, K., Goebel, R., Poser, B. A., Kay, K., & Ivanov, D. (2022). Mesoscopic in vivo human T 2 * dataset acquired using quantitative MRI at 7 Tesla. *NeuroImage*, 264, 119733. <https://doi.org/10.1016/j.neuroimage.2022.119733>

Haenelt, D., Chaimow, D., Nasr, S., Weiskopf, N., & Trampel, R. (2023, September). *Decoding of columnar-level organization across cortical depth using BOLD- and CBV-fMRI at 7 T* (preprint). Neuroscience. <https://doi.org/10.1101/2023.09.28.560016>

Handwerker, D. A., Huber, L. (, Puja, P., Gutierrez, B., Gonzalez-Castillo, J., & Bandettini, P. A. (2016). Cerebrovascular changes during the valsalva maneuver measured with VASO, #4298.

Harel, N., Bolan, P. J., Turner, R., Ugurbil, K., & Yacoub, E. (2010). Recent Advances in High-Resolution MR Application and Its Implications for Neurovascular Coupling Research. *Frontiers in Neuroenergetics*, 2. <https://doi.org/10.3389/fnene.2010.00130>

Hua, J., Jones, C. K., Qin, Q., & van Zijl, P. C. M. (2013). Implementation of vascular-space-occupancy MRI at 7T: 3D MT-VASO MRI at 7T. *Magnetic Resonance in Medicine*, 69(4), 1003–1013. <https://doi.org/10.1002/mrm.24334>

Huber, L., Handwerker, D. A., Jangraw, D. C., Chen, G., Hall, A., Stüber, C., Gonzalez-Castillo, J., Ivanov, D., Marrett, S., Guidi, M., Goense, J., Poser, B. A., & Bandettini, P. A. (2017). High-Resolution CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in Human M1. *Neuron*, 96(6), 1253–1263.e7. <https://doi.org/10.1016/j.neuron.2017.11.005>

Huber, L., Ivanov, D., Krieger, S. N., Streicher, M. N., Mildner, T., Poser, B. A., Möller, H. E., & Turner, R. (2014). Slab-selective, BOLD-corrected VASO at 7 tesla provides measures of cerebral blood volume reactivity with high signal-to-noise ratio. *Magnetic Resonance in Medicine*, 72(1), 137–148. <https://doi.org/10.1002/mrm.24916>

Huber, L., Uludağ, K., & Möller, H. E. (2019). Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2. *NeuroImage*, 197(February 2017), 742–760. <https://doi.org/10.1016/j.neuroimage.2017.07.041>

Huber, L. (2014). *Mapping Human Brain Activity by Functional Magnetic Resonance Imaging of Blood Volume* [Doctoral dissertation, University of Leipzig]. [https://ul.qucosa.de/landing-page/?tx_dlf\[id\]=https%3A%2F%2Ful.qucosa.de%2Fapi%2Fqucosa%253A13259%2Fmets](https://ul.qucosa.de/landing-page/?tx_dlf[id]=https%3A%2F%2Ful.qucosa.de%2Fapi%2Fqucosa%253A13259%2Fmets)

Huber, L. (2018a). Negative Voxels in VASO. Retrieved November 9, 2023, from <https://layerfmri.com/2018/08/07/pialvoxels/>

Huber, L. (2018b). SS-SI VASO pitfalls in visual cortex. Retrieved November 8, 2023, from <https://layerfmri.com/2018/04/12/ss-si-vaso-pitfalls-in-visual-cortex/>

Huber, L. (, Goense, J., Kennerley, A. J., Guidi, M., Trampel, R., Turner, R., & Möller, H. E. (2015). Micro- and Macrovascular Contributions to Layer-Dependent Blood Volume fMRI: A Multi-Modal, Multi-Species Comparison. *Proceedings of the International Society of Magnetic Resonance in Medicine*, p. 2114. <https://doi.org/https://doi.org/10.7490/f1000research.1114804.1>

Huber, L. (, Poser, B. A., Bandettini, P. A., Arora, K., Wagstyl, K., Cho, S., Goense, J., Nothnagel, N., Morgan, A. T., van den Hurk, J., Müller, A. K., Reynolds, R. C., Glen, D. R., Goebel, R., & Gulban, O. F. (2021a). LayNii: A software suite for layer-fMRI. *NeuroImage*, 237, 118091. <https://doi.org/10.1016/j.neuroimage.2021.118091>

Huber, L. (, Poser, B. A., Kaas, A. L., Fear, E. J., Dresbach, S., Berwick, J., Goebel, R., Turner, R., & Kennerley, A. J. (2021b). Validating layer-specific VASO across species [Publisher: Elsevier Inc.]. *NeuroImage*, 237(May), 118195. <https://doi.org/10.1016/j.neuroimage.2021.118195>

Huettel, S. A. (2012). Event-related fMRI in cognition. *NeuroImage*, 62(2), 1152–1156. <https://doi.org/10.1016/j.neuroimage.2011.08.113>

Jin, T., & Kim, S. G. (2008). Cortical layer-dependent dynamic blood oxygenation, cerebral blood flow and cerebral blood volume responses during visual stimulation. *NeuroImage*, 43(1), 1–9. <https://doi.org/10.1016/j.neuroimage.2008.06.029>

Jin, T., & Kim, S.-G. (2010). Change of the cerebrospinal fluid volume during brain activation investigated by T1-weighted fMRI. *NeuroImage*, 51(4), 1378–1383. <https://doi.org/10.1016/j.neuroimage.2010.03.047>

Kay, K., Jamison, K. W., Vizioli, L., Zhang, R., Margalit, E., & Ugurbil, K. (2019). A critical assessment of data quality and venous effects in sub-millimeter fMRI [Publisher: Elsevier Ltd]. *NeuroImage*, 189(June 2018), 847–869. <https://doi.org/10.1016/j.neuroimage.2019.02.006>

Kemper, V. G., De Martino, F., Emmerling, T. C., Yacoub, E., & Goebel, R. (2018). High resolution data analysis strategies for mesoscale human functional MRI at 7 and 9.4 T [Publisher: Elsevier]. *NeuroImage*, 164(April 2017), 48–58. <https://doi.org/10.1016/j.neuroimage.2017.03.058>

Kennerley, A. J., Harris, S., Bruyns-Haylett, M., Boorman, L., Zheng, Y., Jones, M., & Berwick, J. (2012). Early and late stimulus-evoked cortical hemodynamic responses provide insight into the neurogenic nature of neurovascular coupling [Publisher: Nature Publishing Group]. *Journal of Cerebral Blood Flow and Metabolism*, 32(3), 468–480. <https://doi.org/10.1038/jcbfm.2011.163>

Koiso, K., Müller, A. K., Akamatsu, K., Dresbach, S., Wiggins, C. J., Gulban, O. F., Goebel, R., Miyawaki, Y., & Poser, B. A. (2023). Acquisition and processing methods of whole-brain layer-fMRI VASO and BOLD: The Kenshu dataset. 3.

Koopmans, P. J., & Yacoub, E. (2019). Strategies and prospects for cortical depth dependent T2 and T2* weighted BOLD fMRI studies. *NeuroImage*, 197, 668–676. <https://doi.org/10.1016/j.neuroimage.2019.03.024>

Larson, T. C., Kelly, W. M., Ehman, R. L., & Wehrli, F. W. (1990). Spatial misregistration of vascular flow during MR imaging of the CNS: Cause and clinical significance. *American Journal of Roentgenology*, 155(5), 1117–1124. <https://doi.org/10.2214/ajr.155.5.212094>

Lu, H., Golay, X., Pekar, J. J., & Van Zijl, P. C. (2003). Functional magnetic resonance imaging based on changes in vascular space occupancy [Publisher: John Wiley and Sons Inc.]. *Magnetic Resonance in Medicine*, 50(2), 263–274. <https://doi.org/10.1002/mrm.10519>

Marques, J. P., Kober, T., Krueger, G., van der Zwaag, W., Van de Moortele, P. F., & Gruetter, R. (2010). MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field [Publisher: Elsevier Inc.]. *NeuroImage*, 49(2), 1271–1281. <https://doi.org/10.1016/j.neuroimage.2009.10.002>

Moerel, M., De Martino, F., Kemper, V. G., Schmitter, S., Vu, A. T., Uğurbil, K., Formisano, E., & Yacoub, E. (2018). Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field. *NeuroImage*, 164, 18–31. <https://doi.org/10.1016/j.neuroimage.2017.03.063>

Peirce, J. W. (2007). PsychoPy-Psychophysics software in Python. *Journal of Neuroscience Methods*, 162(1-2), 8–13. <https://doi.org/10.1016/j.jneumeth.2006.11.017>

Persichetti, A. S., Avery, J. A., Huber, L., Merriam, E. P., & Martin, A. (2020). Layer-Specific Contributions to Imagined and Executed Hand Movements in Human Primary Motor Cortex [Publisher: Elsevier Ltd.]. *Current Biology*, 1–5. <https://doi.org/10.1016/j.cub.2020.02.046>

the block design was used to verify that the design is not screwed up by the event related setup.

Piechnik, S., Evans, J., Bary, L., Wise, R., & Jezzard, P. (2009). Functional changes in CSF volume estimated using measurement of water T_2 relaxation. *Magnetic Resonance in Medicine*, 61(3), 579–586. <https://doi.org/10.1002/mrm.21897>

Pizzuti, A., Huber, L. (, Gulban, O. F., Benitez-Andonegui, A., Peters, J., & Goebel, R. (2023). Imaging the columnar functional organization of human area MT+ to axis-of-motion stimuli using VASO at 7 Tesla. *Cerebral Cortex*, bhad151. <https://doi.org/10.1093/cercor/bhad151>

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. *NeuroImage*, 59(3), 2142–2154. <https://doi.org/10.1016/j.neuroimage.2011.10.018>

Stirnberg, R., & Stöcker, T. (2021). Segmented K-space blipped-controlled aliasing in parallel imaging for high spatiotemporal resolution EPI. *Magnetic Resonance in Medicine*, 85(3), 1540–1551. <https://doi.org/10.1002/mrm.28486>

Talagala, S. L., Sarlls, J. E., Liu, S., & Inati, S. J. (2016). Improvement of temporal signal-to-noise ratio of GRAPPA accelerated echo planar imaging using a FLASH based calibration scan [Publisher: John Wiley and Sons Inc]. *Magnetic Resonance in Medicine*, 75(6), 2362–2371. <https://doi.org/10.1002/mrm.25846>

Tian, P., Teng, I. C., May, L. D., Kurz, R., Lu, K., Scadeng, M., Hillman, E. M., De Crespigny, A. J., D'Arceuil, H. E., Mandeville, J. B., Marota, J. J., Rosen, B. R., Liu, T. T., Boas, D. A., Buxton, R. B., Dale, A. M., & Devor, A. (2010). Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal. *Proceedings of the National Academy of Sciences of the United States of America*, 107(34), 15246–15251. <https://doi.org/10.1073/pnas.1006735107>

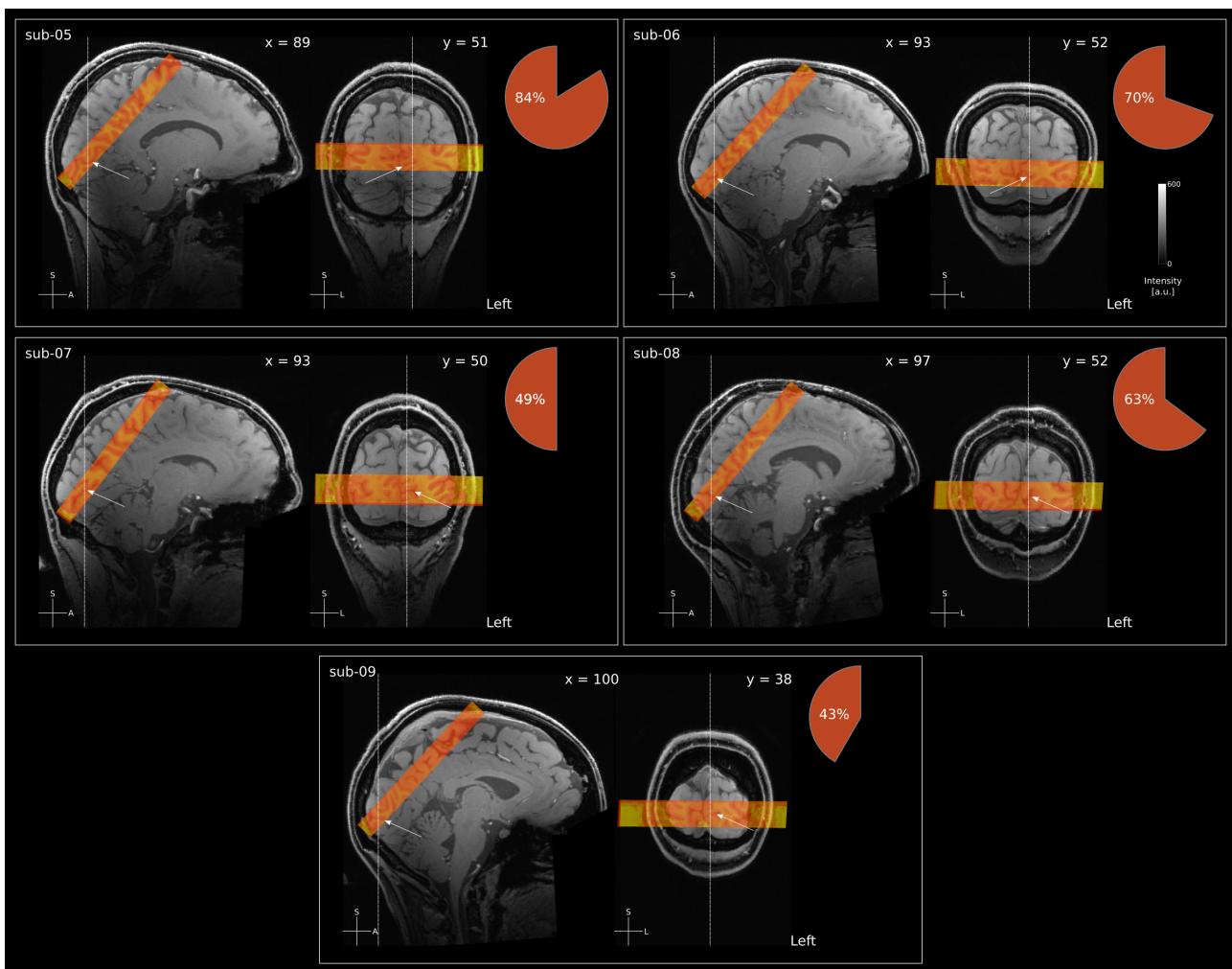
Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 bias correction. *IEEE Transactions on Medical Imaging*. <https://doi.org/10.1109/TMI.2010.2046908>

Venzi, M., Whittaker, J., Huber, L. (, & Murphy, K. (2019). VASO signal decreases associated with BOLD increases: A possible role of CSF volume redistribution. *Proceedings of the International Society of Magnetic Resonance in Medicine*, #3725.

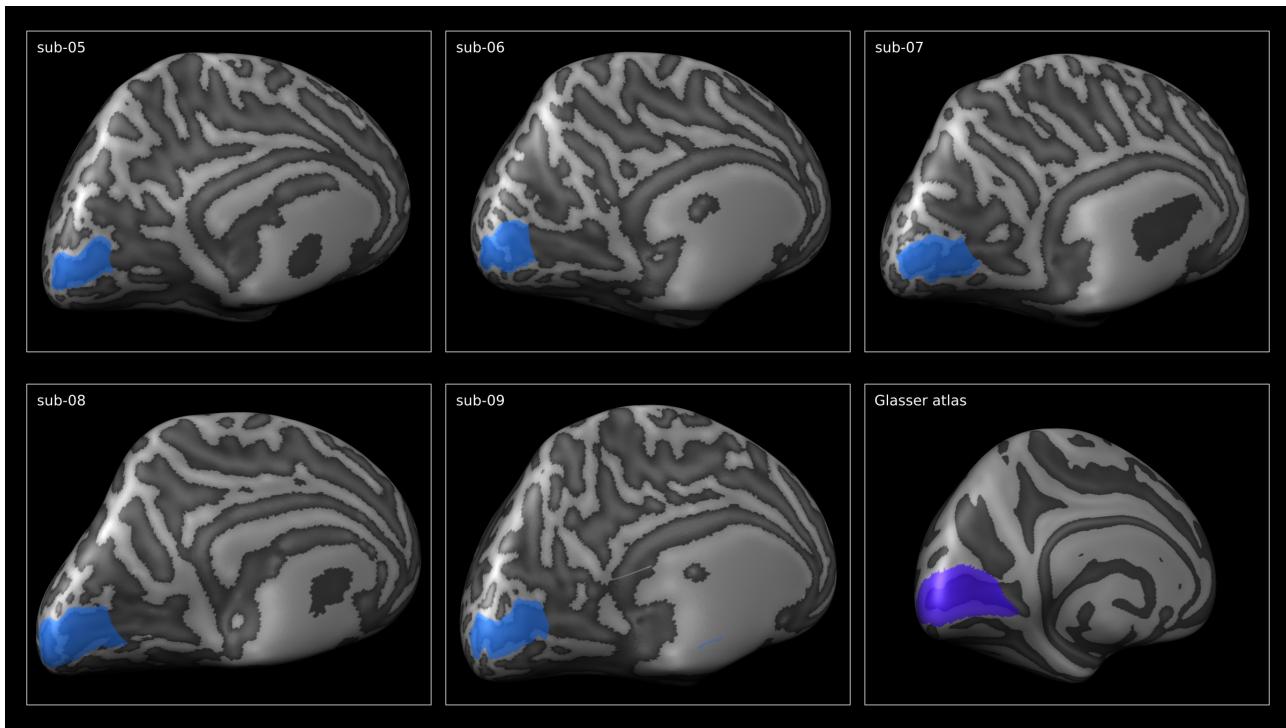
Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal autocorrelation in univariate linear modeling of fMRI data [Publisher: Academic Press Inc.]. *NeuroImage*, 14(6), 1370–1386. <https://doi.org/10.1006/nimg.2001.0931>

Wu, C. W., Liu, H.-L., Chen, J.-H., & Yang, Y. (2010). Effects of CBV, CBF, and blood-brain barrier permeability on accuracy of PASL and VASO measurement: Accuracy of PASL and VASO Measurements. *Magnetic Resonance in Medicine*, 63(3), 601–608. <https://doi.org/10.1002/mrm.22165>

Yu, X., Glen, D., Wang, S., Dodd, S., Hirano, Y., Saad, Z., Reynolds, R., Silva, A. C., & Koretsky, A. P. (2012). Direct imaging of macrovascular and microvascular contributions to BOLD fMRI in layers IV–V of the rat whisker–barrel cortex. *NeuroImage*, 59(2), 1451–1460. <https://doi.org/10.1016/j.neuroimage.2011.08.001>

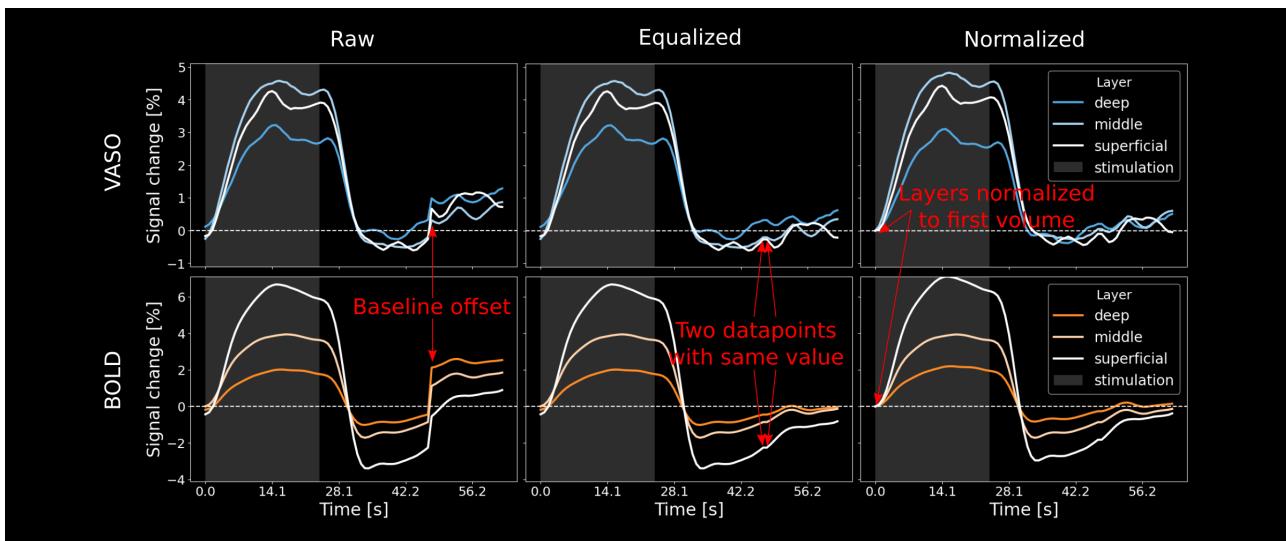

Yu, X., He, Y., Wang, M., Merkle, H., Dodd, S. J., Silva, A. C., & Koretsky, A. P. (2016). Sensory and optogenetically driven single-vessel fMRI. *Nature Methods*, 13(4), 337–340. <https://doi.org/10.1038/nmeth.3765>

Yu, Y., Huber, L., Yang, J., Jangraw, D. C., Handwerker, D. A., Molfese, P. J., Chen, G., Ejima, Y., Wu, J., & Bandettini, P. A. (2019). Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex. *Science Advances*, 5(5), 1–10. <https://doi.org/10.1126/sciadv.aav9053>


Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. *NeuroImage*, 31(3), 1116–1128. <https://doi.org/10.1016/j.neuroimage.2006.01.015>

Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. *IEEE Transactions on Medical Imaging*. <https://doi.org/10.1109/42.906424>

Supplementary Materials


Figure S1: Functional data coverage for all participants. White arrows indicate location of the calcarine sulcus, based on anatomical landmarks. Because of the small FOV and number of slices, it was not always possible to include the entire calcarine sulcus without foldover. For example in participant sub-09, the sulcus folded down from the opening. The pie chart indicates an estimate of the percentage of V1 that was covered for a given participant.

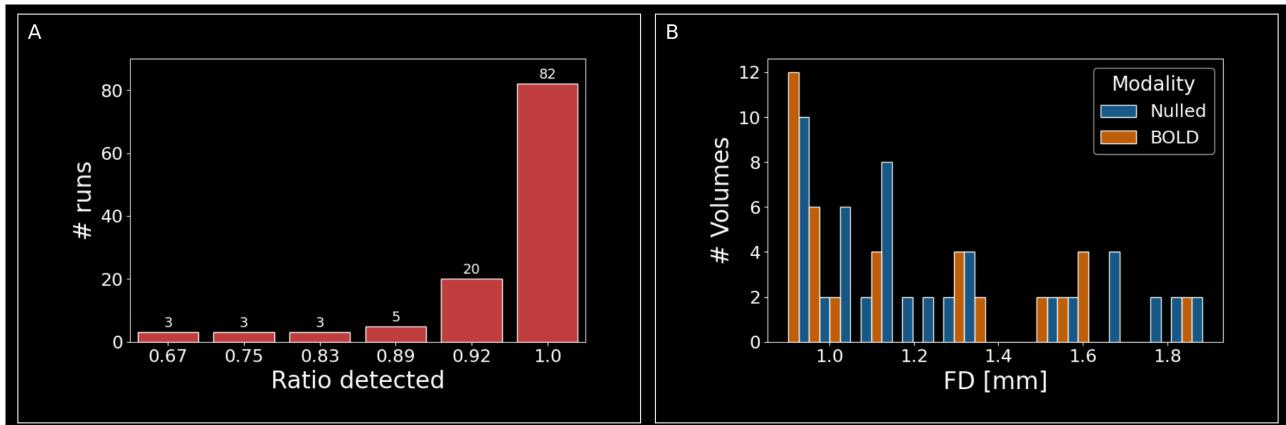
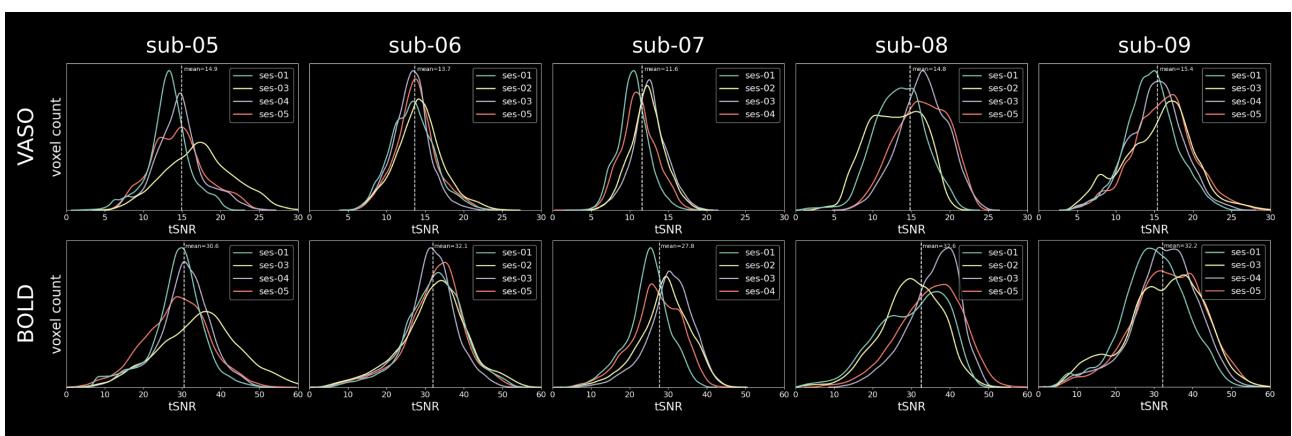
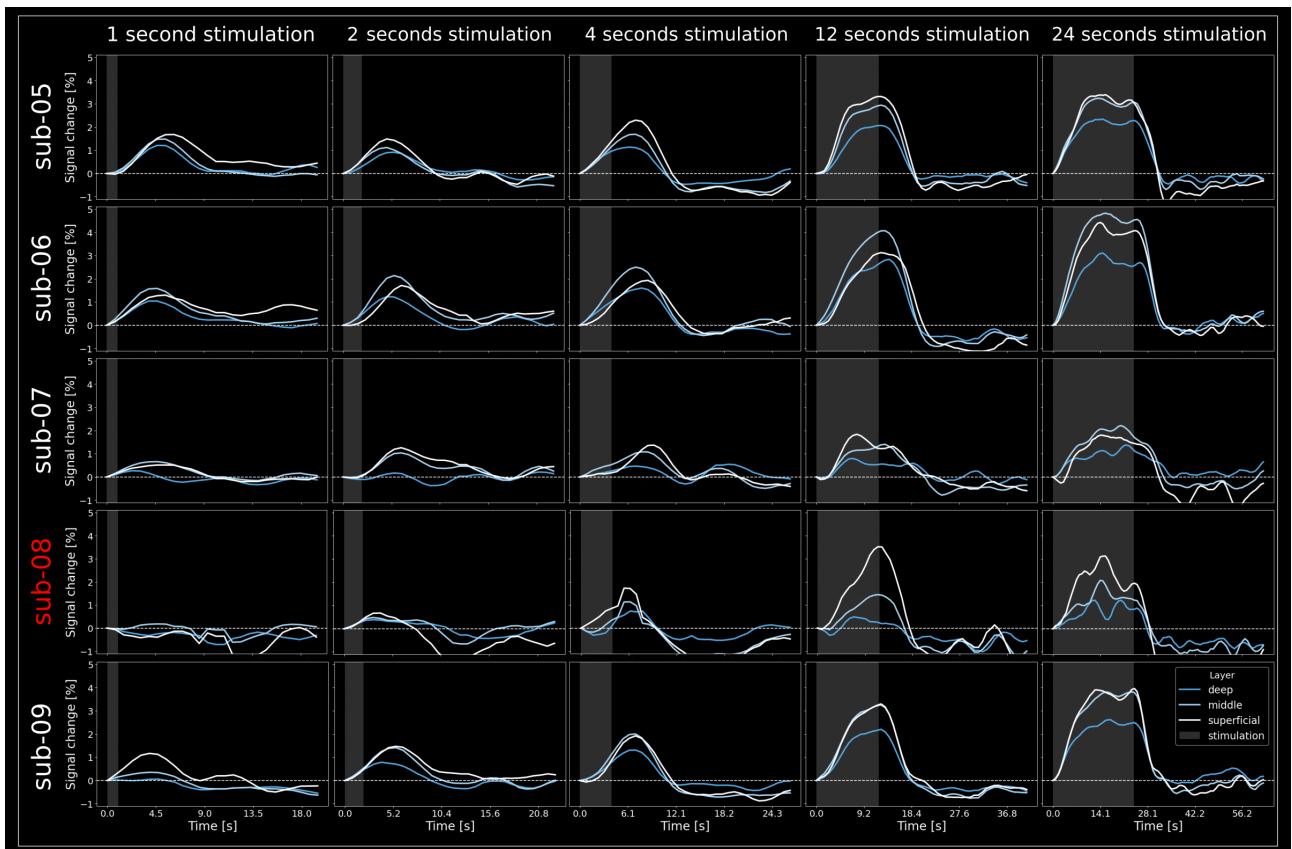
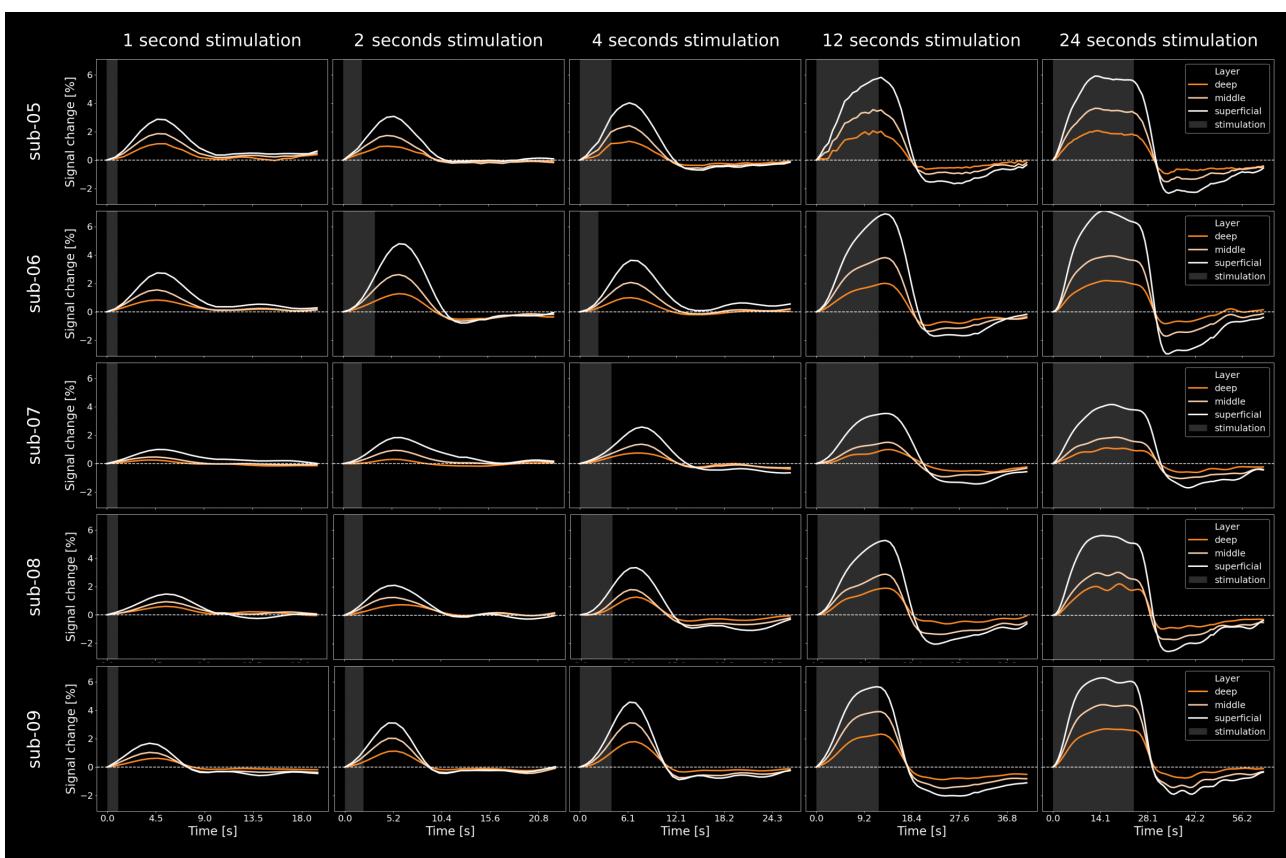
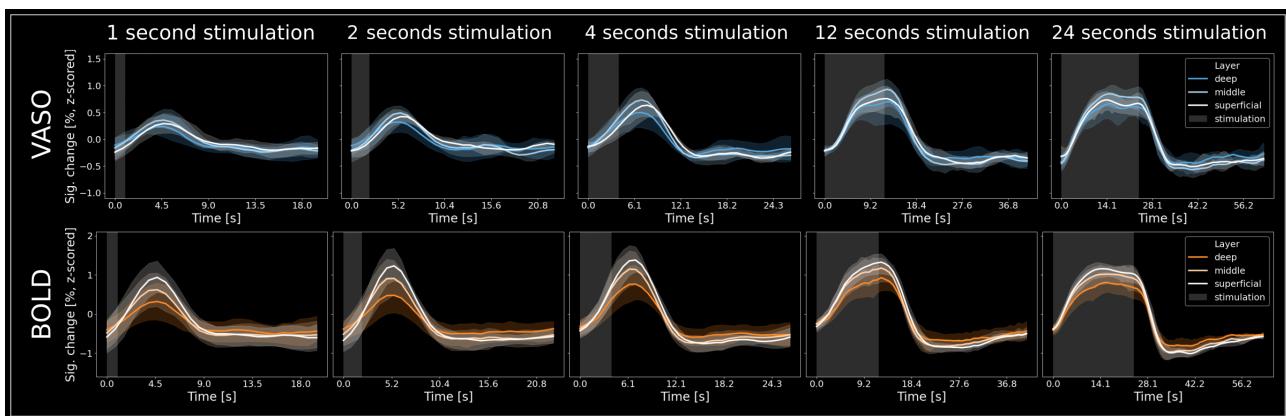

Figure S2: Outline of the posterior calcarine sulcus for all participants. Based on the Glasser atlas, we drew manual outlines of the calcarine sulcus (indicating V1) on the inflated cortical surface for all participants. These patches were used to estimate the overlap between the functional coverage and V1 (see **Supplementary Figure S1**). Furthermore, we used them to visually ensure that our ROIs were located in V1.

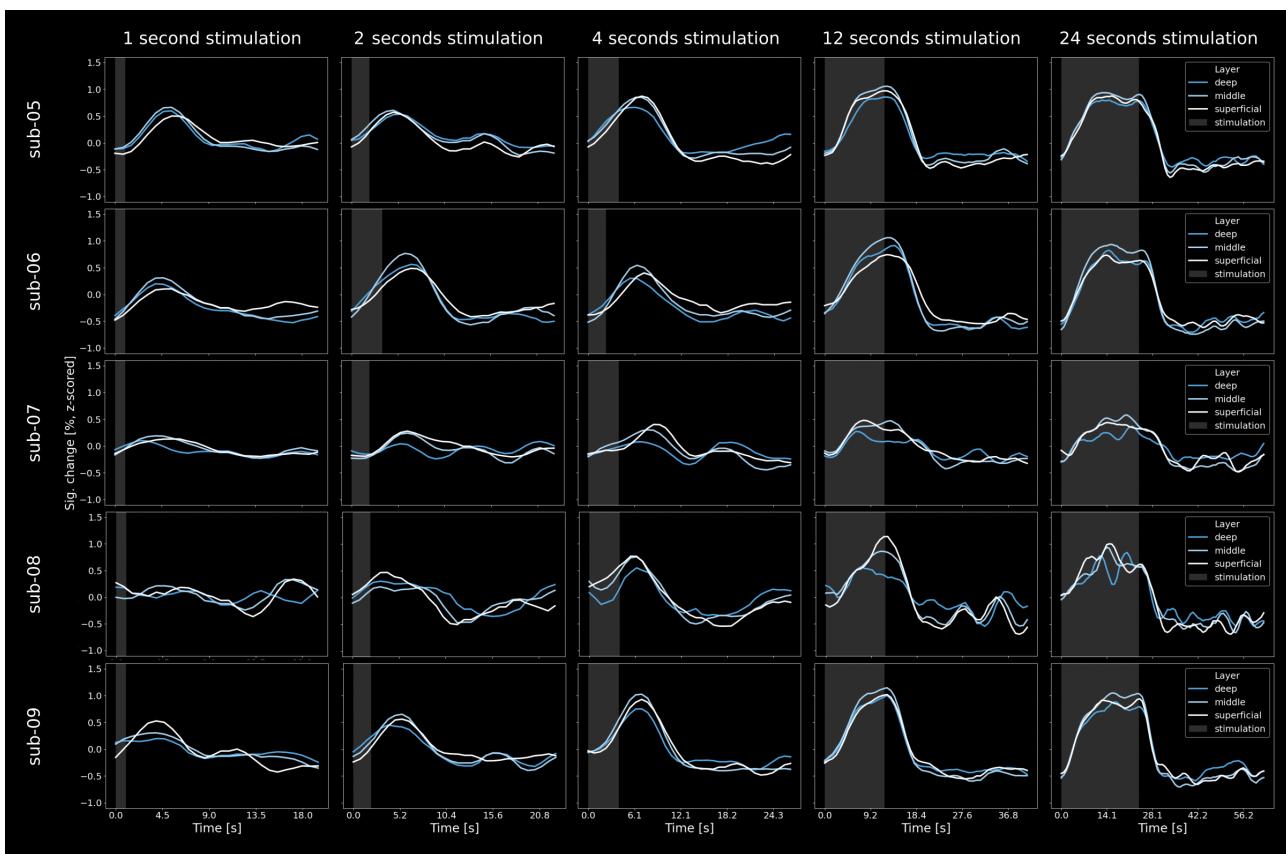
Table S1: Session overview of participants.

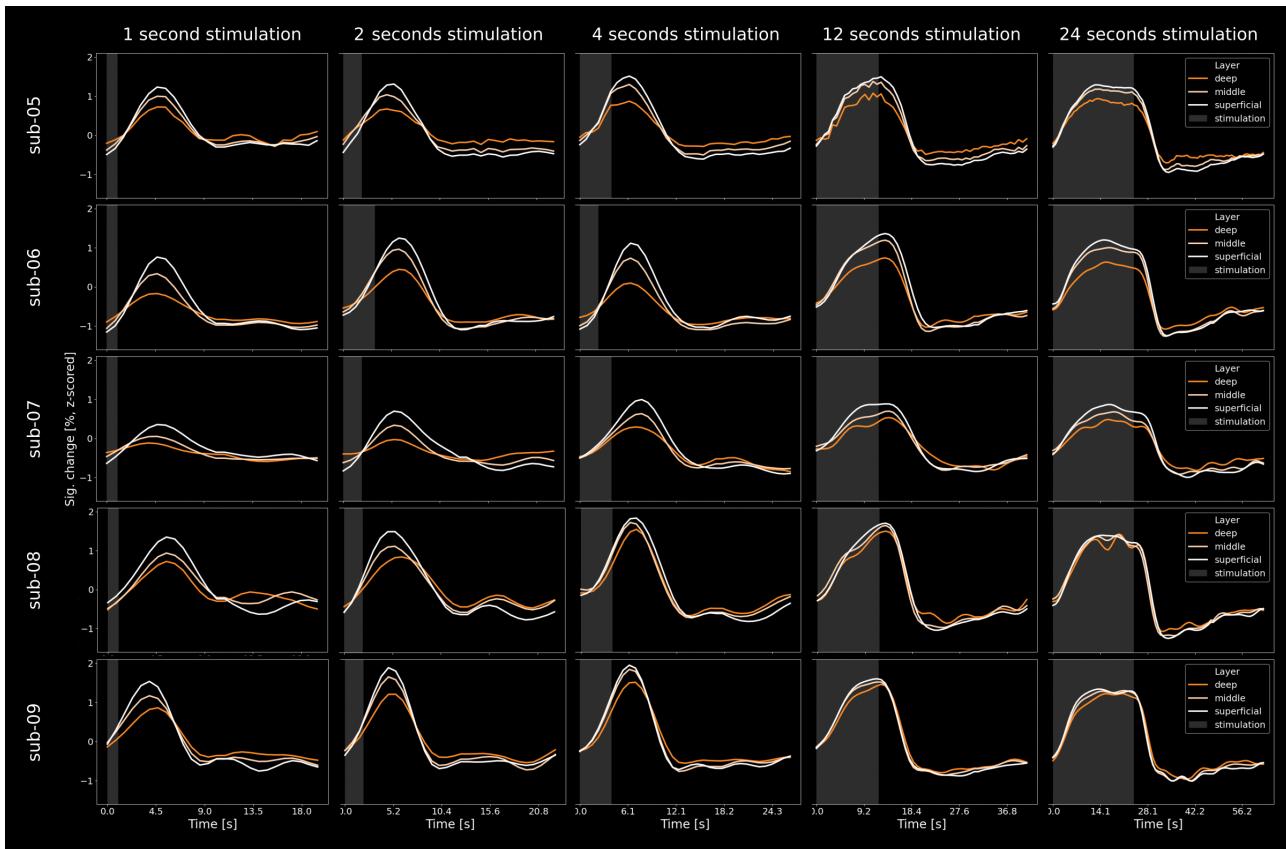

Participant	Session 1	Session 2	Session 3	Session 4	Session 5	Number func. runs
sub-01- sub-04	Pilot	-	-	-	-	-
sub-05	MP2RAGE 5 short ITI	MP2RAGE ME-GRE	7 short ITI	6 long ITI	6 long ITI	12 short ITI 12 long ITI
sub-06	MP2RAGE 6 short ITI	7 short ITI	6 long ITI	MP2RAGE ME-GRE	6 long ITI	13 short ITI 12 long ITI
sub-07	MP2RAGE 5 short ITI	6 long ITI	6 long ITI	6 long ITI	MP2RAGE ME-GRE	5 short ITI 18 long ITI
sub-08	MP2RAGE 4 long ITI	6 long ITI	5 long ITI	MP2RAGE ME-GRE	6 long ITI	21 long ITI
sub-09	MP2RAGE 5 long ITI	ME-GRE	7 short ITI	6 long ITI	6 long ITI	23 long ITI

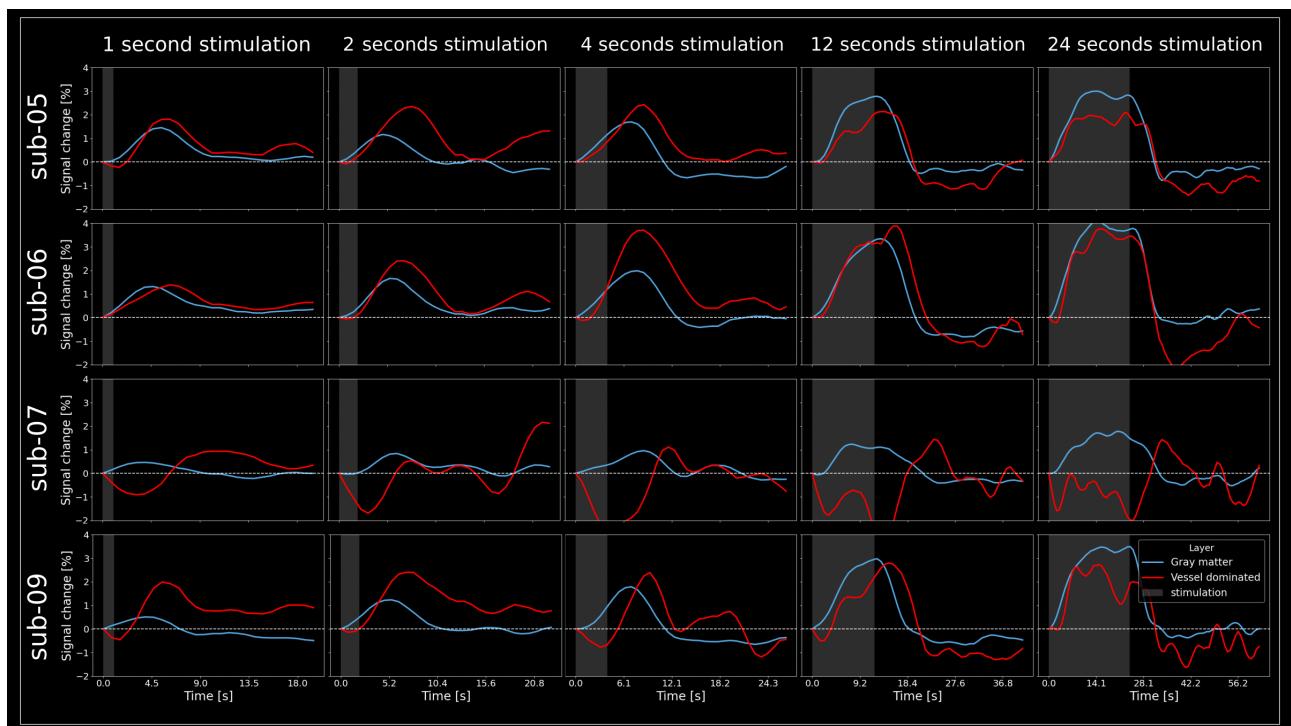

Figure S3: Equalization and normalization procedure. Left: VASO and BOLD ERAs for one individual participant (sub-06) in terms of raw extracted % signal change. A shift in baseline is clearly visible between sessions with short to long ITIs. Middle: Volumes with long ITIs were matched with the last time point of the short ITI sessions. This leads to two timepoints with the same value. Right: Finally, we set the first volume of each layer to 0 and adjusted all remaining volumes accordingly.


Figure S4: Attention-task performance and motion. **A** Number of targets detected divided by the total number of targets per run. Performance was high overall, with only a limited number of runs in which multiple targets were undetected. **B** Distribution of volumes with FD ≥ 0.9 mm across BOLD and nulled acquisitions. We acquired a total of 117088 volumes (nulled and BOLD combined). Only 92 volumes ($\approx 0.08\%$) showed framewise displacements (FDs) greater than our voxel size (0.9 mm). 40 (in 16 individual runs) of those were in BOLD and 52 (in 12 individual runs) were in nulled time series and FD never exceeded 1.88 mm. We therefore did not exclude any data based on motion.


Figure S5: VASO and BOLD tSNR for each participant and session individually. VASO and BOLD tSNR values are mostly uniform across sessions with minor differences between participants. Values were extracted from the same regions of interest as GLM results and signal changes


Figure S6: VASO results of individual participants.. Same as **Figure 3B** but for all participants individually. Data averaged across all sessions and normalized to zero to the first datapoint for each layer. Note that participant sub-08 did not show any activation in response to stimulation of 1 second and only weak activation in response to 2 second stimulation. This prohibits some of the normalization procedures conducted in this study (e.g. division by zero for data in **Figure 7**). Therefore, we excluded this participant in the group average plots.


Figure S7: BOLD results of individual participants. BOLD results of individual participants. Same as Figure 3B but for all participants individually. Data averaged across all sessions and normalized to zero to the first datapoint for each layer.


Figure S8: Group-level VASO and BOLD (z-scored). Same as Figure 3B but z-scored.

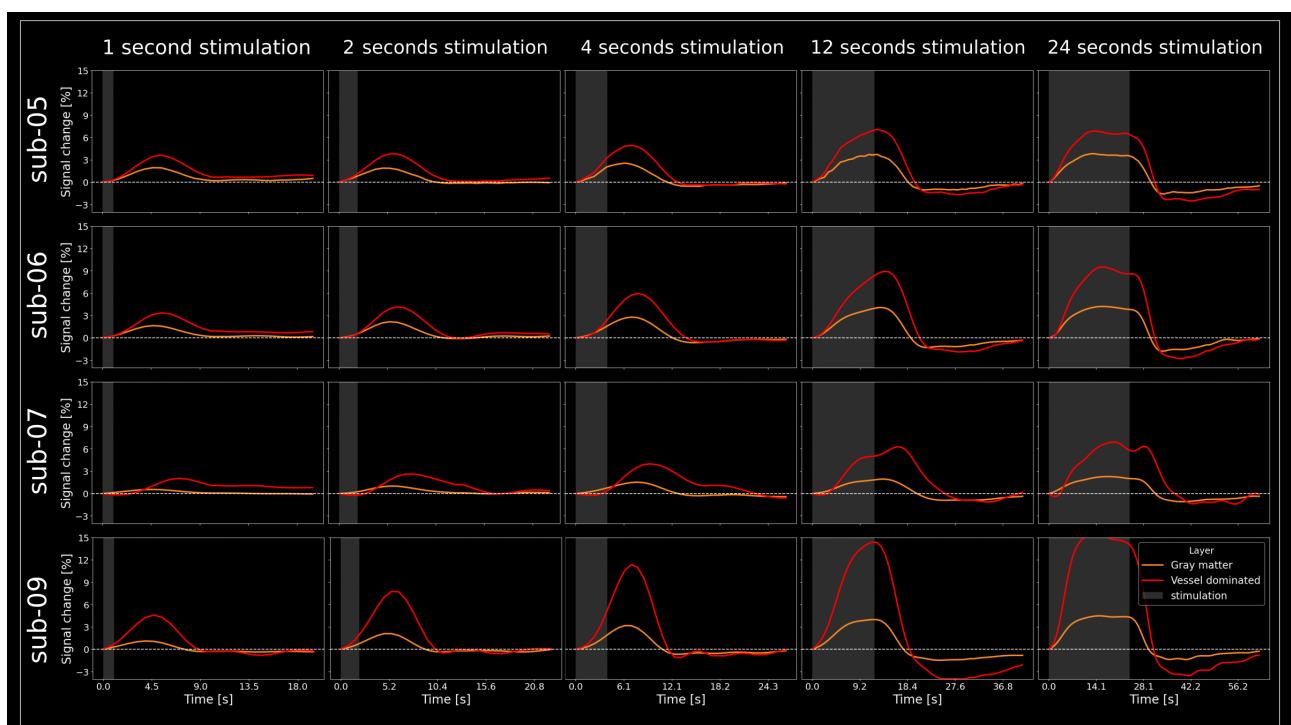

Figure S9: Z-scored VASO results of individual participants. Same as Figure S6 but with z-scored signal changes.

Figure S10: Z-scored BOLD results of individual participants. Same as Figure S7 but with z-scored signal changes.

Figure S11: VASO responses in vessel dominated and gray matter voxels of individual participants. Supplement to Figure 6

Figure S12: VASO responses in vessel dominated and gray matter voxels of individual participants. Supplement to Figure 6

BrainVoyager pipeline for surface reconstruction

We applied the following BrainVoyager pipeline to generate inflated cortical surfaces for all participants. A video description can be found here: <https://www.youtube.com/watch?v=5Ik71Y_cLS8&ab_

1. MP2RAGE denoising
2. Brain extraction (mask size: -10)
3. Mask smoothing (FWHM 10 mm gaussian)
4. Erode mask (2 steps)
5. Intensity inhomogeneity correction
6. Iso voxeling to 0.5 mm isotropic resolution
7. ACPC transformation
8. Set Talairach box without interpolation
9. Label ventricles as WM (using talairach definition)
10. Remove cerebellum (using talairach definition)
11. Tissue contrast enhancement using sigma filter
12. Calculate gradients file
13. Adaptive wm-gm segmentation
14. Polish
15. Estimate GM (not crucial)
16. Disconnect hemispheres
17. Run bridge removal tool (for details, see Kriegeskorte & Goebel, 2001)
18. Reconstruct surface mesh
19. Mesh smoothing
20. Mesh simplification (80k vertices)