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Abstract 1 

The unicellular eukaryote Paramecium tetraurelia contains functionally distinct nuclei: 2 

germline micronuclei (MICs) and a somatic macronucleus (MAC). During sexual 3 

reproduction, the MIC genome is reorganized into a new MAC genome and the old 4 

MAC is lost. Almost 45,000 unique Internal Eliminated Sequences (IESs) distributed 5 

throughout the genome require precise excision to guarantee a functional new MAC 6 

genome. Here, we characterize a pair of paralogous PHD finger proteins involved in 7 

DNA elimination. DevPF1, the early-expressed paralog, is present in only some of the 8 

gametic and post-zygotic nuclei during meiosis. Both DevPF1 and DevPF2 localize in 9 

the new developing MACs, where IESs excision occurs. In DevPF2 knockdown (KD) 10 

long IESs are preferentially retained and late-expressed small RNAs decrease; no 11 

length preference for retained IESs was observed in DevPF1-KD and development-12 

specific small RNAs were abolished. The expression of at least two genes from the new 13 

MAC with roles in genome reorganization seems to be influenced by DevPF1- and 14 

DevPF2-KD. Thus, both PHD fingers are crucial for new MAC genome development, 15 

with distinct functions, potentially via regulation of non-coding and coding transcription 16 

in the MICs and new MACs. 17 

 18 

Introduction 19 

A unique feature shared by all ciliates is the presence of nuclear dimorphism. In 20 

Paramecium tetraurelia (henceforth Paramecium) the two micronuclei (MICs) resemble 21 

the germline of multicellular organisms, being transcriptionally silent throughout most of 22 

the life cycle and generating haploid nuclei during meiosis that develop and give rise to 23 

all nuclei in the subsequent generation. Also similar to the multicellular soma, the 24 

macronucleus (MAC) is optimized for most gene expression, and originates from a MIC 25 

copy. The old MAC is fragmented during sexual division and subsequently diluted 26 

across cell divisions, with the new MAC completely taking over somatic expression. The 27 

development from the MIC genome to the MAC genome in Paramecium is a natural 28 
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form of genome editing that requires extensive reorganization, including genome 29 

amplification (~800n), chromosome fragmentation and the elimination of about 25% of 30 

the sequence content (Arnaiz et al., 2012; Guérin et al., 2017). These MIC genome-31 

specific sequences comprise repeats, transposable elements and Internal Eliminated 32 

Sequences (IESs).  33 

 34 

In contrast to other elimination events, IES elimination requires precise excision in 35 

Paramecium. Precise IES excision is not characteristic of all ciliates. Notably, in 36 

Paramecium’s oligohymenophorean relative Tetrahymena, IESs are predominantly 37 

imprecisely excised and only tolerated in intergenic regions (Hamilton et al., 2016). The 38 

roughly 45,000 IESs in Paramecium are scattered throughout the genome in both non-39 

coding and coding regions and vary from tens to thousands of base pairs in length 40 

(Arnaiz et al., 2012). Since the coding density of the Paramecium MAC genome is high, 41 

most IESs are intragenic (Arnaiz et al., 2012). Paramecium IESs are flanked by 42 

conserved 5’-TA-3’ dinucleotides (Klobutcher & Herrick, 1995) and excised by 43 

PiggyMAC (Pgm). Pgm is a domesticated transposase derived from PiggyBac 44 

transposases (Baudry et al., 2009) like the excisase responsible for IES excision in 45 

Tetrahymena (Cheng et al., 2010). The weakly conserved ~5 bp long inverted repeats at 46 

Paramecium IES ends (Klobutcher & Herrick, 1995) fail to provide enough specificity for 47 

reliable Pgm recruitment (Arnaiz et al., 2012). This suggests that other factors are 48 

needed for precise IES targeting.  49 

 50 

The targeting of MIC-specific sequences for elimination is thought to be assisted by 51 

small non-coding RNAs, first characterized in Tetrahymena (Chalker & Yao, 2001; 52 

Mochizuki et al., 2002). Like Tetrahymena, the biogenesis of the 25 nucleotide (nt) scan 53 

RNAs (scnRNAs) occurs during meiosis in the Paramecium MICs. Bidirectional non-54 

coding transcription of the MIC genome is thought to be initiated by the putative 55 

transcription elongation factor Spt5m (Gruchota et al., 2017) and followed by the 56 

cleavage of long double-stranded RNA (dsRNA) by the closely related Dicer-like protein 57 

paralogs Dcl2 and Dcl3 (Hoehener et al., 2018; Lepère et al., 2009; Sandoval et al., 58 

2014). Argonaute/Piwi proteins Ptiwi01/09 (also close paralogs) process the resulting 59 
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short dsRNAs, removing one of the two strands, and stabilize single-stranded scnRNAs 60 

throughout the selection process in the parental MAC and targeting of MIC-specific 61 

sequences in the new MACs (Bouhouche et al., 2011; Furrer et al., 2017). In the 62 

parental MAC, Gtsf1 was recently proposed to promote ubiquitination and subsequent 63 

degradation of the Ptiwi01/09 complexes harboring MAC-matching scnRNAs (Charmant 64 

et al., 2023; Wang et al., 2023). In the new MACs, the putative transcription elongation 65 

factor TFIIS4 was proposed to promote non-coding transcription required for scanning 66 

the developing genome (Maliszewska-Olejniczak et al., 2015).  67 

 68 

In Tetrahymena, H3K9 and H3K27 methylation precede IES excision (Y. Liu et al., 2007; 69 

Taverna et al., 2002) and it was shown in Paramecium that development-specific 70 

H3K9me3 and H3K27me3 histone mark deposition by the PRC2 complex depends on 71 

scnRNAs and is essential for the elimination of transposons and IESs (Frapporti et al., 72 

2019; Ignarski et al., 2014; Lhuillier-Akakpo et al., 2014; Miró-Pina et al., 2022; Wang et 73 

al., 2022). We recently showed that the ISWI1 chromatin remodeling complex is 74 

necessary for IES excision precision and Ptiwi01/09 co-immunoprecipitated with ISWI1 75 

in a crosslinked treatment (Singh et al., 2022, 2023). After the initial onset of IES 76 

excision, additional single-stranded sRNAs, iesRNAs, ranging in size from ~26 to 30 bp, 77 

are produced by Dcl5 from excised IES fragments and stabilized on Ptiwi10/11 (Furrer 78 

et al., 2017; Sandoval et al., 2014). iesRNAs were proposed to participate in a positive 79 

feedback loop for the efficient removal of all IES copies (Sandoval et al., 2014). 80 

Nevertheless, only a fraction of IES excision appears to depend on scnRNAs or 81 

iesRNAs (Nowacki et al., 2005; Sandoval et al., 2014). 82 

 83 

Despite the knowledge gained in the past decades, the picture of IES excision is far 84 

from complete. To identify novel genes involved in IES excision, we examined proteins 85 

potentially associated with ISWI1, a chromatin remodeler we recently showed to 86 

facilitate precise IES excision (Singh et al., 2022).  87 

 88 

 89 

 90 
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Results 91 

Identification of a novel protein involved in IES excision 92 

Recently, we reported evidence supporting the formation of a protein complex involving 93 

ISWI1 and the ICOP proteins (Singh et al., 2023). We conducted an RNAi screen of 94 

additional genes that were unique in the ISWI1 co-immunoprecipitation (IP)-mass 95 

spectrometry (MS) and exhibited upregulation in a developmental gene expression time 96 

course from ParameciumDB (Arnaiz et al., 2017) (Fig. S1A).  97 

 98 

In the screening, we sought phenotypic evidence for failed genome reorganization in the 99 

form of growth defects (assessed by survival tests), and substantial IES retention 100 

(assessed by IES retention PCRs). ND7, a gene involved in trichocyst discharge 101 

(Lefort-Tran et al., 1981), was used as a negative control as its silencing does not impair 102 

genome reorganization (Nowacki et al., 2005). Nowa1-KD, which affects the excision of 103 

scnRNA-dependent IESs (Nowacki et al., 2005), was used as a positive control. 104 

Candidate 2 (PTET.51.1.G0620188) displayed both IES retention and lethality in the 105 

new progeny, whereas candidate 1 (PTET.51.1.G0990120) showed high lethality 106 

without IES retention (Fig. S1B,C). Therefore, candidate 2 was selected for further 107 

investigations.  108 

 109 

DevPF2 and DevPF1 are paralogous PHD finger proteins 110 

The Paramecium aurelia species complex, to which P. tetraurelia belongs, underwent 111 

multiple whole-genome duplications, with many closely related paralogs generated from 112 

the most recent of these (Sellis et al., 2021). The chosen candidate has a closely related 113 

paralog (PTET.51.1.G0240213) with which it shares 86.6% identity at both the 114 

nucleotide and amino acid levels. The paralog is upregulated during sexual 115 

development as well, although earlier (Fig. 1A). HMMER3 searches of the Pfam 116 

database (Finn et al., 2003) predicted two domains in both proteins: a PHD and a PHD 117 

zinc-finger-like domain (Fig. 1B,D,E).  118 
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 119 

The highly conserved PHD domain has often been reported to mediate the interaction of 120 

nuclear proteins with histone modifications (Sanchez & Zhou, 2011), but other binding 121 

affinities have also been described (see Discussion). PHD domains possess a well-122 

conserved motif consisting of eight cysteine and histidine residues (C4HC3) that 123 

coordinate two zinc ions, thereby providing it with structural stability. The presence of 124 

the C4HC3 motif in both paralogs was confirmed using a multiple sequence alignment 125 

with PHD domains from well-established PHD finger proteins from Homo sapiens and 126 

Drosophila melanogaster (Fig. 1C).  127 

 128 

AlphaFold2 predicted the structures of both paralogs with high confidence for the 129 

domains (Fig. 1F,G). We compared the PHD predictions with the published structure of 130 

the WSTF (Williams Syndrome Transcription Factor) PHD finger (Pascual et al., 2000). 131 

WSTF, associated with the Williams Syndrome (Lu et al., 1998), is a subunit of the 132 

ISWI-containing chromatin remodeling complex WICH (Bozhenok et al., 2002). The 133 

superimposition confirmed the orientation of the eight C4HC3 residues in the DevPFs 134 

towards the two zinc ions (Fig. 1H), supporting the idea that both paralogs function as 135 

PHD finger proteins. Since they show development-specific upregulation (Fig. 1A), we 136 

named the paralogs development-specific PHD finger 1 (DevPF1; early-expressed 137 

paralog) and 2 (DevPF2; late-expressed paralog). 138 

 139 

DevPF1 and DevPF2 show distinct nuclear localization 140 

To determine the localization of both paralogs, we injected DNA constructs encoding 141 

DevPF1 and 2 C-terminally tagged with green fluorescent protein (GFP) into MACs of 142 

vegetative paramecia. The cells were collected during Paramecium sexual development 143 

for confocal microscopy. The injected cultures displayed no growth defects compared to 144 

non-transformed cells (Fig. S2A). However, we observed variable numbers for gametic 145 

MICs (Figs 2, 3) and new MACs (Fig. S2C) in some cells, which has been observed 146 

frequently for transgenes (e.g, Nowa1-GFP fusion; (Nowacki et al., 2005)). 147 

 148 
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Consistent with DevPF1’s early peak in mRNA expression from the developmental time 149 

course in ParameciumDB, DevPF1-GFP was expressed during the onset of sexual 150 

development, but not in vegetative cells with food vacuoles containing bacteria (Figs 2A, 151 

S2B). DevPF1-GFP was distributed throughout the cytoplasm and localized in both 152 

MICs before and during the S-phase of meiosis, when these nuclei swell (Fig. 2A). 153 

Throughout the subsequent meiotic divisions, DevPF1-GFP localized to only a few of 154 

the gametic MICs (Fig. 3A). Its micronuclear localization appeared independent of 155 

nuclear division as detected by the presence of the spindle apparatus (Fig. 3A,B). 156 

During post-zygotic mitotic divisions, DevPF1-GFP was observable in certain post-157 

zygotic nuclei, but not in all of them (Fig. 3B). Later during development, DevPF1-GFP 158 

was present in the early new MACs and remained in the new MACs throughout 159 

development up to very late stages (Fig. 2A) despite the drop in its mRNA levels (Fig. 160 

1B). During new MAC development there was also comparatively little cytoplasmic 161 

DevPF1-GFP compared to that during meiosis. 162 

 163 

Consistent with its mRNA expression profile, DevPF2-GFP emerged after the onset of 164 

new MAC development and localized within the new MACs, where it remained up to the 165 

late stages (Fig. 2B). 166 

 167 

Silencing constructs partially co-silence both paralogs  168 

We utilized RNAi by feeding to investigate the influence of the DevPFs on IES excision. 169 

Two silencing regions were selected (a and b) on each DevPF1 and DevPF2 (Fig. 4A). 170 

Due to the lack of regions with sufficient specificity for either of the paralogs, co-171 

silencing was predicted (see Methods). Hence, we first experimentally verified the 172 

possibility of co-silencing with mRNA and protein levels using silencing region a, since it 173 

exhibited less off-target hits.  174 

 175 

The mRNA levels of DevPF1 and DevPF2 were examined during a time course 176 

experiment (more details and further analysis follow in subsequent sections) (Fig. 4B). 177 

Consistent with the published expression profiles (Arnaiz et al., 2017), DevPF1 178 
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expression in the ND7 control knockdown (KD) was highest during onset of 179 

development and gradually declined to almost no expression at the “very late” time 180 

point. The late-expressed DevPF2 peaked at the “late” time point in the control KD. The 181 

expression of both genes was strongly reduced upon their respective KDs (DevPF1 182 

mRNA levels were reduced upon DevPF1-KD; DevPF2 mRNA levels were reduced 183 

upon DevPF2-KD). A lesser reduction was also observed upon silencing of the 184 

respective paralog (DevPF1 levels were reduced in DevPF2-KD and vice versa). Thus, 185 

the DevPF1 and DevPF2 silencing constructs lead to co-silencing which is less efficient 186 

than the target gene silencing. 187 

 188 

To investigate how the changes in mRNA levels affect protein levels, we checked the 189 

localization of the GFP-tagged DevPFs upon KDs. Since DevPF1 is expressed 190 

throughout the whole development, multiple developmental time points were collected 191 

(Fig. S3A). For the late-expressed DevPF2, only cell stages with clearly visible new 192 

MACs were considered (Fig. S3B). In addition to ND7-KD, the knockdown of PGM, the 193 

gene encoding the PiggyMac IES excisase (Baudry et al., 2009), was performed to test 194 

whether the disturbance of IES excision alters DevPF localization. Neither the 195 

localization of DevPF1-GFP nor of DevPF2-GFP was impaired by either of the control 196 

KDs. In contrast, the GFP signals were almost completely lost upon DevPF1- or 197 

DevPF2-KD. To quantify this observation, GFP fluorescence signals were measured in 198 

new MACs (Fig. 4C) as both paralogs exclusively localize to the new MACs during late 199 

stages. In line with the observed reduction in mRNA levels, DevPF1-GFP expression 200 

was efficiently reduced upon DevPF1-KD, whereas DevPF2-KD led to a weaker 201 

reduction. For DevPF2-GFP, the levels were almost equally reduced in DevPF1- and 202 

DevPF2-KD. Thus, we confirmed co-silencing on both mRNA and protein levels with 203 

reduced silencing efficiency compared to the targeted KD. Therefore, all results 204 

obtained in KD experiments must be considered, at least in part, as a combined effect 205 

of silencing both DevPF1 and DevPF2, albeit with only a partial contribution from the 206 

non-targeted gene silencing.  207 

 208 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.23.576875doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=3693210&pre=&suf=&sa=0
https://doi.org/10.1101/2024.01.23.576875
http://creativecommons.org/licenses/by/4.0/


 9 

To further investigate the impact of co-silencing on the KD analysis we examined IES 209 

retention score (IRS) correlations of multiple KD replicates (more details and further 210 

analysis in subsequent sections). The DevPF2-KD replicates showed high to moderate 211 

correlation among each other while they correlated less well with two out of four 212 

DevPF1-KD replicates (Fig. 4D). This suggests that despite the partial co-silencing, 213 

individual KD effects might be observed. 214 

 215 

DevPF1 and DevPF2 affect IES excision genome-wide 216 

The influence of the DevPFs on genome reorganization was initially investigated with 217 

survival tests and IES retention PCRs upon KDs. Reduced protein levels during sexual 218 

development can induce errors including IES retention, impacting the survival of the 219 

subsequent generation. For survival tests, the growth of the cells that completed their 220 

sexual development was followed for several divisions. IES retention PCRs test for the 221 

presence (failed excision) of specific IESs in the new MAC genome. ND7-KD and PGM-222 

KD were used as negative and positive control, respectively. To investigate the 223 

possibility that the observed effects result from off-target silencing of an unrelated gene, 224 

two silencing probes (a and b) were tested for each paralog (Fig. 4A). DevPF1 and 225 

DevPF2 KDs with either of the silencing probes resembled PGM-KD, with high lethality 226 

in the new progeny (Fig. 5A) and retention of selected IESs (Fig. 5B). This indicates that 227 

both DevPF1 and DevPF2 contribute to IES excision. 228 

 229 

Next, we tested genome-wide IES retention in enriched new MAC DNA samples. We 230 

observed considerably elevated levels of retained IESs in both DevPF1- and DevPF2-231 

KD (Fig. 5C,D). Notably, differences between replicates of the same KDs were 232 

observed, whereas replicate pairs processed in parallel (see Methods) exhibited similar 233 

profiles. Correlations among the paralog replicates indicated that despite varying IES 234 

retention distributions, DevPF2-KD replicates demonstrated high correlations among 235 

themselves (Fig. 4D). DevPF1-KD replicates correlated less well with each other, and 236 

DevPF1-KD replicate 3 (3) showed a high correlation with the DevPF2-KDs. This 237 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.23.576875doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.23.576875
http://creativecommons.org/licenses/by/4.0/


 10 

indicates that DevPF2-KD replicates were more consistent than the DevPF1-KD 238 

replicates.  239 

 240 

Genes that work closely together are expected to show similar KD effects on IES 241 

retention. To identify functionally related genes, DevPF1-KD and DevPF2-KD IRS data 242 

was correlated with published data from other gene KDs (Fig. 5E). DevPF2-KD (4) was 243 

selected from the DevPF2 replicates. DevPF1-KD (2) and DevPF1-KD (4) were 244 

selected as representative of the variability observed in the DevPF1-KDs. DevPF2-KD 245 

(4) displayed high correlation with other KDs, such as TFIIS4 and DCL2/3/5 (Fig. 5E). 246 

Moderate correlation was observed for DevPF1-KD (4) with SPT5m, whereas DevPF1-247 

KD (2) did not correlate well with any of the tested KDs. 248 

 249 

Short IESs are proposed to predominantly rely on the excision complex (specifically 250 

Pgm (Baudry et al., 2009) and Ku80c (Marmignon et al., 2014)) for removal, while long 251 

IESs tend to require additional molecules for excision (Sellis et al., 2021). To determine 252 

whether DevPF1- and DevPF2-KD preferentially affect long IESs, the length distribution 253 

of the top 10% of highly retained IESs in each KD was plotted (Fig. S4A,B, Table S1). In 254 

comparison to the length distribution of all IESs, DevPF2-KD (4) showed an 255 

overrepresentation of long IESs, similar to observations in EZL1-KD, silencing of the 256 

catalytic subunit of the PCR2 complex (Frapporti et al., 2019; Lhuillier-Akakpo et al., 257 

2014), or DCL2/3/5-KD, silencing of the scnRNA and iesRNA biogenesis proteins 258 

(Lepère et al., 2009; Sandoval et al., 2014), (Fig. S4A). Conversely, the highly retained 259 

IESs in DevPF1-KD (2) did not show the same overrepresentation and resembled the 260 

profile in PGM- and KU80c-KD, silencing of two members of the excision complex. 261 

Again, the replicates of the DevPF KDs exhibited variation in the extent of the observed 262 

effect (Fig. S4B). 263 

 264 

Defects in IES excision not only result in the retention of IESs but can also lead to 265 

excision at alternative TA boundaries. So far, alternative excision above background 266 

levels has only been reported for silencing of ISWI1 and its complex partners (Singh et 267 
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al., 2022, 2023). Neither DevPF1-KD nor DevPF2-KD resulted in elevated levels of 268 

alternative excision (Fig. S4; Table S2). 269 

 270 

DevPF1- and DevPF2-KD alter the small RNA population 271 

The early-produced 25 nt scnRNAs and the late-produced 26-30 nt iesRNAs have been 272 

proposed to assist MIC-specific sequence targeting in the new MACs (Sandoval et al., 273 

2014). Therefore, the small RNA populations across developmental time points upon 274 

DevPF KDs were analyzed (Figs 6A, S6A). In DevPF1-KD (2), scnRNA production was 275 

completely abolished, an effect also observed in the KD of genes proposed to be 276 

involved in scnRNA production: the two scnRNA-processing genes DCL2 and DCL3 277 

(Sandoval et al., 2014), and STP5m, involved in the generation of the transcripts serving 278 

as substrates for Dcl2/3 cleavage (Gruchota et al., 2017). The KD of the late-expressed 279 

DevPF2 showed a much weaker reduction of scnRNA production, which might be 280 

caused by co-silencing of DevPF1.  281 

 282 

To further investigate DevPF1’s effect on the scnRNA pathway, we observed Ptiwi09-283 

GFP localization upon DevPF1-KD. Ptiwi09, together with Ptiwi01, stabilizes the 284 

scnRNAs throughout scnRNA selection in the parental MAC and targeting of MIC-285 

specific sequences in the new MACs (Bouhouche et al., 2011; Furrer et al., 2017). As 286 

previously described (Bouhouche et al., 2011; Singh et al., 2023), Ptiwi09-GFP localizes 287 

first to the cytoplasm and parental MAC with a transient localization in the swelling MICs 288 

before shifting to the new MAC (Fig. 6B). Upon DevPF1-KD (Fig. 6B), the localization to 289 

the MICs before meiosis I is not impaired; however, the translocation into the parental 290 

MAC is strongly reduced and Ptiwi09-GFP predominantly remains in the cytoplasm 291 

throughout meiosis II and MAC fragmentation. We have reported a similar change in 292 

Ptiwi09-GFP localization upon DCL2/3-KD (Singh et al., 2023), suggesting that the loss 293 

of scnRNAs is responsible for the failed protein transfer into the parental MAC. Similar 294 

to DCL2/3-KD, DevPF1 depletion does not affect Ptiwi09-GFP’s localization to the new 295 

MACs (Fig. 6B).  296 

 297 
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Interestingly, DevPF1-HA IP at two developmental time points (early: about 30% 298 

fragmentation; late: visible new MACs in fragmented cells) identified Ptiwi01/09 as 299 

potential interaction partners of DevPF1 with a higher enrichment in the early than the 300 

late time point (Fig. S6B, Table S3). None of the other small RNA-related proteins were 301 

detected (Dcls, Spt5m, TFIIS4 or Ptiwi10/11).  302 

 303 

For both DevPF1- and DevPF2-KD, iesRNA production was impaired. iesRNAs are 304 

proposed to derive from dsRNAs transcribed from excised IESs (Allen et al., 2017; 305 

Sandoval et al., 2014). Hence, failed excision of IESs in DevPF1- or DevPF2-KD 306 

contributes to reduced iesRNA levels, as has consistently been observed for many 307 

other KDs of genes involved in Paramecium genome editing (Charmant et al., 2023; de 308 

Vanssay et al., 2020; Ignarski et al., 2014; Maliszewska-Olejniczak et al., 2015; Singh et 309 

al., 2022; Wang et al., 2023). The lack of scnRNAs in the DevPF1-KD cannot explain 310 

the absence of iesRNAs, as these accumulate even if the preceding scnRNA production 311 

is blocked (Sandoval et al., 2014). In the late time point analyzed for DevPF IPs, 312 

peptides mapping to Ptiwi10/11/06 were detected in DevPF2-IP (Fig. S6C, Table S3), 313 

but not DevPF1-IP (Fig. S6B). Therefore, DevPF2 might contribute to iesRNA 314 

biogenesis by an interaction with Ptiwi proteins. 315 

 316 

DevPF1- and DevPF2-KD affect mRNA expression 317 

Since PHD fingers have often been reported to be involved in gene expression 318 

regulation (Aasland et al., 1995; Sanchez & Zhou, 2011) we sought to investigate 319 

whether the DevPF KDs alter mRNA expression levels during development. Batch 320 

effects had a major influence on the variance within the replicates (Fig. S7A), as 321 

observed for IES retention (Fig. 5C,D).  322 

 323 

DevPF1-KD showed almost no differentially expressed genes compared to ND7-KD 324 

during onset of development (Fig. 7A). During this early stage, genes are transcribed 325 

solely from the parental MAC, where DevPF1-GFP does not localize (Figs 2A, 3). 326 

Surprisingly, in DevPF2-KD, a high number of genes were differentially expressed 327 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.23.576875doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=613403,3306065&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=613403,3306065&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4034484,975948,13753998,9343129,15526912,15527104&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=4034484,975948,13753998,9343129,15526912,15527104&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=4034484,975948,13753998,9343129,15526912,15527104&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=613403&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10287261,93355&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://doi.org/10.1101/2024.01.23.576875
http://creativecommons.org/licenses/by/4.0/


 13 

during the onset of development (Fig. 7A). Since DevPF2 is late-expressed and 328 

DevPF1-KD showed no effect, the observed difference might be caused by differing cell 329 

stages within the collected populations of DevPF2-KD and ND7-KD. During the “early”, 330 

“late” and “very late” time points, DevPF1- and DevPF2-KD showed similar changes in 331 

mRNA expression. 332 

 333 

The abolishment of development-specific small RNAs in the DevPF-KDs might result 334 

from downregulation of genes involved in scnRNA or iesRNA production. We observed 335 

no general trend indicating a drastic reduction of expression of scnRNA-related genes, 336 

like DCL2, PTIWI01 or SPT5m (Figs 7B, S7B, Table S4, S5). However, these trends in 337 

expression should be considered with the caveat of considerable expression variability 338 

and limitation of the number of replicates that could practically be obtained. At least for 339 

Ptiwi09, the localization experiments upon DevPF1-KD confirmed no loss in protein 340 

levels (Fig. 6B).  341 

 342 

The expression of iesRNA-related genes was altered in both DevPF1- and DevPF2-KD 343 

compared to ND7-KD (Figs 7D, S7B, Table S4, S5). DCL5, the Dicer-like protein 344 

responsible for the initial cleavage of IES derived dsRNAs into small iesRNAs 345 

(Sandoval et al., 2014), was downregulated (Table S4, S5) in early stages, but tended to 346 

be upregulated in the very late stage (Table S4, S5). PTIWI10 and PTIWI11, the Piwi 347 

proteins responsible for further processing and stabilization of iesRNAs during the 348 

positive feedback loop (Furrer et al., 2017), were downregulated in both DevPF1- and 349 

DevPF2-KD (Table S4, S5). Successful expression of PTIWI10/11 has been proposed 350 

to depend on IES excision since both genes are expressed from the new MAC and 351 

harbor IESs in their flanking/coding regions (Furrer et al., 2017) (Fig. S7C). If IES 352 

retention was the only cause for downregulation, one would expect higher IRSs for 353 

these IESs in KDs with lower mRNA levels. While the mRNA reduction is stronger in 354 

DevPF1-KD than in DevPF2-KD (Fig. 7D, Table S4, S5), this trend is not reflected in the 355 

IRSs of the IESs whose retention is proposed to interfere with PTIWI10/11 expression 356 

(Table 1). In most of the KD replicates, there is no or low retention (IRS < 0.1) and the 357 

replicates showing moderate to high retention (0.1 < IRS < 0.3) belong to both DevPF1- 358 
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and DevPF2-KD. Hence, the reduced mRNA levels of PTIWI10/11 cannot only be 359 

explained by IES retention.  360 

 361 

Discussion 362 

Implications of the PHD domain for DevPF1 and DevPF2 functions 363 

Genome reorganization is a fundamental process underlying cell and immune system 364 

development and some diseases (Bassing et al., 2002; Forment et al., 2012; Mani & 365 

Chinnaiyan, 2010; Rooney et al., 2004). Ciliates undergo massive genome 366 

reorganization during the maturation of their somatic genome. This makes them 367 

excellent models for studying the complex mechanisms involved in the targeted 368 

elimination of genomic sequences (Beisson et al., 2010d). In the present study, we 369 

described two paralogous PHD finger proteins, DevPF1 and DevPF2, involved in IES 370 

excision in Paramecium. Both paralogs harbor a PHD and a PHD zinc finger-like 371 

domain (Fig. 1). These domains belong to the zinc-finger family and the PHD domain is 372 

characterized by a well-conserved C4HC3 motif (Aasland et al., 1995; Schindler et al., 373 

1993). The eight core amino acids of this motif coordinate two zinc ions and thereby 374 

provide structural stability to the domain (Pascual et al., 2000). Among other histone-375 

binding domains, such as bromodomains or PWWP domains, PHD fingers are the 376 

smallest (Fleck et al., 2021; Miller et al., 1985). Multiple sequence alignment and 377 

structure predictions confirmed the presence of the characteristic C4HC3 motif in both 378 

DevPF1 and DevPF2 (Fig. 1), suggesting that both PHDs might be functional. 379 

 380 

PHD fingers, mainly nuclear proteins, are often considered epigenetic readers, 381 

recognizing histone modifications, primarily on the histone 3 (H3) N-terminal tail 382 

(Sanchez & Zhou, 2011). Peptides matching to histones were enriched in the DevPF-383 

IPs of late developmental time points (Fig. S6B,D, Table S3), however none of them 384 

was specific to H3. PHD fingers have been reported to bind non-H3 partners, like DNA, 385 

histone 4, or other proteins (Bienz, 2006; Black & Kutateladze, 2023; Gaurav & 386 

Kutateladze, 2023; L. Liu et al., 2012; Oppikofer et al., 2017). The combination of the 387 
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PHD and PHD-zinc-finger-like domain in the DevPFs may enable the paralogs to 388 

simultaneously recognize two adjacent histone modifications, as demonstrated for 389 

tandem PHD domains (Zeng et al., 2010). PHD domains are also found in various 390 

chromatin associated proteins involved in gene regulation. Notably, ISWI-containing 391 

chromatin remodeling complexes often include a subunit with a PHD domain, such as 392 

the ACF (Eberharter et al., 2004), NURF (Haitao Li et al., 2006; Wysocka et al., 2006) or 393 

WICH (Bozhenok et al., 2002) complexes.  394 

 395 

DevPF2 was initially identified in pulldowns of the ISWI1 protein, and, thus far, no PHD-396 

containing protein has been shown to be a part of this remodeling complex (Singh et al., 397 

2022, 2023). It is intriguing to consider that DevPF2 might contribute PHD functionality 398 

to the ISWI1 chromatin remodeling complex. However, DevPF2-KD does not show 399 

elevated levels of alternative excision (Fig. S4C-E) that are characteristic of other 400 

members of the complex so far (Singh et al., 2022, 2023) and ISWI1 was not identified 401 

as a potential interaction partner in the DevPF2-IP (Fig. S6C). If DevPF2 interacts with 402 

the ISWI1 complex, we infer that it may not be a core complex component, particularly 403 

as it does not contribute to excision precision. 404 

 405 

A potential role for DevPF1 and DevPF2 as transcription factors? 406 

A potential role in non-coding transcription in the MICs (for scnRNA production)  407 

DevPF1’s localization in the MICs (Figs 2A, 3) and its importance for scnRNA 408 

production (Fig. 6A) could point towards its involvement in the bidirectional transcription 409 

of the MIC genome for scnRNA production. Spt5m (Gruchota et al., 2017) and TFIIS2/3 410 

(Maliszewska-Olejniczak et al., 2015) are proposed to be involved in this micronuclear 411 

transcription. One of the DevPF1-KD replicates showed moderate IRS correlation with 412 

SPT5m (Fig. 5E) (to our knowledge, no IRS data exists for TFIIS2 or TFIIS3) and 413 

SPT5m-KD also reduces scnRNA production. The localization of Dcl2-GFP (Lepère et 414 

al., 2009), Ptiwi09-GFP (Fig. 6B) and DevPF1-GFP (Fig. 2A) in the swelling MICs 415 

suggests that scnRNA biogenesis occurs during the S-phase of meiosis. Ptiwi09 and 416 
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DevPF1 may interact in the MICs or the cytoplasm. Non-crosslinked IP’s would be 417 

needed to further verify this interaction. However, PTIWI01/09-KD does not completely 418 

abolish scnRNAs (Furrer et al., 2017), indicating that DevPF1 acts upstream of scnRNA 419 

loading and guide strand removal. Future investigations of bi-directional transcription 420 

and scnRNA biogenesis will allow to identify how all these molecules cooperate. 421 

 422 

Spt5m-GFP, TFIIS2/3-GFP and DevPF1-GFP are present in the MICs beyond S-phase 423 

and localize to the new MACs at later stages (Gruchota et al., 2017; 424 

Maliszewska-Olejniczak et al., 2015). Their role in the MIC during meiotic divisions 425 

remains unknown. It was speculated that Spt5m might be involved in co-transcriptional 426 

deposition of epigenetic marks that sustain meiotic processes, ultimately aiding in IES 427 

targeting. The potential of PHD domains to bind histone modifications raises a similar 428 

possibility for DevPF1. However, its role appears to be more specific, as DevPF1 is not 429 

present in all gametic and zygotic nuclei simultaneously (Fig. 2&3).  430 

 431 

Msh4/5, homologs of proteins essential for crossover, are also present in all gametic 432 

nuclei during the first and second meiotic division, and their silencing leads to 433 

substantial IES retention (Rzeszutek et al., 2022). However, their non-canonical 434 

functions that lead to IES retention are not yet fully understood (Rzeszutek et al., 2022). 435 

Since new MACs develop in DevPF1-KD (Figs 6B,S3) and MSH5-KD cells, neither of 436 

the genes are essential for crossover or karyogamy. More research will be needed in 437 

future to decipher the functions of the DevPF proteins in the gametic nuclei. 438 

  439 

A potential role in non-coding transcription in the new MAC (for scnRNA-based 440 

targeting and iesRNA production) 441 

Non-coding transcription in the new MAC, which is hypothized to generate substrates 442 

for scnRNA pairing, was proposed to be regulated by the putative transcription 443 

elongation factor TFIIS4 that specifically localizes to the early new MACs 444 

(Maliszewska-Olejniczak et al., 2015). DevPF2-KD IRSs of some replicates correlated 445 

most strongly with TFIIS4-KD (Fig. 5E), pointing towards a shared functionality. Both 446 
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DevPF1 and DevPF2 have the potential to act in the same regulatory process as TFIIS4 447 

because both their GFP-fusions localize to the new MACs. In fact, there are reports of 448 

transcription factors that combine the TFIIS and PHD domains: Bypass of Ess1 (Bye1) 449 

protein in Saccharomyces cerevisiae harbors a PHD and a TFIIS-like domain, with the 450 

former recognizing histone 3 lysine 4 trimethylation and the latter establishing contact 451 

with polymerase II for transcriptional regulation (Kinkelin et al., 2013; Pinskaya et al., 452 

2014). It is possible that similar functionality is separated on two individual proteins in 453 

Paramecium. However, TFIIS4 was not detected in either of the DevPF-IPs in the late 454 

developmental stage.  455 

 456 

The production of iesRNAs was also proposed to depend on the non-coding 457 

transcription of concatenated excised IES fragments (Allen et al., 2017; Sandoval et al., 458 

2014). Although it was established that IES concatemers are likely formed by DNA 459 

ligase 4 (Lig4) (Allen et al., 2017), little is known about the proposed bidirectional 460 

transcription to produce substrates for Dcl5 cleavage. Allen et al. speculated on the 461 

involvement of TFIIS4. Since iesRNA production is almost completely abolished in 462 

DevPF1- and DevPF2-KD, a contribution to this transcription is plausible.  463 

 464 

The potential function of the DevPFs may extend far beyond TFIIS4-dependent 465 

transcription: whereas TFIIS4-GFP localizes transiently to early new MACs 466 

(Maliszewska-Olejniczak et al., 2015), DevPF2-GFP and DevPF1-GFP remain in the 467 

new MACs for much longer (Fig. 2).  468 

 469 

A potential role in gene transcription in the parental and the new MAC  470 

Early in development, the parental MAC is solely responsible for gene expression and, 471 

after genome reorganization progresses, the new MAC contributes at later stages 472 

(Berger, 1973). In Tetrahymena, E2F family transcription factors were shown to control 473 

the cell cycle through gene expression during meiosis (Zhang et al., 2018). DevPF1 and 474 

DevPF2 are unlikely to be active in the parental MAC since none of the GFP-fusion 475 

proteins localized there (Fig. 2). Consistently, DevPF1-KD showed no differential gene 476 

expression compared to ND7-KD during the onset of development (Fig. 7C) and 477 
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Ptiwi09-GFP expression was not impaired upon DevPF1-KD (Fig. 6B). However, it is 478 

difficult to reach a definite conclusion for other genes due to the high variability in 479 

expression between the replicates (Figs 7D, S7B) and the high number of differentially 480 

expressed genes in DevPF2-KD (Fig. 7C) observed during the onset of development. 481 

Cells in the “onset” time point are challenging to collect because cell staging relies on 482 

MAC morphology changes visualized by DAPI staining. Truly vegetative cells cannot be 483 

distinguished from cells initiating meiosis since their MACs look the same; however, the 484 

gene expression profiles are expected to differ substantially (Figs 2A, S2B). The 485 

collection of subsequent time points is more reliable because the alteration of old MAC   486 

shape as development progresses is pronounced.  487 

 488 

At the subsequent stages, DevPF1- and DevPF2-KD affected similar genes. Either, the 489 

changes are nonspecific to the DevPF-KDs and result from the proposed nuclear 490 

crosstalk to adjust transcription levels to accommodate for failed IES excision 491 

(Bazin-Gélis et al., 2023) or they are specific to the DevPF-KDs and both paralogs 492 

exhibit similar functions in the regulation of gene expression. Interestingly, differential 493 

expression was observed at the “early” time point (Fig. 7C). GTSF1-KD, also causing 494 

substantial IES retention, hardly shows any differentially expressed genes at a 495 

comparable stage (DevPF1/2-KD: 282/231 differentially expressed genes, respectively, 496 

at about 30% fragmentation (Fig. 7C); GTSF1-KD: 10 differentially expressed genes at 497 

about 30-50% fragmentation; (Wang et al., 2023)). This indicates that the early change 498 

in gene expression might be specific to DevPF-KDs, potentially mediated by other 499 

proteins shuttling into the parental MAC. Since Ptiwi09-GFP translocates efficiently to 500 

the parental MAC upon GTSF1-KD (Wang et al., 2023) but not upon DevPF1-KD (Fig. 501 

6B), it might be worth investigating differential expression upon PTIWI01/09-KD. 502 

 503 

Late in development, gene expression starts from the new MACs (Berger, 1973), where 504 

both DevPF paralogs localized (Fig. 2). Some late-expressed genes, like PTIWI10, are 505 

expressed only from the new MAC after the initial onset of IES excision (Furrer et al., 506 

2017). Indeed, PTIWI10/11 mRNA levels are downregulated in DevPF1-KD or DevPF2-507 

KD (Fig. 7D, S7B, Table S4, S5). This trend cannot be explained solely by the strength 508 
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of retention observed for the IESs interfering with PTIWI10/11 expression (Table 1). It 509 

suggests that DevPF1 and DevPF2 may regulate gene expression in the new MAC, 510 

albeit specifically for some genes like PTIWI10 and PTIWI11. The extent of gene 511 

expression regulation by the DevPFs beyond these genes remains uncertain. To further 512 

investigate if the DevPFs serve as transcription factors, and if so, which genes they 513 

regulate, genes associated with DevPF binding could be identified by techniques like 514 

Cut-and-Run (Skene et al., 2018) and compared to mRNA expression changes upon 515 

DevPF-KDs.  516 

 517 

Potential cytoplasmic functions 518 

In contrast to the other putative transcription factors discussed so far (Spt5m, 519 

TFIIS2/3/4, DevPF2), DevPF1-GFP exhibits a pronounced cytoplasmic distribution in 520 

the early stages of development (Fig. 2A). While most described PHD fingers are 521 

nuclear proteins, some can be recruited to the cytoplasm or plasma membrane by 522 

binding partners (Betz et al., 2004; Gozani et al., 2003). DevPF1 may play a role in 523 

transmitting signals of sensed starvation to the MICs, initiating sexual development. As 524 

DevPF1 is not constitutively expressed during vegetative growth (Figs 1B, S2B), 525 

another factor is needed to first initiate DevPF1’s gene expression in the parental MAC. 526 

However, DevPF1 might interact with specific markers of starvation in the cytosol, 527 

promoting early sexual processes. If that is the case, DevPF1 is not essential for 528 

general meiotic processes, as meiosis and new MACs development show no defects in 529 

DevPF1-depleted cells (Figs 6B,S3). Since peptides matching Ptiwi01/09 were identified 530 

in the DevPF1-IP, the Ptiwi01/09 complex is a potential binding partner of DevPF1 in 531 

the cytoplasm. However, since Ptiwi01/09 are highly expressed proteins (Bouhouche et 532 

al., 2011), further IP experiments would be needed to verify this interaction.  533 

 534 

DevPF1’s selective localization to gametic and post-zygotic nuclei 535 

The selective localization of DevPF1 to certain gametic and post-zygotic nuclei (Fig. 3) 536 

raises intriguing questions about its potential role in nuclear fate decisions. The survival 537 
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and destruction of the gametic nuclei depends on their subcellular positioning 538 

(Grandchamp & Beisson, 1981). DevPF1 may play a role in either promoting their 539 

movement or preparing for their degradation. However, the observed number of nuclei 540 

simultaneously containing DevPF1-GFP (zero to four) neither fits the number of nuclei 541 

selected for survival (one) nor for degradation (seven). DevPF1 may either contribute to 542 

this process successively or may not be directly related to the nuclear fate itself. The 543 

fate of the post-zygotic nuclei is decided during the second mitotic division by the 544 

subcellular localization of the division products (Grandchamp & Beisson, 1981). This 545 

means, from each post-zygotic nucleus, one of the division products will remain as MIC 546 

and one develops into a new MAC. During the second mitotic division, DevPF1-GFP 547 

was observed in one of the two dividing nuclei. Its localization in the precursor of one 548 

MIC and one MAC without being present in the precursor of the other MIC and MAC, 549 

does not imply its involvement in the nuclear fate decision. Furthermore, DevPF1-KD 550 

neither impaired the selection of gametic nuclei nor the differentiation of the new MACs.  551 

 552 

The specific localization of nuclear proteins to certain nuclei in multinuclear cells has 553 

been studied extensively in insect embryos. In Drosophila, the transcription factors 554 

Bicoid (Driever & Nüsslein-Volhard, 1988) and Dorsal (Roth et al., 1989) establish the 555 

anterior-posterior, and dorsal-ventral axis, respectively, by initiating gene expression 556 

depending on the cytoplasmic localization of the nuclei. The activity of the transcription 557 

factors is restricted by gradients to a certain cytoplasmic region (Morisato & Anderson, 558 

1995; Spirov et al., 2009). However, DevPF1-GFP’s nuclear localization does not 559 

appear associated with subcellular localization of the nuclei and it remains unclear how 560 

DevPF1-GFP is specifically recruited.  561 

 562 

As only fixed cells were examined, the dynamics of DevPF1-GFP localization were not 563 

captured. The fact that DevPF1-GFP localization is independent of nuclear divisions 564 

(Fig. 3B), combined with observations of cells at the meiotic or mitotic division stage 565 

with an absence of DevPF1-GFP in all nuclei (Fig. S2C), suggests that DevPF1 566 

localization might be asynchronous and transient. Possibly it is recruited to each of the 567 

gametic nuclei at some point before the completion of the second meiotic division and to 568 
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each of the post-zygotic nuclei before completion of the second mitotic divisions. Live 569 

cell imaging could illuminate the dynamics of DevPF1 localization and its correlation 570 

with nuclear fate. However, this approach presents challenges, as it requires confocal 571 

imaging to capture the DevPF1-GFP signal in the MICs, and the observation time scale 572 

would need to span across multiple hours of Paramecium development. 573 

 574 

DevPF1: a general factor for IES excision 575 

DevPF1 plays a role throughout sexual development: from the early stages before 576 

meiosis to the very late stages (Fig. 2A). It appears to influence various aspects of 577 

genome reorganization in the MICs and the new MACs, including scnRNA production 578 

and potentially expression of certain genes. Consequently, the depletion of DevPF1 579 

affects the excision of a wide range of IESs (Fig. 5C). However, it is important to 580 

reiterate that we observed high batch-to-batch variability in the DevPF replicates in both 581 

IES retention (Fig. 5C, D) and mRNA expression (Figs 7D, S7B). The time point 582 

collection had a major influence on mRNA levels (Fig. S7A). Variable new MAC 583 

enrichment by a sucrose gradient might introduce variation into the IRS analysis, as 584 

fragments of the parental MAC add unexcised IES sequences, diluting the effect of IES 585 

retention (Charmant et al., 2023). Fluorescence-activated nuclear sorting (FANS) 586 

enables better nuclear separation in Paramecium (Charmant et al., 2023; Guérin et al., 587 

2017) and should be able to eliminate most of such variation. Additionally, 588 

microinjection of DNA into macronuclei before RNAi experiments can be used to control 589 

for contaminating DNA from old MAC fragments.  590 

 591 

Revisiting previous KD experiments with additional replicates would be worthwhile to 592 

explore the extent of batch-to-batch IRS and expression variance for other KDs. 593 

Noteworthy, variability in IES retention across replicates has recently been shown for 594 

GTSF1 (Charmant et al., 2023; Wang et al., 2023), suggesting this phenomenon is not 595 

restricted to DevPF1 and DevPF2. In general, KD experiments are challenging to tightly 596 

control for reproducibility, and more effort should be invested in generating knockouts in 597 

Paramecium, as established in Tetrahymena (Chalker, 2012). 598 
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It has been shown that evolutionarily old IESs tend to be short and are excised early in 599 

development, independent of additional factors apart from the excision machinery 600 

(Sellis et al., 2021). On the other hand, evolutionarily young IESs tend to be long, later 601 

excised and dependent on the scnRNA pathway and the deposition of histone 602 

modifications in the new MAC for their excision (Sellis et al., 2021; Swart et al., 2014; 603 

Zangarelli et al., 2022). In line with this, most gene KDs tested in this study exhibited an 604 

overrepresentation of long IESs among their most highly retained IESs, including 605 

DevPF2 (Fig. S4A,B). Only PGM-KD, KU80c-KD and two of the DevPF1-KD replicates 606 

showed no preference for long IESs. Pgm and Ku80c are components of the excision 607 

machinery and are therefore expected to affect all IESs. While DevPF1 may not be a 608 

direct part of the excision machinery, it appears to have a general contribution to IES 609 

excision, regardless of the length of the IES. Consequently, we propose that DevPF2 610 

contributes to the excision of long IESs, while DevPF1 may serve as a more general 611 

factor.  612 

 613 

Methods 614 

Paramecium tetraurelia cultivation  615 

Mating type 7 (MT7) cells from strain 51 of Paramecium tetraurelia were grown in 616 

Wheat Grass Powder (WGP, Pines International) medium supplemented with 10 mM 617 

sodium phosphate buffer (pH 7.3). WGP medium was bacterized with E.coli strain 618 

HT115 to feed paramecia, and the cultures were maintained either at 27°C or at 18°C 619 

according to the standard protocol (Beisson et al., 2010b, 2010c).  620 

 621 

Protein localization imaging by fluorescence microscopy 622 

Plasmids for microinjection were generated by amplifying the coding and flanking 623 

sequences from MT7 genomic DNA and introducing them with the PCR-based method 624 

CPEC (Quan & Tian, 2011) into the L4440 plasmid (Addgene, USA). DevPF1 was 625 
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expressed with its endogenous flanking regions (304 bp upstream of the DevPF1 start 626 

codon and 272 bp downstream of the DevPF1 stop codon). DevPF2 endogenous 627 

flanking regions (455 bp upstream the DevPF2 start codon and 273 bp downstream of 628 

the DevPF2 stop codon) yielded no expression. Therefore, as PGM exhibits a similar 629 

expression profile to DevPF2 (Fig. 1B), DevPF2 genomic coding sequence was inserted 630 

between the PGM flanking regions (96 bp upstream of the PGM start codon and 54 bp 631 

downstream of the PGM stop codon). Before the stop codon, the GFP coding sequence 632 

was connected to the protein coding sequences via a glycine-serine-linker 633 

(SSGGGSGGSGGGS). 60 μg of plasmid DNA was linearized with AhdI (New England 634 

Biolabs, UK) and extracted with phenol-chloroform for injection.  635 

 636 

Paramecia were microinjected with either C-terminally GFP-tagged DevPF1 637 

(endogenous regulatory regions) or C-terminally GFP-tagged DevPF2 (PGM regulatory 638 

regions) following the standard protocol (Beisson et al., 2010a). Sexual development 639 

was induced by starvation and cells of different developmental stages were collected 640 

and stored in 70% ethanol at -20°C. To stain cells with DAPI (4,6-diamidino-2-2-641 

phenylindole), cells were dried on a microscopy slide, washed twice with phosphate-642 

buffered saline (PBS) and permeabilized for 10 min at RT (room temperature) with 1% 643 

Triton X-100 in PHEM (PIPES, HEPES, EGTA, magnesium sulfate), fixed with 2% 644 

paraformaldehyde (PFA) in PHEM and washed once for 5 min at (RT) with 3% BSA 645 

(bovine serum albumin, Merck-Sigma, Germany) in Tris-buffered saline with 10 mM 646 

EGTA and 2 mM MgCl2 (TBSTEM). After DAPI (2 μg/ml in 3% BSA) incubation for 7-10 647 

min at RT, the cells were mounted 40 µl of ProLong Gold Antifade mounting medium 648 

(Invitrogen, USA) or ProLong Glass Antifade mounting medium (Invitrogen, USA). For 649 

α-tubulin staining, after permeabilization and fixation, cells were blocked for 1 h at RT 650 

with 3% BSA and 0.1% Triton X-100. Primary rat anti-α-tubulin antibody (Abcam, UK) 651 

was diluted 1:200 in 3% BSA and 0.1% Triton X-100 in TBSTEM and incubated 652 

overnight at 4°C. After 3 washes with 3% BSA, the goat anti-rat secondary antibody 653 

conjugated to Alexa fluorophore 568 (Abcam, UK) was diluted 1:500 in 3% BSA and 654 

0.1% Triton X-100 in TBSTEM and incubated for 1 h at RT. After two washes, cells 655 

were stained with DAPI and mounted with Prolong Glass Antifade mounting medium.  656 
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Images were acquired on a confocal SP8 Leica fluorescence microscope (60x/1.4 oil 657 

objective) with constant laser settings. The detector (photon multiplier) gain for the DAPI 658 

signal (430-470 nm) varied to accommodate differences in signal strength (500-550 V). 659 

Postprocessing was done in Fiji (version 2.14.0/1.54f) (Schindelin et al., 2012). 660 

Brightness and contrast in the GFP channel was set the same in all the images to be 661 

compared (Figs 2, S2B: DevPF1-GFP: Min 0, Max 681 and DevPF2-GFP: Min 0, Max 662 

170; Figs 3, S2C: DevPF1-GFP: Min 0, Max 703; Fig. S3: constant settings for each cell 663 

stage). 664 

 665 

Knockdown efficiency validation using fluorescence intensity 666 

Cells injected with either DevPF2-GFP or DevPF1-GFP were subjected to KDs of ND7, 667 

PGM, DevPF2 and DevPF1 genes. Cells during new MAC development were collected 668 

(for details see methods on silencing experiments), then stained with DAPI and 669 

mounted on ProLong Glass Antifade as described above. Images of a single z-plane 670 

through the new MAC were acquired on a SP8 Leica Confocal microscope with 60x/1.4 671 

oil objective using the same laser settings for all images. For each KD, 10 cells were 672 

imaged. In Fiji software (version 2.14.0/1.54f), the brightness and contrast in the GFP 673 

channel was set the same values for all images compared in the same analysis 674 

(DevPF1-GFP injected cells: Min 0, Max 1078; DevPF2-GFP injected cells: Min 0, Max 675 

298). Fluorescent signal was measured in a constant area in 1 MAC of each cell and 676 

the area mean was used as intensity for this nucleus. The area was set in the DAPI 677 

channel and the fluorescence was measured in the GFP channel. Since the same area 678 

was measured for each nucleus, no normalization was used to account for nuclear size 679 

variation. To account for background fluorescence, GFP fluorescence in non-680 

transformed wild type cells was measured and the mean of all wild type cells was 681 

subtracted from all measured intensities. All intensities were normalized to the mean of 682 

all ND7-KD cells in the corresponding injection. All scripts are available from 683 

https://github.com/Swart-lab/DevPF_code. 684 

 685 
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Co-immunoprecipitation 686 

Paramecia were injected with either Human influenza hemagglutinin (HA)-tagged 687 

DevPF1 (same cloning strategy as described before) or GFP-tagged DevPF2. For 688 

DevPF1-HA, an early time point (about 30% fragmentation) and late time point (new 689 

MACs clearly visible in fragmented cells) was collected, while for DevPF2-GFP, only the 690 

late time point was collected. Non-transformed wild type cells were collected as 691 

controls. Cells were washed twice with 10 mM Tris and as much liquid was removed as 692 

possible. For 300 ml initial culture volume, cells were fixed with 1 ml 1% PFA for 10 min 693 

at RT and quenched with 100 µl of 1.25 M glycine for 5 min at RT. After one wash with 694 

PBS (centrifugation for 1 min at 4°C and 1000 g), 2 ml lysis buffer (50 mM Tris, 150 mM 695 

NaCl, 5 mM MgCl2, 1% Triton X-100, 10% Glycerol and cOmplete protease inhibitor 696 

EDTA-free (Roche, Germany)) were added and cells were sonicated using an MS72 tip 697 

on a Bandelin Sonopulse device with 52% amplitude for 15 s on ice. The pellet and 698 

input fraction were separated by centrifugation (13,000 g, 4°C, 30 min).  699 

 700 

To enrich HA-tagged proteins, 50 µl beads (Anti-HA-affinity matrix, Merck-Sigma, 701 

Germany) were washed thrice (500 g, 4°C, 2 min) in ice-cold IP buffer (10 mM Tris pH 702 

8, 150 mM NaCl, 1 mM MgCl2, 0.01% NP-40, 5% Glycerol, cOmplete protease inhibitor 703 

EDTA-free (Roche, Germany) and incubated with 1 ml of cleared input lysate overnight 704 

at 4°C. After four washes with ice-cold IP buffer, the bound proteins were eluted from 705 

the beads in 50 µl 2× PLB (10% SDS, 0.25 M Tris pH 6.8, 50% Glycerol, 0.2 M DTT, 706 

0.25% Bromophenol blue) at 98°C for 20 min (IP fraction). 707 

 708 

To enrich GFP-tagged proteins, 25 µl beads (GFP-Trap Agarose beads, Chromotek, 709 

Germany) were washed once with ice-cold 20 mM Tris pH 7.5 with 100mM NaCl (2,500 710 

g, 4°C, 5 min) and thrice in ice-cold IP buffer. Beads were incubated with 1 ml cleared 711 

input lysate for 1 to 2 h at 4°C and washed four times with ice-cold IP buffer. Bound 712 

proteins were eluted in 30 µl 2× PLB at 98°C for 20 min (IP fraction).  713 

 714 
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For western blots, 0.5% of total input and 15% of total IP fraction were resolved on 10% 715 

SDS-PAGE gels and wet transferred onto a 0.45 µm nitrocellulose membrane for 2 h at 716 

80 V and 4°C (Bio-Rad, Germany). The membrane was blocked for 1 h in 5% BSA in 717 

PBST (PBS + 0.2% Tween20). HA-tagged proteins were detected with an HRP-718 

conjugated anti-HA antibody (sc-7392 HRP, Santa Cruz, USA) diluted 1:500 in PBST 719 

and incubated overnight at 4°C. GFP-tagged proteins were detected with an primary 720 

anti-GFP antibody (ab290, Abcam, UK) diluted 1:2000 and incubated overnight at 4°C 721 

followed by an secondary anti-rabbit HRP conjugated antibody (12-348, Merck Millipore, 722 

Germany) diluted 1:5000 in PBST and incubated for 1 h at RT. Membranes were 723 

screened using AI600 (GE Healthcare, Germany).  724 

 725 

Samples were sent to EMBL’s Proteomics Core Facility in Germany for mass 726 

spectrometry experiments and analysis. Using R, contaminants were removed from the 727 

FragPipe output files (protein.tsv, (Kong et al., 2017)), and only proteins quantified with 728 

a minimum of two razor peptides were included for subsequent analysis. After log2 729 

transformation of raw TMT reporter ion intensities, batch effect correction (limma 730 

package’s (Ritchie et al., 2015) ‘removeBatchEffects’ function), and variance 731 

stabilization normalization (vsn) with vsn package (Huber et al., 2002), the abundance 732 

difference in WT and DevPF samples was maintained by determining different 733 

normalization coefficients. To investigate differential protein expression (limma 734 

package), replicate information was incorporated in the design matrix with the ‘lmFit’ 735 

limma function. “hit” annotation: false discovery rate (FDR) smaller 5% and a fold 736 

change of at least 100%. “candidate” annotation: FDR smaller 20% and a fold change of 737 

at least 50%. Scripts to generate volcano plots are available from 738 

https://github.com/Swart-lab/DevPF_code. 739 

 740 

Silencing experiments, survival test and IES retention PCR 741 

Silencing constructs for DevPF2 and DevPF1 were generated by cloning genomic gene 742 

fragments into a T444T plasmid (Sturm et al., 2018) (Addgene, USA) using CPEC 743 

(Quan & Tian, 2011). For both DevPF1 and DevPF2, two silencing regions were 744 
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selected: DevPF1 silencing region a (525 bp fragment from 3-527; position 1 is the first 745 

nucleotide of the start codon); DevPF1 silencing region b (733 bp fragment from 532-746 

1264); DevPF2 silencing region a (525 bp fragment from 3-527); DevPF2 silencing 747 

region b (731 bp fragment from 532-1262). Co-silencing was predicted with the RNAi 748 

off-target tool from ParameciumDB (Heng Li & Durbin, 2009) for both silencing regions 749 

(DevPF1 silencing region a and b: 19 and 30 hits, respectively, in DevPF2 gene; 750 

DevPF2 silencing region a and b: 19 and 30 hits, respectively, in DevPF1 gene). The 751 

plasmids were transformed into HT1115 (DE3) E. coli strain and expression was 752 

induced overnight at 30°C with Isopropyl ß-D-1-thiogalactopyranoside (IPTG; Carl Roth, 753 

Germany). Paramecia were seeded into the silencing medium at a density of 100 754 

cells/ml to induce sexual development by starvation after 4 to 6 divisions. KD 755 

experiments were performed as previously described (Beisson et al., 2010e).  756 

 757 

After the paramecia finished sexual development, 15 cells were transferred into a 758 

regular, non-induced, feeding medium for the survival test. Paramecia were monitored 759 

for three days to observe growth effects. For IES retention PCRs, genomic DNA was 760 

extracted from cultures that finished sexual development using GeneElute – Mammalian 761 

Genomic DNA Miniprep Kit (Merck-Sigma, Germany). PCRs were done on specific 762 

genomic regions flanking an IES (Table S6) to check for the retention of IESs. 1-12.5 ng 763 

DNA was used as input andPCR products were resolved on 1-2% agarose gels. 764 

 765 

Time course silencing experiments 766 

The time course experiments were conducted in three batches, each processing two KD 767 

replicates in parallel (batch A: replicates 1 and 2 of ND7-, DevPF1- and DevPF2-KD; 768 

batch B: replicates 3 and 4 of ND7-, DevPF1- and DevPF2-KD; batch C: replicates 5 769 

and 6 of ND7- and DevPF2-KD). In batch A and B, cells were collected as soon as the 770 

first meiotic cells were observed in the population (onset), between 20 to 40% 771 

fragmentation (early), at 80-90% fragmentation (late) and 6 h after the late time point 772 

(very late). In batch C, cells were collected before the onset of autogamy (vegetative), at 773 

50% fragmentation (early), at 100% fragmentation + visible anlagen (very late) and 6 h 774 
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later (very late + 6h). Since batch C was collected at different stages, only the “very late” 775 

time point of batch C was considered for differential expression analysis. For all time 776 

course replicates, enriched new MAC DNA was analyzed for IES retention and total 777 

RNA was collected from the collected time points for sRNA and/or mRNA analysis. 778 

 779 

Macronuclear isolation and Illumina DNA-sequencing 780 

Samples for new MAC isolation were collected from the KD cultures of all time course 781 

experiments three days after completion of sexual development as described previously 782 

(Arnaiz et al., 2012). DNA library preparation (350 bp fragment sizes) and Illumina 783 

sequencing (paired-end, 150 bp reads) were done at Novogene (UK) Company Limited, 784 

Cambridge according to their standard protocols.  785 

 786 

IES retention and alternative boundary analysis 787 

For IES retention score analysis, whole genome sequencing reads of enriched new 788 

MAC DNA after KD were adaptor trimmed using TrimGalore (Krueger, 2019) if 789 

significant Illumina adapter content was observed using FastQC v0.11.9 (Andrews, 790 

2010) (see Table S7 for adapter sequences). The “Map” module of ParTIES v1.05 791 

pipeline was used to map the reads on MAC and MAC+IES reference genomes with 792 

changes in the /lib/PARTIES/Map.pm file as described in (Singh et al., 2023). The IES 793 

retention scores (IRS) were calculated by the “MIRET” module (provided as 794 

DevPF_IRS.tab.gz). All scripts are available from https://github.com/Swart-795 

lab/DevPF_code. IRS correlations were calculated as described previously (Swart et al., 796 

2014).  797 

 798 

Alternative excision was analyzed as described previously (Singh et al., 2023). In brief, 799 

properly paired and mapped reads were selected from the output from the ParTIES 800 

"Map" module for the MAC+IES reference genome and downsampled to the same 801 

library size (DevPF1-KD (1) and DevPF2-KD (2) were excluded due to small library 802 
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size). We then employed the "MILORD" module of a pre-release version of ParTIES (13 803 

August 2015) with default parameters to annotate alternative and cryptic IES excision. 804 

All scripts are available from https://github.com/Swart-lab/DevPF_code.  805 

 806 

The data generate in this study was compared with data of previously published KDs: 807 

PGM-KD (Arnaiz et al., 2012), TFIIS4-KD (Maliszewska-Olejniczak et al., 2015), 808 

SPT5m-KD (Gruchota et al., 2017), PTCAF1-KD (Ignarski et al., 2014), DCL2/3/5-KD 809 

(Sandoval et al., 2014), KU80c-KD (Abello et al., 2020), EZL1-KD (Lhuillier-Akakpo et 810 

al., 2014) and ISWI1-KD (Singh et al., 2022). 811 

 812 

RNA extraction and sequencing 813 

Total RNA was either extracted with phenol-chloroform followed by Monarch Total RNA 814 

Miniprep kit (New England Biolabs) or with the Quick-RNA Miniprep kit (Zymo). For 815 

phenol-chloroform extraction (batch C), 300 ml cells subjected to RNAi were washed 816 

twice with 10 mM Tris pH 7.5 (RT, 280 g, 2 min) and shock frozen by dropping them 817 

directly into liquid nitrogen. 500 μl of 2× DNA/RNA protection reagent from the Monarch 818 

kit were added to the frozen pellet and the cells thawed by vortexing. After adding 10 μl 819 

proteinase K and 1 ml RNA lysis buffer, the manufacturer's instructions (RNA Binding 820 

and Elution (Cultured Mammalian Cells)) were followed. On-column DNase I treatment 821 

was included.  822 

 823 

For RNA extraction with Quick-RNA Miniprep kit (batch A and B), 100 ml of 824 

Paramecium cultures subjected to RNAi by feeding were washed twice in 10 mM Tris 825 

pH 7.5 in pear-shaped oil flasks by centrifugation (RT, 280 g, 2 min). After the final 826 

wash, cells were collected on ice and spun at 2,000 g for 2 min and 4°C and as much 827 

liquid as possible was removed. 3× volume of 1× DNA/RNA Shield (Biozym) was mixed 828 

with the cells and the samples were stored at -70°C until further processing. For RNA 829 

extraction, samples were thawed at RT and mixed with 1× volume of RNA lysis buffer. 830 

The manufacturer’s instructions were followed (section: (III) Total RNA Purification). 831 

 832 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.23.576875doi: bioRxiv preprint 

https://github.com/Swart-lab/DevPF_code
https://sciwheel.com/work/citation?ids=2201947&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4034484&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3286967&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=975948&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=613403&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9495243&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4034483&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4034483&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13753998&pre=&suf=&sa=0
https://doi.org/10.1101/2024.01.23.576875
http://creativecommons.org/licenses/by/4.0/


 30 

Extracted total RNA was send to Azenta Life Sciences for library preparation (sRNA: 833 

NEBNext Small RNA Library Prep Set for Illumina; mRNA: NEBNext Ultra II RNA 834 

Library Prep Kit for Illumina) and paired-end Illumina sequencing (NovaSeq 2×150bp).  835 

 836 

Small RNA analysis 837 

Small RNA sequencing reads were trimmed using cutadapt (Martin, 2011) version 3.2 838 

with the parameter -a “AGATCGGAAGAGCACACGTCTGAACTCCAGTCA” to remove 839 

the relevant Illumina adaptor sequence. Trimmed reads were mapped to the 840 

Paramecium tetraurelia strain 51 MAC + IES genome and L4440 (ND7-KD) or T444T 841 

(DevPF1/DevPF2-KD) silencing vector with bwa version 0.7.17-r1188 (Heng Li & 842 

Durbin, 2009). GNU grep (version 2.14) was used to select 10-49 bp long, uniquely 843 

mapped reads (possessing the SAM file format flags “XT:A:U”) and sRNA length 844 

histograms were generated by a Python script. All scripts are available from 845 

https://github.com/Swart-lab/DevPF_code. 846 

 847 

mRNA analysis  848 

Illumina adapter sequences (Table S7) were trimmed from reads with TrimGalore 849 

(Krueger, 2019). Reads were mapped to the Paramecium tetraurelia strain 51 850 

transcriptome with hisat2 (Kim et al., 2019) allowing 20 multimappings (-k 20). Using 851 

samtools (Heng Li et al., 2009), the properly paired and mapped reads were filtered (-f2 852 

flag) and sorted by the read name (-n flag). Unique mapping reads were acquired with 853 

eXpress (Roberts & Pachter, 2013) with 5 additional online expectation-maximization 854 

rounds to perform on the data after the initial online round (-O 5 flag) to improve 855 

accuracy. Scripts are available from https://github.com/Swart-lab/DevPF_code.  856 

 857 

Read counts were normalized with DEseq2 (Love et al., 2014) package in R (version 858 

3.6.3). For plotting, DEseq2 in-build functions plotPCA, plotMA and plotCounts were 859 

combined with ggplot2 (Villanueva & Chen, 2019) package (version 3.4.3). Differentially 860 
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expressed genes were identified for each time point with a Wald test (false discovery 861 

rate (alpha) = 0.1). Differentially expressed genes were filtered with an absolute 862 

log2(Fold Change) > 2 (corresponding to a 4-fold change) and an adjusted p-value < 863 

0.01. The time point, KD and batch were known sources of variation in the dataset 864 

(design = ~ batch + timepoint + KD+ timepoint:KD). All scripts are available from 865 

https://github.com/Swart-lab/DevPF_code.  866 

 867 

Structure prediction with AlphaFold 868 

Protein structures were predicted with AlphaFold2 multimer (Evans et al., 2021; Jumper 869 

et al., 2021) using the ColabFold v1.5.2-patch (Mirdita et al., 2022) in Google Colab with 870 

default parameters. 871 

 872 

Sequence alignment 873 

Domains were predicted using InterProScan (Paysan-Lafosse et al., 2023). The 874 

nucleotide sequence of DevPF2 and DevPF1 (including introns) were aligned with 875 

clustalOmega (Sievers et al., 2011) (version 1.2.3) pairwise sequence alignment tool in 876 

Geneious prime (version 2023.2.1) with default parameters (Fig 4A). 877 

 878 

Multiple sequence alignment of PHD domains was done with clustalOmega (version 879 

1.2.1) using the MPI bioinformatics toolkit’s web interface (Zimmermann et al., 2018) 880 

with default parameters. 881 

 882 

Manuscript writing 883 

Grammar and language refinement were assisted by an AI language model developed 884 

by OpenAI (GPT-3.5 architecture) (OpenAI, 2023). 885 

 886 
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Figure 1: Features of the PHD finger proteins DevPF1 and DevPF2 
(A) mRNA expression profiles for DevPF1, DevPF2 and PGM during various 

developmental stages: VEG (vegetative growth), MEI (micronuclear meiosis and 

macronuclear fragmentation), FRG (~50% of the population with fragmented maternal 

MACs), DEV1 (significant proportion with visible anlagen), DEV2/3 (majority with visible 
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 2 

anlagen), DEV4 (majority with visible anlagen). Expression data retrieved from 

ParameciumDB (Arnaiz et al., 2017). (B) Schematic representation of predicted domain 

architecture for DevPF1 and DevPF2. (C) Multiple sequence alignment (Clustal Omega) 

of DevPF1 and DevPF2 amino acid sequence with PHD domains of published human 

and Drosophila PHD finger proteins. (D) to (F): Predicted protein structure (AlphaFold2) 

for DevPF1 and DevPF2, colored by domain (PHD: orange; PHD-zinc-finger-like 

domain: green) in (D) and (E), and by prediction confidence (pLDDT: predicted local 

distance difference test) in (F) and (G). (H) Structure predictions of DevPF1 and 

DevPF2 PHD domain superimposed with NMR structure of WSTF PHD domain (PDB 

accession number 1F62). 
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 4 

Figure 2: Subcellular localization of DevPF-GFP proteins 
DevPF1-GFP (A) and DevPF2-GFP (B) localization at various developmental stages. 

DNA (stained with DAPI) in magenta. GFP signal in yellow. No image of DevPF2-GFP 

during S-phase was acquired. Green arrow: MIC. Cyan arrow: new MAC. Maximum 

intensity projections of multiple z-planes. Scale bar = 10 µm. (C) Schematic overview of 

nuclear morphology during sexual development, with corresponding cell stages in the 

images indicated by numbers.  
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 6 

 

Figure 3: Selective DevPF1-GFP localization in Paramecium MICs 
(A) Overlay of DAPI (DNA stain; pink) and GFP (yellow) signal in two DevPF1-GFP 

injected Paramecium cells during meiotic stages. Maximum intensity projections (left) 

and individual z-planes of the same stack (right). (B) DevPF1-GFP localization with 

visualization of nuclear spindle. DAPI (pink), GFP (yellow) and anti-α-tubulin staining 

(cyan). Maximum intensity projections (top) for DAPI and overlay (DAPI, GFP and anti-

α-tubulin). Individual z-planes of the same stacks (bottom) for anti-α-tubulin, GFP and 

overlay. (A) and (B): Red arrows: MICs with DevPF1-GFP localization; White arrows: 

MICs without DevPF1-GFP localization. Scale bar = 10 µm. 
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 8 

Figure 4: Co-silencing effects observed in DevPF knockdowns 
(A) Nucleotide identity across DevPF1 (bottom) and DevPF2 (top) genes. Screenshot of 

pairwise sequence alignment in Geneious prime software. Silencing region (violet), 

exon (green), intron (white), perfect identity (gray) and mismatch/gap (black). Scale in 

base pairs at the top. (B) mRNA expression levels of DevPF1 (top) and DevPF2 

(bottom) upon KDs (ND7 (control), DevPF1 and DevPF2) at different developmental 

time points (onset, early, late and very late). Lines represent the mean of all replicates 

for a given KD and time point. The cell stage composition of each time point averaged 

over all KDs is shown at the top (individual compositions in Fig. S5), along with 

schematic representations of the considered cell stages. (C) Protein expression upon 

KD: fluorescence intensities of DevPF1-GFP (top) and DevPF2-GFP (bottom). Red line: 

median. Whiskers: 1.5 times the interquartile range from the lower or upper quartile. 

Dots: data points outside the whiskers. Sample size = 10. (D) IES retention score (IRS) 

correlations between DevPF1- and DevPF2-KD replicates. Diagonal: IRS distributions 

of individual KDs. Below diagonal: correlation graphs of pairwise comparisons. Above 

diagonal: corresponding Spearman correlation coefficients. Red lines: ordinary least-

squares (OLS) regression, orange lines: LOWESS, and gray lines: orthogonal distance 

regression (ODR). 
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Figure 5: Effects of DevPF knockdowns on genome-wide IES retention  
(A) Viability of new progeny after KDs (ND7 (negative control), PGM (positive control), 

DevPF1 and DevPF2) during sexual development. For DevPF1 and DevPF2, two 

silencing regions were targeted (a and b, see Fig. 4A). The numbers of experiments (n) 

and cells counted (cells) are indicated at the top. Survival: normal division. Sickness: 

reduced growth. Death: 3 or less cells after three days. (B) IES retention PCRs for two 

IESs on genomic DNA isolated from KD cells. (C) and (D): IES retention score (IRS) 

histograms for DevPF1 (C) and DevPF2 (D) KD replicates, indicated in parentheses. (E) 

IRS correlation between KDs. Diagonal: IRS distributions of individual KDs. Below 

diagonal: correlation graphs of pairwise comparisons. Above diagonal: corresponding 

Spearman correlation coefficients. Red lines: ordinary least-squares (OLS) regression, 

orange lines: LOWESS, and gray lines: orthogonal distance regression (ODR). 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.23.576875doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.23.576875
http://creativecommons.org/licenses/by/4.0/


 11 

 

A
on

se
t

ea
rly

la
te

ve
ry

 la
te

DevPF2-KD (1)ND7-KD (1)
fra

ct
io

n 
of

 to
ta

l r
ea

ds

small RNA length [nt]

DevPF1-KD (2)

siRNA
(23 nt)

scnRNA
(25 nt)

siRNA
(23 nt)

scnRNA (25 nt)
iesRNA

(~26-30 nt)

100%

0%
100%

0%
100%

0%
100%

0%

100%

0%

100%

0%
100%

0%

100%

0%

100%

0%

100%

0%

100%

0%

100%

0%

MAC
IES
silencing 
vector

small RNAs 
matching to:

cell stages:

siRNA
(23 nt) siRNA

(23 nt)

scnRNA
(25 nt)

siRNA
(23 nt)

siRNA
(23 nt) scnRNA (25 nt)

vegetative

skein

fragmented

new MACs

D
ev
P
F1

-K
D G

FP
ov

er
la

y
G

FP
ov

er
la

y
no

 K
D

S-phase meiosis I meiosis II fragments new MACsB

S-
Ph

as
e

m
ei

os
is

 I
m

ei
os

is
 II

fra
gm

en
ts

ne
w

 M
AC

s

C

Pt
iw

i0
9-

G
FP

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.23.576875doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.23.576875
http://creativecommons.org/licenses/by/4.0/


 12 

Figure 6: Changes of small RNA populations upon DevPF knockdowns  
(A) Small RNA populations (10-40 nt) at developmental time points (onset, early, late 

and very late) in different KDs (ND7 (control), DevPF1 and DevPF2), mapping to 

silencing plasmid backbone (vector), MAC or IES sequences. Individual cell stage 

compositions are indicated by the bar to the right of each diagram, along with schematic 

representations of the cell stages considered. (B) Ptiwi09-GFP localization at different 

developmental stages in the context of no (top) and DevPF1 KD (bottom). DAPI (pink) 

and GFP (yellow). Individual z-planes for GFP and overlay (DAPI and GFP). Green 

arrows: MICs. Cyan arrows: new MAC. Scale bar = 10 µm. (C) Schematic 

representation of cell stages in (B). 
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Figure 7: Differential gene expression in DevPF knockdowns 
(A) Cell stage composition of each time point averaged over all KDs (individual 

compositions in Fig. S5), along with schematic representations of the considered cell 

stages. (B) Presence or absence of scnRNAs and iesRNAs in different KDs (ND7, 

DevPF1 and DevPF2) and time points (onset, early, late, very late). (C) Differentially 

expressed genes in DevPF1- (top) or DevPF2- (middle) compared to ND7-KD or 

DevPF1- compared to DevPF2-KD (bottom) at different developmental time points 

(onset, early, late and very late). Thresholds for up-/downregulation: adjusted p-value < 

0.01; |log2(fold change)| > 2. The number of up-/downregulated genes is indicated in 

each diagram. For all comparisons, 35777 transcripts were analyzed, except for: 

DevPF1-ND7 onset (33696), DevPF2-ND7 early (35083), and DevPF2-DevPF1 onset 

(34389). (D) Gene expression levels of selected genes upon KDs (ND7 (control), 

DevPF1 and DevPF2) at different developmental time points (onset, early, late and very 

late). The lines represent the mean of all replicates in a given KD and time point. 
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Table 1: IES retention scores of IESs at PTIWI10/11 genes 
The genes PTIWI10 and PTIWI11 contain IESs in their coding and/or flanking regions, 

which were proposed to impair their transcription when retained. The IRS values for the 

three relevant IESs (IDs with prefix IESPGM.PTET51.1) are provided for each KD. 

Rows are color-coded according to the KDs as shown in the mRNA read count 

diagrams (i. e. Figs 7D, S7B). 

 

KD 

R
ep

lic
at

e PTIWI11 PTIWI10 

coding region flanking region coding region 

IESPGM.PTET51.1.62.345420 IESPGM.PTET51.1.24.407807 IESPGM.PTET51.1.24.408279 

ND7 

3 0.00 0.00 0.00 

4 0.00 0.00 0.00 

5 0.00 0.00 0.00 

DevPF1 

1 0.09 0.29 0.11 

2 0.08 0.15 0.06 

3 0.04 0.03 0.06 

4 0.02 0.01 0.01 

DevPF2 

1 0.10 0.07 0.01 

2 0.02 0.24 0.15 

3 0.00 0.00 0.00 

4 0.00 0.00 0.01 

5 0.03 0.00 0.00 

6 0.01 0.00 0.00 
 

 

 

 

 


