

Two paralogous PHD finger proteins participate in *Paramecium tetraurelia*'s natural genome editing

Lilia Häußermann¹, Aditi Singh^{1, #}, Estienne C. Swart^{1, #}

¹Max Planck Institute for Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany

#Corresponding author: estienne.swart@tuebingen.mpg.de,
aditi.singh@tuebingen.mpg.de

Keywords: genome reorganization; PHD finger proteins; small RNAs

1 Abstract

2 The unicellular eukaryote *Paramecium tetraurelia* contains functionally distinct nuclei:
3 germline micronuclei (MICs) and a somatic macronucleus (MAC). During sexual
4 reproduction, the MIC genome is reorganized into a new MAC genome and the old
5 MAC is lost. Almost 45,000 unique Internal Eliminated Sequences (IESs) distributed
6 throughout the genome require precise excision to guarantee a functional new MAC
7 genome. Here, we characterize a pair of paralogous PHD finger proteins involved in
8 DNA elimination. DevPF1, the early-expressed paralog, is present in only some of the
9 gametic and post-zygotic nuclei during meiosis. Both DevPF1 and DevPF2 localize in
10 the new developing MACs, where IESs excision occurs. In *DevPF2* knockdown (KD)
11 long IESs are preferentially retained and late-expressed small RNAs decrease; no
12 length preference for retained IESs was observed in *DevPF1*-KD and development-
13 specific small RNAs were abolished. The expression of at least two genes from the new
14 MAC with roles in genome reorganization seems to be influenced by *DevPF1*- and
15 *DevPF2*-KD. Thus, both PHD fingers are crucial for new MAC genome development,
16 with distinct functions, potentially via regulation of non-coding and coding transcription
17 in the MICs and new MACs.

18

19 Introduction

20 A unique feature shared by all ciliates is the presence of nuclear dimorphism. In
21 *Paramecium tetraurelia* (henceforth *Paramecium*) the two micronuclei (MICs) resemble
22 the germline of multicellular organisms, being transcriptionally silent throughout most of
23 the life cycle and generating haploid nuclei during meiosis that develop and give rise to
24 all nuclei in the subsequent generation. Also similar to the multicellular soma, the
25 macronucleus (MAC) is optimized for most gene expression, and originates from a MIC
26 copy. The old MAC is fragmented during sexual division and subsequently diluted
27 across cell divisions, with the new MAC completely taking over somatic expression. The
28 development from the MIC genome to the MAC genome in *Paramecium* is a natural

29 form of genome editing that requires extensive reorganization, including genome
30 amplification (~800n), chromosome fragmentation and the elimination of about 25% of
31 the sequence content (Arnaiz et al., 2012; Guérin et al., 2017). These MIC genome-
32 specific sequences comprise repeats, transposable elements and Internal Eliminated
33 Sequences (IESs).

34

35 In contrast to other elimination events, IES elimination requires precise excision in
36 *Paramecium*. Precise IES excision is not characteristic of all ciliates. Notably, in
37 *Paramecium*'s oligohymenophorean relative *Tetrahymena*, IESs are predominantly
38 imprecisely excised and only tolerated in intergenic regions (Hamilton et al., 2016). The
39 roughly 45,000 IESs in *Paramecium* are scattered throughout the genome in both non-
40 coding and coding regions and vary from tens to thousands of base pairs in length
41 (Arnaiz et al., 2012). Since the coding density of the *Paramecium* MAC genome is high,
42 most IESs are intragenic (Arnaiz et al., 2012). *Paramecium* IESs are flanked by
43 conserved 5'-TA-3' dinucleotides (Klobutcher & Herrick, 1995) and excised by
44 PiggyMAC (Pgm). Pgm is a domesticated transposase derived from PiggyBac
45 transposases (Baudry et al., 2009) like the excisase responsible for IES excision in
46 *Tetrahymena* (Cheng et al., 2010). The weakly conserved ~5 bp long inverted repeats at
47 *Paramecium* IES ends (Klobutcher & Herrick, 1995) fail to provide enough specificity for
48 reliable Pgm recruitment (Arnaiz et al., 2012). This suggests that other factors are
49 needed for precise IES targeting.

50

51 The targeting of MIC-specific sequences for elimination is thought to be assisted by
52 small non-coding RNAs, first characterized in *Tetrahymena* (Chalker & Yao, 2001;
53 Mochizuki et al., 2002). Like *Tetrahymena*, the biogenesis of the 25 nucleotide (nt) scan
54 RNAs (scRNAs) occurs during meiosis in the *Paramecium* MICs. Bidirectional non-
55 coding transcription of the MIC genome is thought to be initiated by the putative
56 transcription elongation factor Spt5m (Gruchota et al., 2017) and followed by the
57 cleavage of long double-stranded RNA (dsRNA) by the closely related Dicer-like protein
58 paralogs Dcl2 and Dcl3 (Hoehener et al., 2018; Lepère et al., 2009; Sandoval et al.,
59 2014). Argonaute/Piwi proteins Ptiwi01/09 (also close paralogs) process the resulting

60 short dsRNAs, removing one of the two strands, and stabilize single-stranded scnRNAs
61 throughout the selection process in the parental MAC and targeting of MIC-specific
62 sequences in the new MACs (Bouhouche et al., 2011; Furrer et al., 2017). In the
63 parental MAC, Gtsf1 was recently proposed to promote ubiquitination and subsequent
64 degradation of the Ptiwi01/09 complexes harboring MAC-matching scnRNAs (Charmant
65 et al., 2023; Wang et al., 2023). In the new MACs, the putative transcription elongation
66 factor TFIIIS4 was proposed to promote non-coding transcription required for scanning
67 the developing genome (Maliszewska-Olejniczak et al., 2015).

68

69 In *Tetrahymena*, H3K9 and H3K27 methylation precede IES excision (Y. Liu et al., 2007;
70 Taverna et al., 2002) and it was shown in *Paramecium* that development-specific
71 H3K9me3 and H3K27me3 histone mark deposition by the PRC2 complex depends on
72 scnRNAs and is essential for the elimination of transposons and IESs (Frapperti et al.,
73 2019; Ignarski et al., 2014; Lhuillier-Akakpo et al., 2014; Miró-Pina et al., 2022; Wang et
74 al., 2022). We recently showed that the ISWI1 chromatin remodeling complex is
75 necessary for IES excision precision and Ptiwi01/09 co-immunoprecipitated with ISWI1
76 in a crosslinked treatment (Singh et al., 2022, 2023). After the initial onset of IES
77 excision, additional single-stranded sRNAs, iesRNAs, ranging in size from ~26 to 30 bp,
78 are produced by Dcl5 from excised IES fragments and stabilized on Ptiwi10/11 (Furrer
79 et al., 2017; Sandoval et al., 2014). iesRNAs were proposed to participate in a positive
80 feedback loop for the efficient removal of all IES copies (Sandoval et al., 2014).
81 Nevertheless, only a fraction of IES excision appears to depend on scnRNAs or
82 iesRNAs (Nowacki et al., 2005; Sandoval et al., 2014).

83

84 Despite the knowledge gained in the past decades, the picture of IES excision is far
85 from complete. To identify novel genes involved in IES excision, we examined proteins
86 potentially associated with ISWI1, a chromatin remodeler we recently showed to
87 facilitate precise IES excision (Singh et al., 2022).

88

89

90

91 **Results**

92 **Identification of a novel protein involved in IES excision**

93 Recently, we reported evidence supporting the formation of a protein complex involving
94 ISWI1 and the ICOP proteins (Singh et al., 2023). We conducted an RNAi screen of
95 additional genes that were unique in the ISWI1 co-immunoprecipitation (IP)-mass
96 spectrometry (MS) and exhibited upregulation in a developmental gene expression time
97 course from ParameciumDB (Arnaiz et al., 2017) (Fig. S1A).

98

99 In the screening, we sought phenotypic evidence for failed genome reorganization in the
100 form of growth defects (assessed by survival tests), and substantial IES retention
101 (assessed by IES retention PCRs). *ND7*, a gene involved in trichocyst discharge
102 (Lefort-Tran et al., 1981), was used as a negative control as its silencing does not impair
103 genome reorganization (Nowacki et al., 2005). *Nowa1-KD*, which affects the excision of
104 scnRNA-dependent IESs (Nowacki et al., 2005), was used as a positive control.
105 Candidate 2 (PTET.51.1.G0620188) displayed both IES retention and lethality in the
106 new progeny, whereas candidate 1 (PTET.51.1.G0990120) showed high lethality
107 without IES retention (Fig. S1B,C). Therefore, candidate 2 was selected for further
108 investigations.

109

110 **DevPF2 and DevPF1 are paralogous PHD finger proteins**

111 The *Paramecium aurelia* species complex, to which *P. tetraurelia* belongs, underwent
112 multiple whole-genome duplications, with many closely related paralogs generated from
113 the most recent of these (Sellis et al., 2021). The chosen candidate has a closely related
114 paralog (PTET.51.1.G0240213) with which it shares 86.6% identity at both the
115 nucleotide and amino acid levels. The paralog is upregulated during sexual
116 development as well, although earlier (Fig. 1A). HMMER3 searches of the Pfam
117 database (Finn et al., 2003) predicted two domains in both proteins: a PHD and a PHD
118 zinc-finger-like domain (Fig. 1B,D,E).

119

120 The highly conserved PHD domain has often been reported to mediate the interaction of
121 nuclear proteins with histone modifications (Sanchez & Zhou, 2011), but other binding
122 affinities have also been described (see Discussion). PHD domains possess a well-
123 conserved motif consisting of eight cysteine and histidine residues (C4HC3) that
124 coordinate two zinc ions, thereby providing it with structural stability. The presence of
125 the C4HC3 motif in both paralogs was confirmed using a multiple sequence alignment
126 with PHD domains from well-established PHD finger proteins from *Homo sapiens* and
127 *Drosophila melanogaster* (Fig. 1C).

128

129 AlphaFold2 predicted the structures of both paralogs with high confidence for the
130 domains (Fig. 1F,G). We compared the PHD predictions with the published structure of
131 the WSTF (Williams Syndrome Transcription Factor) PHD finger (Pascual et al., 2000).
132 WSTF, associated with the Williams Syndrome (Lu et al., 1998), is a subunit of the
133 ISWI-containing chromatin remodeling complex WICH (Bozhenok et al., 2002). The
134 superimposition confirmed the orientation of the eight C4HC3 residues in the DevPFs
135 towards the two zinc ions (Fig. 1H), supporting the idea that both paralogs function as
136 PHD finger proteins. Since they show development-specific upregulation (Fig. 1A), we
137 named the paralogs development-specific PHD finger 1 (DevPF1; early-expressed
138 paralog) and 2 (DevPF2; late-expressed paralog).

139

140 **DevPF1 and DevPF2 show distinct nuclear localization**

141 To determine the localization of both paralogs, we injected DNA constructs encoding
142 DevPF1 and 2 C-terminally tagged with green fluorescent protein (GFP) into MACs of
143 vegetative paramecia. The cells were collected during *Paramecium* sexual development
144 for confocal microscopy. The injected cultures displayed no growth defects compared to
145 non-transformed cells (Fig. S2A). However, we observed variable numbers for gametic
146 MICs (Figs 2, 3) and new MACs (Fig. S2C) in some cells, which has been observed
147 frequently for transgenes (e.g. Nowa1-GFP fusion; (Nowacki et al., 2005)).

148

149 Consistent with *DevPF1*'s early peak in mRNA expression from the developmental time
150 course in ParameciumDB, *DevPF1-GFP* was expressed during the onset of sexual
151 development, but not in vegetative cells with food vacuoles containing bacteria (Figs 2A,
152 S2B). *DevPF1-GFP* was distributed throughout the cytoplasm and localized in both
153 MICs before and during the S-phase of meiosis, when these nuclei swell (Fig. 2A).
154 Throughout the subsequent meiotic divisions, *DevPF1-GFP* localized to only a few of
155 the gametic MICs (Fig. 3A). Its micronuclear localization appeared independent of
156 nuclear division as detected by the presence of the spindle apparatus (Fig. 3A,B).
157 During post-zygotic mitotic divisions, *DevPF1-GFP* was observable in certain post-
158 zygotic nuclei, but not in all of them (Fig. 3B). Later during development, *DevPF1-GFP*
159 was present in the early new MACs and remained in the new MACs throughout
160 development up to very late stages (Fig. 2A) despite the drop in its mRNA levels (Fig.
161 1B). During new MAC development there was also comparatively little cytoplasmic
162 *DevPF1-GFP* compared to that during meiosis.

163

164 Consistent with its mRNA expression profile, *DevPF2-GFP* emerged after the onset of
165 new MAC development and localized within the new MACs, where it remained up to the
166 late stages (Fig. 2B).

167

168 **Silencing constructs partially co-silence both paralogs**

169 We utilized RNAi by feeding to investigate the influence of the *DevPFs* on IES excision.
170 Two silencing regions were selected (a and b) on each *DevPF1* and *DevPF2* (Fig. 4A).
171 Due to the lack of regions with sufficient specificity for either of the paralogs, co-
172 silencing was predicted (see Methods). Hence, we first experimentally verified the
173 possibility of co-silencing with mRNA and protein levels using silencing region a, since it
174 exhibited less off-target hits.

175

176 The mRNA levels of *DevPF1* and *DevPF2* were examined during a time course
177 experiment (more details and further analysis follow in subsequent sections) (Fig. 4B).
178 Consistent with the published expression profiles (Arnaiz et al., 2017), *DevPF1*

179 expression in the *ND7* control knockdown (KD) was highest during onset of
180 development and gradually declined to almost no expression at the “very late” time
181 point. The late-expressed *DevPF2* peaked at the “late” time point in the control KD. The
182 expression of both genes was strongly reduced upon their respective KDs (*DevPF1*
183 mRNA levels were reduced upon *DevPF1*-KD; *DevPF2* mRNA levels were reduced
184 upon *DevPF2*-KD). A lesser reduction was also observed upon silencing of the
185 respective paralog (*DevPF1* levels were reduced in *DevPF2*-KD and vice versa). Thus,
186 the *DevPF1* and *DevPF2* silencing constructs lead to co-silencing which is less efficient
187 than the target gene silencing.

188

189 To investigate how the changes in mRNA levels affect protein levels, we checked the
190 localization of the GFP-tagged DevPFs upon KDs. Since *DevPF1* is expressed
191 throughout the whole development, multiple developmental time points were collected
192 (Fig. S3A). For the late-expressed *DevPF2*, only cell stages with clearly visible new
193 MACs were considered (Fig. S3B). In addition to *ND7*-KD, the knockdown of *PGM*, the
194 gene encoding the PiggyMac IES excisase (Baudry et al., 2009), was performed to test
195 whether the disturbance of IES excision alters DevPF localization. Neither the
196 localization of DevPF1-GFP nor of DevPF2-GFP was impaired by either of the control
197 KDs. In contrast, the GFP signals were almost completely lost upon *DevPF1*- or
198 *DevPF2*-KD. To quantify this observation, GFP fluorescence signals were measured in
199 new MACs (Fig. 4C) as both paralogs exclusively localize to the new MACs during late
200 stages. In line with the observed reduction in mRNA levels, DevPF1-GFP expression
201 was efficiently reduced upon *DevPF1*-KD, whereas *DevPF2*-KD led to a weaker
202 reduction. For DevPF2-GFP, the levels were almost equally reduced in *DevPF1*- and
203 *DevPF2*-KD. Thus, we confirmed co-silencing on both mRNA and protein levels with
204 reduced silencing efficiency compared to the targeted KD. Therefore, all results
205 obtained in KD experiments must be considered, at least in part, as a combined effect
206 of silencing both DevPF1 and DevPF2, albeit with only a partial contribution from the
207 non-targeted gene silencing.

208

209 To further investigate the impact of co-silencing on the KD analysis we examined IES
210 retention score (IRS) correlations of multiple KD replicates (more details and further
211 analysis in subsequent sections). The *DevPF2*-KD replicates showed high to moderate
212 correlation among each other while they correlated less well with two out of four
213 *DevPF1*-KD replicates (Fig. 4D). This suggests that despite the partial co-silencing,
214 individual KD effects might be observed.

215

216 ***DevPF1* and *DevPF2* affect IES excision genome-wide**

217 The influence of the DevPFs on genome reorganization was initially investigated with
218 survival tests and IES retention PCRs upon KDs. Reduced protein levels during sexual
219 development can induce errors including IES retention, impacting the survival of the
220 subsequent generation. For survival tests, the growth of the cells that completed their
221 sexual development was followed for several divisions. IES retention PCRs test for the
222 presence (failed excision) of specific IESs in the new MAC genome. *ND7*-KD and *PGM*-
223 KD were used as negative and positive control, respectively. To investigate the
224 possibility that the observed effects result from off-target silencing of an unrelated gene,
225 two silencing probes (a and b) were tested for each paralog (Fig. 4A). *DevPF1* and
226 *DevPF2* KDs with either of the silencing probes resembled *PGM*-KD, with high lethality
227 in the new progeny (Fig. 5A) and retention of selected IESs (Fig. 5B). This indicates that
228 both *DevPF1* and *DevPF2* contribute to IES excision.

229

230 Next, we tested genome-wide IES retention in enriched new MAC DNA samples. We
231 observed considerably elevated levels of retained IESs in both *DevPF1*- and *DevPF2*-
232 KD (Fig. 5C,D). Notably, differences between replicates of the same KDs were
233 observed, whereas replicate pairs processed in parallel (see Methods) exhibited similar
234 profiles. Correlations among the paralog replicates indicated that despite varying IES
235 retention distributions, *DevPF2*-KD replicates demonstrated high correlations among
236 themselves (Fig. 4D). *DevPF1*-KD replicates correlated less well with each other, and
237 *DevPF1*-KD replicate 3 (3) showed a high correlation with the *DevPF2*-KD. This

238 indicates that *DevPF2*-KD replicates were more consistent than the *DevPF1*-KD
239 replicates.

240

241 Genes that work closely together are expected to show similar KD effects on IES
242 retention. To identify functionally related genes, *DevPF1*-KD and *DevPF2*-KD IRS data
243 was correlated with published data from other gene KDs (Fig. 5E). *DevPF2*-KD (4) was
244 selected from the *DevPF2* replicates. *DevPF1*-KD (2) and *DevPF1*-KD (4) were
245 selected as representative of the variability observed in the *DevPF1*-KDs. *DevPF2*-KD
246 (4) displayed high correlation with other KDs, such as *TFIIS4* and *DCL2/3/5* (Fig. 5E).
247 Moderate correlation was observed for *DevPF1*-KD (4) with *SPT5m*, whereas *DevPF1*-
248 KD (2) did not correlate well with any of the tested KDs.

249

250 Short IESs are proposed to predominantly rely on the excision complex (specifically
251 Pgm (Baudry et al., 2009) and Ku80c (Marmignon et al., 2014)) for removal, while long
252 IESs tend to require additional molecules for excision (Sellis et al., 2021). To determine
253 whether *DevPF1*- and *DevPF2*-KD preferentially affect long IESs, the length distribution
254 of the top 10% of highly retained IESs in each KD was plotted (Fig. S4A,B, Table S1). In
255 comparison to the length distribution of all IESs, *DevPF2*-KD (4) showed an
256 overrepresentation of long IESs, similar to observations in *EZL1*-KD, silencing of the
257 catalytic subunit of the PCR2 complex (Frapporti et al., 2019; Lhuillier-Akakpo et al.,
258 2014), or *DCL2/3/5*-KD, silencing of the scnRNA and iesRNA biogenesis proteins
259 (Lepère et al., 2009; Sandoval et al., 2014), (Fig. S4A). Conversely, the highly retained
260 IESs in *DevPF1*-KD (2) did not show the same overrepresentation and resembled the
261 profile in *PGM*- and *KU80c*-KD, silencing of two members of the excision complex.
262 Again, the replicates of the *DevPF* KDs exhibited variation in the extent of the observed
263 effect (Fig. S4B).

264

265 Defects in IES excision not only result in the retention of IESs but can also lead to
266 excision at alternative TA boundaries. So far, alternative excision above background
267 levels has only been reported for silencing of ISWI1 and its complex partners (Singh et

268 al., 2022, 2023). Neither *DevPF1*-KD nor *DevPF2*-KD resulted in elevated levels of
269 alternative excision (Fig. S4; Table S2).

270

271 ***DevPF1*- and *DevPF2*-KD alter the small RNA population**

272 The early-produced 25 nt scnRNAs and the late-produced 26-30 nt iesRNAs have been
273 proposed to assist MIC-specific sequence targeting in the new MACs (Sandoval et al.,
274 2014). Therefore, the small RNA populations across developmental time points upon
275 *DevPF* KDs were analyzed (Figs 6A, S6A). In *DevPF1*-KD (2), scnRNA production was
276 completely abolished, an effect also observed in the KD of genes proposed to be
277 involved in scnRNA production: the two scnRNA-processing genes *DCL2* and *DCL3*
278 (Sandoval et al., 2014), and *STP5m*, involved in the generation of the transcripts serving
279 as substrates for *Dcl2/3* cleavage (Gruchota et al., 2017). The KD of the late-expressed
280 *DevPF2* showed a much weaker reduction of scnRNA production, which might be
281 caused by co-silencing of *DevPF1*.

282

283 To further investigate *DevPF1*'s effect on the scnRNA pathway, we observed *Ptiwi09*-
284 GFP localization upon *DevPF1*-KD. *Ptiwi09*, together with *Ptiwi01*, stabilizes the
285 scnRNAs throughout scnRNA selection in the parental MAC and targeting of MIC-
286 specific sequences in the new MACs (Bouhouche et al., 2011; Furrer et al., 2017). As
287 previously described (Bouhouche et al., 2011; Singh et al., 2023), *Ptiwi09*-GFP localizes
288 first to the cytoplasm and parental MAC with a transient localization in the swelling MICs
289 before shifting to the new MAC (Fig. 6B). Upon *DevPF1*-KD (Fig. 6B), the localization to
290 the MICs before meiosis I is not impaired; however, the translocation into the parental
291 MAC is strongly reduced and *Ptiwi09*-GFP predominantly remains in the cytoplasm
292 throughout meiosis II and MAC fragmentation. We have reported a similar change in
293 *Ptiwi09*-GFP localization upon *DCL2/3*-KD (Singh et al., 2023), suggesting that the loss
294 of scnRNAs is responsible for the failed protein transfer into the parental MAC. Similar
295 to *DCL2/3*-KD, *DevPF1* depletion does not affect *Ptiwi09*-GFP's localization to the new
296 MACs (Fig. 6B).

297

298 Interestingly, DevPF1-HA IP at two developmental time points (early: about 30%
299 fragmentation; late: visible new MACs in fragmented cells) identified Ptiwi01/09 as
300 potential interaction partners of DevPF1 with a higher enrichment in the early than the
301 late time point (Fig. S6B, Table S3). None of the other small RNA-related proteins were
302 detected (Dcls, Spt5m, TFIIS4 or Ptiwi10/11).

303

304 For both *DevPF1*- and *DevPF2*-KD, iesRNA production was impaired. iesRNAs are
305 proposed to derive from dsRNAs transcribed from excised IESs (Allen et al., 2017;
306 Sandoval et al., 2014). Hence, failed excision of IESs in *DevPF1*- or *DevPF2*-KD
307 contributes to reduced iesRNA levels, as has consistently been observed for many
308 other KDs of genes involved in *Paramecium* genome editing (Charmant et al., 2023; de
309 Vanssay et al., 2020; Ignarski et al., 2014; Maliszewska-Olejniczak et al., 2015; Singh et
310 al., 2022; Wang et al., 2023). The lack of scnRNAs in the *DevPF1*-KD cannot explain
311 the absence of iesRNAs, as these accumulate even if the preceding scnRNA production
312 is blocked (Sandoval et al., 2014). In the late time point analyzed for DevPF IPs,
313 peptides mapping to Ptiwi10/11/06 were detected in DevPF2-IP (Fig. S6C, Table S3),
314 but not DevPF1-IP (Fig. S6B). Therefore, DevPF2 might contribute to iesRNA
315 biogenesis by an interaction with Ptiwi proteins.

316

317 ***DevPF1*- and *DevPF2*-KD affect mRNA expression**

318 Since PHD fingers have often been reported to be involved in gene expression
319 regulation (Aasland et al., 1995; Sanchez & Zhou, 2011) we sought to investigate
320 whether the *DevPF* KDs alter mRNA expression levels during development. Batch
321 effects had a major influence on the variance within the replicates (Fig. S7A), as
322 observed for IES retention (Fig. 5C,D).

323

324 *DevPF1*-KD showed almost no differentially expressed genes compared to *ND7*-KD
325 during onset of development (Fig. 7A). During this early stage, genes are transcribed
326 solely from the parental MAC, where *DevPF1*-GFP does not localize (Figs 2A, 3).
327 Surprisingly, in *DevPF2*-KD, a high number of genes were differentially expressed

328 during the onset of development (Fig. 7A). Since *DevPF2* is late-expressed and
329 *DevPF1-KD* showed no effect, the observed difference might be caused by differing cell
330 stages within the collected populations of *DevPF2-KD* and *ND7-KD*. During the “early”,
331 “late” and “very late” time points, *DevPF1*- and *DevPF2-KD* showed similar changes in
332 mRNA expression.

333

334 The abolishment of development-specific small RNAs in the *DevPF*-KDs might result
335 from downregulation of genes involved in scnRNA or iesRNA production. We observed
336 no general trend indicating a drastic reduction of expression of scnRNA-related genes,
337 like *DCL2*, *PTIWI01* or *SPT5m* (Figs 7B, S7B, Table S4, S5). However, these trends in
338 expression should be considered with the caveat of considerable expression variability
339 and limitation of the number of replicates that could practically be obtained. At least for
340 *Ptiwi09*, the localization experiments upon *DevPF1-KD* confirmed no loss in protein
341 levels (Fig. 6B).

342

343 The expression of iesRNA-related genes was altered in both *DevPF1*- and *DevPF2-KD*
344 compared to *ND7-KD* (Figs 7D, S7B, Table S4, S5). *DCL5*, the Dicer-like protein
345 responsible for the initial cleavage of IES derived dsRNAs into small iesRNAs
346 (Sandoval et al., 2014), was downregulated (Table S4, S5) in early stages, but tended to
347 be upregulated in the very late stage (Table S4, S5). *PTIWI10* and *PTIWI11*, the Piwi
348 proteins responsible for further processing and stabilization of iesRNAs during the
349 positive feedback loop (Furrer et al., 2017), were downregulated in both *DevPF1*- and
350 *DevPF2-KD* (Table S4, S5). Successful expression of *PTIWI10/11* has been proposed
351 to depend on IES excision since both genes are expressed from the new MAC and
352 harbor IESs in their flanking/coding regions (Furrer et al., 2017) (Fig. S7C). If IES
353 retention was the only cause for downregulation, one would expect higher IRSs for
354 these IESs in KDs with lower mRNA levels. While the mRNA reduction is stronger in
355 *DevPF1-KD* than in *DevPF2-KD* (Fig. 7D, Table S4, S5), this trend is not reflected in the
356 IRSs of the IESs whose retention is proposed to interfere with *PTIWI10/11* expression
357 (Table 1). In most of the KD replicates, there is no or low retention (IRS < 0.1) and the
358 replicates showing moderate to high retention (0.1 < IRS < 0.3) belong to both *DevPF1*-

359 and *DevPF2*-KD. Hence, the reduced mRNA levels of *PTIWI10/11* cannot only be
360 explained by IES retention.

361

362 Discussion

363 Implications of the PHD domain for DevPF1 and DevPF2 functions

364 Genome reorganization is a fundamental process underlying cell and immune system
365 development and some diseases (Bassing et al., 2002; Forment et al., 2012; Mani &
366 Chinnaiyan, 2010; Rooney et al., 2004). Ciliates undergo massive genome
367 reorganization during the maturation of their somatic genome. This makes them
368 excellent models for studying the complex mechanisms involved in the targeted
369 elimination of genomic sequences (Beisson et al., 2010d). In the present study, we
370 described two paralogous PHD finger proteins, DevPF1 and DevPF2, involved in IES
371 excision in *Paramecium*. Both paralogs harbor a PHD and a PHD zinc finger-like
372 domain (Fig. 1). These domains belong to the zinc-finger family and the PHD domain is
373 characterized by a well-conserved C4HC3 motif (Aasland et al., 1995; Schindler et al.,
374 1993). The eight core amino acids of this motif coordinate two zinc ions and thereby
375 provide structural stability to the domain (Pascual et al., 2000). Among other histone-
376 binding domains, such as bromodomains or PWWP domains, PHD fingers are the
377 smallest (Fleck et al., 2021; Miller et al., 1985). Multiple sequence alignment and
378 structure predictions confirmed the presence of the characteristic C4HC3 motif in both
379 DevPF1 and DevPF2 (Fig. 1), suggesting that both PHDs might be functional.

380

381 PHD fingers, mainly nuclear proteins, are often considered epigenetic readers,
382 recognizing histone modifications, primarily on the histone 3 (H3) N-terminal tail
383 (Sanchez & Zhou, 2011). Peptides matching to histones were enriched in the DevPF-
384 IPs of late developmental time points (Fig. S6B,D, Table S3), however none of them
385 was specific to H3. PHD fingers have been reported to bind non-H3 partners, like DNA,
386 histone 4, or other proteins (Bienz, 2006; Black & Kutateladze, 2023; Gaurav &
387 Kutateladze, 2023; L. Liu et al., 2012; Oppikofer et al., 2017). The combination of the

388 PHD and PHD-zinc-finger-like domain in the DevPFs may enable the paralogs to
389 simultaneously recognize two adjacent histone modifications, as demonstrated for
390 tandem PHD domains (Zeng et al., 2010). PHD domains are also found in various
391 chromatin associated proteins involved in gene regulation. Notably, ISWI-containing
392 chromatin remodeling complexes often include a subunit with a PHD domain, such as
393 the ACF (Eberharter et al., 2004), NURF (Haitao Li et al., 2006; Wysocka et al., 2006) or
394 WICH (Bozhenok et al., 2002) complexes.

395

396 DevPF2 was initially identified in pulldowns of the ISWI1 protein, and, thus far, no PHD-
397 containing protein has been shown to be a part of this remodeling complex (Singh et al.,
398 2022, 2023). It is intriguing to consider that DevPF2 might contribute PHD functionality
399 to the ISWI1 chromatin remodeling complex. However, *DevPF2-KD* does not show
400 elevated levels of alternative excision (Fig. S4C-E) that are characteristic of other
401 members of the complex so far (Singh et al., 2022, 2023) and ISWI1 was not identified
402 as a potential interaction partner in the DevPF2-IP (Fig. S6C). If DevPF2 interacts with
403 the ISWI1 complex, we infer that it may not be a core complex component, particularly
404 as it does not contribute to excision precision.

405

406 **A potential role for DevPF1 and DevPF2 as transcription factors?**

407 **A potential role in non-coding transcription in the MICs (for scnRNA production)**

408 DevPF1's localization in the MICs (Figs 2A, 3) and its importance for scnRNA
409 production (Fig. 6A) could point towards its involvement in the bidirectional transcription
410 of the MIC genome for scnRNA production. Spt5m (Gruchota et al., 2017) and TFIIS2/3
411 (Maliszewska-Olejniczak et al., 2015) are proposed to be involved in this micronuclear
412 transcription. One of the *DevPF1-KD* replicates showed moderate IRS correlation with
413 *SPT5m* (Fig. 5E) (to our knowledge, no IRS data exists for TFIIS2 or TFIIS3) and
414 *SPT5m-KD* also reduces scnRNA production. The localization of Dcl2-GFP (Lepèze et
415 al., 2009), Ptiwi09-GFP (Fig. 6B) and DevPF1-GFP (Fig. 2A) in the swelling MICs
416 suggests that scnRNA biogenesis occurs during the S-phase of meiosis. Ptiwi09 and

417 DevPF1 may interact in the MICs or the cytoplasm. Non-crosslinked IP's would be
418 needed to further verify this interaction. However, *PTIWI01/09*-KD does not completely
419 abolish scnRNAs (Furrer et al., 2017), indicating that DevPF1 acts upstream of scnRNA
420 loading and guide strand removal. Future investigations of bi-directional transcription
421 and scnRNA biogenesis will allow to identify how all these molecules cooperate.

422

423 Spt5m-GFP, TFIIS2/3-GFP and DevPF1-GFP are present in the MICs beyond S-phase
424 and localize to the new MACs at later stages (Gruchota et al., 2017;
425 Maliszewska-Olejniczak et al., 2015). Their role in the MIC during meiotic divisions
426 remains unknown. It was speculated that Spt5m might be involved in co-transcriptional
427 deposition of epigenetic marks that sustain meiotic processes, ultimately aiding in IES
428 targeting. The potential of PHD domains to bind histone modifications raises a similar
429 possibility for DevPF1. However, its role appears to be more specific, as DevPF1 is not
430 present in all gametic and zygotic nuclei simultaneously (Fig. 2&3).

431

432 Msh4/5, homologs of proteins essential for crossover, are also present in all gametic
433 nuclei during the first and second meiotic division, and their silencing leads to
434 substantial IES retention (Rzeszutek et al., 2022). However, their non-canonical
435 functions that lead to IES retention are not yet fully understood (Rzeszutek et al., 2022).
436 Since new MACs develop in *DevPF1*-KD (Figs 6B,S3) and *MSH5*-KD cells, neither of
437 the genes are essential for crossover or karyogamy. More research will be needed in
438 future to decipher the functions of the DevPF proteins in the gametic nuclei.

439

440 **A potential role in non-coding transcription in the new MAC (for scnRNA-based
441 targeting and iesRNA production)**

442 Non-coding transcription in the new MAC, which is hypothesized to generate substrates
443 for scnRNA pairing, was proposed to be regulated by the putative transcription
444 elongation factor TFIIS4 that specifically localizes to the early new MACs
445 (Maliszewska-Olejniczak et al., 2015). *DevPF2*-KD IRSs of some replicates correlated
446 most strongly with *TFIIS4*-KD (Fig. 5E), pointing towards a shared functionality. Both

447 DevPF1 and DevPF2 have the potential to act in the same regulatory process as TFIIS4
448 because both their GFP-fusions localize to the new MACs. In fact, there are reports of
449 transcription factors that combine the TFIIS and PHD domains: Bypass of Ess1 (Bye1)
450 protein in *Saccharomyces cerevisiae* harbors a PHD and a TFIIS-like domain, with the
451 former recognizing histone 3 lysine 4 trimethylation and the latter establishing contact
452 with polymerase II for transcriptional regulation (Kinkelin et al., 2013; Pinskaya et al.,
453 2014). It is possible that similar functionality is separated on two individual proteins in
454 *Paramecium*. However, TFIIS4 was not detected in either of the DevPF-IPs in the late
455 developmental stage.

456

457 The production of iesRNAs was also proposed to depend on the non-coding
458 transcription of concatenated excised IES fragments (Allen et al., 2017; Sandoval et al.,
459 2014). Although it was established that IES concatemers are likely formed by DNA
460 ligase 4 (Lig4) (Allen et al., 2017), little is known about the proposed bidirectional
461 transcription to produce substrates for Dcl5 cleavage. Allen et al. speculated on the
462 involvement of TFIIS4. Since iesRNA production is almost completely abolished in
463 *DevPF1*- and *DevPF2-KD*, a contribution to this transcription is plausible.

464

465 The potential function of the DevPFs may extend far beyond TFIIS4-dependent
466 transcription: whereas TFIIS4-GFP localizes transiently to early new MACs
467 (Maliszewska-Olejniczak et al., 2015), DevPF2-GFP and DevPF1-GFP remain in the
468 new MACs for much longer (Fig. 2).

469

470 **A potential role in gene transcription in the parental and the new MAC**

471 Early in development, the parental MAC is solely responsible for gene expression and,
472 after genome reorganization progresses, the new MAC contributes at later stages
473 (Berger, 1973). In *Tetrahymena*, E2F family transcription factors were shown to control
474 the cell cycle through gene expression during meiosis (Zhang et al., 2018). DevPF1 and
475 DevPF2 are unlikely to be active in the parental MAC since none of the GFP-fusion
476 proteins localized there (Fig. 2). Consistently, *DevPF1-KD* showed no differential gene
477 expression compared to *ND7-KD* during the onset of development (Fig. 7C) and

478 Ptwi09-GFP expression was not impaired upon *DevPF1*-KD (Fig. 6B). However, it is
479 difficult to reach a definite conclusion for other genes due to the high variability in
480 expression between the replicates (Figs 7D, S7B) and the high number of differentially
481 expressed genes in *DevPF2*-KD (Fig. 7C) observed during the onset of development.
482 Cells in the “onset” time point are challenging to collect because cell staging relies on
483 MAC morphology changes visualized by DAPI staining. Truly vegetative cells cannot be
484 distinguished from cells initiating meiosis since their MACs look the same; however, the
485 gene expression profiles are expected to differ substantially (Figs 2A, S2B). The
486 collection of subsequent time points is more reliable because the alteration of old MAC
487 shape as development progresses is pronounced.

488

489 At the subsequent stages, *DevPF1*- and *DevPF2*-KD affected similar genes. Either, the
490 changes are nonspecific to the *DevPF*-KDs and result from the proposed nuclear
491 crosstalk to adjust transcription levels to accommodate for failed IES excision
492 (Bazin-Gélis et al., 2023) or they are specific to the *DevPF*-KDs and both paralogs
493 exhibit similar functions in the regulation of gene expression. Interestingly, differential
494 expression was observed at the “early” time point (Fig. 7C). *GTSF1*-KD, also causing
495 substantial IES retention, hardly shows any differentially expressed genes at a
496 comparable stage (*DevPF1/2*-KD: 282/231 differentially expressed genes, respectively,
497 at about 30% fragmentation (Fig. 7C); *GTSF1*-KD: 10 differentially expressed genes at
498 about 30-50% fragmentation; (Wang et al., 2023)). This indicates that the early change
499 in gene expression might be specific to *DevPF*-KDs, potentially mediated by other
500 proteins shuttling into the parental MAC. Since Ptwi09-GFP translocates efficiently to
501 the parental MAC upon *GTSF1*-KD (Wang et al., 2023) but not upon *DevPF1*-KD (Fig.
502 6B), it might be worth investigating differential expression upon *PTIWI01/09*-KD.

503

504 Late in development, gene expression starts from the new MACs (Berger, 1973), where
505 both DevPF paralogs localized (Fig. 2). Some late-expressed genes, like *PTIWI10*, are
506 expressed only from the new MAC after the initial onset of IES excision (Furrer et al.,
507 2017). Indeed, *PTIWI10/11* mRNA levels are downregulated in *DevPF1*-KD or *DevPF2*-
508 KD (Fig. 7D, S7B, Table S4, S5). This trend cannot be explained solely by the strength

509 of retention observed for the IESs interfering with *PTIWI10/11* expression (Table 1). It
510 suggests that DevPF1 and DevPF2 may regulate gene expression in the new MAC,
511 albeit specifically for some genes like *PTIWI10* and *PTIWI11*. The extent of gene
512 expression regulation by the DevPFs beyond these genes remains uncertain. To further
513 investigate if the DevPFs serve as transcription factors, and if so, which genes they
514 regulate, genes associated with DevPF binding could be identified by techniques like
515 Cut-and-Run (Skene et al., 2018) and compared to mRNA expression changes upon
516 *DevPF*-KD.

517

518 **Potential cytoplasmic functions**

519 In contrast to the other putative transcription factors discussed so far (Spt5m,
520 TFIIS2/3/4, DevPF2), DevPF1-GFP exhibits a pronounced cytoplasmic distribution in
521 the early stages of development (Fig. 2A). While most described PHD fingers are
522 nuclear proteins, some can be recruited to the cytoplasm or plasma membrane by
523 binding partners (Betz et al., 2004; Gozani et al., 2003). DevPF1 may play a role in
524 transmitting signals of sensed starvation to the MICs, initiating sexual development. As
525 *DevPF1* is not constitutively expressed during vegetative growth (Figs 1B, S2B),
526 another factor is needed to first initiate *DevPF1*'s gene expression in the parental MAC.
527 However, DevPF1 might interact with specific markers of starvation in the cytosol,
528 promoting early sexual processes. If that is the case, DevPF1 is not essential for
529 general meiotic processes, as meiosis and new MACs development show no defects in
530 *DevPF1*-depleted cells (Figs 6B, S3). Since peptides matching Ptiwi01/09 were identified
531 in the DevPF1-IP, the Ptiwi01/09 complex is a potential binding partner of DevPF1 in
532 the cytoplasm. However, since Ptiwi01/09 are highly expressed proteins (Bouhouche et
533 al., 2011), further IP experiments would be needed to verify this interaction.

534

535 **DevPF1's selective localization to gametic and post-zygotic nuclei**

536 The selective localization of DevPF1 to certain gametic and post-zygotic nuclei (Fig. 3)
537 raises intriguing questions about its potential role in nuclear fate decisions. The survival

538 and destruction of the gametic nuclei depends on their subcellular positioning
539 (Grandchamp & Beisson, 1981). DevPF1 may play a role in either promoting their
540 movement or preparing for their degradation. However, the observed number of nuclei
541 simultaneously containing DevPF1-GFP (zero to four) neither fits the number of nuclei
542 selected for survival (one) nor for degradation (seven). DevPF1 may either contribute to
543 this process successively or may not be directly related to the nuclear fate itself. The
544 fate of the post-zygotic nuclei is decided during the second mitotic division by the
545 subcellular localization of the division products (Grandchamp & Beisson, 1981). This
546 means, from each post-zygotic nucleus, one of the division products will remain as MIC
547 and one develops into a new MAC. During the second mitotic division, DevPF1-GFP
548 was observed in one of the two dividing nuclei. Its localization in the precursor of one
549 MIC and one MAC without being present in the precursor of the other MIC and MAC,
550 does not imply its involvement in the nuclear fate decision. Furthermore, *DevPF1-KD*
551 neither impaired the selection of gametic nuclei nor the differentiation of the new MACs.
552

553 The specific localization of nuclear proteins to certain nuclei in multinuclear cells has
554 been studied extensively in insect embryos. In *Drosophila*, the transcription factors
555 Bicoid (Driever & Nüsslein-Volhard, 1988) and Dorsal (Roth et al., 1989) establish the
556 anterior-posterior, and dorsal-ventral axis, respectively, by initiating gene expression
557 depending on the cytoplasmic localization of the nuclei. The activity of the transcription
558 factors is restricted by gradients to a certain cytoplasmic region (Morisato & Anderson,
559 1995; Spirov et al., 2009). However, DevPF1-GFP's nuclear localization does not
560 appear associated with subcellular localization of the nuclei and it remains unclear how
561 DevPF1-GFP is specifically recruited.
562

563 As only fixed cells were examined, the dynamics of DevPF1-GFP localization were not
564 captured. The fact that DevPF1-GFP localization is independent of nuclear divisions
565 (Fig. 3B), combined with observations of cells at the meiotic or mitotic division stage
566 with an absence of DevPF1-GFP in all nuclei (Fig. S2C), suggests that DevPF1
567 localization might be asynchronous and transient. Possibly it is recruited to each of the
568 gametic nuclei at some point before the completion of the second meiotic division and to

569 each of the post-zygotic nuclei before completion of the second mitotic divisions. Live
570 cell imaging could illuminate the dynamics of DevPF1 localization and its correlation
571 with nuclear fate. However, this approach presents challenges, as it requires confocal
572 imaging to capture the DevPF1-GFP signal in the MICs, and the observation time scale
573 would need to span across multiple hours of *Paramecium* development.

574

575 **DevPF1: a general factor for IES excision**

576 DevPF1 plays a role throughout sexual development: from the early stages before
577 meiosis to the very late stages (Fig. 2A). It appears to influence various aspects of
578 genome reorganization in the MICs and the new MACs, including scRNA production
579 and potentially expression of certain genes. Consequently, the depletion of *DevPF1*
580 affects the excision of a wide range of IESs (Fig. 5C). However, it is important to
581 reiterate that we observed high batch-to-batch variability in the *DevPF* replicates in both
582 IES retention (Fig. 5C, D) and mRNA expression (Figs 7D, S7B). The time point
583 collection had a major influence on mRNA levels (Fig. S7A). Variable new MAC
584 enrichment by a sucrose gradient might introduce variation into the IRS analysis, as
585 fragments of the parental MAC add unexcised IES sequences, diluting the effect of IES
586 retention (Charmant et al., 2023). Fluorescence-activated nuclear sorting (FANS)
587 enables better nuclear separation in *Paramecium* (Charmant et al., 2023; Guérin et al.,
588 2017) and should be able to eliminate most of such variation. Additionally,
589 microinjection of DNA into macronuclei before RNAi experiments can be used to control
590 for contaminating DNA from old MAC fragments.

591

592 Revisiting previous KD experiments with additional replicates would be worthwhile to
593 explore the extent of batch-to-batch IRS and expression variance for other KDs.
594 Noteworthy, variability in IES retention across replicates has recently been shown for
595 *GTSF1* (Charmant et al., 2023; Wang et al., 2023), suggesting this phenomenon is not
596 restricted to *DevPF1* and *DevPF2*. In general, KD experiments are challenging to tightly
597 control for reproducibility, and more effort should be invested in generating knockouts in
598 *Paramecium*, as established in *Tetrahymena* (Chalker, 2012).

599 It has been shown that evolutionarily old IESs tend to be short and are excised early in
600 development, independent of additional factors apart from the excision machinery
601 (Sellis et al., 2021). On the other hand, evolutionarily young IESs tend to be long, later
602 excised and dependent on the scnRNA pathway and the deposition of histone
603 modifications in the new MAC for their excision (Sellis et al., 2021; Swart et al., 2014;
604 Zangarelli et al., 2022). In line with this, most gene KDs tested in this study exhibited an
605 overrepresentation of long IESs among their most highly retained IESs, including
606 *DevPF2* (Fig. S4A,B). Only *PGM*-KD, *KU80c*-KD and two of the *DevPF1*-KD replicates
607 showed no preference for long IESs. Pgm and Ku80c are components of the excision
608 machinery and are therefore expected to affect all IESs. While *DevPF1* may not be a
609 direct part of the excision machinery, it appears to have a general contribution to IES
610 excision, regardless of the length of the IES. Consequently, we propose that *DevPF2*
611 contributes to the excision of long IESs, while *DevPF1* may serve as a more general
612 factor.

613

614 **Methods**

615 ***Paramecium tetraurelia* cultivation**

616 Mating type 7 (MT7) cells from strain 51 of *Paramecium tetraurelia* were grown in
617 Wheat Grass Powder (WGP, Pines International) medium supplemented with 10 mM
618 sodium phosphate buffer (pH 7.3). WGP medium was bacterized with *E.coli* strain
619 HT115 to feed paramecia, and the cultures were maintained either at 27°C or at 18°C
620 according to the standard protocol (Beisson et al., 2010b, 2010c).

621

622 **Protein localization imaging by fluorescence microscopy**

623 Plasmids for microinjection were generated by amplifying the coding and flanking
624 sequences from MT7 genomic DNA and introducing them with the PCR-based method
625 CPEC (Quan & Tian, 2011) into the L4440 plasmid (Addgene, USA). *DevPF1* was

626 expressed with its endogenous flanking regions (304 bp upstream of the DevPF1 start
627 codon and 272 bp downstream of the DevPF1 stop codon). DevPF2 endogenous
628 flanking regions (455 bp upstream the DevPF2 start codon and 273 bp downstream of
629 the DevPF2 stop codon) yielded no expression. Therefore, as *PGM* exhibits a similar
630 expression profile to *DevPF2* (Fig. 1B), DevPF2 genomic coding sequence was inserted
631 between the *PGM* flanking regions (96 bp upstream of the *PGM* start codon and 54 bp
632 downstream of the *PGM* stop codon). Before the stop codon, the *GFP* coding sequence
633 was connected to the protein coding sequences via a glycine-serine-linker
634 (SSGGGGSGGSGGGS). 60 µg of plasmid DNA was linearized with AhdI (New England
635 Biolabs, UK) and extracted with phenol-chloroform for injection.

636

637 *Paramecia* were microinjected with either C-terminally GFP-tagged DevPF1
638 (endogenous regulatory regions) or C-terminally GFP-tagged DevPF2 (*PGM* regulatory
639 regions) following the standard protocol (Beisson et al., 2010a). Sexual development
640 was induced by starvation and cells of different developmental stages were collected
641 and stored in 70% ethanol at -20°C. To stain cells with DAPI (4,6-diamidino-2-2-
642 phenylindole), cells were dried on a microscopy slide, washed twice with phosphate-
643 buffered saline (PBS) and permeabilized for 10 min at RT (room temperature) with 1%
644 Triton X-100 in PHEM (PIPES, HEPES, EGTA, magnesium sulfate), fixed with 2%
645 paraformaldehyde (PFA) in PHEM and washed once for 5 min at (RT) with 3% BSA
646 (bovine serum albumin, Merck-Sigma, Germany) in Tris-buffered saline with 10 mM
647 EGTA and 2 mM MgCl₂ (TBSTEM). After DAPI (2 µg/ml in 3% BSA) incubation for 7-10
648 min at RT, the cells were mounted 40 µl of ProLong Gold Antifade mounting medium
649 (Invitrogen, USA) or ProLong Glass Antifade mounting medium (Invitrogen, USA). For
650 α-tubulin staining, after permeabilization and fixation, cells were blocked for 1 h at RT
651 with 3% BSA and 0.1% Triton X-100. Primary rat anti-α-tubulin antibody (Abcam, UK)
652 was diluted 1:200 in 3% BSA and 0.1% Triton X-100 in TBSTEM and incubated
653 overnight at 4°C. After 3 washes with 3% BSA, the goat anti-rat secondary antibody
654 conjugated to Alexa fluorophore 568 (Abcam, UK) was diluted 1:500 in 3% BSA and
655 0.1% Triton X-100 in TBSTEM and incubated for 1 h at RT. After two washes, cells
656 were stained with DAPI and mounted with Prolong Glass Antifade mounting medium.

657 Images were acquired on a confocal SP8 Leica fluorescence microscope (60x/1.4 oil
658 objective) with constant laser settings. The detector (photon multiplier) gain for the DAPI
659 signal (430-470 nm) varied to accommodate differences in signal strength (500-550 V).
660 Postprocessing was done in Fiji (version 2.14.0/1.54f) (Schindelin et al., 2012).
661 Brightness and contrast in the GFP channel was set the same in all the images to be
662 compared (Figs 2, S2B: DevPF1-GFP: Min 0, Max 681 and DevPF2-GFP: Min 0, Max
663 170; Figs 3, S2C: DevPF1-GFP: Min 0, Max 703; Fig. S3: constant settings for each cell
664 stage).
665

666 Knockdown efficiency validation using fluorescence intensity

667 Cells injected with either DevPF2-GFP or DevPF1-GFP were subjected to KDs of *ND7*,
668 *PGM*, *DevPF2* and *DevPF1* genes. Cells during new MAC development were collected
669 (for details see methods on silencing experiments), then stained with DAPI and
670 mounted on ProLong Glass Antifade as described above. Images of a single z-plane
671 through the new MAC were acquired on a SP8 Leica Confocal microscope with 60x/1.4
672 oil objective using the same laser settings for all images. For each KD, 10 cells were
673 imaged. In Fiji software (version 2.14.0/1.54f), the brightness and contrast in the GFP
674 channel was set the same values for all images compared in the same analysis
675 (DevPF1-GFP injected cells: Min 0, Max 1078; DevPF2-GFP injected cells: Min 0, Max
676 298). Fluorescent signal was measured in a constant area in 1 MAC of each cell and
677 the area mean was used as intensity for this nucleus. The area was set in the DAPI
678 channel and the fluorescence was measured in the GFP channel. Since the same area
679 was measured for each nucleus, no normalization was used to account for nuclear size
680 variation. To account for background fluorescence, GFP fluorescence in non-
681 transformed wild type cells was measured and the mean of all wild type cells was
682 subtracted from all measured intensities. All intensities were normalized to the mean of
683 all *ND7*-KD cells in the corresponding injection. All scripts are available from
684 https://github.com/Swart-lab/DevPF_code.

685

686 Co-immunoprecipitation

687 Paramecia were injected with either Human influenza hemagglutinin (HA)-tagged
688 DevPF1 (same cloning strategy as described before) or GFP-tagged DevPF2. For
689 DevPF1-HA, an early time point (about 30% fragmentation) and late time point (new
690 MACs clearly visible in fragmented cells) was collected, while for DevPF2-GFP, only the
691 late time point was collected. Non-transformed wild type cells were collected as
692 controls. Cells were washed twice with 10 mM Tris and as much liquid was removed as
693 possible. For 300 ml initial culture volume, cells were fixed with 1 ml 1% PFA for 10 min
694 at RT and quenched with 100 μ l of 1.25 M glycine for 5 min at RT. After one wash with
695 PBS (centrifugation for 1 min at 4°C and 1000 g), 2 ml lysis buffer (50 mM Tris, 150 mM
696 NaCl, 5 mM MgCl₂, 1% Triton X-100, 10% Glycerol and cOmplete protease inhibitor
697 EDTA-free (Roche, Germany)) were added and cells were sonicated using an MS72 tip
698 on a Bandelin Sonopulse device with 52% amplitude for 15 s on ice. The pellet and
699 input fraction were separated by centrifugation (13,000 g, 4°C, 30 min).

700

701 To enrich HA-tagged proteins, 50 μ l beads (Anti-HA-affinity matrix, Merck-Sigma,
702 Germany) were washed thrice (500 g, 4°C, 2 min) in ice-cold IP buffer (10 mM Tris pH
703 8, 150 mM NaCl, 1 mM MgCl₂, 0.01% NP-40, 5% Glycerol, cOmplete protease inhibitor
704 EDTA-free (Roche, Germany) and incubated with 1 ml of cleared input lysate overnight
705 at 4°C. After four washes with ice-cold IP buffer, the bound proteins were eluted from
706 the beads in 50 μ l 2 \times PLB (10% SDS, 0.25 M Tris pH 6.8, 50% Glycerol, 0.2 M DTT,
707 0.25% Bromophenol blue) at 98°C for 20 min (IP fraction).

708

709 To enrich GFP-tagged proteins, 25 μ l beads (GFP-Trap Agarose beads, Chromotek,
710 Germany) were washed once with ice-cold 20 mM Tris pH 7.5 with 100mM NaCl (2,500
711 g, 4°C, 5 min) and thrice in ice-cold IP buffer. Beads were incubated with 1 ml cleared
712 input lysate for 1 to 2 h at 4°C and washed four times with ice-cold IP buffer. Bound
713 proteins were eluted in 30 μ l 2 \times PLB at 98°C for 20 min (IP fraction).

714

715 For western blots, 0.5% of total input and 15% of total IP fraction were resolved on 10%
716 SDS-PAGE gels and wet transferred onto a 0.45 µm nitrocellulose membrane for 2 h at
717 80 V and 4°C (Bio-Rad, Germany). The membrane was blocked for 1 h in 5% BSA in
718 PBST (PBS + 0.2% Tween20). HA-tagged proteins were detected with an HRP-
719 conjugated anti-HA antibody (sc-7392 HRP, Santa Cruz, USA) diluted 1:500 in PBST
720 and incubated overnight at 4°C. GFP-tagged proteins were detected with an primary
721 anti-GFP antibody (ab290, Abcam, UK) diluted 1:2000 and incubated overnight at 4°C
722 followed by an secondary anti-rabbit HRP conjugated antibody (12-348, Merck Millipore,
723 Germany) diluted 1:5000 in PBST and incubated for 1 h at RT. Membranes were
724 screened using Al600 (GE Healthcare, Germany).

725
726 Samples were sent to EMBL's Proteomics Core Facility in Germany for mass
727 spectrometry experiments and analysis. Using R, contaminants were removed from the
728 FragPipe output files (protein.tsv, (Kong et al., 2017)), and only proteins quantified with
729 a minimum of two razor peptides were included for subsequent analysis. After log2
730 transformation of raw TMT reporter ion intensities, batch effect correction (limma
731 package's (Ritchie et al., 2015) 'removeBatchEffects' function), and variance
732 stabilization normalization (vsn) with vsn package (Huber et al., 2002), the abundance
733 difference in WT and DevPF samples was maintained by determining different
734 normalization coefficients. To investigate differential protein expression (limma
735 package), replicate information was incorporated in the design matrix with the 'lmFit'
736 limma function. "hit" annotation: false discovery rate (FDR) smaller 5% and a fold
737 change of at least 100%. "candidate" annotation: FDR smaller 20% and a fold change of
738 at least 50%. Scripts to generate volcano plots are available from
739 https://github.com/Swart-lab/DevPF_code.

740

741 **Silencing experiments, survival test and IES retention PCR**

742 Silencing constructs for *DevPF2* and *DevPF1* were generated by cloning genomic gene
743 fragments into a T444T plasmid (Sturm et al., 2018) (Addgene, USA) using CPEC
744 (Quan & Tian, 2011). For both *DevPF1* and *DevPF2*, two silencing regions were

745 selected: DevPF1 silencing region a (525 bp fragment from 3-527; position 1 is the first
746 nucleotide of the start codon); DevPF1 silencing region b (733 bp fragment from 532-
747 1264); DevPF2 silencing region a (525 bp fragment from 3-527); DevPF2 silencing
748 region b (731 bp fragment from 532-1262). Co-silencing was predicted with the RNAi
749 off-target tool from ParameciumDB (Heng Li & Durbin, 2009) for both silencing regions
750 (DevPF1 silencing region a and b: 19 and 30 hits, respectively, in *DevPF2* gene;
751 *DevPF2* silencing region a and b: 19 and 30 hits, respectively, in *DevPF1* gene). The
752 plasmids were transformed into HT1115 (DE3) *E. coli* strain and expression was
753 induced overnight at 30°C with Isopropyl β -D-1-thiogalactopyranoside (IPTG; Carl Roth,
754 Germany). Paramecia were seeded into the silencing medium at a density of 100
755 cells/ml to induce sexual development by starvation after 4 to 6 divisions. KD
756 experiments were performed as previously described (Beisson et al., 2010e).

757

758 After the paramecia finished sexual development, 15 cells were transferred into a
759 regular, non-induced, feeding medium for the survival test. Paramecia were monitored
760 for three days to observe growth effects. For IES retention PCRs, genomic DNA was
761 extracted from cultures that finished sexual development using GeneElute – Mammalian
762 Genomic DNA Miniprep Kit (Merck-Sigma, Germany). PCRs were done on specific
763 genomic regions flanking an IES (Table S6) to check for the retention of IESs. 1-12.5 ng
764 DNA was used as input and PCR products were resolved on 1-2% agarose gels.

765

766 **Time course silencing experiments**

767 The time course experiments were conducted in three batches, each processing two KD
768 replicates in parallel (batch A: replicates 1 and 2 of *ND7*-, *DevPF1*- and *DevPF2*-KD;
769 batch B: replicates 3 and 4 of *ND7*-, *DevPF1*- and *DevPF2*-KD; batch C: replicates 5
770 and 6 of *ND7*- and *DevPF2*-KD). In batch A and B, cells were collected as soon as the
771 first meiotic cells were observed in the population (onset), between 20 to 40%
772 fragmentation (early), at 80-90% fragmentation (late) and 6 h after the late time point
773 (very late). In batch C, cells were collected before the onset of autogamy (vegetative), at
774 50% fragmentation (early), at 100% fragmentation + visible anlagen (very late) and 6 h

775 later (very late + 6h). Since batch C was collected at different stages, only the “very late”
776 time point of batch C was considered for differential expression analysis. For all time
777 course replicates, enriched new MAC DNA was analyzed for IES retention and total
778 RNA was collected from the collected time points for sRNA and/or mRNA analysis.
779

780 **Macronuclear isolation and Illumina DNA-sequencing**

781 Samples for new MAC isolation were collected from the KD cultures of all time course
782 experiments three days after completion of sexual development as described previously
783 (Arnaiz et al., 2012). DNA library preparation (350 bp fragment sizes) and Illumina
784 sequencing (paired-end, 150 bp reads) were done at Novogene (UK) Company Limited,
785 Cambridge according to their standard protocols.
786

787 **IES retention and alternative boundary analysis**

788 For IES retention score analysis, whole genome sequencing reads of enriched new
789 MAC DNA after KD were adaptor trimmed using TrimGalore (Krueger, 2019) if
790 significant Illumina adapter content was observed using FastQC v0.11.9 (Andrews,
791 2010) (see Table S7 for adapter sequences). The “Map” module of ParTIES v1.05
792 pipeline was used to map the reads on MAC and MAC+IES reference genomes with
793 changes in the /lib/PARTIES/Map.pm file as described in (Singh et al., 2023). The IES
794 retention scores (IRS) were calculated by the “MIRET” module (provided as
795 DevPF_IRS.tab.gz). All scripts are available from https://github.com/Swart-lab/DevPF_code. IRS correlations were calculated as described previously (Swart et al.,
796 2014).
797

798
799 Alternative excision was analyzed as described previously (Singh et al., 2023). In brief,
800 properly paired and mapped reads were selected from the output from the ParTIES
801 “Map” module for the MAC+IES reference genome and downsampled to the same
802 library size (DevPF1-KD (1) and DevPF2-KD (2) were excluded due to small library

803 size). We then employed the "MILORD" module of a pre-release version of ParTIES (13
804 August 2015) with default parameters to annotate alternative and cryptic IES excision.
805 All scripts are available from https://github.com/Swart-lab/DevPF_code.

806
807 The data generate in this study was compared with data of previously published KDs:
808 PGM-KD (Arnaiz et al., 2012), *TFIIS4*-KD (Maliszewska-Olejniczak et al., 2015),
809 *SPT5m*-KD (Gruchota et al., 2017), *PTCAF1*-KD (Ignarski et al., 2014), *DCL2/3/5*-KD
810 (Sandoval et al., 2014), *KU80c*-KD (Abello et al., 2020), *EZL1*-KD (Lhuillier-Akakpo et
811 al., 2014) and *ISWI1*-KD (Singh et al., 2022).

812

813 **RNA extraction and sequencing**

814 Total RNA was either extracted with phenol-chloroform followed by Monarch Total RNA
815 Miniprep kit (New England Biolabs) or with the Quick-RNA Miniprep kit (Zymo). For
816 phenol-chloroform extraction (batch C), 300 ml cells subjected to RNAi were washed
817 twice with 10 mM Tris pH 7.5 (RT, 280 g, 2 min) and shock frozen by dropping them
818 directly into liquid nitrogen. 500 μ l of 2 \times DNA/RNA protection reagent from the Monarch
819 kit were added to the frozen pellet and the cells thawed by vortexing. After adding 10 μ l
820 proteinase K and 1 ml RNA lysis buffer, the manufacturer's instructions (RNA Binding
821 and Elution (Cultured Mammalian Cells)) were followed. On-column DNase I treatment
822 was included.

823

824 For RNA extraction with Quick-RNA Miniprep kit (batch A and B), 100 ml of
825 *Paramecium* cultures subjected to RNAi by feeding were washed twice in 10 mM Tris
826 pH 7.5 in pear-shaped oil flasks by centrifugation (RT, 280 g, 2 min). After the final
827 wash, cells were collected on ice and spun at 2,000 g for 2 min and 4°C and as much
828 liquid as possible was removed. 3 \times volume of 1 \times DNA/RNA Shield (Biozym) was mixed
829 with the cells and the samples were stored at -70°C until further processing. For RNA
830 extraction, samples were thawed at RT and mixed with 1 \times volume of RNA lysis buffer.
831 The manufacturer's instructions were followed (section: (III) Total RNA Purification).

832

833 Extracted total RNA was send to Azena Life Sciences for library preparation (sRNA:
834 NEBNext Small RNA Library Prep Set for Illumina; mRNA: NEBNext Ultra II RNA
835 Library Prep Kit for Illumina) and paired-end Illumina sequencing (NovaSeq 2×150bp).
836

837 **Small RNA analysis**

838 Small RNA sequencing reads were trimmed using cutadapt (Martin, 2011) version 3.2
839 with the parameter -a “AGATCGGAAGAGGCACACGTCTGAACTCCAGTCA” to remove
840 the relevant Illumina adaptor sequence. Trimmed reads were mapped to the
841 *Paramecium tetraurelia* strain 51 MAC + IES genome and L4440 (*ND7-KD*) or T444T
842 (*DevPF1/DevPF2-KD*) silencing vector with bwa version 0.7.17-r1188 (Heng Li &
843 Durbin, 2009). GNU grep (version 2.14) was used to select 10-49 bp long, uniquely
844 mapped reads (possessing the SAM file format flags “XT:A:U”) and sRNA length
845 histograms were generated by a Python script. All scripts are available from
846 https://github.com/Swart-lab/DevPF_code.

847

848 **mRNA analysis**

849 Illumina adapter sequences (Table S7) were trimmed from reads with TrimGalore
850 (Krueger, 2019). Reads were mapped to the *Paramecium tetraurelia* strain 51
851 transcriptome with hisat2 (Kim et al., 2019) allowing 20 multimappings (-k 20). Using
852 samtools (Heng Li et al., 2009), the properly paired and mapped reads were filtered (-f2
853 flag) and sorted by the read name (-n flag). Unique mapping reads were acquired with
854 eXpress (Roberts & Pachter, 2013) with 5 additional online expectation-maximization
855 rounds to perform on the data after the initial online round (-O 5 flag) to improve
856 accuracy. Scripts are available from https://github.com/Swart-lab/DevPF_code.

857

858 Read counts were normalized with DEseq2 (Love et al., 2014) package in R (version
859 3.6.3). For plotting, DEseq2 in-build functions plotPCA, plotMA and plotCounts were
860 combined with ggplot2 (Villanueva & Chen, 2019) package (version 3.4.3). Differentially

861 expressed genes were identified for each time point with a Wald test (false discovery
862 rate (alpha) = 0.1). Differentially expressed genes were filtered with an absolute
863 log2(Fold Change) > 2 (corresponding to a 4-fold change) and an adjusted p-value <
864 0.01. The time point, KD and batch were known sources of variation in the dataset
865 (design = ~ batch + timepoint + KD+ timepoint:KD). All scripts are available from
866 https://github.com/Swart-lab/DevPF_code.

867

868 **Structure prediction with AlphaFold**

869 Protein structures were predicted with AlphaFold2 multimer (Evans et al., 2021; Jumper
870 et al., 2021) using the ColabFold v1.5.2-patch (Mirdita et al., 2022) in Google Colab with
871 default parameters.

872

873 **Sequence alignment**

874 Domains were predicted using InterProScan (Paysan-Lafosse et al., 2023). The
875 nucleotide sequence of DevPF2 and DevPF1 (including introns) were aligned with
876 clustalOmega (Sievers et al., 2011) (version 1.2.3) pairwise sequence alignment tool in
877 Geneious prime (version 2023.2.1) with default parameters (Fig 4A).

878

879 Multiple sequence alignment of PHD domains was done with clustalOmega (version
880 1.2.1) using the MPI bioinformatics toolkit's web interface (Zimmermann et al., 2018)
881 with default parameters.

882

883 **Manuscript writing**

884 Grammar and language refinement were assisted by an AI language model developed
885 by OpenAI (GPT-3.5 architecture) (OpenAI, 2023).

886

887 **Acknowledgements**

888 We thank the BioOptics core facility and Genome center of MPI for Biology (Tübingen,
889 Germany) for their assistance and Andre Noll for computer system administration.
890

891 **Competing interests**

892 The authors declare no competing interests.
893

894 **Funding**

895 This work was funded by the Max Planck Society.
896

897 **Data availability**

898 Supplementary files, including uncropped blot images, microscopy raw files and IES
899 retention scores have been deposited to the open research data repository of the Max
900 Planck Society EDMOND (<https://doi.org/10.17617/3.VKJB0>). Sequencing raw files
901 have been deposited to the European Nucleotide Archive (ENA;
902 <https://www.ebi.ac.uk/ena/browser/home>) (Leinonen et al., 2011) (accession number:
903 PRJEB67678). The mass spectrometry proteomics data have been deposited to the
904 ProteomeXchange Consortium (Deutsch et al., 2023) via the PRIDE (Perez-Riverol et
905 al., 2022) partner repository (accession number: PXD046704).

906 References

- 907 Aasland, R., Gibson, T. J., & Stewart, A. F. (1995). The PHD finger: implications for
908 chromatin-mediated transcriptional regulation. *Trends in Biochemical Sciences*, 20(2),
909 56–59. [https://doi.org/10.1016/s0968-0004\(00\)88957-4](https://doi.org/10.1016/s0968-0004(00)88957-4)
- 910 Abello, A., Régnier, V., Arnaiz, O., Le Bars, R., Bétermier, M., & Bischerour, J. (2020).
911 Functional diversification of *Paramecium* Ku80 paralogs safeguards genome integrity
912 during precise programmed DNA elimination. *PLoS Genetics*, 16(4), e1008723.
913 <https://doi.org/10.1371/journal.pgen.1008723>
- 914 Allen, S. E., Hug, I., Pabian, S., Rzeszutek, I., Hoehener, C., & Nowacki, M. (2017).
915 Circular Concatemers of Ultra-Short DNA Segments Produce Regulatory RNAs. *Cell*,
916 168(6), 990-999.e7. <https://doi.org/10.1016/j.cell.2017.02.020>
- 917 Andrews, S. (2010). *FastQC: a quality control tool for high throughput sequence data*.
918 (0.11.9) [Computer software]. Babraham Bioinformatics.
- 919 Arnaiz, O., Mathy, N., Baudry, C., Malinsky, S., Aury, J.-M., Denby Wilkes, C., Garnier,
920 O., Labadie, K., Lauderdale, B. E., Le Mouël, A., Marmignon, A., Nowacki, M.,
921 Poulain, J., Prajer, M., Wincker, P., Meyer, E., Duharcourt, S., Duret, L., Bétermier,
922 M., & Sperling, L. (2012). The *Paramecium* germline genome provides a niche for
923 intragenic parasitic DNA: evolutionary dynamics of internal eliminated sequences.
924 *PLoS Genetics*, 8(10), e1002984. <https://doi.org/10.1371/journal.pgen.1002984>
- 925 Arnaiz, O., Van Dijk, E., Bétermier, M., Lhuillier-Akakpo, M., de Vanssay, A.,
926 Duharcourt, S., Sallet, E., Gouzy, J., & Sperling, L. (2017). Improved methods and
927 resources for *Paramecium* genomics: transcription units, gene annotation and gene
928 expression. *BMC Genomics*, 18(1), 483. <https://doi.org/10.1186/s12864-017-3887-z>
- 929 Bassing, C. H., Swat, W., & Alt, F. W. (2002). The mechanism and regulation of
930 chromosomal V(D)J recombination. *Cell*, 109 Suppl, S45-55.
931 [https://doi.org/10.1016/s0092-8674\(02\)00675-x](https://doi.org/10.1016/s0092-8674(02)00675-x)

- 932 Baudry, C., Malinsky, S., Restituito, M., Kapusta, A., Rosa, S., Meyer, E., & Bétermier,
933 M. (2009). PiggyMac, a domesticated piggyBac transposase involved in programmed
934 genome rearrangements in the ciliate *Paramecium tetraurelia*. *Genes &*
935 *Development*, 23(21), 2478–2483. <https://doi.org/10.1101/gad.547309>
- 936 Bazin-Gélis, M., Eleftheriou, E., Zangarelli, C., Lelandais, G., Sperling, L., Arnaiz, O., &
937 Bétermier, M. (2023). Inter-generational nuclear crosstalk links the control of gene
938 expression to programmed genome rearrangements during the *Paramecium* sexual
939 cycle. *BioRxiv*. <https://doi.org/10.1101/2023.04.16.537068>
- 940 Beisson, J., Bétermier, M., Bré, M.-H., Cohen, J., Duharcourt, S., Duret, L., Kung, C.,
941 Malinsky, S., Meyer, E., Preer, J. R., & Sperling, L. (2010a). DNA microinjection into
942 the macronucleus of paramecium. *Cold Spring Harbor Protocols*, 2010(1),
943 pdb.prot5364. <https://doi.org/10.1101/pdb.prot5364>
- 944 Beisson, J., Bétermier, M., Bré, M.-H., Cohen, J., Duharcourt, S., Duret, L., Kung, C.,
945 Malinsky, S., Meyer, E., Preer, J. R., & Sperling, L. (2010b). Maintaining clonal
946 *Paramecium tetraurelia* cell lines of controlled age through daily reisolation. *Cold*
947 *Spring Harbor Protocols*, 2010(1), pdb.prot5361. <https://doi.org/10.1101/pdb.prot5361>
- 948 Beisson, J., Bétermier, M., Bré, M.-H., Cohen, J., Duharcourt, S., Duret, L., Kung, C.,
949 Malinsky, S., Meyer, E., Preer, J. R., & Sperling, L. (2010c). Mass culture of
950 *Paramecium tetraurelia*. *Cold Spring Harbor Protocols*, 2010(1), pdb.prot5362.
951 <https://doi.org/10.1101/pdb.prot5362>
- 952 Beisson, J., Bétermier, M., Bré, M.-H., Cohen, J., Duharcourt, S., Duret, L., Kung, C.,
953 Malinsky, S., Meyer, E., Preer, J. R., & Sperling, L. (2010d). *Paramecium tetraurelia*:
954 the renaissance of an early unicellular model. *Cold Spring Harbor Protocols*, 2010(1),
955 pdb.em0140. <https://doi.org/10.1101/pdb.em0140>
- 956 Beisson, J., Bétermier, M., Bré, M.-H., Cohen, J., Duharcourt, S., Duret, L., Kung, C.,
957 Malinsky, S., Meyer, E., Preer, J. R., & Sperling, L. (2010e). Silencing specific

- 958 Paramecium tetraurelia genes by feeding double-stranded RNA. *Cold Spring Harbor*
959 *Protocols*, 2010(1), pdb.prot5363. <https://doi.org/10.1101/pdb.prot5363>
- 960 Berger, J. D. (1973). Nuclear differentiation and nucleic acid synthesis in well-fed
961 exconjugants of Paramecium aurelia. *Chromosoma*, 42(3), 247–268.
962 <https://doi.org/10.1007/BF00284774>
- 963 Betz, C., Schlenstedt, G., & Bailer, S. M. (2004). Asr1p, a novel yeast ring/PHD finger
964 protein, signals alcohol stress to the nucleus. *The Journal of Biological Chemistry*,
965 279(27), 28174–28181. <https://doi.org/10.1074/jbc.M401595200>
- 966 Bienz, M. (2006). The PHD finger, a nuclear protein-interaction domain. *Trends in*
967 *Biochemical Sciences*, 31(1), 35–40. <https://doi.org/10.1016/j.tibs.2005.11.001>
- 968 Black, J. C., & Kutateladze, T. G. (2023). Atypical histone targets of PHD fingers. *The*
969 *Journal of Biological Chemistry*, 299(4), 104601.
970 <https://doi.org/10.1016/j.jbc.2023.104601>
- 971 Bouhouche, K., Gout, J.-F., Kapusta, A., Bétermier, M., & Meyer, E. (2011). Functional
972 specialization of Piwi proteins in *Paramecium tetraurelia* from post-transcriptional
973 gene silencing to genome remodelling. *Nucleic Acids Research*, 39(10), 4249–4264.
974 <https://doi.org/10.1093/nar/gkq1283>
- 975 Bozhenok, L., Wade, P. A., & Varga-Weisz, P. (2002). WSTF-ISWI chromatin
976 remodeling complex targets heterochromatic replication foci. *The EMBO Journal*,
977 21(9), 2231–2241. <https://doi.org/10.1093/emboj/21.9.2231>
- 978 Chalker, D. L., & Yao, M. C. (2001). Nongenic, bidirectional transcription precedes and
979 may promote developmental DNA deletion in *Tetrahymena thermophila*. *Genes &*
980 *Development*, 15(10), 1287–1298. <https://doi.org/10.1101/gad.884601>
- 981 Chalker, D. L. (2012). Transformation and strain engineering of *Tetrahymena*. *Methods*
982 *in Cell Biology*, 109, 327–345. <https://doi.org/10.1016/B978-0-12-385967-9.00011-6>

- 983 Charmant, O., Gruchota, J., Arnaiz, O., Zangarelli, C., Bétermier, M., Nowak, K.,
984 Legros, V., Chevreux, G., Nowak, J., & Duharcourt, S. (2023). The nuclear PIWI-
985 interacting protein Gtsf1 controls the selective degradation of small RNAs in
986 *Paramecium*. *BioRxiv*. <https://doi.org/10.1101/2023.09.19.558372>
- 987 Cheng, C.-Y., Vogt, A., Mochizuki, K., & Yao, M.-C. (2010). A domesticated piggyBac
988 transposase plays key roles in heterochromatin dynamics and DNA cleavage during
989 programmed DNA deletion in *Tetrahymena thermophila*. *Molecular Biology of the*
990 *Cell*, 21(10), 1753–1762. <https://doi.org/10.1091/mbc.e09-12-1079>
- 991 de Vanssay, A., Touzeau, A., Arnaiz, O., Frapporti, A., Phipps, J., & Duharcourt, S.
992 (2020). The *Paramecium* histone chaperone Spt16-1 is required for Pgm
993 endonuclease function in programmed genome rearrangements. *PLoS Genetics*,
994 16(7), e1008949. <https://doi.org/10.1371/journal.pgen.1008949>
- 995 Deutsch, E. W., Bandeira, N., Perez-Riverol, Y., Sharma, V., Carver, J. J., Mendoza, L.,
996 Kundu, D. J., Wang, S., Bandla, C., Kamatchinathan, S., Hewapathirana, S., Pullman,
997 B. S., Wertz, J., Sun, Z., Kawano, S., Okuda, S., Watanabe, Y., MacLean, B.,
998 MacCoss, M. J., ... Vizcaíno, J. A. (2023). The ProteomeXchange consortium at 10
999 years: 2023 update. *Nucleic Acids Research*, 51(D1), D1539–D1548.
1000 <https://doi.org/10.1093/nar/gkac1040>
- 1001 Driever, W., & Nüsslein-Volhard, C. (1988). A gradient of bicoid protein in *Drosophila*
1002 embryos. *Cell*, 54(1), 83–93. [https://doi.org/10.1016/0092-8674\(88\)90182-1](https://doi.org/10.1016/0092-8674(88)90182-1)
- 1003 Eberharter, A., Vetter, I., Ferreira, R., & Becker, P. B. (2004). ACF1 improves the
1004 effectiveness of nucleosome mobilization by ISWI through PHD-histone contacts. *The*
1005 *EMBO Journal*, 23(20), 4029–4039. <https://doi.org/10.1038/sj.emboj.7600382>
- 1006 Evans, R., O'Neill, M., Pritzel, A., Antropova, N., Senior, A. W., Green, T., Žídek, A.,
1007 Bates, R., Blackwell, S., Yim, J., Ronneberger, O., Bodenstein, S., Zielinski, M.,
1008 Bridgland, A., Potapenko, A., Cowie, A., Tunyasuvunakool, K., Jain, R., Clancy, E., ...

- 1009 Hassabis, D. (2021). Protein complex prediction with AlphaFold-Multimer. *BioRxiv*.
1010 <https://doi.org/10.1101/2021.10.04.463034>
- 1011 Finn, R., Griffiths-Jones, S., & Bateman, A. (2003). Identifying protein domains with the
1012 Pfam database. *Current Protocols in Bioinformatics, Chapter 2, Unit 2.5*.
1013 <https://doi.org/10.1002/0471250953.bi0205s01>
- 1014 Fleck, K., Nitz, M., & Jeffers, V. (2021). “Reading” a new chapter in protozoan parasite
1015 transcriptional regulation. *PLoS Pathogens*, 17(12), e1010056.
1016 <https://doi.org/10.1371/journal.ppat.1010056>
- 1017 Forment, J. V., Kaidi, A., & Jackson, S. P. (2012). Chromothripsis and cancer: causes
1018 and consequences of chromosome shattering. *Nature Reviews. Cancer*, 12(10), 663–
1019 670. <https://doi.org/10.1038/nrc3352>
- 1020 Frapporti, A., Miró Pina, C., Arnaiz, O., Holoch, D., Kawaguchi, T., Humbert, A.,
1021 Eleftheriou, E., Lombard, B., Loew, D., Sperling, L., Guitot, K., Margueron, R., &
1022 Duharcourt, S. (2019). The Polycomb protein Ezl1 mediates H3K9 and H3K27
1023 methylation to repress transposable elements in Paramecium. *Nature
1024 Communications*, 10(1), 2710. <https://doi.org/10.1038/s41467-019-10648-5>
- 1025 Furrer, D. I., Swart, E. C., Kraft, M. F., Sandoval, P. Y., & Nowacki, M. (2017). Two Sets
1026 of Piwi Proteins Are Involved in Distinct sRNA Pathways Leading to Elimination of
1027 Germline-Specific DNA. *Cell Reports*, 20(2), 505–520.
1028 <https://doi.org/10.1016/j.celrep.2017.06.050>
- 1029 Gaurav, N., & Kutateladze, T. G. (2023). Non-histone binding functions of PHD fingers.
1030 *Trends in Biochemical Sciences*, 48(7), 610–617.
1031 <https://doi.org/10.1016/j.tibs.2023.03.005>
- 1032 Gozani, O., Karuman, P., Jones, D. R., Ivanov, D., Cha, J., Lugovskoy, A. A., Baird, C.
1033 L., Zhu, H., Field, S. J., Lessnick, S. L., Villasenor, J., Mehrotra, B., Chen, J., Rao, V.
1034 R., Brugge, J. S., Ferguson, C. G., Payrastre, B., Myszka, D. G., Cantley, L. C., ...

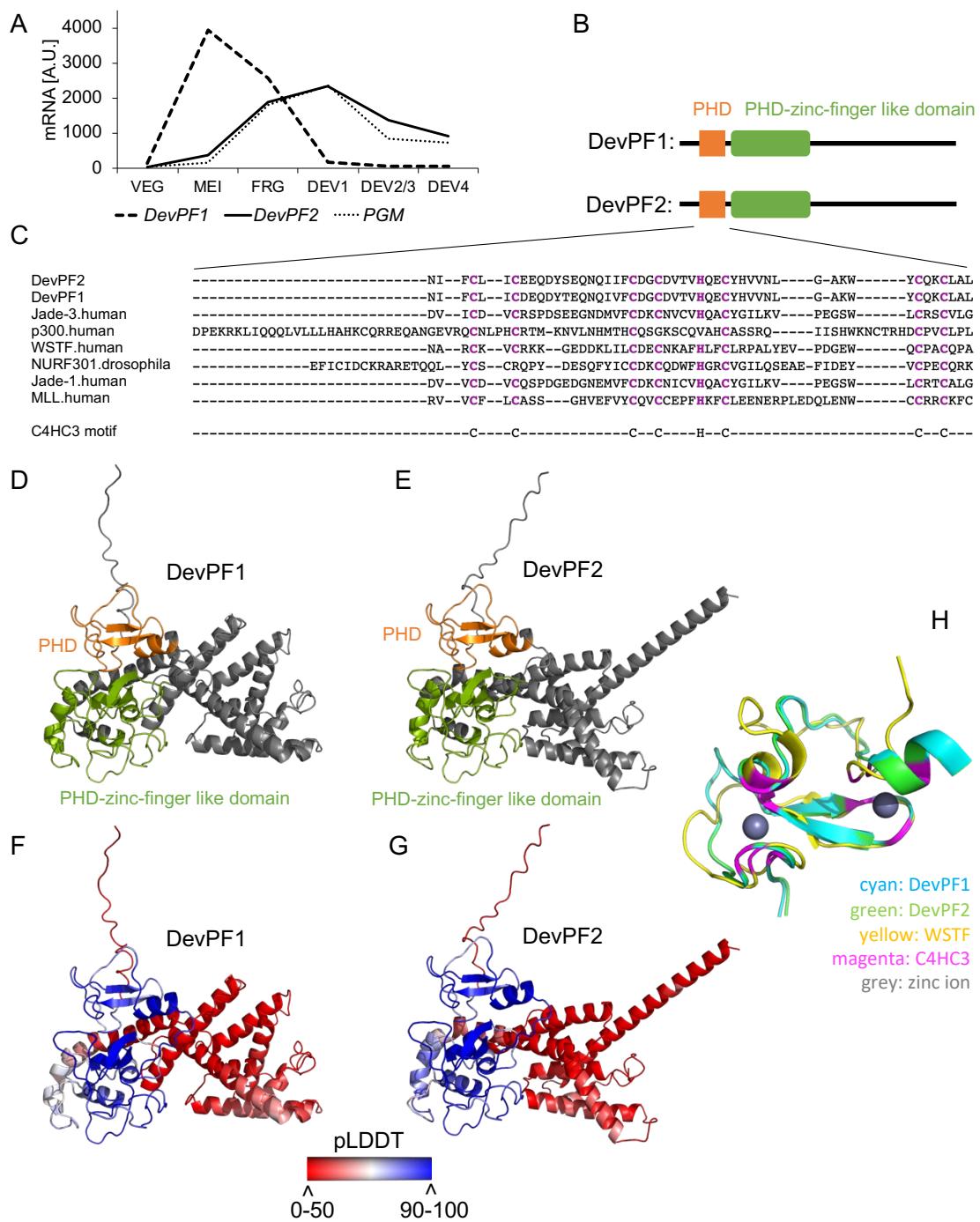
- 1035 Yuan, J. (2003). The PHD finger of the chromatin-associated protein ING2 functions
1036 as a nuclear phosphoinositide receptor. *Cell*, 114(1), 99–111.
1037 [https://doi.org/10.1016/s0092-8674\(03\)00480-x](https://doi.org/10.1016/s0092-8674(03)00480-x)
- 1038 Grandchamp, S., & Beisson, J. (1981). Positional control of nuclear differentiation in
1039 paramecium. *Developmental Biology*, 81(2), 336–341. [https://doi.org/10.1016/0012-1606\(81\)90297-9](https://doi.org/10.1016/0012-1040 1606(81)90297-9)
- 1041 Gruchota, J., Denby Wilkes, C., Arnaiz, O., Sperling, L., & Nowak, J. K. (2017). A
1042 meiosis-specific Spt5 homolog involved in non-coding transcription. *Nucleic Acids
1043 Research*, 45(8), 4722–4732. <https://doi.org/10.1093/nar/gkw1318>
- 1044 Guérin, F., Arnaiz, O., Boggetto, N., Denby Wilkes, C., Meyer, E., Sperling, L., &
1045 Duharcourt, S. (2017). Flow cytometry sorting of nuclei enables the first global
1046 characterization of *Paramecium* germline DNA and transposable elements. *BMC
1047 Genomics*, 18(1), 327. <https://doi.org/10.1186/s12864-017-3713-7>
- 1048 Hamilton, E. P., Kapusta, A., Huvos, P. E., Bidwell, S. L., Zafar, N., Tang, H.,
1049 Hadjithomas, M., Krishnakumar, V., Badger, J. H., Caler, E. V., Russ, C., Zeng, Q.,
1050 Fan, L., Levin, J. Z., Shea, T., Young, S. K., Hegarty, R., Daza, R., Gujja, S., ...
1051 Coyne, R. S. (2016). Structure of the germline genome of *Tetrahymena thermophila*
1052 and relationship to the massively rearranged somatic genome. *eLife*, 5.
1053 <https://doi.org/10.7554/eLife.19090>
- 1054 Hoehener, C., Hug, I., & Nowacki, M. (2018). Dicer-like enzymes with sequence
1055 cleavage preferences. *Cell*, 173(1), 234-247.e7.
1056 <https://doi.org/10.1016/j.cell.2018.02.029>
- 1057 Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A., & Vingron, M. (2002).
1058 Variance stabilization applied to microarray data calibration and to the quantification
1059 of differential expression. *Bioinformatics*, 18 Suppl 1, S96-104.
1060 https://doi.org/10.1093/bioinformatics/18.suppl_1.s96

- 1061 Ignarski, M., Singh, A., Swart, E. C., Arambasic, M., Sandoval, P. Y., & Nowacki, M.
1062 (2014). Paramecium tetraurelia chromatin assembly factor-1-like protein PtCAF-1 is
1063 involved in RNA-mediated control of DNA elimination. *Nucleic Acids Research*,
1064 42(19), 11952–11964. <https://doi.org/10.1093/nar/gku874>
- 1065 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O.,
1066 Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C.,
1067 Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R.,
1068 Adler, J., ... Hassabis, D. (2021). Highly accurate protein structure prediction with
1069 AlphaFold. *Nature*, 596(7873), 583–589. <https://doi.org/10.1038/s41586-021-03819-2>
- 1070 Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based
1071 genome alignment and genotyping with HISAT2 and HISAT-genotype. *Nature
1072 Biotechnology*, 37(8), 907–915. <https://doi.org/10.1038/s41587-019-0201-4>
- 1073 Kinkelin, K., Wozniak, G. G., Rothbart, S. B., Lidschreiber, M., Strahl, B. D., & Cramer,
1074 P. (2013). Structures of RNA polymerase II complexes with Bye1, a chromatin-
1075 binding PHF3/DIDO homologue. *Proceedings of the National Academy of Sciences of
1076 the United States of America*, 110(38), 15277–15282.
1077 <https://doi.org/10.1073/pnas.1311010110>
- 1078 Klobutcher, L. A., & Herrick, G. (1995). Consensus inverted terminal repeat sequence of
1079 *Paramecium* IESs: resemblance to termini of Tc1-related and *Euplotes* Tec
1080 transposons. *Nucleic Acids Research*, 23(11), 2006–2013.
1081 <https://doi.org/10.1093/nar/23.11.2006>
- 1082 Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D., & Nesvizhskii, A. I.
1083 (2017). MSFragger: ultrafast and comprehensive peptide identification in mass
1084 spectrometry-based proteomics. *Nature Methods*, 14(5), 513–520.
1085 <https://doi.org/10.1038/nmeth.4256>

- 1086 Krueger, F. (2019). *TrimGalore: A wrapper around Cutadapt and FastQC to consistently*
1087 *apply adapter and quality trimming to FastQ files, with extra functionality for RRBS*
1088 *data* (0.6.10) [Computer software]. GitHub.
- 1089 Lefort-Tran, M., Aufderheide, K., Pouphile, M., Rossignol, M., & Beisson, J. (1981).
1090 Control of exocytotic processes: cytological and physiological studies of trichocyst
1091 mutants in *Paramecium tetraurelia*. *The Journal of Cell Biology*, 88(2), 301–311.
1092 <https://doi.org/10.1083/jcb.88.2.301>
- 1093 Leinonen, R., Akhtar, R., Birney, E., Bower, L., Cerdeno-Tárraga, A., Cheng, Y.,
1094 Cleland, I., Faruque, N., Goodgame, N., Gibson, R., Hoad, G., Jang, M., Pakseresht,
1095 N., Plaister, S., Radhakrishnan, R., Reddy, K., Sobhany, S., Ten Hoopen, P.,
1096 Vaughan, R., ... Cochrane, G. (2011). The european nucleotide archive. *Nucleic*
1097 *Acids Research*, 39(Database issue), D28-31. <https://doi.org/10.1093/nar/gkq967>
- 1098 Lepère, G., Nowacki, M., Serrano, V., Gout, J.-F., Guglielmi, G., Duharcourt, S., &
1099 Meyer, E. (2009). Silencing-associated and meiosis-specific small RNA pathways in
1100 *Paramecium tetraurelia*. *Nucleic Acids Research*, 37(3), 903–915.
1101 <https://doi.org/10.1093/nar/gkn1018>
- 1102 Lhuillier-Akakpo, M., Frapparti, A., Denby Wilkes, C., Matelot, M., Vervoort, M.,
1103 Sperling, L., & Duharcourt, S. (2014). Local effect of enhancer of zeste-like reveals
1104 cooperation of epigenetic and cis-acting determinants for zygotic genome
1105 rearrangements. *PLoS Genetics*, 10(9), e1004665.
1106 <https://doi.org/10.1371/journal.pgen.1004665>
- 1107 Liu, L., Qin, S., Zhang, J., Ji, P., Shi, Y., & Wu, J. (2012). Solution structure of an
1108 atypical PHD finger in BRPF2 and its interaction with DNA. *Journal of Structural*
1109 *Biology*, 180(1), 165–173. <https://doi.org/10.1016/j.jsb.2012.06.014>
- 1110 Liu, Y., Taverna, S. D., Muratore, T. L., Shabanowitz, J., Hunt, D. F., & Allis, C. D.
1111 (2007). RNAi-dependent H3K27 methylation is required for heterochromatin formation

- 1112 and DNA elimination in *Tetrahymena*. *Genes & Development*, 21(12), 1530–1545.
1113 <https://doi.org/10.1101/gad.1544207>
- 1114 Li, Haitao, Ilin, S., Wang, W., Duncan, E. M., Wysocka, J., Allis, C. D., & Patel, D. J.
1115 (2006). Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF
1116 PHD finger of NURF. *Nature*, 442(7098), 91–95. <https://doi.org/10.1038/nature04802>
- 1117 Li, Heng, & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-
1118 Wheeler transform. *Bioinformatics*, 25(14), 1754–1760.
1119 <https://doi.org/10.1093/bioinformatics/btp324>
- 1120 Li, Heng, Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
1121 Abecasis, G., Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009).
1122 The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16), 2078–
1123 2079. <https://doi.org/10.1093/bioinformatics/btp352>
- 1124 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and
1125 dispersion for RNA-seq data with DESeq2. *Genome Biology*, 15(12), 550.
1126 <https://doi.org/10.1186/s13059-014-0550-8>
- 1127 Lu, X., Meng, X., Morris, C. A., & Keating, M. T. (1998). A novel human gene, WSTF, is
1128 deleted in Williams syndrome. *Genomics*, 54(2), 241–249.
1129 <https://doi.org/10.1006/geno.1998.5578>
- 1130 Maliszewska-Olejniczak, K., Gruchota, J., Gromadka, R., Denby Wilkes, C., Arnaiz, O.,
1131 Mathy, N., Duhartcourt, S., Bétermier, M., & Nowak, J. K. (2015). TFIIS-Dependent
1132 Non-coding Transcription Regulates Developmental Genome Rearrangements. *PLoS
1133 Genetics*, 11(7), e1005383. <https://doi.org/10.1371/journal.pgen.1005383>
- 1134 Mani, R.-S., & Chinnaiyan, A. M. (2010). Triggers for genomic rearrangements: insights
1135 into genomic, cellular and environmental influences. *Nature Reviews. Genetics*,
1136 11(12), 819–829. <https://doi.org/10.1038/nrg2883>

- 1137 Marmignon, A., Bischerour, J., Silve, A., Fojcik, C., Dubois, E., Arnaiz, O., Kapusta, A.,
1138 Malinsky, S., & Bétermier, M. (2014). Ku-mediated coupling of DNA cleavage and
1139 repair during programmed genome rearrangements in the ciliate *Paramecium*
1140 *tetraurelia*. *PLoS Genetics*, 10(8), e1004552.
1141 <https://doi.org/10.1371/journal.pgen.1004552>
- 1142 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput
1143 sequencing reads. *EMBnet.Journal*, 17(1), 10. <https://doi.org/10.14806/ej.17.1.200>
- 1144 Miller, J., McLachlan, A. D., & Klug, A. (1985). Repetitive zinc-binding domains in the
1145 protein transcription factor IIIA from *Xenopus* oocytes. *The EMBO Journal*, 4(6),
1146 1609–1614. <https://doi.org/10.1002/j.1460-2075.1985.tb03825.x>
- 1147 Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M.
1148 (2022). ColabFold: making protein folding accessible to all. *Nature Methods*, 19(6),
1149 679–682. <https://doi.org/10.1038/s41592-022-01488-1>
- 1150 Miró-Pina, C., Charmant, O., Kawaguchi, T., Holoch, D., Michaud, A., Cohen, I.,
1151 Humbert, A., Jaszczyzyn, Y., Chevreux, G., Del Maestro, L., Ait-Si-Ali, S., Arnaiz, O.,
1152 Margueron, R., & Duharcourt, S. (2022). Paramecium Polycomb repressive complex
1153 2 physically interacts with the small RNA-binding PIWI protein to repress
1154 transposable elements. *Developmental Cell*, 57(8), 1037-1052.e8.
1155 <https://doi.org/10.1016/j.devcel.2022.03.014>
- 1156 Mochizuki, K., Fine, N. A., Fujisawa, T., & Gorovsky, M. A. (2002). Analysis of a piwi-
1157 related gene implicates small RNAs in genome rearrangement in *tetrahymena*. *Cell*,
1158 110(6), 689–699. [https://doi.org/10.1016/s0092-8674\(02\)00909-1](https://doi.org/10.1016/s0092-8674(02)00909-1)
- 1159 Morisato, D., & Anderson, K. V. (1995). Signaling pathways that establish the dorsal-
1160 ventral pattern of the *Drosophila* embryo. *Annual Review of Genetics*, 29, 371–399.
1161 <https://doi.org/10.1146/annurev.ge.29.120195.002103>


- 1162 Nowacki, M., Zagorski-Ostoja, W., & Meyer, E. (2005). Nowa1p and Nowa2p: novel
1163 putative RNA binding proteins involved in trans-nuclear crosstalk in *Paramecium*
1164 *tetraurelia*. *Current Biology*, 15(18), 1616–1628.
1165 <https://doi.org/10.1016/j.cub.2005.07.033>
- 1166 OpenAI. (2023). ChatGPT [*Large language model*] (GPT-3.5) [Computer software].
1167 <https://chat.openai.com/chat>.
- 1168 Oppikofer, M., Sagolla, M., Haley, B., Zhang, H.-M., Kummerfeld, S. K., Sudhamsu, J.,
1169 Flynn, E. M., Bai, T., Zhang, J., Ciferri, C., & Cochran, A. G. (2017). Non-canonical
1170 reader modules of BAZ1A promote recovery from DNA damage. *Nature
1171 Communications*, 8(1), 862. <https://doi.org/10.1038/s41467-017-00866-0>
- 1172 Pascual, J., Martinez-Yamout, M., Dyson, H. J., & Wright, P. E. (2000). Structure of the
1173 PHD zinc finger from human Williams-Beuren syndrome transcription factor. *Journal
1174 of Molecular Biology*, 304(5), 723–729. <https://doi.org/10.1006/jmbi.2000.4308>
- 1175 Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B. L., Salazar, G. A.,
1176 Bileschi, M. L., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D. H., Letunić, I.,
1177 Marchler-Bauer, A., Mi, H., Natale, D. A., Orengo, C. A., Pandurangan, A. P., Rivoire,
1178 C., ... Bateman, A. (2023). InterPro in 2022. *Nucleic Acids Research*, 51(D1), D418–
1179 D427. <https://doi.org/10.1093/nar/gkac993>
- 1180 Perez-Riverol, Y., Bai, J., Bandla, C., García-Seisdedos, D., Hewapathirana, S.,
1181 Kamatchinathan, S., Kundu, D. J., Prakash, A., Frericks-Zipper, A., Eisenacher, M.,
1182 Walzer, M., Wang, S., Brazma, A., & Vizcaíno, J. A. (2022). The PRIDE database
1183 resources in 2022: a hub for mass spectrometry-based proteomics evidences.
1184 *Nucleic Acids Research*, 50(D1), D543–D552. <https://doi.org/10.1093/nar/gkab1038>
- 1185 Pinskaya, M., Ghavi-Helm, Y., Mariotte-Labarre, S., Morillon, A., Soutourina, J., &
1186 Werner, M. (2014). PHD and TFIIS-Like domains of the Bye1 transcription factor
1187 determine its multivalent genomic distribution. *Plos One*, 9(7), e102464.
1188 <https://doi.org/10.1371/journal.pone.0102464>

- 1189 Quan, J., & Tian, J. (2011). Circular polymerase extension cloning for high-throughput
1190 cloning of complex and combinatorial DNA libraries. *Nature Protocols*, 6(2), 242–251.
1191 <https://doi.org/10.1038/nprot.2010.181>
- 1192 Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015).
1193 limma powers differential expression analyses for RNA-sequencing and microarray
1194 studies. *Nucleic Acids Research*, 43(7), e47. <https://doi.org/10.1093/nar/gkv007>
- 1195 Roberts, A., & Pachter, L. (2013). Streaming fragment assignment for real-time analysis
1196 of sequencing experiments. *Nature Methods*, 10(1), 71–73.
1197 <https://doi.org/10.1038/nmeth.2251>
- 1198 Rooney, S., Chaudhuri, J., & Alt, F. W. (2004). The role of the non-homologous end-
1199 joining pathway in lymphocyte development. *Immunological Reviews*, 200, 115–131.
1200 <https://doi.org/10.1111/j.0105-2896.2004.00165.x>
- 1201 Roth, S., Stein, D., & Nüsslein-Volhard, C. (1989). A gradient of nuclear localization of
1202 the dorsal protein determines dorsoventral pattern in the Drosophila embryo. *Cell*,
1203 59(6), 1189–1202. [https://doi.org/10.1016/0092-8674\(89\)90774-5](https://doi.org/10.1016/0092-8674(89)90774-5)
- 1204 Rzeszutek, I., Swart, E. C., Pabian-Jewuła, S., Russo, A., & Nowacki, M. (2022). Early
1205 developmental, meiosis-specific proteins - Spo11, Msh4-1, and Msh5 - Affect
1206 subsequent genome reorganization in Paramecium tetraurelia. *Biochimica et
1207 Biophysica Acta. Molecular Cell Research*, 1869(6), 119239.
1208 <https://doi.org/10.1016/j.bbamcr.2022.119239>
- 1209 Sanchez, R., & Zhou, M.-M. (2011). The PHD finger: a versatile epigenome reader.
1210 *Trends in Biochemical Sciences*, 36(7), 364–372.
1211 <https://doi.org/10.1016/j.tibs.2011.03.005>
- 1212 Sandoval, P. Y., Swart, E. C., Arambasic, M., & Nowacki, M. (2014). Functional
1213 diversification of Dicer-like proteins and small RNAs required for genome sculpting.
1214 *Developmental Cell*, 28(2), 174–188. <https://doi.org/10.1016/j.devcel.2013.12.010>

- 1215 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
1216 Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J.,
1217 Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: an open-source
1218 platform for biological-image analysis. *Nature Methods*, 9(7), 676–682.
1219 <https://doi.org/10.1038/nmeth.2019>
- 1220 Schindler, U., Beckmann, H., & Cashmore, A. R. (1993). HAT3.1, a novel *Arabidopsis*
1221 homeodomain protein containing a conserved cysteine-rich region. *The Plant Journal*,
1222 4(1), 137–150. <https://doi.org/10.1046/j.1365-313x.1993.04010137.x>
- 1223 Sellis, D., Guérin, F., Arnaiz, O., Pett, W., Lerat, E., Boggetto, N., Krenek, S.,
1224 Berendonk, T., Couloux, A., Aury, J.-M., Labadie, K., Malinsky, S., Bhullar, S., Meyer,
1225 E., Sperling, L., Duret, L., & Duharcourt, S. (2021). Massive colonization of protein-
1226 coding exons by selfish genetic elements in *Paramecium* germline genomes. *PLoS*
1227 *Biology*, 19(7), e3001309. <https://doi.org/10.1371/journal.pbio.3001309>
- 1228 Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R.,
1229 McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011).
1230 Fast, scalable generation of high-quality protein multiple sequence alignments using
1231 Clustal Omega. *Molecular Systems Biology*, 7, 539.
1232 <https://doi.org/10.1038/msb.2011.75>
- 1233 Singh, A., Häußermann, L., Emmerich, C., Nischwitz, E., Seah, B. K., Butter, F. K. B.,
1234 Nowacki, M., & Swart, E. C. (2023). ISWI1 complex proteins facilitate developmental
1235 genome editing in *Paramecium*. *BioRxiv*. <https://doi.org/10.1101/2023.08.09.552620>
- 1236 Singh, A., Maurer-Alcalá, X. X., Solberg, T., Häußermann, L., Gisler, S., Ignarski, M.,
1237 Swart, E. C., & Nowacki, M. (2022). Chromatin remodeling is required for sRNA-
1238 guided DNA elimination in *Paramecium*. *The EMBO Journal*, 41(22), e111839.
1239 <https://doi.org/10.15252/embj.2022111839>

- 1240 Skene, P. J., Henikoff, J. G., & Henikoff, S. (2018). Targeted *in situ* genome-wide
1241 profiling with high efficiency for low cell numbers. *Nature Protocols*, 13(5), 1006–
1242 1019. <https://doi.org/10.1038/nprot.2018.015>
- 1243 Spirov, A., Fahmy, K., Schneider, M., Frei, E., Noll, M., & Baumgartner, S. (2009).
1244 Formation of the bicoid morphogen gradient: an mRNA gradient dictates the protein
1245 gradient. *Development*, 136(4), 605–614. <https://doi.org/10.1242/dev.031195>
- 1246 Sturm, Á., Saskoi, É., Tibor, K., Weinhardt, N., & Vellai, T. (2018). Highly efficient RNAi
1247 and Cas9-based auto-cloning systems for *C. elegans* research. *Nucleic Acids
1248 Research*, 46(17), e105. <https://doi.org/10.1093/nar/gky516>
- 1249 Swart, E. C., Wilkes, C. D., Sandoval, P. Y., Arambasic, M., Sperling, L., & Nowacki, M.
1250 (2014). Genome-wide analysis of genetic and epigenetic control of programmed DNA
1251 deletion. *Nucleic Acids Research*, 42(14), 8970–8983.
1252 <https://doi.org/10.1093/nar/gku619>
- 1253 Taverna, S. D., Coyne, R. S., & Allis, C. D. (2002). Methylation of histone h3 at lysine 9
1254 targets programmed DNA elimination in *tetrahymena*. *Cell*, 110(6), 701–711.
1255 [https://doi.org/10.1016/s0092-8674\(02\)00941-8](https://doi.org/10.1016/s0092-8674(02)00941-8)
- 1256 Villanueva, R. A. M., & Chen, Z. J. (2019). ggplot2: Elegant Graphics for Data Analysis
1257 (2nd ed.). *Measurement: Interdisciplinary Research and Perspectives*, 17(3), 160–
1258 167. <https://doi.org/10.1080/15366367.2019.1565254>
- 1259 Wang, C., Lv, L., Solberg, T., Wen, Z., Zhang, H., & Gao, F. (2023). Conservation of the
1260 ancestral function of GTSF1 in transposon silencing in the unicellular eukaryote
1261 *Paramecium tetraurelia*. *BioRxiv*. <https://doi.org/10.1101/2023.10.06.561219>
- 1262 Wang, C., Solberg, T., Maurer-Alcalá, X. X., Swart, E. C., Gao, F., & Nowacki, M.
1263 (2022). A small RNA-guided PRC2 complex eliminates DNA as an extreme form of
1264 transposon silencing. *Cell Reports*, 40(8), 111263.
1265 <https://doi.org/10.1016/j.celrep.2022.111263>

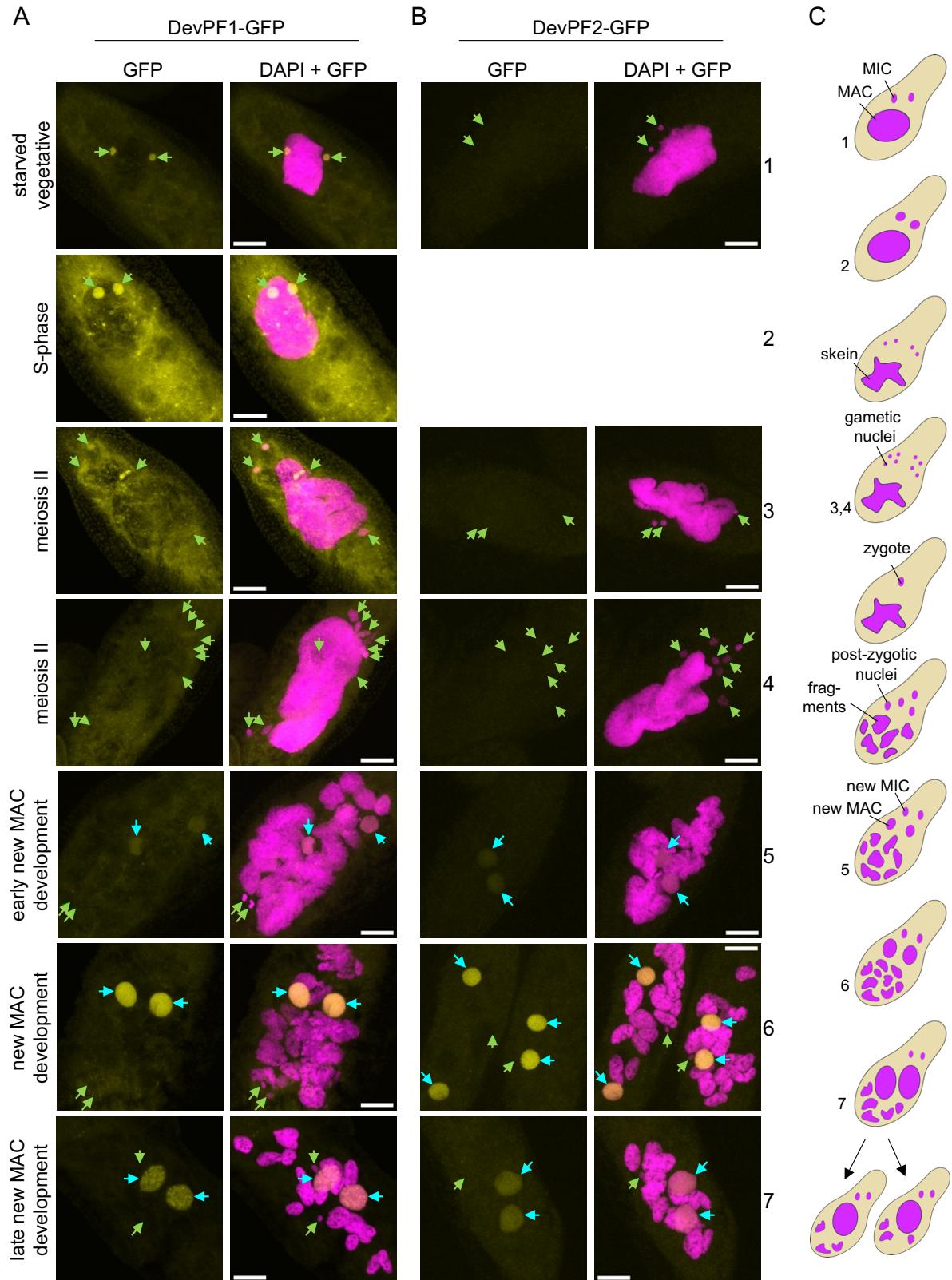
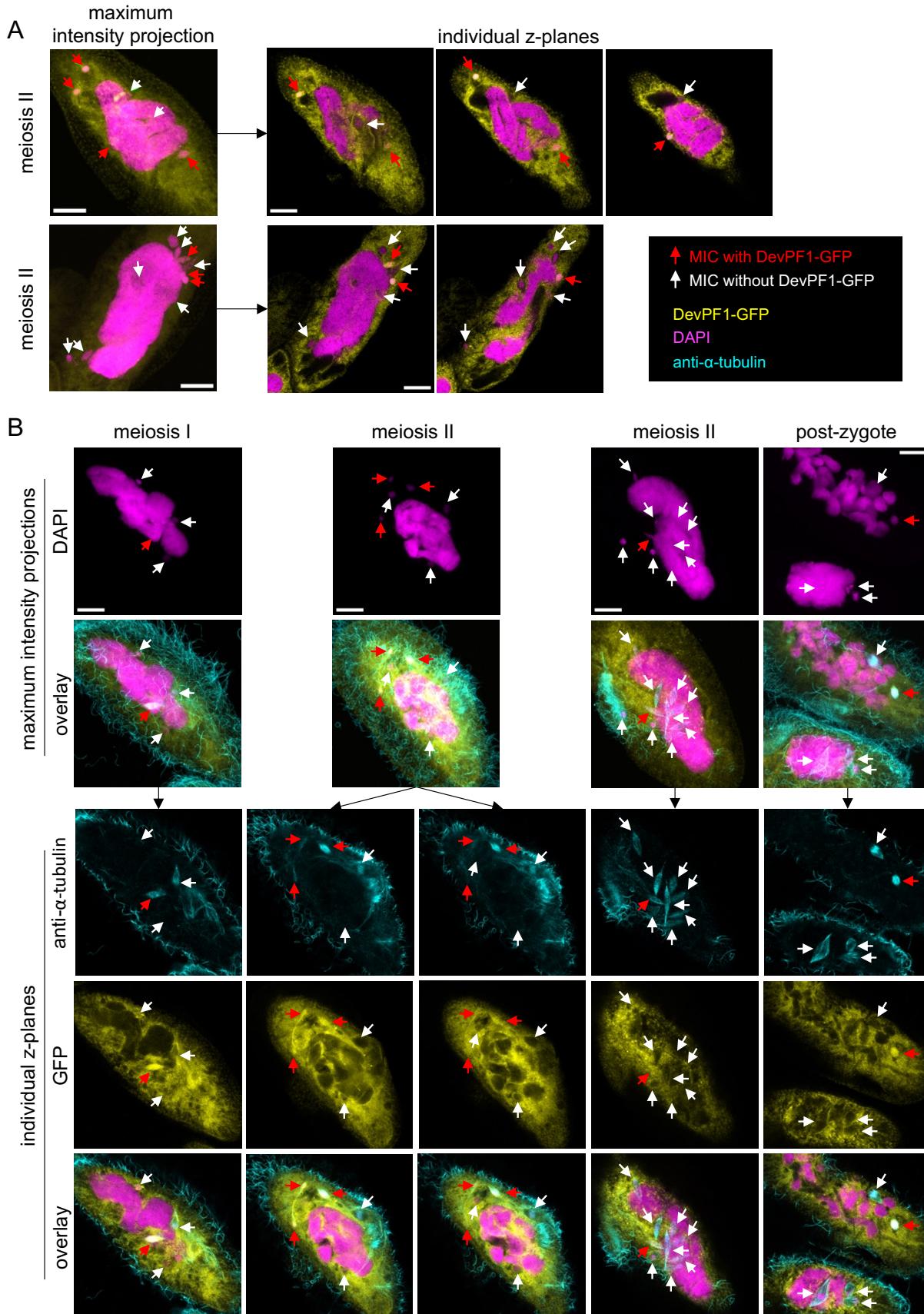
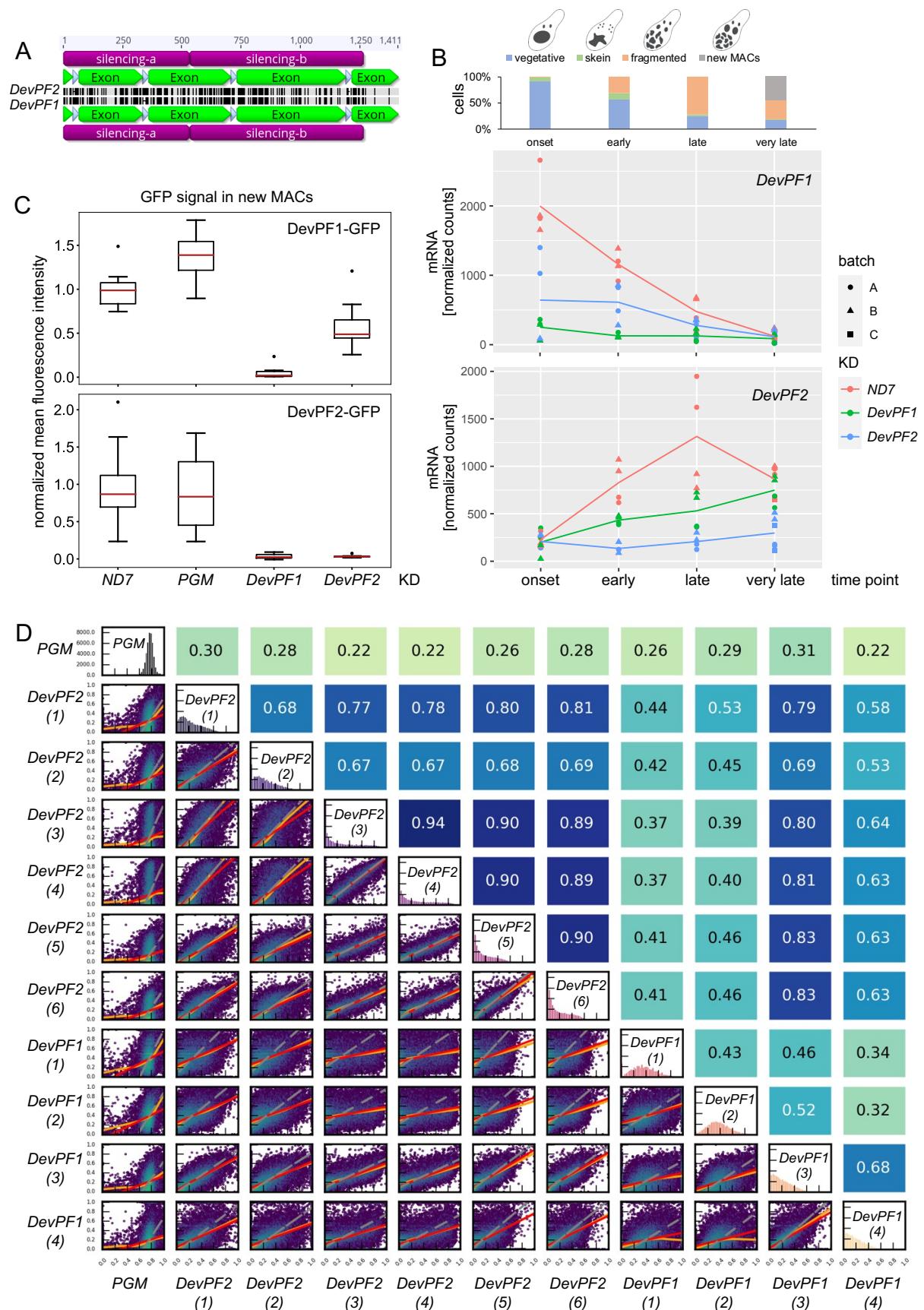

- 1266 Wysocka, J., Swigut, T., Xiao, H., Milne, T. A., Kwon, S. Y., Landry, J., Kauer, M.,
1267 Tackett, A. J., Chait, B. T., Badenhorst, P., Wu, C., & Allis, C. D. (2006). A PHD finger
1268 of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling.
1269 *Nature*, 442(7098), 86–90. <https://doi.org/10.1038/nature04815>
- 1270 Zangarelli, C., Arnaiz, O., Bourge, M., Gorrichon, K., Jaszczyzyn, Y., Mathy, N.,
1271 Escoriza, L., Bétermier, M., & Régnier, V. (2022). Developmental timing of
1272 programmed DNA elimination in *Paramecium tetraurelia* recapitulates germline
1273 transposon evolutionary dynamics. *Genome Research*, 32(11–12), 2028–2042.
1274 <https://doi.org/10.1101/gr.277027.122>
- 1275 Zeng, L., Zhang, Q., Li, S., Plotnikov, A. N., Walsh, M. J., & Zhou, M.-M. (2010).
1276 Mechanism and regulation of acetylated histone binding by the tandem PHD finger of
1277 DPF3b. *Nature*, 466(7303), 258–262. <https://doi.org/10.1038/nature09139>
- 1278 Zhang, J., Yan, G., Tian, M., Ma, Y., Xiong, J., & Miao, W. (2018). A DP-like
1279 transcription factor protein interacts with E2fl1 to regulate meiosis in *Tetrahymena*
1280 *thermophila*. *Cell Cycle*, 17(5), 634–642.
1281 <https://doi.org/10.1080/15384101.2018.1431595>
- 1282 Zimmermann, L., Stephens, A., Nam, S.-Z., Rau, D., Kübler, J., Lozajic, M., Gabler, F.,
1283 Söding, J., Lupas, A. N., & Alva, V. (2018). A Completely Reimplemented MPI
1284 Bioinformatics Toolkit with a New HHpred Server at its Core. *Journal of Molecular*
1285 *Biology*, 430(15), 2237–2243. <https://doi.org/10.1016/j.jmb.2017.12.007>

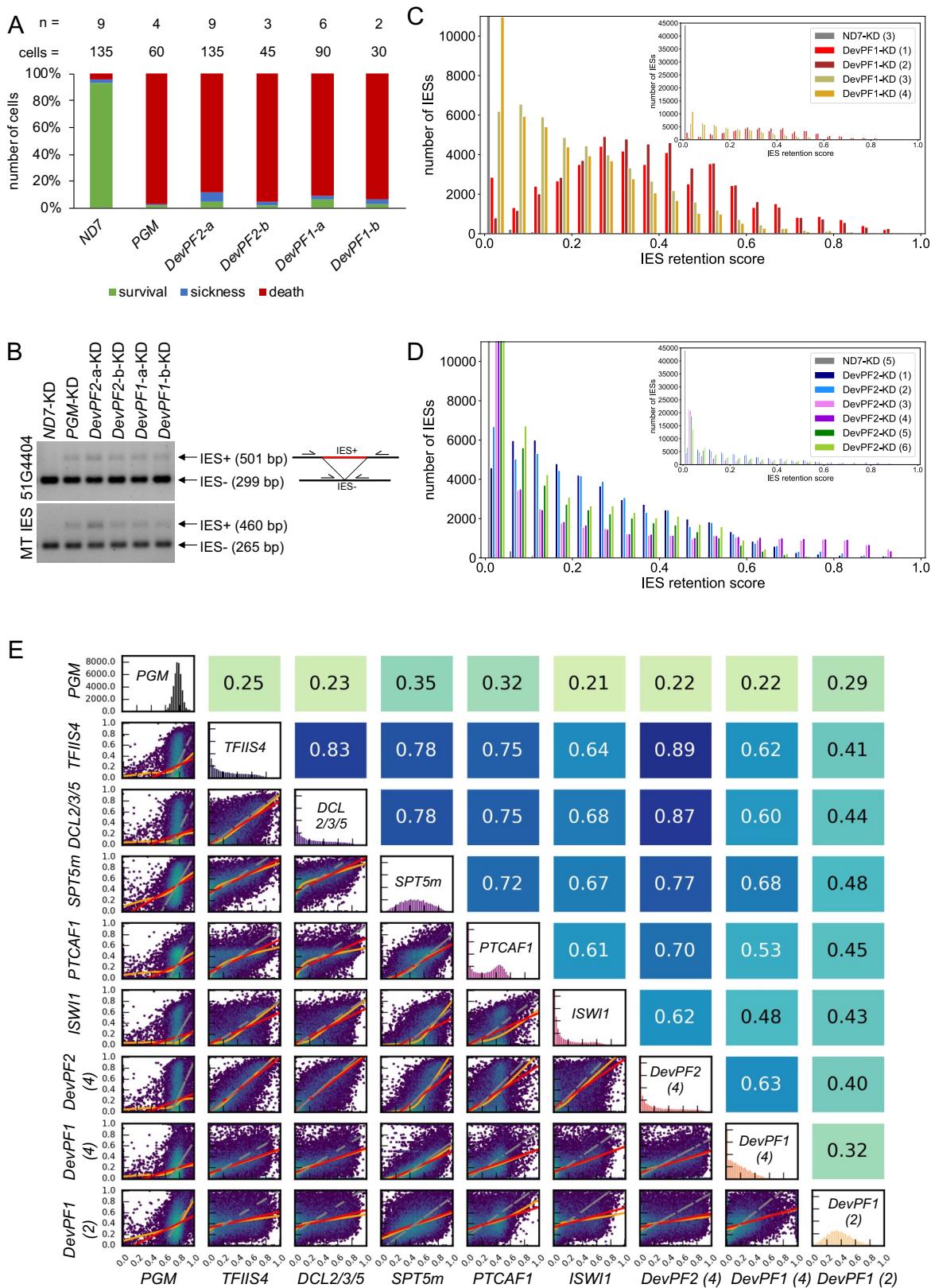
Figure 1: Features of the PHD finger proteins DevPF1 and DevPF2


(A) mRNA expression profiles for *DevPF1*, *DevPF2* and *PGM* during various developmental stages: VEG (vegetative growth), MEI (micronuclear meiosis and macronuclear fragmentation), FRG (~50% of the population with fragmented maternal MACs), DEV1 (significant proportion with visible anlagen), DEV2/3 (majority with visible

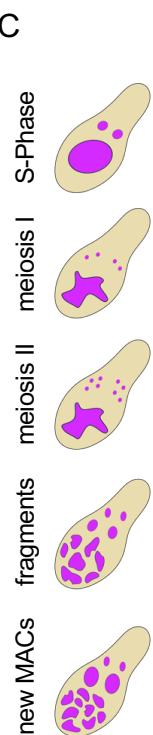
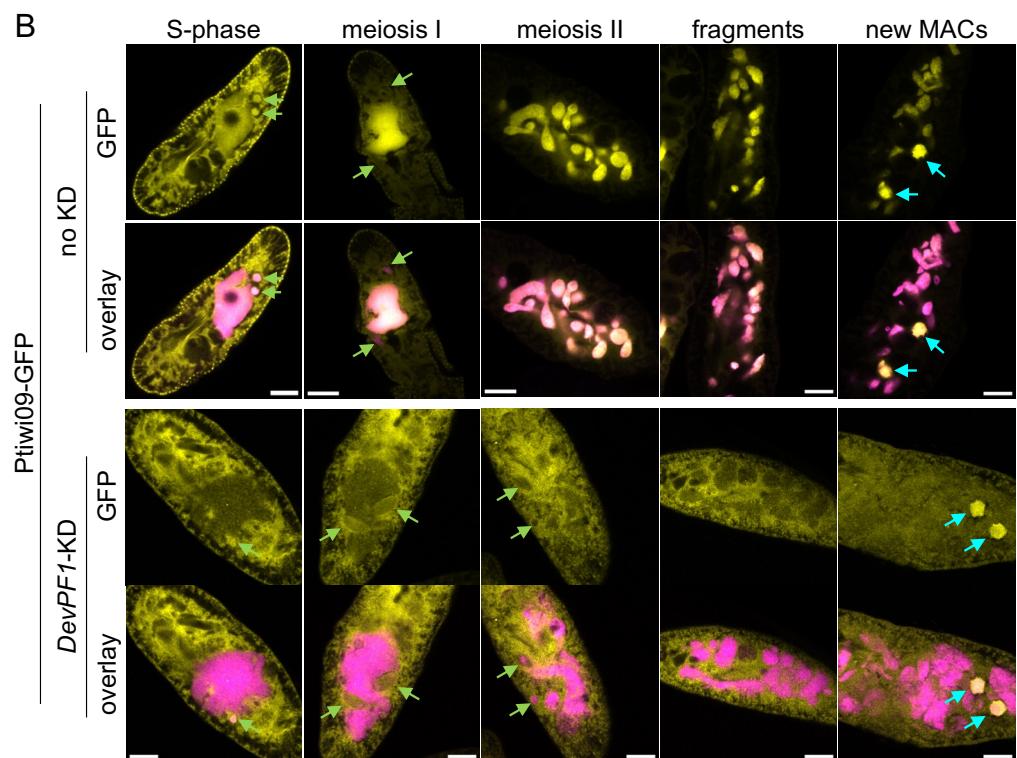
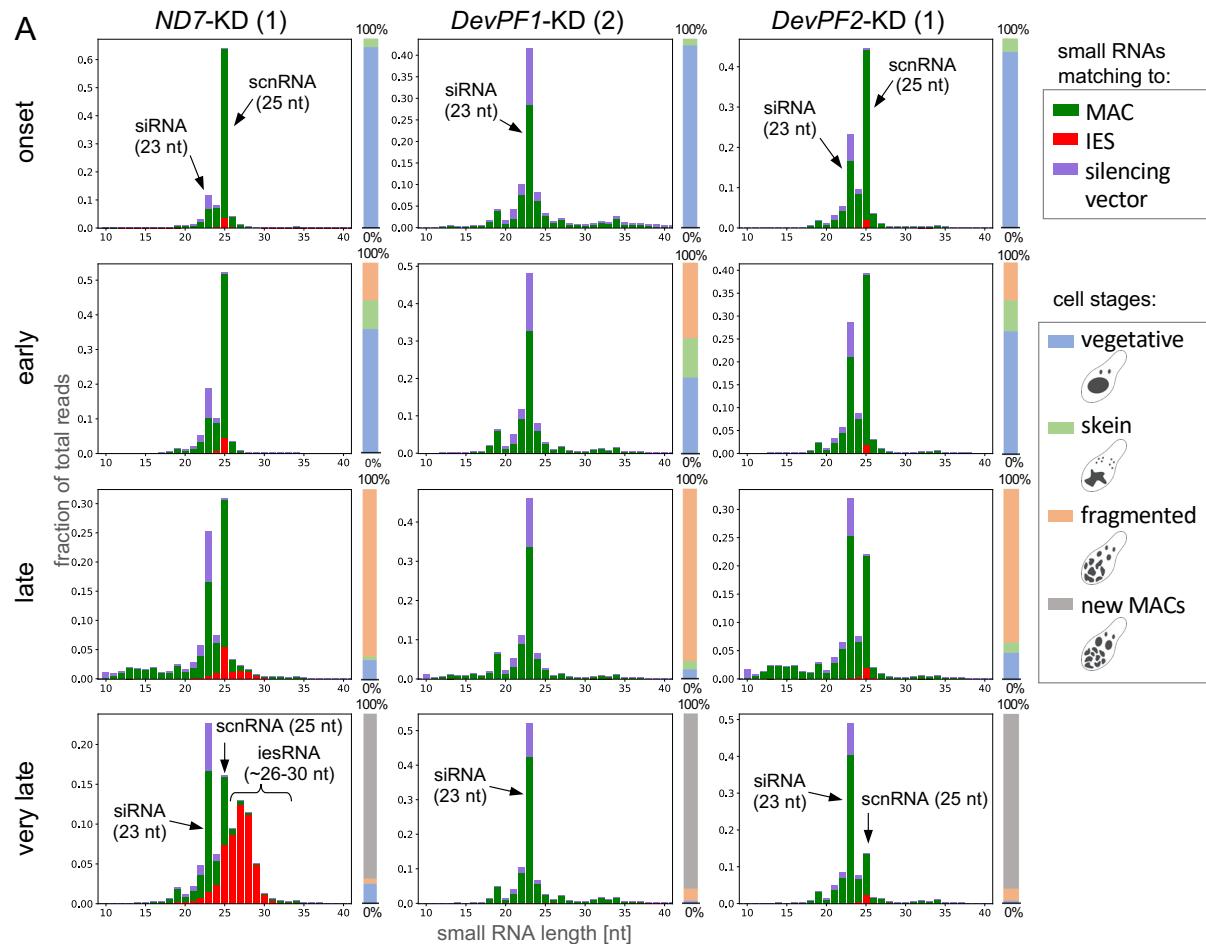
anlagen), DEV4 (majority with visible anlagen). Expression data retrieved from ParameciumDB (Arnaiz et al., 2017). (B) Schematic representation of predicted domain architecture for DevPF1 and DevPF2. (C) Multiple sequence alignment (Clustal Omega) of DevPF1 and DevPF2 amino acid sequence with PHD domains of published human and *Drosophila* PHD finger proteins. (D) to (F): Predicted protein structure (AlphaFold2) for DevPF1 and DevPF2, colored by domain (PHD: orange; PHD-zinc-finger-like domain: green) in (D) and (E), and by prediction confidence (pLDDT: predicted local distance difference test) in (F) and (G). (H) Structure predictions of DevPF1 and DevPF2 PHD domain superimposed with NMR structure of WSTF PHD domain (PDB accession number 1F62).


Figure 2: Subcellular localization of DevPF-GFP proteins

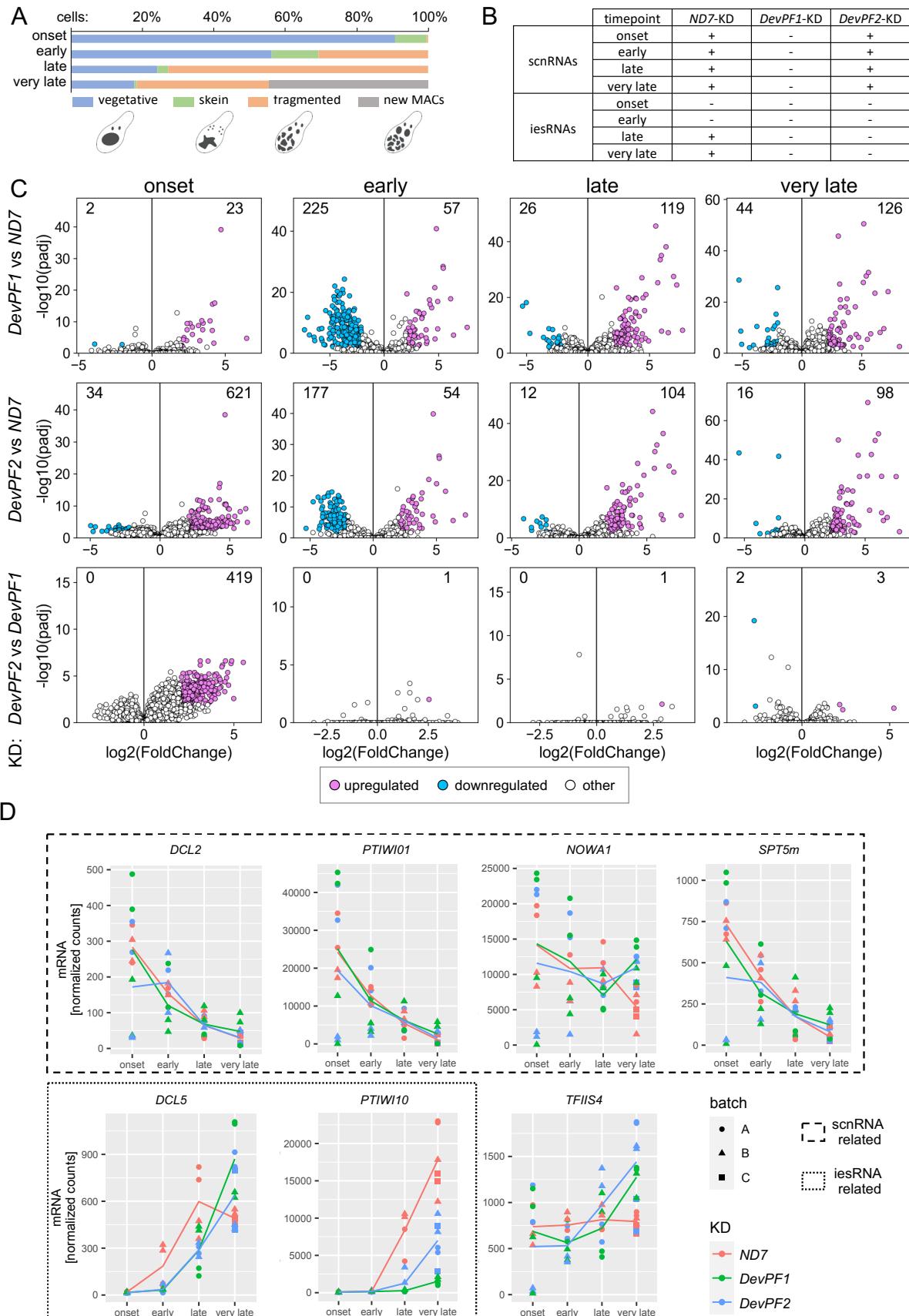
DevPF1-GFP (A) and DevPF2-GFP (B) localization at various developmental stages. DNA (stained with DAPI) in magenta. GFP signal in yellow. No image of DevPF2-GFP during S-phase was acquired. Green arrow: MIC. Cyan arrow: new MAC. Maximum intensity projections of multiple z-planes. Scale bar = 10 μ m. (C) Schematic overview of nuclear morphology during sexual development, with corresponding cell stages in the images indicated by numbers.


Figure 3: Selective DevPF1-GFP localization in *Paramecium* MICs

(A) Overlay of DAPI (DNA stain; pink) and GFP (yellow) signal in two DevPF1-GFP injected *Paramecium* cells during meiotic stages. Maximum intensity projections (left) and individual z-planes of the same stack (right). (B) DevPF1-GFP localization with visualization of nuclear spindle. DAPI (pink), GFP (yellow) and anti- α -tubulin staining (cyan). Maximum intensity projections (top) for DAPI and overlay (DAPI, GFP and anti- α -tubulin). Individual z-planes of the same stacks (bottom) for anti- α -tubulin, GFP and overlay. (A) and (B): Red arrows: MICs with DevPF1-GFP localization; White arrows: MICs without DevPF1-GFP localization. Scale bar = 10 μ m.




Figure 4: Co-silencing effects observed in *DevPF* knockdowns

(A) Nucleotide identity across *DevPF1* (bottom) and *DevPF2* (top) genes. Screenshot of pairwise sequence alignment in Geneious prime software. Silencing region (violet), exon (green), intron (white), perfect identity (gray) and mismatch/gap (black). Scale in base pairs at the top. (B) mRNA expression levels of *DevPF1* (top) and *DevPF2* (bottom) upon KDs (*ND7* (control), *DevPF1* and *DevPF2*) at different developmental time points (onset, early, late and very late). Lines represent the mean of all replicates for a given KD and time point. The cell stage composition of each time point averaged over all KDs is shown at the top (individual compositions in Fig. S5), along with schematic representations of the considered cell stages. (C) Protein expression upon KD: fluorescence intensities of *DevPF1*-GFP (top) and *DevPF2*-GFP (bottom). Red line: median. Whiskers: 1.5 times the interquartile range from the lower or upper quartile. Dots: data points outside the whiskers. Sample size = 10. (D) IES retention score (IRS) correlations between *DevPF1*- and *DevPF2*-KD replicates. Diagonal: IRS distributions of individual KDs. Below diagonal: correlation graphs of pairwise comparisons. Above diagonal: corresponding Spearman correlation coefficients. Red lines: ordinary least-squares (OLS) regression, orange lines: LOWESS, and gray lines: orthogonal distance regression (ODR).


Figure 5: Effects of *DevPF* knockdowns on genome-wide IES retention

(A) Viability of new progeny after KDs (*ND7* (negative control), *PGM* (positive control), *DevPF1* and *DevPF2*) during sexual development. For *DevPF1* and *DevPF2*, two silencing regions were targeted (a and b, see Fig. 4A). The numbers of experiments (n) and cells counted (cells) are indicated at the top. Survival: normal division. Sickness: reduced growth. Death: 3 or less cells after three days. (B) IES retention PCRs for two IESs on genomic DNA isolated from KD cells. (C) and (D): IES retention score (IRS) histograms for *DevPF1* (C) and *DevPF2* (D) KD replicates, indicated in parentheses. (E) IRS correlation between KDs. Diagonal: IRS distributions of individual KDs. Below diagonal: correlation graphs of pairwise comparisons. Above diagonal: corresponding Spearman correlation coefficients. Red lines: ordinary least-squares (OLS) regression, orange lines: LOWESS, and gray lines: orthogonal distance regression (ODR).

Figure 6: Changes of small RNA populations upon *DevPF* knockdowns

(A) Small RNA populations (10-40 nt) at developmental time points (onset, early, late and very late) in different KDs (*ND7* (control), *DevPF1* and *DevPF2*), mapping to silencing plasmid backbone (vector), MAC or IES sequences. Individual cell stage compositions are indicated by the bar to the right of each diagram, along with schematic representations of the cell stages considered. (B) *Ptiwi09*-GFP localization at different developmental stages in the context of no (top) and *DevPF1* KD (bottom). DAPI (pink) and GFP (yellow). Individual z-planes for GFP and overlay (DAPI and GFP). Green arrows: MICs. Cyan arrows: new MAC. Scale bar = 10 μ m. (C) Schematic representation of cell stages in (B).

Figure 7: Differential gene expression in *DevPF* knockdowns

(A) Cell stage composition of each time point averaged over all KDs (individual compositions in Fig. S5), along with schematic representations of the considered cell stages. (B) Presence or absence of scnRNAs and iesRNAs in different KDs (*ND7*, *DevPF1* and *DevPF2*) and time points (onset, early, late, very late). (C) Differentially expressed genes in *DevPF1*- (top) or *DevPF2*- (middle) compared to *ND7*-KD or *DevPF1*- compared to *DevPF2*-KD (bottom) at different developmental time points (onset, early, late and very late). Thresholds for up-/downregulation: adjusted p-value < 0.01; $|\log_2(\text{fold change})| > 2$. The number of up-/downregulated genes is indicated in each diagram. For all comparisons, 35777 transcripts were analyzed, except for: *DevPF1*-*ND7* onset (33696), *DevPF2*-*ND7* early (35083), and *DevPF2*-*DevPF1* onset (34389). (D) Gene expression levels of selected genes upon KDs (*ND7* (control), *DevPF1* and *DevPF2*) at different developmental time points (onset, early, late and very late). The lines represent the mean of all replicates in a given KD and time point.

Table 1: IES retention scores of IESs at *PTIWI10/11* genes

The genes *PTIWI10* and *PTIWI11* contain IESs in their coding and/or flanking regions, which were proposed to impair their transcription when retained. The IRS values for the three relevant IESs (IDs with prefix IESPGM.PTET51.1) are provided for each KD. Rows are color-coded according to the KDs as shown in the mRNA read count diagrams (i. e. Figs 7D, S7B).

KD	Replicate	<i>PTIWI11</i>		<i>PTIWI10</i>	
		coding region		flanking region	coding region
		IESPGM.PTET51.1.62.345420	IESPGM.PTET51.1.24.407807	IESPGM.PTET51.1.24.408279	
<i>ND7</i>	3	0.00	0.00	0.00	0.00
	4	0.00	0.00	0.00	0.00
	5	0.00	0.00	0.00	0.00
<i>DevPF1</i>	1	0.09	0.29	0.11	
	2	0.08	0.15	0.06	
	3	0.04	0.03	0.06	
	4	0.02	0.01	0.01	
<i>DevPF2</i>	1	0.10	0.07	0.01	
	2	0.02	0.24	0.15	
	3	0.00	0.00	0.00	
	4	0.00	0.00	0.01	
	5	0.03	0.00	0.00	
	6	0.01	0.00	0.00	