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Abstract

Motivation: Identifying cancer genes remains a significant challenge in cancer genomics research. Annotated

gene sets encode functional associations among multiple genes, and cancer genes have been shown to cluster

in hallmark signaling pathways and biological processes. The knowledge of annotated gene sets is critical for

discovering cancer genes but remains to be fully exploited.

Results: Here, we present the DIsease-Specific Hypergraph neural network (DISHyper), a hypergraph-based

computational method that integrates the knowledge from multiple types of annotated gene sets to predict

cancer genes. First, our benchmark results demonstrate that DISHyper outperforms the existing state-of-the-

art methods and highlight the advantages of employing hypergraphs for representing annotated gene sets.

Second, we validate the accuracy of DISHyper-predicted cancer genes using functional validation results

and multiple independent functional genomics data. Third, our model predicts 44 novel cancer genes, and

subsequent analysis shows their significant associations with multiple types of cancers. Overall, our study

provides a new perspective for discovering cancer genes and reveals previously undiscovered cancer genes.

Availability: DISHyper is freely available for download at https://github.com/genemine/DISHyper.

Contact: jxwang@mail.csu.edu.cn
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1. Introduction

Cancer is a set of complex and highly genetically heterogeneous

diseases (Lawrence et al., 2013). A key goal in cancer genomic

research is to identify cancer genes that play a causal driving

role in the development and progression of tumors (Garraway and

Lander, 2013; Alexandrov et al., 2013; Vogelstein et al., 2013).

The identification of cancer genes is crucial for the study of tumor

pathogenesis, early screening, and the development of precision

oncology (Garraway and Lander, 2013; Alexandrov et al., 2013;

Vogelstein et al., 2013). Although many initiatives such as the

Network of Cancer Genes (NCG) (Repana et al., 2019) and the

COSMIC Cancer Gene Census (CGC) (Sondka et al., 2018) have

been used to annotate some cancer genes, the current catalog

of known cancer genes is incomplete. Accurate identification

of cancer genes from many candidate genes remains a critical

challenge.

In the last decade, large-scale cancer sequencing projects

such as The Cancer Genome Atlas (TCGA) (Weinstein et al.,

2013) and Pan-Cancer Analysis of Whole Genomes (PCAWG)

(Pan-Cancer Analysis of Whole Genomes Consortium, 2020) have

published genomic and transcriptomic data from tens of thousands

of tumor samples. These large-scale cancer sample data have

largely contributed to the development of computational methods

for cancer gene identification. Early approaches for cancer gene

prediction focused on finding genes that have significantly different

mutation rates from the background frequency distribution, such

as MutSigCV (Lawrence et al., 2013). Meanwhile, the 20/20+

method proposed finding genes with similar mutation patterns

to known cancer genes by integrating multiple gene mutation

feature through machine-learning models (Tokheim et al., 2016).

Moreover, some approaches are proposed to identify cancer

genes by integrating features from the genome, transcriptome,
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and proteome. For example, DORGE proposed integrating

epigenetic and mutational features based on machine learning

models to identify oncogenes and tumor suppressor genes (Lyu

et al., 2020). Biological network-based cancer gene prediction

methods have been extensively studied in recent years. HotNet2

(Reyna et al., 2018) used heat diffusion models to detect cancer

gene modules with mutational features. EMOGI (Schulte-Sasse

et al., 2021) integrates multi-omics data for multiple cancers and

protein-protein interaction (PPI) networks via graph convolutional

networks (GCN) (Kipf and Welling, 2017) to learn local feature

patterns of cancer genes.

Cancer genes have been shown to cluster in a small number of

biological processes, hallmark signaling pathways, and interacting

subnetworks (Creixell et al., 2015; Reyna et al., 2020). Currently,

research on cancer gene prediction methods focuses on the binary

associations of cancer genes in biological networks, while ignoring

the functional associations of cancer genes in annotated gene

sets such as biological processes and signaling pathways. The

annotated gene set encodes a group of genes with functional

associations (Liberzon et al., 2015). The functional associations in

annotation gene sets are higher-order associations among multiple

genes, and the higher-order functional association information is

more intuitive and accurate in explaining the disease mechanism

than single genes (Luo and Mao, 2021; Luo, 2022). In addition,

cancer driver mutations can lead to oncogenic properties of cells

by altering the activities of hallmark biological processes and

pathways (Creixell et al., 2015; Reyna et al., 2020). Therefore,

compared with the binary association in biological networks,

the higher-order association information in annotated gene sets

provides a more comprehensive characterization of the functional

association patterns of cancer genes and help us identify cancer

genes more accurately. To achieve this goal, it is necessary to

develop a computational framework that can integrate knowledge

from different types of annotated gene sets and exploit their

higher-order association information to identify cancer genes.

Currently, a few computational approaches have used annotated

gene set data, these approaches typically represent annotated

gene sets as graph structures or encode them directly as vectors

(Luo et al., 2019; Valdeolivas et al., 2019; Althubaiti et al.,

2019). Although graph or network structures have been widely

used in computational biology to represent binary associations

between biological entities, they are unable to represent higher-

order gene associations in annotated gene sets. Therefore, although

the knowledge of annotated gene sets is crucial for cancer gene

prediction, using the knowledge to identify cancer genes faces

the following problems: (i) how to represent the higher-order

association among multiple genes in annotated gene sets, (ii)

how to integrate different types of annotated gene sets such as

gene ontology (GO), signaling pathways, and human phenotype

ontology (HPO), (iii) how to make full use of the higher-order

functional association information to identify cancer genes.

To tackle these problems, we introduce DISHyper, a novel

method to identify cancer genes based on the annotated gene sets

and hypergraph neural networks (HGNN). In DISHyper, we first

represent and integrate different types of annotated gene sets using

the hypergraph structure. Each gene is a node in the hypergraph,

and each annotated gene set is a hyperedge. Hypergraph provides a

natural way to represent the higher-order association relationships

between multiple genes in annotated gene sets. Then, to fully

utilize the higher-order association information among multiple

genes in the annotated gene sets, we use HGNN to train the model.

The HGNN extracts higher-order gene association information and

local topological information from the annotated gene set and

generates the feature representation of the gene through the two-

phase message-passing process. We use this feature representation

to prioritize cancer genes. In addition, we propose the disease-

specific hyperedge weighting module and the hypergraph residual

learning module based on HGNN. We use these two modules to

weight the knowledge for each annotated gene set and enhance the

expressive power of the model.

We evaluate the performance of DISHyper and predict new

cancer genes based on pan-cancer data. In our benchmark

experiments, DISHyper outperforms the other state-of-the-art

methods and has a significant performance improvement over

the other methods. Through comprehensive ablation studies, we

also show the effectiveness of DISHyper in integrating multiple

types of annotated gene sets and the importance of using disease-

specific weighting modules and hypergraph residual learning

modules. We conduct a comprehensive assessment of DISHyper-

predicted cancer genes using multiple analysis methods and

data. Firstly, we extensively analyze and evaluate the DISHyper-

predicted top-rank 200 cancer genes (PCG) using functional

validation experiment results and independent functional genomic

data. Then, we perform a comprehensive enrichment analysis of

DISHyper-predicted cancer genes. Finally, we perform further

evaluation for our predicted 44 novel cancer genes (novelCG)

based on RNA-Seq, DNA methylation, and clinical data from

tumor samples in the TCGA study. Our analysis shows that

the 44 novel cancer genes are closely associated with one or

more cancers. Moreover, We illustrate the DISHyper prediction

process through a case study of WNT5A. To the best of

our knowledge, DISHyper is the first hypergraph-based cancer

gene prediction computational method that utilizes higher-order

functional association information among multiple genes to

identify cancer genes.

2. Materials and methods

2.1. Datasets and processing

We collect pan-cancer data to evaluate model performance and

predict new cancer genes. We use the same list of known cancer

genes and non-cancer genes as in EMOGI (Schulte-Sasse et al.,

2021) to evaluate model performance and predict new cancer

genes. Specifically, we collect known cancer driver genes from the

NCG (Repana et al., 2019) (v6.0), COSMIC CGC (Sondka et al.,

2018) (v91), and DigSEE databases (Kim et al., 2013) as positive

samples. The negative samples are the remaining genes after

recursively excluding the NCG, COSMIC CGC, OMIM database,

DigSEE database, and KEGG cancer pathway gene set. Thus, our

pan-cancer gene data consists of 796 positive samples and 2,187

negative samples.

We collect multiple types of annotated gene sets from the

Molecular Signatures Database (MSigDB) (Liberzon et al., 2015).

The MSigDB (v7.4) database contains multiple types of annotated

gene set data and classifies them into nine categories. We use

C2 and C5 gene sets from the MSigDB database, which contains

signaling pathway data from expert databases such as BioCarta

(Rouillard et al., 2016), Reactome (Fabregat et al., 2018), and

KEGG (Kanehisa and Goto, 2000), and ontology gene sets from

GO (Gene Ontology Consortium, 2004) and HPO (Köhler et al.,

2021). To accurately assess the model performance, we eliminate

the annotated gene sets directly annotated with cancer during
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Fig. 1: Illustration of DISHyper. (A) Construction of the disease-specific hypergraph. We collect the annotated gene set data from

MSigDB and construct the initial hypergraph G(V,E,W). We then perform disease-specific hyperedge weighting with known cancer

genes as prior knowledge and construct the disease-specific hypergraph Gd(V,E,Wd). (B) Higher-order association information learning

via hypergraph residual neural networks. We take the disease-specific hypergraph Gd(V,E,Wd) and the initial feature matrix X as input

of the model. We first perform a nonlinear transformation on the feature matrix X by one fully connected layer and activation function.

Then, we use the hypergraph residual learning module to extract local topology and higher-order association information of genes in the

disease-specific hypergraph Gd and predict the risk score Z for each gene.

model training and testing. We collect a total of 20,647 annotated

gene sets, encompassing functional associations among 17,442

genes.

2.2. Framework of DISHyper

DISHyper is a novel hypergraph-based cancer gene prediction

method. The workflow of DISHyper is shown in Figure 1 and can

be summarized into two components: (1) Construction of disease-

specific hypergraph. We represent and integrate different types

of annotated gene sets with hypergraph structure, and perform

disease-specific hyperedge weighting using priori information on

cancer to construct disease-specific hypergraph. (2) Higher-

order association information learning via hypergraph residual

neural networks. We use the construct disease-specific hypergraph

and the initial feature matrix X of genes as the input to

train the cancer gene prediction model. We first perform a

nonlinear transformation on the feature matrix, and then use

three hypergraph residual learning modules to extract higher-

order association information of genes and generate new feature

representations for genes. Finally, we predict the degree of

association between each gene and cancer.

2.2.1. Construction of the disease-specific hypergraph

We use DISHyper to integrate knowledge from different types of

annotated gene sets. Each annotated gene set represents a set

of genes with functional associations. For example, a signaling

pathway indicates that multiple genes are participating in a

particular signaling process. To accurately describe the complex

associations of genes in annotated gene sets and fully utilize

the higher-order association information in annotated gene sets,

DISHyper uses the hypergraph structure to represent and integrate

different types of annotated gene sets. We define the initial

hypergraph constructed using annotated gene sets as G(V,E,W),

the node V = {v1, v2, v3, ..., vn} in the hypergraph represents n

genes, and the hyperedge E = {e1, e2, e3, ..., em} represents m

annotated gene sets. The W denote the diagonal matrix of the

hyperedge weights, i.e., diag(W) = [w(e1), w(e2), ..., w(em)]. W is

generally an identity matrix. For the incidence matrix H ∈ ℜn×m

of the hypergraph, we define that if the a-th gene va belongs to

the b-th annotated gene set eb, then H(va, eb) = 1, otherwise 0.

In the node classification task of the hypergraph, the weight

assigned to a hyperedge reflects its significance in the classification

process. The weight matrix W in the initial hypergraph G is

the identity matrix. If the initial hypergraph G is used to train

the model directly, then each annotated gene set (hyperedge)

has the same importance for that cancer gene prediction task.

However, the different annotated gene sets obviously have different

degrees of impact on the cancer. For example, the biological

processes associated with cell proliferation and cell metastasis are

more closely associated with cancer. Therefore, those annotated

gene sets with more significant associations with the process of

tumor development should be assigned greater hyperedge weights.

Considering the association specificity of cancer to different

annotated gene sets, we propose a disease-specific hyperedge

weighting module. We use the known cancer genes as the prior

information of cancer and calculate the proportion of known cancer

genes in each annotated gene set as hyperedge weights. The weight

of the i-th hyperedge is defined as follows:

wi =

∑
v∈V H(v, ei)f(v, Vd)∑

v∈V H(v, ei)
(1)

f(v, Vd) =

{
1 if v ∈ Vd

0 if v /∈ Vd

(2)

where wi denotes the weight of the i-th (i ∈ [1,m]) hyperedge, and

Vd denotes the set of known cancer genes. The f(v, Vd) is used to

indicate whether gene v belongs to Vd. We define the disease-

specific hypergraph as Gd(V,E,Wd), where Wd is the weighted

hyperedge weight matrix. The disease-specific hypergraph Gd

contains the disease-specific functional association between cancer

and annotated gene sets. For annotated gene sets with a larger

proportion of known cancer genes, we assign proportionally greater
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hyperedge weights to them because these annotated gene sets are

more likely to be relevant to the cancer gene prediction task.

It should be emphasized that, in benchmarking, we use only

the positive genes in the train set for disease-specific hyperedge

weighting, and the positive genes in the test set are excluded in

this process.

2.2.2. Higher-order association information learning via

hypergraph residual neural networks

HGNN is a semi-supervised hypergraph node classification method

(Feng et al., 2019). We model the disease-specific hypergraphs Gd

through HGNN and extract complex association information of

genes in annotated gene sets. Both HGNN and GCN aggregate

the neighbor information of nodes through the message-passing

mechanism and generate the new feature representation containing

neighbor information for each node. Stacking multiple layers of

GCN means that each node will aggregate multi-order neighbor

information. When the GCNs are deep, the features of the nodes

tend to be consistent and difficult to distinguish. HGNN also

has the risk of over-smoothing, which limits the expressiveness

of HGNN and makes the model difficult to converge. At the same

time, we also find in the experiment that if two nodes have similar

neighbors in the hypergraph, the feature representations of the

nodes must be the same after HGNN, even if their initial features

and labels are very different. This phenomenon will lead to a loss

of specificity in the feature representations of the nodes learned by

HGNN and limits the expressive power of HGNN.

Aiming at the problems in HGNN, inspired by ResNet (He

et al., 2016) and deepGCN (Li et al., 2019), we develop the

hypergraph residual learning module. The formula is defined as

follows:

X(l+1) = σ(F(X(l),Θ(l)) +X(l))

= σ(D
− 1

2
v HWdD

−1
e HTD

− 1

2
v X(l)Θ(l) +X(l)) (3)

where the X(l+1) and X(l) represent the output of the l+1 layer

and the l layer. We define the degree of the node va is d(va) =∑
e∈E w(e)H(va, e) and the degree of the hyperedge eb is δ(eb) =∑
v∈V H(v, eb). The Dv ∈ ℜn×n and De ∈ ℜm×m denote the

diagonal matrices of the node degrees and the hyperedge degrees,

respectively. Θ(l) is a trainable weight matrix on the l-th layer

and σ denotes the non-linear activation function. The hypergraph

residual learning module can be regarded as adding the input

X(l) to the output of the hypergraph convolutional layer. In

theory, if the multi-order neighbor information is not needed,

the hypergraph residual learning module can make Θ approach

0, thereby converting the hypergraph convolutional layer into an

identity map (X(l+1) = X(l)), which can reduce the risk of over-

smoothing, and accelerate model convergence. We use multi-layer

hypergraph residual learning modules to extract the local topology

information in the disease-specific hypergraph and generate the

new feature representation for each gene.

Finally, DISHyper inputs the gene feature matrix to the fully

connected layer and uses the softmax layer to get the prediction

result of the model, the formula is as follows:

Z = Softmax(XΘ+ b) (4)

where Z ∈ ℜN×2 represents the probability output by DISHyper

for each gene being a neutral gene and a cancer gene, and we utilize

the latter as the predicted risk score of each gene.

3. Results

3.1. DISHyper outperforms existing cancer gene prediction

methods

To demonstrate the superiority of DISHyper, we conduct a

comparison with four state-of-the-art cancer gene prediction

methods, namely 20/20+, DORGE, EMOGI, and MTGCN.

Furthermore, to emphasize the advantages and necessity of

employing the hypergraph for representing annotated gene sets,

we compare DISHyper with two graph-based representation

methods, including GCN and GCNII. (1) 20/20+ (Tokheim et al.,

2016) designed a series of mutation-based feature-trained random

forest models to find genes with the same mutation pattern as

known cancer genes. (2) DORGE (Lyu et al., 2020) combined

mutation data with epigenetic data and added epigenetic features

such as methylation, histone modifications, and super-enhancer

percentages on the basis of 20/20+. (3) EMOGI (Schulte-Sasse

et al., 2021) proposed integrating multi-omics features based on

the graph convolution network to identify new cancer genes by

learning local neighborhood features of cancer genes. (4) MTGCN

(Peng et al., 2022) added the linkage prediction auxiliary task

to the PPI network on the basis of EMOGI and optimized

the learning of gene features through this multi-task learning

framework. (5) GCN: We utilize graph structure to represent

annotated gene sets and apply GCN for gene feature extraction.

Specifically, we consider genes as nodes, represent each annotated

gene set as a complete subgraph, and combine all complete

subgraphs into a graph. We use this graph to represent all

annotated gene sets and as input for the GCN. (6) GCNII:

This variant incorporates initial residual and identity mapping

into the GCN (Chen et al., 2020), which offers enhanced model

expressiveness and utilizes the same inputs as GCN. To ensure the

fairness of comparison, the same positive and negative samples are

used in the comparison experiments. For each comparison method

and our approach, we conducted multiple times of stratified five-

fold cross-validation to assess model performance. The area under

the receiver operating characteristic curve (AUROC) and the area

under the precision-recall curve (AUPRC) as evaluation metrics

for the model performance.

As shown in Figure 2A, DISHyper achieves better performance

in comparison with these methods. By taking advantage of

hypergraph learning, DISHyper significantly improves in AUROC

and AUPRC compared to the two advanced network-based

methods, EMOGI and MTGCN. Both DISHyper and these

two network-based approaches are essentially finding genes that

have similar functions or association patterns to known cancer

genes. The results suggest that compared with the binary

association in biological networks, the higher-order association

among multiple genes in the annotated gene set can capture

the complex association patterns among genes more precisely.

Compared with 20/20+ and DORGE, two methods based on

mutational and epigenetic features, DISHyper shows a 3.6%

and 4.8% improvement in AUROC and AUPRC. These manual

feature-based methods rely on individual experience and expertise,

but the annotated gene set contains multiple expert and domain

knowledge from different sources. The benchmark experiment

results show that DISHyper can identify cancer genes more

accurately than existing advanced methods. Compared with GCN

and GCNII, DISHyper shows a 2.4% and 4.5% improvement in

AUROC and AUPRC. This is due to the fact that certain crucial

information is lost in graph-based representation methods, which
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GCN 0.907±0.017 0.836±0.029 Graph convolutional networks
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Graph convolutional networks 
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neural networks
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Fig. 2: Benchmarking results of DISHyper. (A) Comparative experimental results. We compare DISHyper with four state-of-the-art

cancer gene prediction methods and two graph-based annotated gene sets representation methods. (B) Performance comparison of

DISHyper and other methods on two different independent test sets. (C) The data ablation analysis results of DISHyper. We analyze

the performance of DISHyper using different types of annotated gene sets and their combinations. The error bars in the figure represent

95% confidence intervals.

ignore higher-order associations among multiple genes within the

gene sets. The result implies that hypergraphs can provide a

more comprehensive representation of the complex associations in

annotated gene sets.

To further evaluate the generalization performance of

DISHyper and its ability to correctly identify cancer genes, we

use two sets of curated cancer genes as independent test sets

to assess whether the predictions of DISHyper would be biased

toward specific cancer genes. The two independent test sets we

used are from the OncoKB (Chakravarty et al., 2017) database

and the ONGene (Liu et al., 2017) database, with 313 and 382

cancer genes remaining after screening, respectively. To calculate

the AUPRC of the model on these two independent test sets,

we treat the genes in the independent test set as true positives

and all other genes not included in the independent test set as

false positives, resulting in much lower AUPRC values for all

methods. Figure 2B shows the distribution of AUPRC of different

methods on two independent test sets, and we find that DISHyper

outperforms other advanced methods on both independent test

sets. The cancer genes annotated in both OncoKB and ONGene

were aggregated from cancer research literature and clinical trials

(Chakravarty et al., 2017; Liu et al., 2017), and these cancer genes

or data types are not used to train DISHyper. The result suggests

that DISHyper has a stronger generalization ability in predicting

new cancer genes.

In addition, we illustrate the ability of DISHyper to identify

more cancer genes with the analysis of the predicted results.

By analyzing the prediction results from different methods, we

observed that WNT5A is ranked as the top gene (#8) in the

DISHyper predictions. In contrast, its ranking is considerably

lower in network-based methods (EMOGI and MTGCN), ranks

beyond #1500, and even lower in manual feature-based methods

(DOGRE and 20/20+), where it ranks beyond #6000. By

reviewing the relevant literature, we find that WNT5A has

been identified as a suppressor gene for breast cancer and is

a very potent therapeutic target for breast cancer (Borcherding

et al., 2015). Also, WNT5A has been identified in several

literature and studies as a driver gene in various cancers such as

melanoma, prostate cancer, and glioblastoma (Yuzugullu et al.,

2009; Radaszkiewicz et al., 2021). Although WNT5A is a crucial

cancer driver gene, it is only identified as a cancer gene in

DISHyper and could not be identified as a cancer gene in any

other methods. In addition, we also find many genes with a similar

profile to WNT5A such as DKK1 (#22), SHH (#23), FGF10

(#26), GATA4 (#29), and TBX1 (#44). These genes are found

to be cancer-driver genes or associated with multiple cancers, but

these genes are only top-ranked in DISHyper prediction results

but are ranked low in other methods. For example, GATA4 has

been identified as an important cancer suppressor gene in lung

cancer and may be a potential target for lung cancer therapy (Gao

et al., 2019). The result indicates that DISHyper can effectively

utilize the knowledge from the annotation gene set to identify

cancer genes more accurately. Meanwhile, DISHyper provides a

new perspective for cancer gene prediction to reveal those cancer

genes that are not discovered by other methods.

3.2. DISHyper effectively integrates knowledge from multiple

types of annotated gene sets

We integrate multiple types of annotated gene sets in DISHyper,

including signaling pathways, GO (Gene Ontology Consortium,

2004), and HPO (Köhler et al., 2021). These different types

of annotated gene sets describe the functional associations of

genes in different aspects. For example, Signaling pathways

contain genes that are jointly involved in a regulatory process or
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cellular response (Reyna et al., 2020). Integrating knowledge from

multiple types of annotated gene sets helps us better characterize

the functional association patterns of genes. To illustrate the

effectiveness of DISHyper in integrating knowledge from multiple

types of annotated gene sets, we evaluate the performance of

models trained using data from individual annotated gene sets

and their combinations.

As shown in Figure 2C, we find that the performance of the

model integrating the three types of annotated gene sets is the

best and the performance of the other combinations is also better

than using only a single annotated gene set data. The result

indicates that there is complementarity between the information of

different types of annotated gene sets. Integrating multiple types

of annotated gene sets can help us identify cancer genes more

accurately. Moreover, the results also illustrate the effectiveness

of integrating data from different annotated gene sets based on

hypergraphs, and DISHyper may be extended to fuse more data

or knowledge.

3.3. Characterization of DISHyper-predicted cancer genes by

independent functional genomics data

To further illustrate DISHyper’s ability to correctly identify cancer

genes, we use cancer genes that have been reported in the

literature to analyze the ranking results of DISHyper. We also use

independent functional genomics data such as cancer transposons,

gene fusions, epigenetic factors, and PPI networks to analyze the

characteristics of the DISHyper-predicted cancer gene.

We first use the cancer genes collected in the cancerMine

(Lever et al., 2019) database (Download in September 2022) to

evaluate our ranking of cancer genes. The cancerMine database is

a literature-mining-based cancer gene database that automatically

extracts studies of cancer genes in the literature through text-

mining tools (Lever et al., 2019). We assess the effectiveness of

DISHyper cancer gene rankings by the distribution of annotated

cancer genes in each decile of ranking results (Krishnan et al.,

2016). We find that cancer genes annotated in cancerMine

database are more likely to be ranked high in our prediction results

and significantly enriched in the first decile (False Discovery Rate

(FDR) = 1.27 × 10−53) of the prediction results (Figure 3A).

The distribution of cancerMine annotated cancer genes in the

DISHyper ranking results shows that the top-ranked genes in the

predictions are more likely to be cancer genes. So, we take the top-

ranked 200 genes as an example and conduct a series of further

analyses of these genes.

Second, we evaluate PCG using Sleeping Beauty (SB)

transposon data. The SB insertional mutagenesis is a powerful

genetic tool for studying tumor suppressor genes in mammalian

cancer models (Dupuy et al., 2009), i.e., screening cancer genes

by disrupting gene expression near their insertion sites. We assess

PCG using inactivation pattern genes from the Sleeping Beauty

Cancer Driver Gene Database (SBCDDB), which collects original

mouse models of 19 human tumor types (Newberg et al., 2018).

We find that the inactivation pattern genes in the SB transposon

study are significantly enriched in known cancer genes (KCG) but

not enriched in neutral genes (NG), which is consistent with our

expectations (Figure 3B). We also find that inactivation pattern

genes are significantly enriched in PCG (P-value = 7.43×10−12 by

Fisher’s exact test ). This suggests that DISHyper can accurately

predict potential tumor suppressor genes.

Third, we further evaluate PCG according to cancer fusion gene

data. The gene-fusion transcripts and protein products have been
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Fig. 3: Evaluation of DISHyper-predicted top-ranked 200 cancer

genes (PCG) by independent functional genomics data and

CRISPR loss-of-function screening results. (A) Validation of the

ranking results of DISHyper based on the cancerMine database.

Fractions of genes (y-axis) indicate the distribution of risk genes

in each decile of our predictions. Enrichment analysis of known

cancer genes (KCG), neutral genes (NG), and PCG in SB

inactivating pattern gene list (B), gene fusion list (C), ER gene

list (D), and BioGRID PPI network hub gene list (E). (F)

Significance analysis of the number of interactions between PCG

and KCG on the BioGRID PPI network. The red vertical line

indicates the number of interactions between PCG and KCG. The

yellow curve indicates the distribution of the interactions between

randomly selected genes and KCG. (G) Enrichment analysis of

KCG, NG, randomly selected genes, and PCG in the essential

cancer dependency genes. (H) The top-20 PCG with significant

negative growth effects on tumor cell lines are displayed in a bar

plot. The gray dashline in the figure represents the significant

threshold.

considered ideal therapeutic targets and biomarkers for a variety

of cancers (Wu et al., 2019). Therefore, we assess the association

between DISHyper-predicted PCGs and cancer-related gene fusion

events. Gene-fusion events are collected from the TumorFusions

(Hu et al., 2018) database and the results of Gao et al (Gao et al.,

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 25, 2024. ; https://doi.org/10.1101/2024.01.22.576645doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.22.576645
http://creativecommons.org/licenses/by-nc-nd/4.0/


DISHyper for identifying new cancer genes 7

2018). These two studies examined 33 types of tumor samples

from the TCGA project and normal samples in which 20,731

and 25,664 gene fusions were detected, respectively. We find that

genes in KCG are significantly enriched in genes that produce

oncogenic fusion genes but not enriched in NG (Figure 3C), which

suggests that cancer genes are closely associated with gene fusion.

Moreover, genes in PCG are also significantly enriched in genes

that produce oncogenic fusion genes (P-value = 1.31 × 10−4,

Figure 3C). The result suggests that DISHyper has the ability

to predict cancer genes that may work through the gene-fusion

mechanism.

Fourth, we explore the possible association between cancer

genes and epigenetic regulators (ER). Epigenetic regulators control

gene expression through DNA methylation, histone modifications,

and chromatin remodeling (Surani et al., 2007). Epigenetic

modifications also play a crucial role in cancer. The cancer drugs

targeting ER have been extensively studied and applied in the

treatment of hematological malignancies. (Cheng et al., 2019).

Therefore, we collect a list of 761 ER genes from the EpiFactors

database (Medvedeva et al., 2015) and analyze the epigenetic

properties of KCG and PCG by this list. We find that ERs are

significantly enriched in KCG (P-value = 1.83× 10−29) and PCG

(P-value = 8.13×10−13), but not enriched in NG (Figure 3D). The

results suggest that epigenetic dysregulation may be a major factor

in the influence of these genes on tumor development. Meanwhile,

it also shows that DISHyper can discover those cancer genes that

affect tumor development through epigenetic modifications.

Finally, we use PPI networks to analyze the network

characteristics of DISHyper-predicted PCG. Since the hub genes

in the PPI network are more likely to have somatic mutations

(Porta-Pardo et al., 2015), we explore the enrichment of cancer

genes on BioGRID PPI hub genes. Using 978 genes in the top

5% of the BioGRID PPI network as hub genes, we find that hub

genes are enriched in KCG (P-value = 1.36×10−62) and PCG (P-

value = 4.75 × 10−22), but not enriched in NG (Figure 3E). The

result suggests that PCG and KCG have certain traits in common

in the PPI network, and these genes play key roles in the PPI

network. Many studies have shown that cancer genes are clustered

in PPI networks and there are more interactions between cancer

genes (Barabási et al., 2011). To assess whether the prediction

results of DISHyper would have similar properties, we calculate the

significance of the number of interactions between the PCG and

KCG in the BioGRID PPI network. Compared with other genes,

the PCGs have a significant number of interactions with KCGs (P-

value < 0.0001, Figure 3F). Combining these two results, we find

that although DISHyper does not use the information in the PPI

network, its prediction results reveal network properties similar to

known cancer genes.

3.4. DISHyper-predicted cancer genes are essential in tumor

cell lines

We use functional validation experiment results to further evaluate

DISHyper prediction results. The Broad Institute developed the

Cancer Dependency Map (DepMap) database (Tsherniak et al.,

2017) and collected the two largest human whole-genome CRISPR

screening datasets. Therefore, we use the results from the DepMap

database (released on December 22, 2022) to filter a group of

essential genes, which significantly affect the survival of multiple

cancer cells in CRISPR loss-of-function experiments. We find

that PCG has significant enrichment in essential genes (P-value

= 3.59×10−4, Fisher exact test, Figure 3G), and KCG also shows

significant enrichment, whereas NG and randomly selected genes

lack such enrichment. Among the top 20 essential PCG, several

genes are found to affect over 1,000 cancer cell lines (Figure 3H).

The phenomenon directly raises the question of whether PCG

is primarily housekeeping genes that are lethal to any cell when

altered. However, this is not the case. We find that only 14% of the

genes in PCG affect over 500 cancer cell lines, and most genes only

affect fewer than 100 cancer cell lines. Additionally, the KEGG

pathway enrichment analysis of PCG shows that PCG is primarily

enriched in various cancer pathways (including breast cancer,

colorectal cancer, etc., which are not utilized in the training and

prediction process of DISHyper), cell differentiation, and Hippo

signaling pathway. Taken together, these results indicate that

DISHyper not only effectively identifies genes that significantly

affect the survival of multiple cancer cells but also that the

majority of PCG exhibit cancer-specific cell lethality.

3.5. Comprehensive enrichment analysis of DISHyper-predicted

cancer genes

We perform enrichment analysis on the DISHyper-predicted

cancer genes to gain insights into their biological significance

and identify enriched terms. We conduct enrichment analyses on

PCG using the GO database, Reactome pathway, and KEGG

pathway through the DAVID. In terms of biological processes,

PCG are significantly enriched in various positive and negative

regulatory activities, such as cell proliferation, cell apoptotic, and

gene expression (particularly transcription from RNA polymerase

II promoter). Cell proliferation and cell apoptosis are closely

associated with the occurrence and development of cancer. In

molecular function, PCG are significantly enriched in multiple

binding terms, indicating that PCG regulates biological processes

by binding with various biomolecules, such as chromatin and

proteins. In the Reactome pathway, PCG are primarily enriched in

interleukin signaling and diseases related to signal transduction by

growth factor receptors. Interleukins and growth factor receptors

play crucial roles in tumorigenesis and progression. Additionally,

PCG are enriched in multiple kinase signaling pathways, indicating

the downstream of these genes may activation of MAP kinases

and NF-κB kinases. In the KEGG pathway, PCG significantly

enrich in various cancer-related pathways, as well as signaling

pathways closely associated with cancer, such as MAPK and Hippo

pathways.

3.6. Evaluation of the association between novel cancer genes

and cancer

We find that 156 genes in PCG have been annotated as cancer

genes by the cancerMine database, and the remaining 44 genes

are neither in cancerMine nor in NCG and COSMIC CGC. We

consider these 44 genes as the novel cancer genes (novelCG). To

establish the potential role of novelCG as cancer driver genes, we

conducted a comprehensive analysis using cancer sample data from

the TCGA study.

We first analyze novelCG based on the OncoDB database,

which integrates RNA-seq, DNA methylation, and clinical data

from more than 10,000 tumor patients in the TCGA study and

normal samples in the GTEx study (Tang et al., 2022). Among the

44 novelCG, 41 genes exhibit significant differential expression in

one or more cancer types (FDR-adjusted P-value (Q-value) < 0.05

and |log2FC| > 1), and 31 genes are significantly differentially

methylated in one or more cancer types (Q < 0.05 and |Beta| >
0.2). Furthermore, in the analysis of clinical characteristics and
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pathological diagnostic phase, we find that the expressions of 37

genes are significantly associated with the size and extent of the

primary tumor (Pathological T stage, Q < 0.05), and 28 genes

are significantly associated with the distal spread of one or more

tumors (Pathological M stage, Q < 0.05).

Then, we perform survival analysis of novelCG on multiple

cancer types based on the GEPIA2 platform, which collected

cancer samples and normal samples from the TCGA study and

GTEx study and generated the results of survival analysis of

genes in different cancer types by RNA sequencing data (Tang

et al., 2019). With this survival map, we find that 43 of 44

novelCG genes have significant survival analysis results in multiple

cancer types (P-value < 0.05), and this result indicates that

novelCG expression significantly affects the prognostic outcome

of multiple cancer types. We also find that TREX1 dose not

produce significant associations with cancer in terms of differential

expression, differential methylation, or pathological diagnostic

stage, but the gene is significantly associated with CESC, HNSC,

and two other cancers in the survival analysis. These findings

suggest that these 44 novelCG genes may influence tumorigenesis

and progression in diverse ways.

Additionally, there is supporting evidence from many aspects

to support our predictions. We find that 35 genes in novelCG

may generate oncogenic fusion genes, indicating that these genes

potentially influence the occurrence and progression of various

tumors through gene fusion mechanisms. In the CRISPR loss-of-

function experiments results, We find that nine genes in novelCG

significantly impact multiple cancer cell lines, and these genes

exhibit cancer cell-specific lethality. We also observe that 20

genes in novelCG significantly impact the proliferation of cell lines

associated with one or more common cancer types. Meanwhile,

novelCG exhibits numerous interactions with known cancer genes

in the STRING PPI network. Furthermore, we conduct KEGG

pathway enrichment analysis for novelCG, revealing significant

enrichment in Hippo and TGF-β signaling pathways. These

pathways are closely associated with cancer, highlighting the

research potential of novelCG. The above results demonstrate

the reliability of our predictions and suggest that novelCG likely

includes potential cancer genes.

4. Discussion

In this paper, we introduce DISHyper, a novel hypergraph-based

cancer gene prediction method. DISHyper extracts higher-order

gene association information from the annotated gene set by

the hypergraph neural network to identify new cancer genes.

DISHyper is different from the previous methods in principle.

Methods such as 20/20+, DORGE, and EMOGI identify cancer

genes based on mutational, epigenetic, or biological network data.

Although these methods have achieved certain success, they all

focus on a single feature of cancer genes and have difficulty in

describing the complex role of cancer genes in tumor development.

DISHyper not only significantly outperforms other methods on

both pan-cancer datasets and several independent test sets, but

also can reveal cancer genes that cannot be identified by other

methods, such as shown in our study. The above results strongly

indicate that DISHyper can identify cancer genes more accurately

and reliably by integrating expert and domain knowledge from

annotated gene sets.

In summary, this work highlights the integration of annotated

gene set data based on hypergraphs to achieve more comprehensive

and accurate predictions of cancer genes. DISHyper will be an

essential resource for cancer genetic research and a very significant

breakthrough for the study of cancer gene prediction methods.

DISHyper still has space for further improvement. The DISHyper

only uses annotated gene set data, and the fusion of mutation,

epigenetic, and biological network data on the basis of DISHyper

may further improve the performance of the model. In future work,

we plan to fuse more data in DISHyper and conduct further studies

on specific cancer types such as breast cancer and lung cancer.
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T. Radaszkiewicz, M. Nosková et al. Rnf43 inhibits wnt5a-driven

signaling and suppresses melanoma invasion and resistance to

the targeted therapy. ELife, 10, 2021.

D. Repana, J. Nulsen et al. The network of cancer genes (ncg): a

comprehensive catalogue of known and candidate cancer genes

from cancer sequencing screens. Genome Biology, 20(1):1–12,

2019.

M. A. Reyna, M. D. Leiserson, B. J. Raphael. Hierarchical hotnet:

identifying hierarchies of altered subnetworks. Bioinformatics,

34(17):i972–i980, 2018.

M. A. Reyna, D. Haan et al. Pathway and network analysis of more

than 2500 whole cancer genomes. Nature Communications, 11

(1):1–17, 2020.

A. D. Rouillard, G. W. Gundersen et al. The harmonizome:

a collection of processed datasets gathered to serve and mine

knowledge about genes and proteins. Database, 2016, 2016.

R. Schulte-Sasse, S. Budach et al. Integration of multiomics data

with graph convolutional networks to identify new cancer genes

and their associated molecular mechanisms. Nature Machine

Intelligence, 3(6):513–526, 2021.

Z. Sondka, S. Bamford et al. The cosmic cancer gene census:

describing genetic dysfunction across all human cancers. Nature

Reviews Cancer, 18(11):696–705, 2018.

M. A. Surani, K. Hayashi, P. Hajkova. Genetic and epigenetic

regulators of pluripotency. Cell, 128(4):747–762, 2007.

G. Tang, M. Cho, X. Wang. Oncodb: an interactive online

database for analysis of gene expression and viral infection in

cancer. Nucleic Acids Research, 50(D1):D1334–D1339, 2022.

Z. Tang, B. Kang et al. Gepia2: an enhanced web server for large-

scale expression profiling and interactive analysis. Nucleic Acids

Research, 47(W1):W556–W560, 2019.

C. J. Tokheim, N. Papadopoulos et al. Evaluating the evaluation

of cancer driver genes. Proceedings of the National Academy of

Sciences, 113(50):14330–14335, 2016.

A. Tsherniak, F. Vazquez et al. Defining a cancer dependency

map. Cell, 170(3):564–576, 2017.

A. Valdeolivas, L. Tichit et al. Random walk with

restart on multiplex and heterogeneous biological networks.

Bioinformatics, 35(3):497–505, 2019.

B. Vogelstein, N. Papadopoulos et al. Cancer genome landscapes.

Science, 339(6127):1546–1558, 2013.

J. N. Weinstein, E. A. Collisson et al. The cancer genome

atlas pan-cancer analysis project. Nature Genetics, 45(10):

1113–1120, 2013.

H. Wu, X. Li, H. Li. Gene fusions and chimeric rnas, and their

implications in cancer. Genes & Diseases, 6(4):385–390, 2019.

H. Yuzugullu, K. Benhaj et al. Canonical wnt signaling is

antagonized by noncanonical wnt5a in hepatocellular carcinoma

cells. Molecular Cancer, 8(1):1–20, 2009.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 25, 2024. ; https://doi.org/10.1101/2024.01.22.576645doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.22.576645
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Materials and methods
	Datasets and processing
	Framework of DISHyper
	Construction of the disease-specific hypergraph
	Higher-order association information learning via hypergraph residual neural networks


	Results
	DISHyper outperforms existing cancer gene prediction methods
	DISHyper effectively integrates knowledge from multiple types of annotated gene sets
	Characterization of DISHyper-predicted cancer genes by independent functional genomics data
	DISHyper-predicted cancer genes are essential in tumor cell lines
	Comprehensive enrichment analysis of DISHyper-predicted cancer genes
	Evaluation of the association between novel cancer genes and cancer

	Discussion
	Competing interests
	Acknowledgments

