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Abstract

Motivation: Identifying cancer genes remains a significant challenge in cancer genomics research. Annotated
gene sets encode functional associations among multiple genes, and cancer genes have been shown to cluster
in hallmark signaling pathways and biological processes. The knowledge of annotated gene sets is critical for
discovering cancer genes but remains to be fully exploited.

Results: Here, we present the Dlsease-Specific Hypergraph neural network (DISHyper), a hypergraph-based
computational method that integrates the knowledge from multiple types of annotated gene sets to predict
cancer genes. First, our benchmark results demonstrate that DISHyper outperforms the existing state-of-the-
art methods and highlight the advantages of employing hypergraphs for representing annotated gene sets.
Second, we validate the accuracy of DISHyper-predicted cancer genes using functional validation results
and multiple independent functional genomics data. Third, our model predicts 44 novel cancer genes, and
subsequent analysis shows their significant associations with multiple types of cancers. Overall, our study
provides a new perspective for discovering cancer genes and reveals previously undiscovered cancer genes.
Availability: DISHyper is freely available for download at https://github.com/genemine/DISHyper.
Contact: jxwang@mail.csu.edu.cn
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1. Introduction

Cancer is a set of complex and highly genetically heterogeneous
diseases (Lawrence et al., 2013). A key goal in cancer genomic
research is to identify cancer genes that play a causal driving
role in the development and progression of tumors (Garraway and
Lander, 2013; Alexandrov et al., 2013; Vogelstein et al., 2013).
The identification of cancer genes is crucial for the study of tumor
pathogenesis, early screening, and the development of precision
oncology (Garraway and Lander, 2013; Alexandrov et al., 2013;
Vogelstein et al., 2013). Although many initiatives such as the
Network of Cancer Genes (NCG) (Repana et al., 2019) and the
COSMIC Cancer Gene Census (CGC) (Sondka et al., 2018) have
been used to annotate some cancer genes, the current catalog
of known cancer genes is incomplete. Accurate identification
of cancer genes from many candidate genes remains a critical
challenge.

In the last decade, large-scale cancer sequencing projects
such as The Cancer Genome Atlas (TCGA) (Weinstein et al.,
2013) and Pan-Cancer Analysis of Whole Genomes (PCAWG)
(Pan-Cancer Analysis of Whole Genomes Consortium, 2020) have
published genomic and transcriptomic data from tens of thousands
of tumor samples. These large-scale cancer sample data have
largely contributed to the development of computational methods
for cancer gene identification. Early approaches for cancer gene
prediction focused on finding genes that have significantly different
mutation rates from the background frequency distribution, such
as MutSigCV (Lawrence et al., 2013). Meanwhile, the 20/20+
method proposed finding genes with similar mutation patterns
to known cancer genes by integrating multiple gene mutation
feature through machine-learning models (Tokheim et al., 2016).
Moreover, some approaches are proposed to identify cancer
genes by integrating features from the genome, transcriptome,
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and proteome. For example, DORGE proposed integrating
epigenetic and mutational features based on machine learning
models to identify oncogenes and tumor suppressor genes (Lyu
et al., 2020). Biological network-based cancer gene prediction
methods have been extensively studied in recent years. HotNet2
(Reyna et al., 2018) used heat diffusion models to detect cancer
gene modules with mutational features. EMOGI (Schulte-Sasse
et al., 2021) integrates multi-omics data for multiple cancers and
protein-protein interaction (PPI) networks via graph convolutional
networks (GCN) (Kipf and Welling, 2017) to learn local feature
patterns of cancer genes.

Cancer genes have been shown to cluster in a small number of
biological processes, hallmark signaling pathways, and interacting
subnetworks (Creixell et al., 2015; Reyna et al., 2020). Currently,
research on cancer gene prediction methods focuses on the binary
associations of cancer genes in biological networks, while ignoring
the functional associations of cancer genes in annotated gene
sets such as biological processes and signaling pathways. The
annotated gene set encodes a group of genes with functional
associations (Liberzon et al., 2015). The functional associations in
annotation gene sets are higher-order associations among multiple
genes, and the higher-order functional association information is
more intuitive and accurate in explaining the disease mechanism
than single genes (Luo and Mao, 2021; Luo, 2022). In addition,
cancer driver mutations can lead to oncogenic properties of cells
by altering the activities of hallmark biological processes and
pathways (Creixell et al., 2015; Reyna et al., 2020). Therefore,
compared with the binary association in biological networks,
the higher-order association information in annotated gene sets
provides a more comprehensive characterization of the functional
association patterns of cancer genes and help us identify cancer
genes more accurately. To achieve this goal, it is necessary to
develop a computational framework that can integrate knowledge
from different types of annotated gene sets and exploit their
higher-order association information to identify cancer genes.
Currently, a few computational approaches have used annotated
gene set data, these approaches typically represent annotated
gene sets as graph structures or encode them directly as vectors
(Luo et al., 2019; Valdeolivas et al., 2019; Althubaiti et al.,
2019). Although graph or network structures have been widely
used in computational biology to represent binary associations
between biological entities, they are unable to represent higher-
order gene associations in annotated gene sets. Therefore, although
the knowledge of annotated gene sets is crucial for cancer gene
prediction, using the knowledge to identify cancer genes faces
the following problems: (i) how to represent the higher-order
association among multiple genes in annotated gene sets, (ii)
how to integrate different types of annotated gene sets such as
gene ontology (GO), signaling pathways, and human phenotype
ontology (HPO), (iii) how to make full use of the higher-order
functional association information to identify cancer genes.

To tackle these problems, we introduce DISHyper, a novel
method to identify cancer genes based on the annotated gene sets
and hypergraph neural networks (HGNN). In DISHyper, we first
represent and integrate different types of annotated gene sets using
the hypergraph structure. Each gene is a node in the hypergraph,
and each annotated gene set is a hyperedge. Hypergraph provides a
natural way to represent the higher-order association relationships
between multiple genes in annotated gene sets. Then, to fully
utilize the higher-order association information among multiple
genes in the annotated gene sets, we use HGNN to train the model.

The HGNN extracts higher-order gene association information and
local topological information from the annotated gene set and
generates the feature representation of the gene through the two-
phase message-passing process. We use this feature representation
to prioritize cancer genes. In addition, we propose the disease-
specific hyperedge weighting module and the hypergraph residual
learning module based on HGNN. We use these two modules to
weight the knowledge for each annotated gene set and enhance the
expressive power of the model.

We evaluate the performance of DISHyper and predict new
cancer genes based on pan-cancer data. In our benchmark
experiments, DISHyper outperforms the other state-of-the-art
methods and has a significant performance improvement over
the other methods. Through comprehensive ablation studies, we
also show the effectiveness of DISHyper in integrating multiple
types of annotated gene sets and the importance of using disease-
specific weighting modules and hypergraph residual learning
modules. We conduct a comprehensive assessment of DISHyper-
predicted cancer genes using multiple analysis methods and
data. Firstly, we extensively analyze and evaluate the DISHyper-
predicted top-rank 200 cancer genes (PCG) using functional
validation experiment results and independent functional genomic
data. Then, we perform a comprehensive enrichment analysis of
DISHyper-predicted cancer genes. Finally, we perform further
evaluation for our predicted 44 novel cancer genes (novelCG)
based on RNA-Seq, DNA methylation, and clinical data from
tumor samples in the TCGA study. Our analysis shows that
the 44 novel cancer genes are closely associated with one or
more cancers. Moreover, We illustrate the DISHyper prediction
process through a case study of WNT5A. To the best of
our knowledge, DISHyper is the first hypergraph-based cancer
gene prediction computational method that utilizes higher-order
functional association information among multiple genes to
identify cancer genes.

2. Materials and methods

2.1. Datasets and processing

We collect pan-cancer data to evaluate model performance and
predict new cancer genes. We use the same list of known cancer
genes and non-cancer genes as in EMOGI (Schulte-Sasse et al.,
2021) to evaluate model performance and predict new cancer
genes. Specifically, we collect known cancer driver genes from the
NCG (Repana et al., 2019) (v6.0), COSMIC CGC (Sondka et al.,
2018) (v91), and DigSEE databases (Kim et al., 2013) as positive
samples. The negative samples are the remaining genes after
recursively excluding the NCG, COSMIC CGC, OMIM database,
DigSEE database, and KEGG cancer pathway gene set. Thus, our
pan-cancer gene data consists of 796 positive samples and 2,187
negative samples.

We collect multiple types of annotated gene sets from the
Molecular Signatures Database (MSigDB) (Liberzon et al., 2015).
The MSigDB (v7.4) database contains multiple types of annotated
gene set data and classifies them into nine categories. We use
C2 and C5 gene sets from the MSigDB database, which contains
signaling pathway data from expert databases such as BioCarta
(Rouillard et al., 2016), Reactome (Fabregat et al., 2018), and
KEGG (Kanehisa and Goto, 2000), and ontology gene sets from
GO (Gene Ontology Consortium, 2004) and HPO (Kohler et al.,
2021). To accurately assess the model performance, we eliminate
the annotated gene sets directly annotated with cancer during
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Fig. 1: Illustration of DISHyper. (A) Construction of the disease-specific hypergraph. We collect the annotated gene set data from
MSigDB and construct the initial hypergraph G(V, E, W). We then perform disease-specific hyperedge weighting with known cancer

genes as prior knowledge and construct the disease-specific hypergraph G4(V, E, Wq). (B) Higher-order association information learning

via hypergraph residual neural networks. We take the disease-specific hypergraph G4(V, E, W4) and the initial feature matrix X as input

of the model. We first perform a nonlinear transformation on the feature matrix X by one fully connected layer and activation function.

Then, we use the hypergraph residual learning module to extract local topology and higher-order association information of genes in the

disease-specific hypergraph G4 and predict the risk score Z for each gene.

model training and testing. We collect a total of 20,647 annotated
gene sets, encompassing functional associations among 17,442
genes.

2.2. Framework of DISHyper

DISHyper is a novel hypergraph-based cancer gene prediction
method. The workflow of DISHyper is shown in Figure 1 and can
be summarized into two components: (1) Construction of disease-
specific hypergraph. We represent and integrate different types
of annotated gene sets with hypergraph structure, and perform
disease-specific hyperedge weighting using priori information on
(2) Higher-
order association information learning via hypergraph residual

cancer to construct disease-specific hypergraph.

neural networks. We use the construct disease-specific hypergraph
and the initial feature matrix X of genes as the input to
train the cancer gene prediction model. We first perform a
nonlinear transformation on the feature matrix, and then use
three hypergraph residual learning modules to extract higher-
order association information of genes and generate new feature
we predict the degree of

representations for genes. Finally,

association between each gene and cancer.

2.2.1. Construction of the disease-specific hypergraph

We use DISHyper to integrate knowledge from different types of
annotated gene sets. Each annotated gene set represents a set
of genes with functional associations. For example, a signaling
pathway indicates that multiple genes are participating in a
particular signaling process. To accurately describe the complex
associations of genes in annotated gene sets and fully utilize
the higher-order association information in annotated gene sets,
DISHyper uses the hypergraph structure to represent and integrate
We define the initial
hypergraph constructed using annotated gene sets as G(V, E, W),

different types of annotated gene sets.

the node V = {v1,v2,vs,...,vn} in the hypergraph represents n
genes, and the hyperedge E = {e1,e2,€3,...,em } represents m
annotated gene sets. The W denote the diagonal matrix of the

hyperedge weights, i.e., diag(W) = [w(e1), w(e2), ..., w(em)]. W is

generally an identity matrix. For the incidence matrix H € > ™
of the hypergraph, we define that if the a-th gene v, belongs to
the b-th annotated gene set ep, then H(vq,ep) = 1, otherwise 0.

In the node classification task of the hypergraph, the weight
assigned to a hyperedge reflects its significance in the classification
process. The weight matrix W in the initial hypergraph G is
the identity matrix. If the initial hypergraph G is used to train
the model directly, then each annotated gene set (hyperedge)
has the same importance for that cancer gene prediction task.
However, the different annotated gene sets obviously have different
degrees of impact on the cancer. For example, the biological
processes associated with cell proliferation and cell metastasis are
more closely associated with cancer. Therefore, those annotated
gene sets with more significant associations with the process of
tumor development should be assigned greater hyperedge weights.
Considering the association specificity of cancer to different
annotated gene sets, we propose a disease-specific hyperedge
weighting module. We use the known cancer genes as the prior
information of cancer and calculate the proportion of known cancer
genes in each annotated gene set as hyperedge weights. The weight
of the i-th hyperedge is defined as follows:

ZUGVH(Uvei)f(Uzvd)
ZvevH(Uvei)

1 if ve Va

0 if vé¢Vy

(1)

wi; =

fv,Va) = { )

where w; denotes the weight of the i-th (¢ € [1,m]) hyperedge, and
V4 denotes the set of known cancer genes. The f(v, Vy) is used to
indicate whether gene v belongs to V. We define the disease-
specific hypergraph as G4(V, E, Wq), where W is the weighted
hyperedge weight matrix. The disease-specific hypergraph Gg4
contains the disease-specific functional association between cancer
and annotated gene sets. For annotated gene sets with a larger
proportion of known cancer genes, we assign proportionally greater
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hyperedge weights to them because these annotated gene sets are
more likely to be relevant to the cancer gene prediction task.
It should be emphasized that, in benchmarking, we use only
the positive genes in the train set for disease-specific hyperedge
weighting, and the positive genes in the test set are excluded in
this process.

2.2.2. Higher-order association information learning via
hypergraph residual neural networks

HGNN is a semi-supervised hypergraph node classification method
(Feng et al., 2019). We model the disease-specific hypergraphs G4
through HGNN and extract complex association information of
genes in annotated gene sets. Both HGNN and GCN aggregate
the neighbor information of nodes through the message-passing
mechanism and generate the new feature representation containing
neighbor information for each node. Stacking multiple layers of
GCN means that each node will aggregate multi-order neighbor
information. When the GCNs are deep, the features of the nodes
tend to be consistent and difficult to distinguish. HGNN also
has the risk of over-smoothing, which limits the expressiveness
of HGNN and makes the model difficult to converge. At the same
time, we also find in the experiment that if two nodes have similar
neighbors in the hypergraph, the feature representations of the
nodes must be the same after HGNN, even if their initial features
and labels are very different. This phenomenon will lead to a loss
of specificity in the feature representations of the nodes learned by
HGNN and limits the expressive power of HGNN.

Aiming at the problems in HGNN, inspired by ResNet (He
et al., 2016) and deepGCN (Li et al., 2019), we develop the
hypergraph residual learning module. The formula is defined as
follows:

x@+1) — U(]:(x(l)’@(l)) 4 X(l))

1 1
=o(D, 2 HW4D'HTD, : XWe® £ X1y  (3)

where the X(t1) and X represent the output of the I 4 1 layer
and the [ layer. We define the degree of the node vq is d(ve) =
> e w(e)H(va,e) and the degree of the hyperedge ep is d(ep) =
> vev H(v,ep). The Dy € R™*™ and De € R™*™ denote the
diagonal matrices of the node degrees and the hyperedge degrees,
respectively. ©() is a trainable weight matrix on the I-th layer
and o denotes the non-linear activation function. The hypergraph
residual learning module can be regarded as adding the input
X@ to the output of the hypergraph convolutional layer. In
theory, if the multi-order neighbor information is not needed,
the hypergraph residual learning module can make © approach
0, thereby converting the hypergraph convolutional layer into an
identity map (X(+1) = X)) which can reduce the risk of over-
smoothing, and accelerate model convergence. We use multi-layer
hypergraph residual learning modules to extract the local topology
information in the disease-specific hypergraph and generate the
new feature representation for each gene.

Finally, DISHyper inputs the gene feature matrix to the fully
connected layer and uses the softmax layer to get the prediction
result of the model, the formula is as follows:

Z = Softmaz(XO + b) (4)
where Z € RN X2 represents the probability output by DISHyper

for each gene being a neutral gene and a cancer gene, and we utilize
the latter as the predicted risk score of each gene.

3. Results

3.1. DISHyper outperforms existing cancer gene prediction
methods

To demonstrate the superiority of DISHyper, we conduct a
comparison with four state-of-the-art cancer gene prediction
methods, namely 20/20+, DORGE, EMOGI, and MTGCN.
Furthermore, to emphasize the advantages and necessity of
employing the hypergraph for representing annotated gene sets,
we compare DISHyper with two graph-based representation
methods, including GCN and GCNIL. (1) 20/20+ (Tokheim et al.,
2016) designed a series of mutation-based feature-trained random
forest models to find genes with the same mutation pattern as
known cancer genes. (2) DORGE (Lyu et al., 2020) combined
mutation data with epigenetic data and added epigenetic features
such as methylation, histone modifications, and super-enhancer
percentages on the basis of 20/20+. (3) EMOGI (Schulte-Sasse
et al., 2021) proposed integrating multi-omics features based on
the graph convolution network to identify new cancer genes by
learning local neighborhood features of cancer genes. (4) MTGCN
(Peng et al., 2022) added the linkage prediction auxiliary task
to the PPI network on the basis of EMOGI and optimized
the learning of gene features through this multi-task learning
framework. (5) GCN: We utilize graph structure to represent
annotated gene sets and apply GCN for gene feature extraction.
Specifically, we consider genes as nodes, represent each annotated
gene set as a complete subgraph, and combine all complete
subgraphs into a graph. We use this graph to represent all
annotated gene sets and as input for the GCN. (6) GOCNII:
This variant incorporates initial residual and identity mapping
into the GCN (Chen et al., 2020), which offers enhanced model
expressiveness and utilizes the same inputs as GCN. To ensure the
fairness of comparison, the same positive and negative samples are
used in the comparison experiments. For each comparison method
and our approach, we conducted multiple times of stratified five-
fold cross-validation to assess model performance. The area under
the receiver operating characteristic curve (AUROC) and the area
under the precision-recall curve (AUPRC) as evaluation metrics
for the model performance.

As shown in Figure 2A, DISHyper achieves better performance
in comparison with these methods. By taking advantage of
hypergraph learning, DISHyper significantly improves in AUROC
and AUPRC compared to the two advanced network-based
methods, EMOGI and MTGCN. Both DISHyper and these
two network-based approaches are essentially finding genes that
have similar functions or association patterns to known cancer
genes. The results suggest that compared with the binary
association in biological networks, the higher-order association
among multiple genes in the annotated gene set can capture
the complex association patterns among genes more precisely.
Compared with 20/20+ and DORGE, two methods based on
mutational and epigenetic features, DISHyper shows a 3.6%
and 4.8% improvement in AUROC and AUPRC. These manual
feature-based methods rely on individual experience and expertise,
but the annotated gene set contains multiple expert and domain
knowledge from different sources. The benchmark experiment
results show that DISHyper can identify cancer genes more
accurately than existing advanced methods. Compared with GCN
and GCNII, DISHyper shows a 2.4% and 4.5% improvement in
AUROC and AUPRC. This is due to the fact that certain crucial
information is lost in graph-based representation methods, which
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ignore higher-order associations among multiple genes within the
gene sets. The result implies that hypergraphs can provide a
more comprehensive representation of the complex associations in
annotated gene sets.

To further evaluate the generalization performance of
DISHyper and its ability to correctly identify cancer genes, we
use two sets of curated cancer genes as independent test sets
to assess whether the predictions of DISHyper would be biased
toward specific cancer genes. The two independent test sets we
used are from the OncoKB (Chakravarty et al., 2017) database
and the ONGene (Liu et al., 2017) database, with 313 and 382
cancer genes remaining after screening, respectively. To calculate
the AUPRC of the model on these two independent test sets,
we treat the genes in the independent test set as true positives
and all other genes not included in the independent test set as
false positives, resulting in much lower AUPRC values for all
methods. Figure 2B shows the distribution of AUPRC of different
methods on two independent test sets, and we find that DISHyper
outperforms other advanced methods on both independent test
sets. The cancer genes annotated in both OncoKB and ONGene
were aggregated from cancer research literature and clinical trials
(Chakravarty et al., 2017; Liu et al., 2017), and these cancer genes
or data types are not used to train DISHyper. The result suggests
that DISHyper has a stronger generalization ability in predicting
new cancer genes.

In addition, we illustrate the ability of DISHyper to identify
more cancer genes with the analysis of the predicted results.
By analyzing the prediction results from different methods, we
observed that WNT5A is ranked as the top gene (#8) in the
DISHyper predictions. In contrast, its ranking is considerably
lower in network-based methods (EMOGI and MTGCN), ranks
beyond #1500, and even lower in manual feature-based methods

Disease-specific hypergraph
neural networks

0.7
AUROC

AUPRC

Fig. 2: Benchmarking results of DISHyper. (A) Comparative experimental results. We compare DISHyper with four state-of-the-art
cancer gene prediction methods and two graph-based annotated gene sets representation methods. (B) Performance comparison of
DISHyper and other methods on two different independent test sets. (C) The data ablation analysis results of DISHyper. We analyze
the performance of DISHyper using different types of annotated gene sets and their combinations. The error bars in the figure represent

(DOGRE and 20/20+), where it ranks beyond #6000. By
reviewing the relevant literature, we find that WNT5A has
been identified as a suppressor gene for breast cancer and is
a very potent therapeutic target for breast cancer (Borcherding
et al., 2015). Also, WNT5A has been identified in several
literature and studies as a driver gene in various cancers such as
melanoma, prostate cancer, and glioblastoma (Yuzugullu et al.,
2009; Radaszkiewicz et al., 2021). Although WNT5A is a crucial
cancer driver gene, it is only identified as a cancer gene in
DISHyper and could not be identified as a cancer gene in any
other methods. In addition, we also find many genes with a similar
profile to WNTS5A such as DKK1 (#22), SHH (#23), FGF10
(#26), GATA4 (#29), and TBX1 (#44). These genes are found
to be cancer-driver genes or associated with multiple cancers, but
these genes are only top-ranked in DISHyper prediction results
but are ranked low in other methods. For example, GATA4 has
been identified as an important cancer suppressor gene in lung
cancer and may be a potential target for lung cancer therapy (Gao
et al., 2019). The result indicates that DISHyper can effectively
utilize the knowledge from the annotation gene set to identify
cancer genes more accurately. Meanwhile, DISHyper provides a
new perspective for cancer gene prediction to reveal those cancer
genes that are not discovered by other methods.

3.2. DISHyper effectively integrates knowledge from multiple
types of annotated gene sets

We integrate multiple types of annotated gene sets in DISHyper,
including signaling pathways, GO (Gene Ontology Consortium,
2004), and HPO (Kohler et al., 2021). These different types
of annotated gene sets describe the functional associations of
genes in different aspects. For example, Signaling pathways
contain genes that are jointly involved in a regulatory process or
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cellular response (Reyna et al., 2020). Integrating knowledge from
multiple types of annotated gene sets helps us better characterize
the functional association patterns of genes. To illustrate the
effectiveness of DISHyper in integrating knowledge from multiple
types of annotated gene sets, we evaluate the performance of
models trained using data from individual annotated gene sets
and their combinations.

As shown in Figure 2C, we find that the performance of the
model integrating the three types of annotated gene sets is the
best and the performance of the other combinations is also better
than using only a single annotated gene set data. The result
indicates that there is complementarity between the information of
different types of annotated gene sets. Integrating multiple types
of annotated gene sets can help us identify cancer genes more
accurately. Moreover, the results also illustrate the effectiveness
of integrating data from different annotated gene sets based on
hypergraphs, and DISHyper may be extended to fuse more data
or knowledge.

3.3. Characterization of DISHyper-predicted cancer genes by
independent functional genomics data

To further illustrate DISHyper’s ability to correctly identify cancer
genes, we use cancer genes that have been reported in the
literature to analyze the ranking results of DISHyper. We also use
independent functional genomics data such as cancer transposons,
gene fusions, epigenetic factors, and PPI networks to analyze the
characteristics of the DISHyper-predicted cancer gene.

We first use the cancer genes collected in the cancerMine
(Lever et al., 2019) database (Download in September 2022) to
evaluate our ranking of cancer genes. The cancerMine database is
a literature-mining-based cancer gene database that automatically
extracts studies of cancer genes in the literature through text-
mining tools (Lever et al., 2019). We assess the effectiveness of
DISHyper cancer gene rankings by the distribution of annotated
cancer genes in each decile of ranking results (Krishnan et al.,
2016). We find that cancer genes annotated in cancerMine
database are more likely to be ranked high in our prediction results
and significantly enriched in the first decile (False Discovery Rate
(FDR) = 1.27 x 10733) of the prediction results (Figure 3A).
The distribution of cancerMine annotated cancer genes in the
DISHyper ranking results shows that the top-ranked genes in the
predictions are more likely to be cancer genes. So, we take the top-
ranked 200 genes as an example and conduct a series of further
analyses of these genes.

Second, we evaluate PCG using Sleeping Beauty (SB)
transposon data. The SB insertional mutagenesis is a powerful
genetic tool for studying tumor suppressor genes in mammalian
cancer models (Dupuy et al., 2009), i.e., screening cancer genes
by disrupting gene expression near their insertion sites. We assess
PCG using inactivation pattern genes from the Sleeping Beauty
Cancer Driver Gene Database (SBCDDB), which collects original
mouse models of 19 human tumor types (Newberg et al., 2018).
We find that the inactivation pattern genes in the SB transposon
study are significantly enriched in known cancer genes (KCG) but
not enriched in neutral genes (NG), which is consistent with our
expectations (Figure 3B). We also find that inactivation pattern
genes are significantly enriched in PCG (P-value = 7.43x 10712 by
Fisher’s exact test ). This suggests that DISHyper can accurately
predict potential tumor suppressor genes.

Third, we further evaluate PCG according to cancer fusion gene
data. The gene-fusion transcripts and protein products have been
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Fig. 3: Evaluation of DISHyper-predicted top-ranked 200 cancer
genes (PCG) by independent functional genomics data and
CRISPR loss-of-function screening results. (A) Validation of the
ranking results of DISHyper based on the cancerMine database.
Fractions of genes (y-axis) indicate the distribution of risk genes
in each decile of our predictions. Enrichment analysis of known
cancer genes (KCG), neutral genes (NG), and PCG in SB
inactivating pattern gene list (B), gene fusion list (C), ER gene
list (D), and BioGRID PPI network hub gene list (E). (F)
Significance analysis of the number of interactions between PCG
and KCG on the BioGRID PPI network. The red vertical line
indicates the number of interactions between PCG and KCG. The
yellow curve indicates the distribution of the interactions between
randomly selected genes and KCG. (G) Enrichment analysis of
KCG, NG, randomly selected genes, and PCG in the essential
cancer dependency genes. (H) The top-20 PCG with significant
negative growth effects on tumor cell lines are displayed in a bar
plot. The gray dashline in the figure represents the significant
threshold.

considered ideal therapeutic targets and biomarkers for a variety
of cancers (Wu et al., 2019). Therefore, we assess the association
between DISHyper-predicted PCGs and cancer-related gene fusion
events. Gene-fusion events are collected from the TumorFusions
(Hu et al., 2018) database and the results of Gao et al (Gao et al.,
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2018). These two studies examined 33 types of tumor samples
from the TCGA project and normal samples in which 20,731
and 25,664 gene fusions were detected, respectively. We find that
genes in KCG are significantly enriched in genes that produce
oncogenic fusion genes but not enriched in NG (Figure 3C), which
suggests that cancer genes are closely associated with gene fusion.
Moreover, genes in PCG are also significantly enriched in genes
that produce oncogenic fusion genes (P-value = 1.31 x 1074,
Figure 3C). The result suggests that DISHyper has the ability
to predict cancer genes that may work through the gene-fusion
mechanism.

Fourth, we explore the possible association between cancer
genes and epigenetic regulators (ER). Epigenetic regulators control
gene expression through DNA methylation, histone modifications,
and chromatin remodeling (Surani et al., 2007). Epigenetic
modifications also play a crucial role in cancer. The cancer drugs
targeting ER have been extensively studied and applied in the
treatment of hematological malignancies. (Cheng et al., 2019).
Therefore, we collect a list of 761 ER genes from the EpiFactors
database (Medvedeva et al., 2015) and analyze the epigenetic
properties of KCG and PCG by this list. We find that ERs are
significantly enriched in KCG (P-value = 1.83 x 10729) and PCG
(P-value = 8.13x 10~ 13), but not enriched in NG (Figure 3D). The
results suggest that epigenetic dysregulation may be a major factor
in the influence of these genes on tumor development. Meanwhile,
it also shows that DISHyper can discover those cancer genes that
affect tumor development through epigenetic modifications.

Finally, we use PPI networks to analyze the network
characteristics of DISHyper-predicted PCG. Since the hub genes
in the PPI network are more likely to have somatic mutations
(Porta-Pardo et al., 2015), we explore the enrichment of cancer
genes on BioGRID PPI hub genes. Using 978 genes in the top
5% of the BioGRID PPI network as hub genes, we find that hub
genes are enriched in KCG (P-value = 1.36 x 10~%2) and PCG (P-
value = 4.75 x 10722), but not enriched in NG (Figure 3E). The
result suggests that PCG and KCG have certain traits in common
in the PPI network, and these genes play key roles in the PPI
network. Many studies have shown that cancer genes are clustered
in PPI networks and there are more interactions between cancer
genes (Barabdsi et al., 2011). To assess whether the prediction
results of DISHyper would have similar properties, we calculate the
significance of the number of interactions between the PCG and
KCG in the BioGRID PPI network. Compared with other genes,
the PCGs have a significant number of interactions with KCGs (P-
value < 0.0001, Figure 3F). Combining these two results, we find
that although DISHyper does not use the information in the PPI
network, its prediction results reveal network properties similar to
known cancer genes.

3.4. DISHyper-predicted cancer genes are essential in tumor
cell lines

We use functional validation experiment results to further evaluate
DISHyper prediction results. The Broad Institute developed the
Cancer Dependency Map (DepMap) database (Tsherniak et al.,
2017) and collected the two largest human whole-genome CRISPR
screening datasets. Therefore, we use the results from the DepMap
database (released on December 22, 2022) to filter a group of
essential genes, which significantly affect the survival of multiple
cancer cells in CRISPR loss-of-function experiments. We find
that PCG has significant enrichment in essential genes (P-value
= 3.59 x 10~*, Fisher exact test, Figure 3G), and KCG also shows

significant enrichment, whereas NG and randomly selected genes
lack such enrichment. Among the top 20 essential PCG, several
genes are found to affect over 1,000 cancer cell lines (Figure 3H).
The phenomenon directly raises the question of whether PCG
is primarily housekeeping genes that are lethal to any cell when
altered. However, this is not the case. We find that only 14% of the
genes in PCG affect over 500 cancer cell lines, and most genes only
affect fewer than 100 cancer cell lines. Additionally, the KEGG
pathway enrichment analysis of PCG shows that PCG is primarily
enriched in various cancer pathways (including breast cancer,
colorectal cancer, etc., which are not utilized in the training and
prediction process of DISHyper), cell differentiation, and Hippo
signaling pathway. Taken together, these results indicate that
DISHyper not only effectively identifies genes that significantly
affect the survival of multiple cancer cells but also that the
majority of PCG exhibit cancer-specific cell lethality.

3.5. Comprehensive enrichment analysis of DISHyper-predicted
cancer genes

We perform enrichment analysis on the DISHyper-predicted
cancer genes to gain insights into their biological significance
and identify enriched terms. We conduct enrichment analyses on
PCG using the GO database, Reactome pathway, and KEGG
pathway through the DAVID. In terms of biological processes,
PCG are significantly enriched in various positive and negative
regulatory activities, such as cell proliferation, cell apoptotic, and
gene expression (particularly transcription from RNA polymerase
IT promoter). Cell proliferation and cell apoptosis are closely
associated with the occurrence and development of cancer. In
molecular function, PCG are significantly enriched in multiple
binding terms, indicating that PCG regulates biological processes
by binding with various biomolecules, such as chromatin and
proteins. In the Reactome pathway, PCG are primarily enriched in
interleukin signaling and diseases related to signal transduction by
growth factor receptors. Interleukins and growth factor receptors
play crucial roles in tumorigenesis and progression. Additionally,
PCG are enriched in multiple kinase signaling pathways, indicating
the downstream of these genes may activation of MAP kinases
and NF-kB kinases. In the KEGG pathway, PCG significantly
enrich in various cancer-related pathways, as well as signaling
pathways closely associated with cancer, such as MAPK and Hippo
pathways.

3.6. Evaluation of the association between novel cancer genes
and cancer

We find that 156 genes in PCG have been annotated as cancer
genes by the cancerMine database, and the remaining 44 genes
are neither in cancerMine nor in NCG and COSMIC CGC. We
consider these 44 genes as the novel cancer genes (novelCG). To
establish the potential role of novel CG as cancer driver genes, we
conducted a comprehensive analysis using cancer sample data from
the TCGA study.

We first analyze novelCG based on the OncoDB database,
which integrates RNA-seq, DNA methylation, and clinical data
from more than 10,000 tumor patients in the TCGA study and
normal samples in the GTEx study (Tang et al., 2022). Among the
44 novelCG, 41 genes exhibit significant differential expression in
one or more cancer types (FDR-adjusted P-value (Q-value) < 0.05
and |log2F'C| > 1), and 31 genes are significantly differentially
methylated in one or more cancer types (Q < 0.05 and |Beta| >
0.2). Furthermore, in the analysis of clinical characteristics and
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pathological diagnostic phase, we find that the expressions of 37
genes are significantly associated with the size and extent of the
primary tumor (Pathological T stage, @ < 0.05), and 28 genes
are significantly associated with the distal spread of one or more
tumors (Pathological M stage, @ < 0.05).

Then, we perform survival analysis of novelCG on multiple
cancer types based on the GEPIA2 platform, which collected
cancer samples and normal samples from the TCGA study and
GTEx study and generated the results of survival analysis of
genes in different cancer types by RNA sequencing data (Tang
et al., 2019). With this survival map, we find that 43 of 44
novelCG genes have significant survival analysis results in multiple
cancer types (P-value < 0.05), and this result indicates that
novelCG expression significantly affects the prognostic outcome
of multiple cancer types. We also find that TREX1 dose not
produce significant associations with cancer in terms of differential
expression, differential methylation, or pathological diagnostic
stage, but the gene is significantly associated with CESC, HNSC,
and two other cancers in the survival analysis. These findings
suggest that these 44 novel CG genes may influence tumorigenesis
and progression in diverse ways.

Additionally, there is supporting evidence from many aspects
to support our predictions. We find that 35 genes in novelCG
may generate oncogenic fusion genes, indicating that these genes
potentially influence the occurrence and progression of various
tumors through gene fusion mechanisms. In the CRISPR loss-of-
function experiments results, We find that nine genes in novelCG
significantly impact multiple cancer cell lines, and these genes
exhibit cancer cell-specific lethality. We also observe that 20
genes in novelCG significantly impact the proliferation of cell lines
associated with one or more common cancer types. Meanwhile,
novelCG exhibits numerous interactions with known cancer genes
in the STRING PPI network. Furthermore, we conduct KEGG
pathway enrichment analysis for novelCG, revealing significant
enrichment in Hippo and TGF-f signaling pathways. These
pathways are closely associated with cancer, highlighting the
research potential of novelCG. The above results demonstrate
the reliability of our predictions and suggest that novelCG likely
includes potential cancer genes.

4. Discussion

In this paper, we introduce DISHyper, a novel hypergraph-based
cancer gene prediction method. DISHyper extracts higher-order
gene association information from the annotated gene set by
the hypergraph neural network to identify new cancer genes.
DISHyper is different from the previous methods in principle.
Methods such as 20/204+, DORGE, and EMOGI identify cancer
genes based on mutational, epigenetic, or biological network data.
Although these methods have achieved certain success, they all
focus on a single feature of cancer genes and have difficulty in
describing the complex role of cancer genes in tumor development.
DISHyper not only significantly outperforms other methods on
both pan-cancer datasets and several independent test sets, but
also can reveal cancer genes that cannot be identified by other
methods, such as shown in our study. The above results strongly
indicate that DISHyper can identify cancer genes more accurately
and reliably by integrating expert and domain knowledge from
annotated gene sets.

In summary, this work highlights the integration of annotated
gene set data based on hypergraphs to achieve more comprehensive

and accurate predictions of cancer genes. DISHyper will be an
essential resource for cancer genetic research and a very significant
breakthrough for the study of cancer gene prediction methods.
DISHyper still has space for further improvement. The DISHyper
only uses annotated gene set data, and the fusion of mutation,
epigenetic, and biological network data on the basis of DISHyper
may further improve the performance of the model. In future work,
we plan to fuse more data in DISHyper and conduct further studies
on specific cancer types such as breast cancer and lung cancer.
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