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Abstract

Nuclear depletion and cytoplasmic aggregation of the RNA-binding protein TDP-43 is the
hallmark of ALS, occurring in over 97% of cases. A key consequence of TDP-43 nuclear loss is
the de-repression of cryptic exons. Whilst TDP-43 regulated cryptic splicing is increasingly well
catalogued, cryptic alternative polyadenylation (APA) events, which define the 3’ end of last
exons, have been largely overlooked, especially when not associated with novel upstream
splice junctions. We developed a novel bioinformatic approach to reliably identify distinct APA
event types: alternative last exons (ALE), 3’UTR extensions (3’Ext) and intronic polyadenylation
(IPA) events. We identified novel neuronal cryptic APA sites induced by TDP-43 loss of function
by systematically applying our pipeline to a compendium of publicly available and in house
datasets. We find that TDP-43 binding sites and target motifs are enriched at these cryptic
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events and that TDP-43 can have both repressive and enhancing action on APA. Importantly, all
categories of cryptic APA can also be identified in ALS and FTD post mortem brain regions with
TDP-43 proteinopathy underlining their potential disease relevance. RNA-seq and Ribo-seq
analyses indicate that distinct cryptic APA categories have different downstream effects on
transcript and translation. Intriguingly, cryptic 3’Exts occur in multiple transcription factors, such
as ELK1, SIX3, and TLX1, and lead to an increase in wild-type protein levels and function.
Finally, we show that an increase in RNA stability leading to a higher cytoplasmic localisation
underlies these observations. In summary, we demonstrate that TDP-43 nuclear depletion
induces a novel category of cryptic RNA processing events and we expand the palette of
TDP-43 loss consequences by showing this can also lead to an increase in normal protein
translation.



Introduction

Cytoplasmic aggregates and nuclear depletion of TDP-43 are pathological hallmarks of a
spectrum of neurodegenerative diseases, including over 97% of amyotrophic lateral sclerosis
(ALS) cases1, 45% of frontotemporal dementia (FTD)2 and over 50% of Alzheimer’s disease
cases3. Under normal conditions, TDP-43 is a predominantly nuclear protein with multiple roles
in regulation of RNA processing and metabolism, including alternative splicing, alternative
polyadenylation (APA)4–6, and transport7. Significant attention has been drawn to TDP-43’s
ability to repress the inclusion of pre-mRNA sequences in mature transcripts8: loss of nuclear
TDP-43 leads to the inclusion of ‘cryptic’ exons in mature transcripts both in vitro and in post
mortem tissue7, contributing to disease progression10,11. Cryptic exons can lead to protein loss
through RNA degradation by nonsense mediated decay12, or can be translated to produce
cryptic peptides13,14.

Cleavage and polyadenylation defines the 3′end of last exons and subsequently mature
transcripts15. Up to 70% of human protein-coding and long non-coding RNA genes can undergo
polyadenylation at multiple locations in the gene body (alternative polyadenylation, APA), and
can be subdivided in three main category of events: alternative last exons (ALE), 3’UTR
extensions (3’Ext) and intronic polyadenylation events (IPA). In alternative last exons (ALE), the
polyA usage is determined by an upstream alternative splice junction which defines an
alternative last exon. In 3’Ext events, APA sites are independent of splice junctions and occur
within 3’UTR regions and affect 3’UTR sequence and length, which is implicated in the
regulation of transcript stability, localisation and translation16. Finally in IPA events, APA occurs
within introns giving rise to transcripts with different protein coding potential and can affect
full-length protein dosage17,18.

TDP-43 regulated cryptic APA has not been systematically explored in a neuronal
context. Here, we report widespread cryptic APA upon TDP-43 depletion in cell models,
including events which were not previously detected with conventional splicing analyses. A
substantial number are expressed in post-mortem ALS & ALS/FTD tissue with TDP-43 loss,
underlining their potential involvement in pathogenic mechanisms and/or utility as biomarkers of
TDP-43 pathology. We focus on a novel class of 3’Ext APA and show they can lead to increased
translation levels. Moreover, we use metabolic labelling to demonstrate that such cryptic 3’Ext
are associated with increased RNA stability, and in the case of ELK1, coincide with increased
cytoplasmic RNA localisation. Our data therefore identifies a novel consequence for cryptic RNA
processing, and shows that in addition to leading to protein reduction or the formation of altered
proteins, this can also lead to overexpression of normal proteins, and an increase in their
function.

Results

Identification of cryptic alternative polyadenylation events induced by TDP-43 loss



While TDP-43’s role in regulating APA and cryptic splicing is well-known, cryptic APA occurring
upon TPD-43 loss-of-function has yet to be explored. In order to comprehensively address this
question, we curated a compendium of publicly available and newly generated bulk RNA-seq
datasets with TDP-43 depletion (Supplementary Table 1). We assembled a computational
pipeline to identify novel last exons from RNA-seq data, which defines last exon frames using
StringTie19, and then filters and categorises as spurious predicted 3’ends lacking the presence
of reference polyA sites20 or a conserved polyA signal hexamer21 (Fig. 1A). Isoform level
quantification was performed using Salmon22, and differential usage between experimental
conditions was assessed using DEXSeq23.

We subdivided our events into three main categories: ALEs, IPAs and 3’Ext (Fig. 1A).
APA events were widespread and we defined cryptic APA events as ones with <10% mean
usage in controls and >10% usage change after TDP-43 knockdown. We identified 227 cryptic
APAs to be present in at least 1 dataset (adjusted P < 0.05, Fig. 1B, Supplementary Fig. 1,
Supplementary Table 2). Cryptic ALEs (n=92) included previously identified cryptic exons such
as STMN2, ARHGAP32, and RSF1 (Fig. 1B). 108 3’UTR cryptics were identified, of which 86
are novel 3’UTR extensions (3’Ext; e.g. TLX1, Fig. 1C) and 20 were 3’UTR shortening events
(proximal 3’Ext). 20 IPA events were also detected, including CNPY3 which was identified and
experimentally validated in an orthogonal bioinformatics approach (see Arnold et al.,
co-submitted). The remaining 9 events could not be uniquely assigned to ALEs or IPAs based
on annotation, and are defined as ‘complex’.

70% (159/227) of cryptic APAs were detected as significant in a single dataset
(Supplementary Fig. 2A), but we found that the majority (138) satisfied cryptic expression
criteria (<10% mean usage in controls and >10% usage change after TDP-43 knockdown)
across datasets. 51 APAs were consistently below 10% usage threshold in controls, but did not
sufficiently increase following TDP-43 depletion to meet the cryptic criteria definition across
datasets. 28 APAs showed instead a significant increase upon TDP-43 loss across datasets, but
had >10% median usage in controls, therefore placing them outside the cryptic criteria, but
demonstrating consistent regulation by TDP-43 (Supplementary Fig. 2B). Altogether, this data
highlights a widespread presence of cryptic APA upon TDP-43 loss.

TDP-43 binding can both repress and enhance polyA site selection
Next, we investigated TDP-43 binding patterns around cryptic APAs using TDP-43 iCLIP data
generated in SH-SY5Y cells10. We focussed on ALEs and 3’Ext events as the low number of
IPA and proximal 3’Ext events (n=20 in both cases) did not allow reliable binding profile
inferences. TDP-43 binding was enriched around the splice acceptor of cryptic ALEs as
previously described in cryptic splice junctions and downstream of the cryptic polyadenylation
site (PAS) of ALEs (Fig. 1D), supporting TDP-43 acting as a repressor of both splicing and
polyadenylation. Intriguingly, TDP-43 binding was also enriched immediately downstream of the
annotated proximal PAS of 3’Ext events (Fig. 1E), supporting a role for TDP-43 in enhancing
polyA usage consistent with previous reports of TDP-43 binding with respect to regulated PAS5.

iCLIP data, typically generated in control cells, is not sensitive in detecting binding to
cryptic 3’Ext regions, as these events can be only detected at very low levels with physiological
TDP-43 presence. We therefore sought to corroborate our findings by adapting PEKA24 to infer
de-novo hexamer enrichment relative to cryptic landmarks. Previously defined hexamers



enriched around TDP-43 iCLIP binding sites6 (Supplementary Fig. 3A) were overrepresented
among the most enriched hexamers proximal to all cryptic landmarks, with the strongest signal
overall observed at both the 3’ss and PAS of ALE events (Supplementary Fig. 3B). To assess
the concordance with iCLIP binding profiles, we visualised the positional coverage of the
hexamer group most strongly associated with TDP-43 binding6. We observed a striking peak
immediately upstream of ALE splice acceptors, consistent with the previously observed
mechanism of STMN2 cryptic exon repression25 (Fig. 1D). Enriched signal was also observed
immediately downstream of the distal PAS of 3'Exts (Fig. 1E) and the PAS of ALEs (Fig. 1D).
Overall, our data support a direct role for TDP-43 binding in both enhancing and repressing PAS
usage, therefore leading to cryptic APA upon TDP-43 loss.

TDP-43 cryptic APA is detectable in post-mortem ALS/FTD tissues
We next investigated whether the cryptic APA detected in vitro occurred also in post-mortem
central nervous system (CNS) tissue samples affected by TDP-43 proteinopathy. We initially
focused on neuronal nuclei sorted into TDP-43 positive and TDP-43 negative populations26.

60 cryptic APA events were more highly expressed in TDP-43 depleted nuclei. All APA
event types were represented in this list (Fig. 2A), with ALEs (28) and 3’Exts (27) representing
the majority of enriched events. Our analysis confirms previously reported cryptic ALEs with
patient specificity such as in STMN227. A number of 3’Ext also show enrichment in TDP-43
negative nuclei in a similar magnitude to STMN2 (median increased usage of 69 %), most
notably ELK1 (76 %) and RBM27 (57 %) (Fig. 2A). Five IPA events meet our enrichment criteria
(Fig. 2A), including USP31, which was identified in a targeted assay of sporadic ALS motor
cortex tissue28. However, IPA events were generally more weakly enriched in TDP-43 depleted
nuclei compared to 3’Ext and ALE events. Altogether, this analysis shows that cryptic APA is
detectable in post-mortem ALS/FTD CNS.

Next, we used the New York Genome Centre (NYGC) ALS consortium RNA-seq dataset
to assess cryptic APA in a larger cohort of CNS cases with or without TDP-43 pathology. Cryptic
3’Exts often demonstrated low basal expression in control samples in our in vitro datasets,
confounding the detection in post-mortem bulk RNA-seq datasets, where only a very small
proportion of cells is expected to have TDP-43 pathology. IPA detection is further complicated
by the fact that normal pre-mRNA reads also map to IPA regions creating significant noise in
bulk RNA-seq. We therefore focussed on ALEs, where detection of the associated upstream
cryptic splice junctions provide direct evidence of expression. As cryptic ALEs are expected to
be dependent on nuclear TDP-43 depletion, we defined criteria based on spliced read detection
to identify cryptic events with specific expression in tissues and disease subtypes where TDP-43
pathology is present. 7/118 cryptic ALE junctions fulfilled specificity criteria (Supplementary
Table 3), in contrast to 56/313 cryptic splicing events collated from i3Neurons with TDP-43
knockdown13 (Fig. 2B). STMN2 was most frequently detected in tissues with expected TDP-43
proteinopathy, and several other ALEs were amongst the most frequently detected specific
cryptic events, including SYNJ2 (3rd, Fig. 2C) and PHF2 (8th, Fig. 2D). Altogether, this
suggests that cryptic APAs are detectable in post-mortem tissue affected by TDP-43 pathology,
highlighting their potential relevance in loss-of-function disease mechanisms and their promising
utility as biomarkers.



Cryptic APA events have variable effects on differential expression
Cryptic splicing events impact expression, often leading to a reduction in transcript

levels9–11. We therefore assessed the effect of cryptic APAs on their own transcripts in
i3Neurons13 (Supplementary Fig. 4A), and found that the majority of events (86/126) coincide
with a significant change in expression, equally split between significant upregulation and
downregulation. When subdivided further into cryptic APA categories, no category showed a
clear bias for upregulation or downregulation (19/34 3’Ext, 17/37 ALE and 6/10 IPA genes are
downregulated). This suggests that cryptic APAs are associated with differential expression, but
have variable effects on transcript levels.

Cryptic 3’UTR extensions in transcription factor RNAs lead to increased translation and
function
Regulation of both ALE and 3’Ext usage has been demonstrated to impact protein abundance
through distinct mechanisms29,30, but differential RNA abundance does not necessarily imply a
coordinated change in protein levels. To assess whether changes in gene expression were also
reflected in translation levels, we performed differential translation analysis of Ribo-seq data
generated from i3Neurons with TDP-43 depletion13.

Only a minority of cryptic APA-containing genes (26/126) showed significant changes in
overall translation levels (Supplementary Table 4), of which 24 are concordantly altered in both
Ribo-seq and RNA-seq abundance upon TDP-43 KD (Fig. 3A,3B). Notably, the differentially
translated subset appeared to stratify by APA category: whilst ALEs are downregulated, all four
significant 3'Exts, which also showed increased RNA abundance (Fig. 3A), had significantly
increased translation (Fig. 3B). Gene set enrichment analysis (GSEA)31,32 confirmed that cryptic
ALE and 3'Ext genes are significantly associated with decreased (normalised enrichment score
(NES) -2.09, padj 2.31e-6) and increased translation (NES 1.54, padj 0.03) respectively, whilst
IPA genes show no significant association in either direction (NES -1.09, padj 0.36,
Supplementary Fig. 4B).

Interestingly, the three 3’Ext-containing genes that were most upregulated at both RNA
and translation levels (Fig. 3A,3B) encode for three transcription factors (TFs): ELK1, SIX3, and
TLX1. The regulation of these 3’Ext events is reproducible across in vitro datasets
(Supplementary Fig. 1). As ELK1 increase has previously been associated with neuronal
toxicity33–35 and its levels are consistently higher in mature neurons, compared to SIX3 and
TLX1, which are associated with neuronal development36,37, we decided to focus our
investigations on ELK1. We tested whether the increase in Ribo-seq also corresponded to an
upregulation of steady-state protein, and western blots confirmed a significant increase in ELK1
protein expression upon TDP-43 knockdown in i3Neurons (Fig. 3C).

We next asked whether the activity of ELK1, which functions as a TF in the ternary
complex factor (TCF) family38, could be altered in the context of TDP-43 loss. We assessed
whether ELK1 target genes defined by ChIP-seq in HeLa cells were also affected in TDP-43
knockout HeLa cells39, where the cryptic 3’Ext is robustly upregulated (Fig. 3D). Using GSEA,
we observed a significant change in ELK1 target gene expression upon TDP-43 knockout (Fig.
3D). This suggests that cryptic 3’Exts can lead to change in function in the context of TDP-43
loss.



TFs with cryptic 3'UTR Extensions have increased RNA stability and cytoplasmic RNA
localisation

We investigated the mechanisms by which cryptic 3’UTRs could mediate increased
translation levels of ELK1, SIX3, and TLX1. We revisited differential splicing analysis of
i3Neuron RNA-seq datasets10,13 and confirmed that cryptic 3’Exts are the only differential RNA
processing events occurring in these 3 TF RNAs upon TDP-43 depletion.

As alternative 3’UTRs have been linked to differences in RNA stability40, we reasoned
that increased RNA stability could account for changes in overall RNA abundance and
translation levels. To investigate changes in RNA stability in i3Neurons with TDP-43 depletion,
we performed SLAM-seq41, which allows the detection of newly synthesised RNAs through
incorporation of a uridine analogue (4sU). Different lengths of 4sU treatment allow to estimate
gene-level RNA half lives. We observed increased half lives in cryptic 3'Ext containing genes
ELK1, TLX1, and SIX3 (Fig. 3E). This suggests that increased RNA abundance and translation
of cryptic 3'Ext genes are mediated by increased RNA stability.

Given that translation depends on extra-nuclear localisation of mRNAs, we tested
whether altered subcellular localisation of transcripts could be induced by 3’Ext and also
contribute to the increased translation levels42–45. Focussing on the ELK1 cryptic 3’Ext, we
designed probes to recognise the common proximal sequence and the distal sequence specific
to the 3’Ext, and performed fluorescent in-situ hybridisation (FISH) in i3Neurons (Fig. 3F).
Consistent with RNA-sequencing, upon TDP-43 knockdown we observed a significant increase
in total foci for both the total and cryptic-specific probes, with a more pronounced increase for
the cryptic-specific probe (Fig. 3G). While there was a trend for elevated extranuclear
localisation of ELK1 (Fig. 3H), this increase did not reach significance. These findings suggest
that increased RNA stability is likely the main driver of increased ELK1 RNA abundance and
translation.

Discussion
Defining TDP-43 RNA targets is critical to understanding the molecular consequences of
nuclear TDP-43 depletion. To date, efforts have mainly focussed on the consequences of
altered splicing and have successfully identified key targets that are being pursued as
therapeutic targets and potential biomarkers for TDP-43 pathology10,11,14,46,47. Although TDP-43 is
involved in multiple aspects of RNA processing, including polyadenylation4–6, this has been
largely understudied due to the lack of effective tools to address these questions. Here, we
develop a pipeline to detect and quantify novel APA events from total RNA-seq and apply it to a
wide range of neuronal TDP-43 loss of function datasets to define cryptic APAs, a novel
category of cryptic RNA processing events of potential relevance to ALS/FTD. iCLIP and
TDP-43 binding motif analyses support a direct regulation of these events by TDP-43, in which
TDP-43 loss can both weaken conventional polyA sites and derepress cryptic APA. Similarly to
splicing, where TDP-43 can both repress or enhance exon inclusion, TDP-43 can therefore
have a dual action on transcript termination. Importantly for disease relevance, and similarly to
cryptic splicing, numerous cryptic APA events can be detected in post-mortem tissue and are
specifically expressed upon TDP-43 pathology.

When we then moved to investigate the impact of cryptic APAs on RNA levels and
translation, and found that IPAs and ALEs had either no impact or induced a reduction of



transcript levels in RNA-seq and Ribo-seq analyses - in line with previous observations on
known cryptic ALEs as STMN246,47. Recent work has demonstrated that cryptic exon-containing
transcripts can be translated and produce cryptic peptides that could serve as biomarkers of
TDP-43 pathology13,14. As cryptic ALE and IPA events are mostly predicted to be insensitive to
nonsense mediated decay, they are likely to give rise to cryptic peptides; e.g. cryptic ALE RSF1
encodes a cryptic peptide that is detected in CSF of ALS patients13. Previous work has identified
cryptic ALEs as their novel splice junction can be detected by numerous splice-detection
packages13,27,48. Conversely, IPAs have been harder to identify and further work should consider
whether these cryptic IPA events can be detected in patient brains and biofluids as an indirect
measure of TDP-43 pathology.

Surprisingly 3’Ext events in the three transcription factors ELK1, SIX3, and TLX1 were
associated with transcript upregulation, increased translation and protein levels. We found this
to be associated with an increase in RNA stability leading to an increase in cytoplasmic
localisation. Thus, in contrast to the conventional model of TDP-43 regulated cryptic splicing
leading to reduced protein levels or to altered proteins containing cryptic peptides, cryptic 3’Ext
can be associated with increased protein levels, outlining a novel consequence of TDP-43
cryptic RNA processing.

ELK1, SIX3, and TLX1 3’Ext are reliably induced upon TDP-43 depletion across our in
vitro datasets, suggesting they are not cell-type specific, sensitive TDP-43 targets. These three
TFs have been studied in the neuronal context, although SIX3 and TLX1 are primarily
expressed in the developmental stage36,37. Our work therefore focused on ELK1 and we were
able to utilise HeLa cell data in order to show that TDP-43 loss can induce changes in ELK1
target genes. ELK1 promotes axonal outgrowth49 and is increased in Huntington’s disease
models where it can have a neuroprotective role50. ELK1 overexpression has also been linked
with neurotoxicity through interaction with components of the mitochondrial
permeability-transition pore complex34, and dendrite-specific overexpression of ELK1 mRNA
induced cell death in a transcription- and translation-dependent manner33, supporting a potential
contribution of this cryptic APA to pathogenesis. Further work is needed to investigate the
functional relevance of increased ELK1, SIX3, and TLX1 expression in models of TDP-43
proteinopathy.

We focussed on identifying cryptic APA events, as their extreme expression changes
upon TDP-43 loss renders them favourable therapeutic and biomarker targets. Accompanying
manuscripts by Arnold et al. and Zeng et al. investigate APA dysregulation more generally upon
TDP-43 loss and show it is widespread, in accordance with our findings in Fig. 1B, can occur in
ALS-FTD related genes (Zeng et al., co-submitted) and can lead to change in function (Arnold
et al., co-submitted), underscoring the potential relevance of APA in disease pathogenesis. We
note that several targets (e.g. CNPY3, ELK1, ARHGAP32) are commonly identified across the
studies despite diverging methodological approaches, underlying the consistency of our
observations. Importantly, similarly to our findings for ELK1, SIX3, and TLX1, both Zeng et al.
and Arnold et al. manuscripts also find that APAs can lead to upregulation of normal protein
levels, consolidating this a general consequence of TDP-43 loss. Our studies collectively
demonstrate that dysregulated APA is a general consequence of nuclear TDP-43 loss in
ALS-FTD.



In summary, we provide a compendium of cryptic APA events determined by TDP-43
loss as a resource for studying RNA dysregulation and identifying novel biomarkers in ALS. Our
work also shows that cryptic RNA processing can lead to an increase in protein expression and
function, expanding the molecular consequences of TDP-43 loss and pathology, with
implications for disease pathogenesis and therapeutic target identification.
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Methods

CRISPRi knockdown in human iPS cells, and differentiation and culture of i3Neurons

CRISPRi knockdown experiments were performed in the WTC11 iPSC line harbouring stable
TO-NGN2 and dCas9-BFP-KRAB cassettes at safe harbour loci51. CRISPRi knockdown of
TDP-43 in iPSCs was achieved using sgRNA targeting the transcription start site of TARDBP
(or non-targeting control sgRNA)10, delivered by lentiviral transduction. sgRNA sequences were
as follows: non-targeting control GTCCACCCTTATCTAGGCTA; and TARDBP
GGGAAGTCAGCCGTGAGACC. iPS cells were differentiated into cortical-like i3Neurons as
described previously10,52 and fixed 9 days after re-plating for RNA-fluorescence in-situ
hybridisation (FISH). For RNA-seq experiments (‘Humphrey i3 cortical’), i3Neurons were
induced as previously described52 with the addition of SMAD and WNT inhibitors53 (SB431542
10 µM; LDN-193189 100 nM; XAV939 2 µM all from Cambridge Biosciences). After induction,
cells were cultured in BrainPhys Media (StemCell Technologies) with 20 ng/ml BDNF
(PeproTech), 20 ng/ml GDNF (PeproTech), 1x N2 supplement (Thermo Fisher), 1 x B27
supplement (Thermo Fisher), 200 nM Ascorbic Acid (Sigma), 1 mM dibutyryl cyclic-AMP
(Sigma) and 1 µg/ml Laminin (Thermo Fisher) as previously described54 and harvested 30 days
after differentiation.

An iPSC line with a N-terminal HaloTag on both endogenous copies of TDP-43 (Halo-TDP-43
i3Neurons) was generated by CRISPR/Cas12 gene editing. The parental cell line used was the
WTC11 cell line with integrated dCas9-Krab and NGN2 cassettes as mentioned previously51.
The HDR template used was addgene plasmid 178131. Editing was done with Cas12 crRNA
(Integrated DNA Technologies) with GGAAAAGTAAAAGATGTCTGAAT as the targeting
sequence. Recombinant Cas12 (Cpf1 ultra, Integrated DNA Technologies) was electroporated
with HDR template and Cas12 crRNA using the P3 Primary Cell 4-D Nucleofector kit
(V4XP-3024 Amaxa). iPSCs were then single cell plated and positive colonies were selected
with HaloTag TMR dye (Promega) and verified by PCR of genomic DNA.

For PROTAC mediated knockdown of Halo-TDP-43, i3Neurons were treated with
HaloPROTAC-E55 (30 nM) on DIV14 and harvested on DIV28.

Strand-specific, poly(A) enriched sequencing libraries for the ‘Humphrey i3 cortical’ dataset were
prepared using the Kapa mRNA Hyper Prep kit. 100ng total RNA was used as input material for
poly(A)+ mRNA capture. Fragmentation was performed for 6 minutes at 85°C to obtain a target
fragment size of 300-400bp, and 13 cycles of PCR amplification were performed. The resulting
libraries were sequenced 2x150bp on the Illumina NextSeq2000 machine. Samples were



processed as previously described56 using the RAPiD-nf nextflow pipeline. Briefly, adapters
were trimmed from raw reads using Trimmomatic57 v0.36, and reads were aligned to the
GRCh38 genome build using gene models from GENCODE v3058 with STAR59 v2.7.2a. The
RAPiD-nf pipeline is available at https://github.com/CommonMindConsortium/RAPiD-nf/ .

Fluorescent in-situ hybridisation (FISH)

Cortical-like i3Neurons were cultured on 13-mm glass coverslips and fixed in 4% PFA/sucrose
on day 9. RNA-FISH was performed using the QuantiGene ViewRNA ISH Cell Assay kit
(Invitrogen, QVC0001), according to manufacturer’s instructions. Protease was used at 1:1000
dilution. Two probe sets were used to detect the canonical ELK1 transcript (TYPE 4 probe,
488-nm) or specifically the distal 3’UTR cryptic extension (TYPE 1 probe, 550-nm). Confocal
images were acquired with a LSM980 laser-scanning confocal microscope with Airyscan 2
(Zeiss), using a 40X oil immersion objective.

For each biological replicate, ten images were acquired for the control and TDP-43 knockdown
conditions. For each image, foci for both probes were counted within the 106.07 microns by
106.07 microns field of view on Fiji/ImageJ using the maximum intensity Z-projection function to
flatten the 2-µm-thick Z-stack. The Find Maxima function using the same prominence setting
between conditions was performed to quantify total numbers of RNA foci. To separately count
nuclear and cytoplasmic foci, the Cell Counter plugin was used. For each probe and field of
view, the total number of foci was divided by the number of DAPI-stained nuclei to give the
average number of foci/cell. To calculate the nuclear:extra-nuclear ratio for the ‘Total ELK1’
probe, the number of nuclear foci was divided by the number of extra-nuclear foci in each field
of view. For each probe and condition, the mean number of foci/cell and nuclear:extra-nuclear
ratio was calculated from the ten images and normalised, for each biological replicate, to the
respective control condition. Statistical significance was evaluated using a one sample t-test
with a logarithmic transformation and the Benjamini and Hochberg false discovery rate
procedure, testing the null hypothesis that mean = log(1).

Western blots

Halo-TDP-43 i3Neurons were homogenised in lysis buffer (25 mM Tris-HCl, 150 mM NaCl, 1%
NP-40, 1% Glycerol, 2 mM EDTA, 0,1% SDS, protease inhibitor (cOmpleteTM EDTA-free
protease inhibitor cocktail, Roche), phosphatase inhibitor (PhoSTOPTM, Roche)). Samples were
loaded on a NuPAGE 4-12% Bis-Tris protein gel (Invitrogen), which was run in NuPAGE MOPS
buffer. Proteins were transferred onto PVDF blotting membrane (Amersham), through wet
transfer for 1h 30 min at 200 mA in transfer buffer (25 mM Tris, 192 mM glycine, 20% methanol).
The membrane was blocked in 5% milk in TBST (20 mM Tris, 150 mM NaCl, 0.1% Tween-20)
and incubated overnight with primary antibodies diluted in 5% milk in TBST (anti-ELK1 (Abcam
ab32106) 1:500, anti-TDP-43 (Abcam, ab104223) 1:2000, anti-tubulin (Sigma-Aldrich,
MAB1637) 1:5000). After 1h-incubation with HRP-conjugated secondary antibodies diluted in
5% milk in TBST (anti-mouse HRP (BioRad, 1706516) 1:10000, anti-rabbit HRP (BioRad
1706515) 1:10000), the membrane was developed using Immobilon Classico HRP substrate
(Sigma) and the Bio-Rad ChemiDoc system.

https://github.com/CommonMindConsortium/RAPiD-nf/


SH-SY5Y & SK-N-BE(2) TDP-43 KD and sequencing

SH-SY5Y and SK-N-BE(2) cells were transduced with a SmartVector lentivirus
(V3IHSHEG_6494503) containing a doxycycline-inducible shRNA cassette for TDP-43.
Transduced cells were selected with puromycin (1 μg/ml) for one week, before being plated as
single cells and expanded to obtain a clonal population. Cells were grown in DMEM/F12 +
Glutamax (Thermo) supplemented with 10% FBS (Thermo) and 1% PenStrep (Thermo).

For induction of shRNA against TDP-43 cells were treated with the following amounts of
doxycycline hyclate (Sigma), and collected after 10 days:
- For experiments in SH-SY5Y cells (curves), 75 ng/ml.
- For experiments in SH-SY5Y cells (CHX), 25 ng/ml.
- For experiments in SK-N-BE(2) cells, 1000 ng/ml.

RNA was extracted from SH-SY5Y and SK-N-BE(2) cells using the RNeasy mini kit (Qiagen)
following the manufacturer’s protocol including the on-column DNA digestion step. RNA
concentrations were measured by Nanodrop and 1,000 ng of RNA was used for reverse
transcription. Samples undergoing RNA sequencing were furthermore assessed for RNA quality
on a TapeStation 4200 (Agilent), resulting in RNA integrity number (RIN) above 9.4 for all
samples.

Sequencing libraries were prepared with polyA enrichment using a TruSeq Stranded mRNA
Prep Kit (Illumina) and sequenced on an Illumina HiSeq 2500 or NovaSeq 6000 machine at
UCL Genomics with the following specifics:
- SH-SY5Y cells: 2×100 bp, depth > 40M/sample
- SK-N-BE(2) cells: 2x150 bp, depth > 40M/sample

RNA-seq data processing

The ‘Brown’ SH-SY-5Y, SK-N-BE(2) and i3Neuron datasets were processed as previously
described10. Unless otherwise stated, all short-read RNA-seq datasets were processed using
the following pipeline. Raw reads in FASTQ format were quality trimmed for a minimum Phred
score of 10 and otherwise default parameters using fastp60 (v0.20.1). Quality trimmed reads
were aligned to the GRCh38 genome build using gene models from GENCODE v4058 with
STAR59 (v2.7.8a). Quality trimmed reads are used as input for any tools that require FASTQ files
as input (e.g. PAPA, Salmon). Our alignment pipeline is implemented in Snakemake61 and is
available at https://github.com/frattalab/rna_seq_snakemake.

SLAM-seq

SLAM-sequencing was performed on cortical-like i3Neurons following protocols adapted from
Herzog et al.41. Samples were treated with 100 µM 4sU on Day 7 for 0, 1, 4, 8, 12, 24 hours
before immediate wash with phosphate buffered saline (PBS). Each time point had 2 replicates

https://github.com/frattalab/rna_seq_snakemake


for both control and TDP-43 knockdown excluding 4 hours where one of the control replicates
did not pass RNA quality controls and so was not submitted for sequencing.

RNA was extracted using the Qiagen RNA isolation and purification kit. RNA concentration was
estimated using a Nanodrop Microvolume Spectrophotometer (Thermofisher). After ensuring an
adequate amount of RNA in each sample, iodoacetamide (IAA) treatment was applied to each,
facilitating the thiol modification of incorporated 4sU.

Sequencing libraries were prepared with Kapa RiboErase RNA Hyper kit and sequenced (2 ×
250 bp) on an Illumina NovaSeq SP. Using the ‘rna_seq_snakemake’ alignment pipeline
(https://github.com/frattalab/rna_seq_snakemake), raw FASTQ files were quality trimmed using
fastp60 with the parameter “qualified_quality_phred: 10”, and aligned without soft-clipping to the
GRCh38 genome build using STAR59 (v2.7.0f) with gene models from GENCODE v3458.
GRAND-SLAM (v2.0.7b) was run on the aligned data using gene models from GENCODE v3458

using the “-trim5p 10 -trim3p 10” parameter to ignore mismatches at the ends of reads. The
output files containing the estimated new-to-total RNA ratios (NTR) of each gene were used to
estimate the half-life of each gene using the recommended workflow in grandR62 .

PAPA - pipeline to detect cryptic last exons

Whilst there are many tools for de-novo detection of alternative polyadenylation events
within 3’UTRs events from RNA-seq data, all of them suffer from poor performance with respect
to matched 3’end sequencing approaches63,64. Few tools have focused on the detection of
gene-body internal poly(A) sites and definition of the complete last exon structure, which is
essential if one aims to predict putative encoded peptides. Aptardi is a deep-learning based
approach to refine predicted 3’ends of reference or assembled transcriptomes65, but a
benchmarking study found the compute times and resources to be unviable for performance
evaluation64. TECTool trains a machine-learning model on annotated last exons using
transcriptomic features to classify novel intronic last exons defined upstream of polyA sites from
the PolyASite atlas66. However, as of v0.4 it can only define ALEs and only supports single-end
RNA-seq data, which would substantially impact sensitivity to detect events.

General purpose bulk RNA-seq transcript assemblers such as StringTie19 could be used
to identify all alternative novel last exon structures, but they show poor performance in defining
precise terminal exon boundaries66. Previous benchmarking attempts have suggested that
transcript assemblers exhibit poor performance at defining full transcript structures, but much
better performance at defining individual exons67. This suggests that a scalable solution could
be to refine the 3’end predictions of exons predicted by transcript assemblers.

Broadly inspired by a previous workflow combining matched short read and 3’ enriched
sequencing18, our approach is to extract last exons from StringTie assembled transcripts and
filter based on proximity to 3’end-seq derived PolyA site annotations and/or presence of polyA
signal sequences in the terminal predicted region. PolyA signal hexamer presence previously

https://github.com/frattalab/rna_seq_snakemake


emerged as one of the most important features in discriminating intergenic expressed regions
as 3’UTRs from other transcriptomic regions68.

Pipeline setup

Transcript assemblies for individual samples are generated using StringTie v 2.1.7
(default settings) in annotation-guided mode. Individual sample assemblies are grouped
according to their experimental condition and merged into a redundant assembly using
Gffcompare69 v0.11.2. Condition-wise mean TPMs are calculated for each transcript, assigning a
TPM of 0 if a transcript was not assembled in a particular sample. Transcripts are subsequently
filtered for a minimum mean expression > 1 TPM, on the basis of a previous study which
proposed such a filter to improve global accuracy of assembled transcripts with respect to
matched long-read sequencing70.

Last exons are extracted from expression-filtered transcripts in a sample-wise manner
using a custom script. Novel last exons are extracted using the following criteria:

- All predicted 3’ends must not overlap with any annotated exon
- The last intron of ALEs must be contained within an annotated intron and its 5’ss must

exactly match an annotated 5’ss
- The last intron of putative events must overlap an annotated exon, with the predicted

5’end of the last exon exactly matching the 5’end of the overlapping annotated internal
exon. If the putative last exon overlaps an annotated first exon, the matching of 5’ends is
permitted a 100nt ‘slack’ to permit last exon capture despite imprecision of the predicted
transcript 5’end, which is of secondary importance for our purposes and is a known
limitation of transcript assembly tools with short-read RNA-sequencing

- Last exons overlapping annotated last exons must extend the most distal annotated last
exon at a locus and exactly match at the 5’end of the annotated exon

- All ‘extension’ events must extend a known exon by a user-specified minimum distance
(default 100nt)

Putative novel last exons are subsequently merged condition-wise into single GTF using
a custom script. Filtering and refining of putative last exons for 3’end precision is subsequently
performed condition-wise, with the aim of selecting a single representative last exon prediction
for a given condition. Firstly, the distance (in either direction) from the 3’end of last exons to the
nearest locus reported in the PolyASite 2.0 database20 is calculated. Any distance below a
user-specified distance (default 100nt) is considered a match and retained for downstream
analysis. Considering that 3’seq protocols on which the PolyASite database is based can
provide nucleotide resolution of poly(A) sites, the 3’ends of matching last exons are updated to
the matching site reported in the PolyASite database.

Given that the PolyASite database (as of version 2.0) lacks datasets with TDP-43
depletion and has limited neuronal cell datasets, it is possible it has incomplete coverage of
polyadenylation sites specific to TDP-43 depletion and/or neuronal cell contexts. PolyA sites are
characterised by an enriched nucleotide distribution around cleavage sites. Most notably, polyA



signal hexamers, of which 18 variants exist21, are enriched approximately 21 nt upstream of
cleavage sites. To rescue 3’ends of last exons that may not be represented in the PolyASite
database, the final 100nt of putative last exon sequences are extracted and last exons are
retained if an exact match to any of the previously defined 18 polyA signal hexamers21 is found.
If a locus contains multiple predicted last exons, the last exon with a polyA signal hexamer
located closest to the expected 21nt upstream distance is selected for each experimental
condition.

Next, a combined transcriptome reference of novel and annotated last exons is
generated. All last exons passing either the PolyASite or motif filter are retained for downstream
analysis. Last exons of all annotated transcripts are extracted using a custom script. Last exons
of each gene are assigned a common ‘last exon isoform identifier’ based on any overlapping
sequence. 3’UTR extensions are assigned a distinct identifier, and the annotated last exon(s)
they extend are grouped into a single identifier. This has the effect of comparing the usage of
3’UTR extension to all other annotated last exons of the same gene. In order to prevent
misattribution of reads to internal last exon isoforms, any regions overlapping annotated first or
internal exons are removed (i.e. only ‘unique’ regions of last exons are retained). Any last exons
with a 3’end overlapping annotated first/internal exons are also completely removed from
downstream analysis to produce a final reference of last exon isoforms for quantification.

Transcript sequences are extracted using gffread69 version 0.12.1 and used to produce a decoy
aware transcriptome index constructed using Salmon22 (version 1.5.2) with full genome
sequence (Grch38 build) used as decoys71. Samples are subsequently quantified against the
last exon reference using Salmon22 v1.5.2 with the ‘--gcBias’ & ‘--seqBias’ flags. Transcript per
million (TPM) values of individual transcripts are summed according to their assigned last exon
isoform ID, and estimated counts are generated using the
‘countsFromAbundance=lengthScaledTPM option’ in the tximport72 package (version 1.26.0).
The counts matrix is optionally used as input to DEXSeq23 v1.44.0 to test for differential isoform
usage between experimental conditions. A relative polyA site usage is further calculated for
each gene by dividing the expression (in TPM units) of each last exon isoform by the sum of
expression of all isoforms of the gene.

PAPA v0.2.0 is implemented as a Snakemake61 pipeline. All interval operations in Python are
performed using the PyRanges73 package, and genomic sequence operations using a
combination of pyfaidx74 and BioPython75. Package dependencies are managed using conda
environments, including an ‘execution’ environment with a minimal Snakemake installation. The
code is available at https://github.com/frattalab/PAPA.

Identification of cryptic last exons with PAPA

To generate a common transcript reference against which to quantify last exons, we first ran
PAPA in ‘identification’ mode to predict novel last exons across all stranded datasets in our
compendium (All i3Neuron datasets, two of the SH-SY5Y datasets and one SK-N-BE(2)
dataset). StringTie19 transcript assembly was performed in an ‘annotation-guided’ manner using
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a filtered GENCODE v4058 human transcriptome reference. The reference was filtered first for
transcript models with a ‘transcript support level’ tag value of at least 3 that belong to
protein-coding or lncRNA genes. Transcript models with the ‘mRNA_end_NF’ tag, denoting
transcripts with unsupported 3’ends, are also removed as performed by LABRAT76.

Gene transfer format (GTF) files of predicted last exons across all datasets were subsequently
combined into a single GTF of novel last exons using the custom script
‘combine_novel_last_exons.py’ script available in the PAPA repository. All datasets were then
quantified and assessed for differential usage using a unified transcriptome reference of
combined novel last exons and annotated last exons (from the same filtered GTF used for
transcript assembly). All differential usage tests were performed using the standard DEXSeq
workflow without additional covariates, with the exception of the Klim et al i3 motor neuron
dataset47 where the date of differentiation was added as a covariate. Cryptic last exons were
defined as isoforms with an Benjamini-Hochberg adjusted p-value of < 0.05 from DEXSeq,
mean usage in control samples < 10 % and increase in mean usage in knockdown samples >
10 %.

Following manual inspection of cryptic events we observed frequent IPA calls resulting from
regions with intron retention, where the predicted 3’end can be attributed to regions with marked
well of reduced coverage (likely due to repetitive sequence) but similar levels of coverage either
side of the well and at the intron-exon boundaries. We therefore manually curated cryptic IPA
events to mitigate these artefacts. We do not anticipate intronic ALEs to be similarly affected
because their 5’end is defined by a novel splice junction.

TDP-43 iCLIP analysis

The SH-SY5Y TDP-43 iCLIP data was generated and processed as previously described10, and
the raw data is available at E-MTAB-11243. iCLIP peaks from the two independent replicates
were merged into non-redundant intervals for all subsequent analysis.

Cryptic events are defined as last exon isoforms passing cryptic thresholds in any in vitro
dataset. The probability of detecting TDP-43 binding events via iCLIP is influenced by the
abundance of target RNAs, but by pooling cryptic events across datasets we cannot control for
the confounding influence of RNA expression between groups. We therefore defined
background events as isoforms that were assessed for differential usage (see above criteria) in
all SH-SY5Y datasets and had a padj > 0.05 across all datasets. Given that the cryptic group
contains events identified across all datasets (with no guarantees of expression in SH-SY5Y
datasets), we therefore penalise the detection of TDP-43 binding in the cryptic group and bias
against observing enriched binding in this group.

To define representative intervals for 3'Ext events, the most distal annotated polyA site is
selected to represent the proximal site, and background events represent loci with a predicted
novel 3’UTR extension. For other event categories, background events include annotated and



novel events. However, our approach to define a common last exon reference across datasets
and defining last exon isoforms (see above) can result in non-redundant intervals being
predicted for the same last exon isoform. As such, we implemented a collapsing strategy to
define a single representative interval for each event. First, overlapping novel predictions are
filtered for those that match a site from the PolyASite atlas. If distinct reference sites are
reported for the same isoform, the site that is predicted in the most independent datasets is
selected as representative. If distinct sites are detected in the same number of independent
datasets, the more proximal site is arbitrarily selected as representative. Finally, because the
standard PolyASite atlas cluster intervals were used for matching, distinct 3’end predictions can
overlap with cluster intervals. In these cases the site that is closest to the PolyASite
representative coordinate is selected. If these distinct cluster-overlapping sites are equidistant
from the representative coordinate, the most distal coordinate is arbitrarily selected. If no
isoforms match an atlas site (i.e. contains a polyA signal sequence), we first attempt to select a
representative site whose putative polyA signal motif minimises the deviance from the
characteristic position 21nt upstream of the polyA site. If multiple motifs are equidistant from the
expected position, the most proximal site is arbitrarily selected as representative. For ALE and
IPA events, we noted that collapsing at the 3’end still resulted in distinct intervals for each last
exon. 9 background IPA events still had distinct 3’end coordinates following the filtering criteria
above, and the interval with the most distal 3’end was arbitrarily selected as the representative
interval. 4 background ALE events had distinct 5’end coordinates following the above filtering,
and the most proximal 5’end (i.e. shortest exon) is arbitrarily selected as the representative
interval. Given the very small proportion of events affected by these arbitrary criteria, we do not
anticipate they will substantially affect the analysis.

To construct metaprofiles of TDP-43 binding, Single nucleotide regions representing the
genomic landmarks were extended by 500nt in both directions and per-position coverage by
iCLIP peaks was then calculated, assigning a value of 1 when a given position overlaps an
iCLIP peak. All interval operations were performed using bedtools77 version 2.31.0. The mean
(equivalent to the fraction of events that have an overlapping iCLIP peak) and standard error of
coverage is then calculated for each position relative to the landmark. Confidence intervals
around the mean coverage in the maps correspond to +/- 1 standard error. Both mean coverage
and confidence intervals are visualised following LOESS smoothing with the ‘span’ parameter
set to 0.1.

De-novo motif enrichment analysis

To perform de-novo motif enrichment, we adapted PEKA24, which identifies kmers with
positional enrichment at iCLIP peaks relative to background cross-link sites whilst normalising to
the general occurrence in the surrounding genomic context. Therefore, we can substitute iCLIP
peaks and global cross-link sites for cryptic and background landmarks respectively to identify
positionally enriched kmers with respect to cryptic landmarks. For all comparisons, we ran
PEKA to search for enriched 6-mers in the proximal window of interest set to 250nt (the broad
window in which iCLIP peaks were observed) and the distal window set to 500nt (to maintain
consistency with the overall search space for iCLIP peaks). The ‘percentile’ flag was set to 0 to



switch off thresholding of background regions based on read count, and the ‘relpos’ flag to 0 to
consider all positions in the proximal window when calculating the enrichment score.

Preferred TDP-43 binding 6-mers were extracted from Halleger et al.6. Briefly, The 6-mers were
defined using PEKA as the as the top 20 most enriched kmers around intronic iCLIP crosslinks
across all WT, A326P, G294A, G335A, M337P, Q331K and a 316del346 GFP-TDP-43 in
HEK293 cells. The 20 were subsequently separated into the following three groups based on a
gradient of enrichment in WT and G335A TDP-43 with respect to A326 and 316del346 variants
and their consensus sequence:

- YG-containing [UG]n 6-mers - UGUGUG, GUGUGU, UGUGCG, UGCGUG, CGUGUG,
GUGUGC

- YA-containing [UG]n 6-mers - AUGUGU, GUAUGU, GUGUAU, UGUGUA, UGUAUG,
UGCAUG

- AA-containing [UG]n 6-mers - GUGUGA, AAUGAA, GAAUGA, UGAAUG, AUGAAU,
GUGAAU, GAAUGU, UUGAAU

Where ‘Y’ corresponds to a pyrimidine nucleotide. To assess their over-representation among
enriched 6-mers relative to cryptic landmarks, we performed a one-sided gene-set enrichment
analysis (GSEA) using fgsea32 version 1.24.0 with default settings for each cryptic landmark.
The three 6-mer groups and the union of all three groups were provided as input pathways, and
kmers were ranked by their PEKA score. After independent runs for each landmark,
Benjamini-Hochberg adjusted p-values were calculated with respect to the all tested landmarks
and 6-mer sets and used to evaluate statistical significance.

To generate maps of coverage of specific kmers, we used cv_coverage78 v1.1.0
(https://github.com/ulelab/cv_coverage) to scan for occurrences of the YG-containing [UG]n
6-mers in a 500nt window around cryptic and background landmarks, disabling weighting the
occurrence by cDNA count. For coverage plots, the percentage occurrences of each 6-mer
were summed separately for the cryptic and background regions. The percentage occurrences
were converted to mean coverages and visualised as described for iCLIP maps.

The adapted PEKA code is available at the ‘output_mods’ branch of the following forked copy of
the PEKA repository https://github.com/SamBryce-Smith/peka. A snakemake pipeline to run
PEKA and cv_coverage is available in the ‘motifs/peka_snakemake’ directory of the ‘tdp43-apa’
repository.

Post-mortem RNA-seq analysis

FACS-seq data processing

Sequenced reads from FACS-sorted frontal cortex neuronal nuclei26 and were processed as
described in Brown et al10. The data are available on the Gene Expression Omnibus at
GSE126543.

Quantification of cryptic last exons in post-mortem FACS-seq data

https://github.com/ulelab/cv_coverage
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Nuclear RNA-seq libraries contain both nascent and processed RNA. We therefore constructed
decoy transcript models that include intron retention at the ALE and IPA loci to limit the
confounding effect of nascent RNAs on transcript quantification22. Cryptic last exons are first
classified as ALE, IPA or 3'Exts using the same criteria as PAPA, and decoy transcript models
are subsequently generated separately for each event type.

For IPA events, the unique cryptic last exon sequence is extended to incorporate the
annotated internal exon (up to its 5’ boundary). Then, a ‘spliced’ decoy transcript is generated
that traverses the annotated internal exon to the downstream exon for all annotated transcripts,
and an ‘intron retention’ decoy transcript is generated that contains the same pairs of internal
exons and the intervening intron. For ALEs, a ‘retained intron’ decoy transcript is generated that
consumes the complete intronic sequence in which the last exon is contained. No decoy
transcript models are generated for 3’Ext events. Decoy transcript identifiers are appended with
suffixes to differentiate from cryptic ALEs and last exon identifiers are generated (excluding
decoys) with respect to novel and annotated last exons as in PAPA to allow calculation of %
PAU usage. The script used to generate the decoy-augmented last exon reference is available
at ‘add_decoys_to_gtf.py’ in the ‘tdp43-apa’ GitHub repository.

The decoy-augmented reference quantified with Salmon v1.8.022 using the ‘salmon’ sub-pipeline
available at https://github.com/frattalab/rna_seq_single_steps. As with PAPA, samples are
quantified against a decoy-aware transcriptome index with full genome sequence (GRCh38
build) used as decoys71 and the ‘--gcBias’ and ‘--seqBias’ flags enabled.

Calculation of % polyA usage is performed using a copy of the ‘tx_to_polyA_quant.R’
script from the PAPA repository. Sample-wise differences in % polyadenylation site usage is
calculated by subtracting the usage in the TDP-43 positive population from the TDP-43 negative
population, such that a positive difference indicates the cryptic APA has a higher relative
expression in the population with TDP-43 depletion.

New York Genome Centre (NYGC) RNA-seq data

The sequencing libraries were generated27,79 and processed13 as previously described. Samples
were classified into disease subtypes as previously described13. Briefly, FTD subtypes were
classified by pathology according to the presence of TDP-43 inclusions (FTLD-TDP), FUS or
Tau aggregates. ALS patients were sub-categorised based on presence (ALS-non-TDP) or
absence (ALS-TDP) of reported SOD1 or FUS mutations. The following samples were
considered as regions where TDP-43 pathology (and specific cryptic junction expression) is
expected; motor (ALS-TDP), frontal and temporal cortex samples (FTLD-TDP, ALS-TDP),
cervical, lumbar and thoracic spinal cord samples (ALS-TDP).

We opted to quantify ALE events using junction reads, which provide direct quantification of the
occurrence of a splicing event. As of version 0.2 PAPA does not directly report splice junctions
associated with ALE events. However, as the filtering criteria applied by PAPA requires putative
ALE events to have a terminal splice junction with a direct match to an annotated 5’ss, it is
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possible to infer splice junctions from reference annotation using just the reported last exon
coordinates. For ALEs fully contained within annotated introns, the splice junction is defined
from the intron start to the start of the ALE. If last exons are distal to the annotated gene, then
the closest upstream annotated intron is found. The splice junction is subsequently defined as
the region from intron start to the start of the ALE. Finally, for annotated ALEs all annotated
introns that terminate at the ALE are reported as splice junctions for the event. The above steps
are implemented in a custom script ‘last_exons_to_sj.py’ available at the ‘tdp43-apa’ GitHub
repository.

Splice junctions for cryptic ALEs and cryptic splice junctions identified in cortical-like
i3Neurons13 were quantified across the NYGC RNA-seq cohort by extracting counts for provided
junctions from the ‘.SJ.out.tab’ files produced by STAR59. The code is implemented in the
‘bedops_parse_star_junctions’ v0.1.0 Snakemake pipeline and is available at
https://github.com/SamBryce-Smith/bedops_parse_star_junctions.

We defined detection criteria to prioritise cryptic splice junctions that are specifically in tissue
types and samples with expected TDP-43 pathology. Junctions are considered expressed if at
least two spliced reads are detected in a sample. Junctions are considered selectively
expressed if expressed in at most 0.5 % of all samples where TDP-43 pathology is not expected
and at least 1 % of samples where TDP-43 pathology is expected. We note that such criteria will
exclude events with enriched expression in tissues with expected TDP-43 proteinopathy, but
that have basal expression in unknown cell types not represented in our in vitro compendium.
Such events may still have relevance in mechanisms of disease in specific cell types, but are
less suitable for discriminating samples with TDP-43 proteinopathy.

Ribo-seq analysis

i3Neuron Ribo-seq data was generated and processed as previously described13. Uniquely
mapped reads were assigned to genes based on the union of annotated ‘CDS’ entries in the
Gencode v34 standard annotation released using featureCounts80 version 2.0.1. Differential
expression between TDP-43 knockdown and control was performed using DESeq281 v1.38.3,
and differentially translated genes were defined based on a Benjamini-Hochberg adjusted
p-value threshold of 0.05. Any last exon passing our cryptic criteria in at least one of the i3
Neuron datasets (Brown i3 cortical, Seddighi i3 cortical, Humphrey i3 cortical) was considered
for intersection with differentially translated genes.

Gene-set enrichment analysis was performed using fgsea32 version 1.24.0 with default settings.
Cryptic 3'Ext, IPA & ALE containing genes were provided as input pathways, and moderated
fold changes calculated with ‘lfcShrink’ function from DESeq2 package using the default
apeglm82 method as the shrinkage estimator to rank genes. A threshold of 0.05
Benjamini-Hochberg adjusted p-value was used to determine statistical significance.

https://github.com/SamBryce-Smith/bedops_parse_star_junctions


Read counting was performed using the ‘feature_counts’ sub-pipeline available at
https://github.com/frattalab/rna_seq_single_steps. Custom scripts used to perform differential
expression and pathway analysis are available at https://github.com/frattalab/tdp43-apa .

For cross-referencing with differential RNA expression, we used differential expression analysis
from cortical-like i3Neurons performed as previously described13. Cryptic last exon-containing
genes were highlighted if they passed the statistical significance threshold in the Ribo-seq
differential expression analysis.

Analysis of ELK1 transcription factor activity

ELK1 target genes in HeLa cells were accessed from the ChIP-Atlas83 on the 15th
November 2023. We used the ‘Target genes’ module to obtain a list of target genes that have a
ChIP-seq peak within +/- 1 kilobase of transcription start sites. The resulting list contained two
HeLa datasets (GSM608163, GSM935326), and was filtered to target genes identified in both
datasets Given a reported redundancy of function between ELK1 and other members of the
ternary complex factor family84 (ELK3 and particularly ELK4), we also attempted to define a
unique set of ELK1 target genes. ELK4 target genes in HeLA cells were accessed from
ChIP-Atlas on the 29th November 2023 using the same parameters. The resulting list contained
3 HeLa datasets (GSM608161, GSM608162, GSM935351), and we again filtered for target
genes identified in all datasets. ELK3 HeLa ChIP-seq data was not available through ChIP-Atlas
at the time of publication, and was not considered for further redundancy. ELK3 RNA levels are
10x lower than ELK3 and ELK4 in HeLa TDP-43 knockout cells39, so we anticipate this is
unlikely to affect our conclusions. ELK1 and ELK4 target gene lists were intersected to define
common and unique target genes for each transcription factor. Final target gene lists used are
reported in Supplementary Table 5.

RNA-sequencing data from HeLa cells with TDP-43 knockout39 were accessed from
GSE136366. The data were processed and differential expression was performed as described
in Brown et al10. Genes were ranked by DESeq2’s test statistic (log2 transformed fold change
divided by the standard error of the fold change) after removing genes with differential splicing
upon TDP-43 knockout, where we can expect to attribute any changes in gene expression to
TDP-43 loss of function. Differentially spliced genes were defined using MAJIQ85, considering
any genes with a probability of > 0.95 as differentially spliced. The target gene sets described
above were used as input pathways to fgsea32 version 1.24.0 using default settings.

Code availability

All visualisation and statistical testing was performed in R86 version 4.3.2 using the ggplot287

v3.4.4, ggpubr88 v0.6.0, ggprism89 v1.0.4 and ggrepel90 v0.9.4 packages. Preprocessing for
visualisation and generation of supplementary tables was performed using tidyverse91 v2.0.0,
writexl92 1.4.2, and data.table93 v1.14. Unless otherwise stated, analyses requiring genomic
interval operations or queries with bioinformatics data formats were performed in Python 3.10.11
using PyRanges73 0.0.127, pandas94 v2.0.2 numpy95 v1.23. Analysis and visualisation code,

https://github.com/frattalab/rna_seq_single_steps
https://github.com/frattalab/tdp43-apa


along with conda96 and renv97 environments for dependency management, can be accessed at
https://github.com/frattalab/tdp43-apa. Alternative repositories for specific analyses are reported
in the relevant sections of the methods.
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Figure 1 - TDP-43 depletion induces cryptic APA in a compendium of in vitro TDP-43
datasets

A) Schematic demonstration of the computational pipeline to detect, quantify and infer
differential usage of last exons from bulk RNA-seq data. De-novo transcripts are
assembled using StringTie19 and subsequently filtered for a mean TPM > 1 within each
experimental condition. Last exons are extracted from transcript models and compared
to reference annotation (purple) to identify putative novel last exons (orange). Putative
last exons are filtered for predicted 3’ends < 100nt from sites in the PolyASite20
database, or rescued if a conserved polyA signal hexamer21 can be identified within the
last 100nt of the last exon. Novel and annotated last exons were subsequently quantified
using Salmon22 and assessed for differential usage using DEXSeq23. For further details
see Methods.

B) Last exons responsive to TDP-43 depletion. All points represent a last exon passing a
Benjamini-Hochberg adjusted p-value < 0.05 threshold in at least one dataset. Where a
last exon passes the threshold in multiple datasets, the median values across datasets
are calculated to represent the basal usage and change in usage upon TDP-43
depletion. Last exons passing our cryptic threshold are highlighted in orange
(Benjamini-Hochberg adjusted p-value < 0.05, mean usage in control cells < 10 % and
change in usage between TDP-43 knockdown and control (‘TDP43KD’ - ‘CTRL’) > 10
%).

C) Example RNA-seq coverage traces control (grey) and TDP-43 knockdown (gold)
i3Neuron samples for cryptic ALE (ARHGAP32), IPA (ANKRD27) and 3’Ext (TLX1)
events. Dashed lines indicate landmarks around which TDP-43 binding is assessed in
(C) and (D). ARHGAP32 and ANKRD27 are encoded on the reverse strand but flipped to
read 5’-3’ for visualisation purposes.

D) TDP-43 binding maps around boundaries of ALEs.
(Top) TDP-43 iCLIP RNA maps around the first nucleotide of the last exon (‘Exon Start’)
and the polyA site (‘PAS’) of ALEs. The solid lines represent the mean coverage
(equivalent to fraction coverage) of relative positions upstream (negative values) and
downstream (positive values) of the landmark from pooled TDP-43 iCLIP peaks from
SH-SY5Y cells (n=2) in background (black, n=929) and cryptic ALEs (orange, n=92).
Shaded intervals represent +/- 1 SE for the corresponding coloured group.
(Bottom) TDP-43 motif maps around the first nucleotide of the last exon (‘Exon Start’)
and the polyA site (‘PAS’) of ALEs. The solid lines represent the mean coverage by
YG-containing hexamers (Supplementary Fig. 3A) of relative positions upstream
(negative values) and downstream (positive values) of the landmark in background
(black, n=929) and cryptic ALEs (orange, n=92).

E) TDP-43 binding maps around alternative polyA sites of 3’Exts.
(Top) TDP-43 iCLIP RNA maps around the proximal (‘Proximal’) and distal (‘Distal’)
polyA site of 3’Ext events. As in D), but background (black, n=798) and cryptic regions
(orange, n=86) are obtained for 3’Ext events.
(Bottom) TDP-43 motif maps around the proximal (‘Proximal’) and distal (‘Distal’) polyA
site of 3’Ext events. As in D), but background (black, n=798) and cryptic regions (orange,
n=86) are obtained for 3’Ext events.
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Figure 2 - Cryptic last exons are detected in post-mortem ALS-FTD RNA-seq datasets

A) Heatmap of cryptic polyadenylation site usage in post-mortem FACS-seq data26. Cells
are coloured according to the magnitude of sample-wise difference in usage between
TDP-43 depleted (TDPnegative) and TDP-43 positive (TDPpositive) cells. Rows
represent individual cryptic last exons from in-vitro that passed enrichment criteria
(median sample-wise difference in usage (TDPnegative - TDPpositive) > 5 %) and are
arranged in descending order of the difference in usage within each event type. Columns
represent individual patients within the cohort.

B) Selectively expressed cryptic ALEs (orange) and splicing events13 (purple) in tissues and
samples with TDP-43 proteinopathy in the New York Genome Centre (NYGC) ALS
Consortium dataset. Events are considered detected if at least 2 junction reads were
detected in a sample.

C) Detection of spliced reads for the cryptic ALE in PHF2 across samples in the NYGC ALS
Consortium dataset. ’CTL’ denotes control samples. Colour indicates whether disease
subtype and region is expected (orange) or not expected (green) to have TDP-43
pathology and cryptic spliced read expression.

D) As in C), but for cryptic ALE in SYNJ2.





Figure 3 - Cryptic 3’UTR extensions in transcription factor RNAs lead to increased RNA
and protein levels by increased RNA stability and altered localisation

A) Volcano plot of differential expression analysis of RNA-seq data between TDP-43
knockdown (TDP43KD) and control (CTRL) i3Neurons. Cryptic 3'Ext genes with
increased translation (Fig. 3B) are highlighted in orange. Genes with a -log10 transformed
Benjamini-Hochberg adjusted p-value greater than 50 are collapsed to 50 for
visualisation purposes.

B) Volcano plot of differential expression analysis of Ribo-seq data between TDP-43
knockdown (TDP43KD) and control (CTRL) i3Neurons. Genes are highlighted if they
contain a cryptic 3'Ext (orange), ALE (blue) or IPA (green) event. Genes with a -log10
transformed Benjamini-Hochberg adjusted p-value are collapsed to 10 for visualisation
purposes.

C) Western blot analysis of ELK1 protein levels in Halo-TDP-43 i3Neurons.
(Top) Western blot showing increased ELK1 protein expression upon TDP-43 KD in
Halo-TDP-43 i3Neurons.
(Bottom) Quantification of ELK1 band intensities normalised to Tubulin in control (CTRL)
and TDP-43 knockdown (TDP43KD) Halo-TDP-43 i3Neurons.

D) Analysis of ELK1 transcription factor activity.
(Top) Coverage trace in control (black) and TDP-43 knockout (gold) samples for the
ELK1 cryptic 3’Ext in HeLa cells39.
(Bottom) Enrichment plot for ChIP-seq defined ELK1 target genes in TDP-43 knockout
HeLa cells. The green line corresponds to GSEA’s running sum statistic, and red
horizontal dashed lines mark the maximal enrichment score among upregulated and
downregulated genes. The vertical dashed line demarcates the rank between
upregulated and downregulated genes in the evaluated gene set. Black vertical bars
correspond to locations of ELK1 target genes in the ranked gene set. The black text
reports the normalised enrichment score (‘NES’, normalised to the mean enrichment
score of random samples of the same size as the gene set) and Benjamini-Hochberg
adjusted p-value (‘padj’)

E) Decay curve for RNA produced before 4SU labelling in i3Neuron SLAM-seq data for
control (grey) and knockdown (orange) samples. Solid curves indicate the fitted estimate
of the level of old RNA for each condition. Individual samples are shown as points with
the upper and lower 95% credible interval shown as error bars. GrandR-estimated
half-lives for control (grey) and knockdown (orange) samples are reported in the inset
text for each gene.

F) Representative images for FISH probes targeting the annotated (‘ELK1 Total’, green)
3’UTR and cryptic 3’UTR specific (‘ELK1 Cryptic’, magenta) sequences of ELK1 in
control (top row) and TDP-43 knockdown (bottom row) i3Neurons. The white lines in the
‘Brightfield’ column represent scale bars (10 µm).

G) Quantification of total FISH probe signal for the probes targeting the annotated 3’UTR
(‘Total’) and cryptic 3’UTR specific (‘Cryptic’) sequences of ELK1. Different shapes
represent independent replicates. Mean foci counts per cell (n=10 images) are
normalised with respect to the control sample from the same replicate (Methods). A
single asterisk (*) represents a Benjamini-Hochberg adjusted p-value < 0.05 from a
one-sample t-test on log-transformed ratios (Methods).

H) Subcellular quantification of FISH signal for probes targeting the annotated 3’UTR region
(‘Total ELK1’) of ELK1. Different shapes represent independent replicates. The mean
ratio of extranuclear:nuclei foci counts (n=10 images) is normalised with respect to the
control sample from the same experimental replicate (Methods). The numeric label
represents the Benjamini-Hochberg adjusted p-value from a one-sample t-test on
log-transformed ratios (Methods).
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Supplementary Figure 1 - Consistency of response to TDP-43 depletion across
compendium of in-vitro datasets

Differential usage of cryptic APA events across the compendium of in-vitro datasets. Cells are
coloured in accordance to magnitude and direction of change in usage, where positive values
(orange) indicate increased usage in TDP-43 knockdown (‘TDP43KD’) samples. Blank cells
indicate the event was not expressed at sufficient levels to be assessed for differential usage.
Rows are sorted in decreasing order of the sum of -log10 transformed p-values weighted by the
change in usage between TDP-43 knockdown and control samples (TDP43KD - CTRL) in each
dataset. A single asterisk indicates that the isoform was considered significantly regulated in a
dataset (Benjamini-Hochberg adjusted p-value < 0.05), and two asterisks indicate the isoform is
considered cryptic in a given dataset.





Supplementary Figure 2 - Consistency of cryptic status across compendium of in vitro
datasets

A) Relationship between the number of datasets in which APAs are called cryptic and their
detection. Count labels indicate the number of unique cryptic APAs that fall into the given
bin. Events are considered expressed if they pass minimum expression criteria to be
evaluated for differential isoform usage (Methods).

B) Last exons responsive to TDP-43 depletion. All points represent a last exon passing a
Benjamini-Hochberg adjusted p-value < 0.05 threshold in at least one dataset. Where a
last exon passes the threshold in multiple datasets, the median values across datasets
are calculated to represent the basal usage and change in usage upon TDP-43
depletion. Points that pass cryptic expression criteria in at least one dataset but pass
(orange) or fail (green) the criteria when calculating the median change in usage and
expression in control (CTRL) cells across datasets with an Benjamini-Hochberg adjusted
p-value < 0.05 are highlighted.
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Supplementary Figure 3 - Enrichment of previously defined TDP-43 binding hexamers at
cryptic APA boundaries

A) Table listing previously defined TDP-43 hexamer groups6. ‘Y’ codes for a pyrimidine
nucleotide.

B) Gene set enrichment analysis (GSEA) of enriched TDP-43 binding 6mers on de-novo
enriched 6-mers around cryptic landmarks. The panels and labels correspond to regions
evaluated for iCLIP binding as in Fig. 1D . The area of the points is proportional to the
-log10 transformed adjusted p-value (adjusted with respect to all region types and motif
groups), and the colour denotes whether the Benjamini-Hochberg adjusted p-value
passes (green) or fails (purple) a significance threshold of < 0.05.





Supplementary Figure 4 - Analysis of cryptic APA categories in Ribo-seq data

A) Volcano plot of differential expression analysis of RNA-seq data between TDP-43
knockdown (TDP43KD) and control (CTRL) i3Neurons. Cryptic APA genes with
significant differential expression (Benjamini-Hochberg adjusted p-value < 0.05) are
highlighted in orange (3’Ext), blue (ALE) or green (IPA). Genes with a -log10 transformed
Benjamini-Hochberg adjusted p-value greater than 50 are collapsed to 50 for
visualisation purposes.

B) Gene Set Enrichment Analysis (GSEA) of cryptic APA categories in i3Neuron Ribo-seq
differential expression fold change ranks. The area of the points is proportional to the
-log10 transformed Benjamini-Hochberg adjusted p-value. Points are coloured according
to their APA category as in A).


