

# Structure of hepatitis B/D antiviral drug Bulevirtide bound to its receptor protein NTCP

3 Hongtao Liu<sup>1</sup>, Dariusz Zakrzewicz<sup>2</sup>, Kamil Nosol<sup>1</sup>, Rossitza N. Irobalieva<sup>1</sup>, Somnath  
4 Mukherjee<sup>4</sup>, Rose Bang-Sørensen<sup>1</sup>, Nora Goldmann<sup>3</sup>, Sebastian Kunz<sup>2</sup>, Lorenzo Rossi<sup>1</sup>,  
5 Anthony A. Kossiakoff<sup>4,\*</sup>, Stephan Urban<sup>5,6,\*</sup>, Dieter Glebe<sup>3,\*</sup>, Joachim Geyer<sup>2,\*</sup>, & Kaspar P.  
6 Locher<sup>1,\*</sup>

7 <sup>1</sup>Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland

<sup>8</sup> <sup>2</sup>Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig

## 9 University Giessen, Giessen, Germany

10 <sup>3</sup>Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and

11 Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-

12 Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany

13 <sup>4</sup>Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL,

14 USA

15 <sup>5</sup>Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg,

## 16 Heidelberg, Germany

17 <sup>6</sup>German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg,

18 Germany

19 \*To whom correspondence may be addressed. Email: [Stephan.Urban@med.uni-bonn.de](mailto:Stephan.Urban@med.uni-bonn.de)

20 [heidelberg.de](http://heidelberg.de), [koss@bsd.uchicago.edu](mailto:koss@bsd.uchicago.edu), [Dieter.Glebe@viro.med.uni-giessen.de](mailto:Dieter.Glebe@viro.med.uni-giessen.de),

21 [Joachim.M.Geyer@vetmed.uni-giessen.de](mailto:Joachim.M.Geyer@vetmed.uni-giessen.de), [locher@mol.biol.ethz.ch](mailto:locher@mol.biol.ethz.ch)

22

23

24 **Abstract**

25 Cellular entry of the hepatitis B and D viruses (HBV/HDV) require binding of the viral surface  
26 polypeptide preS1 to the hepatobiliary transporter NTCP. This interaction can be blocked by  
27 bulevirtide (BLV, formerly Myrcludex B), a preS1 derivative and approved drug for treating  
28 HDV infection. To elucidate the basis of this inhibitory function, we determined a cryo-EM  
29 structure of BLV-bound human NTCP. BLV forms two domains, a plug lodged in the bile salt  
30 transport tunnel of NTCP and a string that covers the receptor's extracellular surface. The N-  
31 terminally attached myristoyl group of BLV interacts with the lipid-exposed surface of NTCP.  
32 Our structure reveals how BLV inhibits bile salt transport, rationalizes NTCP mutations that  
33 decrease the risk of HBV/HDV infection, and provides a basis for understanding the host  
34 specificity of HBV/HDV. Our results provide opportunities for structure-guided development of  
35 inhibitors that target HBV/HDV docking to NTCP.

36

37 **Introduction**

38 With approximately 1.5 million individuals infected annually, the hepatitis B virus (HBV)  
39 continues to pose a substantial global health challenge, despite the availability of an effective  
40 vaccine<sup>1</sup>. HBV, a small, enveloped DNA virus, causes acute and chronic infection of the liver  
41 and the chronic form, in particular, significantly contributes to the overall burden of liver-related  
42 diseases, such as cirrhosis and hepatocellular carcinoma (HCC)<sup>2,3</sup>. Additionally, co-infection  
43 of HBV-infected patients with the hepatitis D virus (HDV), an enveloped RNA satellite virus  
44 that uses HBV surface proteins in HBV/HDV co-infected cells for envelopment and infection,  
45 enhances the severity of liver disease<sup>4-6</sup>. Since HBV and HDV share the HBV surface proteins  
46 to target hepatocytes for infection, their entry mechanisms have been studied extensively<sup>7,8</sup>.  
47 Viral entry involves initial low-affinity binding to cellular heparan sulfate proteoglycans  
48 (HSPGs)<sup>9-12</sup> followed by high-affinity binding to the human Na<sup>+</sup>-taurocholate co-transporting  
49 polypeptide (NTCP), an interaction crucial for HBV/HDV infection (Fig. 1)<sup>8,13,14</sup>. NTCP  
50 (SLC10A1), a member of the solute carrier transporter family, is one of four transporters  
51 involved in the enterohepatic circulation of bile salts<sup>15-17</sup>. Located in the basolateral membrane  
52 of hepatocytes, NTCP plays a vital role in transporting approximately 80% of bile salts,  
53 particularly conjugated bile salts, from the bloodstream into hepatocytes<sup>18,19</sup>. Its function is  
54 linked to maintaining bile salt homeostasis, essential for the digestion and absorption of dietary  
55 fats<sup>18</sup>. In 2012, NTCP was identified as a receptor for HBV/HDV<sup>8,13,14</sup>. In 2022, four  
56 independent studies reported structures of NTCP, revealing nine transmembrane helices  
57 (TMs) arranged in two domains, termed panel and core<sup>20-23</sup>. Two of these helices create a  
58 crossing motif (X-motif), near which two sodium ion binding sites are located<sup>23</sup>. The highest-  
59 resolution structure revealed the binding sites for two bile salt molecules in a continuous tunnel  
60 that links the extracellular and cytoplasmic side of the basolateral membrane<sup>23</sup>.

61 The viral envelopes of HBV and HDV contain three surface proteins: large (LHBs),  
62 middle (MHBs), and small (SHBs), generated from a single open reading frame through

63 alternative start codons<sup>24-26</sup>. They contain the same C-terminus but differ by N-terminal  
64 additions and N-glycosylation status. The SHBs contain four transmembrane domains that are  
65 embedded in the viral membrane and are linked by intra- and intermolecular disulfide bridges.  
66 The MHBs only contain a preS2-domain, whereas the LHBs contain a preS2- and a preS1-  
67 domain located N-terminal to the SHBs<sup>27</sup>. During protein synthesis, the LHBs undergo a  
68 posttranslational modification via myristoylation at a conserved glycine residue (Gly2) in the  
69 preS1-domain<sup>24,28,29</sup>. Previous studies have shown that the first 75 residues of preS1 are  
70 important for viral infectivity of HBV/HDV<sup>30,31</sup>. Residues <sup>9</sup>NPLGFFF<sup>15</sup> are essential for  
71 infectivity and binding and are highly conserved within the ten known genotypes of HBV (GtA-  
72 GtJ)<sup>32</sup>. Previous studies suggest that residues Gly2-Asp48 bind to NTCP<sup>32</sup>. Specific regions  
73 of NTCP, including extracellular loop 1 that connects TM2 and TM3 (residues Arg84-Asn87),  
74 and the extracellular surface of TM5 (residues Lys157-Leu165), have been shown to interact  
75 with the preS1 peptide<sup>8,14,33</sup>. The exact mechanism of NTCP-mediated virus entry remains  
76 elusive; however, it is thought to occur via endocytosis, which is known to recruit various host  
77 factors for entry initiation<sup>34,35</sup>. During active HBV infections, two distinct species of viral  
78 particles are produced: infectious virus particles and a far larger excess of non-infectious  
79 subviral particles (SVPs)<sup>36-38</sup>. Whilst both species contain all three viral envelope proteins,  
80 allowing for recognition and binding to NTCP as a receptor, SVPs lack genetic material and  
81 are therefore not infectious<sup>38,39</sup>. Thus, SVPs provide an alternative model system for the study  
82 of HBV/HDV receptor interaction.

83 It was recognized that strategies aimed at inhibiting or disrupting binding of preS1 to  
84 NTCP hold promise in preventing HBV/HDV infection. In 2023, the commercially available  
85 drug Hepcludex® (also known as bulevirtide (BLV), formerly Myrcludex B), received market  
86 approval for the treatment of chronic HDV infection in Europe<sup>32,40-43</sup>. The sequence of BLV is  
87 derived from that of preS1 from HBV genotype C (residues Gly2-Gly48) with a shortening of  
88 the 11 additional N-terminal amino acids and one amino acid substitution, Gln46Lys<sup>32</sup>. BLV  
89 exhibits a remarkably high inhibitory constant ( $IC_{50} = 140$  pM) against HBV and HDV in primary

90 human hepatocytes and HepaRG cells<sup>32,44</sup>. BLV has also been demonstrated to inhibit the  
91 NTCP-mediated uptake of bile salts, but at an IC<sub>50</sub> in the nanomolar range<sup>45</sup>.

92 We here report a cryo-electron microscopy (cryo-EM) structure of BLV-bound human  
93 NTCP, simultaneously providing insight into the mechanism of BLV inhibition and into the  
94 interaction between NTCP and the viral preS1 peptide. Coupled with functional analysis, our  
95 study advances the molecular understanding of how BLV blocks HBV/HDV infection. These  
96 findings hold promise for developing additional therapeutic interventions against HBV/HDV,  
97 preventing viral entry into hepatocytes, and thus reducing HBV/HDV-related liver damage.  
98 Furthermore, our data may help rationalize why HBV infectivity is affected by variations in  
99 NTCP among different species.

100 **Results and Discussion**

101 **Interaction of bile salts, preS1, and patient-derived SVPs with NTCP**

102 NTCP was previously demonstrate to transport bile salts in a strictly sodium-dependent  
103 manner<sup>46</sup>. We observed that a fluorescently labeled taurocholate derivative (NBD-TC) is taken  
104 up into NTCP-expressing HEK293 cells in a sodium-dependent manner (Fig. 2a). Transport  
105 of NBD-TC can only be detected by using a transport buffer containing 143 mM NaCl, while  
106 NBD-TC fluorescence is undetectable in sodium-free buffer (equimolar substitution of NaCl  
107 with choline chloride). In contrast, the fluorescently labeled preS1 derivative preS1-AX568  
108 binds to NTCP-expressing HEK293 cells under both sodium-containing and sodium-free  
109 conditions, indicating that preS1-binding to NTCP does not require sodium (Fig. 2b). Binding  
110 of preS1-AX568 to NTCP can be blocked by preincubation with 250  $\mu$ M taurocholic acid (TC)  
111 (Fig. 2a, b), confirming previous data in NTCP-expressing HepG2 hepatoma cells<sup>13</sup>. We then  
112 analyzed if preparations of HBV SVPs obtained from patients chronically infected with HBV  
113 are capable to bind recombinantly expressed NTCP protein as used for structure  
114 determination in the present study. HBV SVPs contain all surface proteins, namely SHBs,  
115 MHBs, and the preS1-bearing LHBs that are also enveloping the HBV/HDV virus particles (Fig.

116 2c). The SVP preparations represent the HBV genotypes D (GtD, patient ID1) and A (GtA,  
117 patient K826) (Fig. 2d). In both preparations the preS1-containing LHBs can be clearly  
118 detected by silver-stained polyacrylamide gel electrophoresis, although patient K826 showed  
119 a more prominent signal than patient ID1 (Fig. 2d). Plates were then coated with these patient-  
120 derived SVPs and binding of nanodisc-reconstituted, YFP-labeled NTCP<sup>23</sup> was observed by  
121 fluorescence measurement. We found a concentration-dependent binding of NTCP (25-100  
122 nM) to GtA and GtD SVPs, demonstrating binding of NTCP to the SVPs. As a control, we used  
123 a NTCP variant carrying the mutation G158R, which abolished binding to the SVPs (Fig. 2e,  
124 2f).

125 **Functional analysis and BLV on TC transport**

126 Bile salt transport in NTCP-expressing HEK293 cells was also analyzed with the radiolabeled  
127 bile acid <sup>3</sup>H-TC that showed robust uptake into the cells in the presence of media containing  
128 sodium (Fig. 3a). TC transport was inhibited at increasing concentrations of BLV with an  
129 inhibition constant value (IC<sub>50</sub>) of 195 nM (95% CI, 174-218 nM) (Fig. 3a). At high  
130 concentrations, BLV fully abolished transport. This is consistent with the previously shown  
131 result for myristoylated preS1 inhibition of TC uptake into NTCP-expressing HEK293 cells  
132 (IC<sub>50</sub> of 190 nM)<sup>13,47</sup>, indicating that our NTCP construct is functional and suitable for further  
133 studies on interaction with BLV.

134 **Isolation of a Fab specific to the NTCP-BLV complex**

135 Several antibody fragments specific to human NTCP were previously reported<sup>20-23</sup>. The preS1  
136 peptide is known to interact with the extracellular surface of NTCP<sup>8,14</sup>. All binders reported in  
137 the literature bind to the same region<sup>20-23</sup>, suggesting an overlap in binding epitopes and  
138 therefore, incompatibility with preS1 and BLV. Hence, to gain structural insight into how BLV  
139 interacts with NTCP we aimed to generate an antigen-binding antibody fragment (Fab) specific  
140 to the NTCP-BLV complex. We generated a complex of detergent-solubilized, biotinylated  
141 NTCP and BLV (Supplementary Fig. 1a), which was used as a target for isolating Fabs from

142 synthetic library E<sup>48</sup> using phage display (Supplementary Fig. 1b). During each round of the  
143 selection, a molar excess of the BLV peptide was maintained to ensure saturation of the  
144 binding epitope. We identified one Fab, termed Fab3, that formed a stable complex with NTCP  
145 in the presence of BLV, with an apparent  $K_d$  value of 8 nM (Supplementary Fig. 2). We found  
146 that Fab3 could form a complex with NTCP in the absence of BLV (Supplementary Fig. 1c),  
147 suggesting that Fab3 specifically recognizes the NTCP-BLV complex.

#### 148 **Cryo-EM structure of human NTCP bound to BLV**

149 For structural studies, we formed a complex of NTCP (38 kDa), BLV, Fab3 (50 kDa) and a  
150 Fab-binding nanobody<sup>49</sup> (Nb, 15 kDa), and used a monodisperse fraction of the complex for  
151 single particle cryo-EM analysis (Fig. 3b). We obtained a 3.4 Å EM density map revealing  
152 excellent density for NTCP, bound BLV, and Fab3. The structure of NTCP was similar to that  
153 of the previously reported, substrate-bound NTCP<sup>23</sup>, featuring a translocation tunnel in an  
154 open conformation (Fig. 3c and Supplementary Fig. 3). The EM map revealed well-resolved  
155 density for BLV located both in the tunnel and on the surface of NTCP, allowing us to build all  
156 47 amino acids and the myristoyl moiety of the BLV peptide (Supplementary Fig. 4).  
157 Consistent with our biochemical analysis, Fab3 is bound on the extracellular surface and  
158 interacts with the C-terminus residues of BLV and four regions of NTCP (N-terminus, ECL1,  
159 ECL2, and ECL4) (Fig. 3c).

#### 160 **BLV interactions with NTCP and Fab3**

161 BLV has a large interface with NTCP, with 2064 Å<sup>2</sup> buried surface area between them,  
162 rationalizing the tight binding of BLV (and by extension preS1) to its receptor. Based on the  
163 structural observations, we divided the sequence of the BLV peptide into three sections - the  
164 myristoyl group, the “plug” (residues Gly2-Asp20), and the “string” (residues Pro21-Gly48) (Fig.  
165 4a, b). Note that for consistency, residue numbering of BLV follows that of the preS1 domain  
166 of LHBs of genotype D (HBV GtD) (Fig. 4c). The myristoyl group of BLV interacts with the  
167 surface of TM4 (Phe128, Leu131, and Met133) and TM5 (Tyr156) of NTCP and is exposed to

168 lipids from the outer leaflet of the basolateral hepatocyte membrane. Lipidation has been  
169 identified as a crucial factor in stabilizing the binding of viral peptides<sup>32</sup>, and a previous study  
170 demonstrated a significant decrease in viral peptide binding in the absence of myristylation<sup>32</sup>.  
171 Absence of N-terminal myristylation of preS1 by experimental mutation of Gly2 did not lead  
172 to abrogation of viral assembly and release but rendered HBV non-infectious<sup>50,51</sup>. Furthermore,  
173 during the development of BLV, peptides that did not contain a myristoyl moiety exhibited low  
174 or negligible antiviral activity<sup>32</sup>. The location of the myristoyl group places the first amino acid,  
175 Gly2, at the external entrance of the NTCP tunnel (Fig. 4a, d). Interestingly, for most HBV  
176 genotypes (besides genotypes D and J), the preS1 peptide contains up to an additional 11  
177 residues between the myristylation motif and Gly2 of the plug domain (Fig. 4c). Our structure  
178 suggests that these residues are not involved in receptor recognition as they are most likely  
179 exposed to the cell exterior and would not disturb the interaction of the plug and string domains  
180 of preS1 with NTCP.

181 Starting with Gly2, the first 19 residues of BLV adopt a globular shape that forms a  
182 plug wedged inside the translocation tunnel and reaching the middle of the membrane bilayer  
183 (Fig. 4d, e). It was previously shown that deleting the plug region from inhibitory myr-preS1  
184 peptides (HBVpreS/19-48<sup>myr</sup>) abrogates their inhibitory potential on HBV infection<sup>28,40</sup>. In  
185 addition, deletion within the preS1 plug region of LHBs abolishes the infectivity of HBV<sup>31</sup>.  
186 Notably, residues Gly2-Asp20 are highly conserved (Fig. 4c). Only three of the plug residues,  
187 Thr3, Val7, and Pro8, differ among the preS1 genotypes: Thr3 is exposed to the solvent,  
188 whereas Val7 and Pro8 are replaced in the preS1 genotypes D, E and G by ones of a similar  
189 size, such as threonine, serine or alanine. Furthermore, several conserved residues of the  
190 BLV peptide (Leu11-Phe14) contain hydrophobic side chains exposed toward the lumen of  
191 the translocation tunnel (Fig. 4e). Among these, Phe14 is replaced by a leucine residue only  
192 in the preS1 of genotypes G and I. When the mutation is introduced in genotype C (as in BLV),  
193 it does not affect the ability of the virus to bind to hepatocytes<sup>8</sup>.

194 The string domain of BLV (Pro21-Gly48) cover the surface of the plug (Fig. 4f) and  
195 cross the extracellular surface of NTCP (Fig. 4g). The importance of the string domain of preS1  
196 for viral infectivity was previously established<sup>31</sup>. Deletions in the string domain in infection-  
197 interfering myr-preS1 peptides ( $\Delta$ 20-21,  $\Delta$ 20-23,  $\Delta$ 23-27) reduce, but do not abolish the  
198 inhibitory activity of those peptides in competition assays with HBV<sup>28</sup>. Several side chains of  
199 the string domain are exposed to the solvent (Asn28, Asn29, Asp31, Asn37, Glu43, Asn45,  
200 Lys46) and do not interact with NTCP (Fig. 4c), which rationalizes why some of these are  
201 poorly conserved within preS1 among different genotypes. The C-terminus of the string  
202 (Glu42-Gly48) binds to ECL1 of NTCP, a region that contains the sequence <sup>84</sup>RLKN<sup>87</sup> reported  
203 to be essential for host discrimination specificity<sup>8,14,33</sup>. This region is variable in different  
204 mammalian species. In mice, the corresponding residues are <sup>84</sup>HLTS<sup>87</sup>, and it was observed  
205 that mice hepatocytes can bind human HBV/HDV, but cannot be infected. However,  
206 transgenic mice containing a humanized fragment of residues 84-87 in NTCP can be  
207 infected<sup>14,33,52</sup>. While our structure can rationalize why mouse NTCP can bind preS1 of human  
208 HBV, it does not offer a direct reason why infectivity is unable to proceed, which is likely due  
209 to downstream events.

210 **Binding of BLV to NTCP prevents bile salt transport**

211 We superimposed the NTCP-BLV structure with our previously reported, substrate-bound  
212 NTCP structure containing two molecules of glycochenodeoxycholic acid (GCDC, PDB 7ZYI).  
213 While the overall root-mean-square deviation (RMSD) was only 0.767 Å, the structural  
214 differences were unevenly distributed (Fig. 5). While the core domains of the two structures  
215 are virtually identical, the helices TM1, TM5, TM6 forming the panel domain are shifted, which  
216 is likely a consequence of BLV binding. The superposition shows that the plug of the BLV  
217 peptide partly overlaps with the substrate binding pocket. Simultaneous binding is therefore  
218 impossible because it would result in a steric clash (Fig. 5). Residues Leu11 and Phe13 of  
219 BLV overlap with the scaffold of GCDC, indicating that these side chains would prevent the  
220 binding of even the shortest bile acids (Fig. 5b). Our structure therefore rationalizes why BLV

221 (and by extension preS1) binding to NTCP is incompatible with the binding and transport of  
222 bile salts. For patients administered BLV, an increase in bile salt levels in the plasma was  
223 observed. However, a recent clinical study showed that this increase is not significant enough  
224 to cause cholestatic liver injury or hepatocyte dysfunction<sup>53</sup>.

225 In our previously reported structure of substrate-bound NTCP, we identified two  
226 sodium binding sites in the vicinity of the X-motif (Supplementary Fig. 5)<sup>23</sup>. However, in the  
227 BLV-bound NTCP structure, there is no density for sodium ions and the residues that have  
228 previously been shown to coordinate the binding of sodium ions, such as Glu257 and Gln261,  
229 are poorly resolved. This observation suggests that the presence of the BLV peptide prevents  
230 sodium ions from binding at high affinity, which is in line with the experimental evidence that  
231 the preS1 peptide can bind NTCP also in the absence of sodium (Fig. 2a, b), whereas bile salt  
232 transport requires sodium (Fig. 2a).

233 **Structural implications for HBV infectivity**

234 Given the similarity between BLV and preS1, our structure can explain the difference between  
235 variants of NTCP among species and their effect on HBV infectivity. We aligned the sequence  
236 of human NTCP to that of Cynomolgus monkey and Common squirrel monkey, which are  
237 representatives of the Old and New World monkeys, respectively (Fig. 6a and Supplementary  
238 Fig. 6). Old World monkeys are not susceptible to HBV infection due to the large side chain of  
239 arginine at position 158 of NTCP<sup>54</sup>. Mutation of this Arg158 into Gly158, which is conserved  
240 in human, apes and most of the New World monkey NTCPs, renders the Old World Monkey  
241 susceptible to human HBV in vitro<sup>54</sup>. Vice versa, Gly158Arg mutation of human and Common  
242 squirrel monkey NTCPs completely abrogates preS1 binding and HBV infection in the cell  
243 culture model, while maintaining the transport activity of NTCP for TC<sup>54</sup>. Our structure shows  
244 that Gly158 is located at the NTCP tunnel entrance, where it tightly packs against main chain  
245 atoms of the plug domain of BLV (Fig. 6b). As a result, any amino acid other than glycine at  
246 this position, and in particular a bulky amino acid such as arginine, will cause a steric clash

247 with the plug of BLV (and by extension preS1), thereby preventing binding and HBV entry and  
248 infection (Fig. 6b). This is consistent with previous studies that showed that substitution of  
249 Gly158 interferes with preS1 binding<sup>54-56</sup>.

250 Another noteworthy NTCP site is the nonsynonymous human genetic variant S267F  
251 (c.800C>T) of NTCP, which is found in East Asia populations<sup>57</sup>. The S267F variant cannot  
252 efficiently transport bile salts<sup>58</sup>, which is in line with the position of Ser267 near the bile acid  
253 binding sites of NTCP<sup>23,57</sup>. In addition, the S267F mutation reduces HBV entry and infection in  
254 cell culture experiments and has been associated with resistance to chronic HBV infection and  
255 decelerated progression of related liver diseases<sup>59,60</sup>. Our structure visualizes the proximity of  
256 Ser267 to the plug region of the BLV peptide (Fig. 6c), where a phenylalanine would cause a  
257 steric clash both with preS1 peptides, BLV and bile salts, which is in agreement with  
258 experimental findings<sup>22</sup>.

259 While preparing this manuscript for submission, a structural study of NTCP bound to a  
260 preS1 peptide was published<sup>61</sup>. In their study, Asami et al. generated a NTCP-preS1 specific  
261 Fab that binds to a similar epitope as Fab3 presented in our study (Supplementary Fig. 7).  
262 Both structures reveal similar conformations of NTCP (RMSD = 0.496 Å) and the same fold  
263 for BLV (our study) and preS1 of genotype B<sup>61</sup>. This suggests that the Fab binders developed  
264 independently did not influence the fold of the peptides and their interactions with NTCP.

## 265 **Conclusion**

266 Our study reveals the molecular basis of viral preS1 interactions with its receptor NTCP and  
267 the inhibition of this interaction by the commercial drug bulevirtide/Hepcludex® (Fig. 6d). The  
268 results also rationalize why binding of BLV affects bile salt transport by NTCP. Furthermore,  
269 our data corroborates previous biochemical results regarding which residues in the BLV  
270 sequence are critical for inhibiting viral infection. Our findings allow us to rationalize HBV/HDV  
271 specificity for human NTCP and explain why the S267F mutation in humans presents a

272 compromised bile salt transport with simultaneous resistance to HBV/HDV. We identified BLV  
273 residues that face the solvent and do not appear to interact with NTCP. These might be  
274 amenable for the design of smaller drugs (peptidomimetics) that improve the pharmacology of  
275 BLV in order to prevent HBV and HDV binding and infection. Our structure also provides a  
276 starting point for rational design of HBV drugs that are not based on peptide backbones and  
277 may allow oral administration.

278

279 **Methods**

280 **Protein expression and purification**

281 The full-length wild-type human NTCP gene (UniProt ID: Q14973) was generated synthetically  
282 by GeneArt (Thermo Fisher Scientific) after codon optimization for expression in HEK293 cells.  
283 All subsequent modifications of the sequence, including the introduction of point mutations,  
284 were performed using synthetic gene fragments and were confirmed via sequencing  
285 (Microsynth). NTCP was generated as a fusion construct, containing a C-terminal 3C protease  
286 cleavage site, preceded by an eYFP-rho-1D4 tag. The NTCP construct used for Fab  
287 generation contained an Avi-tag between the C-terminal end of NTCP and the 3C protease  
288 cleavage site. Stable cell lines for expression were generated using the doxycycline-inducible  
289 Flp-In T-Rex 293 system (Thermo Fisher Scientific) according to the manufacturer's guidelines.

290 Cells were adapted and maintained in the fresh complete Dulbecco's Modified Eagle  
291 Medium (DMEM, Gibco) supplemented with 10% fetal bovine serum (FBS, Thermo Fisher  
292 Scientific). Cells were grown at 37°C under humidified conditions with 5% CO<sub>2</sub>. Cell  
293 expression was induced by adding doxycycline (Sigma) to a final concentration of 3 µg/mL,  
294 whereafter cells were grown for a further 60 h in DMEM supplemented with 2% FBS under the  
295 previously mentioned conditions. Cells were harvested and flash-frozen in liquid nitrogen for  
296 storage at -80°C. All purification steps were performed at 4°C or on ice, whenever possible.  
297 Frozen cell pellets were thawed and homogenized with a Douncer in working buffer (10:1  
298 vol/wt) containing 25 mM HEPES (pH 7.5), 150 mM NaCl, 20% glycerol, supplemented with  
299 cComplete EDTA-free protease inhibitor tablets (Roche). Lauryl maltose neopentylglycol (L-  
300 MNG, Anatrace) was added to a final concentration of 1% (wt/vol). Solubilization took place  
301 for 2 h at 4°C with gentle agitation before centrifugation at 140,000 x g for 30 minutes using a  
302 Type Ti-45 rotor (Beckmann). The supernatant was applied to Sepharose-coupled rho-1D4  
303 antibody resin (University of British Columbia), previously equilibrated with 10 column volumes  
304 (CVs) of working buffer supplemented with 0.01% L-MNG. This mixture was incubated for 2

305 hours at 4°C with gentle agitation. The 1D4 resin was hereafter washed three times with 10  
306 CVs of washing buffer containing 25 mM HEPES (pH 7.5), 150 mM NaCl, 20% glycerol, and  
307 0.01% L-MNG to remove unbound components. Subsequently, the 1D4 resin was incubated  
308 for 2 hours with three CVs of buffer supplemented with a 1:50 (wt:wt) ratio of 3C protease to  
309 expected protein for cleavage of the C-terminal tags of the NTCP fusion protein. The elution  
310 was concentrated using a 50 kDa molecular weight cut-off centrifugal filter (Amicon) before  
311 loading onto a Superose 6 increase column 10/300 GL (Cytiva) for size exclusion  
312 chromatography. The protein concentration in detergent micelles was determined by  
313 absorbance at 280 nm using a NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific).

314 **Nanodisc reconstitution**

315 A mix of brain polar extract lipids (Avanti Polar Lipids) and cholesterol (Avanti Polar Lipids)  
316 (4:1 wt/wt) was solubilized in 1%/0.2% DDM/CHS (wt/wt), and thereafter sonicated. The lipids  
317 were then mixed with detergent-purified NTCP and incubated at room temperature for 5 min  
318 with gentle agitation. Next, membrane scaffold protein (MSP1D1) was added to the mixture  
319 and incubated for 20 minutes at room temperature. The molar ratio of the mixture was 1:5:100  
320 (protein:MSP1D1:lipids). Bio-Beads SM-2 (Bio-Rad) were activated with methanol, pre-  
321 equilibrated with HBS buffer (25 mM HEPES pH 7.5, 150 mM NaCl), and were added to a  
322 concentration of 0.8 g/mL to the nanodiscs mixture and incubated overnight at 4°C with gentle  
323 mixing. Bio-Beads were removed by passing through a gravity column (Bio-Rad), and the  
324 mixture was briefly spun at 4000×g at 4°C to remove excess lipids. The sample was  
325 concentrated using a 50 kDa molecular weight cut-off centrifugal filter (Amicon), followed by  
326 size exclusion chromatography run as previously described, except now in HBS buffer. Peak  
327 fractions containing nanodisc-reconstituted NTCP were collected and concentrated.

328 **PreS1-AX568 binding to HEK-NTCP cells**

329 Human embryonic kidney (HEK293, Thermo Fisher Scientific) cells, stably expressing the  
330 human NTCP protein, were generated as described<sup>62</sup> and are further referred to as HEK-

331 NTCP cells. Cells were maintained at 37°C, 5% CO<sub>2</sub>, and 95% humidity in Dulbecco's modified  
332 Eagle medium (DMEM)/Ham's F12 medium (Thermo Fisher Scientific) supplemented with 10%  
333 fetal calf serum (Sigma-Aldrich), 4 mM L-glutamine (PAA), and antibiotics (100 U/mL penicillin  
334 and 100 µg/mL streptomycin, both Anprotec) and 100 µg/mL hygromycin (Carl Roth). For  
335 induction of NTCP expression, cells were incubated with 5 µg/mL doxycycline. Qualitative  
336 transport experiments were performed with the fluorescent bile acid 4-nitrobenzo-2-oxa-1,3-  
337 diazole taurocholic acid (NBD-TC) in DMEM<sup>63</sup> in HEK-NTCP cells. Nuclei were stained with  
338 Hoechst33342 (Thermo Fisher Scientific) and fluorescence images were analyzed on a  
339 DMI6000 B inverted fluorescent microscope (Leica). Qualitative and quantitative preS1-  
340 peptide binding was analyzed with the NH<sub>2</sub>-terminally myristoylated and COOH-terminally  
341 AlexaFlour 568-coupled fluorescent myr-preS1<sup>2-48</sup> peptide (further referred to as preS1-AX568  
342 peptide), consisting of amino acids 2-48 of the large HBV sub-genotype D3 surface protein  
343 (Biosynthesis). Briefly, HEK293 and HEK-NTCP cells were incubated with 200 nM preS1-  
344 AX568 peptide in sodium buffer (142.9 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO<sub>4</sub> x 7H<sub>2</sub>O, 1.2  
345 mM KH<sub>2</sub>PO<sub>4</sub>, 20 mM HEPES, 1.8 mM CaCl<sub>2</sub> x 2H<sub>2</sub>O, pH 7.4) or in sodium-free buffer  
346 (equimolar substitution of NaCl with choline chloride). Inhibitor preincubation was performed  
347 over 5 min at 37°C. Quantification of relative fluorescence was assessed at 570 nm excitation  
348 and 615 nm emission on a fluorescence microplate reader (TECAN Life Sciences).

349 **Patient-derived SVP preparation and binding assay**

350 Plasma samples from HBV-infected patients were used in accordance with the ethics  
351 committee of the Justus Liebig University Giessen (AZ 257/18). Subviral particles (SVPs) were  
352 isolated from plasma of two chronic HBV-infected patients by three consecutive  
353 ultracentrifugation steps according to published protocols<sup>13</sup>. Briefly, SVP were separated from  
354 virions using rate zonal ultracentrifugation through a sucrose density gradient. SVP-containing  
355 fractions were pooled and further purified using caesium chloride (CsCl) flotation  
356 ultracentrifugation. Pooled SVP-fractions were further purified using a second sucrose density  
357 gradient and concentrated by ultrafiltration. SVP preparations from plasma of two different

358 high-titer ( $> 10^9$  HBV genomes/mL), HBeAg- and HBsAg-positive, chronic HBV-infected  
359 patients of genotype A (patient #1, K826, HBV-GtA) and genotype D (patient #2, ID1, HBV-  
360 GtD) were used for binding assays with nanodisc-associated recombinant NTCP. Aliquots of  
361 the SVP preparations were analyzed by silver-stained polyacrylamide gels and revealed 6.3%  
362 and 12.03% LHBs for the patient #2 and #1 preparations, respectively. FluoroNunc polysorb  
363 F16 black plates (Nunc Thermo Scientific) were coated with SVPs (1  $\mu$ g total/well, 20  $\mu$ g/mL)  
364 overnight at 4°C and afterward blocked with HBS buffer (20 mM HEPES, pH 7.4, 150 mM  
365 NaCl) supplemented with 3% (w/v) bovine serum albumin (BSA) for 1 h at 4°C under gentle  
366 shaking. After 3x washing with HBS buffer, 50  $\mu$ L (25-100 nM) of recombinant wild-type or  
367 G158R mutant NTCP-eYFP nanodisc preparations were added onto the plate and incubated  
368 for 1 h at 4°C under gentle shaking. The supernatant was slowly removed, and the samples  
369 were 3x gently washed with HBS buffer. For fluorescence measurement, 100  $\mu$ L HBS buffer  
370 was added to each well and the fluorescence intensity of eYFP was detected at 485 nm  
371 excitation and 535 nm emission on a fluorescence microplate reader (TECAN Life Sciences).

### 372 **Transport assay into HEK cells**

373 The uptake of radioactive taurocholate ( $^3$ H-TC, American Radiolabeled Chemicals) was used  
374 to determine the transport activity of NTCP. All reactions were performed in DMEM medium  
375 at 37°C. NTCP expressed in Flp-In T-Rex 293 cells was induced upon the addition of 1  $\mu$ g/ml  
376 tetracycline and grown for 24 h under standard conditions. Hereafter, the cells were detached,  
377 and 150,000 cells were seeded into each well of a Poly-D-Lysine (Sigma) coated 24-well plate  
378 (Nunc, Thermo Fisher Scientific). After the cells had adhered, the media was exchanged with  
379 a pre-warmed buffer, consisting of DMEM, and where indicated, supplemented with a dilution  
380 of BLV dissolved in water, and pre-incubated for 15 min at 37°C with gentle shaking. Hereafter,  
381 the media was removed and replaced with the pre-warmed uptake buffer, consisting of DMEM  
382 supplemented with 1  $\mu$ M sodium taurocholate (TC) and BLV, maintaining the same BLV  
383 concentration as for the pre-incubation. The added TC contained a mix of radiolabeled TC  
384 ( $^3$ H-TC) and non-labeled TC in a 1:20 ratio (mol/mol). The uptake reaction was stopped after

385 8 min by washing the cells thrice with ice-cold phosphate-buffered saline (PBS, Gibco). Lysis  
386 buffer containing 1 M NaOH and 2% Triton X-100 in H<sub>2</sub>O was added, whereafter lysed cells  
387 were added to 2 mL scintillation fluid and radioactivity was measured using a scintillation  
388 counter (Perkin Elmer 2450 Microbeta2). Data were analyzed using GraphPad Prism 8.0.0  
389 and fitted to a four-parameter logistic curve from where the IC<sub>50</sub> and the 95% confidence  
390 interval were calculated. The data were normalized to the top plateau of the curve.

391 **Enzymatic Biotinylation of NTCP**

392 We used biotinylated NTCP for Fab selection from the synthetic Fab library E<sup>48</sup>. 3C-cleaved  
393 NTCP in detergent was biotinylated via BirA-mediated biotinylation of the NTCP Avi-tag  
394 construct in the presence of 1 μM BLV, as previously described. The yield of labeling was  
395 verified by a streptavidin pull-down assay.

396 **Phage display selection**

397 NTCP, biotinylated through the Avi-tag was used for phage display selection. The biotinylated  
398 Avi-tagged protein was in 40 mM HEPES, pH 7.4, 150 mM NaCl, and 0.01% L-MNG. Phage  
399 display selection was performed using the phage library E<sup>48</sup> following published protocols with  
400 necessary modifications<sup>64</sup>. 1 μM BLV peptide was used in selection to obtain Fabs binding to  
401 the BLV-bound NTCP. In the first round, 250 nM of the target was immobilized on streptavidin  
402 magnetic beads. Over the course of several rounds of selection, the protein concentration was  
403 gradually dropped to 10 nM in the last round. From the second round onwards, the bound  
404 phages were eluted using 100 mM glycine, pH 2.7. This harsh elution technique often results  
405 in the elution of non-specific and streptavidin binders. To eliminate them, the precipitated  
406 phage pool from the second round onwards was negatively selected against streptavidin  
407 beads before adding to the target. The pre-cleared phage pool was then used as an input for  
408 the selection.

409

410

411 **Single-point phage ELISA**

412 A single-point phage ELISA was used to rapidly screen the binding of the obtained Fab  
413 fragments in phage format. The ELISA experiments were also performed at 4°C in the  
414 presence of 1  $\mu$ M BLV peptide. Colonies of *E. coli* XL1-Blue harboring phagemids from the  
415 last round of selection were inoculated directly into 500  $\mu$ L of 2 x YT broth supplemented with  
416 100  $\mu$ g/mL ampicillin and M13-KO7 helper phage. The cultures were grown overnight at 37°C.  
417 The experimental wells in the ELISA plates were incubated with 40 nM biotinylated NTCP in  
418 ELISA buffer in the presence of 1  $\mu$ M BLV peptide for 20 min. Only buffer was added to the  
419 control wells. Overnight culture supernatants containing Fab phage were diluted 10-fold in  
420 ELISA buffer containing 1  $\mu$ M BLV peptide. The diluted phage supernatants were then  
421 transferred to ELISA plates that were pre-incubated with the biotinylated target and washed  
422 with ELISA buffer. The ELISA plates were incubated with the phage for another 15 min and  
423 then washed with ELISA buffer. The washed ELISA plates were incubated with a 1:1 mixture  
424 of mouse anti-M13 monoclonal antibody (GE, 1:5,000 dilution in ELISA buffer) and  
425 peroxidase-conjugated goat anti-mouse IgG (Jackson Immunoresearch, 1:5000 dilution in  
426 ELISA buffer) for 30 min. The plates were again washed, developed with TMB substrate, and  
427 then quenched with 1.0 M HCl, and the absorbance at 450 nm was determined. The  
428 background binding of the phage was monitored by the absorbance from the control wells.

429 **Sequencing, cloning, expression, and purification of Fab fragments**

430 From phage ELISA, positive clones (selected based on a high ratio of ELISA signal of target  
431 binding to background) were identified and 6 unique clones were obtained after DNA  
432 sequencing. These six binders were sub-cloned in pRH2.2, an IPTG inducible vector for  
433 expression of Fabs in *E. coli*. *E. coli* C43 (Pro+) cells were transformed with sequence-verified  
434 clones of Fab fragments in pRH2.2<sup>65</sup>. The Fabs were expressed and purified according to  
435 published protocols<sup>66</sup>.

436

437 **Multipoint Protein ELISA for EC<sub>50</sub> determination**

438 Multipoint ELISA was performed at 4°C to estimate the affinity of the Fabs to NTCP in the  
439 presence of BLV. 40 nM of target immobilized on a neutravidin-coated ELISA plate was  
440 incubated with serial dilutions of the purified Fabs for 20 min. The plates were washed, and  
441 the bound NTCP-Fab complexes were incubated with a secondary HRP-conjugated Pierce  
442 recombinant protein L (Thermofisher, 1:5000 dilution in ELISA buffer) for 30 min. The plates  
443 were again washed, developed with TMB substrate, and quenched with 1.0 M HCl, and  
444 absorbance (A<sub>450</sub>) was determined. To determine the affinities, the data were fitted in a dose-  
445 response sigmoidal function in GraphPad Prism, and EC<sub>50</sub> values were calculated.

446 **Fab-binding nanobody expression and purification**

447 The Fab-binding nanobody<sup>49</sup> construct was created by fusing one N-terminal His-tag and TEV  
448 protease cleavage site in a pET26b (+) vector. This plasmid was transformed into E. coli BL21  
449 (DE3) cells for expression in a terrific broth (TB) medium. The cells were grown to OD<sub>600</sub> of  
450 0.8 at 37°C, and then induced by the addition of 1 mM IPTG and grown for 20 h at 20°C with  
451 shaking. The cells were harvested and purification of the Fab-binding nanobody took place.  
452 Periplasmic protein was obtained via osmotic shock by sucrose gradient. The lysate was  
453 purified by Ni-NTA chromatography, and the His-tag was removed with TEV protease.

454 **Preparation of NTCP-BLV-Fab3-nanobody complex**

455 The BLV peptide was added into the concentrated detergent-purified NTCP solution in  
456 detergent at a final concentration of 1 μM, followed by mixing with Fab3 and Fab-binding  
457 nanobody with a molar ratio of 1:1:1.2. The mixture was incubated on ice for 1 h and then  
458 purified by SEC in buffer containing 25 mM HEPES (pH 7.5), 150 mM NaCl, 20% glycerol,  
459 and 0.01% L-MNG. After SEC, the NTCP-BLV-Fab3-nanobody complex was concentrated  
460 with a 50 kDa molecular weight cut-off centrifugal filter to around 3.6 mg/mL for cryo-EM grid  
461 preparation.

462

463 **Cryo-EM sample preparation**

464 For cryo-EM grids preparation, 3.5  $\mu$ L of the detergent-purified NTCP-BLV-Fab3-nanobody  
465 complex sample was applied to glow-discharged Quantifoil R1.2/1.3 carbon/copper 300 mesh  
466 grids, and then the grids were plunge-frozen in a liquid ethane-propane mixture cooled by  
467 liquid nitrogen using a Vitrobot Mark IV (FEI) at 4°C and 100% humidity.

468 **Cryo-EM data acquisition and processing**

469 Data was collected on a Titan Krios 300 kV (TFS) equipped with a Gatan BioContinuum  
470 energy filter and a Gatan K3 detector. Data were acquired with EPU (Thermo Fisher Scientific)  
471 at a nominal magnification of 130,000x (0.648  $\text{\AA}/\text{pix}$ ). The defocus ranged from -0.5 to -2.5  
472  $\mu\text{m}$ , with a total dose of 55  $\text{e}^-/\text{\AA}^2$ . Data acquisition statistics are presented in Supplementary  
473 Table 1 and the data processing pipeline is presented in Supplementary Figure 3.

474 The multi-frame movies of the NTCP-BLV-Fab3-nanobody complex were imported into  
475 CryoSPARC v4.4.0. All movies were subjected to patch motion correction and CTF estimation  
476 using Patch CTF. Several micrographs were used for initial particle selection by blob picker  
477 and initial 2D classification. The results from the 2D classification were then used to pick  
478 1,696,776 particles from all micrographs, followed by particle extraction with a pixel size of  
479 0.648  $\text{\AA}/\text{pix}$ . After two rounds of 2D classification, 168,595 particles were used for ab-initio  
480 reconstruction. All particles (663,583) were further subjected to heterogeneous refinement,  
481 where after each round the best class was selected for further processing. In total, five  
482 subsequent rounds of heterogeneous refinement were performed. The remaining 153,166  
483 particles were then subjected to non-uniform refinement and local refinement, yielding a cryo-  
484 EM density map at 3.43  $\text{\AA}$  resolution. The particles were then subjected to local motion  
485 correction, 2D classification that yielded a final set of 128,700 particles, global CTF refinement,  
486 local CTF refinement, and another local refinement, yielding a final EM density map at 3.41  $\text{\AA}$ .

487

488

489 **Model building and refinement**

490 The final cryo-EM map was used for model building in Coot<sup>67</sup>. We built the model for NTCP-  
491 BLV-Fab3-nanobody complex based on the previously reported structure of substrate-bound  
492 NTCP (PDB ID: 7ZYI). The N-terminus (residues 1-10) and C-terminus (residues 312-349) of  
493 NTCP are highly flexible and were not resolved. Model refinements were performed in  
494 Phenix<sup>68</sup> with geometric and secondary structure restraints and validation in MolProbity<sup>69</sup>. The  
495 BLV peptide showed well-resolved EM density that allowed for de novo model building based  
496 on the peptide sequence. The atomic coordinates and geometrical restraint of the ligands  
497 (myristoylated glycine) were drawn and generated by ChemDraw (PerkinElmer Informatics,  
498 Inc. Version 22.2) and Phenix eLBOW.

499 **Figure preparation**

500 Graph preparation and statistical analysis were performed in GraphPad 9 (macOS, GraphPad  
501 Software, La Jolla California USA, [www.graphpad.com](http://www.graphpad.com)) or GraphPad Prism 10 (for Windows).  
502 The figures of models and EM density maps were prepared in PyMOL (the PyMOL Molecular  
503 Graphics System, Version 2.5, Schrödinger), UCSF Chimera<sup>70</sup>, and UCSF ChimeraX<sup>71</sup>.

504 **Data availability**

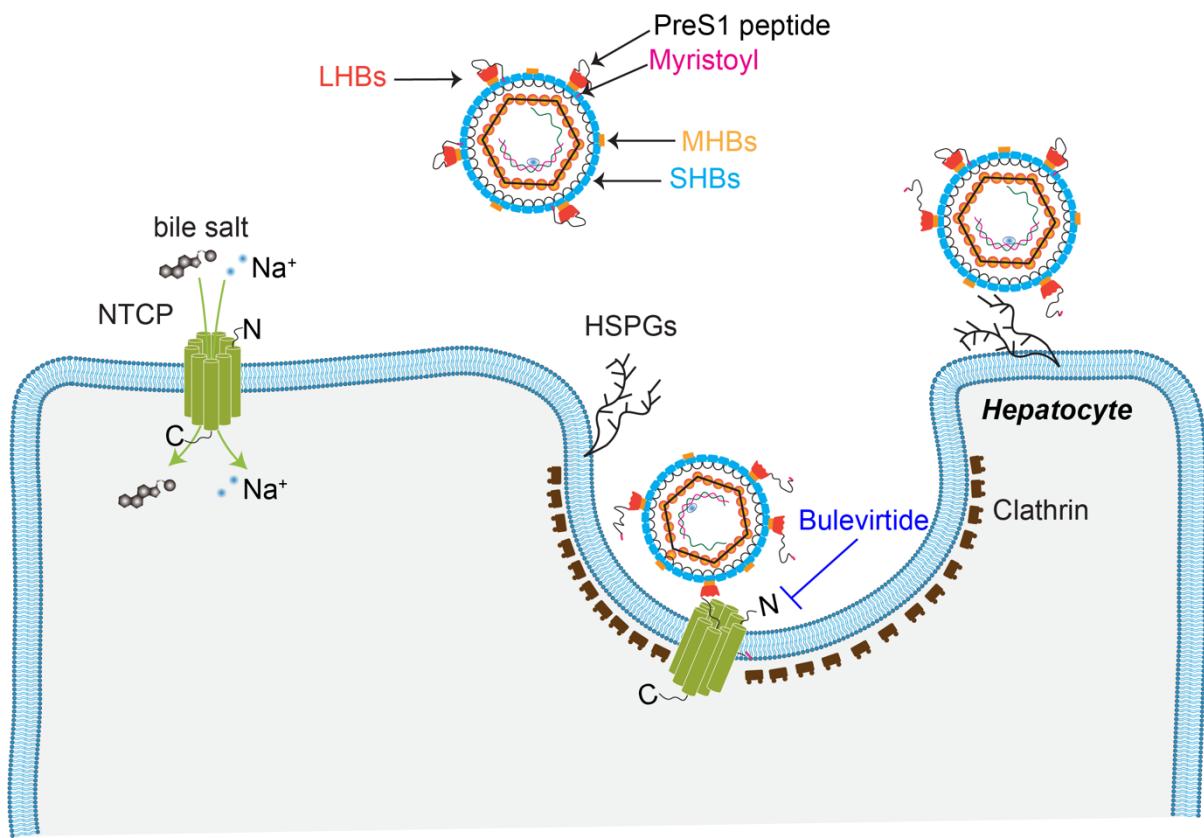
505 The atomic coordinates of the NTCP-BLV-Fab3-nanobody complex model from this study  
506 have been deposited in the Protein Data Bank (PDB) under accession code 8RQF. The cryo-  
507 EM map was deposited in the Electron Microscopy Data Bank (EMDB) under accession code  
508 EMD-19440.

509 **Acknowledgments**

510 We thank the Scientific Center for Optical and Electron Microscopy (ScopeM) facility at ETH  
511 Zürich for support with cryo-EM data collection. This research was supported by Swiss  
512 National Science Foundation (SNSF) grants 189111 and 214834 to K.P.L.; the Deutsche  
513 Forschungsgemeinschaft (DFG) SFB 1021, project number 197785619 (project B8 to J.G.

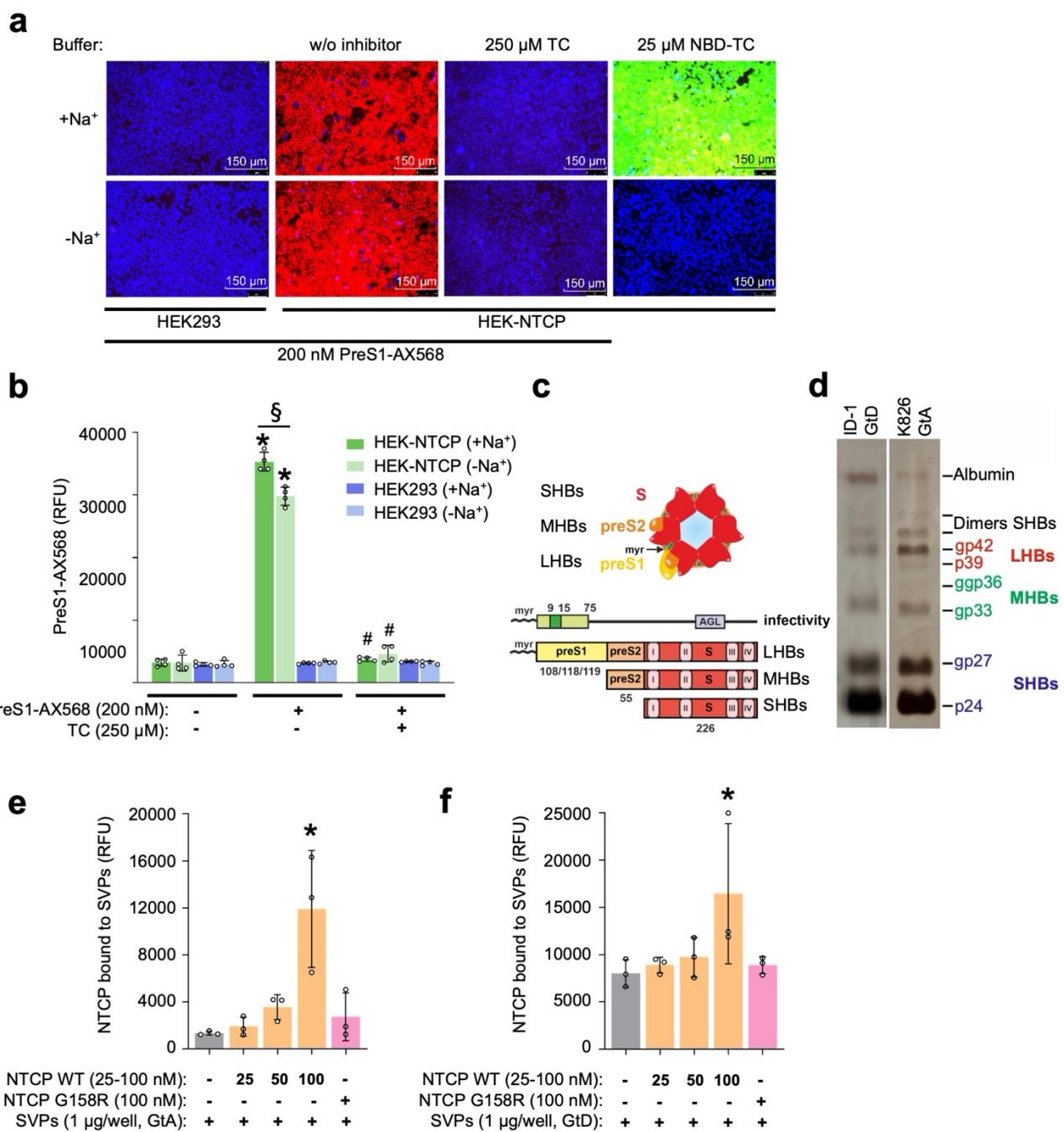
514 and D.G.); National Institutes of Health grant GM117372 (to A.A.K.). The National Reference  
515 Centre for Hepatitis B Viruses and Hepatitis D Viruses at Justus Liebig University Giessen  
516 (D.G.) is supported by the German Ministry of Health via the Robert Koch Institute, Berlin,  
517 Germany.

518 **Author contributions**


519 H.L. and K.P.L. conceived the project. H.L. expressed and purified human NTCP, processed  
520 EM data, and built the atomic model with help from K.N. D.Z. and K.N. designed preS1  
521 experiments. S.K. and D.Z. conducted transport assays of NTCP. R.N.I. collected and  
522 processed EM data. H.L., K.N., R.N.I., and K.L. performed structural analysis. S.M. and L.R.  
523 generated conformational Fabs against NTCP. A.A.K. supervised synthetic antibody  
524 generation. D.Z., N.G., and S.K. conducted the SVP and preS1-AX568 binding experiments.  
525 R.B.-S. designed and performed NTCP-BLV functional assays and analyzed functional data.  
526 J.G. and D.G. contributed to the discussion of the data. S.U. provided the BLV peptide and  
527 insight during manuscript preparation. H.L., R.N.I., R.B.-S., K.N., J.G., D.G., and K.P.L. wrote  
528 the manuscript with input from the other authors.

529 **Conflict of interest**

530 Stephan Urban is the inventor of and holds patents on Bulevirtide.


531 **Figures**

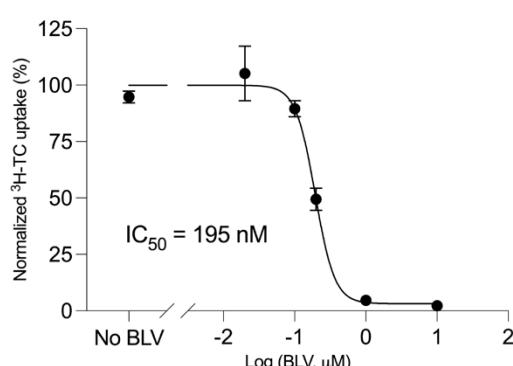
532 **Fig. 1**



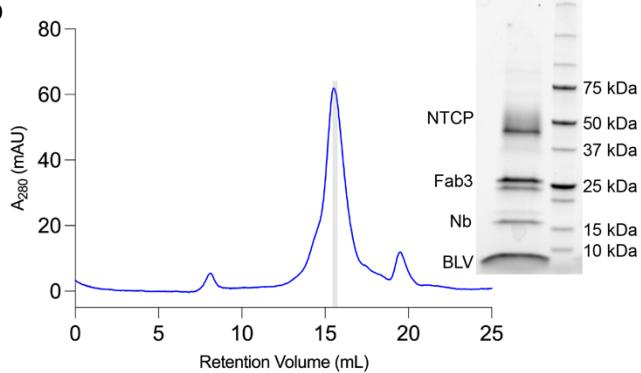
533  
534

535 Fig. 2

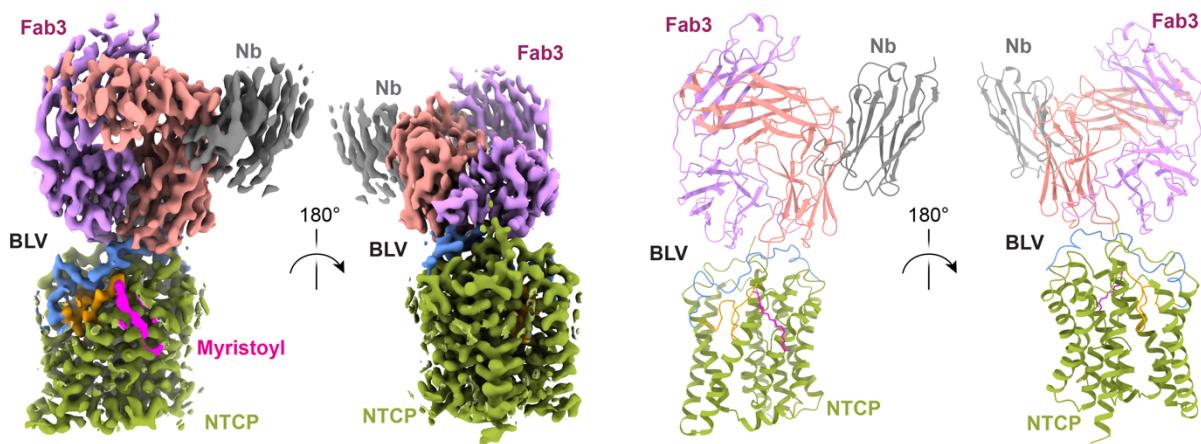



536

537

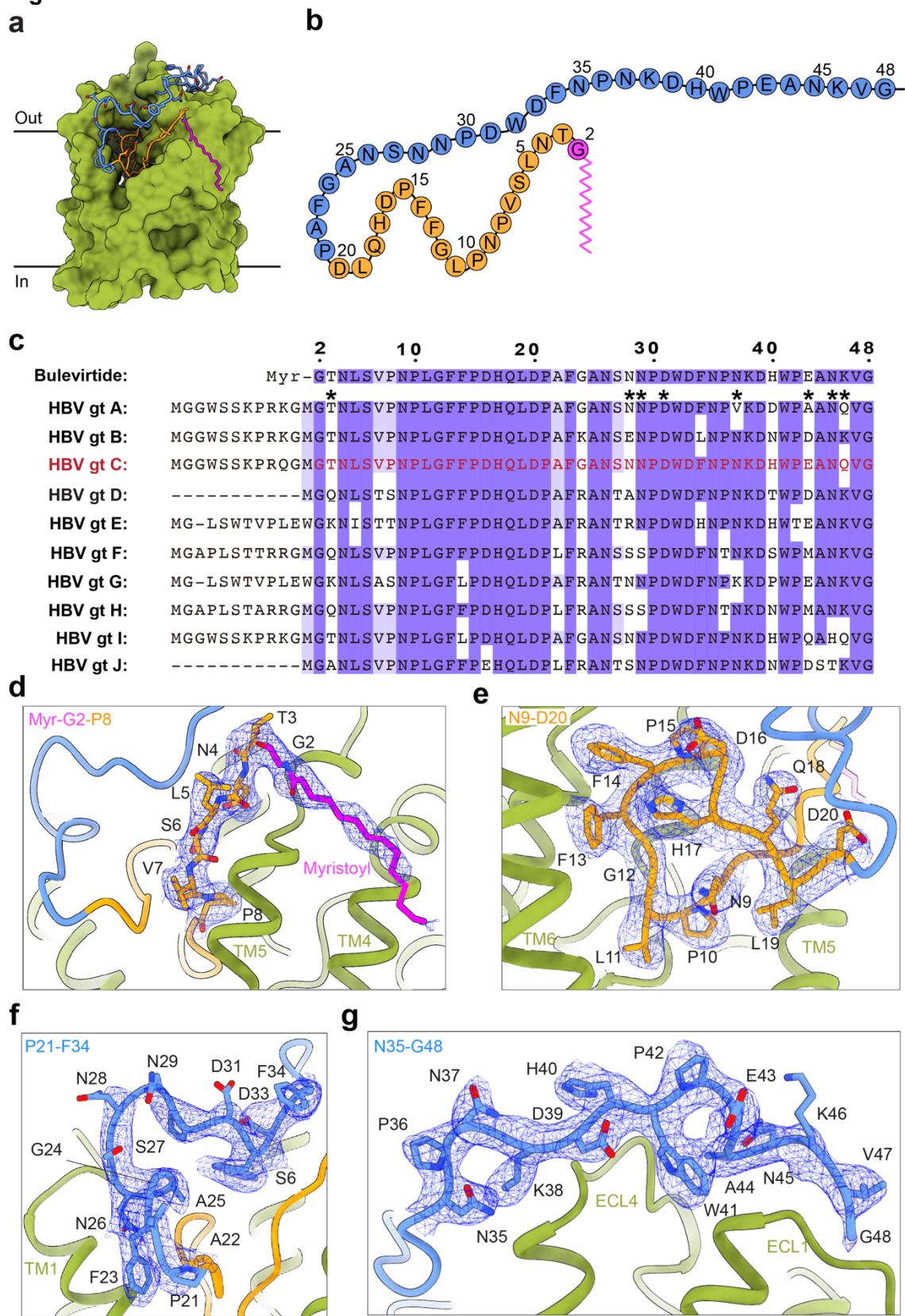

538

**Fig. 3**


**a**

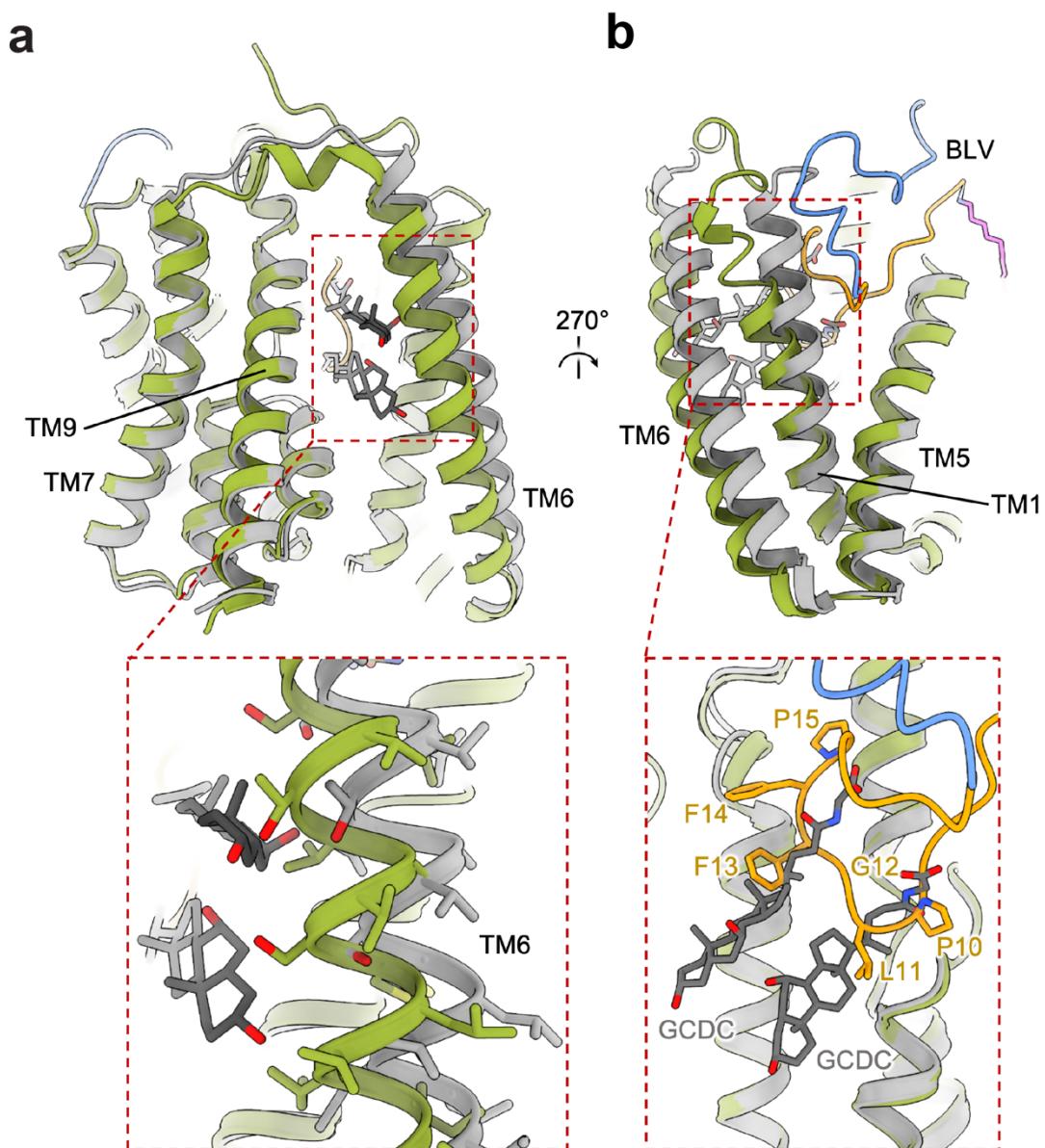


**b**




**c**

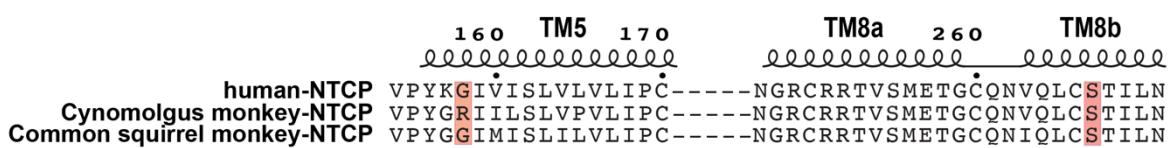



539  
540

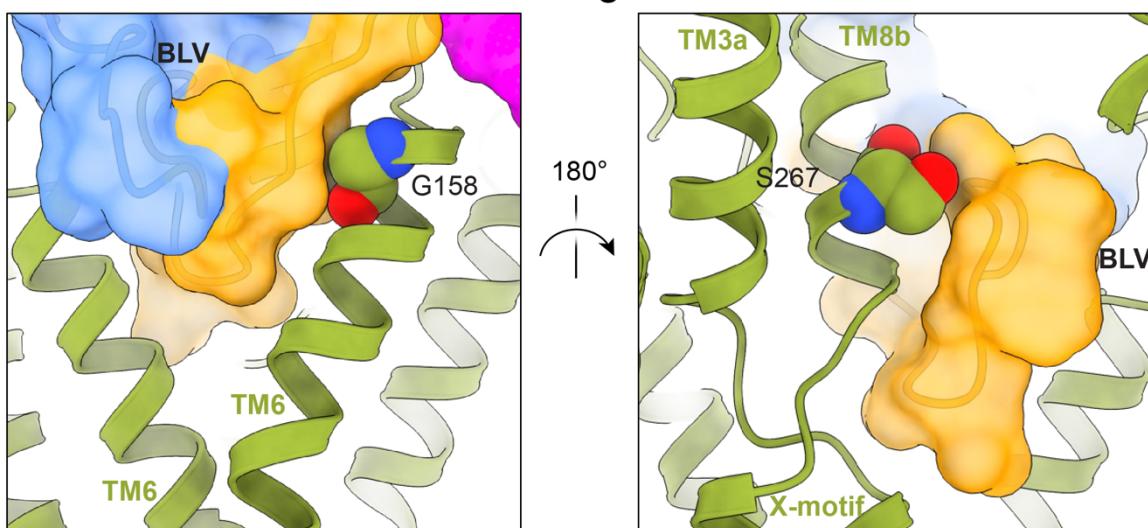
541 **Fig. 4**



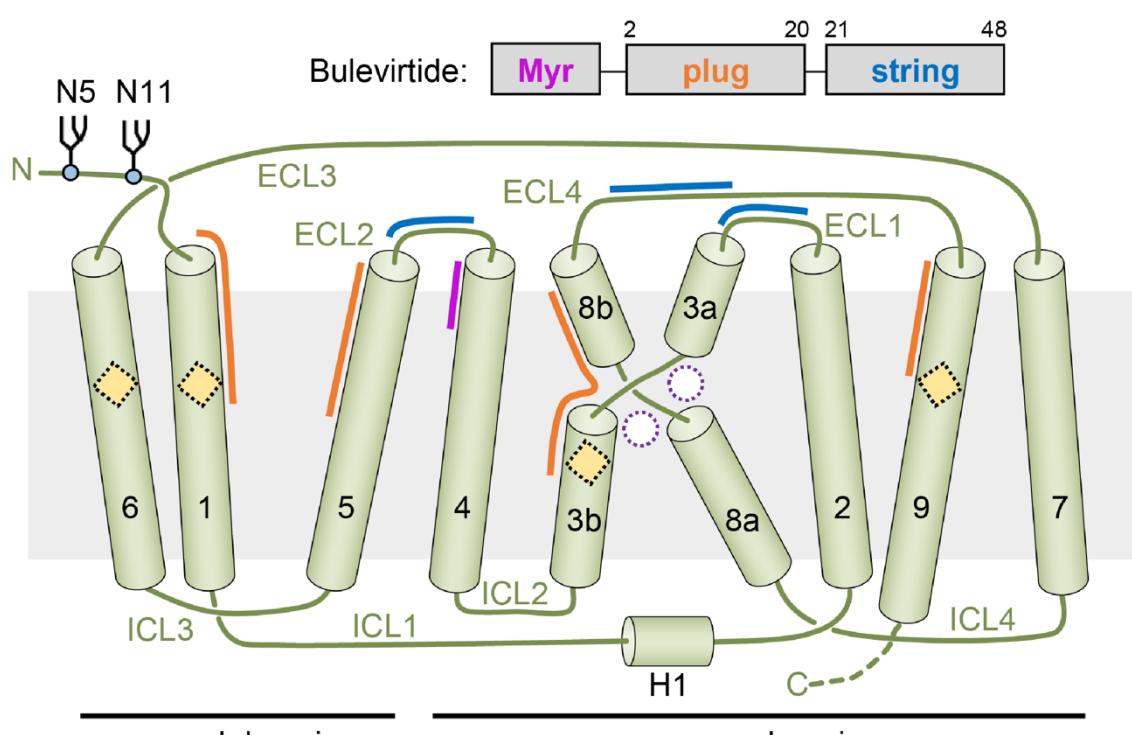
542  
543  
544


545 **Fig. 5**




546  
547  
548

549 **Fig. 6**


**a**



**b**



**d**



550  
551

552 **Figure Legends**

553 **Fig. 1: Schematic of human NTCP-mediated HBV infection**

554 Bile salt uptake into hepatocytes is mediated by NTCP located in the basolateral membrane  
555 of hepatocytes. HBV particles interact with heparan sulfate proteoglycans (HSPGs) for low-  
556 affinity attachment. NTCP is recognized by HBV, initiating the entry of HBV particles into the  
557 hepatocytes via endocytosis, a process that may be facilitated by additional co-factors. The  
558 interaction between HBV and NTCP is mediated by the preS1 domain of the LHBs protein,  
559 which can be effectively inhibited by Bulevirtide, a preS1-derived peptide.

560 **Fig. 2: Binding of preS1 and patient-derived SVPs as model systems to study HBV-  
561 NTCP interaction**

562 **a** Fluorescence microscopy and **b** fluorescence detection of HEK-NTCP cells and non-NTCP  
563 expressing HEK293 cells after incubated with 200 nM fluorescent preS1-AX568 peptide  
564 (representing genotype D, GtD) in the presence and absence of sodium in the incubation  
565 buffer. Incubation of NBD-TC was used to demonstrate functional bile salt transport via NTCP  
566 and 250  $\mu$ M TC were used as inhibitor of the preS1-peptide binding. Data in **b** presented  
567 means  $\pm$  SD of quadruplicate determinations. \*Significantly higher preS1-AX568 fluorescence  
568 compared to all other columns,  $\ddagger$ significantly different preS1 binding and  $\#$ significant preS1  
569 binding inhibition according to two-way ANOVA with Tukey's multiple comparison test,  
570  $p<0.001$ . **c** Illustration of patient-derived HBV subviral particles. The hepatitis B virus surface  
571 proteins LHBs, MHBs, and SHBs are indicated that differ in amino-terminal additions (preS1,  
572 preS2) and N-glycosylation pattern within the S-domain. Determinants for infectivity of HBV  
573 are the antigenic loop (AGL) within the S-domain and the amino-terminal 75 amino acids of  
574 preS1 together with the covalently attached myristic acid at Gly2. The amino acids 9-15 within  
575 preS1 are highly conserved within primate HBV isolates and essential for HBV infectivity. **d**  
576 Representative silver-stained polyacrylamide gels of highly purified SVP preparations from  
577 two different patients: K826 HBV-GtA and ID1 HBV-GtD. Both preparations demonstrate clear  
578 banding of non- and N-glycosylated SHBs (p24/gp27 kDa), single- and double N-glycosylated

579 MHBs (gp33/ggp36 kDa), and non- and N-glycosylated preS1-containing LHBs (p39/gp42  
580 kDa). Banding of non-reduced SHBs-dimers (48 kDa or 54 kDa, depending on glycosylation  
581 status) and human serum albumin (67 kDa) is indicated. Binding of recombinant wildtype or  
582 G158R mutant NTCP-eYFP nanodisc preparations to SVPs from **e** patient K826 (HBV GtA)  
583 and **f** patient ID1 (HBV GtD). NTCP-eYFP fluorescence was detected using a fluorescence  
584 microtiter plate reader at 485 nm excitation and 535 nm emission. Data presented means  $\pm$   
585 SD of triplicate determinations of background-subtracted relative fluorescence units (RFU) of  
586 representative experiments. \*Significantly higher fluorescence intensity between SVP-coated  
587 wells incubated without or with NTCP-eYFP nanodisc preparations with  $p < 0.05$  according to  
588 one-way ANOVA with Dunnett's multiple comparison test.

589 **Fig. 3: Cryo-EM structure and functional analysis of BLV-bound NTCP**

590 **a** Normalized inhibition of TC transport (1  $\mu$ M) into Flp-In T-Rex cells stably expressing NTCP  
591 at varying concentrations of BLV. Uptake of  $^3$ H-TC was measured after 8 min, each data point  
592 indicates the mean of three independent replicates, and error bars represent the SD. **b** Size  
593 exclusion chromatography and SDS-PAGE analysis of purified human NTCP in a complex  
594 with BLV, Fab3, and a nanobody. **c** Cryo-EM density map (left) and structure in ribbon  
595 representation (right) of NTCP-BLV-Fab3-nanobody complex. The BLV peptide is colored into  
596 three sections: myristoylated glycine group (magenta), plug (orange), and string (blue).

597 **Fig. 4: Molecular interaction between BLV and NTCP**

598 **a** Surface representation of NTCP (green), with the bound BLV peptide: myristoylated glycine  
599 (magenta), residues T3-G20 (orange), and residues P21-G48 (blue). **b** 2D schematic of the  
600 full BLV sequence, coloring is the same as in **a**. **c** Sequence alignment of BLV and the preS1  
601 peptides from ten genotypes of HBV. Blue shading indicates amino acids conservation  
602 between BLV and different HBV preS1 genotypes. Black asterisks denote residues of BLV  
603 that are exposed to the solvent and therefore do not interact with NTCP. **d-g** Interactions of

604 BLV with NTCP. NTCP is shown in green. The EM density for BLV is displayed as blue mesh.  
605 BLV residues are labelled black.

606 **Fig. 5: Comparison of BLV-bound NTCP and substrate-bound NTCP**

607 **a-b** Superposed BLV-bound NTCP (green) and substrate-bound NTCP (PDB ID: 7ZYI, gray)  
608 structures shown as ribbon. Two molecules of the substrate glycochenodeoxycholic acid  
609 (GCDC) are shown as gray sticks and the BLV peptide is colored as before. Close-up views  
610 show a clash between the substrate GCDC and TM6 of the BLV-bound NTCP structure (**a**),  
611 and a clash between GCDC substrates and the BLV peptide (**b**).

612 **Fig. 6: NTCP species specificity against HBV infection**

613 **a** Sequence alignment between human NTCP and NTCP from two different species of  
614 monkeys (Old World monkey-cynomolgus monkey and New World monkey-common squirrel  
615 monkey). Highlighted amino acids indicate the residues described in the text: the Gly/Arg  
616 variation at position 158, and the Ser267 that in humans resistant to HBV infection, is mutated  
617 into a phenylalanine residue. **b-c** A close-up view of residue Gly158 (sphere representation)  
618 and its proximity to BLV (yellow and blue transparent surface). **c** A close-up view of residue  
619 Ser267 (sphere representation) and its proximity to BLV (yellow and blue transparent surface).  
620 **d** Topology diagram of human NTCP. Sodium binding sites and regions interacting with bound  
621 substrates (both unoccupied in the NTCP-BLV structure) are indicated as empty circles and  
622 squares, respectively. ECH: extracellular helix, ICH: intracellular helix. The crossing motif (X-  
623 motif) is formed by TM helices 3 and 8. Glycosylation sites are shown and numbered. Colored  
624 arches indicate the regions of NTCP interacting with distinct regions of the BLV peptide.

625

## 626 References

627 1 Kabore, H. J. *et al.* Progress Toward Hepatitis B Control and Elimination of Mother-  
628 to-Child Transmission of Hepatitis B Virus - World Health Organization African  
629 Region, 2016-2021. *MMWR Morb Mortal Wkly Rep* **72**, 782-787 (2023).  
630 <https://doi.org/10.15585/mmwr.mm7229a2>

631 2 Leoni, S., Casabianca, A., Biagioni, B. & Serio, I. Viral hepatitis: Innovations and  
632 expectations. *World J Gastroenterol* **28**, 517-531 (2022).  
633 <https://doi.org/10.3748/wjg.v28.i5.517>

634 3 Zhang, Y. Y. & Hu, K. Q. Rethinking the pathogenesis of hepatitis B virus (HBV)  
635 infection. *J Med Virol* **87**, 1989-1999 (2015). <https://doi.org/10.1002/jmv.24270>

636 4 Rizzetto, M. Hepatitis D Virus: Introduction and Epidemiology. *Cold Spring Harb  
637 Perspect Med* **5**, a021576 (2015). <https://doi.org/10.1101/cshperspect.a021576>

638 5 Caviglia, G. P., Ciancio, A. & Rizzetto, M. A Review of HDV Infection. *Viruses* **14**,  
639 1749 (2022). <https://doi.org/10.3390/v14081749>

640 6 Asselah, T. & Rizzetto, M. Hepatitis D Virus Infection. *N Engl J Med* **389**, 58-70  
641 (2023). <https://doi.org/10.1056/NEJMra2212151>

642 7 Yan, H. & Li, W. Sodium taurocholate cotransporting polypeptide acts as a receptor  
643 for hepatitis B and D virus. *Dig Dis* **33**, 388-396 (2015).  
644 <https://doi.org/10.1159/000371692>

645 8 Yan, H. *et al.* Sodium taurocholate cotransporting polypeptide is a functional receptor  
646 for human hepatitis B and D virus. *eLife* **1**, e00049 (2012).  
647 <https://doi.org/10.7554/eLife.00049>

648 9 Leistner, C. M., Gruen-Bernhard, S. & Glebe, D. Role of glycosaminoglycans for  
649 binding and infection of hepatitis B virus. *Cell Microbiol* **10**, 122-133 (2008).  
650 <https://doi.org/10.1111/j.1462-5822.2007.01023.x>

651 10 Herrscher, C., Roingeard, P. & Blanchard, E. Hepatitis B Virus Entry into Cells. *Cells*  
652 **9**, 1486 (2020). <https://doi.org/10.3390/cells9061486>

653 11 Schulze, A., Gripon, P. & Urban, S. Hepatitis B virus infection initiates with a large  
654 surface protein-dependent binding to heparan sulfate proteoglycans. *Hepatology* **46**,  
655 1759-1768 (2007). <https://doi.org/10.1002/hep.21896>

656 12 Sureau, C. & Salisse, J. A conformational heparan sulfate binding site essential to  
657 infectivity overlaps with the conserved hepatitis B virus a-determinant. *Hepatology*  
658 **57**, 985-994 (2013). <https://doi.org/10.1002/hep.26125>

659 13 König, A. *et al.* Kinetics of the bile acid transporter and hepatitis B virus receptor  
660 Na+/taurocholate cotransporting polypeptide (NTCP) in hepatocytes. *J Hepatol* **61**,  
661 867-875 (2014). <https://doi.org/10.1016/j.jhep.2014.05.018>

662 14 Ni, Y. *et al.* Hepatitis B and D viruses exploit sodium taurocholate co-transporting  
663 polypeptide for species-specific entry into hepatocytes. *Gastroenterology* **146**, 1070-  
664 1083 (2014). <https://doi.org/10.1053/j.gastro.2013.12.024>

665 15 Durník, R., Šindlerová, L., Babica, P. & Jurček, O. Bile Acids Transporters of  
666 Enterohepatic Circulation for Targeted Drug Delivery. *Molecules* **27**, 2961 (2022).  
667 <https://doi.org/10.3390/molecules27092961>

668 16 Roberts, M. S., Magnusson, B. M., Burczynski, F. J. & Weiss, M. Enterohepatic  
669 circulation: physiological, pharmacokinetic and clinical implications. *Clin  
670 Pharmacokinet* **41**, 751-790 (2002). <https://doi.org/10.2165/00003088-200241100-00005>

672 17 Geyer, J., Wilke, T. & Petzinger, E. The solute carrier family SLC10: more than a  
673 family of bile acid transporters regarding function and phylogenetic relationships.  
674 *Naunyn Schmiedebergs Arch Pharmacol* **372**, 413-431 (2006).  
675 <https://doi.org/10.1007/s00210-006-0043-8>

676 18 Meier, P. J. & Stieger, B. Bile salt transporters. *Annu Rev Physiol* **64**, 635-661  
677 (2002). <https://doi.org/10.1146/annurev.physiol.64.082201.100300>

678 19 Trauner, M. & Boyer, J. L. Bile salt transporters: molecular characterization, function,  
679 and regulation. *Physiol Rev* **83**, 633-671 (2003).  
680 <https://doi.org/10.1152/physrev.00027.2002>

681 20 Goutam, K., Ielasi, F. S., Pardon, E., Steyaert, J. & Reyes, N. Structural basis of  
682 sodium-dependent bile salt uptake into the liver. *Nature* **606**, 1015-1020 (2022).  
683 <https://doi.org/10.1038/s41586-022-04723-z>

684 21 Asami, J. *et al.* Structure of the bile acid transporter and HBV receptor NTCP. *Nature*  
685 **606**, 1021-1026 (2022). <https://doi.org/10.1038/s41586-022-04845-4>

686 22 Park, J. H. *et al.* Structural insights into the HBV receptor and bile acid transporter  
687 NTCP. *Nature* **606**, 1027-1031 (2022). <https://doi.org/10.1038/s41586-022-04857-0>

688 23 Liu, H. *et al.* Structure of human NTCP reveals the basis of recognition and sodium-  
689 driven transport of bile salts into the liver. *Cell Res* **32**, 773-776 (2022).  
690 <https://doi.org/10.1038/s41422-022-00680-4>

691 24 Seitz, S., Habjanič, J., Schütz, A. K. & Bartenschlager, R. The Hepatitis B Virus  
692 Envelope Proteins: Molecular Gymnastics Throughout the Viral Life Cycle. *Annu Rev  
693 Virol* **7**, 263-288 (2020). <https://doi.org/10.1146/annurev-virology-092818-015508>

694 25 Bruss, V. & Ganem, D. The role of envelope proteins in hepatitis B virus assembly.  
695 *Proc Natl Acad Sci U S A* **88**, 1059-1063 (1991).  
696 <https://doi.org/10.1073/pnas.88.3.1059>

697 26 Glebe, D. & Urban, S. Viral and cellular determinants involved in hepadnaviral entry.  
698 *World J Gastroenterol* **13**, 22-38 (2007). <https://doi.org/10.3748/wjg.v13.i1.22>

699 27 Glebe, D. & Bremer, C. M. The molecular virology of hepatitis B virus. *Semin Liver  
700 Dis* **33**, 103-112 (2013). <https://doi.org/10.1055/s-0033-1345717>

701 28 Glebe, D. *et al.* Mapping of the hepatitis B virus attachment site by use of infection-  
702 inhibiting preS1 lipopeptides and tupaia hepatocytes. *Gastroenterology* **129**, 234-245  
703 (2005). <https://doi.org/10.1053/j.gastro.2005.03.090>

704 29 Meier, A., Mehrle, S., Weiss, T. S., Mier, W. & Urban, S. Myristoylated PreS1-domain  
705 of the hepatitis B virus L-protein mediates specific binding to differentiated  
706 hepatocytes. *Hepatology* **58**, 31-42 (2013). <https://doi.org/10.1002/hep.26181>

707 30 Sureau, C., Guerra, B. & Lanford, R. E. Role of the large hepatitis B virus envelope  
708 protein in infectivity of the hepatitis delta virion. *J Virol* **67**, 366-372 (1993).  
709 <https://doi.org/10.1128/jvi.67.1.366-372.1993>

710 31 Le Seyec, J., Chouteau, P., Cannie, I., Guguen-Guillouzo, C. & Gripon, P. Infection  
711 process of the hepatitis B virus depends on the presence of a defined sequence in  
712 the pre-S1 domain. *J Virol* **73**, 2052-2057 (1999).  
713 <https://doi.org/10.1128/jvi.73.3.2052-2057.1999>

714 32 Schulze, A., Schieck, A., Ni, Y., Mier, W. & Urban, S. Fine mapping of pre-S  
715 sequence requirements for hepatitis B virus large envelope protein-mediated  
716 receptor interaction. *J Virol* **84**, 1989-2000 (2010). <https://doi.org/10.1128/jvi.01902-09>

717 33 Yan, H. *et al.* Molecular determinants of hepatitis B and D virus entry restriction in  
718 mouse sodium taurocholate cotransporting polypeptide. *J Virol* **87**, 7977-7991  
719 (2013). <https://doi.org/10.1128/jvi.03540-12>

720 34 Palatini, M. *et al.* IFITM3 Interacts with the HBV/HDV Receptor NTCP and Modulates  
721 Virus Entry and Infection. *Viruses* **14**, 727 (2022). <https://doi.org/10.3390/v14040727>

722 35 Iwamoto, M. *et al.* Epidermal growth factor receptor is a host-entry cofactor triggering  
723 hepatitis B virus internalization. *Proc Natl Acad Sci U S A* **116**, 8487-8492 (2019).  
724 <https://doi.org/10.1073/pnas.1811064116>

725 36 Gerlich, W. H. *et al.* Occult hepatitis B virus infection: detection and significance. *Dig  
726 Dis* **28**, 116-125 (2010). <https://doi.org/10.1159/000282074>

727 37 Jiang, B. & Hildt, E. Intracellular Trafficking of HBV Particles. *Cells* **9**, 2023 (2020).  
728 <https://doi.org/10.3390/cells9092023>

729 38 Cao, J. *et al.* Cryo-EM structure of native spherical subviral particles isolated from  
730 HBV carriers. *Virus Res* **259**, 90-96 (2019).  
731 <https://doi.org/10.1016/j.virusres.2018.10.015>

732 39 Chai, N. *et al.* Properties of subviral particles of hepatitis B virus. *J Virol* **82**, 7812-  
733 7817 (2008). <https://doi.org/10.1128/jvi.00561-08>

735 40 Gripon, P., Cannie, I. & Urban, S. Efficient inhibition of hepatitis B virus infection by  
736 acylated peptides derived from the large viral surface protein. *J Virol* **79**, 1613-1622  
737 (2005). <https://doi.org/10.1128/jvi.79.3.1613-1622.2005>

738 41 Schieck, A. *et al.* Hepatitis B virus hepatotropism is mediated by specific receptor  
739 recognition in the liver and not restricted to susceptible hosts. *Hepatology* **58**, 43-53  
740 (2013). <https://doi.org/10.1002/hep.26211>

741 42 Blank, A. *et al.* First-in-human application of the novel hepatitis B and hepatitis D  
742 virus entry inhibitor myrcludex B. *J Hepatol* **65**, 483-489 (2016).  
743 <https://doi.org/10.1016/j.jhep.2016.04.013>

744 43 Cheng, D., Han, B., Zhang, W. & Wu, W. Clinical effects of NTCP-inhibitor myrcludex  
745 B. *J Viral Hepat* **28**, 852-858 (2021). <https://doi.org/10.1111/jvh.13490>

746 44 Loglio, A. *et al.* Excellent safety and effectiveness of high-dose myrcludex-B  
747 monotherapy administered for 48 weeks in HDV-related compensated cirrhosis: A  
748 case report of 3 patients. *J Hepatol* **71**, 834-839 (2019).  
749 <https://doi.org/10.1016/j.jhep.2019.07.003>

750 45 Donkers, J. M., Appelman, M. D. & van de Graaf, S. F. J. Mechanistic insights into  
751 the inhibition of NTCP by myrcludex B. *JHEP Rep* **1**, 278-285 (2019).  
752 <https://doi.org/10.1016/j.jhepr.2019.07.006>

753 46 Hagenbuch, B. & Meier, P. J. Sinusoidal (basolateral) bile salt uptake systems of  
754 hepatocytes. *Semin Liver Dis* **16**, 129-136 (1996). <https://doi.org/10.1055/s-2007-1007226>

756 47 Nkongolo, S. *et al.* Cyclosporin A inhibits hepatitis B and hepatitis D virus entry by  
757 cyclophilin-independent interference with the NTCP receptor. *J Hepatol* **60**, 723-731  
758 (2014). <https://doi.org/10.1016/j.jhep.2013.11.022>

759 48 Miller, K. R. *et al.* T cell receptor-like recognition of tumor in vivo by synthetic  
760 antibody fragment. *PLoS One* **7**, e43746 (2012).  
761 <https://doi.org/10.1371/journal.pone.0043746>

762 49 Ereño-Orbea, J. *et al.* Structural Basis of Enhanced Crystallizability Induced by a  
763 Molecular Chaperone for Antibody Antigen-Binding Fragments. *J Mol Biol* **430**, 322-  
764 336 (2018). <https://doi.org/10.1016/j.jmb.2017.12.010>

765 50 Bruss, V., Hagelstein, J., Gerhardt, E. & Galle, P. R. Myristylation of the large surface  
766 protein is required for hepatitis B virus in vitro infectivity. *Virology* **218**, 396-399  
767 (1996). <https://doi.org/10.1006/viro.1996.0209>

768 51 Gripon, P., Le Seyec, J., Rumin, S. & Guguen-Guillouzo, C. Myristylation of the  
769 hepatitis B virus large surface protein is essential for viral infectivity. *Virology* **213**,  
770 292-299 (1995). <https://doi.org/10.1006/viro.1995.0002>

771 52 Yan, H. *et al.* Viral Entry of Hepatitis B and D Viruses and Bile Salts Transportation  
772 Share Common Molecular Determinants on Sodium Taurocholate Cotransporting  
773 Polypeptide. *Journal of Virology* **88**, 3273-3284 (2014).  
774 <https://doi.org/10.1128/jvi.03478-13>

775 53 Wedemeyer, H. *et al.* A Phase 3, Randomized Trial of Bulevirtide in Chronic Hepatitis  
776 D. *N Engl J Med* **389**, 22-32 (2023). <https://doi.org/10.1056/NEJMoa2213429>

777 54 Müller, S. F., König, A., Döring, B., Glebe, D. & Geyer, J. Characterisation of the  
778 hepatitis B virus cross-species transmission pattern via Na<sup>+</sup>/taurocholate co-  
779 transporting polypeptides from 11 New World and Old World primate species. *PLoS  
780 One* **13**, e0199200 (2018). <https://doi.org/10.1371/journal.pone.0199200>

781 55 Takeuchi, J. S. *et al.* A Single Adaptive Mutation in Sodium Taurocholate  
782 Cotransporting Polypeptide Induced by Hepadnaviruses Determines Virus Species  
783 Specificity. *J Virol* **93**, e01432-01418 (2019). <https://doi.org/10.1128/jvi.01432-18>

784 56 Shofa, M., Ohkawa, A., Kaneko, Y. & Saito, A. Conserved use of the sodium/bile acid  
785 cotransporter (NTCP) as an entry receptor by hepatitis B virus and domestic cat  
786 hepadnavirus. *Antiviral Res* **217**, 105695 (2023).  
787 <https://doi.org/10.1016/j.antiviral.2023.105695>

788 57 Pan, W. *et al.* Genetic polymorphisms in Na<sup>+</sup>-taurocholate co-transporting  
789 polypeptide (NTCP) and ileal apical sodium-dependent bile acid transporter (ASBT)

790 and ethnic comparisons of functional variants of NTCP among Asian populations.

791 *Xenobiotica* **41**, 501-510 (2011). <https://doi.org/10.3109/00498254.2011.555567>

792 58 Ruggiero, M. J. *et al.* A clinically relevant polymorphism in the Na(+)/taurocholate

793 cotransporting polypeptide (NTCP) occurs at a rheostat position. *J Biol Chem* **296**,

794 100047 (2021). <https://doi.org/10.1074/jbc.RA120.014889>

795 59 Peng, L. *et al.* The p.Ser267Phe variant in SLC10A1 is associated with resistance to

796 chronic hepatitis B. *Hepatology* **61**, 1251-1260 (2015).

797 <https://doi.org/10.1002/hep.27608>

798 60 Binh, M. T. *et al.* NTCP S267F variant associates with decreased susceptibility to

799 HBV and HDV infection and decelerated progression of related liver diseases. *Int J*

800 *Infect Dis* **80**, 147-152 (2019). <https://doi.org/10.1016/j.ijid.2019.01.038>

801 61 Asami, J. *et al.* Structural basis of hepatitis B virus receptor binding. *Nat Struct Mol*

802 *Biol* (2024). <https://doi.org/10.1038/s41594-023-01191-5>

803 62 Zakrzewicz, D. *et al.* Tyrosine 146 of the Human Na(+)/Taurocholate Cotransporting

804 Polypeptide (NTCP) Is Essential for Its Hepatitis B Virus (HBV) Receptor Function

805 and HBV Entry into Hepatocytes. *Viruses* **14**, 1259 (2022).

806 <https://doi.org/10.3390/v14061259>

807 63 Petzinger, E., Wickboldt, A., Pagels, P., Starke, D. & Kramer, W. Hepatobiliary

808 transport of bile acid amino acid, bile acid peptide, and bile acid oligonucleotide

809 conjugates in rats. *Hepatology* **30**, 1257-1268 (1999).

810 <https://doi.org/10.1002/hep.510300529>

811 64 Paduch, M. *et al.* Generating conformation-specific synthetic antibodies to trap

812 proteins in selected functional states. *Methods* **60**, 3-14 (2013).

813 <https://doi.org/10.1016/j.ymeth.2012.12.010>

814 65 Hornsby, M. *et al.* A High Through-put Platform for Recombinant Antibodies to

815 Folded Proteins. *Mol Cell Proteomics* **14**, 2833-2847 (2015).

816 <https://doi.org/10.1074/mcp.O115.052209>

817 66 Bloch, J. S. *et al.* Development of a universal nanobody-binding Fab module for  
818 fiducial-assisted cryo-EM studies of membrane proteins. *Proc Natl Acad Sci U S A*  
819 **118**, e2115435118 (2021). <https://doi.org/10.1073/pnas.2115435118>

820 67 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of  
821 Coot. *Acta Crystallogr D Biol Crystallogr* **66**, 486-501 (2010).  
822 <https://doi.org/10.1107/s0907444910007493>

823 68 Liebschner, D. *et al.* Macromolecular structure determination using X-rays, neutrons  
824 and electrons: recent developments in Phenix. *Acta Crystallogr D Struct Biol* **75**, 861-  
825 877 (2019). <https://doi.org/10.1107/s2059798319011471>

826 69 Williams, C. J. *et al.* MolProbity: More and better reference data for improved all-  
827 atom structure validation. *Protein Sci* **27**, 293-315 (2018).  
828 <https://doi.org/10.1002/pro.3330>

829 70 Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research  
830 and analysis. *J Comput Chem* **25**, 1605-1612 (2004).  
831 <https://doi.org/10.1002/jcc.20084>

832 71 Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers,  
833 educators, and developers. *Protein Sci* **30**, 70-82 (2021).  
834 <https://doi.org/10.1002/pro.3943>

835