

1 **TITLE**

2 Aging and injury drive neuronal senescence in the dorsal root ganglia

3

4 **AUTHOR LIST**

5 Lauren J. Donovan¹, Chelsie L. Brewer², Sabrina F. Bond¹, Aleishai Pena Lopez¹, Linus H.
6 Hansen¹, Claire E. Jordan¹, Oscar C. González², Luis de Lecea², Julie A. Kauer², Vivianne L.
7 Tawfik¹

8

9 **INSTITUTIONS**

10 ¹Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford,
11 CA 94305, USA

12 ²Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305,
13 USA

14

15 *Correspondence should be addressed to:

16 Lauren J. Donovan: ljd14@stanford.edu

17 Vivianne L. Tawfik: vivianne@stanford.edu

18

19 **KEYWORDS** 5-8

20 Neuron, mouse, human, chronic pain, spared nerve injury

21

22

23 **ABSTRACT**

24 Aging negatively impacts central nervous system function; however, the cellular impact of aging
25 in the peripheral nervous system remains poorly understood. Aged individuals are more likely to
26 experience increased pain and slower recovery after trauma. Such injury can damage
27 vulnerable peripheral axons of dorsal root ganglion (DRG) neurons resulting in somatosensory
28 dysfunction. One cellular mechanism common to both aging and injury is cellular senescence, a
29 complex cell state that can contribute to the aged pro-inflammatory environment. We
30 uncovered, for the first time, DRG neuron senescence in the context of aging and pain-inducing
31 peripheral nerve injury in young and aged mice. Aged DRG neurons displayed multiple markers
32 of senescence (SA- β -gal, p21, p16, IL6) when compared to young DRG neurons. Peripheral
33 nerve injury triggered a further accumulation of senescent DRG neurons over time post-injury in
34 young and aged DRG. These senescent neurons were dynamic and heterogeneous in their
35 expression of senescence markers, p16, p21, and senescence-associated secretory phenotype
36 (SASP) expression of IL6, which was influenced by age. An electrophysiological
37 characterization of senescence marker-expressing neurons revealed high-firing and nociceptor-
38 like phenotypes within these populations. In addition, we observed improvement in nociceptive
39 behaviors in young and aged nerve-injured mice after treatment with a senolytic agent that
40 eliminates senescent cells. Finally, we confirmed in human post-mortem DRG samples that
41 neuronal senescence is present and increases with age. Overall, we describe a susceptibility of
42 the peripheral nervous system to neuronal senescence with age or injury that may be a
43 targetable mechanism to treat sensory dysfunction, such as chronic pain, particularly in aged
44 populations.

45

46

47

48 **INTRODUCTION**

49 Aging negatively impacts our physiology, with cellular-level changes influencing whole organ
50 function. In the central nervous system (CNS), aging leads to increased risk of diseases, such
51 as Alzheimer's and Parkinson's, which present with progressive neurodegeneration ultimately
52 resulting in cognitive impairments.(1) How aging impacts the peripheral nervous system (PNS),
53 and susceptibility to sensory dysfunction such as pain(2, 3), remains more elusive. Limited
54 evidence suggests alterations in primary sensory neurons with age, with few studies that
55 investigated the cellular mechanisms that may contribute to these changes.(4-7)

56 One aberrant state increasingly prevalent in all cells with aging is cellular senescence.(8, 9)
57 Cellular senescence is a complex cellular state in which damaged or defective cells irreversibly
58 cease cell division, resist apoptosis and cell death, and express a pro-inflammatory
59 senescence-associated secretory phenotype (SASP)(10). Cellular senescence can occur in
60 various tissues in the body, including the brain and spinal cord, in response to disease or injury
61 in young and aged animals.(9, 11-13) With age, the clearance of senescent cells decreases,
62 resulting in their accumulation and enhanced secretion of pro-inflammatory SASP factors,
63 ultimately contributing to the progression of age-associated disease.(14-19) Importantly,
64 elimination of these long-lasting senescent cells improves disease pathology underscoring their
65 deleterious contribution to tissue function.(20, 21) Cyclin dependent kinase inhibitors p21^{CIP1/WAF1}
66 (p21) and p16^{INK4A} (p16) are classic markers of senescent cells that function to halt cell-cycle
67 and drive early and late-stage senescence programs, respectively.(22-24) While senescence
68 has been extensively studied in mitotic cells, there is now evidence that post-mitotic cells can
69 acquire senescent signatures such as expression of p21, p16, and associated SASP.(25-28)
70 Intriguingly, human pyramidal, cortical, and myenteric neurons can express these same markers
71 of senescence.(29-32) This suggests that human neurons also senesce in the aged or diseased
72 nervous system, potentially staving off neuronal loss after aberrant cell cycle entry.(33-35) In
73 Alzheimer's disease, senescent neurons and glia are implicated in disease pathology and
74 genetic or pharmacologic elimination of these senescent cells in mice can improve molecular
75 and functional outcomes.(36, 37)

76 Primary sensory neurons, whose cell bodies reside in the dorsal root ganglion (DRG), are
77 susceptible to damage of their peripheral axons in a variety of contexts including limb trauma or
78 surgery. Injury-induced hyperexcitability of these neurons, mediated in part by chronic
79 inflammation within the DRG, can contribute to long-lasting pain.(38-41) In particular, cytokine
80 signaling exacerbates nociceptive neuron hyperexcitability through modulation of the Trpv1 ion-
81 channel receptor.(42-46) Interestingly, the very inflammatory molecules that mediate this
82 hyperexcitability are all common SASP factors released by senescent cells which may act as a
83 potential source of these key pain-inducing molecules after injury.(47)

84 Using a comprehensive set of senescence markers including p21 and p16, senescence
85 associated- β -galactosidase activity (SA- β -gal), and expression of SASP factor IL6, we identified
86 senescent primary sensory neurons within the mouse lumbar DRG induced with age and after
87 peripheral nerve injury. We further investigated the impact of senescence on intrinsic neuron
88 excitability using electrophysiology, and assessed pain behaviors in young and aged mice after
89 clearance of senescent cells using a senolytic agent. Finally, we characterized senescent
90 phenotypes in human sensory neurons with age, providing a basis for further investigation of
91 senescent sensory neurons in the DRG as an analgesic target in the context of age and nerve
92 injury-induced pain.

94 **RESULTS**

95 **Senescent sensory neurons increase with age in the mouse DRG**

96 We first determined whether cellular senescence occurs in the peripheral nervous system by
97 examining sensory neurons in the lumbar dorsal root ganglia (DRG). We screened for a classic
98 marker of senescent cells, SA- β -galactosidase activity(10), in the DRG of young (11-16 weeks)
99 or aged (20-24 months) male and female mice. We found an increase in SA- β -galactosidase
100 activity in aged compared to young DRG, indicating increased senescence of cells in the DRG
101 with age (Figure 1A). Based on morphology and size, a majority of DRG cells with SA- β -
102 galactosidase activity were primary sensory neurons (Figure 1A).

103 Although SA- β -gal activity is an indicator of senescence, its presence alone is insufficient for
104 determining a senescent phenotype, which can be heterogeneous(10, 48). We therefore
105 examined the RNA expression of two major drivers of senescence, *Cdkn1a* (p21^{WAF1/CIP1}) and
106 *Cdkn2a* (p16^{INK4A}), in young and aged tissues by RNAscope. We detected a baseline
107 expression of *p16* in 6% of DRG neurons in young mice (Figure 1B & C). Since the *Cdkn2a*
108 transcript has two variants producing different protein products (p16^{INK4A} and p19^{ARF}), we
109 verified that the specific variant that produces p16^{INK4A} was in fact expressed by DRG neurons
110 (Supplemental Figure 1). In aged mice, we detected significantly increased percentages of both
111 *p21*+ and *p16*+ neurons compared to young mice, indicating enhanced senescence of DRG
112 neurons with age (Figure 1B & C). As deleterious senescent cells are associated with pro-
113 inflammatory SASP, we further co-localized senescence markers, *p21* and *p16*, with
114 downstream SASP factor and cytokine *IL6*. The aged DRG displayed a significant increase in
115 the number of *IL6*+ as well as co-positive *p21*+/*IL6*+ neurons, when compared to the young DRG
116 (Figure 1B & C). Additionally, enhanced *IL6* protein levels were detected in the plasma of aged
117 versus young mice (Figure 1D). These collective results indicate that senescent primary sensory
118 neurons accumulate in the mouse DRG with age and express pro-inflammatory mediator and
119 SASP factor *IL6*.

120 **Senescent neurons accumulate in the DRG following peripheral nerve injury**

121 We next investigated whether direct injury to peripheral axons of primary sensory neurons
122 would increase senescence of these cells in young adult mice. We performed spared nerve
123 injury (SNI) in young mice (10-16 weeks old), in which two of the three distal branches of the
124 sciatic nerve are transected and ligated with a suture(49) (Figure 2A). Lumbar L3/4 DRG were
125 collected following injury to evaluate senescence (Figure 2A). Evaluating whole DRG by qPCR,
126 we detected a significant increase in the RNA of senescence markers *p21* and *p16*, and multiple
127 SASP factors including *IL6*, *IL1 β* , and *Ccl2* in the ipsilateral SNI DRG at 3-weeks post-injury
128 compared to controls (Figure 2B). To localize the cellular source of senescence marker
129 expression in the DRG following SNI we next performed RNAscope for *p21* and *p16* transcripts
130 in young male and female mice at several time points after SNI. The majority of *p21* and *p16*-
131 expressing cells were neurons based on cellular morphology post-injury (Figure 2C). Neuronal
132 expression of these senescence markers was quantified at acute (7-day), early chronic (3-
133 week), and late chronic (7-week) time points following SNI to assess the induction and longevity
134 of senescent neurons in the DRG post-injury (Figure 2A). Numbers of *p21*+ neurons increased
135 significantly at the early 7-day time point in young injured mice and remained significantly
136 increased throughout the time course when compared to the young uninjured mice (Figure 2D,
137 *upper*). In contrast, we detected a gradual increase in the number of *p16*+ neurons over time
138 following injury that became significant at 3-weeks post-SNI and peaked at the chronic 7-week
139 post-injury time point compared to the young uninjured DRG (Figure 2D, *lower*).

140 Given that *p21* and *p16* expression can be induced in DRG neurons by nerve injury in young
141 mice, we next tested whether senescence signatures were distinct in aged mice over the time
142 course following injury (Figure 2A). Aged DRG neurons increased expression of *p21* and *p16*
143 post-injury compared to aged uninjured controls (Figure 2E). Similar to young mice, we detected
144 a significant increase in the number of *p21*+ neurons at 7-days and 3 weeks post-injury in aged
145 mice, however numbers returned to aged uninjured levels by 7-weeks post-injury (Figure 2F,
146 *upper*). In contrast to young mice, *p16*+ neurons were already significantly increased in the
147 aged DRG by the early 7-day time point, and further increased and stabilized throughout the
148 time course (Figure 2F, *lower*). In addition, there was a significant increase in neurons co-
149 expressing both *p21* and *p16* in young and aged mice starting at 3-weeks after injury compared
150 to their uninjured controls. Furthermore, the aged injured DRG displayed a significant increase
151 in these *p21*+*p16*+ neurons compared to young injured DRG, suggesting the aged DRG have
152 greater numbers of senescent cells transitioning to a late-stage *p16*-senescent state compared
153 to young DRG (Figure 2G).

154 For a more robust detection of potential deleterious neuronal senescence within the DRG, we
155 quantified the percentage of neurons that co-expressed any combination of *p21*, *p16*, and
156 downstream SASP factor *IL6* (Figure 2H). Young mice accumulated significant numbers of
157 neurons co-expressing *p21* and *IL6* in the DRG at 3-weeks post-injury (Figure 2I). While we
158 detected increased baseline numbers of *p21*+*IL6*+ cells in aged uninjured mice compared to
159 young, we did not find a further increase after injury in aged mice (Figure 2I), suggesting a
160 heterogeneity of senescence marker induction after injury dependent on age. Triple positive
161 *p21*+*p16*+*IL6*+ cells were increased in both young and aged mice after injury, albeit in low
162 percentages out of total DRG neurons (Figure 2J). Finally, a majority (~65%) of all *IL6*-
163 expressing DRG neurons post-injury expressed either *p21*, *p16*, or both senescence markers in
164 young or aged mice (Figure 2K). Collectively, these data support that nerve injury drives
165 senescence in primary sensory neurons in the mouse DRG and that there is heterogeneity of
166 senescent neuron phenotype. Further, these results suggest that senescent primary sensory
167 neurons are a major and long-lasting cellular source of *IL6* in the young and aged DRG post-
168 injury.

169 **ATF3+ injured and neighboring non-injured neurons co-express *p21* and *p16* markers**
170 We next hypothesized that neurons whose peripheral axons were injured by SNI would express
171 senescence markers in the DRG. To test this, we co-labeled injured neurons, using ATF3 a
172 marker of axonal injury(50, 51), with *p21* and *p16* at multiple time points post-SNI. First, we
173 detected very few ATF3+ neurons in uninjured young or aged animals (Figure 3A). Post-injury,
174 ATF3+ neurons increased to ~44% in the young DRG and ~35% in the aged DRG neurons, out
175 of total DRG neurons (Figure 3A). Strikingly, the majority of all ATF3+ neurons co-expressed
176 *p21* and/or *p16* in both young and aged mice at all time points post-injury (Figure 3B, arrows &
177 3C-D). We further detected an age-independent expansion of *p16*-expressing ATF3+ population
178 at later time points following injury suggesting that injured neurons progressed into a late-stage
179 *p16*-senescent state over time (Figure 3C-D). Further, not all *p21*- or *p16*-expressing neurons in
180 the DRG were ATF3+ (Figure 3B *below asterisks*). The proportion of *p21* or *p16* expressing
181 neurons that were ATF3-negative, either increased or remained stable over time after injury in
182 young or aged mice (Figure 3E-F). These results demonstrate that non-injured neurons also
183 senesce, potentially representative of “bystander” or “secondary” senescence in the DRG of
184 nerve-injured mice.

185 **Trpv1+ nociceptors express senescence markers in the DRG**

186 Individual subtypes of sensory neurons are tuned to respond to unique stimuli, are distinct in
187 size, and vary in their expression of canonical markers(52). Therefore, to characterize the

188 subtype(s) of primary sensory neurons that express senescence markers after nerve injury, we
189 analyzed their cell diameters. Previously it was reported that the distribution of small-, medium-,
190 and large-diameter DRG neurons do not change with age.(4) In our dataset, the majority of
191 *p21+IL6+* neurons measured in the range of 16-30 μ m, with a mean diameter of 22 μ m (+/-
192 5.49 μ m) in young and 20 μ m (+/- 4.96 μ m) in aged mice (Figure 4A). In comparison, *p16+IL6+*
193 neurons were slightly larger in diameter with a mean diameter of 29 μ m (+/- 5.51 μ m) in young
194 and 24 μ m (+/- 5.96 μ m) in aged mice (Figure 4A). In either case, young or aged senescent
195 neurons were rarely of large diameter (Figure 4A).

196
197 Given that the majority of neurons expressing senescence markers were small diameter, we
198 theorized that these senescent neurons may be *Trpv1+*, as this ion channel is widely expressed
199 in small diameter neurons classified as nociceptive neurons.(39, 53) First, the majority of
200 *Trpv1+* neurons co-labeled with *p21* after injury, with fewer co-labeled with *p16* in young mice at
201 3-weeks post injury. To identify whether these *Trpv1+p21+* neurons localized with downstream
202 SASP factor *IL6*, we co-labeled these neurons at baseline (uninjured) and following SNI (Figure
203 4B). In young uninjured mice, we detected 19% *Trpv1+p21+* neurons with only 2% co-
204 expressing SASP factor *IL6*, which markedly increased after injury to 48% *Trpv1+p21+* with
205 15% co-expressing *IL6* (Figure 4C). In aged uninjured mice, we detected 50% *Trpv1+p21+*
206 neurons with 6% co-expressing *IL6*, a 3-fold increase in *IL6*-expression compared to young
207 uninjured DRG (Figure 4C & 4D). Similar to young mice after injury, we found an expansion of
208 the aged *Trpv1+* population co-expressing *p21+* and *IL6+* after injury compared to aged
209 uninjured DRG (aged uninj: 6% vs aged SNI: 15%) (Figure 4D). Taken together these data
210 support enhanced *Trpv1+* nociceptor senescence with age and following injury, with an
211 increased fraction that co-express *IL6* after injury in both young and aged mice.

212
213 **Senescent DRG neurons have unique physiological profiles**

214 We next surveyed the electrophysiological properties of senescence marker-expressing
215 neurons to characterize their excitability profile and gain additional insight into their functional
216 contribution in the DRG. We used whole-cell patch-clamp in intact DRG preparations from
217 young and aged mice with and without injury followed by single-cell PCR to detect the presence
218 of *p16*, *p21*, and SASP factor *IL6*.

219 We recorded from 82 separate lumbar primary sensory neurons from 26 mice. Given the
220 heterogeneity of DRG functional profiles, we employed dimensionality reduction using Uniform
221 Manifold Approximation and Projection (UMAP, python implementation from
222 <https://github.com/lmcinnes/umap>) based on 33 parameters collected during recordings,
223 including firing properties, diameter, and intrinsic currents (Figure 5A). This analysis produced
224 five discrete clusters as determined by a hierarchical density-based cluster algorithm
225 (HDBSCAN; python implementation from <https://github.com/scikit-learn-contrib/hdbscan>; Figure
226 5B). We then analyzed the distribution of markers of senescence (*p21-* Figure 5C, *p16-* Figure
227 D, and *IL6-* Figure 5E) within the clusters. Notably, the majority of *p16*-expressing neurons
228 grouped in cluster 5 (83%, 5/6), a cluster that contained *all* of the neurons with high evoked
229 firing phenotypes (defined as >100 action potentials [APs] fired during all current steps; Figure
230 5F, top heatmap), two of which were *p16*-positive (Figure 5F, top and lower left heatmap).
231 Similarly, the majority of neurons expressing the *IL6* were found in cluster 5 (Figure 5E) and
232 included a high-firing phenotype neuron (13%, 1/8; Figure 5F, top and lower left heatmap).
233 Cluster 5 also contained neurons with lower rheobase and higher hyperpolarization-activated
234 current (*Ih*), both of which can contribute to increased excitability (Figure 5F, top and lower right
235 heatmap). *p21*-expressing neurons, however, encompassed a larger population and were
236 distributed throughout all clusters (Figure 5D & F). Given the basal expression of *p21* in a

237 subset of young uninjured DRG neurons (~20%) (Figure 1C), this distribution of *p21*-positive
238 neurons across clusters indicates a mixed population of non-senescent and senescent neurons.
239 Overall, the majority of high-firing neurons expressed at least one senescence marker (63%,
240 10/16; Figure 5F). Additionally, the senescence marker and/or SASP factor-expressing
241 populations within our dataset contained neurons with wide APs (defined as AP half widths
242 greater than 0.5 ms; *p16*: 67%, 4/6; *p21*: 72%, 26/36; *IL6*: 75%, 6/8; data not shown),
243 suggesting they belong to nociceptor or C fiber low threshold mechanoreceptor classes, which
244 express the *Trpv1* channel, supporting our prior findings and hypothesis that *Trpv1*+ nociceptors
245 senesce.(54) Together, these data suggest that senescence marker-expressing DRG contain
246 populations of high-output DRG neurons and share physiological characteristics with
247 nociceptors.

248

249 **Pharmacological elimination of senescent cells ameliorates pain behaviors in aged mice**

250 Given that nociceptive neurons within the DRG co-express senescence markers, *p21* and SASP
251 factor *IL6*, after nerve injury in young and aged mice (Figure 4B, *inset asterisks*), and that
252 senescent neurons contain high-output and nociceptor-like populations, we next hypothesized
253 that clearance of senescent DRG neurons would improve pain behaviors induced by SNI. We
254 tested senolytic ABT263 (Navitoclax), a peripherally restricted senolytic that promotes apoptosis
255 of senescent cells.(55-57) We treated mice with ABT263 (100mg/kg, p.o. in vehicle) or vehicle
256 (60% Phosol40PG, 30% PEG400, 10% Ethanol, p.o.) for 10-days starting at 3 weeks post-SNI,
257 a time-point at which senescent neurons have accumulated in young and aged mice (Figure
258 6A). Treatment with ABT263 induced apoptosis of DRG neurons, as evidenced by a significant
259 increase in the number of cleaved caspase-3 (CC3) positive (i.e. apoptotic) neurons in ABT263-
260 treated mice compared to vehicle-treated controls (Figure 6B). In aged mice treated with
261 ABT263, we observed a gradual improvement in mechanical allodynia up to at least ~3-weeks
262 following treatment, compared to vehicle-treated aged mice (Figure 6C). In addition, aged mice
263 showed a significant improvement in weight bearing immediately (Day 16) and 3 weeks (Day
264 39) after senolytic treatment (Figure 6D). In young mice, there was a significant but transient
265 reduction in mechanical threshold during the second 5-day treatment window of ABT263 when
266 compared to vehicle treated mice (Figure 6E). In addition to this transient improvement in touch
267 sensitivity, we observed sustained improved weight bearing on the injured hindlimb in young
268 mice (Figure 6F). Sensory function of the contralateral (uninjured) hindlimb was not altered after
269 application of senolytics in aged or young mice (Supplemental Figure 2A & B). Collectively,
270 these data show senescent DRG neurons can be targeted by senolytics and that treatment can
271 result in improved behaviors associated with pain outcomes in a nerve injury model and may be
272 more effective in aged animals.

273

274 **Human DRG neurons express senescence markers and accumulate with age**

275 To validate the translational potential of senescent cell subpopulations as a target in humans,
276 we assessed human DRG neuron expression of multiple senescence markers. As it is difficult to
277 obtain human DRG tissues with confirmed injury/damaged nerves, we assessed whether
278 senescence markers increase with age. We collected L4 DRG from a young (33yr) and an aged
279 (65yr) female human donor and examined senescence marker expression by RNAscope.
280 Similar to mice, human DRG neurons clearly expressed *p21* and *p16* (Figure 7A & B). When
281 quantified, a greater percentage of aged human DRG neurons expressed either or both of these
282 markers compared to young DRG neurons (*p21*+: 48% aged vs 24% young; *p16*+: 42% aged vs
283 36% young; *p21+p16*+: 40% aged vs 10% young) (Figure 7C). Further, greater numbers of *IL6*+

284 neurons were detected in aged compared to young human DRG (57% aged vs 36% young)
285 (Figure 7D). Of this *IL6*-expressing neuronal population, aged DRG had an increased fraction
286 that co-expressed either *p21* or *p16*, with a striking increase in triple positive cells, compared to

287 young DRG (*IL6+p21+p16+*: 48% aged vs 23% young) (Figure 7E). Total neurons co-
288 expressing these senescence markers were increased in aged compared to young DRG,
289 demonstrating an increase in pro-inflammatory SASP-producing senescent cells with age
290 (Figure 7F). Lipofuscin accumulation within cells can serve as an additional marker of lysosomal
291 impairment and senescence.(58, 59) We observed that human DRG neurons had higher
292 amounts of lipofuscin in cells, with many neurons >75% lipofuscin-filled, occluding the
293 RNAscope signal and precluding further analysis of additional senescence marker expression
294 (Supplemental Figure 3A). When quantified, we found an increased fraction of DRG neurons
295 filled with lipofuscin with age in the human DRG, additionally indicative of senescence in the
296 aged human DRG (9.5% aged vs 1.5% in the young) (Supplemental Figure 3B).

297 We next asked whether injured (ATF3+) human sensory neurons existed in the young and aged
298 human DRG.(60) We detected a limited number of ATF3+ neurons in either young or aged
299 human L4 DRG tissues (Figure 7G). Strikingly, the majority of ATF3+ neurons co-expressed
300 *p21*, with a greater percent expressing *p21* in aged (92%) compared to young (77%) human
301 DRG (Figure 7H).

302 To determine which subtype(s) of sensory neurons were most susceptible to age-induced
303 senescence in humans, we next analyzed neuron diameter. Similar to mouse DRG neurons,
304 senescence marker-expressing human DRG neurons were largely of small diameter in both
305 young and aged DRG (Supplemental Figure 4A & 4B). Finally, we verified whether human
306 TRPV1+ nociceptors had increased expression of *p21* and *p16* in the aged versus young DRG.
307 First, we detected ~68% of all young DRG neurons expressed TRPV1 in L4 DRG and ~55%
308 were TRPV1+ in aged L4 DRG (Figure 7I, *left*). Of these TRPV1+ neurons, we found a higher
309 fraction co-expressing either *p16* or *p21* in aged versus young DRG (Figure 7I, *right boxed* &
310 7J). Further, we observed a shift in TRPV1+ nociceptor co-expression with *p21* and *p16*, with a
311 majority of TRPV1+ neurons (81%) expressing one or both markers in the aged DRG compared
312 to young DRG (60%) (Figure 7J & K). These data collectively suggest that human DRG neurons
313 senesce with age, including injured ATF3+ and TRPV1+ neurons, and that senescent neurons
314 are a source of IL6 in the aging human DRG.

315

316

317 **DISCUSSION**

318 Using several complementary approaches, we show for the first time that primary sensory
319 neurons senesce with age and after peripheral nerve injury, and that targeting these neurons
320 can improve sensory dysfunction. First, we discovered an age-associated increase in the
321 neuronal expression of key senescence markers including *p21* and *p16*, as well as increased
322 SA- β -gal activity, when comparing aged (20-24mo) to young (10-16wk) mouse DRG. This is in
323 agreement with prior work showing that tissues throughout the body accumulate senescent cells
324 with chronological age.(8) We validated this key concept in human DRG, providing the first
325 evidence of senescence in human primary sensory neurons. Importantly, we further confirmed
326 the senescence status of DRG neurons by detection of elevated levels of IL6, a well-established
327 SASP component, co-expressed in *p21*-expressing neurons in aged compared to young mouse
328 and human DRG. After SNI, which induces a direct injury to primary sensory neurons, both
329 young and aged mice displayed a significant increase in neurons expressing senescence
330 markers *p21* and/or *p16* when compared to uninjured controls. Senescence marker expression
331 by DRG neurons was long-lasting, with an increased *p16*+ population over time post-injury in
332 both young and aged DRG indicating irreversible, late-stage senescence.(22) In addition,
333 unbiased clustering of senescence marker-positive neurons based on their electrophysiology
334 parameters characterized these cells as high output DRG neurons. Lastly, DRG neurons
335 targeted *in vivo* by a senolytic ABT263 (Navitoclax) resulted in improved mechanical allodynia
336 and weight bearing on the injured hindlimb.(55, 56)

337 The concept of neuronal senescence is an emerging one, as the classic hallmark senescence
338 feature of cell-cycle arrest is generally thought to be absent in post-mitotic cell types.(20)
339 However, multiple other hallmark features of senescence can be present in post-mitotic cells
340 including expression of cyclin dependent kinase inhibitors (*p21*, *p16*), SA- β -gal activity, DNA
341 damage/oxidative stress markers, and SASP component expression.(61) Such findings in the
342 CNS prompted a new term 'postmitotic cellular senescence' (PoMiCS) to complement this
343 observed phenotype, with SASP being an important detrimental feature of post-mitotic
344 senescent cells.(27, 61, 62) Why would post-mitotic cells such as neurons upregulate cyclin-
345 dependent kinase inhibitors such as *p21* or *p16*? In neurodegenerative conditions, neurons
346 aberrantly re-enter the cell cycle in response to cellular stress, which can lead to cell death of
347 damaged neurons.(34, 63-68) This may explain why CNS neurons senesce in the first place;
348 expressing cyclin-dependent kinase inhibitors (*p21* and *p16*) to halt the cell cycle, induce
349 senescence, and ultimately stave off apoptosis to preserve neuronal numbers.(20, 33, 61)
350 Depending on the context, however, it may not be beneficial to preserve neurons that are
351 damaged; acute or transient senescence may be beneficial while chronic or persistent
352 senescence may result in organ dysfunction.(69) We speculate that primary sensory neurons
353 undergo a similar stress response mechanism of cell-cycle re-entry upon nerve injury resulting
354 in post-mitotic cellular senescence. Indeed, DRG neurons can even re-enter the cell cycle in
355 response to other stressors such as growth factor restriction and chemotherapy.(70, 71)

356
357 The spared nerve injury (SNI) model of neuropathic pain used in this study provides a unique
358 opportunity to study neuronal senescence with spatiotemporal control. The abrupt nature of
359 axonal injury results in a time-locked induction of DRG neuronal senescence. This is in contrast
360 to investigating senescence in slowly progressing disease models such as Alzheimer's.(36, 37)
361 Additionally, the direct injury to the primary sensory neuron in our model allows for the study of
362 discrete populations of senescent cells, in contrast to models of traumatic brain and spinal cord
363 injury(72-74) that damage multiple cell types at once. Using this spatially restricted and injury-
364 triggered induction of senescence we were able to track neuronal senescent phenotypes over
365 time post-nerve injury and identify characteristics distinct during aging in both injured and

366 uninjured neurons. Over the post-injury time course, we captured a phenotypic shift (i.e. p21-to-
367 p16 expression) of DRG neurons. Specifically, in the young DRG, we detected an early spike in
368 p21+ neurons, that declined over time, while the p16+ neuron population gradually increased
369 over time. Similarly in human fibroblasts, p21 expression was found to decrease after
370 senescence was achieved, suggesting subsequent upregulation of p16 expression by these
371 cells as essential to maintain senescent-cell-cycle arrest.(22) Interestingly, this p16+ population
372 increase was more robust at earlier time points post-injury in the aged DRG, indicating that
373 aged neurons progress to late-stage senescence quicker compared to young neurons. Both
374 injured and non-injured neurons expressed senescence markers over time post injury,
375 suggesting this model captures a heterogenous population of 1) primary senescence, induced
376 directly by the cell stressor (axon injury), and 2) secondary "bystander" senescence, induced by
377 paracrine action of SASP-producing primary senescent cells.(23, 75-77) In support of this, the
378 population of senescent neurons that were ATF3-negative (non-injured) increased over time in
379 young and aged animals post-injury. While we did not find a difference in percentage of ATF3-
380 positive neurons with age alone, we did find an overall increase in senescent neurons with age,
381 suggesting that age-associated senescence occurs independent of injury. These same findings
382 were further validated in human DRG tissues. These observations together support the
383 identification of at least three populations of senescent neurons in this mouse injury model: age-
384 induced, injury-induced, and secondary neuronal senescence; making it a unique model to
385 study neuronal senescence heterogeneity. Further investigation into the deleterious impact on
386 DRG tissue function by any of these senescent sub-populations will guide strategies to target
387 appropriate cells for therapeutic purposes.
388

389 In this study, we found most IL6-expressing DRG neurons were senescence marker-expressing
390 in young or aged animals after injury, indicating that senescent DRG neurons are a major
391 source of IL6 in the DRG at three weeks post-nerve injury. Release of IL6 in the DRG can
392 impact excitability of nociceptors via ion channel modulation, resulting in pain.(78-83)
393 Production of cytokines such as IL6 in the DRG post-injury has been largely attributed to
394 infiltrating immune and glial cells, namely macrophages and Schwann cells, which subsequently
395 contribute to neuronal sensitization.(84-87) Further, while it has been reported that IL6-
396 expressing neurons exist in the DRG following nerve injury (88), their function and the
397 mechanism by which IL6 expression is induced remains unknown. We postulate senescence as
398 a novel mechanism by which neurons produce IL6 as part of their SASP profile, which in turn
399 acts on DRG neurons in an autocrine and/or paracrine manner,(78) ultimately resulting in
400 hyperexcitability and pain. Intriguingly, the expansion of Trpv1+ nociceptors co-expressing both
401 p21 and IL6 with age and after injury in mice and with age in human DRG provided evidence
402 that this particular population, highly implicated in pain sensation, can be impacted by such
403 cytokine production. Clinical studies support aberrant DRG excitability contributing to pain,
404 evidenced by the effectiveness of peripheral anesthetics(89) or nerve blockade(90) in patients
405 with chronic pain. Our finding that senescent neurons contain populations with high-firing or
406 nociceptor-like characteristics supports the hypothesis that these neurons may directly
407 contribute to hypersensitivity.
408

409 To evaluate the functional contribution of cellular senescence to sensory dysfunction we
410 employed the senolytic ABT263, a small molecule drug that selectively targets senescent cells
411 by acting on Bcl-2 anti-apoptotic pathways.(55, 56) Three other studies employed such an
412 approach demonstrating that administration of senolytics in a model of chemotherapy-induced
413 peripheral neuropathy(91) or nerve injury(12, 92) can improve behavioral outcomes, however
414 DRG neurons were not implicated. Preserving sensation by eliminating sensory neurons may
415 sound contradictory, however, correct timing of elimination (i.e. before too many cells enter

416 senescence) may enable preservation of overall primary sensory neuron numbers. For
417 example, elimination of senescent cells enabled overall survival of the many unaffected retinal
418 ganglion cells in experimental ocular hypertension as well as cortical neurons in the context of
419 AD pathology.(37, 93) For senescent neurons to be a specific and viable target, full
420 characterization of the deleterious senescent cell population is needed. To this end, we are
421 currently working on additional studies to better characterize senescent DRG neurons using
422 single-cell sequencing to fully capture the phenotype and deleterious SASP profile of this
423 heterogeneous population.

424
425 Given the extensive literature implicating cellular senescence in a variety of age-related
426 pathology, our data extend the importance of this process to the peripheral nervous system. We
427 further identify a novel cellular source of the pain-producing cytokine IL6 in the DRG, senescent
428 primary sensory neurons, which are a long-lasting cell population after nerve injury. Overall, we
429 describe a susceptibility of the peripheral nervous system to neuronal senescence with age or
430 injury that may be a targetable mechanism to treat sensory dysfunction, such as chronic pain,
431 particularly in aged populations.

432
433
434
435
436

437

438 **METHODS**

439 **Animals**

440 All mice were housed 2-5 per cage maintained on a 12-hour light/dark cycle in a temperature-
441 controlled environment with *ad libitum* access to food and water. Young male and female mice
442 used in this study were 10-16 weeks old, wild type C57BL/6J mice (Jax stock #00664). Aged
443 male and female mice used in this study were 19-24 months old, wild type C57BL/6JN mice (NIA
444 aged rodent colony). Aged mice were pre-screened for abnormal masses and cataracts and
445 otherwise were included in the study only if they appeared healthy.

446

447 **Human samples**

448 Human lumbar L4 DRG tissues were obtained from one white female donor (age 33) who died
449 from head trauma and one white female donor (age 65), who died from stroke.

450

451 **Study approval**

452 All procedures were approved by the Stanford University Administrative Panel on Laboratory
453 Animal Care and Institutional Animal Care and Use Committee in accordance with American
454 Veterinary Medical Association guidelines and the International Association for the Study of
455 Pain. Human post-mortem DRG was obtained in collaboration with Donor Network West and
456 received Stanford University Institutional Review Board for human subjects exemption.

457

458 **METHOD DETAILS**

459 **Spared Nerve Injury**

460 To perform SNI surgery(49), mice were anesthetized with isoflurane and a small incision is
461 made over the left thigh and blunt dissection is performed through the biceps femoris muscle in
462 order to expose the sciatic nerve and its three branches (common peroneal, tibial, and sural
463 nerves). The common peroneal and tibial nerves are then ligated using an 5-0 nylon suture
464 (ETHILON™ ref#1668G) and these nerves are then axotomized using small-sized spring
465 scissors. The sural nerve is left intact (the “spared nerve”). The incision is then closed with
466 surgical staples. Following surgery, mice are monitored for the study period, which varies from 1
467 day to 16 weeks depending on the time point of interest. Controls used for qPCR experiments,
468 were sham surgery in which an incision was made followed by opening of muscle to reveal the
469 nerve, without touching the nerve, followed by closure.

470

471 **Senolytic Administration**

472 ABT263 (Navitoclax) (Med Chem Express, Cat. No.: HY-10087) was dissolved in 60%
473 Phosol40PG, 30% PEG400, 10% Ethanol at a concentration of 12.5 mg/mL using brief water
474 bath sonication and vortexing. Young and aged mice were briefly anesthetized with isoflurane
475 before they were dosed by oral gavage (p.o.) at 100 mg/kg daily for 5 days, with a 2-day rest
476 period, followed by a second 5-day daily dosing.

477

478 **Quantitative Real Time RT-PCR (qPCR)**

479 Whole DRG tissues were collected, homogenized using a 1mL glass homogenizer, (PYREX®
480 No. 7724-1) and placed in TRIzol Reagent (Invitrogen, Cat#15596018). RNA was isolated using
481 miRNeasy® Mini kit (Qiagen, Cat #217004). The concentration and purity of RNA samples were
482 determined using NanoDrop 2000 (Thermo Fisher Scientific). RNA was reverse transcribed
483 using SuperScript™ VILO™ cDNA Synthesis Kit (Cat#11754-050). qPCR analysis was
484 performed with PowerUp SYBR Green Master Mix (Thermo Fisher Scientific, Cat#A25741) and
485 run on an Applied Biosystems 7900HT or on an Applied Biosystems StepOnePlus. Appropriate

486 no reverse-transcriptase and no template controls were used for each 384-well PCR reaction.
487 The cycle conditions were as follows: 50°C for 2 min, 95°C for 2 min, then 40 cycles of 15 s at
488 95°C, 1min at 60°C. Dissociation analysis was performed at the end of each run to ensure
489 specificity. Relative quantification of gene expression was performed via $2^{-\Delta\Delta C(T)}$ method.(94)
490

491 **Tissue preparation**

492 Mice were anesthetized using Pentobarbital (Vortech Pharmaceuticals, NDC 0298-9373-68,
493 150mg/kg in 0.9% saline) and transcardially perfused with 5mL 1XPBS followed by 30mL 10%
494 formalin solution (ThermoFisher). Lumbar DRG tissues were dissected and placed temporarily
495 in RNAlater solution at RT (ThermoFisher), then frozen in O.C.T. Compound (Sakura Finetek,
496 Inc., Cat#4583) on dry ice, and stored at -80°C. Mouse DRG was sectioned at 14 μ m and
497 mounted onto SuperFrost Plus glass slides, dried for 1hr, and stored at -80°C until histology
498 protocols performed. Human lumbar DRGs were obtained from organ donors and no identifying
499 information was shared with the researchers. Nerve endings were trimmed and tissues were
500 flash frozen immediately on dry ice and stored in screw cap 15mL conical tubes and stored at
501 -80°C. DRGs were slowly embedded in OCT to avoid thawing and sectioned at 20 μ m onto
502 SuperFrost Plus glass slides and stored at -80°C until histology protocols performed.
503

504 **Fluorescent *in situ* hybridization (RNAscope® Multiplex)**

505 Fluorescent *in situ* hybridization using the RNAscope® Multiplex V2 Kit (ACD, Cat#323100) was
506 performed in combination with immunohistochemistry to detect the RNA of senescence
507 markers, cytokine, and DRG subtype markers (p21 (*Cdkn1a*), p16 (*Cdkn2a*), *IL6*, *Tprv1*) and
508 protein markers (ATF3), respectively. Briefly, DRG tissues were isolated and processed as
509 described above. Dorsal root ganglion (DRG) sections (14 μ m) were mounted on glass slides
510 and dried 1-hr at room temperature and transferred to -80°C for storage. On Day 1 of
511 RNAscope, slides were submerged in 10% formalin and incubated for 20 min at 4°C. Slides
512 were washed with 1XPBS and dehydrated in EtOH as described in the ACD RNAscope user
513 manual (UM 323100). Sections were incubated for 10min in RNAscope® Hydrogen Peroxide
514 solution, washed in Millipore water, and incubated in RNAscope® ProteaseIV for 2min (human)
515 or 5min (mouse) at room temperature. Slides were incubated with appropriate RNAscope
516 probes (Mouse probes: Mm-IL6-C1, Cat#315891, Mm-Cdkn1a-C2, Cat#408551-C2, Mm-
517 Cdkn2a-C3, Cat#411011-C3, Mm-Cdkn2a-tv2-C2, Cat#447491, Mm-Trpv1, Cat#313331-C1
518 and -C3; Human probes: Hs-TRPV1-C1, Cat#415381, Hs-CDKN2A-C2, Cat#310181-C2, Hs-
519 CDKN1A-C3, Cat#311401) at 40°C in a Hybez™ II oven (ACD) for 2hrs and stored overnight in
520 5X SSC buffer at room temperature. On Day 2, according to the ACD RNAscope user manual,
521 slides were incubated in Amp1, Amp2, and/or Amp3 solutions followed by HRP-C1, HRP-C2,
522 and/or HRP-C3 as appropriate. In each round, Opal™ (1:1000, Akoya Biosciences Inc., OPAL
523 520 Cat#FP148700KT, OPAL 570 Cat#FP1488001KT, OPAL 690 Cat#FP1495001KT) or TSA
524 Vivid™ (1:1000, ACD Bio., TSA Vivid 520 Cat#323271, TSA Vivid 570 Cat#323272, TSA Vivid
525 650 Cat#323273) dye reagents and HRP Blocker. Negative control probes (ACD, #321838)
526 were used to assess background levels of RNAscope signal.
527

528 **Immunohistochemistry**

529 For immunohistochemistry performed immediately following RNAscope protocol (dual labeling),
530 slides were first washed in 1XPBS and blocked (10% Normal Donkey Serum, 0.3 % Triton-X
531 100, in PBS) for 1hr at room temperature. Slides were incubated with Rabbit anti-ATF3 (1:200,
532 Novus Bio, Cat#NBP1-85816) in 1% blocking solution in 1XPBS at 4°C overnight. Slides were
533 washed 3X in 1XPBS for 5 min each, incubated with AlexaFluor secondary antibodies (1:1000,
534 Donkey anti-rabbit-A488, LifeTechnologies, Cat# A21206), and mounted with Fluoromount G

535 with DAPI (ThermoFisher, Cat#00-4959-52). For cleaved caspase-3 staining, mice were
536 transcardially perfused as described and DRG tissues were extracted and frozen in OCT. Slides
537 were then blocked (5%Normal Donkey Serum, 0.3 % Triton-X 100, in PBS) for 1 h at room
538 temperature. Rabbit Cleaved-caspase-3 primary antibody (1:200, Cell Signaling Technology,
539 Cat#9661) was incubated overnight at 4°C. Slides were incubated with secondary antibody,
540 (1:1000, Donkey anti-rabbit Alexa-555, LifeTechnologies, Cat#A31572) for 2hr in the dark,
541 washed, and mounted with Fluoromount G with DAPI.

542 **SA- β -galactosidase activity assay**

543 Mice were perfused with PBS. L3-L5 dorsal root ganglion (DRG) was extracted, rinsed in
544 RNAlater and PBS, and then mounted onto OCT. DRG were sectioned at 14mm onto glass
545 slides. Slides were removed from the freezer, and 1X of fixative solution provided by
546 Senescence β -Galactosidase Staining Kit (Cell Signaling Technology kit, Cat#9860S) was
547 added to the slides for 15 minutes. Slides were rinsed in PBS, and a wax barrier was drawn
548 around the edges of the sections. Fresh β -Galactosidase Staining Solution staining solution at
549 pH 6.1 was added to the slides and then incubated at 37 °C for 22 hours. β -Galactosidase
550 Staining Solution was removed and slides were rinsed twice in PBS and twice in distilled water
551 before mounting and imaging. Imaging was done in FIJI ImageJ, where the area of the DRG
552 neurons was outlined, and the percentage of positive β -Gal signal in the area was acquired.
553 Sections (5-10) were analyzed per mouse. The total area analyzed per group was not
554 significantly different from each other (data not shown).

555 **Neuron diameter analysis**

556 Fluorescent TIFF images taken from RNAscope experiments that labeled *p21*, *p16*, and *IL6*
557 RNA were used to measure diameters of neurons in both mouse and human DRG. Cells were
558 individually labeled and categorized for the co-expression of markers *p21*, *p16*, with *IL6*. Using
559 Fiji software, the scale (μ m) was appropriately set based on objective used in image. The
560 longest end-to-end cell diameters, with line placed through the center of each neuron, were
561 drawn using the line segment tool. The line segment was then measured using 'Measure' as an
562 output in μ m unit and recorded. Neurons per category of RNA co-expression were then binned
563 into 10 μ m segments and the percentage of neurons that fell into each μ m bin were displayed as
564 a percentage of total neurons analyzed in each subgroup.

565

566 **ELISA assay**

567 1mL syringes were coated with heparin and used to withdraw ~0.8ml of blood from mice
568 anesthetized mice. To extract the plasma, the blood was centrifuged at 2000 RCF at 4°C for 10
569 minutes. The supernatant was removed, aliquoted, and stored at -80°C until used. IL-6 plasma
570 concentration levels were assessed by following the manufacturer's instructions (ThermoFisher,
571 Cat#KMC0061). Samples were tested in duplicate and diluted 1:2. The final concentration was
572 corrected for the dilution factor. A VERSAmax tunable microplate reader (Molecular Devices)
573 was used to calculate optical density (OD) values at 450 nm. The data was analyzed with
574 Boosterbio's 5PL regression model and subtracting the blank well's OD value from the sample's
575 OD values (<https://www.bosterbio.com/biology-research-tools/elisa-data-analysis-online>).

576

577 **Electrophysiology**

578 Animals were deeply anesthetized with a ketamine/xylazine bolus (0.2 ml of 37.5 and 0.25
579 mg/ml in sterile saline, respectively). Mice were transcardially perfused with a sucrose-based
580 dissection solution (containing in mM: 250 sucrose, 2.5 KCl, 25 NaHCO₃, 1 NaH₂PO₄, 6
581 MgCl₂, 0.5 CaCl₂, and 25 glucose). All extracellular solutions in contact with live tissue were

582 bubbled with a 95% O₂/5% CO₂ gas and chilled on ice, then decapitated. The vertebral column
583 and sciatic nerves were isolated and placed in dissection solution. The DRG with attached
584 nerves and dorsal roots were manually freed from the bone and muscle and stripped of
585 epineurium. The tissue was transferred to collagenase (1 mg/ml in dissection solution) to
586 incubate for 30 minutes at 35°C to allow for digestion of the perineurium. DRG recordings were
587 performed in a chamber (RC-26GLP; Warner Instruments) within an upright microscope with
588 platform (Nikon Eclipse FN1) and secured with a platinum wire-based anchor. The nerve end of
589 the preparation was secured in a suction electrode attached to a stimulus isolator (A365, World
590 Precision Instruments). Neurons were visualized with infrared differential interference contrast
591 illumination. Recordings were done with patch pipettes pulled (P-97; Sutter Instruments) from
592 single-filament borosilicate glass capillaries (1.5 mm OD, 1.1 mm ID; Sutter Instruments) with
593 resistances from 5–8 MΩ, and internal patch solution as follows (in mM): 120 potassium
594 gluconate, 20 KCl, 165 2 MgCl₂, 2 Na₂ATP, 0.5 NaGTP, 20 HEPES, 0.5 EGTA, pH adjusted to
595 7.2–7.3 with KOH. Signals were amplified (Multiclamp 700B; Molecular Devices), digitized
596 (Digidata 1440A; Molecular Devices), filtered with a 4 kHz Bessel and sampled at 10 kHz
597 (pClamp 10.6 software; Molecular Devices). Liquid junction potentials (-14 mV) were corrected
598 for (JPCalc software, P. Barry, University of New South Wales, Sydney, Australia; modified for
599 Molecular Devices). In current clamp, gap-free recordings were taken for 2 minutes (to measure
600 spontaneous firing and membrane potential), then depolarizing current steps were applied from
601 resting membrane potential in 50 pA steps (to measure rheobase, action potential [AP]
602 threshold and AP latency) and finally, stepwise current pulses were injected from resting
603 membrane potential to measure evoked firing frequency and Ih current (-300–1400 pA in 50 pA
604 steps, 800 ms duration). Ih is reported as current density, which was computed as Ih current
605 (amplitude in pA)/cell size (diameter in μm). Following recordings, images were taken of the
606 neuron to estimate size (the average of two separate diameter measurements), and the
607 cytoplasm was aspirated into the patch pipette for subsequent polymerase chain reaction
608 (PCR). PCR was performed using primers for p16 (Mm.PT.58.42804808; IDT), p21
609 (Mm.PT.58.5884610; IDT), IL6 (Mm.PT.58.10005566; IDT), GFAP (To determine glia presence
610 in sample; Mm01253033_m1; Thermo Fisher) and Tubb3 (To confirm neuronal tissue was
611 sampled; Mm.PT.58.32393592; IDT) in combination with TaqMan™ Gene Expression Master
612 Mix (Cat. #4369016; Thermo Fisher). Samples were then subjected to real-time PCR with the
613 same primers and the SuperScript™ III One-Step RT-PCR System with Platinum™ Taq DNA
614 Polymerase (Cat. #12574018; Thermo Fisher) to determine gene presence or absence in the
615 sample. Of note, glial fibrillary acidic protein (GFAP) was present in several of our samples,
616 thereby precluding us from determining the definitive source of p16, p21 or IL6 (i.e. DRG
617 neurons or glial cells); nonetheless, our results reflect the state of the microenvironment in
618 which the DRG was sampled. We intentionally recorded from mainly small- to medium-sized
619 DRG to increase the chances of sampling senescence marker-expressing neurons. Uniform
620 Manifold Approximation and Projection (UMAP; python implementation from
621 <https://github.com/lmcinnes/umap>) was performed to use machine learning to integrate and
622 connect the high-dimensional neuronal parameters (33) in low-dimensional 2D space. Training
623 was performed using the train_test_split function from Scikit-Learn over 1000 epochs. UMAP
624 hyperparameters were as follows: number of neighbors=5, minimum distance=0.82, local
625 connectivity=2, random state=42. Clusters were then estimated via the hierarchical density-
626 based clustering algorithm HDBSCAN (python implementation from <https://github.com/scikit->
627 learn-contrib/hdbscan/blob/master/docs/index.rst) with the following parameters: minimum

628 cluster size=4, cluster selection epsilon=5, cluster selection method='eom' or Excess of Mass.
629 Parameters were normalized for heatmap visualization using the following equation: (p - min(p))
630 / (max(p) - min(p)) where p is a vector containing all measurements of a given parameter.

631
632 **Mechanical nociception assays**
633 To evaluate mechanical reflexive hypersensitivity, we used a logarithmically increasing set of 8
634 von Frey filaments (Stoelting), ranging in gram force from 0.007 to 6.0 g. These were applied
635 perpendicular to the plantar hindpaw with sufficient force to cause a slight bending of the
636 filament. A positive response was characterized as a rapid withdrawal of the paw away from the
637 stimulus filament within 4 s. Using the up-down statistical method,(95) the 50% withdrawal
638 mechanical threshold scores were calculated for each mouse and then averaged across the
639 experimental groups. Mechanical nociception testing was performed at 3-weeks post SNI at
640 Days: 1, 3, 8, 12, 15, 19, 29, 39 post-senolytic treatment start.

641
642 **Unweighting**
643 An incapacitance device (IITC Life Science) was used to measure hindpaw unweighting. Mice
644 were placed in the plexiglass apparatus with a ramp with the hindpaws resting on separate
645 metal scale plates. Measurements were taken when the hindpaws were supporting the weight of
646 the mouse with forepaws on the ramp. The duration of each measurement was 4-6 s, and 6
647 consecutive measurements were taken at 60 s intervals. Six readings were averaged to
648 calculate the bilateral hindpaw weight-bearing values. Unweighting was measured post-
649 senolytic or vehicle treatment in SNI young and aged mice. The calculation of weight bearing on
650 the injured hindlimb was as follows: $2*(L)/(L + R)*100$ to get percent weight bearing on injured
651 (L: *left*) hindlimb.

652
653 **Imaging/Image analysis**
654 All imaging was performed using a Keyence BZ-X810 fluorescent microscope (Keyence) with a
655 40X objective (mouse DRG) or a 20X objective (human DRG). Eight-12 DRG sections were
656 imaged per mouse and 3-5 DRG sections per human sample. Images were saved as stitched
657 and full focus TIFF files and analyzed. All images were similarly adjusted for brightness and
658 contrast per experiment, with no additional alterations made to the image. Lipofuscin signal was
659 defined by strong autofluorescence signal across all channels (488, 550, 647).

660
661 **Quantification and statistical analysis**
662 Measurements of Cohort sizes were determined based on historical data from our laboratory
663 using a power analysis to provide >80% power to discover 25% differences with $p < 0.05$
664 between groups to require a minimum of 4 animals per group for all behavioral outcomes, and 2
665 animals per group for RNAscope analyses. All experiments were randomized by cage and
666 performed by a blinded researcher. Researchers remained blinded throughout histological,
667 biochemical, and behavioral assessments. Groups were unblinded at the end of each
668 experiment before statistical analysis. All data are expressed as the mean \pm SEM. Statistical
669 analysis was performed using GraphPad Prism version 10.0.2 (GraphPad Software) or R, as
670 described in Methods. Data were analyzed using two-tailed Student's t tests, as indicated in the
671 main text or figure captions, as appropriate. The "n" for each individual experiment is listed in
672 the figure legends. A combination of male and female mice young or aged were used
673 throughout the study. No data were excluded from analyses. In some cases, the different
674 sections of the same DRG from the same mouse was used to detect multiple senescence
675 markers for RNAscope analyses. To quantify RNA expression in DRG neurons, DAPI nuclear
676 stain was used to determine glial-neuronal boundary to carefully associate RNAscope puncta

677 with neuronal cell bodies. For mouse DRG, neurons expressing RNA were quantified per probe
678 set as: IL6-positive >5 puncta; p16-positive >10puncta; p21-positive >20puncta; Trpv1-positive
679 >20puncta. Human DRG neuron cut offs for positive counted cells were as follows: IL6
680 >10puncta, p16 >15puncta, p21 >20puncta, Trpv1 >20puncta. RNAscope quantification cell
681 counts were done in a blinded fashion where experimenter was blinded to age/sex/timepoint per
682 experiment. All counts were conducted assessing similar numbers of total DRG neurons per
683 experiment.

684

685 **Data/Code Availability**

686 Data that support the findings of this study are available from the corresponding author upon
687 reasonable request. Publicly available code was implemented in Python for the UMAP
688 (<https://github.com/lmcinnes/umap>) and HDBSCAN (<https://github.com/scikit-learn-contrib/hdbscan>) analyses. Figures in these analyses were generated using Matplotlib
689 (<https://matplotlib.org/>) and Seaborn (<https://seaborn.pydata.org/>).

690

691

692

693

694

695

696

697

698 **ACKNOWLEDGMENTS**

699 We would like to thank Dr. Akila Ram, Andrea Cortez, and Laura Colman for technical help and
700 discussion during the course of the project. Thank you to Dr. Amy Nippert and Dr. Heike
701 Fuhrmann for helpful comments during manuscript preparation. We used BioRender software to
702 prepare multiple schematics included in this paper.

703

704 **COMPETING FINANCIAL INTERESTS**

705 The authors have declared that no conflict of interest exists

706

707 **FUNDING**

708 National Institutes of Health (NIH) grant 1R21AG075622 (VLT)

709 Philanthropic donation from the Duan Family (VLT)

710 National Institutes of Health grant T32DA035165 (LJD)

711 National Institutes of Health grant K99AR083486 (CLB)

712 National Institutes of Health grant T32HL110952 (OCG)

713 National Institutes of Health (NIH) grant R01 DA 011289 (JAK)

714

715 **AUTHOR CONTRIBUTIONS**

716 Conceptualization: LJD, VLT

717 Methodology: LJD, CLB, SFB, JAK, VLT

718 Formal analysis: LJD, CLB, SFB, OCG

719 Investigation: LJD, CLB, SFB, APL, LHH, CEJ

720 Writing—original draft: LJD, CLB, VLT

721 Writing—review & editing: LJD, CLB, SFB, APL, LHH, CEJ, OCG, LDL, JAK, VLT

722 Visualization: LJD, CLB, SFB, JAK, VLT

723 Supervision: LDL, JAK, VLT

724 Project administration: JAK, VLT

725 Funding acquisition: LJD, CLB, OCG, JAK, VLT

726

727

728 **MAIN FIGURE LEGENDS**

729 **Figure 1. Senescent neurons accumulate with age in the mouse DRG.** A. Representative
730 images of SA- β -gal activity staining (blue) in the lumbar DRG of young and aged mice. Positive
731 pixels detected were quantified (right) (n= 5-6 mice per group; two-tailed unpaired t-test,
732 *p<0.05.). B. Representative RNAscope images for senescence markers p21 and p16 with
733 SASP factor IL6 in whole DRG section. C. Quantification of neuronal expression of each marker
734 or in combination expressed as a percent of total DRG neurons (n=4-5 mice per group, two-
735 tailed unpaired t-test, *p<0.05, **p<0.01, ***p<0.001). D. Quantification of IL6 protein levels by
736 ELISA assay in young or aged plasma (n=5-6 mice per group, two-tailed unpaired t-test,
737 *p<0.05). Data are expressed as the mean \pm SEM.

738
739 **Figure 2. DRG neurons express senescence markers and SASP factors following**
740 **peripheral nerve injury.** A. Schematic of spared nerve injury (SNI) model in mice. Timeline
741 over which DRG tissues were analyzed following SNI. B. qPCR of a panel of senescence
742 markers and SASP factor gene expression from whole lumbar DRG in controls or following SNI
743 (3-weeks post) in young mice (n=4 control; n=4 SNI young mice; two-tailed unpaired t-test,
744 *p<0.05, **p<0.01, ***p<0.001). C. Representative RNAscope image of whole DRG section from
745 uninjured or 3-weeks post-SNI in young mice. Scale bar 100 μ m. D. Quantification of the number
746 of L3/4 DRG neurons expressing either p21 (upper graph) or p16 (lower graph) in young mice.
747 (n= 3-5 mice per group/time-point; One-way ANOVA, *p<0.05, **p<0.01, ***p<0.001,
748 ****p<0.0001). E. Representative RNAscope image of whole DRG section from uninjured or 3-
749 weeks post-SNI in aged mice. Scale bar 100 μ m. F. Quantification of the number of L3/4 DRG
750 neurons expressing either p21 (upper graph) or p16 (lower graph) in aged mice. (n= 3-4 mice
751 per group/time-point; One-way ANOVA, *p<0.05, **p<0.01, ***p<0.001). G. Quantification of
752 p21+p16+ co-expressing DRG neurons as a percent of total DRG neurons in uninjured and 3-
753 weeks post-injury in young and aged mice. (n= 3-5 mice per group/time-point; One-way
754 ANOVA, ***p<0.001, ****p<0.0001). H. Representative RNAscope images showing co-
755 expressing senescence markers (p21 and p16) with SASP factor (IL6). Scale bar 10 μ m. I.
756 Quantification of p21+IL6+ co-expressing DRG neurons as a percent of total DRG neurons in
757 uninjured and 3-weeks post-injury in young and aged mice. (n=3-5 mice per group; One-way
758 ANOVA, **p<0.01, ****p<0.0001). J. Quantification of p21+p16+IL6+ triple positive DRG neurons
759 as a percent of total DRG neurons in uninjured and 3-weeks post-injury in young and aged mice
760 (n=3-5 mice per group; One-way ANOVA, *p<0.05, **p<0.01). K. Analysis of IL6-expressing
761 DRG neuron population that co-express senescence markers p21 and/or p16 at 3-weeks post-
762 injury in young and aged mice (n=3 mice per group). Data are expressed as the mean \pm SEM.

763
764 **Figure 3. ATF3+ injured and neighboring non-injured DRG neurons express senescence**
765 **markers after nerve injury.** A. Quantification of number of ATF3+ neurons as a percent of total
766 L3/4 DRG neurons in uninjured and multiple post-SNI time points in young and aged mice (n=3-
767 5 mice per group/time-point). B. Representative images of dual
768 immunohistochemistry/RNAscope labeling ATF3+ injured neurons (nuclear localized protein)
769 and RNA puncta of p21 and p16 at 3-weeks post-SNI. Co-expression of ATF3 with p21 and/or
770 p16 (arrows). Asterisks represent ATF3-negative cells that express p21 and/or p16 senescence
771 markers. C & D. Quantification of ATF3-positive neuron population that co-express p21 and/or
772 p16 at multiple time points post-injury in young and aged DRG (Young: n=3-5 mice per time-
773 point per group: 7-day: n=1,421 ATF3+ neurons, 3-week: n=1,056 ATF3+neurons; 7-week:
774 n=523 ATF3+neurons; Aged: n=3 mice per time-point: 7-day: n=1,004 ATF3+ neurons; 3-week:
775 n=983 ATF3+ neurons; 7-week: n=722 ATF3+ neurons). E. Quantification of ATF3-negative
776 population co-expressing senescence marker p21 at multiple time points post-injury in young

777 and aged DRG (n=3 mice per group per time-point). E. Quantification of ATF3-negative
778 population co-expressing senescence marker *p16* at multiple time points post-injury in young
779 and aged DRG (n=3-5 mice per group per time-point). Data are expressed as the mean \pm SEM.
780

781 **Figure 4. *Trpv1*+ nociceptors express senescence markers following nerve injury.** A.
782 Analysis of cell diameter (μm) of *p21+IL6+*, *p16+IL6+*, or *p21+p16+IL6+* co-positive neurons in
783 the DRG at 3-weeks post-nerve injury in young and aged mice (Young: n=215 *p21+IL6+*
784 neurons; n=51 *p16+IL6+* neurons; n=102 *p21+p16+IL6+* neurons; Aged: n=155 *p21+IL6+*
785 neurons; n=21 *p16+IL6+* neurons; n=46 *p21+p16+IL6+* neurons). B. Representative RNAscope
786 images of young or aged DRG co-labeled for the ion-channel *Trpv1*, senescence marker *p21*,
787 and SASP factor/cytokine *IL6*. Merged images also have DAPI overlay (grey). For *IL6*-signal,
788 intense puncta signal with white center are positive neurons, while fainter/dull blue is
789 background. Arrows: *Trpv1*+ senescent neurons, Asterisks: *Trpv1*-negative senescent neurons.
790 Scale bars 100 μm and 20 μm (insets). C. Quantification of *Trpv1* neuron population and its co-
791 expression with *p21* and/or *IL6* in young and (D) aged L3/4 DRG of uninjured (controls) and 3-
792 weeks post-SNI (n=3 uninjured young mice, n=972 *Trpv1*+ neurons; n=3 SNI young mice,
793 n=1,548 *Trpv1*+ neurons; n=4 uninjured aged mice, n=1,056 *Trpv1*+ neurons; n=3 SNI aged
794 mice, n=1,292 *Trpv1*+ neurons).
795

796 **Figure 5. DRG neurons expressing senescence and SASP markers have unique**
797 **functional profiles that include high-firing and nociceptor-like phenotypes.** A.
798 Representative traces from *p16*-expressing neurons demonstrating repetitive firing (*left*),
799 hyperpolarization-activated current (Ih) presence (*middle*), and the firing parameters rheobase
800 and AP latency (*right*). B. Clusters identified with the hierarchical density-based algorithm
801 HDBSCAN after UMAP alignment of individual neurons constructed with diameter (range: 14–
802 41 μm), firing properties and intrinsic currents. Discrete clusters are identified by color (1–5). (n=
803 82 recorded DRG neurons). C. The senescence marker *p16* (Orange) and D. the SASP factor
804 *IL6* (blue) are mainly found in cluster five. E. The senescence marker *p21* (pink) is widely
805 distributed throughout the clusters. F. Heatmap depicting parameters from left to right as
806 follows: Clusters (*cool gradient*), gene expression (*black*=no expression and *white*=expression),
807 diameter and physiology parameters (*warm gradient*= higher normalized values in lighter reds
808 and lower values in darker reds). Senescence marker *p16* and SASP factor *IL6* groups contain
809 neurons with high-firing phenotypes (>100 APs fired during current steps), which is outlined
810 over increasing depolarizing current steps (*lower left panel*). Ih current amplitude was also
811 measured at decreasing hyperpolarizing steps (*lower right panel*).
812

812 **Figure 6. *in vivo* elimination of senescent neurons using senolytics alleviates pain**
813 **behaviors after nerve injury.** A. Schematic of treatment paradigm. Young and aged mice were
814 treated with senolytic (ABT263, 100mg/kg) or vehicle for 10 days by oral gavage, starting at 3-
815 weeks post-spared nerve injury (SNI). Mechanical allodynia and weight bearing were assessed
816 during and after treatment. B. Senolytics induce apoptosis in the DRG. Representative image of
817 CC3-immunohistochemistry to capture apoptotic cells after 5-day treatment with ABT263 (white
818 arrows = CC3-positive neurons, other red fluorescent signal is background lipofuscin).
819 Quantification of cleaved-caspase-3 (CC3) positive neurons in the DRG following treatment with
820 vehicle or ABT263 for 5 consecutive days (n=3 male, n=3 female aged mice per treatment
821 group, two-tailed unpaired t-test, **p<0.01). C. Aged mice were treated with ABT263 or vehicle
822 (light blue indicates treatment window) and their mechanical allodynia thresholds were
823 assessed (n=13 female, n=9 male vehicle-treated mice; n=14 female, n=13 male ABT263-
824 treated mice, mixed-effects analysis, Šídák's multiple comparisons test, *p<0.05, **p<0.01,
825

825 ***p<0.001). D. Aged mice treated with ABT263 displayed improved weight bearing on injured
826 limb compared to vehicle-treated mice at both Day 16 (n=10 female, n= 8 male vehicle-treated
827 mice; n=9 female, n=9 male ABT263-treated mice, two-tailed unpaired t-test, ***p<0.001) and
828 Day 39 post treatment start (n=9 female, n= 7 male vehicle-treated mice; n=9 female, n=9 male
829 ABT263-treated mice, two-tailed unpaired t-test, ****p<0.0001). E. Young mice were treated
830 with ABT263 or vehicle (light blue indicates treatment window) and their mechanical allodynia
831 thresholds were assessed (n=12 male vehicle-treated mice, n=12 male ABT263-treated mice,
832 mixed-effects analysis, Šídák's multiple comparisons test, **p<0.01). F. Young mice treated with
833 ABT263 displayed improved weight bearing on injured limb compared to vehicle-treated mice at
834 both Day 16 (n=11 vehicle-treated, n=13 ABT263-treated male mice, two-tailed unpaired t-test,
835 **p<0.01, ****p<0.0001) and Day 29 post treatment start (n=5 vehicle-treated, n=5 ABT263-
836 treated male mice, two-tailed unpaired t-test **p<0.01). Data are expressed as the mean ± SEM.

837 **Figure 7. Human DRG neurons express senescence markers and SASP factor IL6 with**
838 **age.** A & B. Representative RNAscope images from young (33yr) or aged (65yr) human L4
839 DRG showing expression of *p21* and *p16* senescence markers (enlarged left images with DAPI,
840 scale bar 100μm). The large globular signal present in both channels is auto fluorescent
841 lipofuscin and not RNAscope signal (small puncta). C. Quantification of *p21*+, *p16*+, and co-
842 positive *p21+p16* neurons in the young and aged human DRG as a percent of total DRG
843 neurons. D. Quantification of *IL6*-expressing neurons as a percent of total DRG neurons. E.
844 Analysis of *IL6*-positive neuron population and quantification of the co-expression of
845 senescence markers *p21* and/or *p16*. F. Quantification of neurons co-expressing senescence
846 markers *p21* and/or *p16* with *IL6* as a percent of total DRG neurons. G. Percent of DRG
847 neurons that are ATF3-positive in young and aged human DRG. H. Example image depicting a
848 single human neuron positive for ATF3 (nuclear-localized, immunohistochemistry) and *p21*
849 (RNAscope). Scale bars 20μm. Analysis of ATF3-positive neuron population and quantification
850 of the co-expression with *p21* in young and aged human DRG (*right*, donuts) (n=64 young
851 ATF3+ DRG neurons, n=54 aged ATF3+ DRG neurons). I. Total percentage of *TRPV1*+852 neurons as a percent of total DRG neurons in young and aged human DRG. *Boxed right*,
853 Quantification of the subsets of *TRPV1*+ neurons that co-express either *p21* or *p16* by
854 RNAscope. J. Single human neurons showing co-expression of *TRPV1* with *p21* and/or *p16*.
855 DAPI in grey. Scale bars 20μm. K. Venn diagram of human DRG neurons representing total
856 numbers of DRG neurons that express *TRPV1*, *p16*, and *p21*. Aged DRG display a greater
857 overlapping fraction of *TRPV1*+ neurons expressing either or both senescence markers *p21* and
858 *p16* compared to young neurons.
859
860

861 **SUPPLEMENTAL FIGURE LEGENDS**

862 **Supplemental Figure 1. Confirmation of *p16^{INK4A}*-specific RNA expression in the DRG.**
863 RNAscope using RNA probes spanning exons encoding both *p16^{INK4A}* and *p19^{ARF}* protein
864 (*Cdkn2a-tv1*). *Cdkn2a-tv2* RNA probe spans exons specific to *p16^{INK4A}* protein. Complete
865 cellular co-localization of the *Cdkn2a* variants in mouse lumbar DRG sections confirming *p16*-
866 specific expression in the mouse lumbar DRG. Scale bar of upper panels are 25μm. Scale bars
867 of inset are 15μm.
868

869 **Supplemental Figure 2. Senolytic treatment does not alter normal sensory function.** The
870 mechanical threshold of the contralateral (uninjured) hindlimb was measured after application of
871 senolytic ABT263 or vehicle control in aged (A) and young (B) mice at Day19 post-treatment
872 (n=21 aged vehicle-treated mice, n=24 aged ABT263-treated mice; n=9 young vehicle-treated

874 mice, n=11 young ABT263-treated mice; two-tailed unpaired t-test, p= 0.8562 (aged mice),
875 p=0.5858 (young mice)).
876

877 **Supplemental Figure 3. Increased percentage of human DRG neurons filled with**
878 **lipofuscin with age.** A. Representative neurons in aged (65yr) human DRG with accumulated
879 lipofuscin, a marker of senescence. Example of neuron either mostly filled (left arrow) or
880 completely filled (right arrow). Scale bar is 10 μ m. B. Quantification of DRG neurons whose cell
881 bodies were greater than 75% occluded by lipofuscin as a percentage of all DRG neurons in
882 young and aged human DRG. Lipofuscin signal is defined by strong autofluorescence signal
883 across all channels (488, 550, 647) which presents as a bright yellow/white signal in overlay.
884

885 **Supplemental Figure 4. SASP-expressing senescent neuron diameters in young and**
886 **aged human DRG.** Cell diameters (μ m) of human DRG neurons co-expressing either
887 p21+IL6+, p16+IL6+, or p21+p16+IL6+, as a percent of total neurons counted in each
888 population in young (A) and aged (B) DRG (Young (33yr) DRG: n=14 p21+/IL6+ DRG neurons,
889 n=78 p16+/IL6+ DRG neurons, n=48 p16+p21+/IL6+ DRG neurons; Aged (65yr) DRG: n=36
890 p21+/IL6+ DRG neurons, n=48 p16+/IL6+ DRG neurons, n=118 p16+p21+/IL6+ DRG neurons).
891

892 **REFERENCES**

893 1. Melzer D, Pilling LC, Ferrucci L. The genetics of human ageing. *Nat Rev Genet.* 2020;21(2):88-
894 101.

895 2. Millecamps M, Shi XQ, Piltonen M, Echeverry S, Diatchenko L, Zhang J, et al. The geriatric pain
896 experience in mice: intact cutaneous thresholds but altered responses to tonic and chronic pain.
897 *Neurobiol Aging.* 2020;89:1-11.

898 3. Singh SP, Guindon J, Mody PH, Ashworth G, Kopel J, Chilakapati S, et al. Pain and aging: A unique
899 challenge in neuroinflammation and behavior. *Mol Pain.* 2023;19:17448069231203090.

900 4. Vincent K, Dona CPG, Albert TJ, Dahia CL. Age-related molecular changes in the lumbar dorsal
901 root ganglia of mice: Signs of sensitization, and inflammatory response. *JOR Spine.* 2020;3(4):e1124.

902 5. Canta A, Chiarazzi A, Carozzi VA, Meregalli C, Oggioni N, Bossi M, et al. Age-related changes in
903 the function and structure of the peripheral sensory pathway in mice. *Neurobiol Aging.* 2016;45:136-48.

904 6. Wang S, Albers KM. Behavioral and cellular level changes in the aging somatosensory system.
905 *Ann N Y Acad Sci.* 2009;1170:745-9.

906 7. Hajdarovic KH, Yu D, Hassell LA, Evans S, Packer S, Neretti N, et al. Single-cell analysis of the
907 aging female mouse hypothalamus. *Nat Aging.* 2022;2(7):662-78.

908 8. Borghesan M, Hoogaars WMH, Varela-Eirin M, Talma N, Demaria M. A Senescence-Centric View
909 of Aging: Implications for Longevity and Disease. *Trends Cell Biol.* 2020;30(10):777-91.

910 9. van Deursen JM. The role of senescent cells in ageing. *Nature.* 2014;509(7501):439-46.

911 10. Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular Senescence:
912 Defining a Path Forward. *Cell.* 2019;179(4):813-27.

913 11. Chinta SJ, Woods G, Rane A, Demaria M, Campisi J, Andersen JK. Cellular senescence and the
914 aging brain. *Exp Gerontol.* 2015;68:3-7.

915 12. Muralidharan A, Sotocinal SG, Yousefpour N, Akkurt N, Lima LV, Tansley S, et al. Long-term male-
916 specific chronic pain via telomere- and p53-mediated spinal cord cellular senescence. *J Clin Invest.*
917 2022;132(8).

918 13. Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derkx KWJ, Bourgeois BRM, et al. Targeted
919 Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. *Cell.*
920 2017;169(1):132-47.e16.

921 14. Jeon OH, David N, Campisi J, Elisseeff JH. Senescent cells and osteoarthritis: a painful
922 connection. *J Clin Invest.* 2018;128(4):1229-37.

923 15. Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and Age-Related
924 Diseases: Role of Inflammation Triggers and Cytokines. *Front Immunol.* 2018;9:586.

925 16. Grants JM, Wegrzyn J, Hui T, O'Neill K, Shadbolt M, Knapp D, et al. Altered microRNA expression
926 links IL6 and TNF-induced inflammmaging with myeloid malignancy in humans and mice. *Blood.*
927 2020;135(25):2235-51.

928 17. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. Clearance of
929 p16Ink4a-positive senescent cells delays ageing-associated disorders. *Nature.* 2011;479(7372):232-6.

930 18. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, et al. Naturally occurring
931 p16(INK4a)-positive cells shorten healthy lifespan. *Nature.* 2016;530(7589):184-9.

932 19. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, et al. Senolytics improve
933 physical function and increase lifespan in old age. *Nat Med.* 2018;24(8):1246-56.

934 20. Melo Dos Santos LS, Trombetta-Lima M, Bjl E, Demaria M. Cellular senescence in brain aging and
935 neurodegeneration. *Ageing Res Rev.* 2023;102141.

936 21. Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. *Nat*
937 *Med.* 2022;28(8):1556-68.

938 22. Stein GH, Drullinger LF, Soulard A, Dulić V. Differential roles for cyclin-dependent kinase
939 inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. *Mol
940 Cell Biol.* 1999;19(3):2109-17.

941 23. Roger L, Tomas F, Gire V. Mechanisms and Regulation of Cellular Senescence. *Int J Mol Sci.*
942 2021;22(23).

943 24. Takeuchi S, Takahashi A, Motoi N, Yoshimoto S, Tajima T, Yamakoshi K, et al. Intrinsic
944 cooperation between p16INK4a and p21Waf1/Cip1 in the onset of cellular senescence and tumor
945 suppression in vivo. *Cancer Res.* 2010;70(22):9381-90.

946 25. Farr JN, Fraser DG, Wang H, Jaehn K, Ogrodnik MB, Weivoda MM, et al. Identification of
947 Senescent Cells in the Bone Microenvironment. *J Bone Miner Res.* 2016;31(11):1920-9.

948 26. Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, et al. A crucial role for adipose
949 tissue p53 in the regulation of insulin resistance. *Nat Med.* 2009;15(9):1082-7.

950 27. Sapieha P, Mallette FA. Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest. *Trends
951 Cell Biol.* 2018;28(8):595-607.

952 28. Jurk D, Wang C, Miwa S, Maddick M, Korolchuk V, Tsolou A, et al. Postmitotic neurons develop a
953 p21-dependent senescence-like phenotype driven by a DNA damage response. *Aging Cell.*
954 2012;11(6):996-1004.

955 29. Kang C, Xu Q, Martin TD, Li MZ, Demaria M, Aron L, et al. The DNA damage response induces
956 inflammation and senescence by inhibiting autophagy of GATA4. *Science.* 2015;349(6255):aaa5612.

957 30. Herdy JR, Traxler L, Agarwal RK, Karbacher L, Schlachetzki JCM, Boehnke L, et al. Increased post-
958 mitotic senescence in aged human neurons is a pathological feature of Alzheimer's disease. *Cell Stem
959 Cell.* 2022;29(12):1637-52.e6.

960 31. Palmer A, Epton S, Crawley E, Straface M, Gammon L, Edgar MM, et al. Expression of p16 Within
961 Myenteric Neurons of the Aged Colon: A Potential Marker of Declining Function. *Front Neurosci.*
962 2021;15:747067.

963 32. Dehkordi SK, Walker J, Sah E, Bennett E, Atrian F, Frost B, et al. Profiling senescent cells in
964 human brains reveals neurons with CDKN2D/p19 and tau neuropathology. *Nat Aging.* 2021;1(12):1107-
965 16.

966 33. Fielder E, von Zglinicki T, Jurk D. The DNA Damage Response in Neurons: Die by Apoptosis or
967 Survive in a Senescence-Like State? *J Alzheimers Dis.* 2017;60(s1):S107-s31.

968 34. Hernández-Ortega K, Quiroz-Baez R, Arias C. Cell cycle reactivation in mature neurons: a link
969 with brain plasticity, neuronal injury and neurodegenerative diseases? *Neurosci Bull.* 2011;27(3):185-96.

970 35. Gillispie GJ, Sah E, Krishnamurthy S, Ahmidouch MY, Zhang B, Orr ME. Evidence of the Cellular
971 Senescence Stress Response in Mitotically Active Brain Cells-Implications for Cancer and
972 Neurodegeneration. *Life (Basel).* 2021;11(2).

973 36. Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. Clearance of senescent
974 glial cells prevents tau-dependent pathology and cognitive decline. *Nature.* 2018;562(7728):578-82.

975 37. Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, Shen Q, et al. Tau protein
976 aggregation is associated with cellular senescence in the brain. *Aging Cell.* 2018;17(6):e12840.

977 38. Khoutorsky A, Price TJ. Translational Control Mechanisms in Persistent Pain. *Trends Neurosci.*
978 2018;41(2):100-14.

979 39. Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP channels: the key transducers of
980 nociception and pain. *Prog Mol Biol Transl Sci.* 2015;131:73-118.

981 40. Mailhot B, Christin M, Tessandier N, Sotoudeh C, Bretheau F, Turmel R, et al. Neuronal
982 interleukin-1 receptors mediate pain in chronic inflammatory diseases. *J Exp Med.* 2020;217(9).

983 41. Jin X, Gereau RW. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels
984 in mouse sensory neurons by tumor necrosis factor-alpha. *J Neurosci.* 2006;26(1):246-55.

985 42. Andratsch M, Mair N, Constantin CE, Scherbakov N, Benetti C, Quarta S, et al. A key role for
986 gp130 expressed on peripheral sensory nerves in pathological pain. *J Neurosci.* 2009;29(43):13473-83.
987 43. Constantin CE, Mair N, Sailer CA, Andratsch M, Xu ZZ, Blumer MJ, et al. Endogenous tumor
988 necrosis factor alpha (TNFalpha) requires TNF receptor type 2 to generate heat hyperalgesia in a mouse
989 cancer model. *J Neurosci.* 2008;28(19):5072-81.
990 44. Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on
991 inflammatory events after peripheral nerve injury. *Journal of neuroinflammation.* 2011;8:110.
992 45. Goncalves Dos Santos G, Delay L, Yaksh TL, Corr M. Neuraxial Cytokines in Pain States. *Frontiers*
993 in immunology. 2019;10:3061.
994 46. Fang D, Kong LY, Cai J, Li S, Liu XD, Han JS, et al. Interleukin-6-mediated functional upregulation
995 of TRPV1 receptors in dorsal root ganglion neurons through the activation of JAK/PI3K signaling
996 pathway: roles in the development of bone cancer pain in a rat model. *Pain.* 2015;156(6):1124-44.
997 47. Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of Cellular Senescence. *Trends in cell*
998 *biology.* 2018;28(6):436-53.
999 48. Cohn RL, Gasek NS, Kuchel GA, Xu M. The heterogeneity of cellular senescence: insights at the
1000 single-cell level. *Trends Cell Biol.* 2023;33(1):9-17.
1001 49. Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral
1002 neuropathic pain. *Pain.* 2000;87(2):149-58.
1003 50. Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K, et al. Activating transcription factor 3
1004 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury. *Mol*
1005 *Cell Neurosci.* 2000;15(2):170-82.
1006 51. Laedermann CJ, Pertin M, Suter MR, Decosterd I. Voltage-gated sodium channel expression in
1007 mouse DRG after SNI leads to re-evaluation of projections of injured fibers. *Mol Pain.* 2014;10:19.
1008 52. Usoskin D, Furlan A, Islam S, Abdo H, Lönnberg P, Lou D, et al. Unbiased classification of
1009 sensory neuron types by large-scale single-cell RNA sequencing. *Nat Neurosci.* 2015;18(1):145-53.
1010 53. Shiers S, Klein RM, Price TJ. Quantitative differences in neuronal subpopulations between mouse
1011 and human dorsal root ganglia demonstrated with RNAscope in situ hybridization. *Pain.*
1012 2020;161(10):2410-24.
1013 54. Zheng Y, Liu P, Bai L, Trimmer JS, Bean BP, Ginty DD. Deep Sequencing of Somatosensory
1014 Neurons Reveals Molecular Determinants of Intrinsic Physiological Properties. *Neuron.* 2019;103(4):598-
1015 616.e7.
1016 55. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, et al. ABT-263: a potent and orally
1017 bioavailable Bcl-2 family inhibitor. *Cancer Res.* 2008;68(9):3421-8.
1018 56. Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. *J Intern Med.*
1019 2020;288(5):518-36.
1020 57. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, et al. Identification of a
1021 novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. *Aging Cell.*
1022 2016;15(3):428-35.
1023 58. Jung T, Bader N, Grune T. Lipofuscin: formation, distribution, and metabolic consequences. *Ann*
1024 *N Y Acad Sci.* 2007;1119:97-111.
1025 59. Georgakopoulou EA, Tsimaratos K, Evangelou K, Fernandez Marcos PJ, Zoumpourlis V,
1026 Trougakos IP, et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-
1027 induced senescence. A method applicable in cryo-preserved and archival tissues. *Aging (Albany NY).*
1028 2013;5(1):37-50.
1029 60. Lindå H, Sköld MK, Ochsmann T. Activating transcription factor 3, a useful marker for
1030 regenerative response after nerve root injury. *Front Neurol.* 2011;2:30.

1031 61. Sah E, Krishnamurthy S, Ahmidouch MY, Gillispie GJ, Milligan C, Orr ME. The Cellular Senescence
1032 Stress Response in Post-Mitotic Brain Cells: Cell Survival at the Expense of Tissue Degeneration. *Life*
1033 (Basel). 2021;11(3).

1034 62. von Zglinicki T, Wan T, Miwa S. Senescence in Post-Mitotic Cells: A Driver of Aging? *Antioxid*
1035 *Redox Signal*. 2021;34(4):308-23.

1036 63. Frade JM, Ovejero-Benito MC. Neuronal cell cycle: the neuron itself and its circumstances. *Cell*
1037 *Cycle*. 2015;14(5):712-20.

1038 64. Chauhan M, Modi PK, Sharma P. Aberrant activation of neuronal cell cycle caused by
1039 dysregulation of ubiquitin ligase Itch results in neurodegeneration. *Cell Death Dis*. 2020;11(6):441.

1040 65. McShea A, Harris PL, Webster KR, Wahl AF, Smith MA. Abnormal expression of the cell cycle
1041 regulators P16 and CDK4 in Alzheimer's disease. *Am J Pathol*. 1997;150(6):1933-9.

1042 66. Nagy Z, Esiri MM, Cato AM, Smith AD. Cell cycle markers in the hippocampus in Alzheimer's
1043 disease. *Acta Neuropathol*. 1997;94(1):6-15.

1044 67. Katchanov J, Harms C, Gertz K, Hauck L, Waeber C, Hirt L, et al. Mild cerebral ischemia induces
1045 loss of cyclin-dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal
1046 cell death. *J Neurosci*. 2001;21(14):5045-53.

1047 68. Wen Y, Yang S, Liu R, Brun-Zinkernagel AM, Koulen P, Simpkins JW. Transient cerebral ischemia
1048 induces aberrant neuronal cell cycle re-entry and Alzheimer's disease-like tauopathy in female rats. *J*
1049 *Biol Chem*. 2004;279(21):22684-92.

1050 69. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, et al. An essential role for
1051 senescent cells in optimal wound healing through secretion of PDGF-AA. *Dev Cell*. 2014;31(6):722-33.

1052 70. ElShamy WM, Fridvall LK, Ernfors P. Growth arrest failure, G1 restriction point override, and S
1053 phase death of sensory precursor cells in the absence of neurotrophin-3. *Neuron*. 1998;21(5):1003-15.

1054 71. Fischer SJ, McDonald ES, Gross L, Windebank AJ. Alterations in cell cycle regulation underlie
1055 cisplatin induced apoptosis of dorsal root ganglion neurons in vivo. *Neurobiol Dis*. 2001;8(6):1027-35.

1056 72. Paramos-de-Carvalho D, Martins I, Cristóvão AM, Dias AF, Neves-Silva D, Pereira T, et al.
1057 Targeting senescent cells improves functional recovery after spinal cord injury. *Cell Rep*.
1058 2021;36(1):109334.

1059 73. Schwab N, Taskina D, Leung E, Innes BT, Bader GD, Hazrati LN. Neurons and glial cells acquire a
1060 senescent signature after repeated mild traumatic brain injury in a sex-dependent manner. *Front*
1061 *Neurosci*. 2022;16:1027116.

1062 74. Wang J, Lu Y, Carr C, Dhandapani KM, Brann DW. Senolytic therapy is neuroprotective and
1063 improves functional outcome long-term after traumatic brain injury in mice. *Front Neurosci*.
1064 2023;17:1227705.

1065 75. Admasu TD, Rae M, Stolzing A. Dissecting primary and secondary senescence to enable new
1066 senotherapeutic strategies. *Ageing Res Rev*. 2021;70:101412.

1067 76. Teo YV, Rattanavirotkul N, Olova N, Salzano A, Quintanilla A, Tarrats N, et al. Notch Signaling
1068 Mediates Secondary Senescence. *Cell Rep*. 2019;27(4):997-1007.e5.

1069 77. Rattanavirotkul N, Kirschner K, Chandra T. Induction and transmission of oncogene-induced
1070 senescence. *Cell Mol Life Sci*. 2021;78(3):843-52.

1071 78. Miller RJ, Jung H, Bhangoo SK, White FA. Cytokine and chemokine regulation of sensory neuron
1072 function. *Handb Exp Pharmacol*. 2009(194):417-49.

1073 79. Obreja O, Biasio W, Andratsch M, Lips KS, Rathee PK, Ludwig A, et al. Fast modulation of heat-
1074 activated ionic current by proinflammatory interleukin 6 in rat sensory neurons. *Brain*. 2005;128(Pt
1075 7):1634-41.

1076 80. Oprée A, Kress M. Involvement of the proinflammatory cytokines tumor necrosis factor-alpha,
1077 IL-1 beta, and IL-6 but not IL-8 in the development of heat hyperalgesia: effects on heat-evoked
1078 calcitonin gene-related peptide release from rat skin. *J Neurosci*. 2000;20(16):6289-93.

1079 81. Cunha TM, Verri WA, Jr., Silva JS, Poole S, Cunha FQ, Ferreira SH. A cascade of cytokines
1080 mediates mechanical inflammatory hypernociception in mice. *Proc Natl Acad Sci U S A*.
1081 2005;102(5):1755-60.

1082 82. Zhou YQ, Liu Z, Liu ZH, Chen SP, Li M, Shahveranov A, et al. Interleukin-6: an emerging regulator
1083 of pathological pain. *J Neuroinflammation*. 2016;13(1):141.

1084 83. Jeevakumar V, Al Sardar AK, Mohamed F, Smithhart CM, Price T, Dussor G. IL-6 induced
1085 upregulation of T-type Ca(2+) currents and sensitization of DRG nociceptors is attenuated by MNK
1086 inhibition. *J Neurophysiol*. 2020;124(1):274-83.

1087 84. Ma W, Quirion R. Up-regulation of interleukin-6 induced by prostaglandin E from invading
1088 macrophages following nerve injury: an in vivo and in vitro study. *J Neurochem*. 2005;93(3):664-73.

1089 85. Cui JG, Holmin S, Mathiesen T, Meyerson BA, Linderoth B. Possible role of inflammatory
1090 mediators in tactile hypersensitivity in rat models of mononeuropathy. *Pain*. 2000;88(3):239-48.

1091 86. Liu JA, Yu J, Cheung CW. Immune Actions on the Peripheral Nervous System in Pain. *Int J Mol Sci*.
1092 2021;22(3).

1093 87. Bolin LM, Verity AN, Silver JE, Shooter EM, Abrams JS. Interleukin-6 production by Schwann cells
1094 and induction in sciatic nerve injury. *J Neurochem*. 1995;64(2):850-8.

1095 88. St-Jacques B, Ma W. Role of prostaglandin E2 in the synthesis of the pro-inflammatory cytokine
1096 interleukin-6 in primary sensory neurons: an in vivo and in vitro study. *J Neurochem*. 2011;118(5):841-
1097 54.

1098 89. Richards N, McMahon SB. Targeting novel peripheral mediators for the treatment of chronic
1099 pain. *Br J Anaesth*. 2013;111(1):46-51.

1100 90. Hayek SM, Shah A. Nerve blocks for chronic pain. *Neurosurg Clin N Am*. 2014;25(4):809-17.

1101 91. Acklin S, Zhang M, Du W, Zhao X, Plotkin M, Chang J, et al. Depletion of senescent-like neuronal
1102 cells alleviates cisplatin-induced peripheral neuropathy in mice. *Sci Rep*. 2020;10(1):14170.

1103 92. Du J, Cheng N, Deng Y, Xiang P, Liang J, Zhang Z, et al. Astrocyte senescence-like response
1104 related to peripheral nerve injury-induced neuropathic pain. *Cell Mol Biol Lett*. 2023;28(1):65.

1105 93. Rocha LR, Nguyen Huu VA, Palomino La Torre C, Xu Q, Jabari M, Krawczyk M, et al. Early removal
1106 of senescent cells protects retinal ganglion cells loss in experimental ocular hypertension. *Aging Cell*.
1107 2020;19(2):e13089.

1108 94. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative
1109 PCR and the 2(-Delta Delta C(T)) Method. *Methods*. 2001;25(4):402-8.

1110 95. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile
1111 allodynia in the rat paw. *Journal of neuroscience methods*. 1994;53(1):55-63.

1112

Figure 1

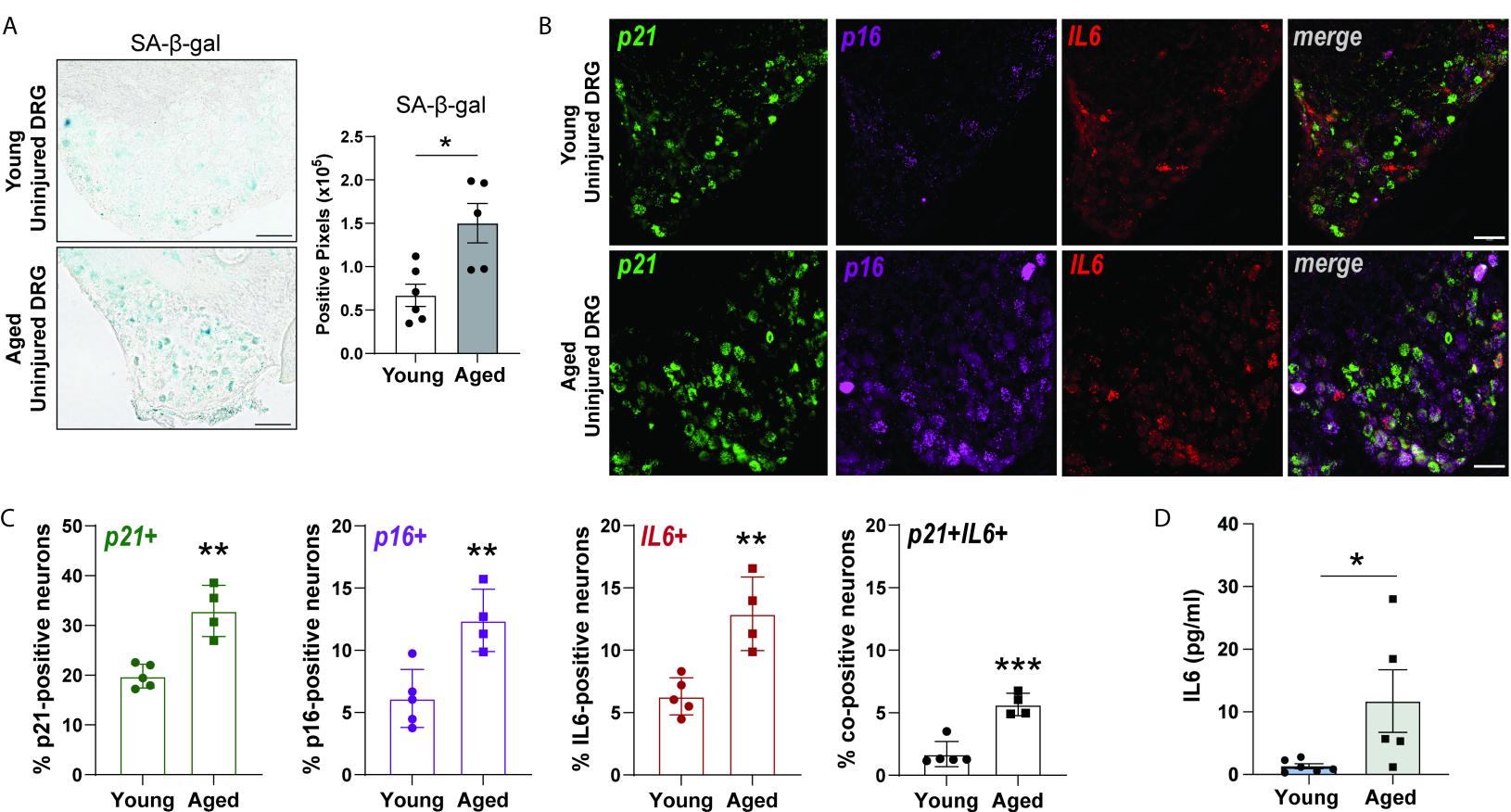


Figure 2

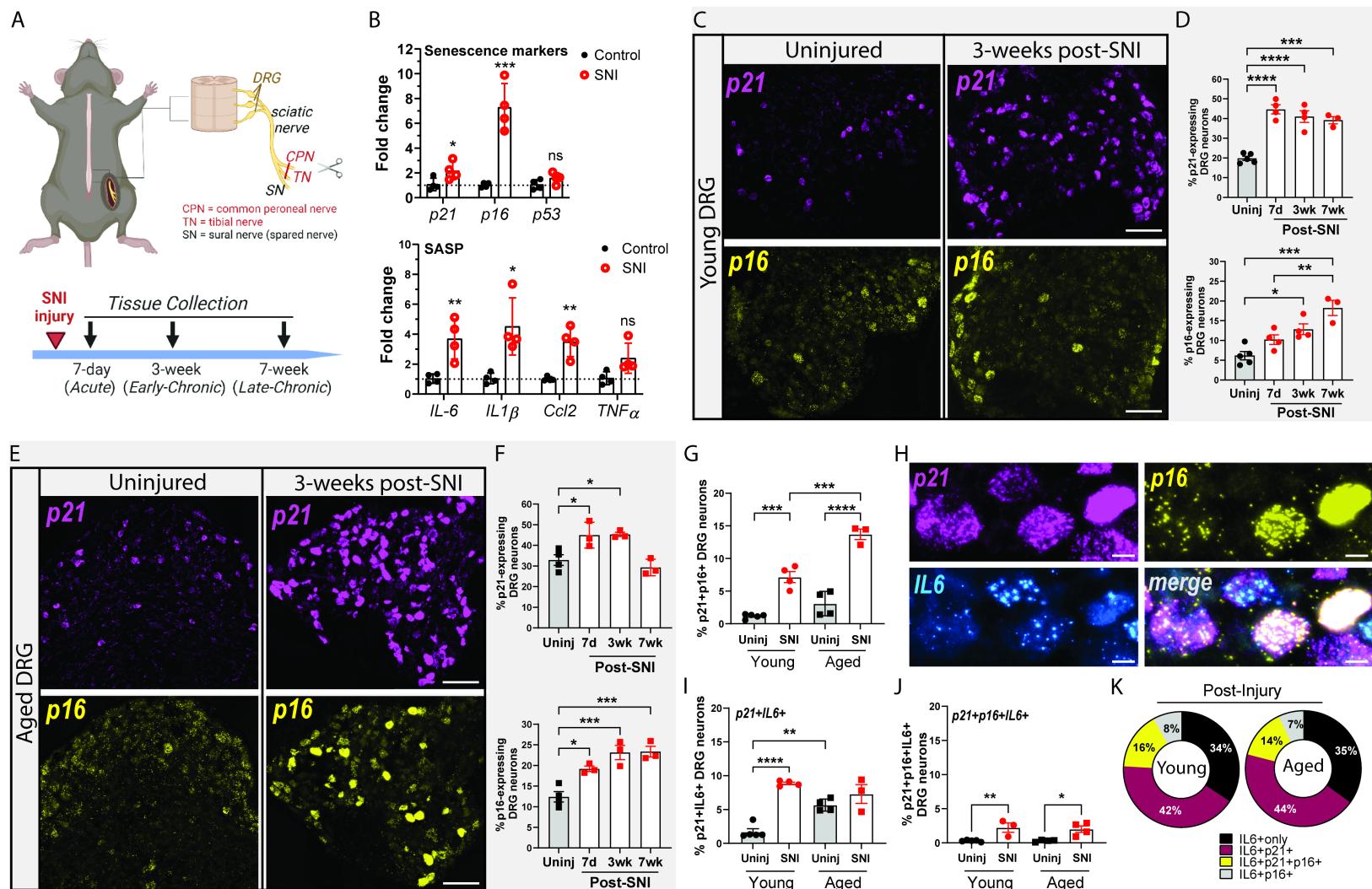


Figure 3

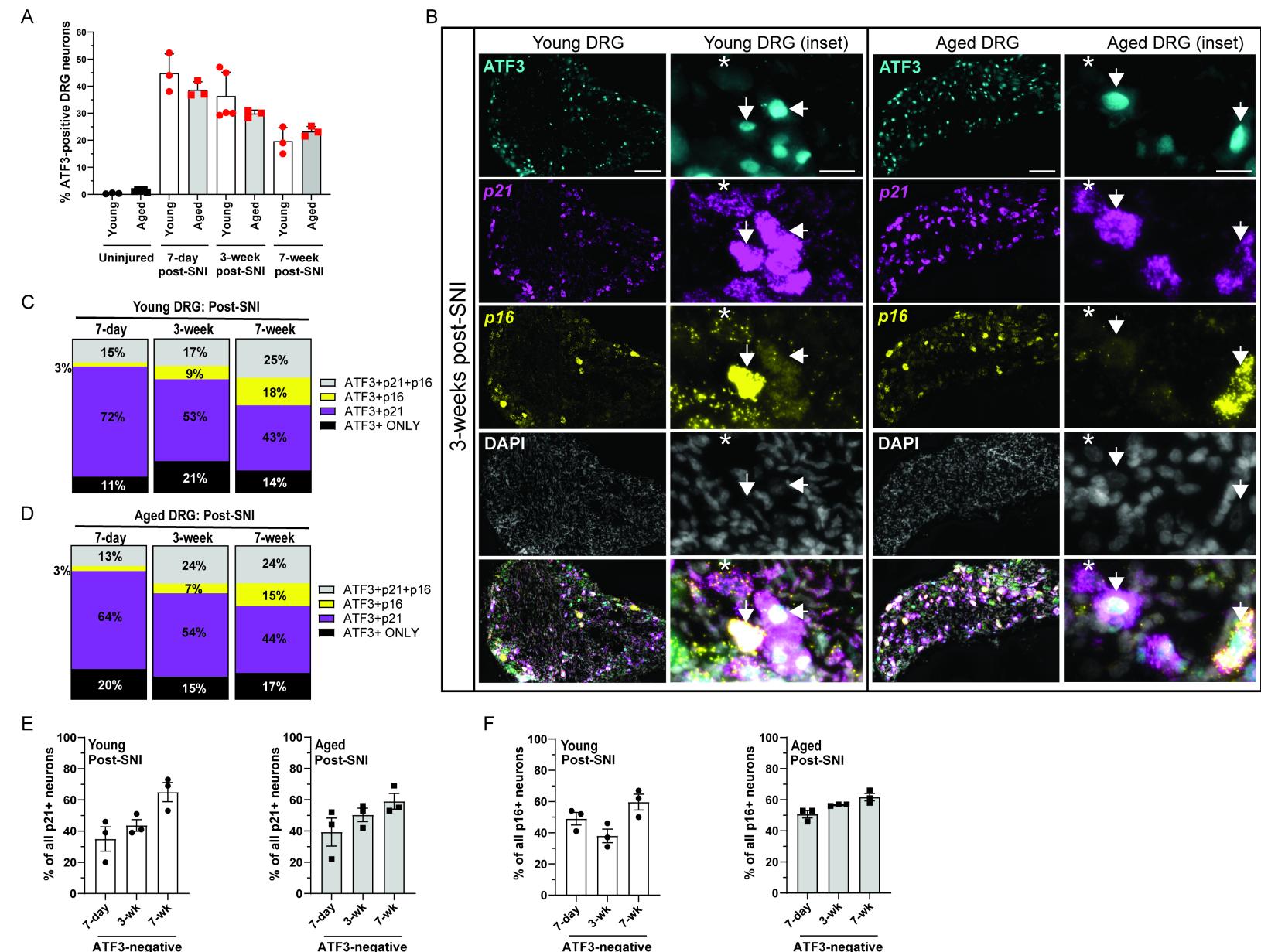
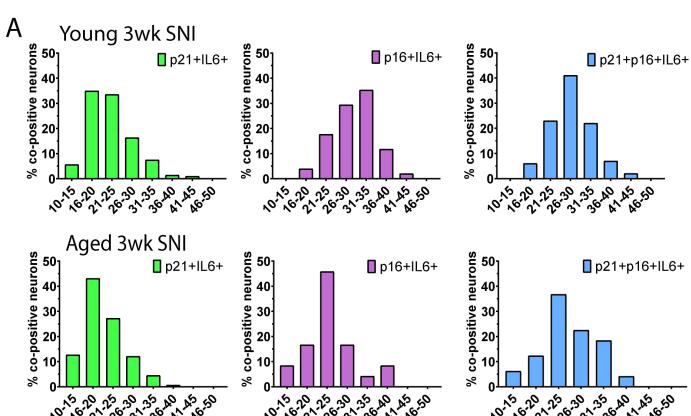



Figure 4

B

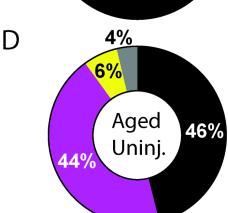
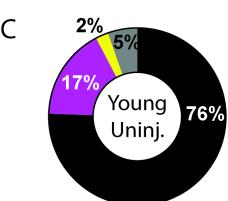
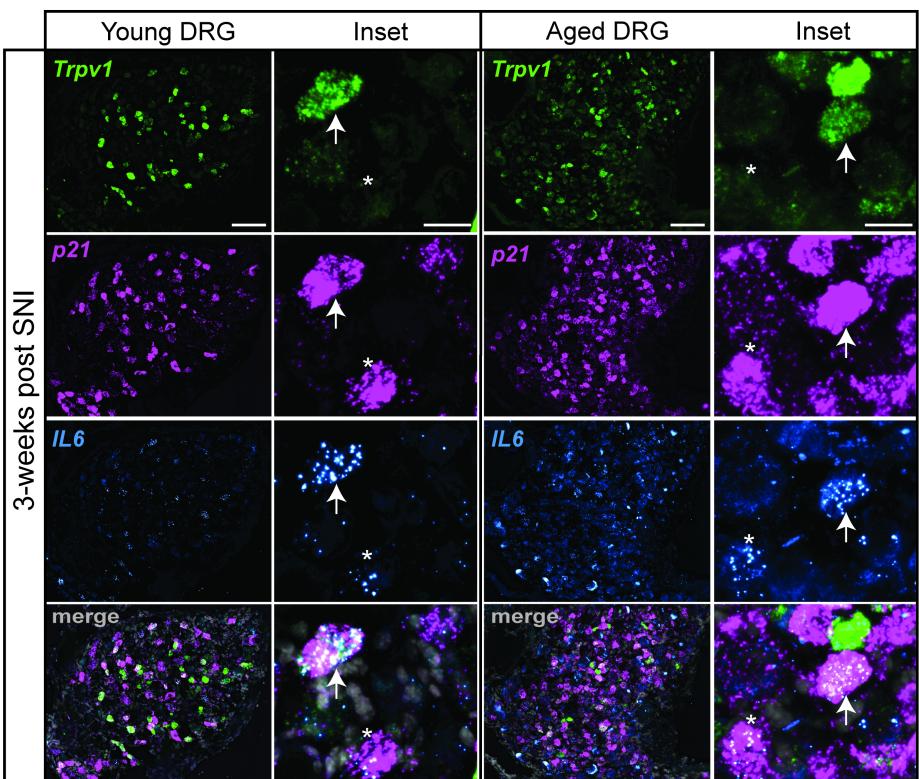
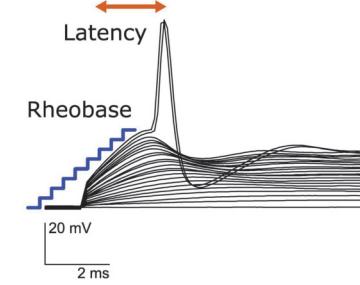
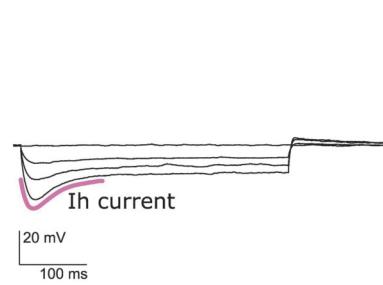
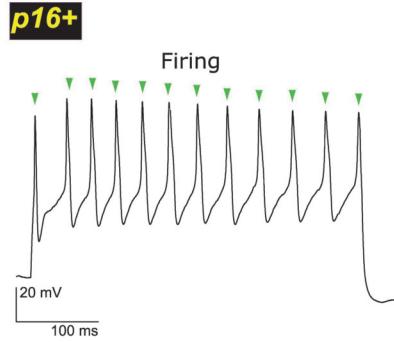
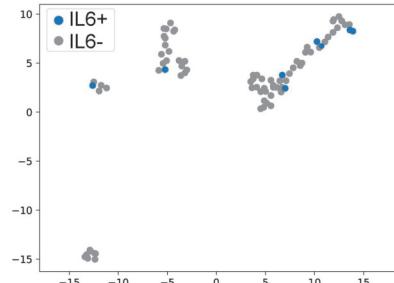
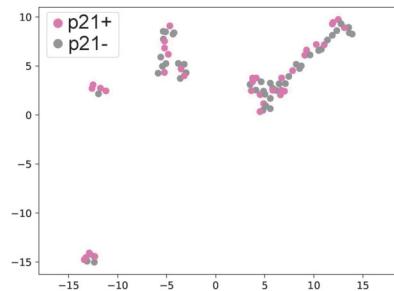
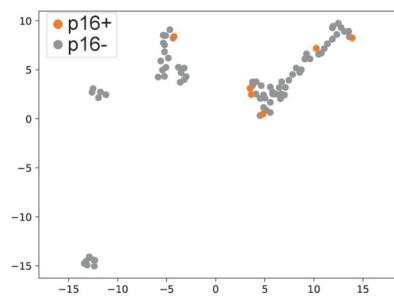
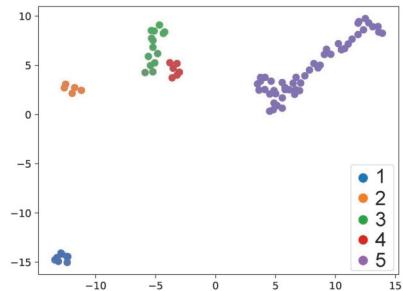
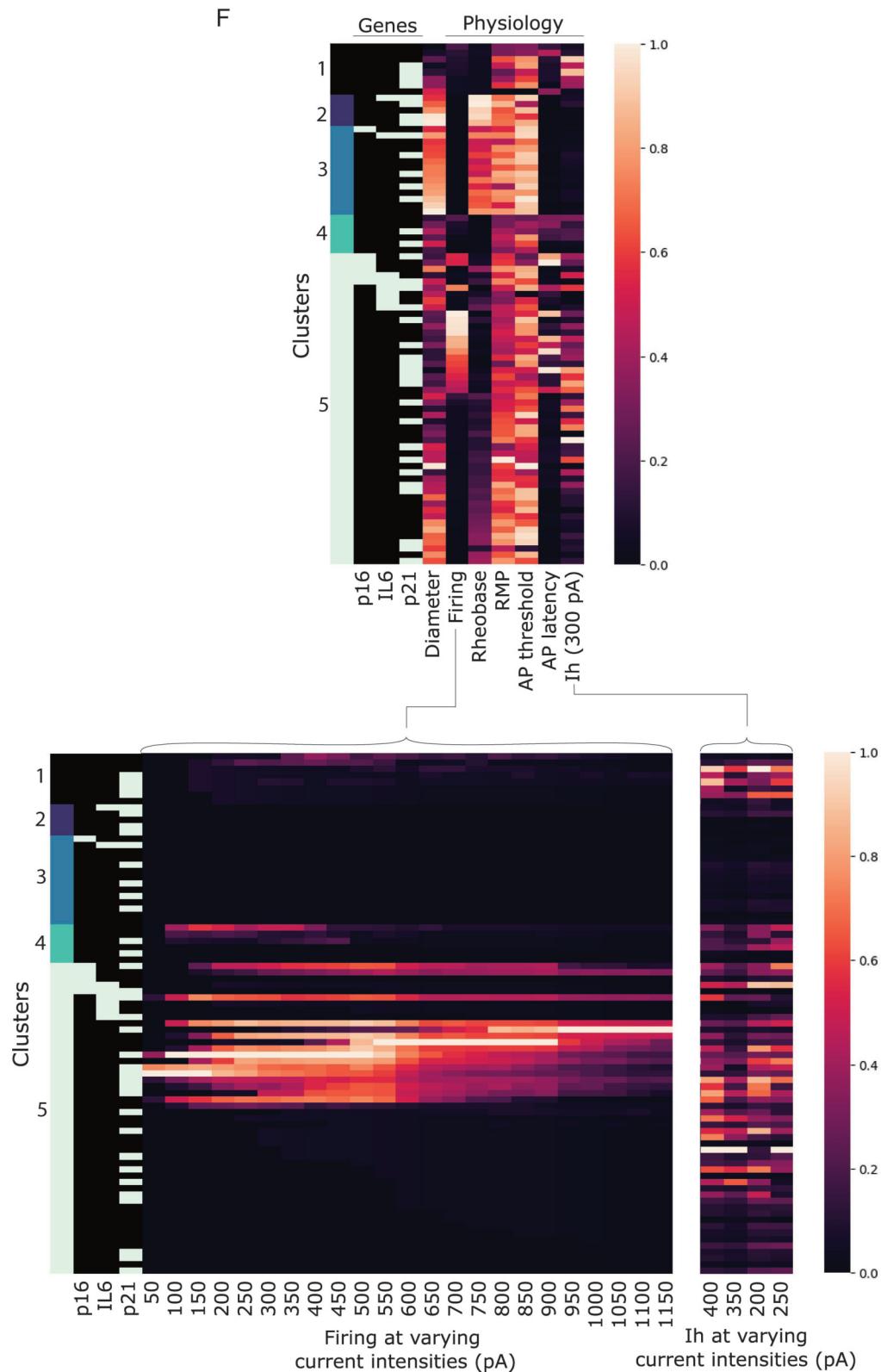
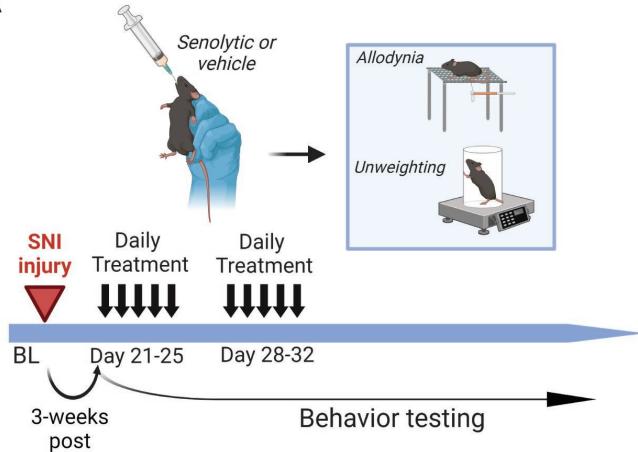
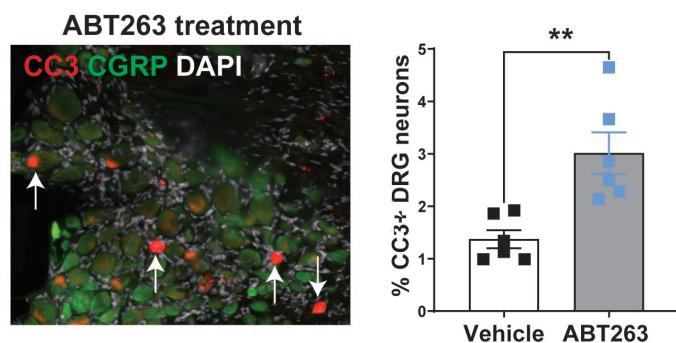
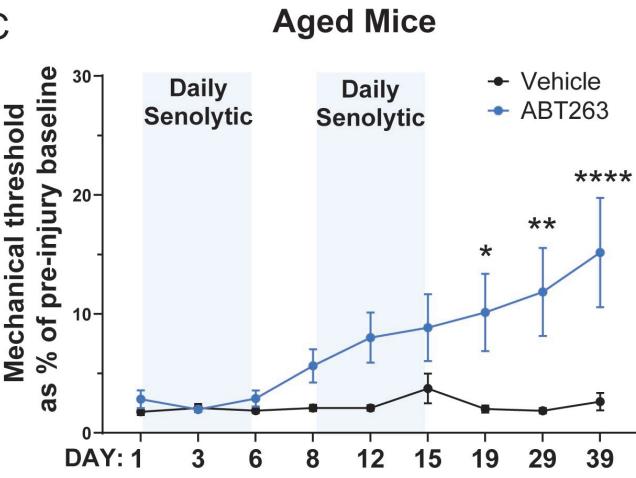
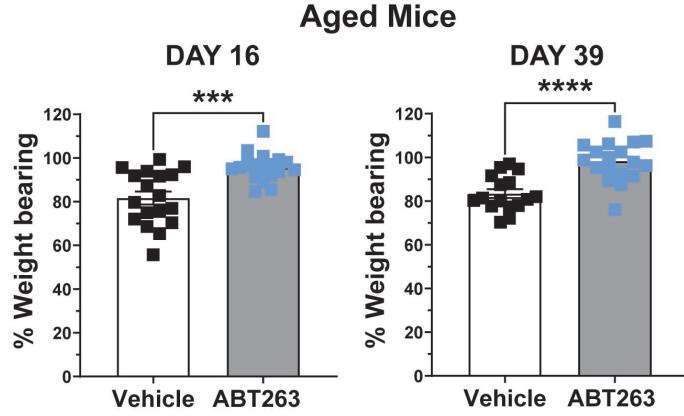
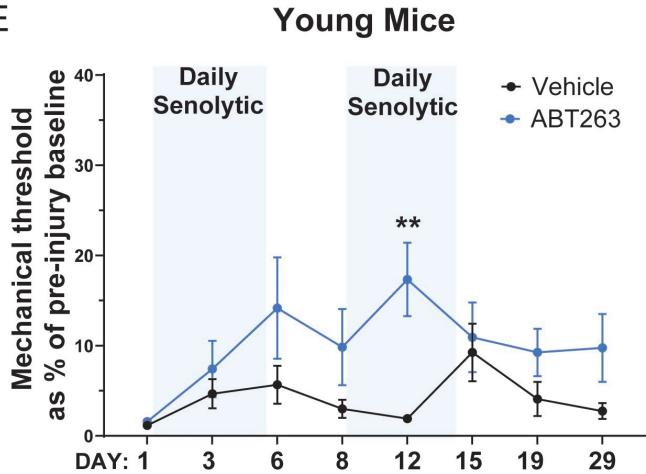
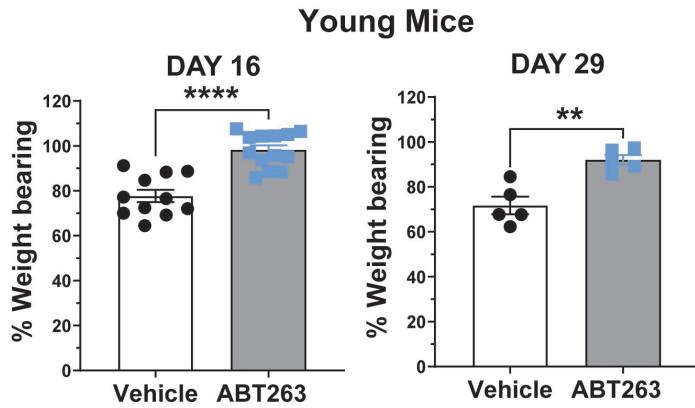
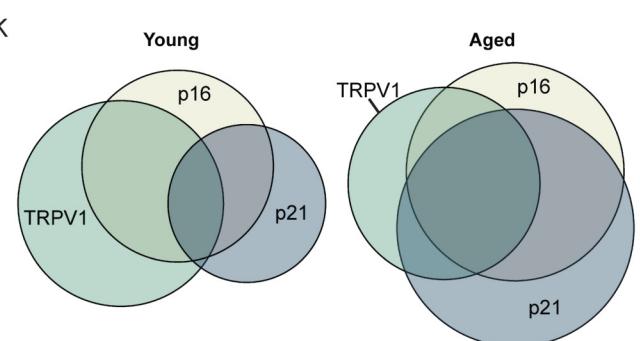
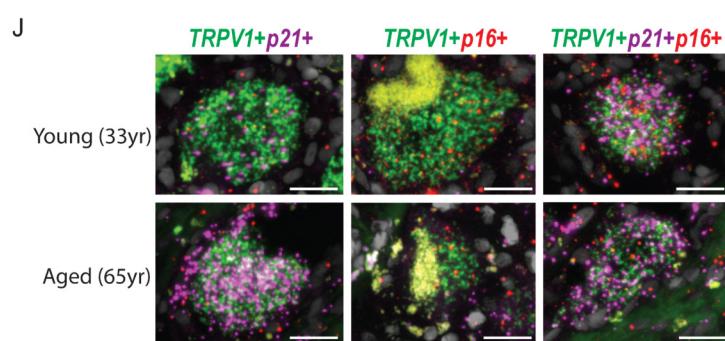
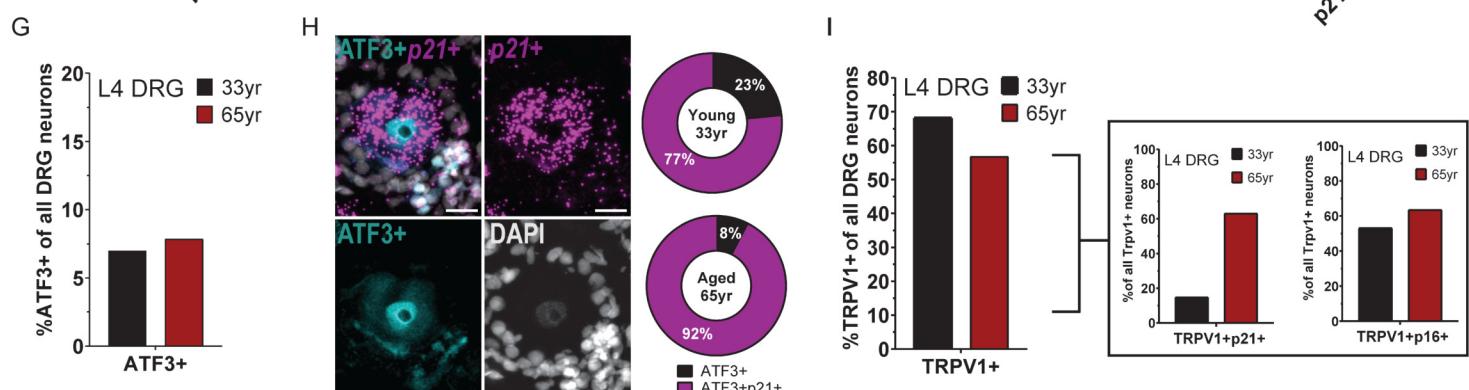
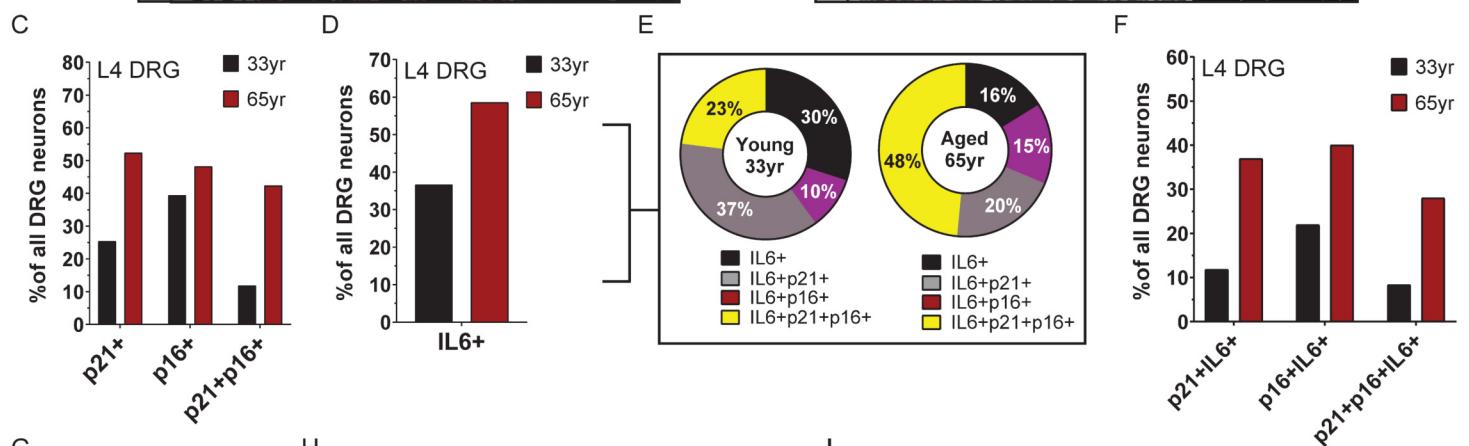
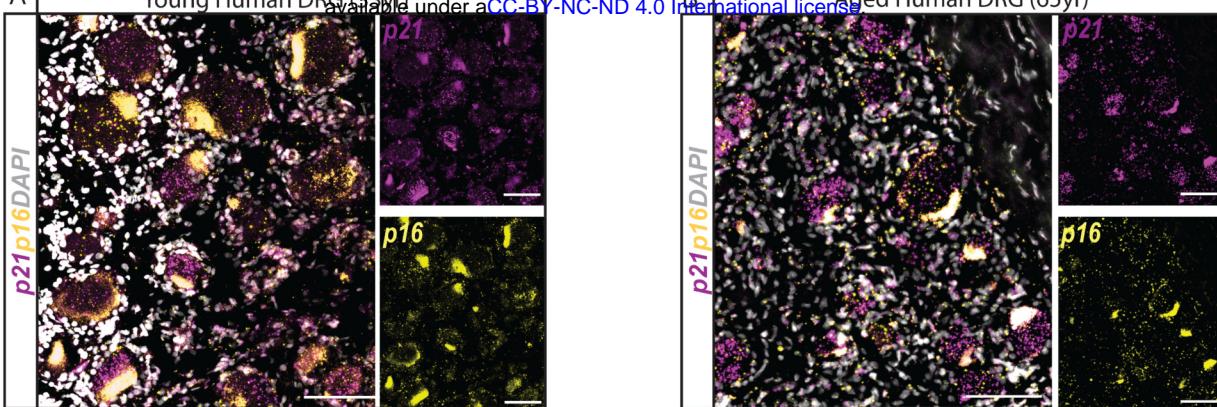











Figure 5 bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.20.576299>; this version posted January 22, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


A






B

F

Figure 6**A****B****C****D****E****F**

