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Abstract

Background: Cis-regulatory sequences control gene expression through the coordinated action
of transcription factors and their associated partners. Both genetic and epigenetic perturbation
of cis-regulatory sequences can lead to novel patterns of gene expression. Phased genome
assemblies now enable the local dissection of linkages between cis-regulatory sequences,
including their epigenetic state, and gene expression to further characterize gene regulation in
heterozygous genomes.

Results: We assembled a locally phased genome for a mandarin hybrid named ‘Fairchild’ to
explore the molecular signatures of allele-specific gene expression. With genome phasing,
genes with allele-specific expression were paired with haplotype-specific chromatin states,
including levels of chromatin accessibility, histone modifications, and DNA methylation. We
found that 30% of variation in allele-specific expression could be attributed to haplotype
associated factors, with allelic levels of chromatin accessibility and three histone modifications in
gene bodies having the most influence. Structural variants in promoter regions were also
associated with allele-specific expression, including specific enrichments of hAT and
MULE-MuDR DNA transposon sequences. Mining of cis-regulatory sequences underlying
regions with allelic variation in chromatin accessibility revealed a paternally-associated
sequence motif bound by ERF48, a target of the Polycomb repressive complex 2 (PRC2), and
sequence similarity of this motif corresponded to local levels of H3K27me3, a signature of PRC2
activity.

Conclusions: Using a locally phased assembly of a heterozygous citrus cultivar, we dissected
the interplay between genetic variants and molecular phenotypes with the goal of revealing

functional cis-regulatory sequences and exploring the evolution of gene regulation.
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Introduction

Spatiotemporal modulation of gene expression programs is essential for cellular function,
organismal development, and environmental responsiveness. Specific gene expression patterns
are achieved through control of cis-regulatory modules (CRMs), which include sequences that
influence the timing, magnitude, and frequency of transcription through the coordinated action of
transcription factors (TF) and other binding partners. Local chromatin environment influences
the ability of TFs to bind CRMs and promote or repress gene expression and variation in
chromatin state at CRMs underlies variation in gene expression, a major source of phenotypic
novelty [1].

Interspecific hybridization has the potential to generate unique combinations of
cis-regulatory activity that result in novel phenotypes [2]. Allelic cis-regulatory variation may be
due to either genetic perturbation of TF binding motifs in CRMs or through differential
accessibility of CRMs achieved by epigenetic modulation of chromatin state. In both cases,
transcription will be imbalanced between the two alleles as a result of differential regulation of
CRMs. The comparison of local chromatin state and gene expression between first generation
hybrids and their parents can reveal the relative contribution of cis-acting variation, including
genetic and epigenetic variation in CRMs, and trans-acting variation caused by factors encoded
in other genomic locations. For example, chromatin packing in an interspecific hybrids between
Arabidopsis thaliana and Arabidopsis lyrata revealed that chromatin packaging was mostly
unchanged for the A. lyrata genome, but varied substantially for the A. thaliana genome, with
increased chromatin compaction of A. thaliana chromosomes in the interspecific hybrid [3].
Similarly, more A. thaliana genes were differentially regulated in the interspecific hybrid than A.
lyrata genes although the total number of affected genes was relatively small [3].

In the genus Citrus, the hybridization of three ancestral species, citron (C. medica),
pummelo (C. maxima), and mandarin (C. reticulata), has produced many hybrids with novel
phenotypes including sweet oranges (C. sinensis), lemons (C. limon), and grapefruits (C.
grandis) [4]. There are several examples where novel phenotypes in cultivated citrus hybrids are
the result of cis-regulatory variation [5,6]. For example, in blood oranges the insertion of a
Copia-like retrotransposon upstream of the Ruby gene introduces one or more CRMs that
modulate gene expression in response to temperature [5]. Upregulation of Ruby transcripts in
response to cold temperatures results in anthocyanin accumulation in the fruit [5]. Apomixis,
another commercially important trait, is also associated with cis-acting regulatory variation
introduced by a transposon sequence [6,7]. The production of apomictic seed, or seed

genetically identical to the mother plant, is controlled in part by a gene encoding a RWP-RK
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domain—containing protein (CitRWP) with the insertion of a miniature inverted repeat
transposable element (MITE) in its promoter linked to enhanced gene expression in Citrus and
its relative Fortunella hindsii [6]. These are only two examples where structural variants alter
gene expression patterns by perturbing CRMs, including through the introduction of a new CRM
to regulate the cold-responsiveness of Ruby. The impact of structural variation on gene
expression is likely much higher and an extensive inventory of structural variation in tomato
revealed that 7.3% of genes with structural variants (SVs) in cis-regulatory regions were
differentially expressed [8]. There is accumulating evidence that perennial, clonally propagated
crop species, like Citrus, harbor extensive structural variation between haplotypes [6,9], but the
impact of these variants on phenotypic variation, including potential effects on cis-regulatory
activity, remains to be characterized at the genome-wide level.

CRMs include sequences with the potential to enhance and repress expression of
neighboring genes. In plants, CRMs can be broadly categorized as core promoters, enhancers,
or silencers. Core promoters contain the minimal sequence required for transcription initiation,
while enhancers and silencers contain elements that can be bound by transcription factors (TFs)
to increase or decrease gene expression, respectively. Core promoters are usually within
50-100 bp of the transcription start-site while enhancers and silencers can be located much
farther from the gene targeted for regulation [10]. For example, the maize enhancer Hopscotch
is located about 70 Kb from its target teosinte branched 1 [11]. Core promoters, enhancers, and
silencers may exhibit distinct patterns of chromatin accessibility and histone modifications
depending on whether they are in a poised, active, or inactive state [10]. Active promoters are
characterized by chromatin accessibility and activating histone modifications such as H3K4me3
and histone acetylation [12—16]. In contrast, inactive promoters have reduced chromatin
accessibility and can be marked by H3K27me3, a repressive histone modification catalyzed by
Polycomb repressive complex 2 [17]. One challenge for studying cis-regulatory variants is the
identification of active regulatory regions from the massive amount of non-coding DNA in the
genome. The genome-wide identification of accessible chromatin regions (ACRs), or regions of
the genome that are not tightly packaged around nucleosomes, using ATAC-seq [18] narrows
the portion of intergenic space that contains likely CRMs. A survey of angiosperms revealed that
only 0.22-6.5% of the genome resides in accessible chromatin regions in leaf tissue [19]. The
chromatin landscape of ACRs has been used to infer their role in activating or repressing
transcription of neighboring genes [15,19].

Here, we investigate the contribution of cis-regulatory variation to generating novel

patterns of gene expression in a cultivated mandarin hybrid named ‘Fairchild’. We quantify
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allelic variation in both chromatin state and gene expression in this hybrid. To directly link local
chromatin variation to gene expression we generated a locally phased reference genome of
‘Fairchild’. Genes with imbalanced allelic expression served as a focal point to explore the
contribution of the chromatin and epigenetic landscape to gene expression variation. We found
that allele-specific expression can be predicted, in part, by local chromatin state, with chromatin
accessibility and histone modifications of gene bodies being the most influential factors. Local
structural variation was also linked to allele-specific variation in gene expression, with hAT and
MULE-MuDR DNA transposons enriched at genes with divergent expression between
haplotypes. Finally, we identified differential ACRs between haplotypes, and mined these
sequences to identify candidate motifs underlying differential gene expression patterns. We
show that cis-regulatory variation between haplotypes is reflected in the chromatin landscape
and that TE-associated genetic variants may underlie expression divergence in this cultivated

citrus hybrid.

Results
The landscape of accessible chromatin in a haplotype-phased genome
We sought to investigate the chromatin dynamics at cis-regulatory sequences and the influence
of those sequences on gene regulation in the heterozygous genome of ‘Fairchild’. To address
this we first de novo assembled the genome of ‘Fairchild’ using 69 Gb of PacBio long-read
sequences (Materials and methods). The de novo assembly was scaffolded using a Bionano
optical map and anchored to chromosomes based on existing genetic maps (Materials and
methods). The resulting ‘Fairchild’ genome assembly is 365 Mb in length (NS0 = 42.1 Mb), with
95% of the genome contained in 9 chromosomes (Additional File 2: Fig. S1). Cis-regulatory
modules (CRMs) typically include an array of transcription factor (TF) binding sites, with the
majority of TFs only binding to DNA sequence in open chromatin conformations [20-22].
Putative CRMs in ‘Fairchild’ were identified by mapping accessible chromatin regions (ACRs)
using ATAC-seq of nuclei extracted from leaf tissue. A total of 9,172 ACRs spanning 7.3 Mb
(FRIiP = 0.13) were identified (Materials and methods, Additional File 1: Tables S1, S2). The
sequences underlying these ACRs span 2% of the ‘Fairchild’ genome, similar to other plant
species [19].

Recent work has demonstrated the importance of distal cis-regulatory sequences in
controlling gene regulation in plants [15]. In maize, for example, 32% of ACRs are located more
than 2 Kb, and often more than 20 Kb, from their nearest gene [19]. Based on this, ‘Fairchild’

ACRs were classified as genic, proximal, or distal based on proximity to their nearest gene


https://paperpile.com/c/EzWX9A/Qn5GA+UOhSu+EykmH
https://paperpile.com/c/EzWX9A/OuvU
https://paperpile.com/c/EzWX9A/wO9q9
https://paperpile.com/c/EzWX9A/OuvU
https://doi.org/10.1101/2024.01.20.575729
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.20.575729; this version posted January 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

(overlapping, within 2 Kb, or further than 2 Kb, respectively). The majority (53.6%) of ACRs are
genic, while 33.7% of ACRs are proximal, and 17.3% are distal to their nearest gene (Additional
File 1: Table S2). We then determined the genome-wide distribution of three activating histone
modifications (H3K4me3, H3K36me3, H3K56ac) and one repressive modifications
(H3K27me3), using ChIP-seq (Materials and methods) (Additional File 1: Table S3-S6).
Unsupervised clustering of histone modifications at ACRs revealed similar patterns observed in
other plant species [19] (Additional File 2: Fig. S2, S3,S4). When focusing on only distal ACRs
(> 2 Kb from nearest gene), a distinct cluster of ACRs enriched for the repressive modification
H3K27me3 emerges that is not present for genic and proximal ACRs. (Additional File 2: Fig. S3)
It is possible that these distal ACRs marked by repressive modifications represent poised
enhancers [23,24], although not much is known about histone modification of poised enhancers
in plants.

To define the extent of local and distal cis-regulatory variation, we generated locally
phased haplotypes with 10x Genomics Linked-Reads. In total, 1.53 phased variants, including
small indels (< 50 bp) were used to define 1,015 phase blocks (N50 = 1.57 Mb). Phase blocks
spanned 88.04% of the assembled genome length and included 91.2% of annotated genes, with
45.4% of haplotype blocks including one or more genes (Fig. 1a). In other plant species, distal
CRM have been identified more than 60 Kb from their target gene [11], but there are typically no
intervening coding gene sequences [15]. This suggests that allele-specific chromatin dynamics
at both local and distal CRM can be assayed for 91.2% of gene sequences in ‘Fairchild’ based
on the multi-megabase scale of haplotype phasing. SNP-based read phasing enabled the
quantification of allelic gene expression, chromatin accessibility, histone modification, and DNA
methylation (Fig. 1b). Allelic differences in whole-genome sequencing read mapping served as a
control for read mapping bias (Materials and methods). This approach enables comparison of
haplotype-specific signatures of chromatin landscape and gene expression in this hybrid
genome .

To evaluate the extent of haplotype-specific control of gene expression we utilized
phased SNPs to quantify allele-specific expression (ASE) by RNA-seq (Materials and methods).
Overall, 23,407 genes are expressed in the leaf and 7,964 (34.02%) of those genes have
sufficient levels of polymorphism (2 or more SNPs) for allele-specific analysis. Genes evaluated
for allele specific expression contained 3 SNPs per 1,000 bp, on average. In total 2,071 genes
with significant ASE consistent across two replicates were identified (Benjamini Hochberg FDR
< 0.05) (Additional File 1: Tables S6, S7, S8). Genes with ASE were enriched for gene ontology

terms related to metabolism and other enzymatic processes (Additional File 1: Table S9).
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Although genetic variation limits our ability to assay allele-specific patterns of expression across
all expressed genes, ASE appears to be common in this subset, affecting 26% of genes with
sufficient polymorphism and levels of expression. This set of ASE genes serve as the basis for

investigating the dynamics of haplotype-specific cis-regulatory variation.

Haplotype-specific chromatin dynamics correlate with allele-specific expression
Regulatory variants have the potential to cause haplotype-specific alterations in chromatin state
through differential transcription factor and chromatin remodeling activity. We assigned ancestry
to phased SNPs to represent allele-specific gene expression and chromatin state by parent of
origin. ‘Fairchild’ was derived from a cross between a clementine mandarin and ‘Orlando’
tangelo and re-sequencing data from a clementine and ‘Orlando’ were used to assign ancestry
to each phased SNP (Additional File 1: Table S10). Local phasing of haplotypes with ASE genes
enabled us to examine the extent to which haplotype-specific variation in the chromatin
landscape is associated with the expression of linked genes.

To address this, we assayed the landscape of four histone modifications (H3K4me3,
H3K36me3, H3K56ac, H3K27me3), chromatin accessibility, and DNA methylation, including
their haplotype-specific patterns, to dissect the relative contribution of each feature to gene
expression. We then partitioned all seven metrics of chromatin status into four regions flanking
each expressed gene: genic (including exon and introns), promoter (< 1 Kb from the
transcription start site), upstream putative regulatory region (ACR within 5 Kb upstream of
promoter), and downstream putative regulatory region (ACR within 5 Kb downstream of gene).
For upstream and downstream regions, histone modifications and chromatin accessibility data
were only incorporated if a putative regulatory region (ACR) was detected in the window of
interest.

Focusing on the 2,071 genes with significant ASE, gene expression in transcripts per
million (TPM) was then modeled using elastic-net regression with 56 factors (Additional File 1:
Table S11), including each chromatin feature across the four regions. In addition to overall levels
of histone modification and chromatin accessibility at each gene, haplotype-specific differences
for each feature were included as factors. Additional factors included the presence of a SV in
the promoter and the ratio of nonsynonymous and synonymous substitutions. After excluding
genes that were outliers for whole-genome sequencing coverage (n = 162), five-fold cross
validation was used to select the optimal parameters for elastic-net regression (Additional File 1:
Table S12). 40% of the variation in overall gene expression was explained with 21 of the 56

factors (Fig. 2a; Additional File 1: Table S13, S14) with levels of genic chromatin accessibility
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(ATAC), genic H3K4me3, and genic H3K27me3 having the largest influence. Consistent with
their roles in activating and repressing gene expression, H3K4me3 was positively correlated
with overall expression, while H3K27me3 was negatively correlated with expression (Fig. 2a).
When including all genes in the ‘Fairchild’ genome, 49 of the 56 factors explained 61.15% of
variation in overall gene expression (Additional File 1: Table S15; Additional File 2: Fig. S5). The
fact that almost all predictors in this model were determined to be significant suggests model
overfitting. To address this, we selected a shrinkage parameter (lambda) that reduced model
complexity while maintaining a prediction error within one standard error of the initial model
(Additional File 1: Tables S15, S16; Additional File 2: Fig. S6). This reduced model included 15
of the 56 factors and explained 60.44% of the variance in overall gene expression. The factors
with the greatest influence on gene expression of all genes are overall levels of genic
H3K36me3, genic H3K56ac, genic H3K27me3, and chromatin accessibility of both promoters
and genic regions (ATAC) (Additional File 1: Tables S16; Additional File 2: Fig. S7). In summary,
genic levels of chromatin accessibility and H3K27me3 were 2 of the 5 top influential factors in
models of overall expression for all genes (n= 30,724) and genes with ASE (n = 2,071), with the
influence of open chromatin being more pronounced for genes with ASE.

A similar approach was used to quantify the contribution of each factor to allele-specific
expression, or the log, fold difference in the expression of the maternal allele (clementine) over
the paternal allele (‘Orlando’). After removing ASE genes with apparent read mapping bias,
1,786 genes remained, with 30.69% of the variation in differential expression between alleles
explained by 18 of the 56 factors (Fig. 2b; Additional File 1: Table S17). Allelic differences in
levels of chromatin modifications were associated with ASE, unlike the model of overall
expression for the set of 2,071 genes where overall levels of chromatin modifications were
predictive of gene expression. Allelic chromatin accessibility, H3K36me3, H3K4me3, and
H3K56ac in genic regions were the four strongest predictors of ASE and were all positively
associated with ASE. The repressive modification H3K27me3 was inversely associated with
allele-expression indicative of its repressive effect.

In addition to inferring the relative effect of chromatin features on allele-specific
expression, we also examined the significance of their genomic location (genic, promoter,
upstream putative regulatory region, downstream putative regulatory region) relative to each
gene. Chromatin accessibility and histone modifications of genic regions have the strongest
relationship with ASE, while promoter chromatin accessibility, promoter H3K36me3 and DNA
methylation of promoters have more subtle effects (Fig. 2b; Additional file 1: Table S17). Allelic

DNA methylation of promoters has an effect similar to that of genic H3K27me3, illustrating two
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modes of transcriptional repression. Additionally, the models reveal a significant effect of
deletions in promoter sequences on gene expression, primarily in the model of ASE (Fig. 2b)
but also in the model of overall expression (Fig. 2a). Using 10X Genomics Linked-Reads, we
identified 2,481 deletions ranging from 41 bp to 11,084 bp (mean length = 332 bp) (Additional
File 2: Fig S8). Although parentage can be assigned to each lesion, the designation as a
‘deletion’ is in reference to the ‘Fairchild’ consensus sequence and the ancestral state (i.e.
inserted or deleted allele) is unknown. Here, a promoter deletion in one haplotype is associated
with increased expression of the corresponding haplotype, with coefficients of similar size for
paternal and maternal deletions (Fig. 2b). Since the model response is represented as the ratio
of maternal vs paternal gene expression, the opposite effects of paternal and maternal deletions
indicate their effect on the deletion containing allele (Fig. 2b). Overall the chromatin landscape
in genic regions and promoters is more associated with ASE than distal regulatory regions.
Together, these analyses demonstrate the extent to which allelic differences in histone

modifications, chromatin accessibility, and DNA methylation underlie ASE.

Promoter structural variation linked to differences in allele-specific expression

Genetic variants in gene promoter sequences may alter the binding affinity of regulatory factors,
serving as a source of cis-regulatory variation. Since multiple functional elements reside in
promoter regions, the effect of a single SNP may be small. In contrast, structural variants may
alter the sequence or position of cis-regulatory modules and have potentially larger effects on
gene expression. In ‘Fairchild’, the promoters of genes with ASE are significantly enriched for
deletions (1,000 permutations, p < 0.001) (Additional File 2: Fig. S9). Additionally, promoter
structural variants of genes with ASE are enriched for Type | DNA transposable elements (TEs),
with the hAT and MULE-MuDR DNA transposons being the most abundant (Additional File 2 :
Figure S10). To further examine the relationship between SVs and ASE we identified 1,654
phased deletion:ASE gene pairs for which the gene and its nearest deletion are in the same
phase block (Fig. 3a). Genes with a deletion in their promoter (n=104) had significantly higher
expression of the deletion-containing allele (Hedges G effect-size 0.378) compared to ASE
genes without promoter deletions (1,000 permutations, p < 0.001) (Fig. 3a). One example of this
is the elevated expression of the maternal allele for a predicted aldehyde dehydrogenase gene
(Additional File 1: Table S18). There is a 452 bp structural variant ~900 bp upstream of the gene
that corresponds with dramatically higher expression of the maternal allele (log,FC = 2.53) (Fig.
3b). Because the ancestral state of each structural variant is unknown, it could be that

expression of the paternal allele, in this case, is associated with an insertion that reduces


https://doi.org/10.1101/2024.01.20.575729
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.20.575729; this version posted January 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

expression. These inserted sequences could disrupt cis-regulatory elements, or introduce
repressive elements. A motif enrichment analysis of sequence removed in the ‘deleted’ allele of
the 104 promoter:gene pairs identified four significantly enriched motifs, with the most abundant
(n=28) matching the binding site of zinc-finger protein 1 (AZF1), a zinc-finger protein that acts as
a transcriptional repressor [25] (Additional File 1: Table $S19). For these deletion:gene pairs
there was no significant effect of AZF1 motif presence on allele-specific expression, but the
sample size was relatively small (10,000 permutations, p = 0.2717) (Additional File 2: Figure
S11). However, 5 of the 10 ASE genes with the highest expression bias towards the
deletion-containing allele included the canonical AZF1 motif (Fig. 3c). These observations
suggest a possible role for repressive elements in structural variants linked to allele-specific

expression.

Allele-specific accessible chromatin regions (AS-ACRs) are linked to expression of
proximal genes

CRMs can alter the magnitude, timing, and localization of transcription and divergence in
CRM activity between haplotypes is a source of variation in ASE. We reasoned that differences
in cis-regulatory module activity between haplotypes may be reflected in chromatin accessibility.
Using the same framework for detecting ASE, we tested 5,423 ACRs with 2 or more
polymorphisms for haplotype-specific differences in levels of chromatin accessibility. A total of
137 allele-specific ACRs were identified at a 5% false discovery rate (Benjamini Hochberg) and
these were primarily classified as genic (58%), while 34% are proximal (within 2 Kb of nearest
gene), and 11.6% are distal (greater than 2 Kb from nearest gene) (Additional File 1: Table S2).
The epigenetic profile of AS-ACRs and their flanking sequence (2 Kb) was similar to all ACRs,
including the subset of 5,423 ACRs with 2 or more polymorphisms used for haplotype-specific
analysis (Additional File 2: Figure S12). Notably, only 2.5% of the 5,423 ACRs exhibited
significant haplotype-specific chromatin accessibility, compared to 28% of genes with significant
ASE. This may be a consequence of levels of sequencing coverage, where reduced coverage
(i.e. for ATAC-seq) limits detection of differences in chromatin accessibility between alleles. It is
also possible that genetic variants could disrupt transcription factor binding to impact allelic
expression without affecting local chromatin structure.

Using locally phased blocks, we associated allele-specific differences in chromatin
accessibility (AS-ACR) with allele-specific expression. Of the 137 AS-ACRs, 94.1% resided in
the same phased block as their closest ASE gene with a median of 7,069 bp of intervening

sequence. Next we correlated levels of chromatin accessibility of AS-ACRs with gene
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expression of ASE-genes on a per haplotype basis. For ACR-gene pairs separated by 5 Kb or
less (n=51) there is a significant correlation between chromatin accessibility and gene
expression (R =0.69, p < 0.001) (Fig. 4a), with higher levels of allelic chromatin accessibility
associated with an increase in expression of the proximal gene. The association between
AS-ACRs and gene expression is reduced when examining ACR-gene pairs separated by more
than 5 Kb (R = 0.46, p < 0.001) (Additional File 2: Figure S13). This pattern is consistent with
the statistical modeling of ASE which highlights the importance of local chromatin state in
predicting differences in gene expression between haplotypes (Fig. 2b).

A clear demonstration of the link between allelic chromatin accessibility and expression
of proximal genes occurs at a gene predicted to encode a 7-deoxyloganetic acid
glucosyltransferase (Additional File 1: Table S20). Two AS-ACRs were detected at this gene,
one in the first exon, and the other in the gene promoter (Fig. 4b). The maternal alleles of the
promoter AS-ACR and genic ACR had a log,FC (maternal / paternal ATAC) of 1.51 and 2.20,
respectively. This coincides with monoallelic expression of the maternal allele, with no
detectable expression of the paternal allele (Fig. 4b). The difference in accessibility in the gene
body may be a consequence of active transcription of the maternal allele, while differences in
accessibility of the promoter may reflect differential binding of transcription factors to the
maternal and paternal alleles. Both the maternal and paternal sequence underlying the AS-ACR
(364 bp) contains a hAT DNA transposon and a LTR transposon. Several studies have noted
the role of transposable elements (TE) in generating variation in CRMs. This may occur through
the disruption of functional cis-regulatory sequences by TE insertion [26,27], or TEs may contain
cis-regulatory sequences with the potential to rewire gene regulatory networks by bringing novel
CRMs in close proximity to genes [26,28]. DNA transposons, in particular, are a significant
source of species-specific ACRs in angiosperms [19]. Similarly, AS-ACRs in the ‘Fairchild’
genome are enriched for DNA transposons relative to all detected ACRs (1,000 permutations, p
= 0.002) (Additional File 2: Figure S14), with the hAT subfamily of class || DNA transposons
being abundant in sequences underlying AS-ACRs. We did not observe any significant
enrichment for class | transposons (Additional File 2: Fig. S15).

We searched the sequences underlying the maternal and paternal alleles of AS-ACRs
for known transcription factor binding sites using MEME-ChIP [29]. Four motifs were enriched in
either maternal or paternal alleles of AS-ACRs (Additional File 1: Table S21,S22). The motifs
were highly repetitive in sequence which complicated the identification of specific transcription
factor binding sites. One motif enriched in paternal alleles of AS-ACRs matches the ERF48
binding motif also known as DREB2C (Fig. 4c) (Additional File 1: Table S23). ERF48 binding
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motifs were also found to be enriched in differentially accessible chromatin regions between
cotton (Gossypium) accessions before and after allopolyploidization, interspecific hybridization,
and domestication [30], suggesting ERF48 motifs are a potential source of cis-regulatory
variation across multiple plant species. ERF48 is a target of Polycomb repressive complex 2
which deposits H3K27me3 [30,31] and typically results in reduced transcriptional activity.
Following this logic, we explored the relationship between levels of H3K27me3 at paternal
alleles of AS-ACRs and the presence of the ERF48 motif. The ERF48 motif was detected in the
paternal allele of 44 of the 137 AS-ACRs (Additional File 1: Table S23) and the degree of
similarity to the consensus ERF48 motif for each AS-ACR correlated with allelic H3K27me3
(Spearman correlation, p = -0.31, p = 0.04) (Fig. 4c). Paternal haplotypes of AS-ACRs with
greater sequence similarity to the ERF48 motif had greater levels of paternal H3K27me3
highlighting the potential for AS-ACRs to reveal haplotype-specific CRM that may be a
consequence of differential activity of chromatin remodelers caused by sequence divergence

between haplotypes.

Discussion
Cis-regulatory variants are a major source of gene expression divergence between species
[32,33], but unraveling the relationship between cis-regulatory variation and allele-specific
differences in gene expression is challenging in the absence of haplotype-phased genome
assemblies. In this study, we assembled a locally phased reference genome for ‘Fairchild’
mandarin and used it to investigate the molecular hallmarks of allele-specific expression.
‘Fairchild’ is a mandarin derived from parental cultivars with shared pummelo ancestry and, as a
result, genes in these regions identical by state cannot be evaluated for allele-specific
differences in gene expression or chromatin state. In cultivated mandarins with similar ancestry
to ‘Fairchild’, these regions of homozygous pummelo ancestry account for 12-38% of the
genome [4]. Still, genes in heterozygous portions of the genome could be used to explore the
extent of allele-specific expression. We found that allele-specific expression is common, with
differential expression between maternal and paternal alleles occuring at nearly one third of the
7,300 genes with two or more genetic variants. We expect that even more genes with ASE
would be detected in hybrids with fewer regions of shared ancestry.

Focusing on the set of 2,071 ASE genes, we investigated chromatin features associated
with differential transcription of alleles. To do so, we integrated data sets for gene expression,
chromatin accessibility, and histone modifications (among others). We found that 30.69% of

variation in allele-specific expression can be inferred from local chromatin state, with the most
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influential factors located in the gene region, as opposed to promoter or other distal regulatory
sequences (Fig. 2b). It is important to note that our analysis has revealed associations between
allelic chromatin dynamics and gene expression. Without genome-wide surveys of chromatin in
relevant mutants or directed manipulation of the chromatin state in regions of interest, it is not
possible to determine whether allele-specific histone modifications are driving differential gene
expression or if they are a consequence of differential transcription. In ‘Fairchild’, the factors
most associated with allele-specific expression were chromatin accessibility and histone
modifications in gene regions, including H3K36me3, H3K56ac, and H3K27me3. The next most
influential set of factors were those located in promoter regions, including haplotype-specific
accessibility of chromatin and the presence or absence of a structural variant. In contrast to
genic and promoter regions, the effect of factors in distal regulatory regions was relatively
limited, although two factors (ATAC, H3K27me3) were still identified as having significant
effects. Distal regulatory regions with functional roles have been identified in large-genome
species including maize and wheat [15,34], but distal ACRs seem to be less common in smaller
genomes [15,35,36]. In citrus, we expect fewer distal ACRs since the average intergene
distance in the ‘Fairchild’ genome is around 2.7 Kb. In fact, only 17.3% of ACRs detected in our
dataset were classified as distal (Additional File 1; Table S2). Additionally, the correlation of
AS-ACR chromatin accessibility and ASE decays for ACR-gene pairs that are separated by
more than 5 Kb (Additional File 2: Figure S17). Here, we restricted analysis of chromatin
accessibility and gene expression to neighboring ACR-gene pairs with no intervening
protein-coding gene sequence. In other angiosperms, there are typically no intervening genes
between ACRs and their target gene even in large-genome species like maize, where pairs are
separated by many tens of kilobases [15,19]. While this is a reasonable assumption, future
integration of conserved non-coding sequences, chromatin contact maps, and tissue-specific
identification of ACRs will enable a more complete characterization of the distal regulatory
landscape in small genome species like citrus to more precisely quantify the contribution of
these sequences to gene expression regulation.

Next, we sought to understand and characterize potential sources of cis-regulatory
variation in ‘Fairchild’. Structural variation between haplotypes is one possible source of
cis-regulatory variation and may alter TF binding affinity, introduce new cis-regulatory modules,
or perturb the coordination of neighboring cis-regulatory elements. Genome-wide surveys of
genetic variation in crop species have revealed extensive levels of structural variation
[6,9,37,38]. In some cases, these variants have been linked to functional differences [5,39,40].

In cultivated tomato and its wild relatives, for example, 7.3% of genes with structural variants in
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promoter regions were differentially expressed [8]. In ‘Fairchild’, structural variants are enriched
in the promoters of ASE genes, with associated sequences predominantly derived from hAT and
MULE-MuDR DNA transposons. The designation of ‘insertion’ or ‘deletion’ is relative to the
‘Fairchild’ consensus sequence. Structural variants were not polarized to an outgroup species to
determine their ancestral state. Haplotypes with the non-consensus allele are termed ‘deletions’
here and deletions in the promoters of ASE genes were associated with increased expression
(Fig. 3a). The sequence underlying the longer, consensus ‘inserted’ allele was enriched for
transposon associated sequences, suggesting that the ‘inserted’ allele is actually linked to
reduced expression, possibly due to the associated TE. TE insertions may alter gene
expression by disrupting cis-regulatory modules [41], or through the spreading of repressive
chromatin modifications to nearby regulatory sequences [42,43]. While TE-mediated disruption
of local sequence is likely a source of SV-related ASE, our analysis also reveals evidence for a
signature of TE-associated CRM with repressive effects on gene expression. The prevalence of
SV-related cis-regulatory variants in ‘Fairchild’ suggests that the comparison of chromatin
accessibility across structurally diverse citrus genomes is likely to further our understanding of
the factors underlying gene expression divergence in heterozygous perennial tree crops
species, like those in the genus Citrus.

Genetic variation in CRMs is another potential source of allele-specific expression.
Genetic variants that perturb transcription factor binding may subsequently alter local chromatin
remodeling. One example of this is the pioneer TF LEAFY which binds to nucleosome occupied
binding sites at the AP1 locus and recruits SWI/SNF chromatin remodelers [44]. This is followed
by increased chromatin accessibility and elevated levels of AP71 expression [44]. We explored
the sequences underlying AS-ACRs to identify genetic variants with possible impacts on TF
binding and subsequent gene expression. The sequences underlying AS-ACRs were enriched
for DNA transposons. In genome-wide surveys of chromatin accessibility across many
angiosperm species, DNA transposons were also enriched in a set of species-specific ACRs
[19]. To begin to understand how genetic variation at putative CRMs impacts phenotype, we
mined ACRs with haplotype-specific patterns of accessibility for candidate transcription factor
binding motifs which may underlie the differential gene expression patterns observed in this
citrus hybrid. We detected the enrichment of ERF48 binding sites in paternal alleles of
AS-ACRs, and observed a correlation between ERF48 motif presence and allelic H3K27me3
(Fig. 4c). ERF48 binding sites were also found to be enriched in differential DNAse
hypersensitive regions discovered in a panel of cotton accessions spanning polyploidization and

domestication in the species [30]. Han and colleagues speculate that PRC2 binds the
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guanine-rich binding site of ERF48, and that PRC2-mediated deposition of H3K27me3 may be
involved in transitions between states of chromatin accessibility [30]. The sequence-specific
DNA binding activity of H3K27me3 “writers” such as Polycomb repressive complex 2 (PRC2),
and “erasers” such as JUMONJI DOMAIN-CONTAINING PROTEINS (JMJ) may underlie
differential regulation of alleles with resulting ASE. An extensive yeast-one hybrid screen
revealed 233 transcription factors that bound motifs associated with PRC2 binding and
subsequent H3K27me3 deposition [45]. Similarly, the sequence-specific DNA binding activity of
JMJ proteins such as RELATIVE OF EARLY FLOWERING 6 (REF6) [46—48] suggests that
sequence alterations in its binding motif could produce differential H3K27me3 demethylation
between alleles. We find a significant correlation between ERF48 motif similarity scores and
allelic levels of H3K27me3, but no significant relationship between allelic chromatin accessibility
and allelic levels of H3K27me3 of AS-ACRs, but we are likely limited by the small sample size of
AS-ACRs, the sequence depth of ATAC-seq libraries, and the conservative method used for
ACR identification. Importantly, AS-ACRs are indistinguishable from other ACRs when
examining ATAC-seq coverage without read-phasing (Additional File 2: Fig. S12). ERF48 motif
enrichment in AS-ACRs highlights an instance of how sequence variation in a TF binding site
relates to local chromatin dynamics and gene expression variation.

Further mining ACRs for functional variants is likely to reveal genotype-phenotype
associations. In maize, 40% of genetic variants with heritable effects of phenotypes were
located in the 1% of the genome marked by accessible chromatin [49]. In ‘Fairchild’,
approximately 2% of the genome resides in ACRs and, similar to maize, we expect these
sequences to be enriched for functional variants. The functional consequences of cis-regulatory
variation in citrus have previously been demonstrated for two important commercial traits [5,6].
Allele-specific expression is an indication that there are functional cis-acting sequence variants.
The 2,071 genes with ASE in ‘Fairchild’ are good candidates for exploring the phenotypic
consequences of cis-regulatory sequence variation. We highlight two of these genes as
candidates for further study. One AS-ACR was discovered upstream of a gene encoding a
7-deoxyloganetic acid glucosyltransferase (Fig. 4b) which catalyzes the production of an iridoid
monoterpene [50]. Iridoid monoterpenes have been shown to be involved in plant-insect
interactions and are of interest as natural products because of their pharmacological activities
[51-53]. A second gene of interest is one predicted to encode a homolog of potato SNAKIN-1
(Additional File 1: Table S24). A 165 bp structural variant was identified in the promoter of this
gene in ‘Fairchild’. SNAKIN-1 is a small peptide identified in potato, that has demonstrated

antimicrobial activity against both bacterial and fungal pathogens when heterologously
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expressed in several plant species [54-57]. The role of small antimicrobial peptides has recently
been highlighted for their potential in combating citrus greening disease [58]. These are only two
examples where connections between genetic variation, chromatin accessibility, and
allele-specific differences in gene expression may lead to functional phenotypic differences.
Further dissection of these loci and others with evidence of allele-specific expression will likely

reveal troves of variation relevant for genetic improvement of cultivated citrus.

Conclusions

We assembled a locally phased reference genome for ‘Fairchild’ mandarin and used it to
investigate the molecular signatures of allele-specific expression. By profiling gene-expression,
chromatin accessibility, DNA methylation, and several histone-modifications we provide a
detailed view of gene regulation in this hybrid cultivar. We document the extent of
haplotype-specific differences in gene regulation and begin to dissect the interplay between
local variation in chromatin dynamics and gene expression. We find examples where
allele-specific expression is associated with local structural variation in promoter sequences and
others where expression differences are more likely due to genetic variation in putative TF
binding. We anticipate that the datasets produced here will inform approaches for studying the
interplay between genetic variants in heterozygous genomes and molecular phenotypes such
as gene expression, chromatin accessibility, and epigenetic modifications with the goal of
revealing functional cis-regulatory sequences and understanding the evolution of gene

regulation.

Materials and methods

Sampling

Fairchild mandarin was sampled from the Givaudan Citrus Variety Collection at the University of
California Riverside. Young leaves were collected from a greenhouse grown individual of the
cultivar ‘Fairchild’ mandarin (Citrus reticulata) (Accession No: Pl 539508, Inventory No: RIV
2014 PL). To deplete starch in the leaves, the tree was covered with brown paper bags 24 hours
prior to sampling. The leaves were sampled early in the morning and immediately frozen in
liquid nitrogen. The intact, frozen leaves were then shipped to Arizona Genomics Institute (AGI)
for DNA extraction from nuclei for PacBio sequencing and to the Amplicon Express company

(Pullman, WA) for DNA extraction for lllumina, Bionano, and 10X sequencing.
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DNA extraction and sequencing

High-molecular-weight (HMW) DNA was extracted and used for the library construction.
SMRTRBell libraries (20 Kb) were prepared according to the manufacturer’s protocol including
gTube size fraction and BluePippin size exclusion of fragments smaller than 20kb before
constructing libraries for SMRTbell template construction. Sequencing on the Pacbio RS I
machine was performed at AGI following library construction. A total of 3,930,477 reads were
produced from 53 flow cells (69 Gb of sequence). Sequenced reads had an N50 of 15 Kb and a
maximum length of 78 Kb. For scaffolding, a 10X sequencing library was constructed according
to the 10X Genomics protocol (Pleasanton CA USA) by Amplicon Express. This library was then
sequenced on the lllumina HiSeq4000 system producing 285 million 2 x 150 bp reads.

Bionano genome (BNG) optical map construction and data analysis

High-molecular weight (HMW) DNA was isolated by the company Amplicon Express (Pullman,
WA). The nicking enzyme Nb.BssS1 was chosen based on the de novo draft assembly. The
high-quality HMW DNA molecules were treated with Nb.BssS1 (New England BiolLabs, Ipswich,
MA) to generate single-strand breaks with sequence-specific motifs (GCTCTTC). The nicked
DNA molecules were then stained using the IrysPrep Reagent Kit (Bionano Genomics, San
Diego, CA) and loaded onto the nanochannel array of IrysChip (Bionano Genomics) following
the manufacturer’s guidelines. Imaging and data analysis were performed on the Irys system
(Bionano Genomics). DNA molecules larger than 100 Kb were processed into BNX files using
the software AutoDetect (v2.1.4) and only molecules of at least 180 Kb were assembled into the
BNG map with the Bionano Genomics assembly pipeline [59,60], The p-value thresholds used
for pairwise assembly, extension/refinement, and final refinement stages were 2x10 8, 1x10 *°,
and 1x10 '°, respectively. The de novo assembly was digested in silico at Nb.BssS1 restriction
sites using Knickers and aligned with the BNG map using RefAligner in Bionano Solve

(v03062017). Visualization of the alignments were performed with IrysView.

Genome assembly

We de novo assembled the ‘Fairchild’ genome using PacBio long reads (RSII) with a diploid
assembler, FALCON (v1.8.6). In total, 69 Gb of PacBio long reads were generated from 53 flow
cells (Additional File 3 : Table S1), which is roughly equivalent to 187 fold of the estimated
genome size (365 Mb). An initial assembly generated a 429 Mb primary genome sequence with
contig N50 of 2.3 Mb and 69 Mb of secondary sequences with a contig N50 of 144 Kb. The

assembly errors were corrected with Quiver (v2.0) by making a consensus sequence from
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alignments of the raw PacBio long reads mapped to the de novo assembly. A second round of
polishing was performed with Pilon (v1.20) based on the alignment of 150 bp paired-end
lllumina short reads from sequencing of 10X Linked-Reads. To build a haploid reference
genome, we used Haplomerge2 (v11242015) to remove redundancy and merge overlapping
contigs in the assembly, which resulted in a haploid genome of 360 Mb with contig N50 of 3.6
Mb. The BioNano optical map data were assembled with RefAligner in Bionano Solve
(v03062017). We aligned the BioNano optical map contigs with PacBio contigs using
HybridScaffold.pl in Bionano Solve (v03062017) to correct mis-assemblies and further scaffold
contigs. We then assembled 10x linked reads based on the barcode of each single molecule
and filled gaps in scaffolds with a graph-based method (Du et al, 2017). These high-quality
scaffolds were then anchored to chromosomes by integrating three genetic maps (reference)
and synteny between citrus genomes as implemented in ALLMAPS (v07222015). The final
scaffolded genome was 365 Mb in length and 94.8% of contigs (346/365 Mb) were anchored to
nine chromosomes. (Additional File 3: Tables S2, S3) We assessed the completeness of the
genome assembly using BUSCO (v5.5.0) against the embryophyta_odb10 dataset and the
BUSCO completeness was estimated to be 98.5 %. LTR index (LAI) was calculated with EDTA

(v1.7.0) and reported a LAl of 15, indicating a highly continuous assembly of intergenic regions.

RNA-seq for allele-specific expression

RNA-seq was performed as previously described [19]. Leaves were flash-frozen with liquid
nitrogen immediately after collection. The samples were ground using a mortar and pestle. Total
RNA was extracted and purified using TRIzol Reagent (Thermo Fisher Scientific) following the
manufacturer’s instructions. For each sample, 1.3 ug of total RNA was prepared for sequencing
using the lllumina TruSeq mRNA Stranded Library Kit (lllumina) following the manufacturer’s

instructions.

ATAC-seq

ATAC-seq was performed as described previously [61]. Approximately 200 mg of flash-frozen
leaves were immediately chopped with a razor blade in approximately 1 ml of pre-chilled lysis
buffer (15 mM Tris-HCI pH 7.5, 20 mM NaCl, 80 mM KCI, 0.5 mM spermine, 5 mM
2-mercaptoethanol and 0.2% Triton X-100). The chopped slurry was filtered twice through
Miracloth and once through a 40 um filter. The crude nuclei were stained with
4,6-diamidino-2-phenylindole (DAPI) and loaded into a flow cytometer (Beckman Coulter, MoFlo

XDP). Nuclei were purified by flow sorting and washed as described previously [61]. The sorted
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nuclei were incubated with 2 pyl Tn5 transposomes in a 40 yl tagmentation buffer (10 mM
TAPS-NaOH pH 8.0, 5 mM MgClI2) at 37 °C for 30 min without rotation. The integration products
were purified using a Qiagen MinElute PCR Purification Kit or NEB Monarch DNA Cleanup Kit
and then amplified using Phusion DNA polymerase for 10-13 cycles. PCR cycles were
determined as described previously [18]. Amplified libraries were purified using AMPure beads

to remove primers.

ChiP-seq

Chromatin immunoprecipitation (ChIP) was performed using a previously described protocol
[62]. In brief, approximately 1 g freshly harvested leaves or flash-frozen leaves was chopped
into 0.5 mm cross-sections and cross linked as described previously [62]. The samples were
immediately flash-frozen in liquid nitrogen after crosslinking. Nuclei were extracted and lysed in
300 ul of lysis buffer. Lysed-nuclei suspension was sonicated using a Diagenode Bioruptor on
the high setting, 30 cycles of 30 s on and 30 s off. To make antibody-coated beads, 25 ul
Dynabeads Protein A (Thermo Fisher Scientific, 10002D) was washed with ChlIP dilution buffer
and then incubated with around 1.5 ug antibodies (anti-H3K4me3, Millipore-Sigma, 07-473;
anti-H3K36me3, Abcam, ab9050; anti-H3K27me3, Millipore-Sigma, 07—449; anti-H3K56ac,
Millipore-Sigma, 07—667) in 100 uyl ChlIP dilution buffer for at least 1 h at 4 °C. The sonicated
chromatin samples were centrifuged at 12,000 g for 5 min and the supernatants were diluted
tenfold in ChlIP dilution buffer to reduce the SDS concentration to 0.1%. ChIP input aliquots
were collected from the supernatants. For all of the samples and replicates, 300-500 pl of
diluted chromatin was incubated with the antibody-coated beads at 4 °C for at least 4 h or
overnight, then washed, reverse-crosslinked and treated with proteinase K in accordance with
the protocol [62]. DNA was purified using a standard phenol—chloroform extraction method,
followed by ethanol precipitation. The DNA samples were end-repaired using the End-It DNA
End-Repair Kit (Epicentre) following the manufacturer’s protocol. DNA was cleaned up on
AMPure beads (Beckman Coulter) with size selection of 100 bp and larger. The samples were
eluted into 43 pl Tris-HCI and subsequently underwent a 50 ul A-tailing reaction in NEBNext
dA-tailing buffer with Klenow fragment (3’ -> 5’ exo-) at 37 °C for 30 min. A-tailed fragments
were ligated to lllumina TruSeq adapters and purified with AMPure beads. The fragments were
amplified using Phusion polymerase in a 50 ul reaction following the manufacturer’s instructions.
The following PCR program was used: 95 °C for 2 min; 98 °C for 30 s; then 15 cycles of 98 °C
for 15, 60 °C for 30 s and 72 °C for 4 min; and once at 72 °C for 10 min. The PCR products

were purified using AMPure beads to remove primers.
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MethylC-seq

Several leaves were immediately flash-frozen after harvesting and ground to a powder in liquid
nitrogen. DNA was extracted and purified with the DNeasy Plant Mini Kit (Qiagen) and 130 ng
were used for MethylC-seq library preparation. MethylC-seq libraries were prepared using a

previously described protocol [63]; however, we used a final PCR amplification of eight cycles.

Annotation of repetitive elements

To annotate and remove repetitive regions from the gene prediction process,, we generated a
library of repetitive elements with RepeatModeler v. 2.0.1 [64] using default parameters. This
library was used to soft-mask these elements in the genome with RepeatMasker v. 4.1.1 [65]
(Additional File 3: Table S4). We used the calcDivergenceFromAlign.pl script, available in the util
directory of RepeatMasker package, to calculate and summarize the divergence from the
consensus for each predicted repeat using the Kimura 2-Parameter distance with an adjustment
for higher mutation rates at CpG sites. The createRepeatlLandscape.pl script was then used to
create a repeat landscape plot and visualize the repeat elements diversity, their relative age and

divergence, using the divergence summary data (Additional File 2: Figure S18).

Genome annotation

RNA-seq data was generated from young leaves and young flowers of ‘Fairchild’. A total of 33.4
Gb of sequence was produced on the lllumina HiSeq4000 (2 x 150 bp reads). Samples were
collected and then flash frozen in liquid nitrogen and stored at -80°C. Total RNAs were extracted
from these samples using TRIzol reagent (Thermo Fisher Scientific). RNA-Seq libraries were
prepared using NEBNext Ultra Directional RNA Library Prep Kit. Libraries were prepared using
an NEB rRNA depletion kit. Genome annotation was conducted with the Funannotate pipeline v.
1.8.10 [66]. First, the RNAsequencing (RNA-seq) data were assembled using Trinity v. 2.11.0
and aligned with PASA v. 2.4.1 to train the ab initio gene predictors [67—69]. After training the
predictors Augustus v. 3.3.3 and SNAP v. 2013_11_29 with the evidence, a collection of gene
predictors were run CodingQuarry v. 2.0, Augustus v. 3.3.3, GeneMark-ETS v. 4.62,
GlimmerHMM v. 3.0.4, and SNAP v. 2013_11_29 [70-74]. These predictions were combined
into a consensus gene model set with EVidenceModeler v. 1.1.1 [69]. Transfer rRNA genes
were predicted using tRNAscan v. 2.0.9 [75]. Next, using HMMER v. 3 [76] or diamond BLASTP
v. 2.0.8 [77,78] protein annotations and gene products were predicted for the consensus gene
models based on similarity to Pfam [79], CAZyme domains with dbCAN HMM profiles [80-83],
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MEROPS [84], eggNOG v. 5.0 [85], InterProScan v. 5.51.85.0 [86], and Swiss-Prot [87]
databases. In addition, Phobius [88] and SignalP v.5.0b [89] were used to identify

transmembrane proteins and secreted proteins. (Additional File 3: Table S5)

Variant calling and haplotype phasing

Single nucleotide polymorphisms (SNPs), small indels (< 41 bp), and structural variants were
identified on the nine primary chromosomes using the 10x Genomics Longranger pipeline (10x
Genomics, Pleasanton California). In short, 10x Genomics linked reads were aligned to the
reference genome using the aligner Lariat which is based on the Random Field Aligner

algorithm [90] https://qgithub.com/10XGenomics/lariat. Variants were subsequently identified

using GATK Haplotypecaller and GenotypeGVCF following the current GATK best practices
[91]. In Longranger, insertions and deletions ranging from 40 bp - 30 Kb were detected using
haplotype-specific reductions in read coverage, discordant read pairs, and local re-assembly.
SNPs, indels, and SVs were then phased by aligning the linked-reads to the sequence of each
allele to define which haplotype the read supports. A total of 1,015 phase blocks were
constructed using 2.3 million phased heterozygous variants (mean length of phase block =
317,484 bp; standard deviation = 711,178.7 bp). Within each phase block, SNPs are attributed
to either haplotype 1 or haplotype 2. When comparing SNPs between phase blocks, the
assignment of haplotype 1 or 2 is random and not associated with an assignment of ancestry.
Biallelic SNPs were identified and filtered using the following criteria with bcftools [92]: QD > 2.0
&& FS <60.0 && MQ > 40.0 && MQRankSum > -12.5 && N_ALT =1 && N_MISSING = 0 &&
QUAL > 500 && MIN(FMT/DP) > 20 && INFO/DP < 450. This yielded 1.53 million phased
heterozygous variants that were used in downstream analyses. The majority of variants are
SNPs (1.3 million) that were used to phase sequencing reads for whole-genome re-sequencing,
RNA-seq, ATAC-seq, bisulfite-seq, and ChlP-seq (H3K4me3, H3K36me3, H3K56ac,
H3K27me3).

Assignment of ancestry to phased SNPs

Whole-genome re-sequencing reads from maternal parent clementine mandarin [4], paternal
parent "Orlando’, and hybrid "Fairchild® were trimmed for quality and sequencing adapter
removal using Trimmomatic 0.36 (SLIDINGWINDOW:4:20 MINLEN:50
ILLUMINACLIP:LEADING:3 TRAILING:3) [93]. Reads were aligned to the ‘Fairchild’ reference
genome using BWA mem 0.7.17 [94]. PCR duplicates were filtered using Picard MarkDuplicates
[95]. Variants were identified using GATK Haplotypecaller and GenotypeGVCF following the
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current GATK best practices [91]. High-quality biallelic SNPs were identified and filtered using
the following criteria with bcftools [92]: QD > 2.0 && FS < 60.0 && MQ > 55.0 && SOR < 3 &&
MQRankSum > -12.5 && ReadPosRankSum > -2.0 && QUAL > 500 && MIN(FMT/DP) > 30 &&
INFO/DP < 450. The remaining 1.3 million variants were used in combination with
whole-genome sequencing reads from both parents to perform pedigree-based phasing using
Whatshap v. 1.17 [96]. A constant recombination rate of 3.0 cM/Mb (average observed in C.
clementina [97] was used for pedigree-based phasing of SNPs. After ancestry assignment,
SNPs heterozygous in one or both parents were removed, leaving only SNPs that are
homozygous for alternate alleles in the two parents (141,290 SNPs). The ancestry assignment
of these SNPs was combined with their read-based haplotype assignment in order to impute the
ancestry of all 1.3 million SNPs between the two haplotypes. In total, 394 phase blocks
contained high quality SNPs and were designated as unclassified, non-recombinant, or
recombinant depending on the ancestry composition of SNPs within the phase block (Additional
File 1: Table S10 ; Additional File 3: Table S6). Unclassified phase blocks (n = 149) did not
contain any SNPs that could be assigned ancestry, for non-recombinant phase blocks (n=231)
the ancestry of every SNP was consistent within each haplotype of the phase block, in
recombinant blocks (n=14) the ancestry of SNPs was variable within each haplotype of the
block. For non-recombinant blocks, the ancestry of SNPs that could not be assigned using
parental genotypes was imputed using the ancestry of SNPs within the same phase block. For
recombinant blocks, only SNPs that could be assigned ancestry using parental genotypes were
retained. One recombinant phase block with repeated haplotype switching of SNP ancestry was
removed from the analysis (2983 SNPs). Additionally, SNPs whose haplotype ancestry was
discordant with the majority of other SNPs in the phase blocks were filtered. The ancestry of
SVs was imputed following this same procedure, with the exception of SVs in recombinant
phase blocks. For SVs in recombinant phase blocks, the ancestry of the SV was imputed using

the majority ancestry of the nearest 5 SNPs upstream and downstream of the SV.

Polarization of heterozygous SNPs in ‘Fairchild’

Whole genome sequencing reads from Poncirus trifoliata accession DPI 50-7 (NCBI
PRJNAG648176) [98] were trimmed for quality and sequencing adapter removal using
Trimmomatic 0.36 (SLIDINGWINDOW:4:20 MINLEN:50 ILLUMINACLIP:LEADING:3
TRAILING:3) [93]. Reads were aligned to the ‘Fairchild’ reference genome using BWA mem
0.7.17 [94]. PCR duplicates were filtered using Picard MarkDuplicates [95]. Variants were
identified using GATK Haplotypecaller and GenotypeGVCF following the current GATK best
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practices [91]. High-quality biallelic SNPs that are homozygous in DPI 50-7 were identified and
filtered using the following criteria with bcftools [92]: QD > 2.0 && FS < 60.0 && MQ > 55.0 &&
SOR < 3 && MQRankSum > -12.5 && ReadPosRankSum > -2.0 && QUAL > 500 &&
MIN(FMT/DP) > 30 && INFO/DP < 450. Next, these variants were intersected with heterozygous
SNPs in ‘Fairchild’ and biallelic SNPs were retained. This final set of SNPs represent ‘Fairchild’
SNPs for which the ancestral state is indicated by the allele present in Poncirus trifoliata
(Additional File 3: Table S7).

Processing of ChIP-seq and ATAC-seq sequencing reads

Prior to alignment, ChlP-seq reads for four histone modifications (H3K4me3, H3K36me3,
H3K56ac, H3K27me3) and ATAC-seq reads were trimmed for quality (SLIDINGWINDOW:4:15
MINLEN:50 ILLUMINACLIP:LEADING:3 TRAILING:3) and adapter sequences removed using
Trimmomatic 0.36 [93]. Sequence reads were then aligned to the ‘Fairchild’ reference genome
using BWA mem 0.7.17 [94]. PCR duplicates were filtered using Picard MarkDuplicates [95]. A
summary of sequence reads for each data set before and after quality control is provided
(Additional File 3 : Table S8). Peak identification for histone modifications (ChIP-seq) and
accessible chromatin (ATAC-seq) was performed using Genrich
(https://github.com/jsh58/Genrich) and MACS2 [99] following [19]. Significant peaks within 100
bp were merged. Sequences underlying ACRs were aligned to plastid (NC_034671) and
mitochondrial (NC_037463.1) genomes of C. reticulata using NCBI BLAST and significant hits
were removed. The number of peaks identified, along with their average read depth and
percentage of the genome occupied by these peaks is summarized here (Additional File 1 :
Table S1). Two methods were used for identifying accessible chromatin regions (ACRs). One
method (MACS2) identified a total of 31,191 ACRs spanning 10.4 Mb with a fraction of reads in
peaks (FRiP) score of 0.16, and the other (Genrich) identified 9,172 ACRs spanning 7.3 Mb
(FRiP = 0.13) (Additional File 1: Tables S1, S2). There was 70% overlap between ACRs
identified by Genrich and ACRs identified by MACS2. Additionally, 97% of Genrich ACRs
overlapped ACRs identified with MACS2. An unpublished benchmarking of the ATAC-seq peak
calling programs HMMRATAC, MACS2, and Genrich found that Genrich had the highest
precision, recall, and F1 score [100]. For this reason we decided to use the ACRs detected with

Genrich.

Processing of bisulfite sequencing reads and analysis of DNA methylation


https://paperpile.com/c/EzWX9A/yGTy1
https://paperpile.com/c/EzWX9A/fds52
https://paperpile.com/c/EzWX9A/A46rX
https://paperpile.com/c/EzWX9A/vgvWD
https://paperpile.com/c/EzWX9A/APk1b
https://github.com/jsh58/Genrich
https://paperpile.com/c/EzWX9A/NQznx
https://paperpile.com/c/EzWX9A/OuvU
https://paperpile.com/c/EzWX9A/BfgfR
https://doi.org/10.1101/2024.01.20.575729
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.20.575729; this version posted January 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Bisulfite-sequencing reads were trimmed for quality (SLIDINGWINDOW:4:15 MINLEN:50
ILLUMINACLIP:LEADING:3 TRAILING:3) and adapter sequences were removed using
Trimmomatic 0.36 [93]. Reads were then aligned to the ‘Fairchild’ reference genome using
BatMeth2 [101] and PCR duplicates were removed using Picard MarkDuplicates [95].
Bisulfite-sequencing reads were phased between parental haplotypes with ancestry-assigned
SNPs using Whatshap [96]. DNA methylation of cytosines was counted for both haplotypes
separately using DNMtools [102] (Additional File 3: Tables S9, S10 and S11). The probability of
differential methylation between haplotypes was determined using a one-directional version of
Fisher’s exact test implemented in DNMtools [102,103]. Differentially methylated cytosines with
read coverage >= 10 and probability of differential methylation >=0.7 were retained for modeling
of ASE. Overall methylation was calculated for cytosines with coverage >= 10 using the full,
unphased bisulfite-sequencing data with DNMtools [102]. Methylation status is based on the
number of reads that support a C-to-T bisulfite conversion versus the total number of reads

aligning to a given cytosine.

Regional analysis of genomic features

Metaplots were generated to summarize regional patterns of chromatin levels, typically centered
on the peak of an open chromatin region, as determined by ATAC-seq. For each data set, read
coverage was scaled from 0 to 1 by dividing the read coverage at each site by the 98th quantile
of sequencing coverage per sample [19]. ACRs and genes were scaled to a 1000 bp region, as
well as their 2kb flanking regions using deepTools v.3.5.1 [104] and signal densities for each

feature were plotted across these regions in 50 bp windows.

Determination of allele-specific gene expression and chromatin accessibility

Read alignments for quality and adapter trimmed ATAC-seq and ChIP-seq were performed
using BWA-mem 0.7.17 [94] as described above. RNA-seq reads were also quality and adapter
trimmed using Trimmomatic 0.36 [93] prior to read mapping to the ‘Fairchild’ reference genome
with the slice-aware alignment tool STAR 2.7.10 [105]. After initial alignment of RNA-seq,
ATAC-seq, and ChlP-seq reads, WASP [106] was used to correct read-mapping bias (Additional
File 3: Table S8). This is done by switching the reference allele to the alternate allele (and vice
versa) in reads that align across SNPs. Sequence reads that do not align to the same genomic
location are filtered to remove reads that cannot be definitively assigned to a haplotype. For
each data set, allele-specific read counts were determined using GATK ASEReadCounter [91].

Allele counts were then intersected with genes (for RNA-seq) or peak regions (ATAC-seq and
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ChlIP-seq). SNPs covered by less than 10 reads were removed. Genes and ATAC-seq peak
regions with 2 or more SNPs were considered for subsequent allele-specific analysis.
GeneiASE [107] was used to detect significant differences in the level of gene expression or
chromatin accessibility between alleles. GeneiASE first measures individual SNP effects based
on the read counts of each allele at a given SNP. The median SNP effect-size for genes with
significant ASE was 4.6, while genes without significant ASE had a median SNP effect-size of
1.9. Next, a gene/peak test statistic is calculated by pooling all of the SNP effects that coincide
with the given gene or peak using Stoufer’s method [108]. The significance of gene
test-statistics was then determined by comparison to a null distribution of gene test statistics.
This null distribution is characterized by an overdispersion parameter and mean marginal
probability of success [107]. These parameters were determined by fitting a beta binomial model
to whole-genome sequencing read counts overlapping the same gene/peak regions of interest.
This provides an additional correction for read-mapping biases. Genes or peaks with significant
allele-specific differences were identified at a false discovery rate of 0.05 (Benjamini-Hochberg)
(Additional File 1: Table S7,S8; Additional File 3: Table S12).

Integration of allele-specific ACRs (AS-ACRs) and ASE using phased blocks

Genes with significant ASE in both RNA-seq replicates and ACRs with significant
allele-specificity were paired using phase block information. If an ASE gene and its nearest
AS-ACR were located in the same phase block, the sum of read counts for the ASE gene
(RNA-seq), and the AS-ACR (ATAC) was calculated for each haplotype. In this case, the read
count of the maternal haplotype for the ATAC peak region corresponds to the level of expression
of the maternal allele of the linked gene. The log, fold change between the read counts of
maternal and paternal haplotypes were determined both for gene expression and chromatin

accessibility. A pseudo count of 1 was added to each value prior to log transformation.

Permutation tests for genomic feature enrichment

A permutation test was performed to examine the enrichment of allele-specific ACRs for
transposable element sequences. The number of AS-ACR-TE intersections was compared to a
set of similarly sized regions selected from the complete set of ACRs and the frequency that
each sample intersected annotated TEs. This process was repeated (n=1000). This analysis
was performed for all TEs, and then for TEs separated into class | and class Il transposons. A
similar approach was used to examine the enrichment of structural variants (50 bp - 30 Kb in

size) within promoters of ASE genes. In this case, the number of SV-promoter intersections was
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compared to a sample of similarly sized regions from promoters of genes analyzed for ASE. The

R package regioneR was used to select regions and perform the permutations [109].

Motif enrichment analysis

Transcription factor binding site enrichment within allele-specific ACRs (AS-ACRs) and SVs
within ASE gene promoters were determined using MEME-ChIP with the parameters:
(-meme-minw 5 -meme-maxw 30 -meme-nmotifs 10 -db ArabidopsisDAPv1.meme) [29].
Transcription factor binding motifs obtained from DNA affinity purification sequencing (DAP-seq)
of Arabidopsis thaliana transcription factors [110] were used as the input database for motif
identification. For AS-ACRs, the sequences for the maternal and paternal alleles were tested for
motif-enrichment separately. For SVs in ASE gene promoters the sequence underlying the

longer, consensus, ‘inserted’ allele was tested for motif-enrichment.

Statistical inference of contribution of genomic features to allele-specific expression

An elastic-net regression model was developed to estimate the contribution of multiple factors to
gene expression, including allele-specific expression. Overall gene expression was quantified
using HTSeq-count with bias-corrected RNA-seq reads [111]. Genes that were outliers overall
whole-genome sequencing read counts (1.5x interquartile range) were filtered prior to model
fitting. For every gene, or those genes with significant ASE in both RNA-seq replicates, we
gathered information for 56 factors (Additional File 1 : Table S11). These factors include the
overall read counts (or coverage) of each predictor as well as the log2 fold change of phased
allele counts ( Maternal / Paternal ). For whole-genome sequencing reads, ChlP-seq reads,
ATAC-seq reads and bisulfite-seq reads, the counts were classified as belonging to one of four
regions surrounding each gene: genic (including exon and introns), promoter (< 1Kb from the
transcription start site), upstream putative regulatory region ( 5 Kb upstream of promoter), and
downstream putative regulatory region (5 Kb downstream of gene). Upstream and downstream
regions were only considered if an ACR was detected in the window.

For the analysis of allelic differences in read coverage, the four regions of interest were
set to NA if they did not contain at least one phased SNP. Additionally, regions were set to NA if
their total SNP-based read counts were lower than the 10th percentile of SNP-based read
counts for a given factor (ATAC-seq, ChIP-seq, BS-seq, etc). This filter was applied for each
factor x region combination. Genes with a strong bias in whole-genome sequencing read counts
(1.5x interquartile range) were filtered prior to model fitting (n=146). After filtering, the extent of

missing data per factor ranged from 0 - 70% with a median of 11.3% missing data (Additional
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File 3: Tables S13 and S14). Elastic-net regression models are well suited to handle missing
data and model fitting was performed with the gimnet package in R [112]. Model parameters
were determined using 5-fold cross validation (Additional File 1 : Table S12). For the model of
overall expression, there was evidence of overfitting as 54 / 56 predictors were determined to be
significant. To address this, we selected a shrinkage parameter (lambda) that reduces model
complexity while maintaining a prediction error (mean-squared error) within one standard error
of the model determined by 5 fold-cross validation (Additional File 1: Tables S15, S16 ;
Additional File 2: Figure S6)

Effects of SNPs and indels

SnpEff v.5.0e was used to annotate the impact of each SNP. The genome annotation (GFF) and
SNP VCEF files were used to build the SnpEff database. To evaluate the impact of potentially
deleterious variants on ASE and compare their effects with the other classes of variants, SNPs
classified as having a “HIGH” impact were merged with SNPs in ASE genes. (Additional File 3:
Table S15)
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in the analyses of chromatin accessibility, histone modification, and DNA methylation are
available as an NCBI BioProject (PRJNA1062830). Custom scripts used in analyses are
available on GitHub [113].
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Fig 1: Framework for developing haplotype-resolved profiles of gene expression, chromatin
accessibility, and epigenetic modifications. a) Phased haplotype blocks along each chromosome
of the ‘Fairchild’ reference genome constructed using 10x Genomics Linked-Reads (n = 1,015,
N50 = 1.57 Mb). Alternating colors indicate the distinct phase blocks. b) Diagram illustrating the
strategy for SNP-based phasing of RNA-seq, ATAC-seq, ChlP-seq, and Bisulfite-seq reads into
maternal and paternal haplotypes. ¢) Example of repressive (paternal) and active (maternal)

chromatin landscapes in proximity to a gene with allele-specific expression (ASE).

Fig 2: The relationship between gene-expression and chromatin features at genes with
allele-specific expression. a) Coefficients of the top 12 factors for the model of overall gene
expression (log,(TPM)) for 1,909 ASE genes ordered by magnitude (R = 0.40). Factors are
partitioned by genomic region and colored to indicate whether they reside in genes, promoters
(1 Kb of TSS), or upstream/downstream putative regulatory regions of the focal gene (ACRs
present 5 Kb upstream of promoter / 5 Kb downstream of gene). b) Coefficients of the top 12
factors for the model of allelic gene expression (log,FC(Maternalgy, / Paternalgy,) ordered by
magnitude (R = 0.3069). Positive “allelic” factors indicate a positive association between
maternal gene expression and maternal levels of a given data-type. “Overall” indicates that the
predictor is the total level of a given data-type (ATAC, ChlIP, Bisulfite). “Allelic” indicates that the
predictor is the ratio of maternal:paternal levels of a given data-type (log,FC(Maternal /

Paternal)).

Fig 3: Structural variation as a potential source of cis-regulatory variation between haplotypes.
a) 1,654 phased deletion:ASE gene pairs for which the gene and its nearest deletion are in the
same phase block were identified. Comparison of allele-specific expression of genes with a
deletion in their promoter (1 Kb upstream of TSS) (n = 104) versus those whose nearest
deletion was not in its promoter (n = 1550). Gene expression is expressed as a ratio of read
counts for the deletion-containing allele (HAPpion) relative to the alternate allele (HAP ajernate)-
For genes where there is no structural variant in the promoter, HAPpqeion represents the allele in
which the nearest deletion is found. Genes with a deletion in their promoter (n=104) had
significantly higher expression of the deletion-containing allele (Hedges G effect-size 0.378)
compared to ASE genes without promoter deletions (*** = 10,000 permutations, p < 0.001) b)
Genome browser view of RNA-seq read coverage phased between maternal (purple) and
paternal (blue) haplotypes for a predicted aldehyde dehydrogenase gene (FAIR _021608) .

Phased linked-reads between haplotypes reveal a 452 bp deletion (red bar) in the maternal
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allele that is associated with increased gene expression. ¢) A motif enrichment analysis of
sequence absent in the ‘deleted’ allele of the 104 promoter:gene pairs from ASE genes
identified four significantly enriched motifs, with the most abundant (n=28) matching the binding
site of zinc-finger protein 1 (AZF1). ASE genes are ordered by their allelic expression ratio, and
bars are colored based on whether the promoter deletion contains the AZF1 motif. There was
no significant effect of AZF1 motif presence on allele-specific expression, but the sample size

was small (n=28; 10,000 permutations, p = 0.2717).

Fig 4: Allelic chromatin accessibility is linked to allele-specific expression of proximal genes. a)
Allele-specific ACRs (AS-ACRs) were paired with their nearest ASE genes, restricting the
analysis to ACR-gene pairs separated by 5 Kb or less (n=51) while residing within the same
phase block. Allele-accessibility of AS-ACRs represented as the ratio of maternal : paternal
ATAC-seq reads is positively correlated with allele-specific expression of neighboring genes
within 5 Kb (n =51, p = 0.69, p = 9.9e-08). b) Genome browser view of two AS-ACRs (black
bars) located in the gene body and promoter of an ASE gene encoding a 7-deoxyloganetic acid
glucosyltransferase (FAIR_019693). Monoallelic expression of the maternal allele (blue) is
associated with increased chromatin accessibility of both AS-ACRs in the maternal haplotype.
¢) Motif enrichment analysis of the sequence underlying the paternal alleles of AS-ACRs
identified the binding motif of ERF48 (see inset). Significant similarity of paternal sequences of
AS-ACRs was observed for 44 / 137 AS-ACRs. The ERF48 motif significance score is
correlated with allelic H3K27me3, where higher similarity of the paternal sequence to the

canonical motif is associated with greater levels of H3K27me3 in the paternal haplotype.

Additional file 2 : Supplementary figure legends

Figure S1. Circos plot depicting the nine chromosomes of the ‘Fairchild’ genome assembly. a)
Chromosomes. b) Genome-wide distribution of transposable elements. ¢) Genome-wide

distribution of genes.

Figure S2. Chromatin landscape of genic accessible chromatin regions (ACRs). Metaplots were
generated to summarize regional patterns of chromatin state, typically centered on the summit
of an open chromatin region, which is defined as the 50 bp window with the highest tn5
integration frequency. For each data set, read coverage was scaled from 0 to 1 by dividing the

read coverage at each site by the 98th quantile of sequencing coverage per sample [19]).
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Figure S3. Chromatin landscape of proximal (within 2 Kb of nearest gene) accessible chromatin
regions (ACRs). Metaplots were generated to summarize regional patterns of chromatin state,
typically centered on the summit of an open chromatin region, which is defined as the 50 bp
window with the highest tn5 integration frequency. For each data set, read coverage was scaled
from O to 1 by dividing the read coverage at each site by the 98th quantile of sequencing
coverage per sample. ACRs were clustered into five groups based on their patterns of histone

modification.

Figure S4. Chromatin landscape of proximal (more than 2 Kb of nearest gene) accessible
chromatin regions (ACRs). Metaplots were generated to summarize regional patterns of
chromatin state, typically centered on the summit of an open chromatin region, which is defined
as the 50 bp window with the highest tn5 integration frequency. For each data set, read
coverage was scaled from 0 to 1 by dividing the read coverage at each site by the 98th quantile
of sequencing coverage per sample. ACRs were clustered into five groups based on their

patterns of histone modification.

Figure S5. Modeling of overall gene expression of all genes in the ‘Fairchild’ genome.
Coefficients for significant predictors of overall expression (log2(TPM)) of all genes (n = 30,724)
ordered by magnitude (R = 65.15). Factors are partitioned by genomic region and colored to
indicate whether they reside in genes, promoters (1kb of TSS), or upstream/downstream
putative regulatory regions of the focal gene ( ACRs present 5 Kb upstream of promoter / 5 Kb

downstream of gene). A summary of all models used is available in additional file 1: Table S12.

Figure S6. Determination of shrinkage parameter (4) to minimize model complexity while
maintaining predictive accuracy for overall expression (log2(TPM)) of all genes. The relationship
between the shrinkage parameter (1) and prediction accuracy (mean-squared error) during
5-fold cross validation with a constant tuning parameter (a = 0.70853). The dotted vertical lines
represent the range of 4 values that maintain a prediction accuracy within one standard-error of
the model chosen through the initial cross-validation. The red vertical line indicates the 4 value
chosen to minimize model complexity while maintaining performance. A summary of all models

used is available in additional file 1: Table S12.
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Figure S7. Modeling of overall gene expression of all genes in the ‘Fairchild’ genome after
increasing shrinkage parameter (4). Coefficients for significant predictors of overall expression
(log2(TPM)) of all genes (n = 30,724 ) ordered by magnitude (R = 64.71). Factors are partitioned
by genomic region and colored to indicate whether they reside in genes, promoters (1kb of
TSS), or upstream/downstream putative regulatory regions of the focal gene ( ACRs present 5
Kb upstream of promoter / 5 Kb downstream of gene). A summary of all models used is
available in additional file 1: Table S12.

Figure S8. Distribution of size of deletions detected using 10x Genomics linked-reads (n =
2,463).

Figure S9. Promoters of ASE genes are enriched for deletions. The number of unique overlaps
between promoters of ASE genes and deletions (green vertical line) was compared to 1,000
permutations of promoters from all genes in the Fairchild genome (p < 0.001). The black vertical
line indicates the mean of the 1,000 permutations and the red vertical line indicates a

significance threshold (p = 0.05).

Figure $10. Transposable element content of structural variation in gene promoters. a) The
proportion of either: all promoters, all structural variants (deletions), all annotated transposable
elements, or structural variants in promoters of ASE genes that belong to specific DNA

transposon families or retrotransposons (b).

Figure S$11. AZF1 motif occurrence in structural variants within promoters of ASE genes. a) A
motif enrichment analysis of sequence removed in the ‘deleted’ allele of 104 ASE genes with
deletions in their promoter identified four significantly enriched motifs, with the most abundant
(n=28) matching the binding site of zinc-finger protein 1 (AZF1), a zinc-finger protein that acts as
a transcriptional repressor [25]. Comparison of allele-specific expression of the deletion
containing allele ((Happeeion )X*) of genes with the motif in the ‘deleted’ allele (n=28) compared
to those without the motif (n = 78) indicates that there is not a significant effect of motif presence
on allele expression (10,000 permutations, p = 0.27). b) Distribution of the difference in mean
expression of the deletion containing allele (( Happeietion )*) for 10,000 permuted groups of
genes selected from the 104 ASE genes with promoter deletions. The red dotted-line represents
the observed difference in means between genes with the AZF1 motif in the deleted allele

versus those without the motif.
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Figure S12. The chromatin landscape of allele-specific ACRs is similar to all ACRs.

Meta plots were generated to summarize regional patterns of chromatin accessibility and
histone modification surrounding ACRs. ACRs were partitioned into three groups, all ACRs,
GENEIASE ACRs ( those with sufficient coverage and polymorphism for detection of ASE), and
allele-specific ACRs (AS-ACRs). ACRs were scaled to a 1000 bp region, as well as their 2kb
flanking regions using deepTools v.3.5.1 [104] and signal densities for each feature were plotted
across these regions in 50 bp windows. For each data set, read coverage was scaled from 0 to
1 by dividing the read coverage at each site by the 98th quantile of sequencing coverage per

sample [19].

Figure S13. The relationship between allele-accessibility of AS-ACRs and allele-expression of
ASE genes. AS-ACRs were paired with the nearest ASE gene if they were present in the same
phase-block (n=122, median distance = 7447.5 bp). Allele-accessibility of AS-ACRs represented
as the ratio of maternal : paternal ATAC-seq reads is positively correlated with allele-specific
expression of neighboring genes (R = 0.46 , p = 1.9e-07). Points are colored by the distance
between the AS-ACRs and its nearest ASE gene.

Figure S14. AS-ACRs are enriched for DNA transposons. a) The number of unique overlaps
between AS-ACRs and DNA transposons (green vertical line) was compared to 1,000
permutations from all ACRs in the Fairchild genome (p = 0.007). The black vertical line indicates
the mean of the 1,000 permutations and the red vertical line indicates a significance threshold (p

= 0.05). b) The proportion of AS-ACRs overlapping transposons belonging to specific families.

Figure $15. AS-ACRs are not enriched for retrotransposons. a) The number of unique overlaps
between AS-ACRs and retrotransposons (green vertical line) was compared to 1,000
permutations from all ACRs in the Fairchild genome (p = 0.5345). The black vertical line
indicates the mean of the 1,000 permutations and the red vertical line indicates a significance
threshold ( p =0.05).

Figure S16. The relationship between allele-accessibility of AS-ACRs and allele-expression of
ASE genes decays over longer distances. a) ASE genes were paired with their nearest AS-ACR
and only ACR-gene pairs within the same phase block were retained. ACR-gene pairs were

then split into 25 quantiles based on the distance between gene and ACR. For each quantile,
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the spearman correlation coefficient (rho) of allele-accessibility and allele-expression of
gene-ACR pairs (n=30) was calculated. As a control, ASE genes were paired with their nearest
ACR, regardless of whether the ACR has significant allele-specificity. The spearman correlation
coefficient was calculated for control ACR-gene pairs (n=30), and we reported the average of
1000 permutations of ACR-gene pairs. The vertical lines indicate the 95% confidence interval

for the spearman correlation coefficient (rho).

Figure S17.

Interspersed repeat landscape. The interspersed repeat landscape, revealing the distribution
and divergence of repeat elements across the genome. The percentages of the genome
composed of various repeat elements (Y-axis) are categorized according to their Kimura
substitution level (X-axis; CpG adjusted values ranging from 0 to 50), each bar in the plot
represents a 1% sequence divergence bin, adjusted for CpG Kimura divergence. The landscape
is represented by a stacked bar plot, where each color corresponds to a specific class of
repeats. The plot illustrates the copy-divergence analysis of these elements, with older copies
indicated by higher Kimura values towards the right, and more recent copies towards the left,

indicating the evolutionary dynamics of the repetitive elements within the genome.
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