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Abstract

Background: Cis-regulatory sequences control gene expression through the coordinated action

of transcription factors and their associated partners. Both genetic and epigenetic perturbation

of cis-regulatory sequences can lead to novel patterns of gene expression. Phased genome

assemblies now enable the local dissection of linkages between cis-regulatory sequences,

including their epigenetic state, and gene expression to further characterize gene regulation in

heterozygous genomes.

Results: We assembled a locally phased genome for a mandarin hybrid named ‘Fairchild’ to

explore the molecular signatures of allele-specific gene expression. With genome phasing,

genes with allele-specific expression were paired with haplotype-specific chromatin states,

including levels of chromatin accessibility, histone modifications, and DNA methylation. We

found that 30% of variation in allele-specific expression could be attributed to haplotype

associated factors, with allelic levels of chromatin accessibility and three histone modifications in

gene bodies having the most influence. Structural variants in promoter regions were also

associated with allele-specific expression, including specific enrichments of hAT and

MULE-MuDR DNA transposon sequences. Mining of cis-regulatory sequences underlying

regions with allelic variation in chromatin accessibility revealed a paternally-associated

sequence motif bound by ERF48, a target of the Polycomb repressive complex 2 (PRC2), and

sequence similarity of this motif corresponded to local levels of H3K27me3, a signature of PRC2

activity.

Conclusions: ​​Using a locally phased assembly of a heterozygous citrus cultivar, we dissected

the interplay between genetic variants and molecular phenotypes with the goal of revealing

functional cis-regulatory sequences and exploring the evolution of gene regulation.
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Introduction

Spatiotemporal modulation of gene expression programs is essential for cellular function,

organismal development, and environmental responsiveness. Specific gene expression patterns

are achieved through control of cis-regulatory modules (CRMs), which include sequences that

influence the timing, magnitude, and frequency of transcription through the coordinated action of

transcription factors (TF) and other binding partners. Local chromatin environment influences

the ability of TFs to bind CRMs and promote or repress gene expression and variation in

chromatin state at CRMs underlies variation in gene expression, a major source of phenotypic

novelty [1].

Interspecific hybridization has the potential to generate unique combinations of

cis-regulatory activity that result in novel phenotypes [2]. Allelic cis-regulatory variation may be

due to either genetic perturbation of TF binding motifs in CRMs or through differential

accessibility of CRMs achieved by epigenetic modulation of chromatin state. In both cases,

transcription will be imbalanced between the two alleles as a result of differential regulation of

CRMs. The comparison of local chromatin state and gene expression between first generation

hybrids and their parents can reveal the relative contribution of cis-acting variation, including

genetic and epigenetic variation in CRMs, and trans-acting variation caused by factors encoded

in other genomic locations. For example, chromatin packing in an interspecific hybrids between

Arabidopsis thaliana and Arabidopsis lyrata revealed that chromatin packaging was mostly

unchanged for the A. lyrata genome, but varied substantially for the A. thaliana genome, with

increased chromatin compaction of A. thaliana chromosomes in the interspecific hybrid [3].

Similarly, more A. thaliana genes were differentially regulated in the interspecific hybrid than A.

lyrata genes although the total number of affected genes was relatively small [3].

In the genus Citrus, the hybridization of three ancestral species, citron (C. medica),

pummelo (C. maxima), and mandarin (C. reticulata), has produced many hybrids with novel

phenotypes including sweet oranges (C. sinensis), lemons (C. limon), and grapefruits (C.

grandis) [4]. There are several examples where novel phenotypes in cultivated citrus hybrids are

the result of cis-regulatory variation [5,6]. For example, in blood oranges the insertion of a

Copia-like retrotransposon upstream of the Ruby gene introduces one or more CRMs that

modulate gene expression in response to temperature [5]. Upregulation of Ruby transcripts in

response to cold temperatures results in anthocyanin accumulation in the fruit [5]. Apomixis,

another commercially important trait, is also associated with cis-acting regulatory variation

introduced by a transposon sequence [6,7]. The production of apomictic seed, or seed

genetically identical to the mother plant, is controlled in part by a gene encoding a RWP-RK
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domain–containing protein (CitRWP) with the insertion of a miniature inverted repeat

transposable element (MITE) in its promoter linked to enhanced gene expression in Citrus and

its relative Fortunella hindsii [6]. These are only two examples where structural variants alter

gene expression patterns by perturbing CRMs, including through the introduction of a new CRM

to regulate the cold-responsiveness of Ruby. The impact of structural variation on gene

expression is likely much higher and an extensive inventory of structural variation in tomato

revealed that 7.3% of genes with structural variants (SVs) in cis-regulatory regions were

differentially expressed [8]. There is accumulating evidence that perennial, clonally propagated

crop species, like Citrus, harbor extensive structural variation between haplotypes [6,9], but the

impact of these variants on phenotypic variation, including potential effects on cis-regulatory

activity, remains to be characterized at the genome-wide level.

CRMs include sequences with the potential to enhance and repress expression of

neighboring genes. In plants, CRMs can be broadly categorized as core promoters, enhancers,

or silencers. Core promoters contain the minimal sequence required for transcription initiation,

while enhancers and silencers contain elements that can be bound by transcription factors (TFs)

to increase or decrease gene expression, respectively. Core promoters are usually within

50-100 bp of the transcription start-site while enhancers and silencers can be located much

farther from the gene targeted for regulation [10]. For example, the maize enhancer Hopscotch

is located about 70 Kb from its target teosinte branched 1 [11]. Core promoters, enhancers, and

silencers may exhibit distinct patterns of chromatin accessibility and histone modifications

depending on whether they are in a poised, active, or inactive state [10]. Active promoters are

characterized by chromatin accessibility and activating histone modifications such as H3K4me3

and histone acetylation [12–16]. In contrast, inactive promoters have reduced chromatin

accessibility and can be marked by H3K27me3, a repressive histone modification catalyzed by

Polycomb repressive complex 2 [17]. One challenge for studying cis-regulatory variants is the

identification of active regulatory regions from the massive amount of non-coding DNA in the

genome. The genome-wide identification of accessible chromatin regions (ACRs), or regions of

the genome that are not tightly packaged around nucleosomes, using ATAC-seq [18] narrows

the portion of intergenic space that contains likely CRMs. A survey of angiosperms revealed that

only 0.22-6.5% of the genome resides in accessible chromatin regions in leaf tissue [19]. The

chromatin landscape of ACRs has been used to infer their role in activating or repressing

transcription of neighboring genes [15,19].

Here, we investigate the contribution of cis-regulatory variation to generating novel

patterns of gene expression in a cultivated mandarin hybrid named ‘Fairchild’. We quantify
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allelic variation in both chromatin state and gene expression in this hybrid. To directly link local

chromatin variation to gene expression we generated a locally phased reference genome of

‘Fairchild’. Genes with imbalanced allelic expression served as a focal point to explore the

contribution of the chromatin and epigenetic landscape to gene expression variation. We found

that allele-specific expression can be predicted, in part, by local chromatin state, with chromatin

accessibility and histone modifications of gene bodies being the most influential factors. Local

structural variation was also linked to allele-specific variation in gene expression, with hAT and

MULE-MuDR DNA transposons enriched at genes with divergent expression between

haplotypes. Finally, we identified differential ACRs between haplotypes, and mined these

sequences to identify candidate motifs underlying differential gene expression patterns. We

show that cis-regulatory variation between haplotypes is reflected in the chromatin landscape

and that TE-associated genetic variants may underlie expression divergence in this cultivated

citrus hybrid.

Results
The landscape of accessible chromatin in a haplotype-phased genome
We sought to investigate the chromatin dynamics at cis-regulatory sequences and the influence

of those sequences on gene regulation in the heterozygous genome of ‘Fairchild’. To address

this we first de novo assembled the genome of ‘Fairchild’ using 69 Gb of PacBio long-read

sequences (Materials and methods). The de novo assembly was scaffolded using a Bionano

optical map and anchored to chromosomes based on existing genetic maps (Materials and

methods). The resulting ‘Fairchild’ genome assembly is 365 Mb in length (N50 = 42.1 Mb), with

95% of the genome contained in 9 chromosomes (Additional File 2: Fig. S1). Cis-regulatory

modules (CRMs) typically include an array of transcription factor (TF) binding sites, with the

majority of TFs only binding to DNA sequence in open chromatin conformations [20–22].

Putative CRMs in ‘Fairchild’ were identified by mapping accessible chromatin regions (ACRs)

using ATAC-seq of nuclei extracted from leaf tissue. A total of 9,172 ACRs spanning 7.3 Mb

(FRiP = 0.13) were identified (Materials and methods, Additional File 1: Tables S1, S2). The

sequences underlying these ACRs span 2% of the ‘Fairchild’ genome, similar to other plant

species [19].

Recent work has demonstrated the importance of distal cis-regulatory sequences in

controlling gene regulation in plants [15]. In maize, for example, 32% of ACRs are located more

than 2 Kb, and often more than 20 Kb, from their nearest gene [19]. Based on this, ‘Fairchild’

ACRs were classified as genic, proximal, or distal based on proximity to their nearest gene
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(overlapping, within 2 Kb, or further than 2 Kb, respectively). The majority (53.6%) of ACRs are

genic, while 33.7% of ACRs are proximal, and 17.3% are distal to their nearest gene (Additional

File 1: Table S2). We then determined the genome-wide distribution of three activating histone

modifications (H3K4me3, H3K36me3, H3K56ac) and one repressive modifications

(H3K27me3), using ChIP-seq (Materials and methods) (Additional File 1: Table S3-S6).

Unsupervised clustering of histone modifications at ACRs revealed similar patterns observed in

other plant species [19] (Additional File 2: Fig. S2, S3,S4). When focusing on only distal ACRs

(> 2 Kb from nearest gene), a distinct cluster of ACRs enriched for the repressive modification

H3K27me3 emerges that is not present for genic and proximal ACRs. (Additional File 2: Fig. S3)

It is possible that these distal ACRs marked by repressive modifications represent poised

enhancers [23,24], although not much is known about histone modification of poised enhancers

in plants.

To define the extent of local and distal cis-regulatory variation, we generated locally

phased haplotypes with 10x Genomics Linked-Reads. In total, 1.53 phased variants, including

small indels (< 50 bp) were used to define 1,015 phase blocks (N50 = 1.57 Mb). Phase blocks

spanned 88.04% of the assembled genome length and included 91.2% of annotated genes, with

45.4% of haplotype blocks including one or more genes (Fig. 1a). In other plant species, distal

CRM have been identified more than 60 Kb from their target gene [11], but there are typically no

intervening coding gene sequences [15]. This suggests that allele-specific chromatin dynamics

at both local and distal CRM can be assayed for 91.2% of gene sequences in ‘Fairchild’ based

on the multi-megabase scale of haplotype phasing. SNP-based read phasing enabled the

quantification of allelic gene expression, chromatin accessibility, histone modification, and DNA

methylation (Fig. 1b). Allelic differences in whole-genome sequencing read mapping served as a

control for read mapping bias (Materials and methods). This approach enables comparison of

haplotype-specific signatures of chromatin landscape and gene expression in this hybrid

genome .

To evaluate the extent of haplotype-specific control of gene expression we utilized

phased SNPs to quantify allele-specific expression (ASE) by RNA-seq (Materials and methods).

Overall, 23,407 genes are expressed in the leaf and 7,964 (34.02%) of those genes have

sufficient levels of polymorphism (2 or more SNPs) for allele-specific analysis. Genes evaluated

for allele specific expression contained 3 SNPs per 1,000 bp, on average. In total 2,071 genes

with significant ASE consistent across two replicates were identified (Benjamini Hochberg FDR

< 0.05) (Additional File 1: Tables S6, S7, S8). Genes with ASE were enriched for gene ontology

terms related to metabolism and other enzymatic processes (Additional File 1: Table S9).
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Although genetic variation limits our ability to assay allele-specific patterns of expression across

all expressed genes, ASE appears to be common in this subset, affecting 26% of genes with

sufficient polymorphism and levels of expression. This set of ASE genes serve as the basis for

investigating the dynamics of haplotype-specific cis-regulatory variation.

Haplotype-specific chromatin dynamics correlate with allele-specific expression
Regulatory variants have the potential to cause haplotype-specific alterations in chromatin state

through differential transcription factor and chromatin remodeling activity. We assigned ancestry

to phased SNPs to represent allele-specific gene expression and chromatin state by parent of

origin. ‘Fairchild’ was derived from a cross between a clementine mandarin and ‘Orlando’

tangelo and re-sequencing data from a clementine and ‘Orlando’ were used to assign ancestry

to each phased SNP (Additional File 1: Table S10). Local phasing of haplotypes with ASE genes

enabled us to examine the extent to which haplotype-specific variation in the chromatin

landscape is associated with the expression of linked genes.

To address this, we assayed the landscape of four histone modifications (H3K4me3,

H3K36me3, H3K56ac, H3K27me3), chromatin accessibility, and DNA methylation, including

their haplotype-specific patterns, to dissect the relative contribution of each feature to gene

expression. We then partitioned all seven metrics of chromatin status into four regions flanking

each expressed gene: genic (including exon and introns), promoter (< 1 Kb from the

transcription start site), upstream putative regulatory region (ACR within 5 Kb upstream of

promoter), and downstream putative regulatory region (ACR within 5 Kb downstream of gene).

For upstream and downstream regions, histone modifications and chromatin accessibility data

were only incorporated if a putative regulatory region (ACR) was detected in the window of

interest.

Focusing on the 2,071 genes with significant ASE, gene expression in transcripts per

million (TPM) was then modeled using elastic-net regression with 56 factors (Additional File 1:

Table S11), including each chromatin feature across the four regions. In addition to overall levels

of histone modification and chromatin accessibility at each gene, haplotype-specific differences

for each feature were included as factors. Additional factors included the presence of a SV in

the promoter and the ratio of nonsynonymous and synonymous substitutions. After excluding

genes that were outliers for whole-genome sequencing coverage (n = 162), five-fold cross

validation was used to select the optimal parameters for elastic-net regression (Additional File 1:

Table S12). 40% of the variation in overall gene expression was explained with 21 of the 56

factors (Fig. 2a; Additional File 1: Table S13, S14) with levels of genic chromatin accessibility
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(ATAC), genic H3K4me3, and genic H3K27me3 having the largest influence. Consistent with

their roles in activating and repressing gene expression, H3K4me3 was positively correlated

with overall expression, while H3K27me3 was negatively correlated with expression (Fig. 2a).

When including all genes in the ‘Fairchild’ genome, 49 of the 56 factors explained 61.15% of

variation in overall gene expression (Additional File 1: Table S15; Additional File 2: Fig. S5). The

fact that almost all predictors in this model were determined to be significant suggests model

overfitting. To address this, we selected a shrinkage parameter (lambda) that reduced model

complexity while maintaining a prediction error within one standard error of the initial model

(Additional File 1: Tables S15, S16; Additional File 2: Fig. S6). This reduced model included 15

of the 56 factors and explained 60.44% of the variance in overall gene expression. The factors

with the greatest influence on gene expression of all genes are overall levels of genic

H3K36me3, genic H3K56ac, genic H3K27me3, and chromatin accessibility of both promoters

and genic regions (ATAC) (Additional File 1: Tables S16; Additional File 2: Fig. S7). In summary,

genic levels of chromatin accessibility and H3K27me3 were 2 of the 5 top influential factors in

models of overall expression for all genes (n= 30,724) and genes with ASE (n = 2,071), with the

influence of open chromatin being more pronounced for genes with ASE.

A similar approach was used to quantify the contribution of each factor to allele-specific

expression, or the log2 fold difference in the expression of the maternal allele (clementine) over

the paternal allele (‘Orlando’). After removing ASE genes with apparent read mapping bias,

1,786 genes remained, with 30.69% of the variation in differential expression between alleles

explained by 18 of the 56 factors (Fig. 2b; Additional File 1: Table S17). Allelic differences in

levels of chromatin modifications were associated with ASE, unlike the model of overall

expression for the set of 2,071 genes where overall levels of chromatin modifications were

predictive of gene expression. Allelic chromatin accessibility, H3K36me3, H3K4me3, and

H3K56ac in genic regions were the four strongest predictors of ASE and were all positively

associated with ASE. The repressive modification H3K27me3 was inversely associated with

allele-expression indicative of its repressive effect.

In addition to inferring the relative effect of chromatin features on allele-specific

expression, we also examined the significance of their genomic location (genic, promoter,

upstream putative regulatory region, downstream putative regulatory region) relative to each

gene. Chromatin accessibility and histone modifications of genic regions have the strongest

relationship with ASE, while promoter chromatin accessibility, promoter H3K36me3 and DNA

methylation of promoters have more subtle effects (Fig. 2b; Additional file 1: Table S17). Allelic

DNA methylation of promoters has an effect similar to that of genic H3K27me3, illustrating two
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modes of transcriptional repression. Additionally, the models reveal a significant effect of

deletions in promoter sequences on gene expression, primarily in the model of ASE (Fig. 2b)

but also in the model of overall expression (Fig. 2a). Using 10X Genomics Linked-Reads, we

identified 2,481 deletions ranging from 41 bp to 11,084 bp (mean length = 332 bp) (Additional

File 2: Fig S8). Although parentage can be assigned to each lesion, the designation as a

‘deletion’ is in reference to the ‘Fairchild’ consensus sequence and the ancestral state (i.e.

inserted or deleted allele) is unknown. Here, a promoter deletion in one haplotype is associated

with increased expression of the corresponding haplotype, with coefficients of similar size for

paternal and maternal deletions (Fig. 2b). Since the model response is represented as the ratio

of maternal vs paternal gene expression, the opposite effects of paternal and maternal deletions

indicate their effect on the deletion containing allele (Fig. 2b). Overall the chromatin landscape

in genic regions and promoters is more associated with ASE than distal regulatory regions.

Together, these analyses demonstrate the extent to which allelic differences in histone

modifications, chromatin accessibility, and DNA methylation underlie ASE.

Promoter structural variation linked to differences in allele-specific expression
Genetic variants in gene promoter sequences may alter the binding affinity of regulatory factors,

serving as a source of cis-regulatory variation. Since multiple functional elements reside in

promoter regions, the effect of a single SNP may be small. In contrast, structural variants may

alter the sequence or position of cis-regulatory modules and have potentially larger effects on

gene expression. In ‘Fairchild’, the promoters of genes with ASE are significantly enriched for

deletions (1,000 permutations, p < 0.001) (Additional File 2: Fig. S9). Additionally, promoter

structural variants of genes with ASE are enriched for Type I DNA transposable elements (TEs),

with the hAT and MULE-MuDR DNA transposons being the most abundant (Additional File 2 :

Figure S10). To further examine the relationship between SVs and ASE we identified 1,654

phased deletion:ASE gene pairs for which the gene and its nearest deletion are in the same

phase block (Fig. 3a). Genes with a deletion in their promoter (n=104) had significantly higher

expression of the deletion-containing allele (Hedges G effect-size 0.378) compared to ASE

genes without promoter deletions (1,000 permutations, p < 0.001) (Fig. 3a). One example of this

is the elevated expression of the maternal allele for a predicted aldehyde dehydrogenase gene

(Additional File 1: Table S18). There is a 452 bp structural variant ~900 bp upstream of the gene

that corresponds with dramatically higher expression of the maternal allele (log2FC = 2.53) (Fig.

3b). Because the ancestral state of each structural variant is unknown, it could be that

expression of the paternal allele, in this case, is associated with an insertion that reduces
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expression. These inserted sequences could disrupt cis-regulatory elements, or introduce

repressive elements. A motif enrichment analysis of sequence removed in the ‘deleted’ allele of

the 104 promoter:gene pairs identified four significantly enriched motifs, with the most abundant

(n=28) matching the binding site of zinc-finger protein 1 (AZF1), a zinc-finger protein that acts as

a transcriptional repressor [25] (Additional File 1: Table S19). For these deletion:gene pairs

there was no significant effect of AZF1 motif presence on allele-specific expression, but the

sample size was relatively small (10,000 permutations, p = 0.2717) (Additional File 2: Figure

S11). However, 5 of the 10 ASE genes with the highest expression bias towards the

deletion-containing allele included the canonical AZF1 motif (Fig. 3c). These observations

suggest a possible role for repressive elements in structural variants linked to allele-specific

expression.

Allele-specific accessible chromatin regions (AS-ACRs) are linked to expression of
proximal genes

CRMs can alter the magnitude, timing, and localization of transcription and divergence in

CRM activity between haplotypes is a source of variation in ASE. We reasoned that differences

in cis-regulatory module activity between haplotypes may be reflected in chromatin accessibility.

Using the same framework for detecting ASE, we tested 5,423 ACRs with 2 or more

polymorphisms for haplotype-specific differences in levels of chromatin accessibility. A total of

137 allele-specific ACRs were identified at a 5% false discovery rate (Benjamini Hochberg) and

these were primarily classified as genic (58%), while 34% are proximal (within 2 Kb of nearest

gene), and 11.6% are distal (greater than 2 Kb from nearest gene) (Additional File 1: Table S2).

The epigenetic profile of AS-ACRs and their flanking sequence (2 Kb) was similar to all ACRs,

including the subset of 5,423 ACRs with 2 or more polymorphisms used for haplotype-specific

analysis (Additional File 2: Figure S12). Notably, only 2.5% of the 5,423 ACRs exhibited

significant haplotype-specific chromatin accessibility, compared to 28% of genes with significant

ASE. This may be a consequence of levels of sequencing coverage, where reduced coverage

(i.e. for ATAC-seq) limits detection of differences in chromatin accessibility between alleles. It is

also possible that genetic variants could disrupt transcription factor binding to impact allelic

expression without affecting local chromatin structure.

Using locally phased blocks, we associated allele-specific differences in chromatin

accessibility (AS-ACR) with allele-specific expression. Of the 137 AS-ACRs, 94.1% resided in

the same phased block as their closest ASE gene with a median of 7,069 bp of intervening

sequence. Next we correlated levels of chromatin accessibility of AS-ACRs with gene
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expression of ASE-genes on a per haplotype basis. For ACR-gene pairs separated by 5 Kb or

less (n=51) there is a significant correlation between chromatin accessibility and gene

expression (R = 0.69, p < 0.001) (Fig. 4a), with higher levels of allelic chromatin accessibility

associated with an increase in expression of the proximal gene. The association between

AS-ACRs and gene expression is reduced when examining ACR-gene pairs separated by more

than 5 Kb (R = 0.46, p < 0.001) (Additional File 2: Figure S13). This pattern is consistent with

the statistical modeling of ASE which highlights the importance of local chromatin state in

predicting differences in gene expression between haplotypes (Fig. 2b).

A clear demonstration of the link between allelic chromatin accessibility and expression

of proximal genes occurs at a gene predicted to encode a 7-deoxyloganetic acid

glucosyltransferase (Additional File 1: Table S20). Two AS-ACRs were detected at this gene,

one in the first exon, and the other in the gene promoter (Fig. 4b). The maternal alleles of the

promoter AS-ACR and genic ACR had a log2FC (maternal / paternal ATAC) of 1.51 and 2.20,

respectively. This coincides with monoallelic expression of the maternal allele, with no

detectable expression of the paternal allele (Fig. 4b). The difference in accessibility in the gene

body may be a consequence of active transcription of the maternal allele, while differences in

accessibility of the promoter may reflect differential binding of transcription factors to the

maternal and paternal alleles. Both the maternal and paternal sequence underlying the AS-ACR

(364 bp) contains a hAT DNA transposon and a LTR transposon. Several studies have noted

the role of transposable elements (TE) in generating variation in CRMs. This may occur through

the disruption of functional cis-regulatory sequences by TE insertion [26,27], or TEs may contain

cis-regulatory sequences with the potential to rewire gene regulatory networks by bringing novel

CRMs in close proximity to genes [26,28]. DNA transposons, in particular, are a significant

source of species-specific ACRs in angiosperms [19]. Similarly, AS-ACRs in the ‘Fairchild’

genome are enriched for DNA transposons relative to all detected ACRs (1,000 permutations, p

= 0.002) (Additional File 2: Figure S14), with the hAT subfamily of class II DNA transposons

being abundant in sequences underlying AS-ACRs. We did not observe any significant

enrichment for class I transposons (Additional File 2: Fig. S15).

We searched the sequences underlying the maternal and paternal alleles of AS-ACRs

for known transcription factor binding sites using MEME-ChIP [29]. Four motifs were enriched in

either maternal or paternal alleles of AS-ACRs (Additional File 1: Table S21,S22). The motifs

were highly repetitive in sequence which complicated the identification of specific transcription

factor binding sites. One motif enriched in paternal alleles of AS-ACRs matches the ERF48

binding motif also known as DREB2C (Fig. 4c) (Additional File 1: Table S23). ERF48 binding
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motifs were also found to be enriched in differentially accessible chromatin regions between

cotton (Gossypium) accessions before and after allopolyploidization, interspecific hybridization,

and domestication [30], suggesting ERF48 motifs are a potential source of cis-regulatory

variation across multiple plant species. ERF48 is a target of Polycomb repressive complex 2

which deposits H3K27me3 [30,31] and typically results in reduced transcriptional activity.

Following this logic, we explored the relationship between levels of H3K27me3 at paternal

alleles of AS-ACRs and the presence of the ERF48 motif. The ERF48 motif was detected in the

paternal allele of 44 of the 137 AS-ACRs (Additional File 1: Table S23) and the degree of

similarity to the consensus ERF48 motif for each AS-ACR correlated with allelic H3K27me3

(Spearman correlation, = -0.31, p = 0.04) (Fig. 4c). Paternal haplotypes of AS-ACRs withρ

greater sequence similarity to the ERF48 motif had greater levels of paternal H3K27me3

highlighting the potential for AS-ACRs to reveal haplotype-specific CRM that may be a

consequence of differential activity of chromatin remodelers caused by sequence divergence

between haplotypes.

Discussion
Cis-regulatory variants are a major source of gene expression divergence between species

[32,33], but unraveling the relationship between cis-regulatory variation and allele-specific

differences in gene expression is challenging in the absence of haplotype-phased genome

assemblies. In this study, we assembled a locally phased reference genome for ‘Fairchild’

mandarin and used it to investigate the molecular hallmarks of allele-specific expression.

‘Fairchild’ is a mandarin derived from parental cultivars with shared pummelo ancestry and, as a

result, genes in these regions identical by state cannot be evaluated for allele-specific

differences in gene expression or chromatin state. In cultivated mandarins with similar ancestry

to ‘Fairchild’, these regions of homozygous pummelo ancestry account for 12-38% of the

genome [4]. Still, genes in heterozygous portions of the genome could be used to explore the

extent of allele-specific expression. We found that allele-specific expression is common, with

differential expression between maternal and paternal alleles occuring at nearly one third of the

7,300 genes with two or more genetic variants. We expect that even more genes with ASE

would be detected in hybrids with fewer regions of shared ancestry.

Focusing on the set of 2,071 ASE genes, we investigated chromatin features associated

with differential transcription of alleles. To do so, we integrated data sets for gene expression,

chromatin accessibility, and histone modifications (among others). We found that 30.69% of

variation in allele-specific expression can be inferred from local chromatin state, with the most
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influential factors located in the gene region, as opposed to promoter or other distal regulatory

sequences (Fig. 2b). It is important to note that our analysis has revealed associations between

allelic chromatin dynamics and gene expression. Without genome-wide surveys of chromatin in

relevant mutants or directed manipulation of the chromatin state in regions of interest, it is not

possible to determine whether allele-specific histone modifications are driving differential gene

expression or if they are a consequence of differential transcription. In ‘Fairchild’, the factors

most associated with allele-specific expression were chromatin accessibility and histone

modifications in gene regions, including H3K36me3, H3K56ac, and H3K27me3. The next most

influential set of factors were those located in promoter regions, including haplotype-specific

accessibility of chromatin and the presence or absence of a structural variant. In contrast to

genic and promoter regions, the effect of factors in distal regulatory regions was relatively

limited, although two factors (ATAC, H3K27me3) were still identified as having significant

effects. Distal regulatory regions with functional roles have been identified in large-genome

species including maize and wheat [15,34], but distal ACRs seem to be less common in smaller

genomes [15,35,36]. In citrus, we expect fewer distal ACRs since the average intergene

distance in the ‘Fairchild’ genome is around 2.7 Kb. In fact, only 17.3% of ACRs detected in our

dataset were classified as distal (Additional File 1; Table S2). Additionally, the correlation of

AS-ACR chromatin accessibility and ASE decays for ACR-gene pairs that are separated by

more than 5 Kb (Additional File 2: Figure S17). Here, we restricted analysis of chromatin

accessibility and gene expression to neighboring ACR-gene pairs with no intervening

protein-coding gene sequence. In other angiosperms, there are typically no intervening genes

between ACRs and their target gene even in large-genome species like maize, where pairs are

separated by many tens of kilobases [15,19]. While this is a reasonable assumption, future

integration of conserved non-coding sequences, chromatin contact maps, and tissue-specific

identification of ACRs will enable a more complete characterization of the distal regulatory

landscape in small genome species like citrus to more precisely quantify the contribution of

these sequences to gene expression regulation.

Next, we sought to understand and characterize potential sources of cis-regulatory

variation in ‘Fairchild’. Structural variation between haplotypes is one possible source of

cis-regulatory variation and may alter TF binding affinity, introduce new cis-regulatory modules,

or perturb the coordination of neighboring cis-regulatory elements. Genome-wide surveys of

genetic variation in crop species have revealed extensive levels of structural variation

[6,9,37,38]. In some cases, these variants have been linked to functional differences [5,39,40].

In cultivated tomato and its wild relatives, for example, 7.3% of genes with structural variants in
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promoter regions were differentially expressed [8]. In ‘Fairchild’, structural variants are enriched

in the promoters of ASE genes, with associated sequences predominantly derived from hAT and

MULE-MuDR DNA transposons. The designation of ‘insertion’ or ‘deletion’ is relative to the

‘Fairchild’ consensus sequence. Structural variants were not polarized to an outgroup species to

determine their ancestral state. Haplotypes with the non-consensus allele are termed ‘deletions’

here and deletions in the promoters of ASE genes were associated with increased expression

(Fig. 3a). The sequence underlying the longer, consensus ‘inserted’ allele was enriched for

transposon associated sequences, suggesting that the ‘inserted’ allele is actually linked to

reduced expression, possibly due to the associated TE. TE insertions may alter gene

expression by disrupting cis-regulatory modules [41], or through the spreading of repressive

chromatin modifications to nearby regulatory sequences [42,43]. While TE-mediated disruption

of local sequence is likely a source of SV-related ASE, our analysis also reveals evidence for a

signature of TE-associated CRM with repressive effects on gene expression. The prevalence of

SV-related cis-regulatory variants in ‘Fairchild’ suggests that the comparison of chromatin

accessibility across structurally diverse citrus genomes is likely to further our understanding of

the factors underlying gene expression divergence in heterozygous perennial tree crops

species, like those in the genus Citrus.

Genetic variation in CRMs is another potential source of allele-specific expression.

Genetic variants that perturb transcription factor binding may subsequently alter local chromatin

remodeling. One example of this is the pioneer TF LEAFY which binds to nucleosome occupied

binding sites at the AP1 locus and recruits SWI/SNF chromatin remodelers [44]. This is followed

by increased chromatin accessibility and elevated levels of AP1 expression [44]. We explored

the sequences underlying AS-ACRs to identify genetic variants with possible impacts on TF

binding and subsequent gene expression. The sequences underlying AS-ACRs were enriched

for DNA transposons. In genome-wide surveys of chromatin accessibility across many

angiosperm species, DNA transposons were also enriched in a set of species-specific ACRs

[19]. To begin to understand how genetic variation at putative CRMs impacts phenotype, we

mined ACRs with haplotype-specific patterns of accessibility for candidate transcription factor

binding motifs which may underlie the differential gene expression patterns observed in this

citrus hybrid. We detected the enrichment of ERF48 binding sites in paternal alleles of

AS-ACRs, and observed a correlation between ERF48 motif presence and allelic H3K27me3

(Fig. 4c). ERF48 binding sites were also found to be enriched in differential DNAse

hypersensitive regions discovered in a panel of cotton accessions spanning polyploidization and

domestication in the species [30]. Han and colleagues speculate that PRC2 binds the
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guanine-rich binding site of ERF48, and that PRC2-mediated deposition of H3K27me3 may be

involved in transitions between states of chromatin accessibility [30]. The sequence-specific

DNA binding activity of H3K27me3 “writers” such as Polycomb repressive complex 2 (PRC2),

and “erasers” such as JUMONJI DOMAIN-CONTAINING PROTEINS (JMJ) may underlie

differential regulation of alleles with resulting ASE. An extensive yeast-one hybrid screen

revealed 233 transcription factors that bound motifs associated with PRC2 binding and

subsequent H3K27me3 deposition [45]. Similarly, the sequence-specific DNA binding activity of

JMJ proteins such as RELATIVE OF EARLY FLOWERING 6 (REF6) [46–48] suggests that

sequence alterations in its binding motif could produce differential H3K27me3 demethylation

between alleles. We find a significant correlation between ERF48 motif similarity scores and

allelic levels of H3K27me3, but no significant relationship between allelic chromatin accessibility

and allelic levels of H3K27me3 of AS-ACRs, but we are likely limited by the small sample size of

AS-ACRs, the sequence depth of ATAC-seq libraries, and the conservative method used for

ACR identification. Importantly, AS-ACRs are indistinguishable from other ACRs when

examining ATAC-seq coverage without read-phasing (Additional File 2: Fig. S12). ERF48 motif

enrichment in AS-ACRs highlights an instance of how sequence variation in a TF binding site

relates to local chromatin dynamics and gene expression variation.

Further mining ACRs for functional variants is likely to reveal genotype-phenotype

associations. In maize, 40% of genetic variants with heritable effects of phenotypes were

located in the 1% of the genome marked by accessible chromatin [49]. In ‘Fairchild’,

approximately 2% of the genome resides in ACRs and, similar to maize, we expect these

sequences to be enriched for functional variants. The functional consequences of cis-regulatory

variation in citrus have previously been demonstrated for two important commercial traits [5,6].

Allele-specific expression is an indication that there are functional cis-acting sequence variants.

The 2,071 genes with ASE in ‘Fairchild’ are good candidates for exploring the phenotypic

consequences of cis-regulatory sequence variation. We highlight two of these genes as

candidates for further study. One AS-ACR was discovered upstream of a gene encoding a

7-deoxyloganetic acid glucosyltransferase (Fig. 4b) which catalyzes the production of an iridoid

monoterpene [50]. Iridoid monoterpenes have been shown to be involved in plant-insect

interactions and are of interest as natural products because of their pharmacological activities

[51–53]. A second gene of interest is one predicted to encode a homolog of potato SNAKIN-1

(Additional File 1: Table S24). A 165 bp structural variant was identified in the promoter of this

gene in ‘Fairchild’. SNAKIN-1 is a small peptide identified in potato, that has demonstrated

antimicrobial activity against both bacterial and fungal pathogens when heterologously
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expressed in several plant species [54–57]. The role of small antimicrobial peptides has recently

been highlighted for their potential in combating citrus greening disease [58]. These are only two

examples where connections between genetic variation, chromatin accessibility, and

allele-specific differences in gene expression may lead to functional phenotypic differences.

Further dissection of these loci and others with evidence of allele-specific expression will likely

reveal troves of variation relevant for genetic improvement of cultivated citrus.

Conclusions
We assembled a locally phased reference genome for ‘Fairchild’ mandarin and used it to

investigate the molecular signatures of allele-specific expression. By profiling gene-expression,

chromatin accessibility, DNA methylation, and several histone-modifications we provide a

detailed view of gene regulation in this hybrid cultivar. We document the extent of

haplotype-specific differences in gene regulation and begin to dissect the interplay between

local variation in chromatin dynamics and gene expression. We find examples where

allele-specific expression is associated with local structural variation in promoter sequences and

others where expression differences are more likely due to genetic variation in putative TF

binding. We anticipate that the datasets produced here will inform approaches for studying the

interplay between genetic variants in heterozygous genomes and molecular phenotypes such

as gene expression, chromatin accessibility, and epigenetic modifications with the goal of

revealing functional cis-regulatory sequences and understanding the evolution of gene

regulation.

Materials and methods
Sampling
Fairchild mandarin was sampled from the Givaudan Citrus Variety Collection at the University of

California Riverside. Young leaves were collected from a greenhouse grown individual of the

cultivar ‘Fairchild’ mandarin (Citrus reticulata) (Accession No: PI 539508, Inventory No: RIV

2014 PL). To deplete starch in the leaves, the tree was covered with brown paper bags 24 hours

prior to sampling. The leaves were sampled early in the morning and immediately frozen in

liquid nitrogen. The intact, frozen leaves were then shipped to Arizona Genomics Institute (AGI)

for DNA extraction from nuclei for PacBio sequencing and to the Amplicon Express company

(Pullman, WA) for DNA extraction for Illumina, Bionano, and 10X sequencing.
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DNA extraction and sequencing
High-molecular-weight (HMW) DNA was extracted and used for the library construction.

SMRTBell libraries (20 Kb) were prepared according to the manufacturer’s protocol including

gTube size fraction and BluePippin size exclusion of fragments smaller than 20kb before

constructing libraries for SMRTbell template construction. Sequencing on the Pacbio RS II

machine was performed at AGI following library construction. A total of 3,930,477 reads were

produced from 53 flow cells (69 Gb of sequence). Sequenced reads had an N50 of 15 Kb and a

maximum length of 78 Kb. For scaffolding, a 10X sequencing library was constructed according

to the 10X Genomics protocol (Pleasanton CA USA) by Amplicon Express. This library was then

sequenced on the Illumina HiSeq4000 system producing 285 million 2 x 150 bp reads.

Bionano genome (BNG) optical map construction and data analysis
High-molecular weight (HMW) DNA was isolated by the company Amplicon Express (Pullman,

WA). The nicking enzyme Nb.BssS1 was chosen based on the de novo draft assembly. The

high-quality HMW DNA molecules were treated with Nb.BssS1 (New England BioLabs, Ipswich,

MA) to generate single-strand breaks with sequence-specific motifs (GCTCTTC). The nicked

DNA molecules were then stained using the IrysPrep Reagent Kit (Bionano Genomics, San

Diego, CA) and loaded onto the nanochannel array of IrysChip (Bionano Genomics) following

the manufacturer’s guidelines. Imaging and data analysis were performed on the Irys system

(Bionano Genomics). DNA molecules larger than 100 Kb were processed into BNX files using

the software AutoDetect (v2.1.4) and only molecules of at least 180 Kb were assembled into the

BNG map with the Bionano Genomics assembly pipeline [59,60], The p-value thresholds used

for pairwise assembly, extension/refinement, and final refinement stages were 2x10 -8, 1x10 -9,

and 1x10 -15, respectively. The de novo assembly was digested in silico at Nb.BssS1 restriction

sites using Knickers and aligned with the BNG map using RefAligner in Bionano Solve

(v03062017). Visualization of the alignments were performed with IrysView.

Genome assembly
We de novo assembled the ‘Fairchild’ genome using PacBio long reads (RSII) with a diploid

assembler, FALCON (v1.8.6). In total, 69 Gb of PacBio long reads were generated from 53 flow

cells (Additional File 3 : Table S1), which is roughly equivalent to 187 fold of the estimated

genome size (365 Mb). An initial assembly generated a 429 Mb primary genome sequence with

contig N50 of 2.3 Mb and 69 Mb of secondary sequences with a contig N50 of 144 Kb. The

assembly errors were corrected with Quiver (v2.0) by making a consensus sequence from
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alignments of the raw PacBio long reads mapped to the de novo assembly. A second round of

polishing was performed with Pilon (v1.20) based on the alignment of 150 bp paired-end

Illumina short reads from sequencing of 10X Linked-Reads. To build a haploid reference

genome, we used Haplomerge2 (v11242015) to remove redundancy and merge overlapping

contigs in the assembly, which resulted in a haploid genome of 360 Mb with contig N50 of 3.6

Mb. The BioNano optical map data were assembled with RefAligner in Bionano Solve

(v03062017). We aligned the BioNano optical map contigs with PacBio contigs using

HybridScaffold.pl in Bionano Solve (v03062017) to correct mis-assemblies and further scaffold

contigs. We then assembled 10x linked reads based on the barcode of each single molecule

and filled gaps in scaffolds with a graph-based method (Du et al, 2017). These high-quality

scaffolds were then anchored to chromosomes by integrating three genetic maps (reference)

and synteny between citrus genomes as implemented in ALLMAPS (v07222015). The final

scaffolded genome was 365 Mb in length and 94.8% of contigs (346/365 Mb) were anchored to

nine chromosomes. (Additional File 3: Tables S2, S3) We assessed the completeness of the

genome assembly using BUSCO (v5.5.0) against the embryophyta_odb10 dataset and the

BUSCO completeness was estimated to be 98.5 %. LTR index (LAI) was calculated with EDTA

(v1.7.0) and reported a LAI of 15, indicating a highly continuous assembly of intergenic regions.

RNA-seq for allele-specific expression
RNA-seq was performed as previously described [19]. Leaves were flash-frozen with liquid

nitrogen immediately after collection. The samples were ground using a mortar and pestle. Total

RNA was extracted and purified using TRIzol Reagent (Thermo Fisher Scientific) following the

manufacturer’s instructions. For each sample, 1.3 μg of total RNA was prepared for sequencing

using the Illumina TruSeq mRNA Stranded Library Kit (Illumina) following the manufacturer’s

instructions.

ATAC-seq
ATAC-seq was performed as described previously [61]. Approximately 200 mg of flash-frozen

leaves were immediately chopped with a razor blade in approximately 1 ml of pre-chilled lysis

buffer (15 mM Tris-HCl pH 7.5, 20 mM NaCl, 80 mM KCl, 0.5 mM spermine, 5 mM

2-mercaptoethanol and 0.2% Triton X-100). The chopped slurry was filtered twice through

Miracloth and once through a 40 μm filter. The crude nuclei were stained with

4,6-diamidino-2-phenylindole (DAPI) and loaded into a flow cytometer (Beckman Coulter, MoFlo

XDP). Nuclei were purified by flow sorting and washed as described previously [61]. The sorted
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nuclei were incubated with 2 μl Tn5 transposomes in a 40 μl tagmentation buffer (10 mM

TAPS-NaOH pH 8.0, 5 mM MgCl2) at 37 °C for 30 min without rotation. The integration products

were purified using a Qiagen MinElute PCR Purification Kit or NEB Monarch DNA Cleanup Kit

and then amplified using Phusion DNA polymerase for 10–13 cycles. PCR cycles were

determined as described previously [18]. Amplified libraries were purified using AMPure beads

to remove primers.

ChIP-seq
Chromatin immunoprecipitation (ChIP) was performed using a previously described protocol

[62]. In brief, approximately 1 g freshly harvested leaves or flash-frozen leaves was chopped

into 0.5 mm cross-sections and cross linked as described previously [62]. The samples were

immediately flash-frozen in liquid nitrogen after crosslinking. Nuclei were extracted and lysed in

300 μl of lysis buffer. Lysed-nuclei suspension was sonicated using a Diagenode Bioruptor on

the high setting, 30 cycles of 30 s on and 30 s off. To make antibody-coated beads, 25 μl

Dynabeads Protein A (Thermo Fisher Scientific, 10002D) was washed with ChIP dilution buffer

and then incubated with around 1.5 μg antibodies (anti-H3K4me3, Millipore-Sigma, 07–473;

anti-H3K36me3, Abcam, ab9050; anti-H3K27me3, Millipore-Sigma, 07–449; anti-H3K56ac,

Millipore-Sigma, 07–667) in 100 μl ChIP dilution buffer for at least 1 h at 4 °C. The sonicated

chromatin samples were centrifuged at 12,000 g for 5 min and the supernatants were diluted

tenfold in ChIP dilution buffer to reduce the SDS concentration to 0.1%. ChIP input aliquots

were collected from the supernatants. For all of the samples and replicates, 300–500 μl of

diluted chromatin was incubated with the antibody-coated beads at 4 °C for at least 4 h or

overnight, then washed, reverse-crosslinked and treated with proteinase K in accordance with

the protocol [62]. DNA was purified using a standard phenol–chloroform extraction method,

followed by ethanol precipitation. The DNA samples were end-repaired using the End-It DNA

End-Repair Kit (Epicentre) following the manufacturer’s protocol. DNA was cleaned up on

AMPure beads (Beckman Coulter) with size selection of 100 bp and larger. The samples were

eluted into 43 μl Tris-HCl and subsequently underwent a 50 μl A-tailing reaction in NEBNext

dA-tailing buffer with Klenow fragment (3′ -> 5′ exo−) at 37 °C for 30 min. A-tailed fragments

were ligated to Illumina TruSeq adapters and purified with AMPure beads. The fragments were

amplified using Phusion polymerase in a 50 μl reaction following the manufacturer’s instructions.

The following PCR program was used: 95 °C for 2 min; 98 °C for 30 s; then 15 cycles of 98 °C

for 15 s, 60 °C for 30 s and 72 °C for 4 min; and once at 72 °C for 10 min. The PCR products

were purified using AMPure beads to remove primers.
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MethylC-seq
Several leaves were immediately flash-frozen after harvesting and ground to a powder in liquid

nitrogen. DNA was extracted and purified with the DNeasy Plant Mini Kit (Qiagen) and 130 ng

were used for MethylC-seq library preparation. MethylC-seq libraries were prepared using a

previously described protocol [63]; however, we used a final PCR amplification of eight cycles.

Annotation of repetitive elements
To annotate and remove repetitive regions from the gene prediction process,, we generated a

library of repetitive elements with RepeatModeler v. 2.0.1 [64] using default parameters. This

library was used to soft-mask these elements in the genome with RepeatMasker v. 4.1.1 [65]

(Additional File 3: Table S4). We used the calcDivergenceFromAlign.pl script, available in the util

directory of RepeatMasker package, to calculate and summarize the divergence from the

consensus for each predicted repeat using the Kimura 2-Parameter distance with an adjustment

for higher mutation rates at CpG sites. The createRepeatLandscape.pl script was then used to

create a repeat landscape plot and visualize the repeat elements diversity, their relative age and

divergence, using the divergence summary data (Additional File 2: Figure S18).

Genome annotation
RNA-seq data was generated from young leaves and young flowers of ‘Fairchild’. A total of 33.4

Gb of sequence was produced on the Illumina HiSeq4000 (2 x 150 bp reads). Samples were

collected and then flash frozen in liquid nitrogen and stored at -80°C. Total RNAs were extracted

from these samples using TRIzol reagent (Thermo Fisher Scientific). RNA-Seq libraries were

prepared using NEBNext Ultra Directional RNA Library Prep Kit. Libraries were prepared using

an NEB rRNA depletion kit. Genome annotation was conducted with the Funannotate pipeline v.

1.8.10 [66]. First, the RNAsequencing (RNA-seq) data were assembled using Trinity v. 2.11.0

and aligned with PASA v. 2.4.1 to train the ab initio gene predictors [67–69]. After training the

predictors Augustus v. 3.3.3 and SNAP v. 2013_11_29 with the evidence, a collection of gene

predictors were run CodingQuarry v. 2.0, Augustus v. 3.3.3, GeneMark-ETS v. 4.62,

GlimmerHMM v. 3.0.4, and SNAP v. 2013_11_29 [70–74]. These predictions were combined

into a consensus gene model set with EVidenceModeler v. 1.1.1 [69]. Transfer rRNA genes

were predicted using tRNAscan v. 2.0.9 [75]. Next, using HMMER v. 3 [76] or diamond BLASTP

v. 2.0.8 [77,78] protein annotations and gene products were predicted for the consensus gene

models based on similarity to Pfam [79], CAZyme domains with dbCAN HMM profiles [80–83],
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MEROPS [84], eggNOG v. 5.0 [85], InterProScan v. 5.51.85.0 [86], and Swiss-Prot [87]

databases. In addition, Phobius [88] and SignalP v.5.0b [89] were used to identify

transmembrane proteins and secreted proteins. (Additional File 3: Table S5)

Variant calling and haplotype phasing
Single nucleotide polymorphisms (SNPs), small indels (< 41 bp), and structural variants were

identified on the nine primary chromosomes using the 10x Genomics Longranger pipeline (10x

Genomics, Pleasanton California). In short, 10x Genomics linked reads were aligned to the

reference genome using the aligner Lariat which is based on the Random Field Aligner

algorithm [90] https://github.com/10XGenomics/lariat. Variants were subsequently identified

using GATK Haplotypecaller and GenotypeGVCF following the current GATK best practices

[91]. In Longranger, insertions and deletions ranging from 40 bp - 30 Kb were detected using

haplotype-specific reductions in read coverage, discordant read pairs, and local re-assembly.

SNPs, indels, and SVs were then phased by aligning the linked-reads to the sequence of each

allele to define which haplotype the read supports. A total of 1,015 phase blocks were

constructed using 2.3 million phased heterozygous variants (mean length of phase block =

317,484 bp; standard deviation = 711,178.7 bp). Within each phase block, SNPs are attributed

to either haplotype 1 or haplotype 2. When comparing SNPs between phase blocks, the

assignment of haplotype 1 or 2 is random and not associated with an assignment of ancestry.

Biallelic SNPs were identified and filtered using the following criteria with bcftools [92]: QD > 2.0

&& FS < 60.0 && MQ > 40.0 && MQRankSum > -12.5 && N_ALT = 1 && N_MISSING = 0 &&

QUAL > 500 && MIN(FMT/DP) > 20 && INFO/DP < 450. This yielded 1.53 million phased

heterozygous variants that were used in downstream analyses. The majority of variants are

SNPs (1.3 million) that were used to phase sequencing reads for whole-genome re-sequencing,

RNA-seq, ATAC-seq, bisulfite-seq, and ChIP-seq (H3K4me3, H3K36me3, H3K56ac,

H3K27me3).

Assignment of ancestry to phased SNPs
Whole-genome re-sequencing reads from maternal parent clementine mandarin [4], paternal

parent `Orlando`, and hybrid `Fairchild` were trimmed for quality and sequencing adapter

removal using Trimmomatic 0.36 (SLIDINGWINDOW:4:20 MINLEN:50

ILLUMINACLIP:LEADING:3 TRAILING:3) [93]. Reads were aligned to the ‘Fairchild’ reference

genome using BWA mem 0.7.17 [94]. PCR duplicates were filtered using Picard MarkDuplicates

[95]. Variants were identified using GATK Haplotypecaller and GenotypeGVCF following the
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current GATK best practices [91]. High-quality biallelic SNPs were identified and filtered using

the following criteria with bcftools [92]: QD > 2.0 && FS < 60.0 && MQ > 55.0 && SOR < 3 &&

MQRankSum > -12.5 && ReadPosRankSum > -2.0 && QUAL > 500 && MIN(FMT/DP) > 30 &&

INFO/DP < 450. The remaining 1.3 million variants were used in combination with

whole-genome sequencing reads from both parents to perform pedigree-based phasing using

Whatshap v. 1.17 [96]. A constant recombination rate of 3.0 cM/Mb (average observed in C.

clementina [97] was used for pedigree-based phasing of SNPs. After ancestry assignment,

SNPs heterozygous in one or both parents were removed, leaving only SNPs that are

homozygous for alternate alleles in the two parents (141,290 SNPs). The ancestry assignment

of these SNPs was combined with their read-based haplotype assignment in order to impute the

ancestry of all 1.3 million SNPs between the two haplotypes. In total, 394 phase blocks

contained high quality SNPs and were designated as unclassified, non-recombinant, or

recombinant depending on the ancestry composition of SNPs within the phase block (Additional

File 1: Table S10 ; Additional File 3: Table S6). Unclassified phase blocks (n = 149) did not

contain any SNPs that could be assigned ancestry, for non-recombinant phase blocks (n= 231)

the ancestry of every SNP was consistent within each haplotype of the phase block, in

recombinant blocks (n=14) the ancestry of SNPs was variable within each haplotype of the

block. For non-recombinant blocks, the ancestry of SNPs that could not be assigned using

parental genotypes was imputed using the ancestry of SNPs within the same phase block. For

recombinant blocks, only SNPs that could be assigned ancestry using parental genotypes were

retained. One recombinant phase block with repeated haplotype switching of SNP ancestry was

removed from the analysis (2983 SNPs). Additionally, SNPs whose haplotype ancestry was

discordant with the majority of other SNPs in the phase blocks were filtered. The ancestry of

SVs was imputed following this same procedure, with the exception of SVs in recombinant

phase blocks. For SVs in recombinant phase blocks, the ancestry of the SV was imputed using

the majority ancestry of the nearest 5 SNPs upstream and downstream of the SV.

Polarization of heterozygous SNPs in ‘Fairchild’
Whole genome sequencing reads from Poncirus trifoliata accession DPI 50-7 (NCBI

PRJNA648176) [98] were trimmed for quality and sequencing adapter removal using

Trimmomatic 0.36 (SLIDINGWINDOW:4:20 MINLEN:50 ILLUMINACLIP:LEADING:3

TRAILING:3) [93]. Reads were aligned to the ‘Fairchild’ reference genome using BWA mem

0.7.17 [94]. PCR duplicates were filtered using Picard MarkDuplicates [95]. Variants were

identified using GATK Haplotypecaller and GenotypeGVCF following the current GATK best
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practices [91]. High-quality biallelic SNPs that are homozygous in DPI 50-7 were identified and

filtered using the following criteria with bcftools [92]: QD > 2.0 && FS < 60.0 && MQ > 55.0 &&

SOR < 3 && MQRankSum > -12.5 && ReadPosRankSum > -2.0 && QUAL > 500 &&

MIN(FMT/DP) > 30 && INFO/DP < 450. Next, these variants were intersected with heterozygous

SNPs in ‘Fairchild’ and biallelic SNPs were retained. This final set of SNPs represent ‘Fairchild’

SNPs for which the ancestral state is indicated by the allele present in Poncirus trifoliata

(Additional File 3: Table S7).

Processing of ChIP-seq and ATAC-seq sequencing reads
Prior to alignment, ChIP-seq reads for four histone modifications (H3K4me3, H3K36me3,

H3K56ac, H3K27me3) and ATAC-seq reads were trimmed for quality (SLIDINGWINDOW:4:15

MINLEN:50 ILLUMINACLIP:LEADING:3 TRAILING:3) and adapter sequences removed using

Trimmomatic 0.36 [93]. Sequence reads were then aligned to the ‘Fairchild’ reference genome

using BWA mem 0.7.17 [94]. PCR duplicates were filtered using Picard MarkDuplicates [95]. A

summary of sequence reads for each data set before and after quality control is provided

(Additional File 3 : Table S8). Peak identification for histone modifications (ChIP-seq) and

accessible chromatin (ATAC-seq) was performed using Genrich

(https://github.com/jsh58/Genrich) and MACS2 [99] following [19]. Significant peaks within 100

bp were merged. Sequences underlying ACRs were aligned to plastid (NC_034671) and

mitochondrial (NC_037463.1) genomes of C. reticulata using NCBI BLAST and significant hits

were removed. The number of peaks identified, along with their average read depth and

percentage of the genome occupied by these peaks is summarized here (Additional File 1 :

Table S1). Two methods were used for identifying accessible chromatin regions (ACRs). One

method (MACS2) identified a total of 31,191 ACRs spanning 10.4 Mb with a fraction of reads in

peaks (FRiP) score of 0.16, and the other (Genrich) identified 9,172 ACRs spanning 7.3 Mb

(FRiP = 0.13) (Additional File 1: Tables S1, S2). There was 70% overlap between ACRs

identified by Genrich and ACRs identified by MACS2. Additionally, 97% of Genrich ACRs

overlapped ACRs identified with MACS2. An unpublished benchmarking of the ATAC-seq peak

calling programs HMMRATAC, MACS2, and Genrich found that Genrich had the highest

precision, recall, and F1 score [100]. For this reason we decided to use the ACRs detected with

Genrich.

Processing of bisulfite sequencing reads and analysis of DNA methylation
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Bisulfite-sequencing reads were trimmed for quality (SLIDINGWINDOW:4:15 MINLEN:50

ILLUMINACLIP:LEADING:3 TRAILING:3) and adapter sequences were removed using

Trimmomatic 0.36 [93]. Reads were then aligned to the ‘Fairchild’ reference genome using

BatMeth2 [101] and PCR duplicates were removed using Picard MarkDuplicates [95].

Bisulfite-sequencing reads were phased between parental haplotypes with ancestry-assigned

SNPs using Whatshap [96]. DNA methylation of cytosines was counted for both haplotypes

separately using DNMtools [102] (Additional File 3: Tables S9, S10 and S11). The probability of

differential methylation between haplotypes was determined using a one-directional version of

Fisher’s exact test implemented in DNMtools [102,103]. Differentially methylated cytosines with

read coverage >= 10 and probability of differential methylation >=0.7 were retained for modeling

of ASE. Overall methylation was calculated for cytosines with coverage >= 10 using the full,

unphased bisulfite-sequencing data with DNMtools [102]. Methylation status is based on the

number of reads that support a C-to-T bisulfite conversion versus the total number of reads

aligning to a given cytosine.

Regional analysis of genomic features
Metaplots were generated to summarize regional patterns of chromatin levels, typically centered

on the peak of an open chromatin region, as determined by ATAC-seq. For each data set, read

coverage was scaled from 0 to 1 by dividing the read coverage at each site by the 98th quantile

of sequencing coverage per sample [19]. ACRs and genes were scaled to a 1000 bp region, as

well as their 2kb flanking regions using deepTools v.3.5.1 [104] and signal densities for each

feature were plotted across these regions in 50 bp windows.

Determination of allele-specific gene expression and chromatin accessibility
Read alignments for quality and adapter trimmed ATAC-seq and ChIP-seq were performed

using BWA-mem 0.7.17 [94] as described above. RNA-seq reads were also quality and adapter

trimmed using Trimmomatic 0.36 [93] prior to read mapping to the ‘Fairchild’ reference genome

with the slice-aware alignment tool STAR 2.7.10 [105]. After initial alignment of RNA-seq,

ATAC-seq, and ChIP-seq reads, WASP [106] was used to correct read-mapping bias (Additional

File 3: Table S8). This is done by switching the reference allele to the alternate allele (and vice

versa) in reads that align across SNPs. Sequence reads that do not align to the same genomic

location are filtered to remove reads that cannot be definitively assigned to a haplotype. For

each data set, allele-specific read counts were determined using GATK ASEReadCounter [91].

Allele counts were then intersected with genes (for RNA-seq) or peak regions (ATAC-seq and
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ChIP-seq). SNPs covered by less than 10 reads were removed. Genes and ATAC-seq peak

regions with 2 or more SNPs were considered for subsequent allele-specific analysis.

GeneiASE [107] was used to detect significant differences in the level of gene expression or

chromatin accessibility between alleles. GeneiASE first measures individual SNP effects based

on the read counts of each allele at a given SNP. The median SNP effect-size for genes with

significant ASE was 4.6, while genes without significant ASE had a median SNP effect-size of

1.9. Next, a gene/peak test statistic is calculated by pooling all of the SNP effects that coincide

with the given gene or peak using Stoufer’s method [108]. The significance of gene

test-statistics was then determined by comparison to a null distribution of gene test statistics.

This null distribution is characterized by an overdispersion parameter and mean marginal

probability of success [107]. These parameters were determined by fitting a beta binomial model

to whole-genome sequencing read counts overlapping the same gene/peak regions of interest.

This provides an additional correction for read-mapping biases. Genes or peaks with significant

allele-specific differences were identified at a false discovery rate of 0.05 (Benjamini-Hochberg)

(Additional File 1: Table S7,S8; Additional File 3: Table S12).

Integration of allele-specific ACRs (AS-ACRs) and ASE using phased blocks
Genes with significant ASE in both RNA-seq replicates and ACRs with significant

allele-specificity were paired using phase block information. If an ASE gene and its nearest

AS-ACR were located in the same phase block, the sum of read counts for the ASE gene

(RNA-seq), and the AS-ACR (ATAC) was calculated for each haplotype. In this case, the read

count of the maternal haplotype for the ATAC peak region corresponds to the level of expression

of the maternal allele of the linked gene. The log2 fold change between the read counts of

maternal and paternal haplotypes were determined both for gene expression and chromatin

accessibility. A pseudo count of 1 was added to each value prior to log transformation.

Permutation tests for genomic feature enrichment
A permutation test was performed to examine the enrichment of allele-specific ACRs for

transposable element sequences. The number of AS-ACR-TE intersections was compared to a

set of similarly sized regions selected from the complete set of ACRs and the frequency that

each sample intersected annotated TEs. This process was repeated (n=1000). This analysis

was performed for all TEs, and then for TEs separated into class I and class II transposons. A

similar approach was used to examine the enrichment of structural variants (50 bp - 30 Kb in

size) within promoters of ASE genes. In this case, the number of SV-promoter intersections was
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compared to a sample of similarly sized regions from promoters of genes analyzed for ASE. The

R package regioneR was used to select regions and perform the permutations [109].

Motif enrichment analysis
Transcription factor binding site enrichment within allele-specific ACRs (AS-ACRs) and SVs

within ASE gene promoters were determined using MEME-ChIP with the parameters:

(-meme-minw 5 -meme-maxw 30 -meme-nmotifs 10 -db ArabidopsisDAPv1.meme) [29].

Transcription factor binding motifs obtained from DNA affinity purification sequencing (DAP-seq)

of Arabidopsis thaliana transcription factors [110] were used as the input database for motif

identification. For AS-ACRs, the sequences for the maternal and paternal alleles were tested for

motif-enrichment separately. For SVs in ASE gene promoters the sequence underlying the

longer, consensus, ‘inserted’ allele was tested for motif-enrichment.

Statistical inference of contribution of genomic features to allele-specific expression
An elastic-net regression model was developed to estimate the contribution of multiple factors to

gene expression, including allele-specific expression. Overall gene expression was quantified

using HTSeq-count with bias-corrected RNA-seq reads [111]. Genes that were outliers overall

whole-genome sequencing read counts (1.5x interquartile range) were filtered prior to model

fitting. For every gene, or those genes with significant ASE in both RNA-seq replicates, we

gathered information for 56 factors (Additional File 1 : Table S11). These factors include the

overall read counts (or coverage) of each predictor as well as the log2 fold change of phased

allele counts ( Maternal / Paternal ). For whole-genome sequencing reads, ChIP-seq reads,

ATAC-seq reads and bisulfite-seq reads, the counts were classified as belonging to one of four

regions surrounding each gene: genic (including exon and introns), promoter (< 1Kb from the

transcription start site), upstream putative regulatory region ( 5 Kb upstream of promoter), and

downstream putative regulatory region (5 Kb downstream of gene). Upstream and downstream

regions were only considered if an ACR was detected in the window.

For the analysis of allelic differences in read coverage, the four regions of interest were

set to NA if they did not contain at least one phased SNP. Additionally, regions were set to NA if

their total SNP-based read counts were lower than the 10th percentile of SNP-based read

counts for a given factor (ATAC-seq, ChIP-seq, BS-seq, etc). This filter was applied for each

factor x region combination. Genes with a strong bias in whole-genome sequencing read counts

(1.5x interquartile range) were filtered prior to model fitting (n=146). After filtering, the extent of

missing data per factor ranged from 0 - 70% with a median of 11.3% missing data (Additional
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File 3: Tables S13 and S14). Elastic-net regression models are well suited to handle missing

data and model fitting was performed with the glmnet package in R [112]. Model parameters

were determined using 5-fold cross validation (Additional File 1 : Table S12). For the model of

overall expression, there was evidence of overfitting as 54 / 56 predictors were determined to be

significant. To address this, we selected a shrinkage parameter (lambda) that reduces model

complexity while maintaining a prediction error (mean-squared error) within one standard error

of the model determined by 5 fold-cross validation (Additional File 1: Tables S15, S16 ;

Additional File 2: Figure S6)

Effects of SNPs and indels
SnpEff v.5.0e was used to annotate the impact of each SNP. The genome annotation (GFF) and

SNP VCF files were used to build the SnpEff database. To evaluate the impact of potentially

deleterious variants on ASE and compare their effects with the other classes of variants, SNPs

classified as having a “HIGH” impact were merged with SNPs in ASE genes. (Additional File 3:

Table S15)
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Fig 1: Framework for developing haplotype-resolved profiles of gene expression, chromatin

accessibility, and epigenetic modifications. a) Phased haplotype blocks along each chromosome

of the ‘Fairchild’ reference genome constructed using 10x Genomics Linked-Reads (n = 1,015,

N50 = 1.57 Mb). Alternating colors indicate the distinct phase blocks. b) Diagram illustrating the

strategy for SNP-based phasing of RNA-seq, ATAC-seq, ChIP-seq, and Bisulfite-seq reads into

maternal and paternal haplotypes. c) Example of repressive (paternal) and active (maternal)

chromatin landscapes in proximity to a gene with allele-specific expression (ASE).

Fig 2: The relationship between gene-expression and chromatin features at genes with

allele-specific expression. a) Coefficients of the top 12 factors for the model of overall gene

expression (log2(TPM)) for 1,909 ASE genes ordered by magnitude (R = 0.40). Factors are

partitioned by genomic region and colored to indicate whether they reside in genes, promoters

(1 Kb of TSS), or upstream/downstream putative regulatory regions of the focal gene (ACRs

present 5 Kb upstream of promoter / 5 Kb downstream of gene). b) Coefficients of the top 12

factors for the model of allelic gene expression (log2FC(MaternalRNA / PaternalRNA) ordered by

magnitude (R = 0.3069). Positive “allelic” factors indicate a positive association between

maternal gene expression and maternal levels of a given data-type. “Overall” indicates that the

predictor is the total level of a given data-type (ATAC, ChIP, Bisulfite). “Allelic” indicates that the

predictor is the ratio of maternal:paternal levels of a given data-type (log2FC(Maternal /

Paternal)).

Fig 3: Structural variation as a potential source of cis-regulatory variation between haplotypes.

a) 1,654 phased deletion:ASE gene pairs for which the gene and its nearest deletion are in the

same phase block were identified. Comparison of allele-specific expression of genes with a

deletion in their promoter (1 Kb upstream of TSS) (n = 104) versus those whose nearest

deletion was not in its promoter (n = 1550). Gene expression is expressed as a ratio of read

counts for the deletion-containing allele (HAPDeletion) relative to the alternate allele (HAPAlternate).

For genes where there is no structural variant in the promoter, HAPDeletion represents the allele in

which the nearest deletion is found. Genes with a deletion in their promoter (n=104) had

significantly higher expression of the deletion-containing allele (Hedges G effect-size 0.378)

compared to ASE genes without promoter deletions (*** = 10,000 permutations, p < 0.001) b)
Genome browser view of RNA-seq read coverage phased between maternal (purple) and

paternal (blue) haplotypes for a predicted aldehyde dehydrogenase gene (FAIR_021608) .

Phased linked-reads between haplotypes reveal a 452 bp deletion (red bar) in the maternal
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allele that is associated with increased gene expression. c) A motif enrichment analysis of

sequence absent in the ‘deleted’ allele of the 104 promoter:gene pairs from ASE genes

identified four significantly enriched motifs, with the most abundant (n=28) matching the binding

site of zinc-finger protein 1 (AZF1). ASE genes are ordered by their allelic expression ratio, and

bars are colored based on whether the promoter deletion contains the AZF1 motif. There was

no significant effect of AZF1 motif presence on allele-specific expression, but the sample size

was small (n=28; 10,000 permutations, p = 0.2717).

Fig 4: Allelic chromatin accessibility is linked to allele-specific expression of proximal genes. a)
Allele-specific ACRs (AS-ACRs) were paired with their nearest ASE genes, restricting the

analysis to ACR-gene pairs separated by 5 Kb or less (n=51) while residing within the same

phase block. Allele-accessibility of AS-ACRs represented as the ratio of maternal : paternal

ATAC-seq reads is positively correlated with allele-specific expression of neighboring genes

within 5 Kb (n = 51, = 0.69 , p = 9.9e-08). b) Genome browser view of two AS-ACRs (blackρ

bars) located in the gene body and promoter of an ASE gene encoding a 7-deoxyloganetic acid

glucosyltransferase (FAIR_019693). Monoallelic expression of the maternal allele (blue) is

associated with increased chromatin accessibility of both AS-ACRs in the maternal haplotype.

c) Motif enrichment analysis of the sequence underlying the paternal alleles of AS-ACRs

identified the binding motif of ERF48 (see inset). Significant similarity of paternal sequences of

AS-ACRs was observed for 44 / 137 AS-ACRs. The ERF48 motif significance score is

correlated with allelic H3K27me3, where higher similarity of the paternal sequence to the

canonical motif is associated with greater levels of H3K27me3 in the paternal haplotype.

Additional file 2 : Supplementary figure legends

Figure S1. Circos plot depicting the nine chromosomes of the ‘Fairchild’ genome assembly. a)
Chromosomes. b) Genome-wide distribution of transposable elements. c) Genome-wide

distribution of genes.

Figure S2. Chromatin landscape of genic accessible chromatin regions (ACRs). Metaplots were

generated to summarize regional patterns of chromatin state, typically centered on the summit

of an open chromatin region, which is defined as the 50 bp window with the highest tn5

integration frequency. For each data set, read coverage was scaled from 0 to 1 by dividing the

read coverage at each site by the 98th quantile of sequencing coverage per sample [19]).
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Figure S3. Chromatin landscape of proximal (within 2 Kb of nearest gene) accessible chromatin

regions (ACRs). Metaplots were generated to summarize regional patterns of chromatin state,

typically centered on the summit of an open chromatin region, which is defined as the 50 bp

window with the highest tn5 integration frequency. For each data set, read coverage was scaled

from 0 to 1 by dividing the read coverage at each site by the 98th quantile of sequencing

coverage per sample. ACRs were clustered into five groups based on their patterns of histone

modification.

Figure S4. Chromatin landscape of proximal (more than 2 Kb of nearest gene) accessible

chromatin regions (ACRs). Metaplots were generated to summarize regional patterns of

chromatin state, typically centered on the summit of an open chromatin region, which is defined

as the 50 bp window with the highest tn5 integration frequency. For each data set, read

coverage was scaled from 0 to 1 by dividing the read coverage at each site by the 98th quantile

of sequencing coverage per sample. ACRs were clustered into five groups based on their

patterns of histone modification.

Figure S5. Modeling of overall gene expression of all genes in the ‘Fairchild’ genome.

Coefficients for significant predictors of overall expression (log2(TPM)) of all genes (n = 30,724)

ordered by magnitude (R = 65.15). Factors are partitioned by genomic region and colored to

indicate whether they reside in genes, promoters (1kb of TSS), or upstream/downstream

putative regulatory regions of the focal gene ( ACRs present 5 Kb upstream of promoter / 5 Kb

downstream of gene). A summary of all models used is available in additional file 1: Table S12.

Figure S6. Determination of shrinkage parameter (𝝀) to minimize model complexity while

maintaining predictive accuracy for overall expression (log2(TPM)) of all genes. The relationship

between the shrinkage parameter (𝝀) and prediction accuracy (mean-squared error) during

5-fold cross validation with a constant tuning parameter (ɑ = 0.70853). The dotted vertical lines

represent the range of 𝝀 values that maintain a prediction accuracy within one standard-error of

the model chosen through the initial cross-validation. The red vertical line indicates the 𝝀 value

chosen to minimize model complexity while maintaining performance. A summary of all models

used is available in additional file 1: Table S12.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2024. ; https://doi.org/10.1101/2024.01.20.575729doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.20.575729
http://creativecommons.org/licenses/by-nd/4.0/


Figure S7. Modeling of overall gene expression of all genes in the ‘Fairchild’ genome after

increasing shrinkage parameter (𝝀). Coefficients for significant predictors of overall expression

(log2(TPM)) of all genes (n = 30,724) ordered by magnitude (R = 64.71). Factors are partitioned

by genomic region and colored to indicate whether they reside in genes, promoters (1kb of

TSS), or upstream/downstream putative regulatory regions of the focal gene ( ACRs present 5

Kb upstream of promoter / 5 Kb downstream of gene). A summary of all models used is

available in additional file 1: Table S12.

Figure S8. Distribution of size of deletions detected using 10x Genomics linked-reads (n =

2,463).

Figure S9. Promoters of ASE genes are enriched for deletions. The number of unique overlaps

between promoters of ASE genes and deletions (green vertical line) was compared to 1,000

permutations of promoters from all genes in the Fairchild genome (p < 0.001). The black vertical

line indicates the mean of the 1,000 permutations and the red vertical line indicates a

significance threshold (p = 0.05).

Figure S10. Transposable element content of structural variation in gene promoters. a) The

proportion of either: all promoters, all structural variants (deletions), all annotated transposable

elements, or structural variants in promoters of ASE genes that belong to specific DNA

transposon families or retrotransposons (b).

Figure S11. AZF1 motif occurrence in structural variants within promoters of ASE genes. a) A

motif enrichment analysis of sequence removed in the ‘deleted’ allele of 104 ASE genes with

deletions in their promoter identified four significantly enriched motifs, with the most abundant

(n=28) matching the binding site of zinc-finger protein 1 (AZF1), a zinc-finger protein that acts as

a transcriptional repressor [25]. Comparison of allele-specific expression of the deletion

containing allele ((HapDeletion )RNA) of genes with the motif in the ‘deleted’ allele (n=28) compared

to those without the motif (n = 78) indicates that there is not a significant effect of motif presence

on allele expression (10,000 permutations, p = 0.27). b) Distribution of the difference in mean

expression of the deletion containing allele (( HapDeletion )RNA) for 10,000 permuted groups of

genes selected from the 104 ASE genes with promoter deletions. The red dotted-line represents

the observed difference in means between genes with the AZF1 motif in the deleted allele

versus those without the motif.
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Figure S12. The chromatin landscape of allele-specific ACRs is similar to all ACRs.

Meta plots were generated to summarize regional patterns of chromatin accessibility and

histone modification surrounding ACRs. ACRs were partitioned into three groups, all ACRs,

GENEiASE ACRs ( those with sufficient coverage and polymorphism for detection of ASE), and

allele-specific ACRs (AS-ACRs). ACRs were scaled to a 1000 bp region, as well as their 2kb

flanking regions using deepTools v.3.5.1 [104] and signal densities for each feature were plotted

across these regions in 50 bp windows. For each data set, read coverage was scaled from 0 to

1 by dividing the read coverage at each site by the 98th quantile of sequencing coverage per

sample [19].

Figure S13. The relationship between allele-accessibility of AS-ACRs and allele-expression of

ASE genes. AS-ACRs were paired with the nearest ASE gene if they were present in the same

phase-block (n=122, median distance = 7447.5 bp). Allele-accessibility of AS-ACRs represented

as the ratio of maternal : paternal ATAC-seq reads is positively correlated with allele-specific

expression of neighboring genes ( R = 0.46 , p = 1.9e-07). Points are colored by the distance

between the AS-ACRs and its nearest ASE gene.

Figure S14. AS-ACRs are enriched for DNA transposons. a) The number of unique overlaps

between AS-ACRs and DNA transposons (green vertical line) was compared to 1,000

permutations from all ACRs in the Fairchild genome (p = 0.007). The black vertical line indicates

the mean of the 1,000 permutations and the red vertical line indicates a significance threshold (p

= 0.05). b) The proportion of AS-ACRs overlapping transposons belonging to specific families.

Figure S15. AS-ACRs are not enriched for retrotransposons. a) The number of unique overlaps

between AS-ACRs and retrotransposons (green vertical line) was compared to 1,000

permutations from all ACRs in the Fairchild genome (p = 0.5345). The black vertical line

indicates the mean of the 1,000 permutations and the red vertical line indicates a significance

threshold ( p = 0.05).

Figure S16. The relationship between allele-accessibility of AS-ACRs and allele-expression of

ASE genes decays over longer distances. a) ASE genes were paired with their nearest AS-ACR

and only ACR-gene pairs within the same phase block were retained. ACR-gene pairs were

then split into 25 quantiles based on the distance between gene and ACR. For each quantile,
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the spearman correlation coefficient (rho) of allele-accessibility and allele-expression of

gene-ACR pairs (n=30) was calculated. As a control, ASE genes were paired with their nearest

ACR, regardless of whether the ACR has significant allele-specificity. The spearman correlation

coefficient was calculated for control ACR-gene pairs (n=30), and we reported the average of

1000 permutations of ACR-gene pairs. The vertical lines indicate the 95% confidence interval

for the spearman correlation coefficient (rho).

Figure S17.
Interspersed repeat landscape. The interspersed repeat landscape, revealing the distribution

and divergence of repeat elements across the genome. The percentages of the genome

composed of various repeat elements (Y-axis) are categorized according to their Kimura

substitution level (X-axis; CpG adjusted values ranging from 0 to 50), each bar in the plot

represents a 1% sequence divergence bin, adjusted for CpG Kimura divergence. The landscape

is represented by a stacked bar plot, where each color corresponds to a specific class of

repeats. The plot illustrates the copy-divergence analysis of these elements, with older copies

indicated by higher Kimura values towards the right, and more recent copies towards the left,

indicating the evolutionary dynamics of the repetitive elements within the genome.
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