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Abstract

Background: Uveal melanoma (UM) is a highly malignant intraocular tumor with a poor prognosis
and response to therapy, including immune checkpoint inhibitors (ICIs), after the onset of liver
metastasis. The metastatic microenvironment contains high levels of tumor-associated macrophages
(TAMs) that correlate positively with a worse patient prognosis. We hypothesized that one could

increase the efficacy of ICIs in UM metastases by immunomodulating UM-associated macrophages.

Methods: To identify potential targets for the immunomodulation, we created a network-based
representation of the biology of TAMs and employed (bulk and single-cell) differential gene
expression analysis to obtain a regulatory core of UM macrophages-associated genes. We utilized
selected targets for pharmacophore-based virtual screening against a library of FDA-approved
chemical compounds, followed by refined flexible docking analysis. Finally, we ranked the

interactions and selected one novel drug-target combination for in vitro validation.

Results: Based on the generated TAM-specific interaction network (3863 nodes, 9073 edges), we
derived a UM macrophages-associated regulatory core (74 nodes, 286 edges). From the regulatory
core genes, we selected eight potential targets for pharmacophore-based virtual screening (YBXI1,
GSTPI1, NLRP3, ISG15, MYC, PTGS2, NFKB1, CASP1). Of 266 drug-target interactions screened,
we identified the interaction between the antibiotic Clindamycin and Caspase-1 as a priority for
experimental validation. Our in vitro validation experiments showed that Clindamycin specifically
interferes with activated Caspase-1 and inhibits the secretion of IL-1B, IL-18, and lactate
dehydrogenase (LDH) in macrophages after stimulation. Our results suggest that repurposed
Clindamycin could reduce pyroptosis in TAMs, a pro-inflammatory form of programmed immune
cell death favouring tumor progression.

Conclusion: We were able to predict a novel Clindamycin-Caspase-1 interaction that effectively
blocks Caspase-1-mediated inflammasome activity and pyroptosis in vitro in macrophages. This
interaction is a promising clinical immunomodulator of the tumor microenvironment for improving
ICI responsivenss. This work demonstrates the power of combining network-based transcriptomic

analysis with pharmacophore-guided screening for de novo drug-target repurposing.
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Introduction

The potential of immunomodulation of tumor-associated macrophages in uveal melanoma
Macrophages are among the most prevalent tumor-infiltrating immune cells. They have been
observed to alter the effects of immune-checkpoint inhibition (ICI) therapy [1,2]. Uveal melanoma
(UM), the most common ocular malignancy in adults, has a poor prognosis due to its liver metastases
being extremely refractory to any therapy, including combined ICI therapies [3]. Since tumor-
associated macrophages (TAMs) alter ICI responsiveness in other tumor entities, they may exert a
similar effect in the metastatic UM. Moreover, TAMs in UM promote disease progression, and high
levels of TAMs positively correlate with poorer prognosis and shorter survival of patients [4,5].
Thus, we hypothesize that immunomodulation of TAMs in UM can be employed to remodel the
tumor microenvironment and help increase ICI responsiveness in UM. Recent findings support this
hypothesis by showing that IL-1p, a central effector molecule following macrophage activation,
drives pancreatic ductal adenocarcinoma growth, and its inhibition lowers inflammatory levels [6].
To explore this hypothesis, we developed a computational model of TAMs that can systematically
identify important TAM regulatory factors exerting tumor-critical functions. This approach can
potentially find therapeutic targets for the immunomodulation of TAMs.

Computational Drug Repurposing

We propose drug repurposing, i.e., the use of existing drugs for a clinical purpose different from
what they were initially approved for, to therapeutically influence the identified targets. With drug
repurposing, one can utilize prior information about the biodistribution and toxicity of existing drugs
to speed up their re-utilization and reduce the time from discovery to clinical approval [7,8]. Drug
repurposing is also aligned with the procedure followed by molecular tumor boards with patients not
responding to standard-of-care therapies. Traditionally, drug repurposing is often investigated
utilizing systematic in vitro screening of drugs [9]. Many of the successfully repurposed drugs have
been used on their original molecular target but for a different clinical condition [8]. However, one
can repurpose drugs to new molecular targets utilizing computational biology. Goody and co-
workers, for example, combined docking simulation-based screening of an FDA-approved molecule
library and in vitro experiments to repurpose Argatroban to interfere with the interaction between
metastasis-associated protein 1 (MTA1) and the cancer transcription factor E2F1, a molecular target
unknown for this drug [10].

The patient -omics data analysis can speed up drug repurposing [11]. Cancer proteins are not isolated
but belong to large gene and protein networks. Thus, one can combine -omics data and network

biology algorithms to select protein targets for drug repurposing [12,13]. Here, we present an
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integrative computational workflow that combines transcriptomic data and network-driven selection
of proteins as molecular targets with pharmacophore modelling of an FDA-approved drug library to
repurpose drugs for them. We deployed the workflow using the targeting of TAMs in UM as a case
study, although the methodology and key results are not limited to this tumor entity.

Further, we utilized in vitro experiments to validate the predictions. This enabled us to discover a
novel interaction between the antibiotic Clindamycin and activated Caspase-1, which harbors the
potential to inhibit the secretion of pro-inflammatory cytokines like IL-1p to the macrophage-
surrounding environment, thereby preventing pyroptosis, a pro-inflammatory form of programmed

immune cell death. [14].
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Materials and Methods

Workflow. To repurpose drugs to target tumor-associated macrophages (TAMs), we implemented

the following workflow (Figure 1):

1.

TAM network construction: We collected bulk RNA sequencing data and signaling path-
way data from public repositories and the literature. The latter was used to construct a regula-
tory network of biological interactions, while the former was used to achieve TAM-speci-

ficity via projecting the gene expression data onto the respective network nodes.

Core network detection: We extracted regulatory motifs from the network and ranked them
based on their potential importance for the TAMs. Scoring parameters were network features
(node degree, betweenness centrality) and differential expression data derived from publicly
available single-cell RNA-Seq (scRNA-Seq) of UM-associated macrophages and healthy

control macrophages.

Docking simulations: After selection of potential targets from the core network, we gener-
ated pharmacophore models of the respective proteins and performed virtual screening of
FDA-approved drugs. For a selection of high-affinity candidates, we applied refined flexible

docking with their potentially binding chemical compounds.

4. Validation experiments: We performed in vitro validation experiments using macrophages

to validate one selected completely novel drug-target interaction.

In the following, one can find a detailed explanation of the individual steps in the workflow.

Data Collection. We obtained the different sequencing datasets from the GEO database. The data

used for the network specification consisted of 12 bulk RNA sequencing samples (GSE117970) of

macrophages associated to breast or endometrial cancer [15]. The data used for the differential ex-

pression analysis consisted of single-cell RNA sequencing results of 8 primary and 3 metastatic

uveal melanoma samples (GSE139829, [16] and a collection of samples from healthy joint

macrophages (GSE134691, [17].

Differential Expression. Following the analysis workflow of the original publication, we combined

8 primary and 3 metastatic tumor samples in R (4.05) and aggregated them into a Seurat object with

the “min.features” option set to 120 (Seurat V3) [18,19]. To extract only the TAMs from the Seurat
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object, we used the “Subset” function with the macrophage identifiers CD68, CD163, and CD14,
each showing an expression greater than 1. These high criteria were used to reduce the false positive
cells in the data, thereby assuring that the cells selected were true macrophages and avoiding
contamination from other cell types. We then combined the TAMs subset with the healthy joint
macrophages in the same Seurat object using the “merge” function. We set the identities of the
TAMs and the healthy joint macrophages to “ident.1” and “ident.2”, respectively. We considered
cells with more than 25% of all features being mitochondrial genes contamination and discarded
them. After scaling, normalization, and principal component analysis using standard procedures, we
performed batch correction using harmony [20]. The impact of the batch correction is illustrated in
Figure S1. For the sets of cells identified in the Seurat object, we performed the differential
expression analysis utilizing the “FindMarkers” function. We included only genes that were at least
expressed by some cells of both conditions with “pct.1 > 0” and “pct.2 > 0” (Pct.1: percentage of
cells in group 1, TAMs, expressing a specific gene). For these genes, we further selected the genes
that have an adjusted p-value < 0.05 (Bonferroni correction). We exported the significant genes and
their average log, fold-change (log,FC) values for their use in the core network extraction. The plots

were generated using Seurat’s “DimPlot”, “FeaturePlot”, and “DoHeatmap” functions.

Network construction. The TAM network is based on the previously published macrophage
network by Wentker er. al [21]. As this network only displays the M1-like polarization type of
macrophages and TAMs are known to play a bilateral role in cancer, we extended the network with
M2-like macrophage behavior [22-24]. To this end, we manually queried the NCBI’s PubMed
archive for terms concerning the M2-like macrophage phenotype, including “M2 macrophage
polarization”, “alternative activation of macrophages”, and “anti-inflammatory macrophages”. We
also browsed the literature for pathways, proteins, genes, with a focus on cytokine production or
transcription factor regulation. This information was added to the existing macrophage map using
CellDesigner (v4.4.2) [25,26], and each new interaction was annotated utilizing CellDesigner’s
MIRIAM [27]. We separately annotated all factors involved in the interactions: genes were annotated
with Ensembl IDs [28], proteins with UniProt IDs [29], microRNAs with miRbase IDs [30], and
simple molecules and ions with ChEBI IDs [31]. We used IDs from either mouse or human
depending on the organism described in the corresponding literature. The two organism-

specifications were later collapsed into human-only by using the biomaRt package (version 2.56.0).

Next, we extended the network automatically with information taken from miRTARBase (version

6.1) [32], miRecords (version 4.5) [33], HTRIdb (version 1) [34], and TRANSFAC (version 2015.1)

[35] using an inhouse tool named miRNExpander (https:/github.com/marteber/miRNexpander). To
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this end, we transformed the network into a Graph Modelling Language (GML) and continued
working with the expanded network using Cytoscape (v3.8.0) [36].

We specified the expanded macrophage network to a TAM network by pruning it with RNA
sequencing data from 12 samples, derived from breast and endometrial cancer associated
macrophages (GSE117970). To this end, we combined the RNA-Seq data in R (4.0.5) and
transformed the counts to transcripts per million (TPM) using Ensembl transcriptome as transcript-
length reference (version GRCh37.87). We calculated the average TPM value of a gene and added it
to the expanded network. The restrictions for the preservation of a node were set to an average TPM
of at least 10 and a node degree of at least one. We saved the pruned network as a Cytoscape file and
exported a list of its nodes for its perusal. We added to the network the significant log2FC values
derived from the single-cell uveal melanoma TAMs data. The obtained network can be browsed and

downloaded from www.vcells.net/TAM.

Gene set enrichment analysis. We conducted gene set enrichment analysis (GSEA) using EnrichR
[37] with the Mammalian Phenotype Ontology database [38] and the genes from the differential
expression analysis belonging to the TAM network. The resulting tabular data was visualized in R

using ggplot2 and ComplexHeatmap [39].

Topological Features and Motif detection. We calculated the networks topology features using the
built-in Cytoscape “Analyzer” [40]. Two network topological features were especially interesting:
the node degree or number of node interactions, and the betweenness centrality, which indicates how
many shortest pathways include the node considered. We added these metrics to the network
annotation. Further, we queried the TAM network for regulatory motifs using the Cytoscape app
“NetMatchStar” [41]. We decided to include 2-edges-2-nodes feedback loops, 3-edges-3-nodes
feedback loops, 3-edges-3-nodes feedforward loops, 4-edges-3-nodes feedback loops, 4-edges-3-
nodes feedforward loops, 4-edges-4-nodes feedback loops, and 4-edges-4-nodes feedforward loops.

The same strategy was used to identify network motifs in our previous publication [42].

Motif ranking. To detect the most important nodes and their interactions, we calculated a weighted

ranking score of the identified motifs with the following equation:
Score,.=w,* FC.+w, BC+w, "D,
The score is based on the method used in Khan ef al. [43]. For each motif i, the score is calculated

with different weight settings for w; w, and w;that define the importance of the three ranking factors.

These factors are: a) F'C;is the average log,FC expression in the sScRNA-Seq from UM TAMs across
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the nodes forming the motif i; b) BC;is the average betweenness centrality of the motif i’s nodes; and
c¢) D;is their average node degree. The weighting factors sum up to one and w; was fixed to 0.5 to
prioritize motif expression when scoring motifs. We set the values of w; from 0.05 up to 0.45 in 0.05
iterative steps and the values of w;result from the calculation w; = 0.5 — w,. We calculated the motif
scores of each motif i for each combination of weighting factors. Next, we pareto-optimized the
different scores of the same motifs with the “psel” method using the R package rPref (version 1.3)

[42,43].

Core Extraction. We considered the components of the top 100 highest scoring motifs to be the core
nodes [42,43]. Next, we extracted the core nodes and their interactions from the TAM network to

create a core network, which can be browsed and downloaded from www.vcells.net/ TAM

Target Selection. We used a Min-Max-normalization metric to give us an idea about the relevance

of each node in the core network:

D,—min (D) . BC,—min (BC) .\ FC,—min (FC)
max(D)—min (D) max(BC)—min (BC) max(FC)—min (FC)

Score,=

The score is based on the degree (D), betweenness centrality (BC), and differential expression (FC)
of each node. We derived the topological features, namely degree and betweenness centrality from
the core network, whereas we preserved the differential expression values from the TAM network.
We used the ranking table to select 8 targets for pharmacophore modeling while already accounting

for experimental suitability.

Pharmacophore modeling and in-silico screening of drug library: We retrieved the 3D structures

of the selected protein targets from the RCSB protein database (www.rcsb.org/pdb; PDB ID: 3QF2,
5X79, 11BC, 3GUT, 6LMR, 3SDL, 5F1A; MYC via homology model). To each of them, we applied
standard protein-preparation protocols of the Biovia Discovery Studio 2022 (DS 2022) to prepare
them for pharmacophore generation. In this method, the features present in the active site of a protein
act as a potential chemical fingerprint for drug screening. We used the ‘Edit and Cluster Features
Tool’ of DS 2022 to generate the pharmacophore features from each active site of the proteins,
including features like "Hydrogen Bond Donors and Acceptors" and "Hydrophobic". We considered
the excluded volume constraints to the best-selected pharmacophore model to highlight potentially
forbidden sites for the drug molecules during the screening process. For the pharmacophore model
screening, we utilized FDA-approved drugs in the Zinc15 database [44]. All the screened drugs were
arranged in decreasing order of their FIT score, which represents how accurately a drug fits into the

binding site. For each of the target proteins, we considered drugs that have a FIT value of more than
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1. Afterwards, we searched for commonly screened drugs that could serve as potential targets for

multiple proteins.

Molecular docking. To further refine the prediction of the most promising drugs interacting with
CASP1, YBXI1, ISG15, and PTGS2, we performed a flexible docking on the binding site of the
proteins. To this end, we extracted the binding site of the proteins from the experimental literature
[45-48] and performed the flexible docking using the CDOCKER program of DS 2022. We
generated 10 conformations for each of the drug—protein target combinations, which were ranked

based on CDOCKER-estimated energy.

Preparation of macrophages. We isolated human peripheral blood mononuclear cells (PBMCs)
from freshly drawn peripheral blood of healthy donors (University Hospital of Erlangen, Department
of Transfusion Medicine and Haemostaseology, GER) by density gradient centrifugation using hu-
man Pancoll (1.077 g/ml) (PAN™ Biotech, Aidenbach, GER) and a subsequent buffy coat purifica-
tion. To generate macrophages, we isolated monocytes by adherence to polystyrene in CELLSTAR®
cell culture flasks (Greiner Bio-One, Kremsmiinster, AUT) and cultured in the presence of Leuco-
max® GM-CSF (500 U/ul) (Novartis Pharma, Niirnberg, GER). After 6-7 d of culture, macrophages
were detached with EDTA (1 mM) (Sigma-Aldrich®, Miinchen, GER).

ELISA. We examined cell culture supernatants, serum levels for human IL-1pB and IL-18 with

ELISA kits from R&D Systems® (Minneapolis, USA) according to the manufacturer’s instructions.

LDH release assay. We plated macrophages in 96-well culture at a concentration of 5 x 10*
cells/well and pretreated them with or without lipopolysaccharides (LPS, 100ng/ml) for 24 hours.
Subsequently, we treated macrophages with Nigericin (10uM) in the presence or absence of
Clindamycin (10pg/ml) overnight. LDH released in the supernatant was detected using a cytotoxicity
detection kit (Roche) according to the manufacturer’s instructions. We used data on detected LDH to
calculate the pyroptotic rate of treated macrophages based on the following equation: [(experimental
release — spontaneous release)/(maximum release — spontaneous release)] x 100, where spontaneous
release is from the cytoplasm of untreated macrophages, and maximum release is that obtained by

lysis of macrophages with a solution of 0.1% Triton X-100.

FLICA® 660 Caspase-1 assay. We detected Caspase-1 activity using the FLICA® 660 Caspase-1
assay kit from ImmunoChemistry Technologies (Bloomington, USA) according to the
manufacturer’s instructions. We seeded macrophages at 1x 10%ml in polystyrene Falcon® round

bottom tubes (Corning® LifeSciences, Corning, USA) for flow cytometry. Cells were LPS-primed
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(100 ng/ml, 24 h) and overnight-incubated with 10 pM Nigericin in the presence or absence of
Clindamycin (10pg/ml or 25ug/ml). We washed the cells with PBS and incubated with the FLICA®
660-YVAD-fmk reagent (1:150, 30 min) at 37 °C and 5 % CO2. As assessed by flow cytometry,

Caspase-1 activation was defined as increase in red fluorescence.

Western blot analysis. We seeded macrophages at 2x 10°ml in polystyrene Falcon® 24 well plates
(Corning® LifeSciences, Corning, USA), LPS-primed (1 pg/ml, 3 h) and overnight-incubated with
10 uM Nigericin in the presence or absence of Clindamycin (10pug/ml or 25ug/ml). We prepared cell
lysates by direct lysis in 2 % (w/v) SDS lysis buffer (5 mM EDTA, 50 mM Tris/HCI, 150 mM NacCl,
2.2 % (wt/vol) SDS) supplemented with complete™ EDTA-free (Roche Diagnostics, Mannheim,
GER) as protease inhibitor. We removed cell debris by centrifugation (21,382 xg, 15 min, 4 °C) and
the concentration of total protein in cell extracts was determined using the Qubit® protein assay kit
and the Qubit® 3.0 fluorometer (Thermo Fisher Scientific™). Cell culture supernatants were used
purely. We suspended protein samples in 4x Laemmli sample buffer (278 mM Tris/HCL, 355 mM 2-
mercaptoethanol, 0.02 % (wt/vol) bromophenol blue, 4.4 % (wt/vol) lithium dodecyl sulfate, 44.4 %
(vol/vol) glycerol, pH (HCI) 6.8) (Bio-Rad Laboratories, Miinchen, GER) and boiled for 10 min at
95 °C. We separated the protein content of cell lysates, supernatants and the Precision Plus Protein™
WesternC™ standard (Bio-Rad Laboratories, Miinchen, GER) by SDS-PAGE (10 %, 15 %, 90 ug)
and transferred onto nitrocellulose membranes (0.2 um) (GE Healthcare Life Sciences, Chalfont St
Giles, UK) using the semi-dry TransBlot® Turbo™ transfer system (Bio-Rad Laboratories,
Miinchen, GER). We blocked membranes in 5 % (wt/vol) dried milk in TBS-T (100 mM Tris/HCI,
150 mM NaCl, 0.1 % (vol/vol) Tween®-20) for 1 h at room temperature. Membranes were
overnight-incubated with primary antibodies diluted in 5 % (wt/vol) dried milk in TBS-T at 4 °C.
Subsequently, we incubated membranes with the appropriate HRP-conjugated secondary antibody
diluted in 5 % (wt/vol) dried milk in TBS-T for 1 h at room temperature. We detected proteins by
chemiluminescence using the SuperSignal® ELISA femto maximum sensitivity substrate (Thermo
Fisher Scientific™, Waltham, USA) according to the manufacturer’s instructions and the
Amersham™ Imager 600 (GE Healthcare Life Sciences, Chalfont St Giles, UK). We stripped the
membranes using the Restore™ western blot stripping buffer (Thermo Fisher Scientific™, Waltham,
USA) before being re-examined. Primary antibodies used were B-actin (4967, Cell Signaling), ASC
(AL177, AdipoGen/Biomol, 1:1000) (1:2.500) and Caspase-1 (clone: D7F10, Cell Signaling).
Secondary HRP-conjugated antibodies used were anti-mouse IgG (7076, Cell Signaling) and anti-
rabbit IgG (7074) (1:2,500) (Cell Signaling Technology®, Cambridge, UK).
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Results

The combination of scRNA-Seq, bulk RNA-Seq, and network analysis generates a core
network of potential molecular targets linked to immunomodulation and depletion of TAMs
We hypothesize that immunomodulation of TAMs in UM is a key for remodeling the tumor
microenvironment which may ultimately help to increase ICI responsiveness in UM. To find
molecular targets for immunomodulation in UM-associated macrophages we (a) constructed a
comprehensive signaling and gene network reflecting the biology of TAMs, (b) integrated in the
network nodes RNA-Seq data from TAMs and quantified their topological importance, and (c) used
single-cell data and topological features to isolate a core network including the most connected and
differentially expressed genes, and select from this core promising, druggable proteins (Figure 3A).
Precisely:

a) TAM network reconstruction. To build a network representative of TAM biology, we expanded
a previously published macrophage network by adding genes and pathways linked to the anti-
inflammatory polarization of macrophages. This manual curation resulted in a network with 1318
nodes and 1014 edges. Next, we utilized a computational pipeline to further extend the network with
molecules and interactions taken from protein-protein, transcriptional, and miRNA regulation
databases. To remove irrelevant or poorly expressed genes from the network, we only conserved
genes with an average TPM of at least 10 in RNA-Seq TAM data and a node degree of at least one in
the network. This way, we obtained a fully-connected TAM network with 3863 nodes and 9073
edges (Figure 3B).

b) Integration of scRNA-Seq data and topological features in the TAM network. To quantify the
importance of each node in the TAM network, we computed the topological features node degree
and betweenness centrality. To fit the analysis as much as possible to our case study of TAMs in
UM, we obtained scRNA-Seq datasets from primary and metastatic UM (GSE139829) and processed
them utilizing Seurat [16]. To extract the TAMs from the Seurat object, we selected the individual
cells that show an expression greater than one for the known macrophage surface markers CD68,
CD163, and CD14. For the purpose of comparison and differential expression analysis, we utilized
scRNA-Seq data sets from healthy macrophages (GSE134691). To allow the data integration, we ap-
plied scaling, normalization, batch correction, and performed differential expression analysis and p-
value correction. Dimensionality reduction plots can be found in Figure S1. Following this ap-
proach, we extracted a group of TAMs consisting of 888 cells and combined it with a second group

of healthy macrophages including 7542 cells (Figure S1C).
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The Seurat object measured 12172 features, of which 1671 were differentially expressed. We fo-
cused the analysis on the 3863 genes included in the TAM network as nodes, and identified 1367
genes that were differentially expressed with at least one cell per group expressing the respective
gene feature, with 688 genes upregulated in the TAM group. A comparison of the transcriptomic pat-
terns between the top 20 differentially expressed genes shows a clear upregulation in the TAM group
of inflammatory proteins like IL-1B, NR4A2-3, TNFAIP3, or NLRP3, which are not similarly ex-
pressed in the healthy macrophage group (Figure 2A). TGFpB1, a gene known to play a role in inflam-
mation and tissue regeneration, is expressed in both TAMs and healthy macrophages, albeit at differ-
ent intensities [49,50]. These observations are in line with the generally upregulated phenotypes de-
rived from the GSEA of the differentially expressed genes (n=1367) (Figure 3C). On one hand, we
found dozens of enriched phenotypes related to abnormal physiology of macrophages including
phagocytosis, chemotaxis, morphology, and differentiation (Figure 3C). On the other hand, we found
several enriched phenotypes associated to the tumor microenvironment, including tumor necrosis
factor secretion related with inflammation-associated carcinogenesis and tumor vascularization (Fig-
ure 3C). The distribution of all enriched phenotypes by the size of their gene sets can be found in
Figure S2.

¢) Core network extraction and target selection. We assumed that regulatory motifs like feedback
and feedforward loops play a pivotal role in the (de)regulation of gene networks and isolated a core
network composed of differentially expressed, highly connected and intertangled regulatory motifs.
To this end, we first detected the 2-4 nodes feedback and feedforward loops contained in the network
and obtained 9035 motifs (Table S1). We quantified their importance in terms of the topological
features average node degree (D;) and betweenness centrality (BC;) of the nodes belonging to the
motif. Also, we computed the average log, fold change expression across the nodes forming each
motif when comparing sScRNA-Seq from TAMs and healthy macrophages (FC;). We combined these
metrics into a computational score and used it to generate a core network containing the Pareto-
optimized, top ranked network motifs (see Material and Methods). We obtained a core network with
74 nodes and 286 edges (Figure 3D). We generated a ranking of the most important nodes regarding
differential expression between healthy and TAMs and their importance for the core network (see
Material and Methods and Table S2). We combined the ranking information with foreseen
experimental validation suitability and thereby selected eight potential drug targets among the high-
scoring candidates for further investigations, namely: YBX1, MYC, GSTP1, PTGS2, NLRP3,
NFKBI1, ISG15, and CASP1. When we inspected the scRNA-Seq data, we found that these genes are
to some extent expressed in both cell types, but with a higher intensity in the TAM group (Figure
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2B). For instance, YBX1 shows a rather universal expression across all cells, whereas GSTP1 seems

to be rather TAM-exclusively expressed.

Pharmacophore modeling and docking simulations of FDA-approved chemical compounds
suggests Clindamycin and other drugs for their repurposing in TAMs

We wanted to repurpose existing drugs with other indications and known molecular targets to
interfere with the eight selected proteins obtained via bulk and single-cell RNA-Seq and network
analysis (Figure 4A). To this end, we first retrieved and prepared the 3D structures of the selected
protein targets from public repositories and generated a pharmacophore model containing relevant
binding pockets for each one of the protein targets (Figure 4B). We screened the pharmacophore
models with 1647 FDA-approved chemical-compounds contained in the Zincl5 database [44]. We
selected the drug-target interactions with a FIT score higher than one. The virtual screening resulted
in 266 predictions across the eight selected target proteins (Table S3). We found 39 drugs that target
at least two out of eight selected proteins (Figure 4C). Among them, six drugs have affinities towards
four or more target proteins. We further filtered the virtual screening results for the largest common
drug-target sets and identified four drugs (ZINC000003830943; ZINC000003830944;
ZINC000003978028 (a.k.a. Clindamycin); and ZINC000008214681 (Streptomycin)) predicted to
bind to four target proteins (CASP1; YBX1; ISG15; and PTGS2) (Figure 4D).

To further confirm the predicted interactions between these drugs and the four proteins, we extracted
the detailed molecular structure of the protein binding sites from the experimental literature,
performed flexible docking simulations of the drugs in the binding sites, and ranked the drug-protein
interactions based on their calculated CDOCKER energy (Figure 4D). To this end, we considered the
top ten conformations for each of the drug—protein combinations. Our results suggest that
Clindamycin and Streptomycin have better binding affinity with all the analyzed protein targets than
the other two drugs considered for refined docking simulations (Figure 5). Figure 5A contains
detailed information concerning the binding simulation of Clindamycin to Caspase-1, one of the
most relevant protein targets linking our analysis to the TAMs immunomodulation and depletion
(Table S4). Since Clindamycin has not been utilized in the context of cancer therapy and experiments
to check its effect on the predicted target were considered feasible, we selected this drug for

performing in-vitro verification experiments.

In vitro experiments confirmed that the drug-repurposing candidate Clindamycin reduces

macrophage cell death via pyroptosis
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Given that a) inflammasomes, and precisely NLRP3, have been implicated in solid tumor
progression [51,52], b) NLRP3 is upstream the processing and activation of Caspase-1, and c)
Caspase-1 activation or inhibition can be easily measured, we experimentally assessed the effect of
Clindamycin on NLRP3-inflammasome activation in human macrophages (Figure 6A). To this end,
we treated LPS pre-activated macrophages with Nigericin in the presence or absence of
Clindamycin. Nigericin is a microbial toxin that triggers the NLRP3 inflammasome-dependent
induction of IL-1P and IL-18 [53]. After treatment with Nigericin, we observed an increased amount
of IL-1B (LPS: 144461 pg/ml vs. LPS + Nigericin: 37224748 pg/ml) and IL-18 (LPS: 1711 pg/ml
vs. LPS + Nigericin: 1084+212 pg/ml) in the supernatant after 24-hour treatment (Figure 6B). The
addition of Clindamycin showed a significant reduction in Nigericin-mediated secretion of IL-18
(LPS + Nigericin: 3722+748 pg/ml vs. LPS + Nigericin + Clindamycin: 2115+£961 pg/ml; p=0.006)
and IL-18 (LPS + Nigericin: 10844212 pg/ml vs. LPS + Nigericin + Clindamycin: 664+171 pg/ml;
p=0.001) (Figure 6C), suggesting that Clindamycin suppresses inflammasome activity.

To test whether Clindamycin specifically inhibits Caspase-1, we measured Caspase-1 activation in
Nigericin-treated macrophages using FLICA® reagent, a cell-permeant fluorescent-labeled inhibitor
binding specifically and covalently to active Caspase-1 [52]. Flow cytometry showed an increase in
Caspase-1-positive macrophages after treatment with Nigericin in comparison to only LPS-treated
macrophages (Figure 6D). In contrast, we found a dose-dependent reduction in Nigericin-mediated
Caspase-1 activation following pretreatment with Clindamycin (up to a 2.5-fold reduction, Figure
6D). To verify the observed inhibitory effect of Clindamycin on Caspase-1 activity, we monitored
cleavage of Caspase-1 by western blot analysis. Nigericin treatment triggered cleavage of Pro-
Caspase-1 to the active form of Caspase-1 (p20, 20 kDa), resulting in an additional band in the
Western blot (Figure 6E). In contrast, additional pretreatment with Clindamycin reduced the fraction
of active Caspase-1 in a dose-dependent manner. In the same cell lysates, we could not detect any
reduction of the adapter molecule ASC (Apoptosis-associated speck-like protein containing a
CARD). Given that the adapter protein ASC is upstream of the signaling pathway from Caspase-1
and binds directly to Caspase-1 for activation, this suggests that Clindamycin acts directly on

Caspase-1.

Since treatment with Nigericin results in pyroptosis and Caspase-1 is a key protein for its induction,
we speculated that Clindamycin may prevent the triggering of pyroptosis. To test this, we incubated
macrophages with Nigericin in the presence or absence of Clindamycin, and measured the
concentration of LDH, a marker of pyroptosis, in the supernatant by ELISA after 24 hours (Figure
6F). Nigericin treatment resulted in an increased release of LDH (LPS: 0.840.5% vs. LPS +
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457  Nigericin: 23+2%). In contrast, additional treatment with Clindamycin significantly reduced LDH
458 release (LPS + Nigericin + Clindamycin: 11+1%; p=0.0013), suggesting that Clindamycin-mediated

459 inhibition of Caspase-1 induces less pyroptosis in macrophages.
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Discussion

TAMs are prominent infiltrating immune cells in UM liver metastases, and their abundance
positively correlates with a worse prognosis for patients [4,5]. Apart from that, TAMs are known to
affect negatively ICI therapy in other cancer entities [1,2]. Since even combined ICI therapies fail to
substantially increase the survival times of UM patients with liver metastases, we hypothesize we
may be able to remodel the tumor microenvironment and sensitize metastases for ICI via drug-based
immunomodulation of UM-associated macrophages [3]. To circumvent the time-consuming and
costly de novo design and approval of drugs, we used computational drug repurposing to identify

drug-protein interactions for immunomodulation of UM-associated macrophages.

A scRNA-Seq data-driven network analysis identifies molecular targets for immunomodulation
of TAMs. In our workflow, we first created a regulatory network involving protein and gene
interactions linked to TAM-biology. We generated a network with 3863 genes and 9073 edges. To
narrow the network to genes specific for UM, we combined scRNA-Seq data from uveal melanoma
TAMs and healthy macrophages and isolated a small, highly-interconnected core network of 74
genes. This procedure can be further improved by using a more comprehensive collection of UM-
associated macrophages and other tissues of origin for our control macrophages. Since the
differential expression is only one factor for the extraction of the core network, we consider our data

to be sufficient.

We combined quantitative data and expert knowledge to select the protein targets for drug
repurposing. One criterion to prioritize targets was the assessment of experimental feasibility,
utilized to minimize the potential laboratory work necessary to find effective drug-protein
interactions. We selected eight protein targets, namely, YBX1, MYC, GSTP1, PTGS2, NLRP3,
NFKBI1, ISG15, and CASP1. YBXI1 is a DNA and RNA binding protein whose elevated expression
is linked with macrophage infiltration and poor prognosis in luminal breast cancer [54]. C-Myc
(MYC) is a cell cycle and apoptosis gene known to play a pivotal role in cancer progression in
multiple cancers. Pello and coworkers found that the inhibition of c-MYC in myeloid cells hampers
the maturation of TAMs and impairs their pro-tumoral activity [55]. GSTP1 is a detoxifying enzyme,
and its aberrant expression in breast cancer TAMs promotes IL-6 expression and drug resistance in
MCF-7 in vitro experiments [56]. PTGS2 is an enzyme acting as dioxygenase or peroxidase, which
participates in prostaglandin biosynthesis and inflammation. Li and coworkers found that PTGS2 is
connected to the induction and maintenance of the anti-inflammatory M2 polarization in TAMs [57].
The NLRP3 inflammasome complex is an upstream activator of NF-kappaB signaling-mediated

inflammatory response. Lee et al. found an association between the inhibition of the NLRP3
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inflammasome in macrophages and the suppression of the metastatic potential in melanoma tumor
cells [58]. ISG15 is a ubiquitin-like protein interacting with its intracellular target proteins upon
activation of interferon signaling. The secretion of ISG15 by tumor cells induces an M2-like
phenotype in macrophages and contributes to tumor progression and immunosuppression [59].
CASP1 is a caspase that participates in the execution phase of cell apoptosis and is involved in
inflammation and cell death. Niu et al. found that Caspase-1 potentiates the pro-tumor action of
TAMs [60]. Taken together, we found in the literature evidence of the connection between the

selected protein targets and the activity of macrophages and TAMs.

Pharmacophore modelling as a way of speeding up drug repurposing in TAMs. We decided to
interfere with the protein targets utilizing de novo drug repurposing, that is, to repurpose drugs to
molecular targets other than their initially approved ones. One can expand the pool for potential
drugs interfering with the selected molecular targets by considering known interactions from
databases like DrugBank [61]. However, repurposing to known protein-drug interactions is often
biased towards well-investigated proteins. Combining both approaches could offer the possibility of
considering well-known drug-target interactions for thoroughly investigated proteins and de novo

drug repurposing for less popular ones.

We utilized pharmacophore-based analysis of an extensive database of FDA-approved drugs to
identify drug-protein interactions. Pharmacophore modelling is a methodology that uses the protein
active sites as potential chemical fingerprints for drug screening. This way, one can reduce the
computational resources necessary to simulate the binding between the protein target and the drug,
making the systematic computational screening of large libraries of active compounds possible. In
our case, this resulted in 266 relevant drug-protein interactions, with four drugs being able to bind to
four of the eight selected protein targets. We employed flexible docking simulations to further
elaborate on the interactions between these more promising four drugs with their target proteins. This
procedure is more demanding regarding computational power and manual curation but gives fine-
detail predictions for the interactions. Our simulations indicate that two drugs bound significantly
better to all the four targets than the others, namely Streptomycin and Clindamycin. Streptomycin is
a broad-spectrum antibiotic inhibiting both Gram-positive and Gram-negative bacteria, and its
described mechanism of action is the inhibition of bacteria protein synthesis. Clindamycin is an
antibiotic with a bacteriostatic effect, used primarily to treat anaerobic infections, whose mechanism
of action relies also on bacterial protein synthesis inhibition. Interestingly, in recent times, antibiotics
have been proposed as repurposed drugs for cancer, and several clinical trials are investigating their

efficacy as anticancer therapy [62]. For experimental validation, we focused on Clindamycin because
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it is an inexpensive compound, not been tested in the context of cancer, and has not been associated

yet with Caspase-1 in the literature.

In vitro tests confirm the ability of Clindamycin to interfere with the NLRP3/Caspase-1 axins
in macrophages. Although our computational analysis indicates that this drug can interact with four
of our top target candidates, we focus the experimental investigation on the interaction with Caspase-
1 due to its central effect on inflammasome activity. Active inflammasome-carrying TAMs often
promote augmented inflammation in the tumor microenvironment [52]. NLRP3, a widely studied
inflammasome complex, has been directly implicated in cancer progression [51]. Activated NLRP3
recruits the adaptor molecule ASC, which binds to Pro-Caspase-1 and triggers autocatalytic
activation. Active Caspase-1 catalyzes the cleavage of the pro-cytokines IL-1p and IL-18, which is
necessary for their secretion and activation [63]. Further, Caspase-1 activation can trigger pyroptosis,
a programmed immune-cell death characterized by plasma-membrane rupture and release of pro-
inflammatory intracellular content [14]. Pyroptosis in the tumor microenvironment produces a
chronic inflammatory milieu that enhances cancer cell transformation and promotes immune escape
[64]. Moreover, recent findings report a blockade of IL-1P activity to be able to elicit TAM
reprogramming and a decreasing inflammation [6]. Having this in mind, we hypothesized that
therapeutic blockade of the TAMs inflammasome via the NLRP3/Caspase-1 axis represents a novel
therapeutic strategy for the immunomodulation of TAMs, and decided to focus our drug repurposing
experimental validation on this process [65]. In our experiments we found that Clindamycin indeed
suppressed inflammasome activity-mediated secretion of IL-18 and IL-18 in LPS pre-activated
macrophages treated with Nigericin, an NLRP3-activating microbial toxin. Our data further indicated
that this effect happens downstream of ASC in the NLRP3-ASC-Caspase-1 signaling pathway,
suggesting that Clindamycin acts directly on Caspase-1. Finally, we found that Clindamycin-
mediated inhibition of Caspase-1 reduced pyroptosis in macrophages. We performed the experiments
with macrophages derived from monocytes isolated from the peripheral blood of healthy donors due
to the great difficulty of obtaining viable TAMs from UM liver metastases. However, the use of UM-
associated macrophage-specific transcriptomics data to specify the core network and the presented

experimental setup allows for extending the conclusions to TAMs.

With our in-silico approach we were able to predict a novel drug-protein interaction that proved to be
immunomodulatory in vitro. Further preclinical in vivo experiments with animal models harbor the
potential to solidify the inflammation-inhibiting effect of Clindamycin on macrophages in proximity
to the viable tumor and could thereby uncover how this influences the susceptibility of metastatic

UM to ICL
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In conclusion, we hereby propose a network-oriented methodology for de novo drug repurposing,
which allows for filtering and prioritization of drug-target interactions. We were able to predict a new
drug-target interaction that effectively blocks Caspase-1-mediated inflammasome activity in vitro
and is therefore clinically promising for the improvement of ICI therapies for metastatic uveal
melanoma. We designed the workflow having the context of TAMs in UM liver metastasis in mind,

although the general methodology and its key-findings can be applied to various other implications.
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571 Figure 2. Single-cell expression analysis reveals differences between healthy macrophages and
572 cancer-associated macrophages. A) Heatmap of Top20 differentially expressed genes. While the
573 upregulated genes of the healthy joint macrophages (CTRL) group are also widely expressed in the
574 TAM group, the top 20 genes upregulated in the TAM group show no such expression in the CTRL
575 group. This indicates a specialized or generally more active phenotype of TAMs compared to the
576 healthy subset. B) Gene expression of the 8 targets selected for pharmacophore modeling.
577 PTGS2, NLRP3, and GSTP1 show a distinct TAM-exclusive expression. In contrast, YBXI,
578 NFKBI, and CASP1 are active to at least some extent in TAM and CTRL cells. This hints towards a

579 rather homeostatic role of the latter genes.
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Figure 3. Identification of a core interaction network of tumor-associated macrophages. A) The
workflow followed for core network extraction. B) TAM network. The TAM network consists of
3863 nodes and 9073 edges. It is based on literature, database knowledge about interactions of
biological entities in macrophages, and bulk RNA-Seq expression data. C) Gene-set enrichment
analysis of differentially expressed genes with nodes in the network. Input genes for the GSEA
were derived from the overlap of differentially expressed genes from the single-cell data and the
nodes in the TAM network (n=1367). Each grid in the heat map represents whether a gene is
enriched in a phenotype. Only tumor- (red) and macrophage-related (blue) phenotypes were selected
for visualization in the heatmap. In addition, we annotated each phenotype with its odds ratio (odds),
adjusted p-values calculated using false discovery rate (FDR), and a combine score (odds x [-
loglO(FDR)]). The bar plot showed the corresponding log2FC of the enriched genes in the
phenotypes. We highlighted NFKB1, NLRP3, and PTGS2 because they are among the eight targets
selected for pharmacophore modeling. D) TAM core network. The TAM core network consists of
74 nodes and 286 edges. The nodes were colored according to their differential expression values
(log2FC) derived from the single-cell data analysis. Nodes in grey showed no significant differential
expression. When it comes to the 8 nodes selected for pharmacophore modelling experiments, each

of them was at least slightly upregulated in the TAM group compared to the healthy macrophages.
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Figure 4. Computational screening of chemical compounds to selected protein targets. A)
Central steps for the molecular docking. B) Exemplary pharmacophore of Clindamycin. C)
Heatmap highlighting drug-target combinations. All drugs that have binding affinities for at least
two proteins among eight selected target proteins are shown. D) Four chemical compounds and
their predicted CDOCKER energy from revised flexible docking. CDOCKER energy unit is
depicted in Kcal/mol. Only Clindamycin and Streptomycin showed suitable affinity values towards

all the four target proteins.
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612  Figure 5. Docking simulations predicting the binding of Clindamycin (A) and Streptomycin (B)
613 to Caspase-1. Top: general view of the protein and small molecule interaction. Bottom: detail of the

614  binding pocket with molecular bonds highlighted.
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Figure 6. Experimental validation of the predicted interaction. A) In-vitro experiments to
verify inhibition of Caspase-1 activation by Clindamycin. Monocyte derived macrophages were
pretreated with (white circle) or without (red circle) Clindamycin (2h, 10ug/ml). After this,
macrophages were treated with LPS (100ng/ml) alone or with LPS and Nigericin (10 uM) for 3
hours. Supernatants were analyzed by ELISA. Monocyte-derived macrophages were treated with
LPS (100ng/ml, 24h) and Nigericin (10uM, 24h) in the presence or absence of Clindamycin (as
indicated) and cells were analyzed for (B, C) cytokine secretion (IL1p and IL-18) by ELISA, (D)
Caspase-1 activation by flow cytometry, (E) Caspase-1 activation and cleavage by Western blot or

(F) LDH release by ELISA.
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