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Abstract

Background: Uveal melanoma (UM) is a highly malignant intraocular tumor with a poor prognosis

and response to  therapy,  including immune  checkpoint  inhibitors  (ICIs),  after  the  onset  of  liver

metastasis. The metastatic microenvironment contains high levels of tumor-associated macrophages

(TAMs) that correlate positively with a worse patient prognosis. We hypothesized that one could

increase the efficacy of ICIs in UM metastases by immunomodulating UM-associated macrophages. 

Methods:  To identify  potential  targets  for  the  immunomodulation,  we created  a  network-based

representation  of  the  biology  of  TAMs  and  employed  (bulk  and  single-cell)  differential  gene

expression analysis to obtain a regulatory core of UM macrophages-associated genes. We utilized

selected  targets  for  pharmacophore-based  virtual  screening  against  a  library  of  FDA-approved

chemical  compounds,  followed  by  refined  flexible  docking  analysis.  Finally,  we  ranked  the

interactions and selected one novel drug-target combination for in vitro validation. 

Results:  Based on the generated TAM-specific interaction network (3863 nodes, 9073 edges), we

derived a UM macrophages-associated regulatory core (74 nodes, 286 edges). From the regulatory

core genes, we selected eight potential targets for pharmacophore-based virtual screening (YBX1,

GSTP1, NLRP3, ISG15, MYC, PTGS2, NFKB1, CASP1). Of 266 drug-target interactions screened,

we identified the interaction between the antibiotic  Clindamycin and Caspase-1 as a priority  for

experimental validation. Our  in vitro validation experiments showed that Clindamycin specifically

interferes  with  activated  Caspase-1  and  inhibits  the  secretion  of  IL-1β,  IL-18,  and  lactate

dehydrogenase  (LDH)  in  macrophages  after  stimulation.  Our  results  suggest  that  repurposed

Clindamycin could reduce pyroptosis in TAMs, a pro-inflammatory form of programmed immune

cell death favouring tumor progression. 

Conclusion:  We were able to predict  a novel Clindamycin-Caspase-1 interaction that effectively

blocks  Caspase-1-mediated  inflammasome activity  and pyroptosis  in  vitro  in  macrophages.  This

interaction is a promising clinical immunomodulator of the tumor microenvironment for improving

ICI responsivenss. This work demonstrates the power of combining network-based transcriptomic

analysis with pharmacophore-guided screening for de novo drug-target repurposing. 
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Introduction

The potential of immunomodulation of tumor-associated macrophages in uveal melanoma 

Macrophages  are  among  the  most  prevalent  tumor-infiltrating  immune  cells.  They  have  been

observed to alter the effects of immune-checkpoint inhibition (ICI) therapy [1,2]. Uveal melanoma

(UM), the most common ocular malignancy in adults, has a poor prognosis due to its liver metastases

being  extremely  refractory  to  any  therapy,  including  combined  ICI  therapies  [3].  Since  tumor-

associated macrophages (TAMs) alter ICI responsiveness in other tumor entities, they may exert a

similar effect in the metastatic UM. Moreover, TAMs in UM promote disease progression, and high

levels of TAMs positively correlate  with poorer prognosis and shorter survival  of patients  [4,5].

Thus, we hypothesize that immunomodulation of TAMs in UM can be employed to remodel the

tumor microenvironment and help increase ICI responsiveness in UM. Recent findings support this

hypothesis  by showing that  IL-1β,  a  central  effector  molecule following macrophage activation,

drives pancreatic ductal adenocarcinoma growth, and its inhibition lowers inflammatory levels  [6].

To explore this hypothesis, we developed a computational model of TAMs that can systematically

identify  important  TAM  regulatory  factors  exerting  tumor-critical  functions.  This  approach  can

potentially find therapeutic targets for the immunomodulation of TAMs.

Computational Drug Repurposing

We propose drug repurposing, i.e., the use of existing drugs for a clinical purpose different from

what they were initially approved for, to therapeutically influence the identified targets. With drug

repurposing, one can utilize prior information about the biodistribution and toxicity of existing drugs

to speed up their re-utilization and reduce the time from discovery to clinical approval  [7,8]. Drug

repurposing is also aligned with the procedure followed by molecular tumor boards with patients not

responding  to  standard-of-care  therapies.  Traditionally,  drug  repurposing  is  often  investigated

utilizing systematic in vitro screening of drugs [9]. Many of the successfully repurposed drugs have

been used on their original molecular target but for a different clinical condition [8]. However, one

can  repurpose  drugs  to  new  molecular  targets  utilizing  computational  biology.  Goody  and  co-

workers, for example, combined docking simulation-based screening of an FDA-approved molecule

library and  in vitro experiments to repurpose Argatroban to interfere with the interaction between

metastasis-associated protein 1 (MTA1) and the cancer transcription factor E2F1, a molecular target

unknown for this drug [10].

The patient -omics data analysis can speed up drug repurposing [11]. Cancer proteins are not isolated

but belong to large gene and protein networks. Thus, one can combine -omics data and network

biology  algorithms  to  select  protein  targets  for  drug  repurposing  [12,13].  Here,  we  present  an
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integrative computational workflow that combines transcriptomic data and network-driven selection

of proteins as molecular targets with pharmacophore modelling of an FDA-approved drug library to

repurpose drugs for them. We deployed the workflow using the targeting of TAMs in UM as a case

study, although the methodology and key results are not limited to this tumor entity. 

Further, we utilized  in vitro  experiments to validate the predictions. This enabled us to discover a

novel interaction between the antibiotic Clindamycin and activated Caspase-1, which harbors the

potential  to  inhibit  the  secretion  of  pro-inflammatory  cytokines  like  IL-1β  to  the  macrophage-

surrounding environment, thereby preventing pyroptosis, a pro-inflammatory form of programmed

immune cell death. [14]. 
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Materials and Methods

Workflow. To repurpose drugs to target tumor-associated macrophages  (TAMs), we implemented

the following workflow (Figure 1):

1. TAM network construction: We collected bulk RNA sequencing data and signaling path-

way data from public repositories and the literature. The latter was used to construct a regula-

tory network of biological interactions, while the former was used to achieve TAM-speci-

ficity via projecting the gene expression data onto the respective network nodes.  

2. Core network detection: We extracted regulatory motifs from the network and ranked them

based on their potential importance for the TAMs. Scoring parameters were network features

(node degree, betweenness centrality) and differential expression data derived from publicly

available  single-cell  RNA-Seq  (scRNA-Seq)  of  UM-associated  macrophages  and  healthy

control macrophages. 

3. Docking simulations: After selection of potential targets from the core network, we gener-

ated pharmacophore models of the respective proteins and performed virtual screening of

FDA-approved drugs. For a selection of high-affinity candidates, we applied refined flexible

docking with their potentially binding chemical compounds.

4.  Validation experiments: We performed in vitro validation experiments using macrophages

to validate one selected completely novel drug-target interaction. 

In the following, one can find a detailed explanation of the individual steps in the workflow.

Data Collection.  We obtained the different sequencing datasets from the GEO database. The data

used for the network specification consisted of 12 bulk RNA sequencing samples (GSE117970) of

macrophages associated to breast or endometrial cancer [15]. The data used for the differential ex-

pression analysis  consisted of single-cell  RNA sequencing results  of 8 primary and 3 metastatic

uveal  melanoma  samples  (GSE139829,  [16] and  a  collection  of  samples  from  healthy  joint

macrophages (GSE134691, [17].

Differential Expression. Following the analysis workflow of the original publication, we combined

8 primary and 3 metastatic tumor samples in R (4.05) and aggregated them into a Seurat object with

the “min.features” option set to 120 (Seurat V3) [18,19]. To extract only the TAMs from the Seurat
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object, we used the “Subset” function with the macrophage identifiers CD68, CD163, and CD14,

each showing an expression greater than 1. These high criteria were used to reduce the false positive

cells  in  the  data,  thereby  assuring  that  the  cells  selected  were  true  macrophages  and  avoiding

contamination from other cell  types.  We then combined the TAMs subset with the healthy joint

macrophages in the same Seurat object  using the “merge” function.  We set the identities  of the

TAMs and the healthy joint macrophages to “ident.1” and “ident.2”, respectively. We considered

cells with more than 25% of all features being mitochondrial genes contamination and discarded

them. After scaling, normalization, and principal component analysis using standard procedures, we

performed batch correction using harmony [20]. The impact of the batch correction is illustrated in

Figure  S1.  For  the  sets  of  cells  identified  in  the  Seurat  object,  we  performed  the  differential

expression analysis utilizing the “FindMarkers” function. We included only genes that were at least

expressed by some cells of both conditions with “pct.1 > 0” and “pct.2 > 0” (Pct.1: percentage of

cells in group 1, TAMs, expressing a specific gene). For these genes, we further selected the genes

that have an adjusted p-value < 0.05 (Bonferroni correction). We exported the significant genes and

their average log2 fold-change (log2FC) values for their use in the core network extraction. The plots

were generated using Seurat’s “DimPlot”, “FeaturePlot”, and “DoHeatmap” functions.

Network  construction.  The  TAM  network  is  based  on  the  previously  published  macrophage

network by Wentker  et.  al [21].  As this  network only displays the M1-like polarization  type of

macrophages and TAMs are known to play a bilateral role in cancer, we extended the network with

M2-like macrophage behavior   [22–24].  To this  end,  we manually queried the NCBI’s PubMed

archive  for  terms  concerning  the  M2-like  macrophage  phenotype,  including  “M2  macrophage

polarization”, “alternative activation of macrophages”, and “anti-inflammatory macrophages”. We

also browsed the literature for pathways, proteins, genes, with a focus on cytokine production or

transcription factor regulation. This information was added to the existing macrophage map using

CellDesigner  (v4.4.2)  [25,26],  and  each  new  interaction  was  annotated  utilizing  CellDesigner’s

MIRIAM [27]. We separately annotated all factors involved in the interactions: genes were annotated

with Ensembl IDs  [28], proteins with UniProt IDs  [29], microRNAs with miRbase IDs  [30], and

simple  molecules  and  ions  with  ChEBI  IDs  [31].  We  used  IDs  from  either  mouse  or  human

depending  on  the  organism  described  in  the  corresponding  literature.  The  two  organism-

specifications were later collapsed into human-only by using the biomaRt package (version 2.56.0).  

Next, we extended the network automatically with information taken from miRTARBase (version

6.1) [32], miRecords (version 4.5) [33], HTRIdb (version 1) [34], and TRANSFAC (version 2015.1)

[35] using an inhouse tool named miRNExpander (https://github.com/marteber/miRNexpander). To
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this  end,  we transformed  the  network  into  a  Graph Modelling  Language  (GML) and  continued

working with the expanded network using Cytoscape (v3.8.0) [36].

We  specified  the  expanded  macrophage  network  to  a  TAM  network  by  pruning  it  with  RNA

sequencing  data  from  12  samples,  derived  from  breast  and  endometrial  cancer  associated

macrophages  (GSE117970).  To  this  end,  we  combined  the  RNA-Seq  data  in  R  (4.0.5)  and

transformed the counts to transcripts per million (TPM) using Ensembl transcriptome as transcript-

length reference (version GRCh37.87). We calculated the average TPM value of a gene and added it

to the expanded network. The restrictions for the preservation of a node were set to an average TPM

of at least 10 and a node degree of at least one. We saved the pruned network as a Cytoscape file and

exported a list of its nodes for its perusal. We added to the network the significant log2FC values

derived from the single-cell uveal melanoma TAMs data. The obtained network can be browsed and

downloaded from www.vcells.net/TAM.

Gene set enrichment analysis. We conducted gene set enrichment analysis (GSEA) using EnrichR

[37] with the Mammalian Phenotype Ontology database  [38] and the genes from the differential

expression analysis belonging to the TAM network. The resulting tabular data was visualized in R

using ggplot2 and ComplexHeatmap [39]. 

Topological Features and Motif detection. We calculated the networks topology features using the

built-in Cytoscape “Analyzer”  [40]. Two network topological features were especially interesting:

the node degree or number of node interactions, and the betweenness centrality, which indicates how

many  shortest  pathways  include  the  node  considered.  We  added  these  metrics  to  the  network

annotation. Further,  we queried the TAM network for regulatory motifs using the Cytoscape app

“NetMatchStar”  [41].  We  decided  to  include  2-edges-2-nodes  feedback  loops,  3-edges-3-nodes

feedback  loops,  3-edges-3-nodes  feedforward  loops,  4-edges-3-nodes  feedback  loops,  4-edges-3-

nodes feedforward loops, 4-edges-4-nodes feedback loops, and 4-edges-4-nodes feedforward loops.

The same strategy was used to identify network motifs in our previous publication [42].

Motif ranking. To detect the most important nodes and their interactions, we calculated a weighted

ranking score of the identified motifs with the following equation:

Scorei=w 1∙ FCi+w2∙ BC i+w3 ∙Di

The score is based on the method used in Khan et al. [43]. For each motif i, the score is calculated

with different weight settings for w1, w2, and w3 that define the importance of the three ranking factors.

These factors are: a) FCi is the average log2FC expression in the scRNA-Seq from UM TAMs across
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the nodes forming the motif i; b) BCi is the average betweenness centrality of the motif i’s nodes; and

c) Di is their average node degree. The weighting factors sum up to one and w1 was fixed to 0.5 to

prioritize motif expression when scoring motifs. We set the values of w2 from 0.05 up to 0.45 in 0.05

iterative steps and the values of w3 result from the calculation w3 = 0.5 – w2. We calculated the motif

scores of each motif i for each combination of weighting factors. Next, we pareto-optimized the

different scores of the same motifs with the “psel” method using the R package rPref (version 1.3)

[42,43].    

Core Extraction. We considered the components of the top 100 highest scoring motifs to be the core

nodes  [42,43]. Next, we extracted the core nodes and their interactions from the TAM network to

create a core network, which can be browsed and downloaded from www.vcells.net/TAM

Target Selection.  We used a Min-Max-normalization metric to give us an idea about the relevance

of each node in the core network: 

Scorei=
Di−min ⁡(D)

max(D)−min ⁡(D)
+

BCi−min ⁡(BC )

max(BC )−min ⁡(BC )
+

FC i−min ⁡(FC )

max(FC )−min ⁡(FC )

The score is based on the degree (D), betweenness centrality (BC), and differential expression (FC)

of each node. We derived the topological features, namely degree and betweenness centrality from

the core network, whereas we preserved the differential expression values from the TAM network.

We used the ranking table to select 8 targets for pharmacophore modeling while already accounting

for experimental suitability.

Pharmacophore modeling and in-silico screening of drug library: We retrieved the 3D structures

of the selected protein targets from the RCSB protein database (www.rcsb.org/pdb; PDB ID: 3QF2,

5X79, 1IBC, 3GUT, 6LMR, 3SDL, 5F1A; MYC via homology model). To each of them, we applied

standard protein-preparation protocols of the Biovia Discovery Studio 2022 (DS 2022) to prepare

them for pharmacophore generation. In this method, the features present in the active site of a protein

act as a potential chemical fingerprint for drug screening. We used the ‘Edit and Cluster Features

Tool’ of DS 2022 to generate  the pharmacophore features  from each active site of the proteins,

including features like "Hydrogen Bond Donors and Acceptors" and "Hydrophobic". We considered

the excluded volume constraints to the best-selected pharmacophore model to highlight potentially

forbidden sites for the drug molecules during the screening process. For the pharmacophore model

screening, we utilized FDA-approved drugs in the Zinc15 database [44]. All the screened drugs were

arranged in decreasing order of their FIT score, which represents how accurately a drug fits into the

binding site. For each of the target proteins, we considered drugs that have a FIT value of more than
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1. Afterwards, we searched for commonly screened drugs that could serve as potential targets for

multiple proteins. 

Molecular docking.  To further refine the prediction of the most promising drugs interacting with

CASP1, YBX1, ISG15, and PTGS2, we performed a flexible docking on the binding site of the

proteins. To this end, we extracted the binding site of the proteins from the experimental literature

[45–48] and  performed  the  flexible  docking  using  the  CDOCKER  program  of  DS  2022.  We

generated 10 conformations for each of the drug–protein target combinations, which were ranked

based on CDOCKER-estimated energy.

Preparation of macrophages.  We isolated human peripheral  blood mononuclear  cells  (PBMCs)

from freshly drawn peripheral blood of healthy donors (University Hospital of Erlangen, Department

of Transfusion Medicine and Haemostaseology, GER) by density gradient centrifugation using hu-

man Pancoll (1.077 g/ml) (PAN™ Biotech, Aidenbach, GER) and a subsequent buffy coat purifica-

tion. To generate macrophages, we isolated monocytes by adherence to polystyrene in CELLSTAR®

cell culture flasks (Greiner Bio-One, Kremsmünster, AUT) and cultured in the presence of Leuco-

max® GM-CSF (500 U/µl) (Novartis Pharma, Nürnberg, GER). After 6-7 d of culture, macrophages

were detached with EDTA (1 mM) (Sigma-Aldrich®, München, GER).

ELISA. We examined  cell  culture  supernatants,  serum levels  for  human  IL-1β  and  IL-18 with

ELISA kits from R&D Systems® (Minneapolis, USA) according to the manufacturer’s instructions.

LDH  release  assay. We  plated  macrophages  in  96-well  culture  at  a  concentration  of  5 × 104

cells/well and pretreated them with or without lipopolysaccharides (LPS, 100ng/ml) for 24 hours.

Subsequently,  we  treated  macrophages  with  Nigericin  (10µM)  in  the  presence  or  absence  of

Clindamycin (10µg/ml) overnight. LDH released in the supernatant was detected using a cytotoxicity

detection kit (Roche) according to the manufacturer’s instructions. We used data on detected LDH to

calculate the pyroptotic rate of treated macrophages based on the following equation: [(experimental

release − spontaneous release)/(maximum release − spontaneous release)] × 100, where spontaneous

release is from the cytoplasm of untreated macrophages, and maximum release is that obtained by

lysis of macrophages with a solution of 0.1% Triton X-100.

FLICA® 660 Caspase-1 assay. We detected Caspase-1 activity using the FLICA® 660 Caspase-1

assay  kit  from  ImmunoChemistry  Technologies  (Bloomington,  USA)  according  to  the

manufacturer’s instructions.  We seeded macrophages at  1× 106/ml in polystyrene Falcon® round

bottom tubes (Corning® LifeSciences, Corning, USA) for flow cytometry. Cells were LPS-primed
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(100 ng/ml,  24 h) and overnight-incubated with 10 µM Nigericin in the presence or absence of

Clindamycin (10µg/ml or 25µg/ml). We washed the cells with PBS and incubated with the FLICA®

660-YVAD-fmk reagent (1:150, 30 min) at 37 °C and 5 % CO2. As assessed by flow cytometry,

Caspase-1 activation was defined as increase in red fluorescence.

Western blot analysis. We seeded macrophages at 2× 106/ml in polystyrene Falcon® 24 well plates

(Corning® LifeSciences, Corning, USA), LPS-primed (1 µg/ml, 3 h) and overnight-incubated with

10 µM Nigericin in the presence or absence of Clindamycin (10µg/ml or 25µg/ml). We prepared cell

lysates by direct lysis in 2 % (w/v) SDS lysis buffer (5 mM EDTA, 50 mM Tris/HCl, 150 mM NaCl,

2.2 % (wt/vol)  SDS) supplemented with complete™ EDTA-free (Roche Diagnostics, Mannheim,

GER) as protease inhibitor. We removed cell debris by centrifugation (21,382 xg, 15 min, 4 °C) and

the concentration of total protein in cell extracts was determined using the Qubit® protein assay kit

and the Qubit® 3.0 fluorometer (Thermo Fisher Scientific™). Cell culture supernatants were used

purely. We suspended protein samples in 4× Laemmli sample buffer (278 mM Tris/HCl, 355 mM 2-

mercaptoethanol, 0.02 % (wt/vol) bromophenol blue, 4.4 % (wt/vol) lithium dodecyl sulfate, 44.4 %

(vol/vol) glycerol, pH (HCl) 6.8) (Bio-Rad Laboratories, München, GER) and boiled for 10 min at

95 °C. We separated the protein content of cell lysates, supernatants and the Precision Plus Protein™

WesternC™ standard (Bio-Rad Laboratories, München, GER) by SDS-PAGE (10 %, 15 %, 90 µg)

and transferred onto nitrocellulose membranes (0.2 µm) (GE Healthcare Life Sciences, Chalfont St

Giles,  UK)  using  the  semi-dry  TransBlot®  Turbo™  transfer  system  (Bio-Rad  Laboratories,

München, GER). We blocked membranes in 5 % (wt/vol) dried milk in TBS-T (100 mM Tris/HCl,

150  mM  NaCl,  0.1  %  (vol/vol)  Tween®-20)  for  1  h  at  room  temperature.  Membranes  were

overnight-incubated with primary antibodies diluted in 5 % (wt/vol) dried milk in TBS-T at 4 °C.

Subsequently, we incubated membranes with the appropriate HRP-conjugated secondary antibody

diluted in 5 % (wt/vol) dried milk in TBS-T for 1 h at room temperature. We detected proteins by

chemiluminescence using the SuperSignal® ELISA femto maximum sensitivity substrate (Thermo

Fisher  Scientific™,  Waltham,  USA)  according  to  the  manufacturer’s  instructions  and  the

Amersham™ Imager 600 (GE Healthcare Life Sciences, Chalfont St Giles, UK). We stripped the

membranes using the Restore™ western blot stripping buffer (Thermo Fisher Scientific™, Waltham,

USA) before being re-examined. Primary antibodies used were β-actin (4967, Cell Signaling), ASC

(AL177,  AdipoGen/Biomol,  1:1000)  (1:2.500)  and  Caspase-1  (clone:  D7F10,  Cell  Signaling).

Secondary HRP-conjugated antibodies used were anti-mouse IgG (7076, Cell Signaling) and anti-

rabbit IgG (7074) (1:2,500) (Cell Signaling Technology®, Cambridge, UK).
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Results

The  combination  of  scRNA-Seq,  bulk  RNA-Seq,  and  network  analysis  generates  a  core

network of potential molecular targets linked to immunomodulation and depletion of TAMs

We  hypothesize  that  immunomodulation  of  TAMs  in  UM is  a  key  for  remodeling  the  tumor

microenvironment  which  may  ultimately  help  to  increase  ICI  responsiveness  in  UM.  To  find

molecular  targets  for  immunomodulation  in  UM-associated  macrophages  we  (a)  constructed  a

comprehensive signaling and gene network reflecting the biology of TAMs, (b) integrated in the

network nodes RNA-Seq data from TAMs and quantified their topological importance, and (c) used

single-cell data and topological features to isolate a core network including the most connected and

differentially expressed genes, and select from this core promising, druggable proteins (Figure 3A).

Precisely:

a) TAM network reconstruction. To build a network representative of TAM biology, we expanded

a  previously  published  macrophage  network  by  adding  genes  and  pathways  linked  to  the  anti-

inflammatory polarization of macrophages. This manual curation resulted in a network with 1318

nodes and 1014 edges. Next, we utilized a computational pipeline to further extend the network with

molecules  and  interactions  taken  from  protein-protein,  transcriptional,  and  miRNA  regulation

databases. To remove irrelevant or poorly expressed genes from the network, we only conserved

genes with an average TPM of at least 10 in RNA-Seq TAM data and a node degree of at least one in

the network. This way, we obtained a fully-connected TAM network with 3863 nodes and 9073

edges (Figure 3B).

b) Integration of scRNA-Seq data and topological features in the TAM network. To quantify the

importance of each node in the TAM network, we computed the topological features node degree

and betweenness centrality. To fit the analysis as much as possible to our case study of TAMs in

UM, we obtained scRNA-Seq datasets from primary and metastatic UM (GSE139829) and processed

them utilizing Seurat [16]. To extract the TAMs from the Seurat object, we selected the individual

cells that show an expression greater than one for the known macrophage surface markers CD68,

CD163, and CD14. For the purpose of comparison and differential expression analysis, we utilized

scRNA-Seq data sets from healthy macrophages (GSE134691). To allow the data integration, we ap-

plied scaling, normalization, batch correction, and performed differential expression analysis and p-

value correction. Dimensionality  reduction plots can be found in Figure S1.  Following this  ap-

proach, we extracted a group of TAMs consisting of 888 cells and combined it with a second group

of healthy macrophages including 7542 cells (Figure S1C).
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The Seurat object measured 12172 features, of which 1671 were differentially expressed. We fo-

cused the analysis on the 3863 genes included in the TAM network as nodes, and identified 1367

genes that were differentially expressed with at least one cell per group expressing the respective

gene feature, with 688 genes upregulated in the TAM group. A comparison of the transcriptomic pat-

terns between the top 20 differentially expressed genes shows a clear upregulation in the TAM group

of inflammatory proteins like IL-1β, NR4A2-3, TNFAIP3, or NLRP3, which are not similarly ex-

pressed in the healthy macrophage group (Figure 2A). TGFβ1, a gene known to play a role in inflam-

mation and tissue regeneration, is expressed in both TAMs and healthy macrophages, albeit at differ-

ent intensities [49,50]. These observations are in line with the generally upregulated phenotypes de-

rived from the GSEA of the differentially expressed genes (n=1367) (Figure 3C). On one hand, we

found dozens of  enriched  phenotypes  related  to  abnormal  physiology of  macrophages  including

phagocytosis, chemotaxis, morphology, and differentiation (Figure 3C). On the other hand, we found

several enriched phenotypes associated to the tumor microenvironment,  including tumor necrosis

factor secretion related with inflammation-associated carcinogenesis and tumor vascularization (Fig-

ure 3C). The distribution of all enriched phenotypes by the size of their gene sets can be found in

Figure S2. 

c) Core network extraction and target selection. We assumed that regulatory motifs like feedback

and feedforward loops play a pivotal role in the (de)regulation of gene networks and isolated a core

network composed of differentially expressed, highly connected and intertangled regulatory motifs.

To this end, we first detected the 2-4 nodes feedback and feedforward loops contained in the network

and obtained 9035 motifs  (Table S1).  We quantified their importance in terms of the topological

features average node degree (Di) and betweenness centrality (BCi) of the nodes belonging to the

motif. Also, we computed the average log2  fold change expression across the nodes forming each

motif when comparing scRNA-Seq from TAMs and healthy macrophages (FCi). We combined these

metrics into a computational score and used it to generate a core network containing the Pareto-

optimized, top ranked network motifs (see Material and Methods). We obtained a core network with

74 nodes and 286 edges (Figure 3D). We generated a ranking of the most important nodes regarding

differential expression between healthy and TAMs and their importance for the core network (see

Material  and  Methods  and  Table  S2).  We  combined  the  ranking  information  with  foreseen

experimental validation suitability and thereby selected eight potential drug targets among the high-

scoring  candidates  for  further  investigations,  namely:  YBX1,  MYC,  GSTP1,  PTGS2,  NLRP3,

NFKB1, ISG15, and CASP1. When we inspected the scRNA-Seq data, we found that these genes are

to some extent expressed in both cell types, but with a higher intensity in the TAM group (Figure
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2B). For instance, YBX1 shows a rather universal expression across all cells, whereas GSTP1 seems

to be rather TAM-exclusively expressed.

Pharmacophore  modeling  and  docking  simulations  of  FDA-approved  chemical  compounds

suggests Clindamycin and other drugs for their repurposing in TAMs

We  wanted  to  repurpose  existing  drugs  with  other  indications  and  known  molecular  targets  to

interfere with the eight selected proteins obtained via bulk and single-cell RNA-Seq and network

analysis (Figure 4A). To this end, we first retrieved and prepared the 3D structures of the selected

protein targets from public repositories and generated a pharmacophore model containing relevant

binding pockets for each one of the protein targets (Figure 4B).  We screened  the pharmacophore

models with 1647 FDA-approved chemical-compounds contained in the Zinc15 database  [44]. We

selected the drug-target interactions with a FIT score higher than one. The virtual screening resulted

in 266 predictions across the eight selected target proteins (Table S3). We found 39 drugs that target

at least two out of eight selected proteins (Figure 4C). Among them, six drugs have affinities towards

four or more target proteins. We further filtered the virtual screening results for the largest common

drug-target  sets  and  identified  four  drugs  (ZINC000003830943;  ZINC000003830944;

ZINC000003978028 (a.k.a.  Clindamycin);  and  ZINC000008214681 (Streptomycin))  predicted  to

bind to four target proteins (CASP1; YBX1; ISG15; and PTGS2) (Figure 4D).

To further confirm the predicted interactions between these drugs and the four proteins, we extracted

the  detailed  molecular  structure  of  the  protein  binding  sites  from  the  experimental  literature,

performed flexible docking simulations of the drugs in the binding sites, and ranked the drug-protein

interactions based on their calculated CDOCKER energy (Figure 4D). To this end, we considered the

top  ten  conformations  for  each  of  the  drug–protein  combinations.  Our  results  suggest  that

Clindamycin and Streptomycin have better binding affinity with all the analyzed protein targets than

the  other  two drugs  considered  for  refined  docking  simulations  (Figure  5).  Figure  5A  contains

detailed information concerning the binding simulation of Clindamycin to Caspase-1, one of the

most relevant protein targets linking our analysis to the TAMs immunomodulation and  depletion

(Table S4). Since Clindamycin has not been utilized in the context of cancer therapy and experiments

to  check  its  effect  on  the  predicted  target  were  considered  feasible,  we  selected  this  drug  for

performing in-vitro verification experiments.

In  vitro experiments  confirmed  that  the  drug-repurposing  candidate  Clindamycin  reduces

macrophage cell death via pyroptosis
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Given  that  a)  inflammasomes,  and  precisely  NLRP3,  have  been  implicated  in  solid  tumor

progression  [51,52], b)  NLRP3 is  upstream the processing and activation  of Caspase-1,  and c)

Caspase-1 activation or inhibition can be easily measured, we experimentally assessed the effect of

Clindamycin on NLRP3-inflammasome activation in human macrophages (Figure 6A). To this end,

we  treated  LPS  pre-activated  macrophages  with  Nigericin  in  the  presence  or  absence  of

Clindamycin.  Nigericin  is  a  microbial  toxin  that  triggers  the  NLRP3  inflammasome-dependent

induction of IL-1β and IL-18 [53]. After treatment with Nigericin, we observed an increased amount

of IL-1β (LPS: 144±61 pg/ml vs. LPS + Nigericin: 3722±748 pg/ml) and IL-18 (LPS: 17±11 pg/ml

vs. LPS + Nigericin: 1084±212 pg/ml) in the supernatant after 24-hour treatment (Figure 6B).  The

addition of Clindamycin showed a significant reduction in Nigericin-mediated secretion of IL-1β

(LPS + Nigericin: 3722±748 pg/ml vs. LPS + Nigericin + Clindamycin: 2115±961 pg/ml; p=0.006)

and IL-18 (LPS + Nigericin: 1084±212 pg/ml vs. LPS + Nigericin + Clindamycin: 664±171 pg/ml;

p=0.001) (Figure 6C), suggesting that Clindamycin suppresses inflammasome activity.

To test whether Clindamycin specifically inhibits Caspase-1, we measured Caspase-1 activation in

Nigericin-treated macrophages using FLICA® reagent, a cell-permeant fluorescent-labeled inhibitor

binding specifically and covalently to active Caspase-1 [52].  Flow cytometry showed an increase in

Caspase-1-positive macrophages after treatment with Nigericin in comparison to only LPS-treated

macrophages (Figure 6D). In contrast, we found a dose-dependent reduction in Nigericin-mediated

Caspase-1 activation following pretreatment with Clindamycin (up to a 2.5-fold reduction, Figure

6D). To verify the observed inhibitory effect of Clindamycin on Caspase-1 activity, we monitored

cleavage  of  Caspase-1  by  western  blot  analysis. Nigericin  treatment  triggered  cleavage  of  Pro-

Caspase-1 to the active form of Caspase-1 (p20, 20 kDa), resulting in an additional band in the

Western blot (Figure 6E). In contrast, additional pretreatment with Clindamycin reduced the fraction

of active Caspase-1 in a dose-dependent manner. In the same cell lysates, we could not detect any

reduction  of  the  adapter  molecule  ASC  (Apoptosis-associated  speck-like  protein  containing  a

CARD). Given that the adapter protein ASC is upstream of the signaling pathway from Caspase-1

and  binds  directly  to  Caspase-1  for  activation,  this  suggests  that  Clindamycin  acts  directly  on

Caspase-1.

Since treatment with Nigericin results in pyroptosis and Caspase-1 is a key protein for its induction,

we speculated that Clindamycin may prevent the triggering of pyroptosis. To test this, we incubated

macrophages  with  Nigericin  in  the  presence  or  absence  of  Clindamycin,  and  measured  the

concentration of LDH, a marker of pyroptosis, in the supernatant by ELISA after 24 hours (Figure

6F).  Nigericin  treatment  resulted  in  an  increased  release  of  LDH  (LPS:  0.8±0.5%  vs.  LPS  +
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Nigericin: 23±2%). In contrast, additional treatment with Clindamycin significantly reduced LDH

release (LPS + Nigericin + Clindamycin: 11±1%; p=0.0013), suggesting that Clindamycin-mediated

inhibition of Caspase-1 induces less pyroptosis in macrophages.
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Discussion

TAMs  are  prominent  infiltrating  immune  cells  in  UM  liver  metastases,  and  their  abundance

positively correlates with a worse prognosis for patients [4,5]. Apart from that, TAMs are known to

affect negatively ICI therapy in other cancer entities [1,2]. Since even combined ICI therapies fail to

substantially increase the survival times of UM patients with liver metastases, we hypothesize we

may be able to remodel the tumor microenvironment and sensitize metastases for ICI via drug-based

immunomodulation of UM-associated macrophages   [3].  To circumvent  the time-consuming and

costly  de novo design and approval of drugs, we used computational drug repurposing to identify

drug-protein interactions for immunomodulation of UM-associated macrophages.

A scRNA-Seq data-driven network analysis identifies molecular targets for immunomodulation

of  TAMs.  In  our  workflow,  we  first  created  a  regulatory  network  involving  protein  and  gene

interactions linked to TAM-biology. We generated a network with 3863 genes and 9073 edges. To

narrow the network to genes specific for UM, we combined scRNA-Seq data from uveal melanoma

TAMs and healthy  macrophages  and isolated a  small,  highly-interconnected core  network of  74

genes. This procedure can be further improved by using a more comprehensive collection of UM-

associated  macrophages  and  other  tissues  of  origin  for  our  control  macrophages.  Since  the

differential expression is only one factor for the extraction of the core network, we consider our data

to be sufficient.  

We  combined  quantitative  data  and  expert  knowledge  to  select  the  protein  targets  for  drug

repurposing.  One  criterion  to  prioritize  targets  was  the  assessment  of  experimental  feasibility,

utilized  to  minimize  the  potential  laboratory  work  necessary  to  find  effective  drug-protein

interactions.  We selected  eight  protein  targets,  namely,  YBX1,  MYC,  GSTP1,  PTGS2,  NLRP3,

NFKB1, ISG15, and CASP1. YBX1 is a DNA and RNA binding protein whose elevated expression

is linked with macrophage infiltration and poor prognosis in luminal  breast  cancer  [54].  C-Myc

(MYC) is a cell cycle and apoptosis gene known to play a pivotal role in cancer progression in

multiple cancers. Pello and coworkers found that the inhibition of c-MYC in myeloid cells hampers

the maturation of TAMs and impairs their pro-tumoral activity [55]. GSTP1 is a detoxifying enzyme,

and its aberrant expression in breast cancer TAMs promotes IL-6 expression and drug resistance in

MCF-7 in vitro experiments [56]. PTGS2 is an enzyme acting as dioxygenase or peroxidase, which

participates in prostaglandin biosynthesis and inflammation. Li and coworkers found that PTGS2 is

connected to the induction and maintenance of the anti-inflammatory M2 polarization in TAMs [57].

The NLRP3 inflammasome complex is  an  upstream activator  of  NF-kappaB signaling-mediated

inflammatory  response.  Lee  et  al.  found  an  association  between  the  inhibition  of  the  NLRP3
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inflammasome in macrophages and the suppression of the metastatic potential in melanoma tumor

cells  [58]. ISG15 is  a ubiquitin-like protein interacting with its  intracellular target proteins upon

activation  of  interferon  signaling.  The  secretion  of  ISG15  by  tumor  cells  induces  an  M2-like

phenotype  in  macrophages  and  contributes  to  tumor  progression  and  immunosuppression  [59].

CASP1 is a caspase that participates in the execution phase of cell  apoptosis and is involved in

inflammation and cell  death. Niu et  al.  found that Caspase-1 potentiates the pro-tumor action of

TAMs  [60].  Taken  together,  we found in  the  literature  evidence  of  the  connection  between the

selected protein targets and the activity of macrophages and TAMs.

Pharmacophore modelling as a way of speeding up drug repurposing in TAMs . We decided to

interfere with the protein targets utilizing  de novo drug repurposing, that is, to repurpose drugs to

molecular targets other than their initially approved ones. One can expand the pool for potential

drugs  interfering  with  the  selected  molecular  targets  by  considering  known  interactions  from

databases like DrugBank  [61]. However, repurposing to known protein-drug interactions is often

biased towards well-investigated proteins. Combining both approaches could offer the possibility of

considering well-known drug-target interactions for thoroughly investigated proteins and  de novo

drug repurposing for less popular ones.

We  utilized  pharmacophore-based  analysis  of  an  extensive  database  of  FDA-approved  drugs  to

identify drug-protein interactions. Pharmacophore modelling is a methodology that uses the protein

active  sites  as  potential  chemical  fingerprints  for  drug screening.  This  way,  one  can  reduce  the

computational resources necessary to simulate the binding between the protein target and the drug,

making the systematic computational screening of large libraries of active compounds possible. In

our case, this resulted in 266 relevant drug-protein interactions, with four drugs being able to bind to

four  of  the  eight  selected  protein  targets.  We  employed  flexible  docking  simulations  to  further

elaborate on the interactions between these more promising four drugs with their target proteins. This

procedure is more demanding regarding computational power and manual curation but gives fine-

detail predictions for the interactions. Our simulations indicate that two drugs bound significantly

better to all the four targets than the others, namely Streptomycin and Clindamycin. Streptomycin is

a  broad-spectrum  antibiotic  inhibiting  both  Gram-positive  and  Gram-negative  bacteria,  and  its

described mechanism of action is  the inhibition of bacteria protein synthesis.  Clindamycin is  an

antibiotic with a bacteriostatic effect, used primarily to treat anaerobic infections, whose mechanism

of action relies also on bacterial protein synthesis inhibition. Interestingly, in recent times, antibiotics

have been proposed as repurposed drugs for cancer, and several clinical trials are investigating their

efficacy as anticancer therapy [62]. For experimental validation, we focused on Clindamycin because
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it is an inexpensive compound, not been tested in the context of cancer, and has not been associated

yet with Caspase-1 in the literature. 

In vitro tests confirm the ability of Clindamycin to interfere with the NLRP3/Caspase-1 axins

in macrophages. Although our computational analysis indicates that this drug can interact with four

of our top target candidates, we focus the experimental investigation on the interaction with Caspase-

1 due to its central effect on inflammasome activity. Active inflammasome-carrying TAMs often

promote augmented inflammation in the tumor microenvironment  [52]. NLRP3, a widely studied

inflammasome complex, has been directly implicated in cancer progression [51]. Activated NLRP3

recruits  the  adaptor  molecule  ASC,  which  binds  to  Pro-Caspase-1  and  triggers  autocatalytic

activation. Active Caspase-1 catalyzes the cleavage of the pro-cytokines IL-1β and IL-18, which is

necessary for their secretion and activation [63]. Further, Caspase-1 activation can trigger pyroptosis,

a programmed immune-cell death characterized by plasma-membrane rupture and release of pro-

inflammatory  intracellular  content  [14].  Pyroptosis  in  the  tumor  microenvironment  produces  a

chronic inflammatory milieu that enhances cancer cell transformation and promotes immune escape

[64].  Moreover,  recent  findings  report  a  blockade  of  IL-1β  activity  to  be  able  to  elicit  TAM

reprogramming  and  a  decreasing  inflammation  [6].  Having  this  in  mind,  we  hypothesized  that

therapeutic blockade of the TAMs inflammasome via the NLRP3/Caspase-1 axis represents a novel

therapeutic strategy for the immunomodulation of TAMs, and decided to focus our drug repurposing

experimental validation on this process [65]. In our experiments we found that Clindamycin indeed

suppressed  inflammasome  activity-mediated  secretion  of  IL-1β  and  IL-18  in  LPS  pre-activated

macrophages treated with Nigericin, an NLRP3-activating microbial toxin. Our data further indicated

that  this  effect  happens  downstream  of  ASC in  the  NLRP3-ASC-Caspase-1  signaling  pathway,

suggesting  that  Clindamycin  acts  directly  on  Caspase-1.  Finally,  we  found  that  Clindamycin-

mediated inhibition of Caspase-1 reduced pyroptosis in macrophages. We performed the experiments

with macrophages derived from monocytes isolated from the peripheral blood of healthy donors due

to the great difficulty of obtaining viable TAMs from UM liver metastases. However, the use of UM-

associated macrophage-specific transcriptomics data to specify the core network and the presented

experimental setup allows for extending the conclusions to TAMs.

With our in-silico approach we were able to predict a novel drug-protein interaction that proved to be

immunomodulatory in vitro. Further preclinical in vivo experiments with animal models harbor the

potential to solidify the inflammation-inhibiting effect of Clindamycin on macrophages in proximity

to the viable tumor and could thereby uncover how this influences the susceptibility of metastatic

UM to ICI. 
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In conclusion, we hereby propose a network-oriented methodology for  de novo drug repurposing,

which allows for filtering and prioritization of drug-target interactions. We were able to predict a new

drug-target interaction that effectively blocks Caspase-1-mediated inflammasome activity  in vitro

and  is  therefore  clinically  promising  for  the  improvement  of  ICI  therapies  for  metastatic  uveal

melanoma. We designed the workflow having the context of TAMs in UM liver metastasis in mind,

although the general methodology and its key-findings can be applied to various other implications.
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Figures

Figure 1. Workflow designed to detect, select, and test molecular targets and drugs for 
repurposing.
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Figure 2. Single-cell expression analysis reveals differences between healthy macrophages and

cancer-associated macrophages. A) Heatmap of Top20 differentially expressed genes. While the

upregulated genes of the healthy joint macrophages (CTRL) group are also widely expressed in the

TAM group, the top 20 genes upregulated in the TAM group show no such expression in the CTRL

group. This indicates a specialized or generally more active phenotype of TAMs compared to the

healthy  subset.  B)  Gene  expression  of  the  8  targets  selected  for  pharmacophore  modeling.

PTGS2,  NLRP3,  and  GSTP1  show  a  distinct  TAM-exclusive  expression.  In  contrast,  YBX1,

NFKB1, and CASP1 are active to at least some extent in TAM and CTRL cells. This hints towards a

rather homeostatic role of the latter genes.  
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Figure 3. Identification of a core interaction network of tumor-associated macrophages. A) The

workflow followed for core network extraction. B) TAM network. The TAM network consists of

3863 nodes  and 9073 edges.  It  is  based  on literature,  database  knowledge about  interactions  of

biological entities in macrophages, and bulk RNA-Seq expression data.  C) Gene-set enrichment

analysis of differentially expressed genes with nodes in the network. Input genes for the GSEA

were derived from the overlap of differentially expressed genes from the single-cell data and the

nodes  in  the  TAM network (n=1367).  Each  grid  in  the  heat  map  represents  whether  a  gene  is

enriched in a phenotype. Only tumor- (red) and macrophage-related (blue) phenotypes were selected

for visualization in the heatmap. In addition, we annotated each phenotype with its odds ratio (odds),

adjusted  p-values  calculated  using  false  discovery  rate  (FDR),  and a  combine  score  (odds  x  [-

log10(FDR)]).  The  bar  plot  showed  the  corresponding  log2FC  of  the  enriched  genes  in  the

phenotypes.  We highlighted NFKB1, NLRP3, and PTGS2 because they are among the eight targets

selected for pharmacophore modeling.  D) TAM core network. The TAM core network consists of

74 nodes and 286 edges.  The nodes were colored according to their differential expression values

(log2FC) derived from the single-cell data analysis. Nodes in grey showed no significant differential

expression. When it comes to the 8 nodes selected for pharmacophore modelling experiments, each

of them was at least slightly upregulated in the TAM group compared to the healthy macrophages.
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Figure  4.  Computational  screening  of  chemical  compounds  to  selected  protein  targets.  A)

Central steps for the molecular docking. B) Exemplary pharmacophore of Clindamycin. C)

Heatmap highlighting drug-target combinations. All drugs that have binding affinities for at least

two proteins among eight selected target proteins are shown. D) Four chemical compounds and

their predicted  CDOCKER energy from revised flexible docking.  CDOCKER energy unit  is

depicted in Kcal/mol. Only Clindamycin and Streptomycin showed suitable affinity values towards

all the four target proteins.
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Figure 5. Docking simulations predicting the binding of Clindamycin (A) and Streptomycin (B)

to Caspase-1. Top: general view of the protein and small molecule interaction. Bottom: detail of the 

binding pocket with molecular bonds highlighted. 
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Figure  6.  Experimental  validation  of  the  predicted  interaction.  A)  In-vitro  experiments  to

verify inhibition of Caspase-1 activation by Clindamycin.  Monocyte derived macrophages were

pretreated  with  (white  circle)  or  without  (red  circle)  Clindamycin  (2h,  10µg/ml).  After  this,

macrophages were treated with LPS (100ng/ml) alone or with LPS and Nigericin (10 µM) for 3

hours.  Supernatants were analyzed by ELISA. Monocyte-derived macrophages were treated with

LPS (100ng/ml,  24h) and Nigericin (10µM, 24h) in the presence or absence of Clindamycin (as

indicated) and cells were analyzed for (B,  C) cytokine secretion (IL1β and IL-18) by ELISA, (D)

Caspase-1 activation by flow cytometry, (E) Caspase-1 activation and cleavage by Western blot or

(F) LDH release by ELISA.
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