

1 **The integration of network biology and pharmacophore modeling**
2 **suggests repurposing Clindamycin as an inhibitor of pyroptosis via**
3 **Caspase-1 blockage in tumor-associated macrophages**

4 Adrian Weich^{†,1,2,3}, Cindy Flamann^{†,4}, Johannes Berges⁴, Krishna Pal Singh⁵, David Chambers⁶, Xin
5 Lai^{1,2,3,8}, Olaf Wolkenhauer⁴, Carola Berking^{1,2,3}, Gerhard Krönke^{6,7}, Shailendra Gupta⁵, Heiko
6 Bruns^{§,4} and Julio Vera^{§,1,2,3*}

7

8 **Affiliation**

9 ¹ Department of Dermatology, Uniklinikum Erlangen and Friedrich-Alexander Universität (FAU)
10 Erlangen-Nürnberg, 91054 Erlangen, Germany

11 ² Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-
12 EMN), 91054 Erlangen

13 ³ Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen

14 ⁴ Department of Internal Medicine 5, Hematology and Oncology, Uniklinikum Erlangen, Friedrich-
15 Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany

16 ⁵ Department of Systems Biology and Bioinformatics, Universität Rostock, Rostock, Germany

17 ⁶ Department of Internal Medicine 3, Rheumatology, Uniklinikum Erlangen, Friedrich-Alexander
18 Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany

19 ⁷ Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin,
20 Germany

21 ⁸ MEDI, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland

22 [†] Equal first authors

23 [§] Equal last authors

24

25 **Corresponding Author:** Laboratory of Systems Tumor Immunology, Dept. Dermatology,
26 Univerklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Hartmannstr. 14,
27 91052, Erlangen, web: www.jveralab.net, email: julio.vera-gonzalez@uk-erlangen.de

28

29 **Keywords:** drug repurposing, uveal melanoma, immune check point therapy resistance, single-cell-
30 RNA-Seq, tumor-associated macrophages, pyroptosis, Caspase-1, Clindamycin, Streptomycin,
31 immunomodulation

32 **Funding statement**

33 JV was supported by the Manfred-Roth-Stiftung, the Forschungsstiftung Medizin Uniklinikum
34 Erlangen, the Hiege-Stiftung – Die Deutsche Hautkrebsstiftung, the German Ministry of Education
35 and Research (BMBF) in projects e:Med MelAutim [01ZX1905A] and KI-VesD [161L0244A], and
36 EU through the Horizon 2020 project CANCERNA, and the Masterplan Bayern Digital II [MED-
37 1810-0023]. OW was supported by the German Ministry of Education and Research (BMBF) in
38 projects e:Med MelAutim [01ZX1905B]. XL acknowledged the support from the Johannes and
39 Frieda Marohn Foundation. HB was supported by the German Cancer Aid (Deutsche Krebshilfe,
40 grant 70114489) and the German Research Foundation (DFG, Mo. 324392634, TRR 221, B12). CB
41 was supported by the Matthias-Lackas-Stiftung and Dr. Helmut Legerlotz Stiftung.

42

43

44 **Contributions**

45 JV and AW developed the concept. DC and AW performed the network reconstruction under the
46 supervision of JV and GK. AW performed the sequencing data analysis and core network detection
47 under the supervision of JV and XL. KPS performed the pharmacophore modelling and docking
48 simulations under the supervision of SG. CF and JB conducted the *in vitro* experiments under the
49 supervision of HB. JV, AW, HB, KPS, and SG drafted the manuscript. All the authors edited,
50 corrected, and approved the submitted draft.

51

52

53 **Abbreviations**

54 UM Uveal melanoma

55 ICI Immune checkpoint inhibitor

56 TAM Tumor-associated macrophages

57 LDH Lactate dehydrogenase

58 scRNA-Seq single-cell RNA Sequencing

59 FC Fold-change

- 60 TPM Transcripts per million
- 61 BC Betweenness centrality
- 62 D Degree
- 63 NCBI National Center for Biotechnology Information
- 64 GEO Gene Expression Omnibus
- 65 HRP Horseradish peroxidase

67 Abstract

68 **Background:** Uveal melanoma (UM) is a highly malignant intraocular tumor with a poor prognosis
69 and response to therapy, including immune checkpoint inhibitors (ICIs), after the onset of liver
70 metastasis. The metastatic microenvironment contains high levels of tumor-associated macrophages
71 (TAMs) that correlate positively with a worse patient prognosis. We hypothesized that one could
72 increase the efficacy of ICIs in UM metastases by immunomodulating UM-associated macrophages.

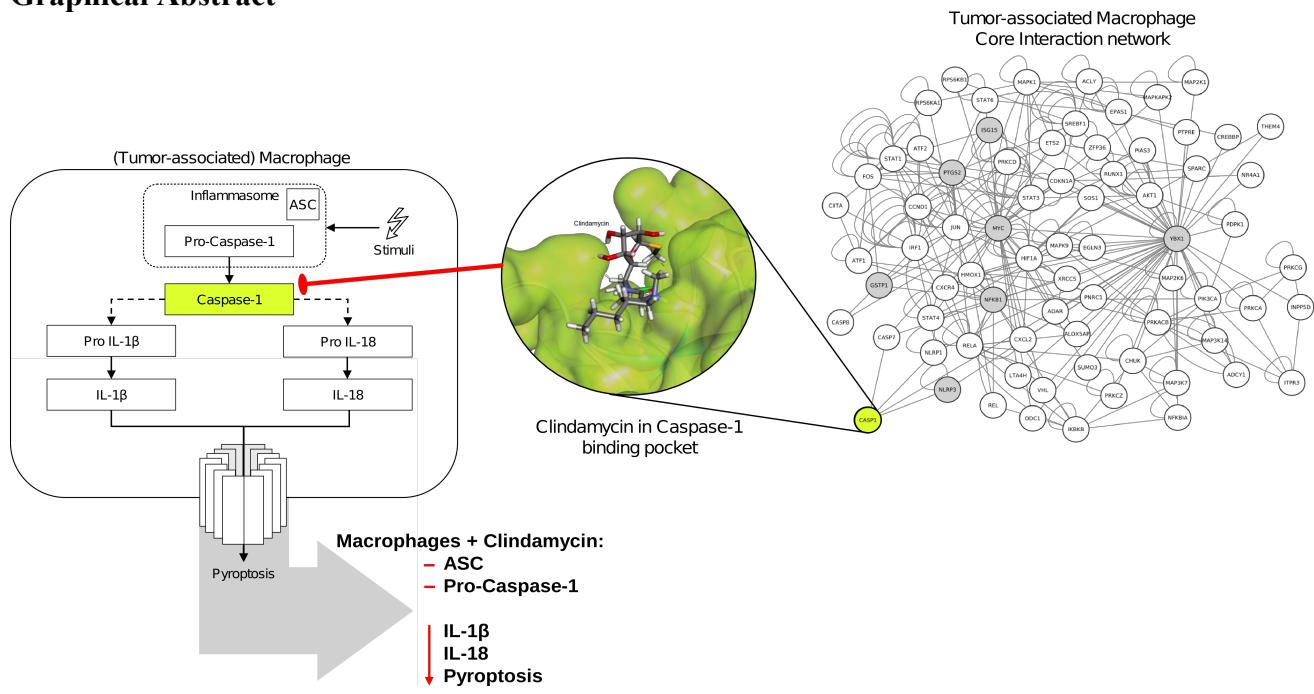
73 **Methods:** To identify potential targets for the immunomodulation, we created a network-based
74 representation of the biology of TAMs and employed (bulk and single-cell) differential gene
75 expression analysis to obtain a regulatory core of UM macrophages-associated genes. We utilized
76 selected targets for pharmacophore-based virtual screening against a library of FDA-approved
77 chemical compounds, followed by refined flexible docking analysis. Finally, we ranked the
78 interactions and selected one novel drug-target combination for *in vitro* validation.

79 **Results:** Based on the generated TAM-specific interaction network (3863 nodes, 9073 edges), we
80 derived a UM macrophages-associated regulatory core (74 nodes, 286 edges). From the regulatory
81 core genes, we selected eight potential targets for pharmacophore-based virtual screening (YBX1,
82 GSTP1, NLRP3, ISG15, MYC, PTGS2, NFKB1, CASP1). Of 266 drug-target interactions screened,
83 we identified the interaction between the antibiotic Clindamycin and Caspase-1 as a priority for
84 experimental validation. Our *in vitro* validation experiments showed that Clindamycin specifically
85 interferes with activated Caspase-1 and inhibits the secretion of IL-1 β , IL-18, and lactate
86 dehydrogenase (LDH) in macrophages after stimulation. Our results suggest that repurposed
87 Clindamycin could reduce pyroptosis in TAMs, a pro-inflammatory form of programmed immune
88 cell death favouring tumor progression.

89 **Conclusion:** We were able to predict a novel Clindamycin-Caspase-1 interaction that effectively
90 blocks Caspase-1-mediated inflammasome activity and pyroptosis *in vitro* in macrophages. This
91 interaction is a promising clinical immunomodulator of the tumor microenvironment for improving
92 ICI responsiveness. This work demonstrates the power of combining network-based transcriptomic
93 analysis with pharmacophore-guided screening for *de novo* drug-target repurposing.

94

95 Graphical Abstract



96
97

98 **Introduction**

99 **The potential of immunomodulation of tumor-associated macrophages in uveal melanoma**

100 Macrophages are among the most prevalent tumor-infiltrating immune cells. They have been
101 observed to alter the effects of immune-checkpoint inhibition (ICI) therapy [1,2]. Uveal melanoma
102 (UM), the most common ocular malignancy in adults, has a poor prognosis due to its liver metastases
103 being extremely refractory to any therapy, including combined ICI therapies [3]. Since tumor-
104 associated macrophages (TAMs) alter ICI responsiveness in other tumor entities, they may exert a
105 similar effect in the metastatic UM. Moreover, TAMs in UM promote disease progression, and high
106 levels of TAMs positively correlate with poorer prognosis and shorter survival of patients [4,5].
107 Thus, we hypothesize that immunomodulation of TAMs in UM can be employed to remodel the
108 tumor microenvironment and help increase ICI responsiveness in UM. Recent findings support this
109 hypothesis by showing that IL-1 β , a central effector molecule following macrophage activation,
110 drives pancreatic ductal adenocarcinoma growth, and its inhibition lowers inflammatory levels [6].
111 To explore this hypothesis, we developed a computational model of TAMs that can systematically
112 identify important TAM regulatory factors exerting tumor-critical functions. This approach can
113 potentially find therapeutic targets for the immunomodulation of TAMs.

114 **Computational Drug Repurposing**

115 We propose drug repurposing, i.e., the use of existing drugs for a clinical purpose different from
116 what they were initially approved for, to therapeutically influence the identified targets. With drug
117 repurposing, one can utilize prior information about the biodistribution and toxicity of existing drugs
118 to speed up their re-utilization and reduce the time from discovery to clinical approval [7,8]. Drug
119 repurposing is also aligned with the procedure followed by molecular tumor boards with patients not
120 responding to standard-of-care therapies. Traditionally, drug repurposing is often investigated
121 utilizing systematic *in vitro* screening of drugs [9]. Many of the successfully repurposed drugs have
122 been used on their original molecular target but for a different clinical condition [8]. However, one
123 can repurpose drugs to new molecular targets utilizing computational biology. Goody and co-
124 workers, for example, combined docking simulation-based screening of an FDA-approved molecule
125 library and *in vitro* experiments to repurpose Argatroban to interfere with the interaction between
126 metastasis-associated protein 1 (MTA1) and the cancer transcription factor E2F1, a molecular target
127 unknown for this drug [10].

128 The patient -omics data analysis can speed up drug repurposing [11]. Cancer proteins are not isolated
129 but belong to large gene and protein networks. Thus, one can combine -omics data and network
130 biology algorithms to select protein targets for drug repurposing [12,13]. Here, we present an

131 integrative computational workflow that combines transcriptomic data and network-driven selection
132 of proteins as molecular targets with pharmacophore modelling of an FDA-approved drug library to
133 repurpose drugs for them. We deployed the workflow using the targeting of TAMs in UM as a case
134 study, although the methodology and key results are not limited to this tumor entity.

135 Further, we utilized *in vitro* experiments to validate the predictions. This enabled us to discover a
136 novel interaction between the antibiotic Clindamycin and activated Caspase-1, which harbors the
137 potential to inhibit the secretion of pro-inflammatory cytokines like IL-1 β to the macrophage-
138 surrounding environment, thereby preventing pyroptosis, a pro-inflammatory form of programmed
139 immune cell death. [14].

140 Materials and Methods

141 **Workflow.** To repurpose drugs to target tumor-associated macrophages (TAMs), we implemented
142 the following workflow (Figure 1):

143 1. **TAM network construction:** We collected bulk RNA sequencing data and signaling path-
144 way data from public repositories and the literature. The latter was used to construct a regula-
145 tory network of biological interactions, while the former was used to achieve TAM-speci-
146 ficity via projecting the gene expression data onto the respective network nodes.

147 2. **Core network detection:** We extracted regulatory motifs from the network and ranked them
148 based on their potential importance for the TAMs. Scoring parameters were network features
149 (node degree, betweenness centrality) and differential expression data derived from publicly
150 available single-cell RNA-Seq (scRNA-Seq) of UM-associated macrophages and healthy
151 control macrophages.

152 3. **Docking simulations:** After selection of potential targets from the core network, we gener-
153 ated pharmacophore models of the respective proteins and performed virtual screening of
154 FDA-approved drugs. For a selection of high-affinity candidates, we applied refined flexible
155 docking with their potentially binding chemical compounds.

156 4. **Validation experiments:** We performed *in vitro* validation experiments using macrophages
157 to validate one selected completely novel drug-target interaction.

158 In the following, one can find a detailed explanation of the individual steps in the workflow.

159 **Data Collection.** We obtained the different sequencing datasets from the GEO database. The data
160 used for the network specification consisted of 12 bulk RNA sequencing samples (GSE117970) of
161 macrophages associated to breast or endometrial cancer [15]. The data used for the differential ex-
162 pression analysis consisted of single-cell RNA sequencing results of 8 primary and 3 metastatic
163 uveal melanoma samples (GSE139829, [16] and a collection of samples from healthy joint
164 macrophages (GSE134691, [17].

165 **Differential Expression.** Following the analysis workflow of the original publication, we combined
166 8 primary and 3 metastatic tumor samples in R (4.05) and aggregated them into a Seurat object with
167 the “min.features” option set to 120 (Seurat V3) [18,19]. To extract only the TAMs from the Seurat

168 object, we used the “Subset” function with the macrophage identifiers CD68, CD163, and CD14,
169 each showing an expression greater than 1. These high criteria were used to reduce the false positive
170 cells in the data, thereby assuring that the cells selected were true macrophages and avoiding
171 contamination from other cell types. We then combined the TAMs subset with the healthy joint
172 macrophages in the same Seurat object using the “merge” function. We set the identities of the
173 TAMs and the healthy joint macrophages to “ident.1” and “ident.2”, respectively. We considered
174 cells with more than 25% of all features being mitochondrial genes contamination and discarded
175 them. After scaling, normalization, and principal component analysis using standard procedures, we
176 performed batch correction using harmony [20]. The impact of the batch correction is illustrated in
177 Figure S1. For the sets of cells identified in the Seurat object, we performed the differential
178 expression analysis utilizing the “FindMarkers” function. We included only genes that were at least
179 expressed by some cells of both conditions with “pct.1 > 0” and “pct.2 > 0” (Pct.1: percentage of
180 cells in group 1, TAMs, expressing a specific gene). For these genes, we further selected the genes
181 that have an adjusted p-value < 0.05 (Bonferroni correction). We exported the significant genes and
182 their average \log_2 fold-change ($\log_2\text{FC}$) values for their use in the core network extraction. The plots
183 were generated using Seurat’s “DimPlot”, “FeaturePlot”, and “DoHeatmap” functions.

184 **Network construction.** The TAM network is based on the previously published macrophage
185 network by Wentker *et. al* [21]. As this network only displays the M1-like polarization type of
186 macrophages and TAMs are known to play a bilateral role in cancer, we extended the network with
187 M2-like macrophage behavior [22–24]. To this end, we manually queried the NCBI’s PubMed
188 archive for terms concerning the M2-like macrophage phenotype, including “M2 macrophage
189 polarization”, “alternative activation of macrophages”, and “anti-inflammatory macrophages”. We
190 also browsed the literature for pathways, proteins, genes, with a focus on cytokine production or
191 transcription factor regulation. This information was added to the existing macrophage map using
192 CellDesigner (v4.4.2) [25,26], and each new interaction was annotated utilizing CellDesigner’s
193 MIRIAM [27]. We separately annotated all factors involved in the interactions: genes were annotated
194 with Ensembl IDs [28], proteins with UniProt IDs [29], microRNAs with miRbase IDs [30], and
195 simple molecules and ions with ChEBI IDs [31]. We used IDs from either mouse or human
196 depending on the organism described in the corresponding literature. The two organism-
197 specifications were later collapsed into human-only by using the biomaRt package (version 2.56.0).

198 Next, we extended the network automatically with information taken from miRTARBase (version
199 6.1) [32], miRecords (version 4.5) [33], HTRIdb (version 1) [34], and TRANSFAC (version 2015.1)
200 [35] using an inhouse tool named miRNExpander (<https://github.com/marteber/miRNExpander>). To

201 this end, we transformed the network into a Graph Modelling Language (GML) and continued
202 working with the expanded network using Cytoscape (v3.8.0) [36].

203 We specified the expanded macrophage network to a TAM network by pruning it with RNA
204 sequencing data from 12 samples, derived from breast and endometrial cancer associated
205 macrophages (GSE117970). To this end, we combined the RNA-Seq data in R (4.0.5) and
206 transformed the counts to transcripts per million (TPM) using Ensembl transcriptome as transcript-
207 length reference (version GRCh37.87). We calculated the average TPM value of a gene and added it
208 to the expanded network. The restrictions for the preservation of a node were set to an average TPM
209 of at least 10 and a node degree of at least one. We saved the pruned network as a Cytoscape file and
210 exported a list of its nodes for its perusal. We added to the network the significant log2FC values
211 derived from the single-cell uveal melanoma TAMs data. The obtained network can be browsed and
212 downloaded from www.vcells.net/TAM.

213 **Gene set enrichment analysis.** We conducted gene set enrichment analysis (GSEA) using EnrichR
214 [37] with the Mammalian Phenotype Ontology database [38] and the genes from the differential
215 expression analysis belonging to the TAM network. The resulting tabular data was visualized in R
216 using ggplot2 and ComplexHeatmap [39].

217 **Topological Features and Motif detection.** We calculated the networks topology features using the
218 built-in Cytoscape “Analyzer” [40]. Two network topological features were especially interesting:
219 the node degree or number of node interactions, and the betweenness centrality, which indicates how
220 many shortest pathways include the node considered. We added these metrics to the network
221 annotation. Further, we queried the TAM network for regulatory motifs using the Cytoscape app
222 “NetMatchStar” [41]. We decided to include 2-edges-2-nodes feedback loops, 3-edges-3-nodes
223 feedback loops, 3-edges-3-nodes feedforward loops, 4-edges-3-nodes feedback loops, 4-edges-3-
224 nodes feedforward loops, 4-edges-4-nodes feedback loops, and 4-edges-4-nodes feedforward loops.
225 The same strategy was used to identify network motifs in our previous publication [42].

226 **Motif ranking.** To detect the most important nodes and their interactions, we calculated a weighted
227 ranking score of the identified motifs with the following equation:

228
$$Score_i = w_1 \cdot FC_i + w_2 \cdot BC_i + w_3 \cdot D_i$$

229 The score is based on the method used in Khan *et al.* [43]. For each motif i , the score is calculated
230 with different weight settings for w_1 , w_2 , and w_3 that define the importance of the three ranking factors.
231 These factors are: a) FC_i is the average log₂FC expression in the scRNA-Seq from UM TAMs across

232 the nodes forming the motif i ; b) BC_i is the average betweenness centrality of the motif i 's nodes; and
233 c) D_i is their average node degree. The weighting factors sum up to one and w_1 was fixed to 0.5 to
234 prioritize motif expression when scoring motifs. We set the values of w_2 from 0.05 up to 0.45 in 0.05
235 iterative steps and the values of w_3 result from the calculation $w_3 = 0.5 - w_2$. We calculated the motif
236 scores of each motif i for each combination of weighting factors. Next, we pareto-optimized the
237 different scores of the same motifs with the “psel” method using the R package rPref (version 1.3)
238 [42,43].

239 **Core Extraction.** We considered the components of the top 100 highest scoring motifs to be the core
240 nodes [42,43]. Next, we extracted the core nodes and their interactions from the TAM network to
241 create a core network, which can be browsed and downloaded from www.vcells.net/TAM

242 **Target Selection.** We used a Min-Max-normalization metric to give us an idea about the relevance
243 of each node in the core network:

$$244 \quad Score_i = \frac{D_i - \min(D)}{\max(D) - \min(D)} + \frac{BC_i - \min(BC)}{\max(BC) - \min(BC)} + \frac{FC_i - \min(FC)}{\max(FC) - \min(FC)}$$

245 The score is based on the degree (D), betweenness centrality (BC), and differential expression (FC)
246 of each node. We derived the topological features, namely degree and betweenness centrality from
247 the core network, whereas we preserved the differential expression values from the TAM network.
248 We used the ranking table to select 8 targets for pharmacophore modeling while already accounting
249 for experimental suitability.

250 **Pharmacophore modeling and *in-silico* screening of drug library:** We retrieved the 3D structures
251 of the selected protein targets from the RCSB protein database (www.rcsb.org/pdb; PDB ID: 3QF2,
252 5X79, 1IBC, 3GUT, 6LMR, 3SDL, 5F1A; MYC via homology model). To each of them, we applied
253 standard protein-preparation protocols of the Biovia Discovery Studio 2022 (DS 2022) to prepare
254 them for pharmacophore generation. In this method, the features present in the active site of a protein
255 act as a potential chemical fingerprint for drug screening. We used the ‘Edit and Cluster Features
256 Tool’ of DS 2022 to generate the pharmacophore features from each active site of the proteins,
257 including features like "Hydrogen Bond Donors and Acceptors" and "Hydrophobic". We considered
258 the excluded volume constraints to the best-selected pharmacophore model to highlight potentially
259 forbidden sites for the drug molecules during the screening process. For the pharmacophore model
260 screening, we utilized FDA-approved drugs in the Zinc15 database [44]. All the screened drugs were
261 arranged in decreasing order of their FIT score, which represents how accurately a drug fits into the
262 binding site. For each of the target proteins, we considered drugs that have a FIT value of more than

263 1. Afterwards, we searched for commonly screened drugs that could serve as potential targets for
264 multiple proteins.

265 **Molecular docking.** To further refine the prediction of the most promising drugs interacting with
266 CASP1, YBX1, ISG15, and PTGS2, we performed a flexible docking on the binding site of the
267 proteins. To this end, we extracted the binding site of the proteins from the experimental literature
268 [45–48] and performed the flexible docking using the CDOCKER program of DS 2022. We
269 generated 10 conformations for each of the drug–protein target combinations, which were ranked
270 based on CDOCKER-estimated energy.

271 **Preparation of macrophages.** We isolated human peripheral blood mononuclear cells (PBMCs)
272 from freshly drawn peripheral blood of healthy donors (University Hospital of Erlangen, Department
273 of Transfusion Medicine and Haemostaseology, GER) by density gradient centrifugation using hu-
274 man Pancoll (1.077 g/ml) (PANTM Biotech, Aidenbach, GER) and a subsequent buffy coat purifica-
275 tion. To generate macrophages, we isolated monocytes by adherence to polystyrene in CELLSTAR®
276 cell culture flasks (Greiner Bio-One, Kremsmünster, AUT) and cultured in the presence of Leuco-
277 max® GM-CSF (500 U/μl) (Novartis Pharma, Nürnberg, GER). After 6-7 d of culture, macrophages
278 were detached with EDTA (1 mM) (Sigma-Aldrich®, München, GER).

279

280 **ELISA.** We examined cell culture supernatants, serum levels for human IL-1 β and IL-18 with
281 ELISA kits from R&D Systems® (Minneapolis, USA) according to the manufacturer's instructions.

282 **LDH release assay.** We plated macrophages in 96-well culture at a concentration of 5×10^4
283 cells/well and pretreated them with or without lipopolysaccharides (LPS, 100ng/ml) for 24 hours.
284 Subsequently, we treated macrophages with Nigericin (10μM) in the presence or absence of
285 Clindamycin (10μg/ml) overnight. LDH released in the supernatant was detected using a cytotoxicity
286 detection kit (Roche) according to the manufacturer's instructions. We used data on detected LDH to
287 calculate the pyroptotic rate of treated macrophages based on the following equation: [(experimental
288 release – spontaneous release)/(maximum release – spontaneous release)] × 100, where spontaneous
289 release is from the cytoplasm of untreated macrophages, and maximum release is that obtained by
290 lysis of macrophages with a solution of 0.1% Triton X-100.

291 **FLICA® 660 Caspase-1 assay.** We detected Caspase-1 activity using the FLICA® 660 Caspase-1
292 assay kit from ImmunoChemistry Technologies (Bloomington, USA) according to the
293 manufacturer's instructions. We seeded macrophages at 1×10^6 /ml in polystyrene Falcon® round
294 bottom tubes (Corning® LifeSciences, Corning, USA) for flow cytometry. Cells were LPS-primed

295 (100 ng/ml, 24 h) and overnight-incubated with 10 μ M Nigericin in the presence or absence of
296 Clindamycin (10 μ g/ml or 25 μ g/ml). We washed the cells with PBS and incubated with the FLICA®
297 660-YVAD-fmk reagent (1:150, 30 min) at 37 °C and 5 % CO₂. As assessed by flow cytometry,
298 Caspase-1 activation was defined as increase in red fluorescence.

299 **Western blot analysis.** We seeded macrophages at 2 \times 10⁶/ml in polystyrene Falcon® 24 well plates
300 (Corning® LifeSciences, Corning, USA), LPS-primed (1 μ g/ml, 3 h) and overnight-incubated with
301 10 μ M Nigericin in the presence or absence of Clindamycin (10 μ g/ml or 25 μ g/ml). We prepared cell
302 lysates by direct lysis in 2 % (w/v) SDS lysis buffer (5 mM EDTA, 50 mM Tris/HCl, 150 mM NaCl,
303 2.2 % (wt/vol) SDS) supplemented with complete™ EDTA-free (Roche Diagnostics, Mannheim,
304 GER) as protease inhibitor. We removed cell debris by centrifugation (21,382 xg, 15 min, 4 °C) and
305 the concentration of total protein in cell extracts was determined using the Qubit® protein assay kit
306 and the Qubit® 3.0 fluorometer (Thermo Fisher Scientific™). Cell culture supernatants were used
307 purely. We suspended protein samples in 4 \times Laemmli sample buffer (278 mM Tris/HCl, 355 mM 2-
308 mercaptoethanol, 0.02 % (wt/vol) bromophenol blue, 4.4 % (wt/vol) lithium dodecyl sulfate, 44.4 %
309 (vol/vol) glycerol, pH (HCl) 6.8) (Bio-Rad Laboratories, München, GER) and boiled for 10 min at
310 95 °C. We separated the protein content of cell lysates, supernatants and the Precision Plus Protein™
311 WesternC™ standard (Bio-Rad Laboratories, München, GER) by SDS-PAGE (10 %, 15 %, 90 μ g)
312 and transferred onto nitrocellulose membranes (0.2 μ m) (GE Healthcare Life Sciences, Chalfont St
313 Giles, UK) using the semi-dry TransBlot® Turbo™ transfer system (Bio-Rad Laboratories,
314 München, GER). We blocked membranes in 5 % (wt/vol) dried milk in TBS-T (100 mM Tris/HCl,
315 150 mM NaCl, 0.1 % (vol/vol) Tween®-20) for 1 h at room temperature. Membranes were
316 overnight-incubated with primary antibodies diluted in 5 % (wt/vol) dried milk in TBS-T at 4 °C.
317 Subsequently, we incubated membranes with the appropriate HRP-conjugated secondary antibody
318 diluted in 5 % (wt/vol) dried milk in TBS-T for 1 h at room temperature. We detected proteins by
319 chemiluminescence using the SuperSignal® ELISA femto maximum sensitivity substrate (Thermo
320 Fisher Scientific™, Waltham, USA) according to the manufacturer's instructions and the
321 Amersham™ Imager 600 (GE Healthcare Life Sciences, Chalfont St Giles, UK). We stripped the
322 membranes using the Restore™ western blot stripping buffer (Thermo Fisher Scientific™, Waltham,
323 USA) before being re-examined. Primary antibodies used were β -actin (4967, Cell Signaling), ASC
324 (AL177, AdipoGen/Biomol, 1:1000) (1:2,500) and Caspase-1 (clone: D7F10, Cell Signaling).
325 Secondary HRP-conjugated antibodies used were anti-mouse IgG (7076, Cell Signaling) and anti-
326 rabbit IgG (7074) (1:2,500) (Cell Signaling Technology®, Cambridge, UK).

327 **Results**

328 **The combination of scRNA-Seq, bulk RNA-Seq, and network analysis generates a core**
329 **network of potential molecular targets linked to immunomodulation and depletion of TAMs**

330 We hypothesize that immunomodulation of TAMs in UM is a key for remodeling the tumor
331 microenvironment which may ultimately help to increase ICI responsiveness in UM. To find
332 molecular targets for immunomodulation in UM-associated macrophages we (a) constructed a
333 comprehensive signaling and gene network reflecting the biology of TAMs, (b) integrated in the
334 network nodes RNA-Seq data from TAMs and quantified their topological importance, and (c) used
335 single-cell data and topological features to isolate a core network including the most connected and
336 differentially expressed genes, and select from this core promising, druggable proteins (Figure 3A).

337 Precisely:

338 **a) TAM network reconstruction.** To build a network representative of TAM biology, we expanded
339 a previously published macrophage network by adding genes and pathways linked to the anti-
340 inflammatory polarization of macrophages. This manual curation resulted in a network with 1318
341 nodes and 1014 edges. Next, we utilized a computational pipeline to further extend the network with
342 molecules and interactions taken from protein-protein, transcriptional, and miRNA regulation
343 databases. To remove irrelevant or poorly expressed genes from the network, we only conserved
344 genes with an average TPM of at least 10 in RNA-Seq TAM data and a node degree of at least one in
345 the network. This way, we obtained a fully-connected TAM network with 3863 nodes and 9073
346 edges (Figure 3B).

347 **b) Integration of scRNA-Seq data and topological features in the TAM network.** To quantify the
348 importance of each node in the TAM network, we computed the topological features node degree
349 and betweenness centrality. To fit the analysis as much as possible to our case study of TAMs in
350 UM, we obtained scRNA-Seq datasets from primary and metastatic UM (GSE139829) and processed
351 them utilizing Seurat [16]. To extract the TAMs from the Seurat object, we selected the individual
352 cells that show an expression greater than one for the known macrophage surface markers CD68,
353 CD163, and CD14. For the purpose of comparison and differential expression analysis, we utilized
354 scRNA-Seq data sets from healthy macrophages (GSE134691). To allow the data integration, we ap-
355 plied scaling, normalization, batch correction, and performed differential expression analysis and p-
356 value correction. Dimensionality reduction plots can be found in Figure S1. Following this ap-
357 proach, we extracted a group of TAMs consisting of 888 cells and combined it with a second group
358 of healthy macrophages including 7542 cells (Figure S1C).

359 The Seurat object measured 12172 features, of which 1671 were differentially expressed. We fo-
360 cused the analysis on the 3863 genes included in the TAM network as nodes, and identified 1367
361 genes that were differentially expressed with at least one cell per group expressing the respective
362 gene feature, with 688 genes upregulated in the TAM group. A comparison of the transcriptomic pat-
363 terns between the top 20 differentially expressed genes shows a clear upregulation in the TAM group
364 of inflammatory proteins like IL-1 β , NR4A2-3, TNFAIP3, or NLRP3, which are not similarly ex-
365 pressed in the healthy macrophage group (Figure 2A). TGF β 1, a gene known to play a role in inflam-
366 mation and tissue regeneration, is expressed in both TAMs and healthy macrophages, albeit at differ-
367 ent intensities [49,50]. These observations are in line with the generally upregulated phenotypes de-
368 rived from the GSEA of the differentially expressed genes (n=1367) (Figure 3C). On one hand, we
369 found dozens of enriched phenotypes related to abnormal physiology of macrophages including
370 phagocytosis, chemotaxis, morphology, and differentiation (Figure 3C). On the other hand, we found
371 several enriched phenotypes associated to the tumor microenvironment, including tumor necrosis
372 factor secretion related with inflammation-associated carcinogenesis and tumor vascularization (Fig-
373 ure 3C). The distribution of all enriched phenotypes by the size of their gene sets can be found in
374 Figure S2.

375 **c) Core network extraction and target selection.** We assumed that regulatory motifs like feedback
376 and feedforward loops play a pivotal role in the (de)regulation of gene networks and isolated a core
377 network composed of differentially expressed, highly connected and intertwined regulatory motifs.
378 To this end, we first detected the 2-4 nodes feedback and feedforward loops contained in the network
379 and obtained 9035 motifs (Table S1). We quantified their importance in terms of the topological
380 features average node degree (D_i) and betweenness centrality (BC_i) of the nodes belonging to the
381 motif. Also, we computed the average \log_2 fold change expression across the nodes forming each
382 motif when comparing scRNA-Seq from TAMs and healthy macrophages (FC_i). We combined these
383 metrics into a computational score and used it to generate a core network containing the Pareto-
384 optimized, top ranked network motifs (see Material and Methods). We obtained a core network with
385 74 nodes and 286 edges (Figure 3D). We generated a ranking of the most important nodes regarding
386 differential expression between healthy and TAMs and their importance for the core network (see
387 Material and Methods and Table S2). We combined the ranking information with foreseen
388 experimental validation suitability and thereby selected eight potential drug targets among the high-
389 scoring candidates for further investigations, namely: YBX1, MYC, GSTP1, PTGS2, NLRP3,
390 NFKB1, ISG15, and CASP1. When we inspected the scRNA-Seq data, we found that these genes are
391 to some extent expressed in both cell types, but with a higher intensity in the TAM group (Figure

392 2B). For instance, YBX1 shows a rather universal expression across all cells, whereas GSTP1 seems
393 to be rather TAM-exclusively expressed.

394

395 **Pharmacophore modeling and docking simulations of FDA-approved chemical compounds**
396 **suggests Clindamycin and other drugs for their repurposing in TAMs**

397 We wanted to repurpose existing drugs with other indications and known molecular targets to
398 interfere with the eight selected proteins obtained via bulk and single-cell RNA-Seq and network
399 analysis (Figure 4A). To this end, we first retrieved and prepared the 3D structures of the selected
400 protein targets from public repositories and generated a pharmacophore model containing relevant
401 binding pockets for each one of the protein targets (Figure 4B). We screened the pharmacophore
402 models with 1647 FDA-approved chemical-compounds contained in the Zinc15 database [44]. We
403 selected the drug-target interactions with a FIT score higher than one. The virtual screening resulted
404 in 266 predictions across the eight selected target proteins (Table S3). We found 39 drugs that target
405 at least two out of eight selected proteins (Figure 4C). Among them, six drugs have affinities towards
406 four or more target proteins. We further filtered the virtual screening results for the largest common
407 drug-target sets and identified four drugs (ZINC000003830943; ZINC000003830944;
408 ZINC000003978028 (a.k.a. Clindamycin); and ZINC000008214681 (Streptomycin)) predicted to
409 bind to four target proteins (CASP1; YBX1; ISG15; and PTGS2) (Figure 4D).

410 To further confirm the predicted interactions between these drugs and the four proteins, we extracted
411 the detailed molecular structure of the protein binding sites from the experimental literature,
412 performed flexible docking simulations of the drugs in the binding sites, and ranked the drug-protein
413 interactions based on their calculated CDOCKER energy (Figure 4D). To this end, we considered the
414 top ten conformations for each of the drug–protein combinations. Our results suggest that
415 Clindamycin and Streptomycin have better binding affinity with all the analyzed protein targets than
416 the other two drugs considered for refined docking simulations (Figure 5). Figure 5A contains
417 detailed information concerning the binding simulation of Clindamycin to Caspase-1, one of the
418 most relevant protein targets linking our analysis to the TAMs immunomodulation and depletion
419 (Table S4). Since Clindamycin has not been utilized in the context of cancer therapy and experiments
420 to check its effect on the predicted target were considered feasible, we selected this drug for
421 performing *in-vitro* verification experiments.

422 ***In vitro* experiments confirmed that the drug-repurposing candidate Clindamycin reduces**
423 **macrophage cell death via pyroptosis**

424 Given that a) inflammasomes, and precisely NLRP3, have been implicated in solid tumor
425 progression [51,52], b) NLRP3 is upstream the processing and activation of Caspase-1, and c)
426 Caspase-1 activation or inhibition can be easily measured, we experimentally assessed the effect of
427 Clindamycin on NLRP3-inflammasome activation in human macrophages (Figure 6A). To this end,
428 we treated LPS pre-activated macrophages with Nigericin in the presence or absence of
429 Clindamycin. Nigericin is a microbial toxin that triggers the NLRP3 inflammasome-dependent
430 induction of IL-1 β and IL-18 [53]. After treatment with Nigericin, we observed an increased amount
431 of IL-1 β (LPS: 144 \pm 61 pg/ml vs. LPS + Nigericin: 3722 \pm 748 pg/ml) and IL-18 (LPS: 17 \pm 11 pg/ml
432 vs. LPS + Nigericin: 1084 \pm 212 pg/ml) in the supernatant after 24-hour treatment (Figure 6B). The
433 addition of Clindamycin showed a significant reduction in Nigericin-mediated secretion of IL-1 β
434 (LPS + Nigericin: 3722 \pm 748 pg/ml vs. LPS + Nigericin + Clindamycin: 2115 \pm 961 pg/ml; p=0.006)
435 and IL-18 (LPS + Nigericin: 1084 \pm 212 pg/ml vs. LPS + Nigericin + Clindamycin: 664 \pm 171 pg/ml;
436 p=0.001) (Figure 6C), suggesting that Clindamycin suppresses inflammasome activity.

437 To test whether Clindamycin specifically inhibits Caspase-1, we measured Caspase-1 activation in
438 Nigericin-treated macrophages using FLICA® reagent, a cell-permeant fluorescent-labeled inhibitor
439 binding specifically and covalently to active Caspase-1 [52]. Flow cytometry showed an increase in
440 Caspase-1-positive macrophages after treatment with Nigericin in comparison to only LPS-treated
441 macrophages (Figure 6D). In contrast, we found a dose-dependent reduction in Nigericin-mediated
442 Caspase-1 activation following pretreatment with Clindamycin (up to a 2.5-fold reduction, Figure
443 6D). To verify the observed inhibitory effect of Clindamycin on Caspase-1 activity, we monitored
444 cleavage of Caspase-1 by western blot analysis. Nigericin treatment triggered cleavage of Pro-
445 Caspase-1 to the active form of Caspase-1 (p20, 20 kDa), resulting in an additional band in the
446 Western blot (Figure 6E). In contrast, additional pretreatment with Clindamycin reduced the fraction
447 of active Caspase-1 in a dose-dependent manner. In the same cell lysates, we could not detect any
448 reduction of the adapter molecule ASC (Apoptosis-associated speck-like protein containing a
449 CARD). Given that the adapter protein ASC is upstream of the signaling pathway from Caspase-1
450 and binds directly to Caspase-1 for activation, this suggests that Clindamycin acts directly on
451 Caspase-1.

452 Since treatment with Nigericin results in pyroptosis and Caspase-1 is a key protein for its induction,
453 we speculated that Clindamycin may prevent the triggering of pyroptosis. To test this, we incubated
454 macrophages with Nigericin in the presence or absence of Clindamycin, and measured the
455 concentration of LDH, a marker of pyroptosis, in the supernatant by ELISA after 24 hours (Figure
456 6F). Nigericin treatment resulted in an increased release of LDH (LPS: 0.8 \pm 0.5% vs. LPS +

457 Nigericin: 23±2%). In contrast, additional treatment with Clindamycin significantly reduced LDH
458 release (LPS + Nigericin + Clindamycin: 11±1%; p=0.0013), suggesting that Clindamycin-mediated
459 inhibition of Caspase-1 induces less pyroptosis in macrophages.

460 Discussion

461 TAMs are prominent infiltrating immune cells in UM liver metastases, and their abundance
462 positively correlates with a worse prognosis for patients [4,5]. Apart from that, TAMs are known to
463 affect negatively ICI therapy in other cancer entities [1,2]. Since even combined ICI therapies fail to
464 substantially increase the survival times of UM patients with liver metastases, we hypothesize we
465 may be able to remodel the tumor microenvironment and sensitize metastases for ICI via drug-based
466 immunomodulation of UM-associated macrophages [3]. To circumvent the time-consuming and
467 costly *de novo* design and approval of drugs, we used computational drug repurposing to identify
468 drug-protein interactions for immunomodulation of UM-associated macrophages.

469 **A scRNA-Seq data-driven network analysis identifies molecular targets for immunomodulation**
470 **of TAMs.** In our workflow, we first created a regulatory network involving protein and gene
471 interactions linked to TAM-biology. We generated a network with 3863 genes and 9073 edges. To
472 narrow the network to genes specific for UM, we combined scRNA-Seq data from uveal melanoma
473 TAMs and healthy macrophages and isolated a small, highly-interconnected core network of 74
474 genes. This procedure can be further improved by using a more comprehensive collection of UM-
475 associated macrophages and other tissues of origin for our control macrophages. Since the
476 differential expression is only one factor for the extraction of the core network, we consider our data
477 to be sufficient.

478 We combined quantitative data and expert knowledge to select the protein targets for drug
479 repurposing. One criterion to prioritize targets was the assessment of experimental feasibility,
480 utilized to minimize the potential laboratory work necessary to find effective drug-protein
481 interactions. We selected eight protein targets, namely, YBX1, MYC, GSTP1, PTGS2, NLRP3,
482 NFKB1, ISG15, and CASP1. YBX1 is a DNA and RNA binding protein whose elevated expression
483 is linked with macrophage infiltration and poor prognosis in luminal breast cancer [54]. C-Myc
484 (MYC) is a cell cycle and apoptosis gene known to play a pivotal role in cancer progression in
485 multiple cancers. Pello and coworkers found that the inhibition of c-MYC in myeloid cells hampers
486 the maturation of TAMs and impairs their pro-tumoral activity [55]. GSTP1 is a detoxifying enzyme,
487 and its aberrant expression in breast cancer TAMs promotes IL-6 expression and drug resistance in
488 MCF-7 *in vitro* experiments [56]. PTGS2 is an enzyme acting as dioxygenase or peroxidase, which
489 participates in prostaglandin biosynthesis and inflammation. Li and coworkers found that PTGS2 is
490 connected to the induction and maintenance of the anti-inflammatory M2 polarization in TAMs [57].
491 The NLRP3 inflammasome complex is an upstream activator of NF- κ B signaling-mediated
492 inflammatory response. Lee et al. found an association between the inhibition of the NLRP3

493 inflammasome in macrophages and the suppression of the metastatic potential in melanoma tumor
494 cells [58]. ISG15 is a ubiquitin-like protein interacting with its intracellular target proteins upon
495 activation of interferon signaling. The secretion of ISG15 by tumor cells induces an M2-like
496 phenotype in macrophages and contributes to tumor progression and immunosuppression [59].
497 CASP1 is a caspase that participates in the execution phase of cell apoptosis and is involved in
498 inflammation and cell death. Niu et al. found that Caspase-1 potentiates the pro-tumor action of
499 TAMs [60]. Taken together, we found in the literature evidence of the connection between the
500 selected protein targets and the activity of macrophages and TAMs.

501 **Pharmacophore modelling as a way of speeding up drug repurposing in TAMs.** We decided to
502 interfere with the protein targets utilizing *de novo* drug repurposing, that is, to repurpose drugs to
503 molecular targets other than their initially approved ones. One can expand the pool for potential
504 drugs interfering with the selected molecular targets by considering known interactions from
505 databases like DrugBank [61]. However, repurposing to known protein-drug interactions is often
506 biased towards well-investigated proteins. Combining both approaches could offer the possibility of
507 considering well-known drug-target interactions for thoroughly investigated proteins and *de novo*
508 drug repurposing for less popular ones.

509 We utilized pharmacophore-based analysis of an extensive database of FDA-approved drugs to
510 identify drug-protein interactions. Pharmacophore modelling is a methodology that uses the protein
511 active sites as potential chemical fingerprints for drug screening. This way, one can reduce the
512 computational resources necessary to simulate the binding between the protein target and the drug,
513 making the systematic computational screening of large libraries of active compounds possible. In
514 our case, this resulted in 266 relevant drug-protein interactions, with four drugs being able to bind to
515 four of the eight selected protein targets. We employed flexible docking simulations to further
516 elaborate on the interactions between these more promising four drugs with their target proteins. This
517 procedure is more demanding regarding computational power and manual curation but gives fine-
518 detail predictions for the interactions. Our simulations indicate that two drugs bound significantly
519 better to all the four targets than the others, namely Streptomycin and Clindamycin. Streptomycin is
520 a broad-spectrum antibiotic inhibiting both Gram-positive and Gram-negative bacteria, and its
521 described mechanism of action is the inhibition of bacteria protein synthesis. Clindamycin is an
522 antibiotic with a bacteriostatic effect, used primarily to treat anaerobic infections, whose mechanism
523 of action relies also on bacterial protein synthesis inhibition. Interestingly, in recent times, antibiotics
524 have been proposed as repurposed drugs for cancer, and several clinical trials are investigating their
525 efficacy as anticancer therapy [62]. For experimental validation, we focused on Clindamycin because

526 it is an inexpensive compound, not been tested in the context of cancer, and has not been associated
527 yet with Caspase-1 in the literature.

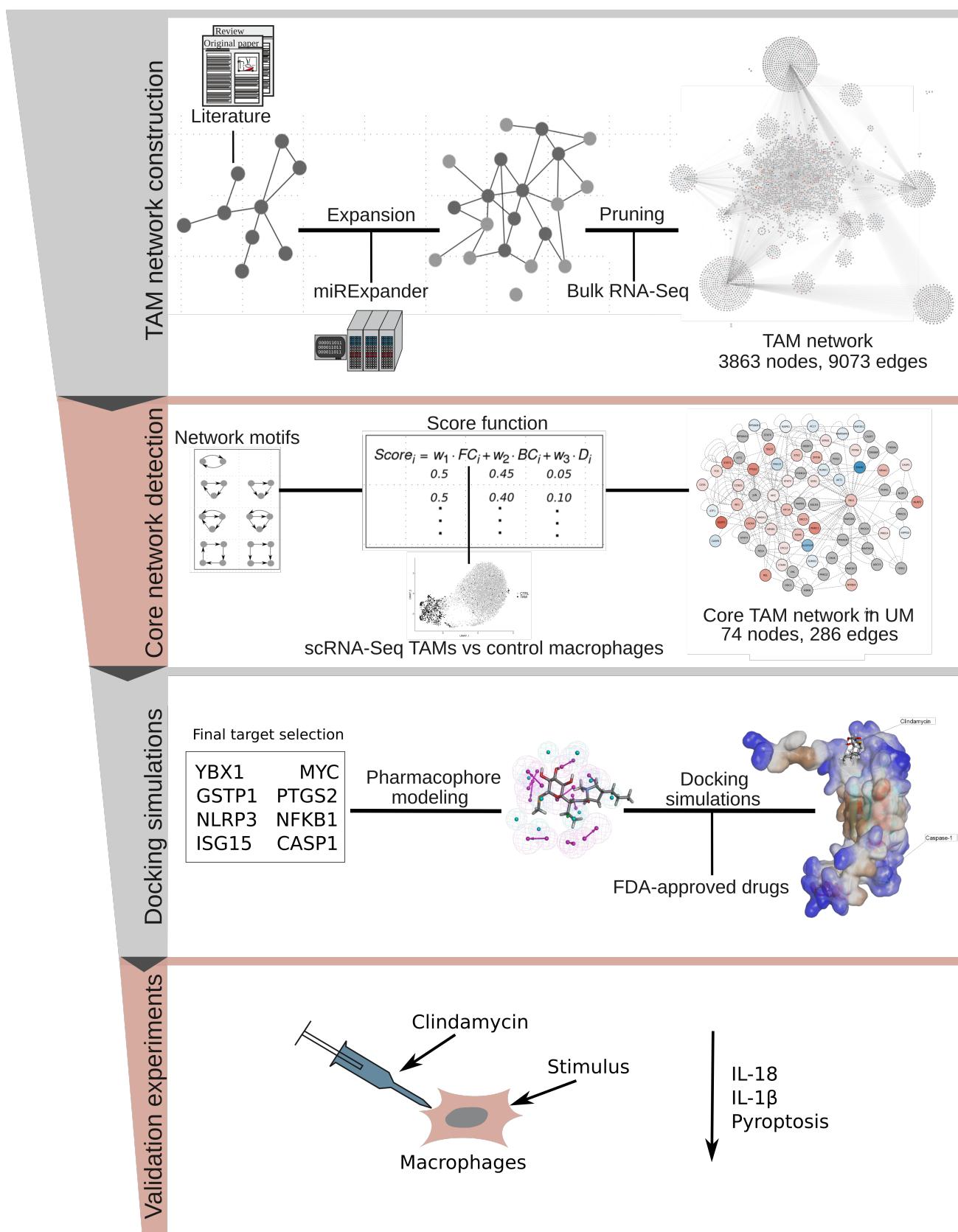
528 ***In vitro* tests confirm the ability of Clindamycin to interfere with the NLRP3/Caspase-1 axis in**
529 **macrophages.** Although our computational analysis indicates that this drug can interact with four
530 of our top target candidates, we focus the experimental investigation on the interaction with Caspase-
531 1 due to its central effect on inflammasome activity. Active inflammasome-carrying TAMs often
532 promote augmented inflammation in the tumor microenvironment [52]. NLRP3, a widely studied
533 inflammasome complex, has been directly implicated in cancer progression [51]. Activated NLRP3
534 recruits the adaptor molecule ASC, which binds to Pro-Caspase-1 and triggers autocatalytic
535 activation. Active Caspase-1 catalyzes the cleavage of the pro-cytokines IL-1 β and IL-18, which is
536 necessary for their secretion and activation [63]. Further, Caspase-1 activation can trigger pyroptosis,
537 a programmed immune-cell death characterized by plasma-membrane rupture and release of pro-
538 inflammatory intracellular content [14]. Pyroptosis in the tumor microenvironment produces a
539 chronic inflammatory milieu that enhances cancer cell transformation and promotes immune escape
540 [64]. Moreover, recent findings report a blockade of IL-1 β activity to be able to elicit TAM
541 reprogramming and a decreasing inflammation [6]. Having this in mind, we hypothesized that
542 therapeutic blockade of the TAMs inflammasome via the NLRP3/Caspase-1 axis represents a novel
543 therapeutic strategy for the immunomodulation of TAMs, and decided to focus our drug repurposing
544 experimental validation on this process [65]. In our experiments we found that Clindamycin indeed
545 suppressed inflammasome activity-mediated secretion of IL-1 β and IL-18 in LPS pre-activated
546 macrophages treated with Nigericin, an NLRP3-activating microbial toxin. Our data further indicated
547 that this effect happens downstream of ASC in the NLRP3-ASC-Caspase-1 signaling pathway,
548 suggesting that Clindamycin acts directly on Caspase-1. Finally, we found that Clindamycin-
549 mediated inhibition of Caspase-1 reduced pyroptosis in macrophages. We performed the experiments
550 with macrophages derived from monocytes isolated from the peripheral blood of healthy donors due
551 to the great difficulty of obtaining viable TAMs from UM liver metastases. However, the use of UM-
552 associated macrophage-specific transcriptomics data to specify the core network and the presented
553 experimental setup allows for extending the conclusions to TAMs.

554 With our *in-silico* approach we were able to predict a novel drug-protein interaction that proved to be
555 immunomodulatory *in vitro*. Further preclinical *in vivo* experiments with animal models harbor the
556 potential to solidify the inflammation-inhibiting effect of Clindamycin on macrophages in proximity
557 to the viable tumor and could thereby uncover how this influences the susceptibility of metastatic
558 UM to ICI.

559 In conclusion, we hereby propose a network-oriented methodology for *de novo* drug repurposing,
560 which allows for filtering and prioritization of drug-target interactions. We were able to predict a new
561 drug-target interaction that effectively blocks Caspase-1-mediated inflammasome activity *in vitro*
562 and is therefore clinically promising for the improvement of ICI therapies for metastatic uveal
563 melanoma. We designed the workflow having the context of TAMs in UM liver metastasis in mind,
564 although the general methodology and its key-findings can be applied to various other implications.

565

566 **Figures**

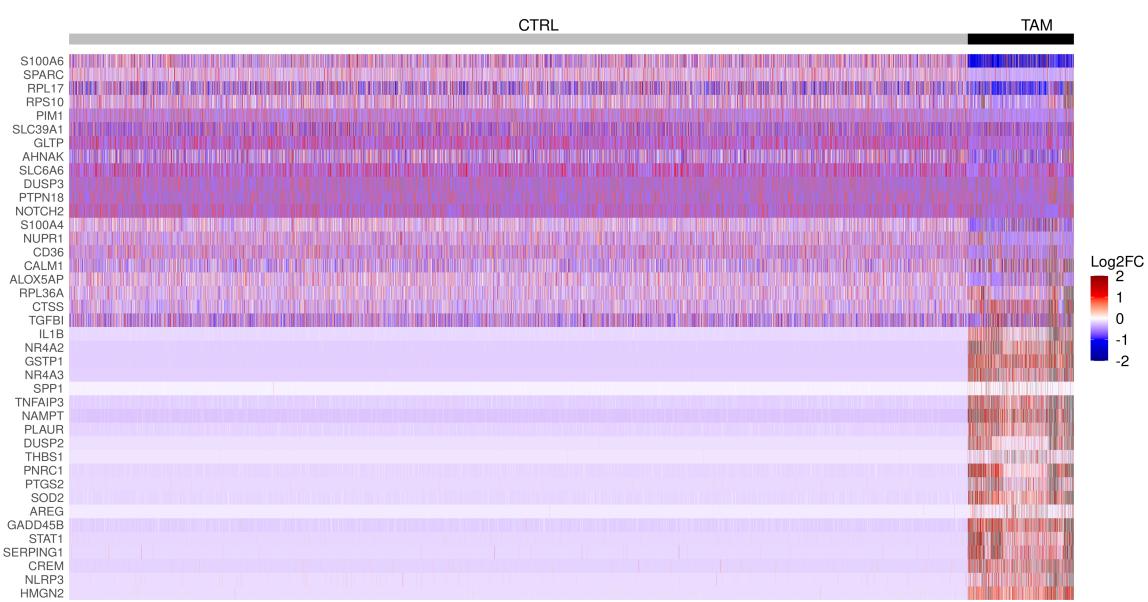


567

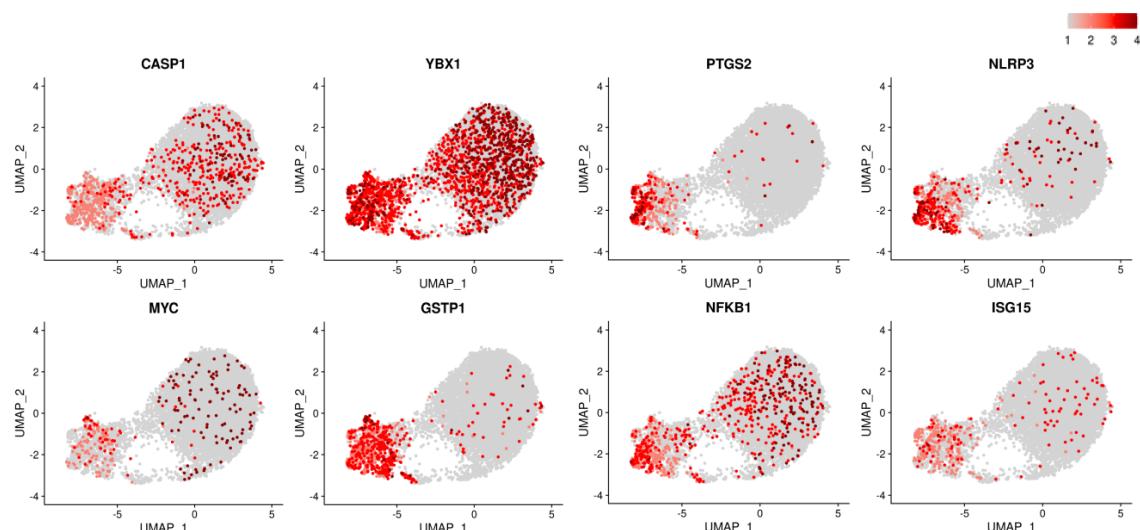
568 **Figure 1. Workflow designed to detect, select, and test molecular targets and drugs for**

569 **repurposing.**

A

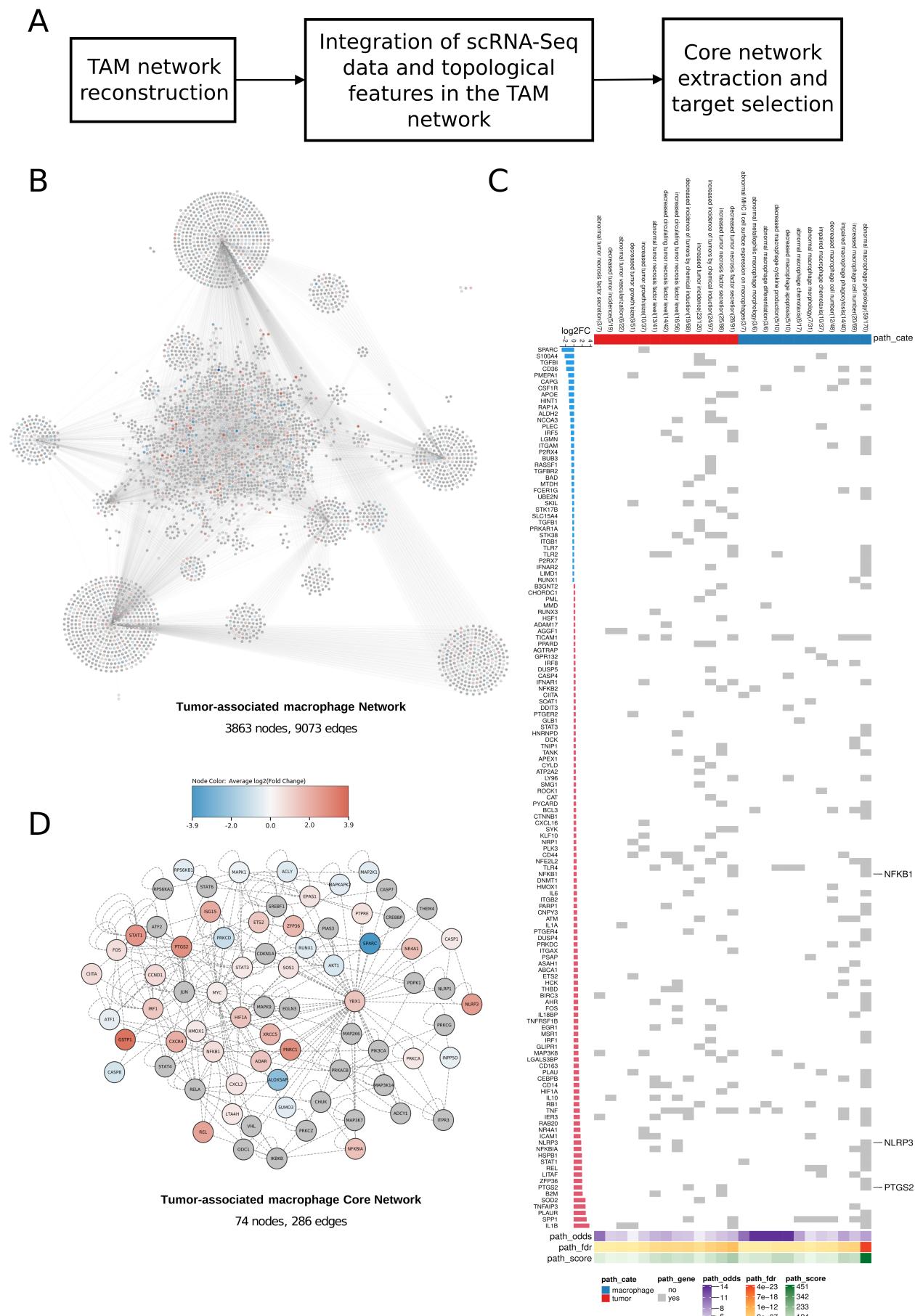


B



570

571 **Figure 2. Single-cell expression analysis reveals differences between healthy macrophages and**
572 **cancer-associated macrophages. A) Heatmap of Top20 differentially expressed genes.** While the
573 upregulated genes of the healthy joint macrophages (CTRL) group are also widely expressed in the
574 TAM group, the top 20 genes upregulated in the TAM group show no such expression in the CTRL
575 group. This indicates a specialized or generally more active phenotype of TAMs compared to the
576 healthy subset. **B) Gene expression of the 8 targets selected for pharmacophore modeling.**
577 PTGS2, NLRP3, and GSTP1 show a distinct TAM-exclusive expression. In contrast, YBX1,
578 NFKB1, and CASP1 are active to at least some extent in TAM and CTRL cells. This hints towards a
579 rather homeostatic role of the latter genes.

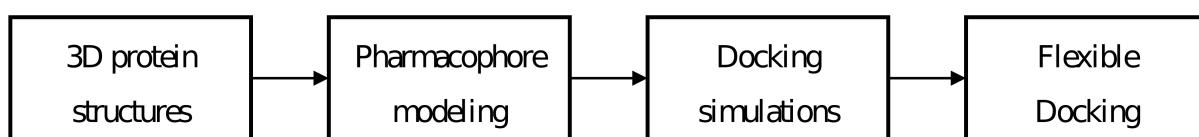


581 **Figure 3. Identification of a core interaction network of tumor-associated macrophages. A) The**
582 **workflow followed for core network extraction. B) TAM network.** The TAM network consists of
583 3863 nodes and 9073 edges. It is based on literature, database knowledge about interactions of
584 biological entities in macrophages, and bulk RNA-Seq expression data. **C) Gene-set enrichment**
585 **analysis of differentially expressed genes with nodes in the network.** Input genes for the GSEA
586 were derived from the overlap of differentially expressed genes from the single-cell data and the
587 nodes in the TAM network (n=1367). Each grid in the heat map represents whether a gene is
588 enriched in a phenotype. Only tumor- (red) and macrophage-related (blue) phenotypes were selected
589 for visualization in the heatmap. In addition, we annotated each phenotype with its odds ratio (odds),
590 adjusted p-values calculated using false discovery rate (FDR), and a combine score (odds x [-
591 log10(FDR)]). The bar plot showed the corresponding log2FC of the enriched genes in the
592 phenotypes. We highlighted NFKB1, NLRP3, and PTGS2 because they are among the eight targets
593 selected for pharmacophore modeling. **D) TAM core network.** The TAM core network consists of
594 74 nodes and 286 edges. The nodes were colored according to their differential expression values
595 (log2FC) derived from the single-cell data analysis. Nodes in grey showed no significant differential
596 expression. When it comes to the 8 nodes selected for pharmacophore modelling experiments, each
597 of them was at least slightly upregulated in the TAM group compared to the healthy macrophages.

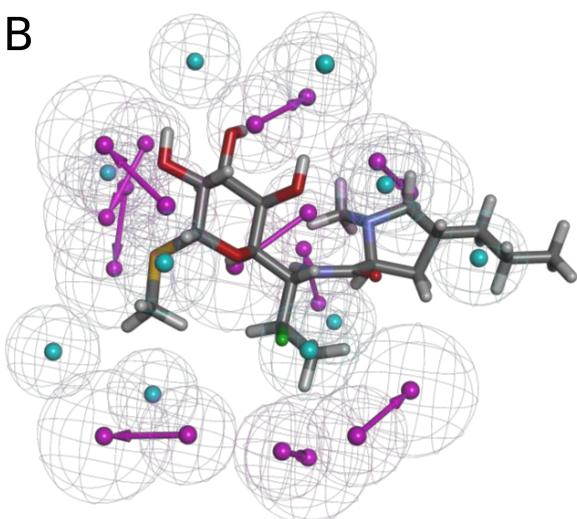
598

599

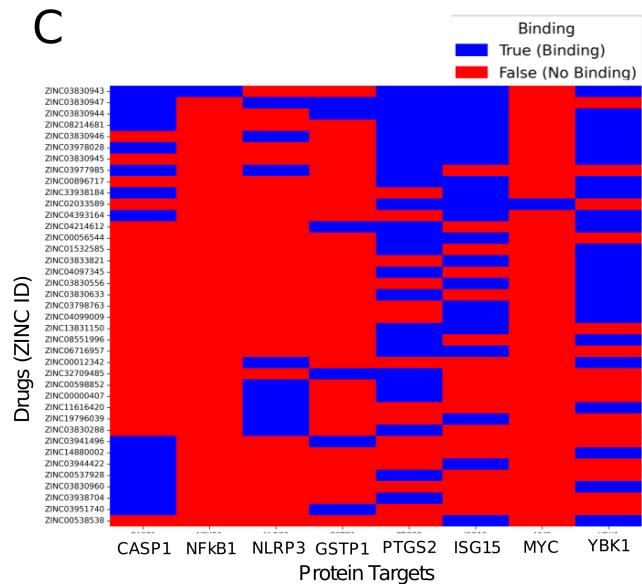
A



B



C



D

Compound / Protein	CASP1	YBX1	ISG15	PTGS2
5-[acetyl-[(2S)-2,3-dihydroxypropyl]amino]-1-N,3-N-bis[(2S)-2,3-dihydroxypropyl]-2,4,6-triiodobenzene-1,3-di carboxamide	4.25008	-8.12811	-0.727879	28.2754

5-[acetyl-[(2R)-2,3-dihydroxypropyl]amino]-1-N,3-N-bis[(2S)-2,3-dihydroxypropyl]-2,4,6-triiodobenzene-1,3-di carboxamide

7.30233 1.40209 1.96125 32.8428

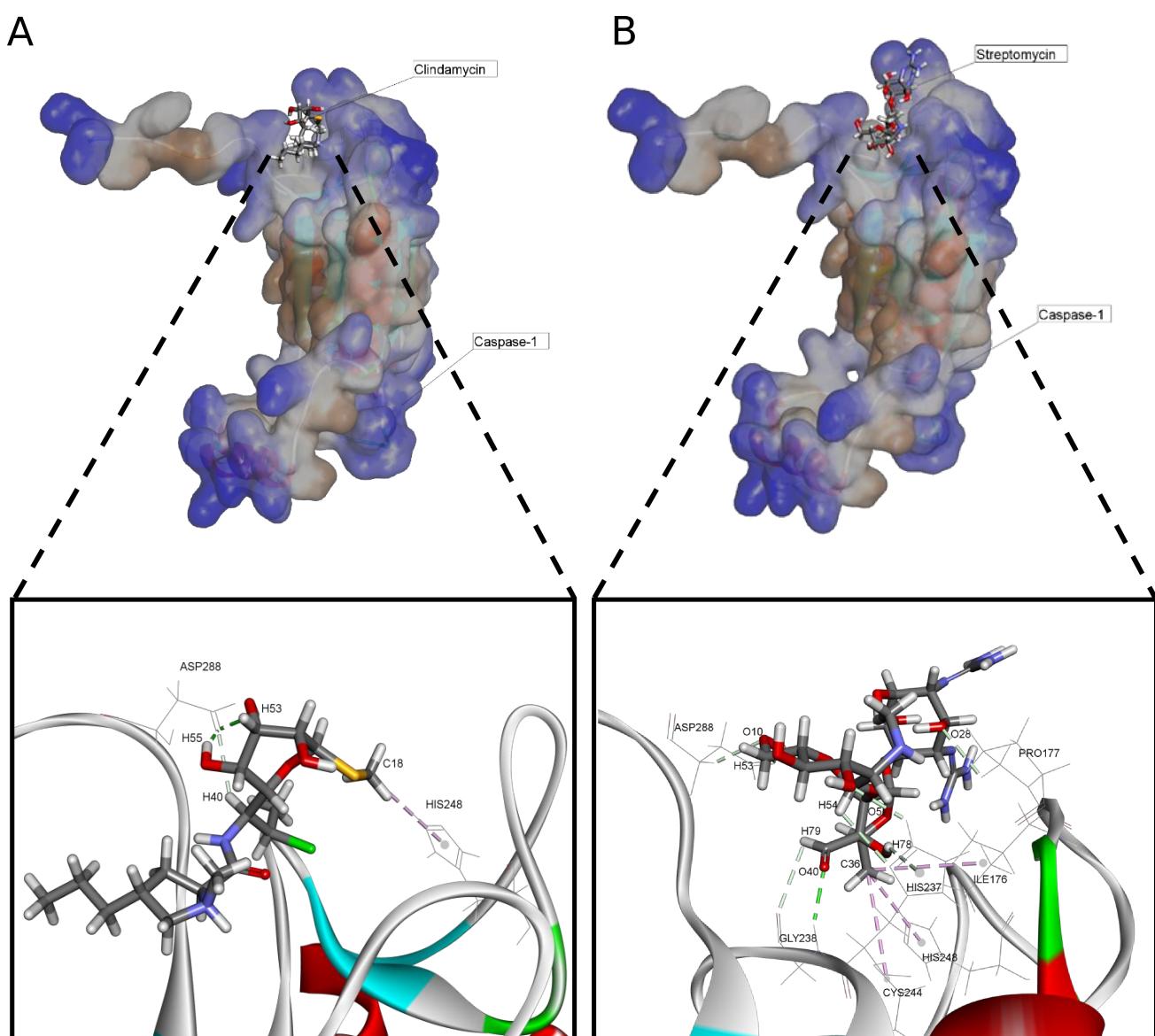
Clindamycin	-21.4767	-32.0372	-24.2025	-1.67732
Streptomycin	-29.3563	-54.2817	-40.4558	-18.7057

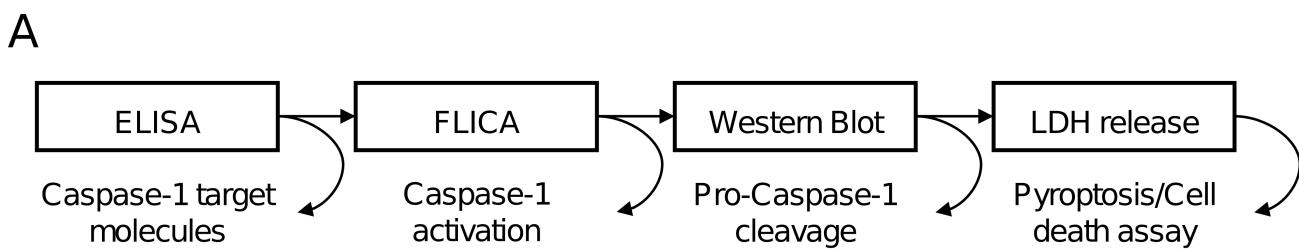
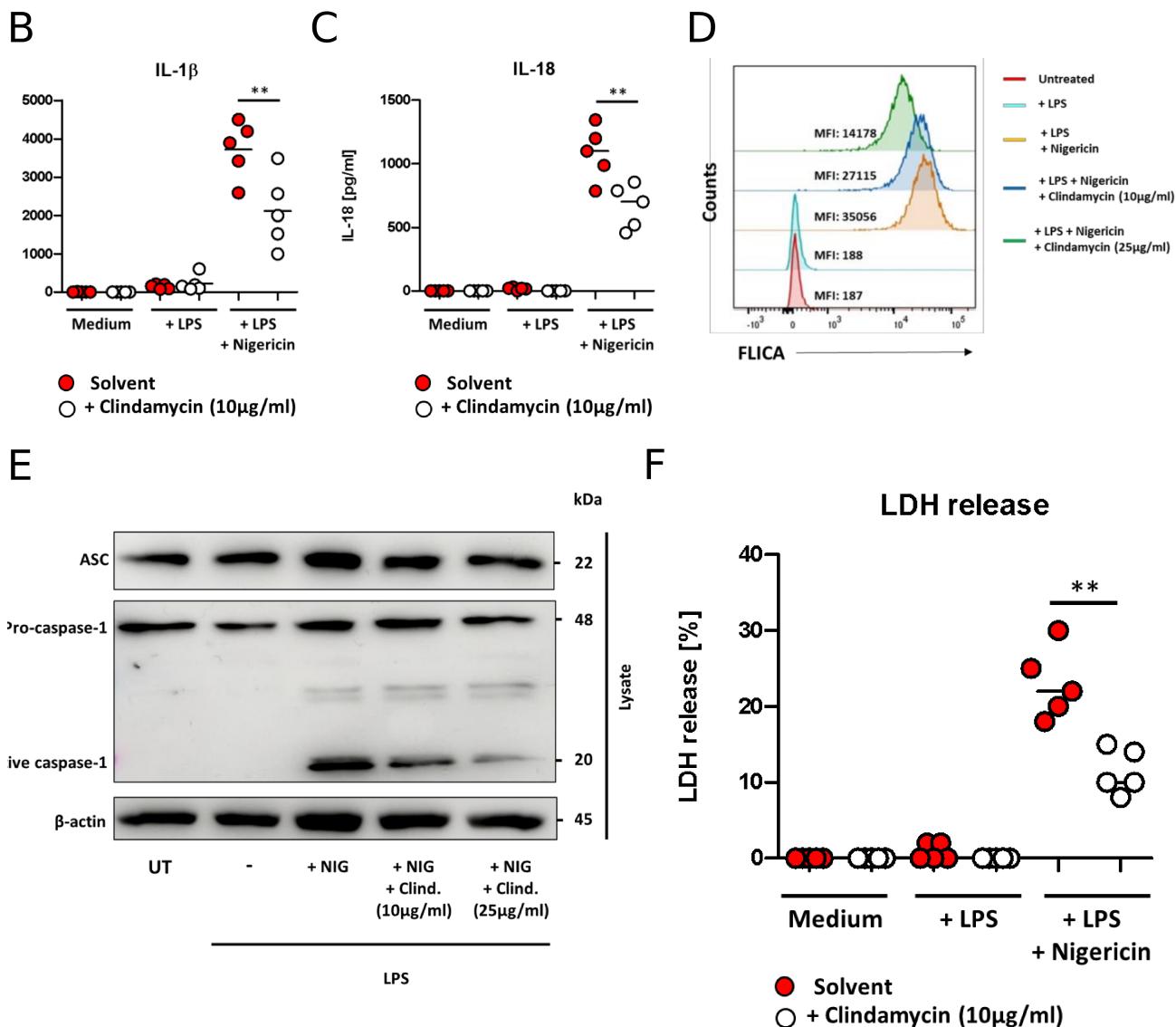
*CDOCKER energy in Kcal/mol

602 **Figure 4. Computational screening of chemical compounds to selected protein targets. A)**
603 **Central steps for the molecular docking. B) Exemplary pharmacophore of Clindamycin. C)**
604 **Heatmap highlighting drug-target combinations.** All drugs that have binding affinities for at least
605 two proteins among eight selected target proteins are shown. **D) Four chemical compounds and**
606 **their predicted CDOCKER energy from revised flexible docking.** CDOCKER energy unit is
607 depicted in Kcal/mol. Only Clindamycin and Streptomycin showed suitable affinity values towards
608 all the four target proteins.

609

610





617 **Figure 6. Experimental validation of the predicted interaction. A) In-vitro experiments to**
618 **verify inhibition of Caspase-1 activation by Clindamycin.** Monocyte derived macrophages were
619 pretreated with (white circle) or without (red circle) Clindamycin (2h, 10 μ g/ml). After this,
620 macrophages were treated with LPS (100ng/ml) alone or with LPS and Nigericin (10 μ M) for 3
621 hours. Supernatants were analyzed by ELISA. Monocyte-derived macrophages were treated with
622 LPS (100ng/ml, 24h) and Nigericin (10 μ M, 24h) in the presence or absence of Clindamycin (as
623 indicated) and cells were analyzed for **(B, C)** cytokine secretion (IL1 β and IL-18) by ELISA, **(D)**
624 Caspase-1 activation by flow cytometry, **(E)** Caspase-1 activation and cleavage by Western blot or
625 **(F)** LDH release by ELISA.

626

627 **Acknowledgements**

628 We thank Martin Eberhardt for his contribution in setting up the vcells.net.

629 References

- 630 1. Wei SC, Duffy CR, Allison JP. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. 631 *Cancer Discov.* 2018; 8: 1069–86.
- 632 2. Xiang X, Wang J, Lu D, Xu X. Targeting tumor-associated macrophages to synergize tumor 633 immunotherapy. *Signal Transduct Target Ther.* 2021; 6: 75.
- 634 3. Wessely A, Steeb T, Erdmann M, et al. The Role of Immune Checkpoint Blockade in Uveal Melanoma. 635 *IJMS.* 2020; 21: 879.
- 636 4. Toivonen P, Mäkitie T, Kujala E, Kivelä T. Microcirculation and tumor-infiltrating macrophages in 637 choroidal and ciliary body melanoma and corresponding metastases. *Invest Ophthalmol Vis Sci.* 2004; 638 45: 1–6.
- 639 5. Krishna Y, Acha-Sagredo A, Sabat-Pośpiech D, et al. Transcriptome Profiling Reveals New Insights into 640 the Immune Microenvironment and Upregulation of Novel Biomarkers in Metastatic Uveal Melanoma. 641 *Cancers (Basel).* 2020; 12: 2832.
- 642 6. Caronni N, La Terza F, Vittoria FM, et al. IL-1 β + macrophages fuel pathogenic inflammation in 643 pancreatic cancer. *Nature.* 2023; 623: 415–22.
- 644 7. Nosengo N. Can you teach old drugs new tricks? *Nature News.* 2016; 534: 314.
- 645 8. Pushpakom S, Iorio F, Evers PA, et al. Drug repurposing: progress, challenges and recommendations. 646 *Nat Rev Drug Discov.* 2019; 18: 41–58.
- 647 9. Lamb J, Crawford ED, Peck D, et al. The Connectivity Map: using gene-expression signatures to connect 648 small molecules, genes, and disease. *Science.* 2006; 313: 1929–35.
- 649 10. Goody D, Gupta SK, Engelmann D, et al. Drug Repositioning Inferred from E2F1-Coregulator 650 Interactions Studies for the Prevention and Treatment of Metastatic Cancers. *Theranostics.* 2019; 9: 651 1490–509.
- 652 11. Yang X, Kui L, Tang M, et al. High-Throughput Transcriptome Profiling in Drug and Biomarker Discovery. 653 *Front Genet.* 2020; 11: 19.
- 654 12. Khosravi A, Jayaram B, Goliae B, Masoudi-Nejad A. Active repurposing of drug candidates for 655 melanoma based on GWAS, PheWAS and a wide range of omics data. *Mol Med.* 2019; 25: 30.
- 656 13. Zhang L, Fan S, Vera J, Lai X. A network medicine approach for identifying diagnostic and prognostic 657 biomarkers and exploring drug repurposing in human cancer. *Comput Struct Biotechnol J.* 2023; 21: 658 34–45.
- 659 14. Miao EA, Leaf IA, Treuting PM, et al. Caspase-1-induced pyroptosis is an innate immune effector 660 mechanism against intracellular bacteria. *Nat Immunol.* 2010; 11: 1136–42.
- 661 15. Cassetta L, Fragkogianni S, Sims AH, et al. Human Tumor-Associated Macrophage and Monocyte 662 Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic 663 Targets. *Cancer Cell.* 2019; 35: 588–602.e10.
- 664 16. Durante MA, Rodriguez DA, Kurtenbach S, et al. Single-cell analysis reveals new evolutionary 665 complexity in uveal melanoma. *Nat Commun.* 2020; 11: 496.

666 17. Culemann S, Grüneboom A, Nicolás-Ávila JÁ, et al. Locally renewing resident synovial macrophages
667 provide a protective barrier for the joint. *Nature*. 2019; 572: 670–5.

668 18. Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. *Cell*
669 [Internet]. 2021 [cited 23 June 2021]; Available at:
670 <https://www.sciencedirect.com/science/article/pii/S0092867421005833>

671 19. Stuart T, Butler A, Hoffman P, et al. Comprehensive Integration of Single-Cell Data. *Cell*. 2019; 177:
672 1888-1902.e21.

673 20. Korsunsky I, Millard N, Fan J, et al. Fast, sensitive and accurate integration of single-cell data with
674 Harmony. *Nat Methods*. 2019; 16: 1289–96.

675 21. Wentker P, Eberhardt M, Dreyer FS, et al. An Interactive Macrophage Signal Transduction Map
676 Facilitates Comparative Analyses of High-Throughput Data. *The Journal of Immunology*. 2017; 198:
677 2191–201.

678 22. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A. Role of tumor-associated macrophages in tumor
679 progression and invasion. *Cancer Metastasis Rev*. 2006; 25: 315–22.

680 23. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated
681 macrophages as a paradigm for polarized M2 mononuclear phagocytes. *Trends in Immunology*. 2002;
682 23: 549–55.

683 24. Noy R, Pollard JW. Tumor-Associated Macrophages: From Mechanisms to Therapy. *Immunity*. 2014;
684 41: 49–61.

685 25. Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N, Kitano H. CellDesigner 3.5: A Versatile
686 Modeling Tool for Biochemical Networks. *Proceedings of the IEEE*. 2008; 96: 1254–65.

687 26. Kitano H, Funahashi A, Matsuoka Y, Oda K. Using process diagrams for the graphical representation of
688 biological networks. *Nat Biotechnol*. 2005; 23: 961–6.

689 27. Novère NL, Finney A, Hucka M, et al. Minimum information requested in the annotation of biochemical
690 models (MIRIAM). *Nature Biotechnology*. 2005; 23: 1509–15.

691 28. Yates AD, Achuthan P, Akanni W, et al. Ensembl 2020. *Nucleic Acids Res*. 2020; 48: D682–8.

692 29. UniProt Consortium. UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Res*. 2019; 47:
693 D506–15.

694 30. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences,
695 targets and gene nomenclature. *Nucleic Acids Research*. 2006; 34: D140–4.

696 31. Hastings J, Owen G, Dekker A, et al. ChEBI in 2016: Improved services and an expanding collection of
697 metabolites. *Nucleic Acids Res*. 2016; 44: D1214–9.

698 32. Chou C-H, Shrestha S, Yang C-D, et al. miRTarBase update 2018: a resource for experimentally validated
699 microRNA-target interactions. *Nucleic Acids Res*. 2018; 46: D296–302.

700 33. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: an integrated resource for microRNA-target
701 interactions. *Nucleic Acids Res*. 2009; 37: D105–10.

702 34. Bovolenta LA, Acencio ML, Lemke N. HTRIdb: an open-access database for experimentally verified
703 human transcriptional regulation interactions. *BMC Genomics*. 2012; 13: 405.

704 35. Matys V, Kel-Margoulis OV, Fricke E, et al. TRANSFAC and its module TRANSCompel: transcriptional
705 gene regulation in eukaryotes. *Nucleic Acids Res.* 2006; 34: D108-110.

706 36. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of
707 biomolecular interaction networks. *Genome Res.* 2003; 13: 2498-504.

708 37. Xie Z, Bailey A, Kuleshov MV, et al. Gene Set Knowledge Discovery with Enrichr. *Current Protocols*.
709 2021; 1: e90.

710 38. Smith CL, Eppig JT. The mammalian phenotype ontology: enabling robust annotation and comparative
711 analysis. *WIREs Systems Biology and Medicine*. 2009; 1: 390-9.

712 39. Gu Z. Complex heatmap visualization. *iMeta*. 2022; 1: e43.

713 40. Assenov Y, Ramírez F, Schelhorn S-E, Lengauer T, Albrecht M. Computing topological parameters of
714 biological networks. *Bioinformatics*. 2008; 24: 282-4.

715 41. Rinnone F, Micale G, Bonnici V, et al. NetMatchStar: an enhanced Cytoscape network querying app.
716 *F1000Res.* 2015; 4: 479.

717 42. Cantone M, Küspert M, Reiprich S, et al. A gene regulatory architecture that controls region-
718 independent dynamics of oligodendrocyte differentiation. *Glia*. 2019; 67: 825-43.

719 43. Khan FM, Marquardt S, Gupta SK, et al. Unraveling a tumor type-specific regulatory core underlying
720 E2F1-mediated epithelial-mesenchymal transition to predict receptor protein signatures. *Nat Commun*.
721 2017; 8: 198.

722 44. Sterling T, Irwin JJ. ZINC 15--Ligand Discovery for Everyone. *J Chem Inf Model*. 2015; 55: 2324-37.

723 45. Guan R, Ma L-C, Leonard PG, et al. Structural basis for the sequence-specific recognition of human
724 ISG15 by the NS1 protein of influenza B virus. *Proceedings of the National Academy of Sciences*. 2011;
725 108: 13468-73.

726 46. Lucido MJ, Orlando BJ, Vecchio AJ, Malkowski MG. Crystal Structure of Aspirin-Acetylated Human
727 Cyclooxygenase-2: Insight into the Formation of Products with Reversed Stereochemistry.
728 *Biochemistry*. 2016; 55: 1226-38.

729 47. Rano TA, Timkey T, Peterson EP, et al. A combinatorial approach for determining protease specificities:
730 application to interleukin-1 β converting enzyme (ICE). *Chemistry & Biology*. 1997; 4: 149-55.

731 48. Zhang J, Fan J-S, Li S, et al. Structural basis of DNA binding to human YB-1 cold shock domain regulated
732 by phosphorylation. *Nucleic Acids Research*. 2020; 48: 9361-71.

733 49. Bierie B, Moses HL. Transforming growth factor beta (TGF-beta) and inflammation in cancer. *Cytokine*
734 *Growth Factor Rev.* 2010; 21: 49-59.

735 50. Xu X, Zheng L, Yuan Q, et al. Transforming growth factor- β in stem cells and tissue homeostasis. *Bone*
736 *Res.* 2018; 6: 2.

737 51. Hamarsheh S, Zeiser R. NLRP3 Inflammasome Activation in Cancer: A Double-Edged Sword. *Front Immunol.* 2020; 11: 1444.

739 52. Hofbauer D, Mougiakakos D, Broggini L, et al. β 2-microglobulin triggers NLRP3 inflammasome activation in tumor-associated macrophages to promote multiple myeloma progression. *Immunity.* 2021; 54: 1772-1787.e9.

742 53. Katsnelson MA, Rucker LG, Russo HM, Dubyak GR. K⁺ efflux agonists induce NLRP3 inflammasome activation independently of Ca²⁺ signaling. *J Immunol.* 2015; 194: 3937-52.

744 54. Lv Z, Xue C, Zhang L, Sun J, Bo C. Elevated mRNA Level of Y-Box Binding Protein 1 Indicates Unfavorable Prognosis Correlated with Macrophage Infiltration and T Cell Exhaustion in Luminal Breast Cancer. *Cancer Manag Res.* 2021; 13: 6411-28.

747 55. Pello OM, Chèvre R, Laoui D, et al. In vivo inhibition of c-MYC in myeloid cells impairs tumor-associated macrophage maturation and pro-tumoral activities. *PLoS One.* 2012; 7: e45399.

749 56. Dong X, Sun R, Wang J, et al. Glutathione S-transferases P1-mediated interleukin-6 in tumor-associated macrophages augments drug-resistance in MCF-7 breast cancer. *Biochem Pharmacol.* 2020; 182: 114289.

752 57. Li H, Yang B, Huang J, et al. Cyclooxygenase-2 in tumor-associated macrophages promotes breast cancer cell survival by triggering a positive-feedback loop between macrophages and cancer cells. *Oncotarget.* 2015; 6: 29637-50.

755 58. Lee HE, Lee JY, Yang G, et al. Inhibition of NLRP3 inflammasome in tumor microenvironment leads to suppression of metastatic potential of cancer cells. *Sci Rep.* 2019; 9: 12277.

757 59. Chen R-H, Xiao Z-W, Yan X-Q, et al. Tumor Cell-Secreted ISG15 Promotes Tumor Cell Migration and Immune Suppression by Inducing the Macrophage M2-Like Phenotype. *Front Immunol.* 2020; 11: 594775.

760 60. Niu Z, Shi Q, Zhang W, et al. Caspase-1 cleaves PPAR γ for potentiating the pro-tumor action of TAMs. *Nat Commun.* 2017; 8: 766.

762 61. Wishart DS, Knox C, Guo AC, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. *Nucleic Acids Res.* 2008; 36: D901-906.

764 62. Pfab C, Schnobrich L, Eldnasoury S, Gessner A, El-Najjar N. Repurposing of Antimicrobial Agents for Cancer Therapy: What Do We Know? *Cancers (Basel).* 2021; 13: 3193.

766 63. Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. *Nat Rev Immunol.* 2013; 13: 397-411.

768 64. Jia Y, Wang X, Deng Y, et al. Pyroptosis Provides New Strategies for the Treatment of Cancer. *J Cancer.* 2023; 14: 140-51.

770 65. Coll RC, Schroder K, Pelegrín P. NLRP3 and pyroptosis blockers for treating inflammatory diseases. *Trends Pharmacol Sci.* 2022; 43: 653-68.

772