

1 **A genetic and physiological model of renal dysfunction in Lowe syndrome**

2

3

4

5 Navyashree A Ramesh^{®*}, Vaishali Kataria, Indra Sara Lama[®], Rajan Thakur[#], Avishek Ghosh^{**}, Sanjeev
6 Sharma^{***}, Aishwarya Venugopal, Anil Vasudevan[®] and Padinjat Raghu^{\$}

7

8

9 National Centre for Biological Sciences, TIFR-GVK Campus, Bellary Road, Bengaluru-560065, India.

10 [®]Department of Pediatric Nephrology, St. John's Medical College Hospital, Bengaluru-560034, India

11 [#] Current address: Department of Neuroscience, Brown University, RI 02906, USA

12 ^{*}Molecular, Cellular, and Developmental Biology, University of Michigan, 2220 Biological Science
13 Building, 1105 North University Ave., Ann Arbor, MI 48109-1085, USA

14 ^{**}Vascular Biology Program, Boston Children's Hospital, 1 Blackfan Street, Karp Research Building,
15 12th Floor, Boston, MA 02115, USA

16 ^{***}Depts. of Biochemistry, Weill-Cornell Medicine, 1300 York Avenue, A403-412, New York, NY 10065,
17 USA

18

19

20

21 \$Corresponding Author: praghu@ncbs.res.in

22

23

24

25

26

27

28 **Abstract**

29 Lowe syndrome (LS) is an X-linked recessive genetic disorder characterized by renal dysfunction,
30 neurodevelopmental defects, and cataract. The affected gene, *OCRL* encodes for a polyphosphoinositide
31 5-phosphatase. *OCRL* is localized to multiple sub-cellular locations in the endolysosomal system and
32 defects in these organelles have been described in human cells depleted of *OCRL*. However, the
33 relationship of the endolysosomal defects in *OCRL* depleted cells to the altered physiology of kidney cells
34 of LS patients has not been completely determined. Here we model the kidney phenotypes of LS using
35 a *Drosophila* nephrocyte model. Using this model system, we demonstrate that *OCRL* plays a cell-
36 autonomous role in nephrocyte function. Deletion of the only *OCRL* ortholog in *Drosophila* (*dOCRL*) leads
37 to cell-autonomous defects in larval nephrocyte structure and function. Null mutants of *dOCRL*
38 (*dOCRL*^{KO}) show defects in the endolysosomal system of larval nephrocytes that are associated with
39 physiological defects in nephrocyte function. These defects could be rescued by reconstitution with a
40 human *OCRL* transgene but not with a phosphatase dead version or a human LS patient derived
41 mutation. Overall, this work provides a model system to understand the mechanisms by which the sub-
42 cellular changes from loss of *OCRL* leads to defects in kidney function in human patients.

43

44

45

46

47

48

49

50

51

52

53 **Introduction**

54 Lowe syndrome (LS) which is also known as oculocerebrorenal syndrome of Lowe is a rare X-linked
55 recessive genetic disorder characterized by clinical features of renal tubular dysfunction, mental
56 retardation, and cataract (De Matteis et al., 2017; Preston et al., 2020). The disease results from the
57 mutations in the *OCRL* gene that encodes a type II family inositol polyphosphate 5-phosphatase enzyme
58 involved in the hydrolysis of phosphate at 5th position of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P₂]
59 to generate PI4P(Attree et al., 1992; Zhang et al., 1995). The *OCRL* gene is widely expressed across
60 human cells and tissues and throughout development. *OCRL* is a multi-domain enzyme with a catalytic
61 5-phosphatase domain, N-terminal pleckstrin homology (PH) domain, an ASH domain and a RhoGAP
62 domain (De Matteis et al., 2017). The *OCRL* protein is localized to multiple sub-cellular membranes in
63 human cells including the plasma membrane, endocytic compartments, trans-Golgi, cilium and
64 lysosomes [reviewed in (Mehta et al., 2014)] and the additional non-phosphatase domains of *OCRL* are
65 thought to help localize the protein to distinct sub-cellular locations.

66

67 Proximal tubular dysfunction is a key clinical manifestation of LS which is characterized by renal tubular
68 acidosis, low molecular weight proteinuria, hypercalciuria, albuminuria, aminoaciduria, carnitine wasting,
69 phosphaturia with perturbed glomerular filtrate rate that deteriorates with age (Bockenhauer et al., 2008;
70 Recker et al., 2015). Several studies have attempted to decipher the sub-cellular basis of altered proximal
71 tubular function in LS. Studies in COS-7 (kidney derived) cells found *OCRL* localized to early endosomes
72 and the Golgi apparatus (Ungewickell et al., 2004) and early endosomal function was impaired by *OCRL*
73 depletion(Vicinanza et al., 2011). Other studies with human kidney biopsy samples showed *OCRL*
74 localized on lysosomes (Zhang et al., 1998) and a role for *OCRL* in regulating autophagosome-lysosomal
75 function has been proposed (De Leo et al., 2016). Studies in a zebrafish model of LS have reported
76 alterations in the endosomal system (Oltrabellla et al., 2015) and this has also been reported in a
77 humanized mouse model of LS (Festa et al., 2019). Despite these sub-cellular defects that have been
78 described on *OCRL* depletion, the relevance of any of these to altered renal physiology has not been
79 established.

80

81 The filtration of blood in the glomerulus of nephrons followed by selective reabsorption of essential
82 molecules is a key aspect of human kidney function. In *Drosophila* too, nephrocytes perform an
83 analogous function to purify circulating hemolymph. *Drosophila* larvae have two types of nephrocytes
84 garland and pericardial, tethered to the esophagus and heart respectively. Nephrocytes uptake
85 hemolymph by endocytosis, sort the endocytosed cargo for degradation in lysosomes or recycle it back

86 to the cell surface. This endocytic function is like that seen in proximal tubular cells and hence offers
87 avenues to model various aspects of proximal tubular functions (Helmstädt et al., 2017) (Koehler and
88 Huber, 2023). Owing to their large size, nephrocytes allow both live cell imaging of organelle structure,
89 function, and analysis of physiological readouts from intact animals. In contrast to human genome, the
90 *Drosophila* genome contains a single homolog of *OCRL* (Balakrishnan et al., 2015; Ben El Kadhi et al.,
91 2011) and therefore offers an opportunity to analyze function without the complexity of contribution from
92 multiple genes that encode the same activity.

93

94 In this study, we have developed an *in vivo* *Drosophila* model of LS with a goal of understanding the
95 mechanisms that may underlie the renal dysfunction in these patients. We generated a whole-body null
96 allele of *dOCRL* (*dOCRL*^{KO}) that was late larval to pupal lethal with reduced body mass, delayed growth
97 and development of larvae. Using larval pericardial nephrocytes as a model, we find multiple defects in
98 the endolysosomal system in *dOCRL*^{KO} along with a physiological defect in clearing silver nitrate, a heavy
99 metal toxin through the nephrocytes. Using nephrocyte specific deletion of *dOCRL*, we find that these
100 defects are cell autonomous to this cell type. Lastly, we were able to rescue these phenotypes with a
101 human *OCRL* transgenic but not on carrying a patient-specific mutation in *OCRL*. Thus, our findings
102 provide an animal model which can be used to investigate the functional patient mutations in *OCRL* and
103 understand the mechanistic basis of proximal tubular dysfunction in these patients.

104

105 **Results**

106 ***dOCRL* is required for growth and development of the larvae**

107 The *Drosophila* genome encodes a single ortholog of human *OCRL* named as *dOCRL* (CG3573) that is
108 located on the X chromosome. We have previously generated a null mutant of *dOCRL* (*dOCRL*^{KO}) using
109 CRISPR/Cas9 genome engineering (Trivedi et al., 2020). Quantitative RT-PCR analysis showed virtually
110 no *dOCRL* transcript in *dOCRL*^{KO} animals (Fig 1A) and a western blot with antibodies specific to the
111 protein showed no detectable product (Fig 1G). We observed that homozygous *dOCRL*^{KO} larvae were
112 lethal at the second instar stage when grown on standard fly food, but when grown on yeast medium,
113 they reach the 3rd larval instar or pupal stage, but no adult flies eclosed. *dOCRL*^{KO} larvae showed lethality
114 at every stage of development when compared to wild type (Fig 1B). When *dOCRL*^{KO} was grown on yeast
115 medium, the animals showed a developmental delay of ca. 43 hours (h) for 50% of animals to pupariation
116 (Fig 1C) and only about 58% of larvae pupariated. In addition, wandering larvae were smaller and
117 weighed only about 50% of the body weight of controls (Fig 1D, 1F). Both phenotypes were rescued by
118 the transgenic expression of a *dOCRL* using *hs-GAL4* which is expressed ubiquitously (Fig 1D-F).

119 However, the adult lethality was not rescued, presumably due to insufficient expression of dOCRL with
120 *hs-Gal4*. Lethality was however completely rescued (data not shown) by reconstitution using an X-
121 duplication (BL-31454), which includes *dOCRL* genomic region. Collectively, these results suggest that
122 *dOCRL* is required for normal growth and larval development in *Drosophila*.

123

124 ***dOCRL* regulates PI(4,5)P₂ and PI4P in nephrocytes**

125 OCRL is proposed to dephosphorylate PI(4,5)P₂ to generate PI4P and thus maintain the balance of these
126 two lipids. We quantified the levels of PI(4,5)P₂ at the plasma membrane of pericardial nephrocytes. For
127 this, we used the PH domain of PLC δ tagged to mCherry (PH-PLC δ ::mCherry), a probe that specifically
128 binds to PI(4,5)P₂ (Hammond and Balla, 2015). We observed that in wild type nephrocytes, PH-
129 PLC δ ::mCherry uniformly decorated the plasma membrane with some punctate structures just below the
130 plasma membrane (Fig 2A). In *dOCRL*^{KO} nephrocytes PH-PLC δ ::mCherry accumulated at higher levels
131 on the plasma membrane with many punctate structures in the cytoplasm just below the plasma
132 membrane (Fig 2A). The levels of PI(4,5)P₂ at the plasma membrane were quantified by estimating the
133 ratio of plasma membrane/cytoplasmic fluorescence and was higher in *dOCRL*^{KO} compared to controls
134 (Fig 2 B). Likewise, using the P4M::GFP probe that binds to PI4P (Balakrishnan et al., 2018) and mainly
135 decorates the plasma membrane of nephrocytes (Fig 2 C), we estimated changes in PI4P levels. Using
136 this approach, we found that the PI4P level at the plasma membrane was lower in *dOCRL*^{KO} compared
137 to controls (Fig 2D). Importantly, both the PH-PLC δ ::mCherry and P4M::GFP proteins were expressed
138 equally in wild type and *dOCRL*^{KO} (Sup Fig1 A-D). We also measured total PIP and PIP₂ levels from
139 whole larval lipid extracts using liquid chromatography coupled to tandem mass spectrometry (LC-
140 MS/MS). We observed a trend of increased total PIP₂ between *dOCRL*^{KO} and controls, however total PIP
141 levels were unchanged (Fig 2E, F). Expressing the *dOCRL* transgene in *dOCRL*^{KO} could reduce PIP₂
142 levels but did not alter total PIPs (Fig 2E, F).

143

144 ***dOCRL* is required for nephrocyte function in *Drosophila***

145 To investigate the filtration function of nephrocytes we measured the clearance of the heavy metal silver,
146 using silver nitrate (AgNO₃) from these cells. For this, we transferred first instar larvae to feed on 0.003%
147 AgNO₃ in yeast paste and after 32 h, these larvae were transferred to yeast paste without AgNO₃.
148 Subsequently, larvae were removed from the AgNO₃ free medium at defined time points, dissected and
149 the amount of AgNO₃ in each nephrocyte visualized and quantified (Fig 3A). This analysis was done on
150 larvae at 36, 42, and 52 h post transfer from medium containing AgNO₃ onto non-AgNO₃ medium.
151 Nephrocytes were imaged under bright field microscope and these images were converted to 8-bit

152 images (16 color pixels) corresponding to the intensity of AgNO₃, from white being highest concentration
153 to black being least concentration. It was observed that in wild type animals, there were only traces of
154 AgNO₃ remaining by 36 h post-transfer but at 52 h AgNO₃ was completely cleared out (Fig 3B). However,
155 in *dOCRL*^{KO} nephrocytes, AgNO₃ was not cleared at 36, 42, and 52 h post-transfer and a large proportion
156 of nephrocytes containing AgNO₃ could be observed (Fig 3B) and this clearance defect could be rescued
157 by reconstituting with the wild type *dOCRL* (Fig 3B). We quantified the percentage of cells containing
158 varying amounts of AgNO₃. The micrographs were converted into 16 color pixels and the cells with high
159 (red) and low (yellow) levels of AgNO₃ were counted. For each genotype we then counted the proportion
160 of cells with red and yellow pixels. The results, represented in Fig 3C, show that at all time points studied,
161 *dOCRL*^{KO} had a significantly higher percentage of cells with red pixels compared to wild type; this
162 phenotype was rescued by reconstitution of *dOCRL*^{KO} with wild type *dOCRL* (Fig 3C). These findings
163 demonstrate that *dOCRL* function is required for AgNO₃ clearance in *Drosophila* nephrocytes.

164

165 It has been reported that clearance of AgNO₃ by nephrocytes is essential for larval survival when grown
166 on food containing this heavy metal, and if nephrocyte function is perturbed, feeding with AgNO₃ leads to
167 larval lethality (Ivy et al., 2015). Since we noted slower clearance of AgNO₃ in *dOCRL*^{KO}, we tested the
168 sensitivity of wild type and *dOCRL*^{KO} to growth on AgNO₃. Newly hatched first instar larvae were
169 transferred onto fresh medium containing defined concentrations of AgNO₃. The percentage of larvae
170 that survive to the third larval instar were plotted at each AgNO₃ concentration to that in control media.
171 In wild type larvae, lethality was observed when grown at 0.01% AgNO₃ or higher with lethality increasing
172 with increasing AgNO₃ concentration (Fig 3D). In *dOCRL*^{KO} we observed higher percentage of larval
173 lethality at 0.03% and 0.05% AgNO₃ as compared to controls (Fig 3D). These results suggest that *dOCRL*
174 is required to protect *Drosophila* larvae against heavy metal induced larval lethality.

175

176 ***dOCRL* is required for endocytosis in nephrocytes**

177 The endocytosis of fluid filtered through the diaphragm is a key part of nephrocyte function and it has
178 been reported that nephrocytes internalize dextran by fluid phase endocytosis (Grawe et al., 2009). Since
179 OCRL has been implicated in regulating endocytosis in cultured mammalian cells, we studied this process
180 using 10 kDa TMR-Dextran as a cargo in an *ex vivo* endocytosis assay. As a negative control, uptake
181 assays were performed at 4°C since endocytosis is blocked at this temperature. At 25 °C robust
182 endocytosis of TMR-Dextran was seen which was blocked at 4°C (Fig 4A, B). By contrast in *dOCRL*^{KO}
183 there was complete absence of TMR-Dextran uptake at 25 °C (Fig 4A, B). This defect in uptake could be
184 rescued by reconstitution of *dOCRL*^{KO} with *hs>dOCRL* (Fig 4 A, B). We also assessed clathrin-mediated
185 endocytosis in nephrocytes by using maleic anhydride-BSA (mBSA) conjugated to Cy5 bis functional dye

186 (Abrams et al., 1992). In *dOCRL*^{KO} nephrocytes, mBSA uptake was significantly reduced at 25°C
187 compared to controls and this was rescued when we reconstituted *dOCRL*^{KO} with hs>*dOCRL* (Fig 4 C,
188 D). These results demonstrate that *dOCRL* is required for both fluid phase and clathrin dependent
189 endocytosis.

190

191 **Loss of *dOCRL* perturbs endosomal compartments in nephrocytes**

192 Given the endocytic defects that we observed, we visualized endosomal compartments in *dOCRL*^{KO}
193 nephrocytes. We performed immunostaining with EEA-1, a marker of early endosomes and found that
194 EEA-1 staining was substantially reduced in *dOCRL*^{KO} compared to controls (Fig 4E, F). The lipid
195 phosphatidylinositol 3-phosphate (PI3P) is enriched on early endosomes and can be visualized using the
196 2XFYVE domain fused to a fluorescent protein (mCherry::2XFYVE); we found that the intensity of
197 mCherry::2XFYVE punctae was lower in *dOCRL*^{KO} compared to controls (Fig 4G, H). Lastly, we also
198 observed that the intensity of Rab7 punctae, marking late endosomes, was lower in *dOCRL*^{KO} (Fig 5A,
199 B). This suggests that in nephrocytes, depletion of *dOCRL* impacts the early and late endocytic system.

200

201 ***dOCRL* depletion alters cellular degradative organelles**

202 We investigated the levels of lysosomes, acidified vesicles in nephrocytes by staining with lysotracker
203 that reports acidified subcellular compartments. We observed elevated lysotracker staining in *dOCRL*^{KO}
204 nephrocytes compared to wild type. We quantified the fluorescence intensity of lysotracker staining and
205 found that *dOCRL*^{KO} nephrocytes showed significantly increased levels of lysotracker (Fig 5 C, D).

206 We analyzed if the enhanced lysotracker staining was due to increased lysosomes. To visualize
207 lysosomes we developed a construct in which the lysosome targeting sequence (LTS) is fused to
208 mCherry (LTS::mCherry) (Ghosh et al., 2023). When expressed in control nephrocytes, LTS::mCherry
209 marks punctate vesicular structures that can be quantified using confocal microscopy. We noted that the
210 mean fluorescence intensity of LTS::mCherry was substantially elevated in *dOCRL*^{KO} nephrocytes
211 compared to control (Fig 5 E, F). A sub-population of lysosomes come from autophagosome-lysosome
212 fusion; therefore, we looked at the levels of autophagosomes by expressing mCherry::Atg8a in
213 nephrocytes. We observed significant increase in the number of mCherry::Atg8a punctae in *dOCRL*^{KO}
214 nephrocytes compared to controls (Fig 5 G, H).

215

216 **Cell autonomous regulation of nephrocyte function by *dOCRL***

217 *dOCRL*^{KO} larvae show a whole-body growth phenotype along with defects in nephrocyte structure and
218 function. To test if the requirement for *dOCRL* to support nephrocyte function is cell-autonomous, we

219 generated a nephrocyte specific knockout of *dOCRL* using the CRISPR/Cas9 gene editing by expressing
220 Cas9 only in nephrocytes using *Dot GAL4* (Trivedi et al., 2020). We obtained an amplicon of 555 bp
221 confirming the deletion of *dOCRL* in nephrocytes (Sup Fig 2A); we refer to this allele as *dOCRL*^{N-KO}.
222 Using the PH-PLCδ::mCherry probe, we found that PIP₂ levels in *dOCRL*^{N-KO} were significantly increased
223 as compared to the control (Fig 6A, Sup Fig 2E, F).

224

225 We estimated nephrocyte function in *dOCRL*^{N-KO} using the AgNO₃ clearance assay. In control
226 nephrocytes, by 36 h post transfer onto normal medium, AgNO₃ was seen in only 20% of nephrocytes.
227 By contrast, in *dOCRL*^{N-KO}, ca. 60% of nephrocytes showed the presence of AgNO₃, recapitulating that
228 seen in the whole animal *dOCRL*^{KO} (Fig 6B). Likewise, we also measured fluid phase endocytosis in
229 *dOCRL*^{N-KO} and found reduced TMR-Dextran uptake which phenocopies *dOCRL*^{KO} (Fig 6C). Lastly, we
230 found increased lysotracker staining in *dOCRL*^{N-KO} compared to controls and like that seen in *dOCRL*^{KO}
231 (Fig 6D). These results strongly suggest a cell-autonomous role for *dOCRL* in nephrocyte function and
232 the underlying sub-cellular processes.

233

234 We also monitored growth and development in *dOCRL*^{N-KO} animals. *dOCRL*^{N-KO} larvae showed slower
235 larval development, there was a delay of ca. 22 h for 50% of animals to complete development and
236 pupariate (Fig 6E) and the weight and size of *dOCRL*^{N-KO} 3rd instar larvae was only modestly lower than
237 that of controls (Fig 6F, Sup Fig 2 B). *dOCRL*^{N-KO} larvae completed larval development, underwent pupal
238 metamorphosis and eclosed as adults. However, only ca. 50 % of flies eclosed and the remaining did not
239 complete pupal metamorphosis (Sup Fig 2 C, D).

240

241 **Reconstitution with *hOCRL* can rescue the phenotypes of *dOCRL*^{KO}**

242 We tested if wild type human *OCRL* (*hOCRL*) could rescue the defects observed in *dOCRL*^{KO}. For this
243 we generated transgenic flies expressing *hOCRL* (*HA::hOCRL*). We also generated an equivalent
244 phosphatase dead transgene (*HA::hOCRL*^{PD}) and a transgene carrying a recently reported LS-patient
245 mutation (Ahmed P et al., 2021) with a nonsense mutation at 688 position of *hOCRL* (*HA::hOCRL-688*^{C>T}). When expressed ubiquitously using hs-GAL4, both *hOCRL* and *HA::hOCRL*^{PD} transgenes
246 express a protein of the expected size, ca. 110 kDa although *HA::hOCRL*^{PD} was expressed at lower
247 levels (Fig 7B); the patient derived mutant transgene (*HA::hOCRL-688*^{C>T}) expressed a truncated protein
248 of the expected size (Fig 7B). When these transgenes were expressed in *dOCRL*^{KO} using a ubiquitous
249 promoter, *HA::hOCRL* was able to rescue the growth defect of the mutant but *HA::hOCRL*^{PD} and the
250 transgene *HA::hOCRL-688*^{C>T} (Fig 7 A) were not able to do so. Similarly, *HA::hOCRL* was able to rescue
251 the AgNO₃ clearance defect in *dOCRL*^{KO} whereas *HA::hOCRL*^{PD} and *HA::hOCRL-688*^{C>T} were unable to

253 do so (Fig 7D). Likewise, *HA::hOCRL* was able to rescue the fluid phase uptake defect of *dOCRL*^{KO} but
254 *HA::hOCRL*^{PD} and *HA::hOCRL-688*^{C>T} (Fig 7C) were unable to do so. Thus, the human ortholog rescues
255 the defects arising from the loss of *dOCRL* and patient derived mutations can be functionally studied in
256 the fly model.

257

258 **Discussion**

259 Clinical phenotypes in human diseases arise from altered cellular and molecular processes within cells
260 leading to perturbed physiological processes within organ systems. Thus, when modelling human
261 diseases, it is necessary to understand both altered sub-cellular events as well as relate these to
262 pathophysiological changes leading to clinical phenotypes. In the case of LS, proximal tubular dysfunction
263 is a key clinical feature and understanding its pathogenesis requires a disease model that allows the
264 multiple sub-cellular defects ascribed to OCRL depletion to be linked to defective physiology in tubular
265 cells. Here we describe a *Drosophila* model of LS with the following key features: (i) recapitulates the
266 biochemical and subcellular defects previously reported for LS in human cell lines, an important feature
267 of proximal tubule cell function in the human kidney (ii) allows the analysis of endo-lysosomal system
268 function (iii) assess the impact of nephrocyte function in intact animals using physiological assays (iv)
269 test *in vivo*, the pathogenic potential of patient derived LS variants by determining its impact on
270 nephrocyte function.

271

272 During this study, using a germ line null allele of *dOCRL* (Trivedi et al., 2020) we were able to demonstrate
273 multiple structural and functional defects in the endolysosomal system of larval nephrocytes. Several of
274 these alterations in the early endosomal system, lysosomes, autophagosomes and the Golgi complex
275 have been previously described in mammalian cell culture models of LS (Ungewickell et al., 2004;
276 Vicinanza et al., 2011; Zhang et al., 1995) as well as a zebrafish larval model of LS (Oltrabell et al.,
277 2015). This overlap of sub-cellular defects between our *Drosophila* nephrocyte model of LS and that seen
278 in other model systems confirms that the regulation of endo-lysosomal function is a conserved feature of
279 OCRL across multiple model systems and supports the use of *Drosophila* nephrocytes as a model for
280 understanding the kidney deficits in LS. Moreover, it is well established that the receptors cubilin and
281 amnionless are required for reabsorption of proteins via proximal tubular cells. The presence of cubilin
282 and amnionless exclusively on *Drosophila* nephrocytes and their conserved function in protein uptake
283 suggests evolutionary conservation between these cell types (Koehler and Huber, 2023). Therefore,
284 *Drosophila* nephrocytes can provide insights into the proximal tubular dysfunction observed in LS.

285

286 It has previously been reported that in *Drosophila* nephrocytes, the handling of trace metals such as
287 AgNO_3 requires vesicular transport (Fu et al., 2017). Given the endolysosomal defects we noted in
288 $dOCRL^{KO}$, we tested and found defective AgNO_3 clearance in these animals as well as enhanced
289 sensitivity to growth on medium containing AgNO_3 . Importantly, we were able to rescue both the
290 endocytic defects as well as the AgNO_3 clearance delay by reconstituting $dOCRL^{KO}$ with a human OCRL
291 transgene. Therefore, the sub cellular and physiological defects seen in $dOCRL^{KO}$ are well correlated.
292

293 We found that at the level of individual $dOCRL^{KO}$ nephrocytes, levels of PIP_2 , the substrate of dOCRL
294 was elevated whereas the levels of PI4P , the product were reduced. Thus, our nephrocyte model of LS
295 reveals the biochemical abnormality arising from loss of OCRL function. Consistent with this observation
296 we were able to rescue both the endocytic uptake defect as well as the AgNO_3 clearance defect by the
297 expression of a wild type human transgene but not a phosphatase dead version of OCRL. This finding
298 confirms that the catalytic activity of OCRL underlies the cell and whole animal physiology defects noted
299 in our model. PIP_2 and PI4P are both lipids implicated in the activity of many proteins involved in the
300 regulation of endocytic trafficking thus linking the activity of OCRL to the regulation of the endosomal
301 system, nephrocyte physiology and animal function. We also noted that nephrocyte specific deletion of
302 dOCRL ($dOCRL^{N-KO}$) was sufficient to recapitulate the altered lipid levels, endocytic defect and AgNO_3
303 clearance defect seen in the germ line knockout. These finding imply a cell autonomous function for
304 dOCRL within nephrocytes and suggest that the kidney phenotype in human patients most likely arises
305 from the requirement of OCRL within proximal tubular cells rather than through non-cell autonomous
306 mechanisms. This insight is particularly important and implies that future kidney specific therapeutic
307 interventions in LS patients that may include genetic interventions targeted to proximal tubular cells are
308 likely to be of therapeutic benefit in severe or advanced case of LS. Overall, our work provides a model
309 system in which the cellular pathophysiology of LS can be studied with a view to designing future
310 therapeutic strategies.
311

312 Materials and methods

313 *Drosophila* culture and strains

314 All flies used in this study were reared at 25 °C and 50% relative humidity on fly food containing cornmeal,
315 yeast, agar, dextrose with antibacterial and antifungal reagents in a laboratory incubator. All experiments
316 were performed with third instar wandering larvae grown on yeast paste layered on 1% bacteriological
317 agar. Red Oregon-R (ROR) was used as a wild type control. The following transgenic lines were
318 obtained from Bloomington *Drosophila* stock center: Dot-GAL4 (BL6903), Dot-GAL4 (BL67609), UAS-
319 Lifeact::RFP (BL58362), UAS-mCherry::Atg8a (BL37750), X-duplication (BL-31454); UAS-dOCRL::GFP

320 (Avital Rodal lab), UAS- mCherry::2XFYVE (Amy Kiger, UCSD) UAS-PH-PLC δ ::mCherry (Patrick
321 Verstreken lab). UAS-P4M::GFP generated in the Padinjat lab has been previously described
322 (Balakrishnan et al., 2018). gRNAP2dual-CG3573V, UAS-Cas9-T2A-eGFP used to generate nephrocyte
323 specific knockout has been previously described (Trivedi et al., 2020). UAS-LTS::mCherry was generated
324 as mentioned in (Ghosh et al., 2023).

325

326 **Generation of transgenic flies**

327 The transgenic strains *HA::dOCRL*, *HA::hOCRL*, *HA::hOCRL^{PD}*, *HA::hOCRL-688^{C>T}* were generated by
328 cloning cDNA into pUAST-attB with HA tag. *HA::hOCRL* cDNA was amplified from the pcDNA3-
329 *HA::hOCRL* (Addgene-Plasmid# 22207). Not1 and Xba1 restriction sites were used to amplify the
330 amplicon of 2730 bp and ligated into pUAST-attB vector (Drosophila Genomic Resource Center-
331 Stock#1419). Site directed mutagenesis was used to introduce phosphatase dead mutation D523G and
332 688C-T mutation in pUAS-HA::hOCRL.

333

334 Oligonucleotides used:

335 **pUAS-HA::hOCRL:**

336 Not1-hOCRL-FP: GCTGCGGCCGCATGTACCCATACGACGTC
337 Xba1-hOCRL-RP: GCTTCTAGATTAGTCTTCTTCGCT

338 **pUAS-HA::hOCRL688^{C-T}:**

339 hOCRL688^{C-T}-FP: ATCCTGGCAAAGTGAGAGAAAGAATA
340 hOCRL688^{C-T}-RP: ATTCTTCTCTCACTTGCCAGGATA

341 **pUAS-HA::hOCRL-PD:**

342 hOCRL^{D523G}-FP: CTGAAAACCAGCGGCCACAAGCCTGT
343 hOCRL^{D523G}-RP: ACAGGGCTTGTGGCCGCTGGTTTCAG

344

345 **Quantitative RT-PCR**

346 Total RNA was extracted from third instar wandering larvae using TRIzol reagent (Invitrogen) followed
347 by treatment with DNase-I (Invitrogen). cDNA was synthesized using Superscript II RNase H-Reverse
348 transcriptase (Invitrogen) and random hexamers (Applied Biosystems). Non-template and no reverse
349 transcription control samples were also included. Quantitative PCR was performed using Applied
350 Biosystem 7500 Fast Real-Time PCR system using cDNA samples so synthesized. In addition to the
351 transcripts of interest, Ribosomal Protein 49(*RP49*) was amplified as a housekeeping gene. Both *dOCRL*

352 and *RP49* primers were designed at exon-exon junction with primers attaining all the parameters
353 recommended for q-PCR primer designing. The C_t values obtained for each gene was normalized with
354 the values of *RP49* of the sample. Biological triplicates were assayed for each genotype.

355

356 The primers used for q-PCR were:

357 RP49 forward: CGGATCGATATGCTAAGCTGT

358 RP49 reverse: GCGCTTGTTCGATCCGTA

359 dOCRL forward: GAACAAACAAGACCTGCAGC

360 dOCRL Reverse: CTGTCCATCATCTTATCGATCC

361

362 **Growth curve assay**

363 In this assay *wildtype* and *dOCRL*^{KO} flies were allowed to lay eggs for 4-6 h on normal fly food. 24 h post
364 egg laying, first instar larvae were carefully transferred onto yeast media with controlled crowding. Around
365 20 larvae was transferred per vial containing yeast media layered on agar, 6 biological replicates were
366 maintained and allowed to grow at 25 °C. After 96 hrs, the number of larvae pupariated was noted for
367 both *wildtype* and *dOCRL*^{KO} in 3 h time intervals. The number of larvae pupariated were plotted to give
368 the percentage of pupariation achieved. The mean pupariation percentage were calculated from each
369 time bin. These pupariation percentage was plotted and fitted to variable slope on Graph Pad Prism as
370 shown in Fig 1E.

371

372 **Nephrocyte function assay**

373 Flies were allowed to lay eggs on normal food. 24 h after egg laying, first instar larvae were transferred
374 to yeast paste containing 0.003% AgNO₃ layered on 1% bacteriological agar. After 32 h of feeding on
375 AgNO₃ media, larvae were transferred to yeast paste media without AgNO₃. 36, 42 and 56 h post transfer
376 from AgNO₃ media, larvae were dissected, fixed with 4% paraformaldehyde for 15 minutes at room
377 temperature, washed thrice using PBS, mounted in 70% glycerol. Preparations were subjected to bright
378 field imaging under a 10X objective using a Olympus BX43 microscope and digital images were recorded
379 using CellSens software. These images were converted to 8-bit 16 color pixels corresponding to the
380 intensity of AgNO₃, from white being highest concentration to black being least concentration. The
381 number of cells with red pixels and yellow pixel, corresponding to high and low concentration of AgNO₃,
382 was calculated and plotted. The experiment was repeated in three individual trials with triplicates; 60
383 nephrocytes were used for quantification in each genotype. For survival analysis, first instar larvae were
384 transferred to media containing various concentrations of AgNO₃ media and the percentage larval
385 survival was calculated.

386

387 **Dextran uptake assay**

388 Wandering third instar larvae were washed thrice with PBS. Nephrocytes were dissected in Brodie and
389 Bate's buffer (B&B buffer) (consists of 135 mM NaCl, 5 mM KCl, 4mM MgCl₂, 2mM CaCl₂, 5mM TES,
390 36mM sucrose). For dextran uptake by nephrocytes, 0.33mg/ml of TMR-dextran (Thermo-fisher scientific,
391 # D1868) was pulsed for 5 minutes in B&B buffer at 25°C in dark. As negative control another set was
392 incubated in dextran at 4°C. At the end of the incubation period, preparations were washed for 10 minutes
393 in ice-cold PBS, fixed in 4% paraformaldehyde (PFA) in PBS for 15 minutes at room temperature (25°C)
394 and washed thrice with PBS. The tissues were mounted on glass slide with 70% glycerol in PBS.
395 Nephrocytes were imaged on an Olympus FV3000 laser scanning confocal microscope and Fiji ImageJ
396 was used for quantification of mean fluorescence dextran intensity per unit area of nephrocytes from the
397 maximum projection images. These images were used to estimate the area of nephrocytes by marking
398 the cell boundary using ImageJ. The assay was repeated thrice with three larvae in each trial.

399

400 **mBSA uptake assay**

401 mBSA was synthesized and conjugated with Cy5 bis-functional dye (Cy5 Bis NHS Ester, Cat no. C183,
402 GeneCopoeia) according to manufacturer's instructions. Nephrocytes were dissected as described
403 above and immediately incubated with conjugated mBSA (0.1mg/ml) for 15 minutes. Subsequently, cells
404 were washed, fixed with 4% PFA for 15 minutes. Cells were washed, stained with DAPI and imaged on
405 an Olympus FV3000 confocal microscope. Mean fluorescence intensity (MFI) of mBSA was quantified
406 using ImageJ. The assay was repeated three times with three larvae in each trial.

407

408 **Western Blot**

409 All blots were performed from third instar wandering larval lysates except for those where probe levels
410 were estimated; in this case, larval nephrocytes were dissected in PBS and processed for lysate
411 extraction. Lysates were prepared by homogenizing third instar wandering larvae or dissected larvae with
412 Tris-Lysis buffer containing Roche Protease inhibitor and PhosStop and heated at 95°C for 5 minutes.
413 Samples were separated by SDS-Polyacrylamide gel electrophoresis and transferred onto nitrocellulose
414 filter membrane [Hybond-C Extra; (GE Healthcare, Buckinghamshire, UK)] using wet transfer (BioRad,
415 California, USA). Membranes were blocked with 5% Blotto (sc-2325, Santa Cruz Biotechnology, Texas,
416 USA) in PBS with 0.1% Tween 20 (Sigma Aldrich) (PBST) for 2 h at room temperature (25°C) followed
417 by incubation in primary antibody diluted in 5% Blotto in PBST overnight at 4 °C. Primary antibodies
418 dilutions used were 1:1000 anti-dOCRL (Avital Rodal lab), 1:1000 anti-HA (CST, #2367S), 1:4000 anti-

419 α-tubulin-E7c (DHSB, Iowa, USA), 1:1000 anti-Syntaxin1A (DSHB, Iowa, USA), 1:3000 anti-RFP
420 (Rockland, 600-401-600-RTU), 1:1000 anti-α-actin (Sigma Aldrich), 1:1000 anti-mcherry (Thermo, PA5-
421 34974) 1:2000 anti-GFP (Santa cruz, sc9996). Following this, the membrane was washed for 10 minutes
422 thrice with PBST and incubated with the appropriate HRP conjugated secondary antibody (Jackson
423 Laboratories, USA) at 1:10000 dilution in PBST for 2 hours at room temperature. After this, the membrane
424 was washed for 10 minutes thrice with PBST. Blots were developed with ECL substrate (GE healthcare)
425 and imaged using GE Image quant LAS 4000 system. The blots were stripped by incubating with 3%
426 glacial acetic acid in PBST for 30 minutes, washed thrice and re-probed with primary antibody.
427 Quantification of signals was done using Fiji ImageJ software and the values were normalized to the
428 loading control intensity.

429

430 **Immunostaining of nephrocytes**

431 Wandering third instar larvae were dissected in Brodie & Bate's buffer and fixed with 4% PFA in PBS for
432 15 minutes. Cells were permeabilized with 0.3% PBSTX (0.3% Triton X in PBS) for 30 minutes three
433 times and blocked with 5% FBS in PBSTX for 2 h at room temperature. Primary antibodies were diluted
434 with blocking solutions at incubation was done at 4°C overnight. The following primary antibodies were
435 used: anti-dOCRL 1:200 (Avitol Rodal lab), anti-Rab7 1: 200 (DSHB), anti-EEA1 1:800 (Marino Zerial,
436 MPI-CBG, Dresden, Germany). Larval tissues were then washed with PBSTX at room temperature three
437 times with 30 minutes, incubated with appropriate secondary antibody conjugated with fluorophore at
438 1:300 dilution in blocking solution for 3 h at room temperature. Tissues were washed with PBSTX and
439 mounted on glass slides with 70% glycerol in PBS. Samples were imaged on an Olympus FV3000 laser
440 scanning confocal microscope and Fiji ImageJ was used for quantification of mean fluorescence intensity
441 per unit area of nephrocytes. MFI of EEA-1 and Rab-7 staining was quantified after background
442 subtraction from the maximum projections of the stacks and normalized to the area of nephrocytes.

443

444 **Lysotracker Assay**

445 Wandering third instar larvae was dissected in B&B buffer rapidly and incubated with Lysotracker deep
446 red (Thermo-fisher scientific) at 1:1000 dilution in B&B buffer for 5 minutes at room temperature.
447 Following this, tissues were washed thrice in ice cold PBS and fixed with 4% PFA in PBS for 4 minutes
448 (mild fixation as harsh fixation might lead to bleaching of the dye) and mounted on glass slide with 70%
449 glycerol in PBS. Samples were imaged immediately on an Olympus FV3000 laser scanning confocal
450 microscope and Fiji ImageJ was used for quantification of mean fluorescence intensity per unit area of
451 nephrocytes.

452

453 **DNA extraction for verification of *dOCRL*^{N-KO}**

454 Around 8 control and *dOCRL*^{N-KO} third instar wandering larvae was dissected for nephrocytes in B&B
455 buffer. The buffer was drained from the dissected tissue and carcass transferred into a 0.5 ml micro
456 centrifuge tube. Samples were homogenized in 50 μ l of squishing buffer containing 200 μ g/ml proteinase
457 K using a pipette tip and incubated for 30 minutes at room temperature (25 °C). Following this Proteinase
458 K was inactivated by heating at 95 °C for 5 minutes. 3 μ l of this lysate was used for verification of *dOCRL*^{N-}
459 ^{KO} by PCR analysis. We used CG7004 gene as a control to determine the quality of DNA sample
460 preparation.

461

462 **PIP and PIP₂ measurement from larvae by LC-MS/MS**

463 **Lipid isolation for PIP and PIP₂ measurements**

464 Lipids were isolated from three third instar wandering larvae. Total lipids were isolated and neomycin
465 chromatography was performed as described earlier(Ghosh et al., 2019). 25 ng each of 17:0 | 20:4 PI4P
466 (Cat# Avanti LM 1901) and 17:0 | 20:4 PI(4,5)P₂ (Cat# Avanti LM 1904) were used as internal standards
467 and added prior to homogenization of larvae during extraction.

468

469 **Total Organic Phosphate measurement**

470 600 μ l flow-through obtained from the phosphoinositide binding step of neomycin chromatography was
471 obtained from the last step of lipid extraction and stored separately in phosphate free glass tubes till
472 assay was performed. The sample was heated in a dry heat bath at 90°C in phosphate-free glass tubes
473 until it dried (Cat# 14-962-26F). The rest of the process was followed as described previously (Jones et
474 al., 2013).

475

476 **LC-MS/MS**

477 The instrument operation was as described in our previous work on PI5P quantification (Ghosh et al.,
478 2019) (Ghosh and Raghu, 2021) . For *in vivo* lipid measurements, the samples were washed with post-
479 derivatization step before injecting in mass spec. Samples were run on a hybrid triple quadrupole mass
480 spectrometer (Sciex 6500 Q-Trap) connected to a Waters Acquity UPLC I class system. Separation was
481 performed on a ACQUITY UPLC Protein BEH C4, 300 \AA , 1.7 μ m, 1 mm X 100 mm column [Product
482 #186005590] using a 45% to 100% acetonitrile in water (with 0.1% formic acid) gradient over 10 mins.

483 MS/MS and LC conditions used were as described earlier (Ghosh et al., 2019).

484

485 **Software and data analysis**

486 Image analysis was performed by Fiji software (Open source). Mass spec data was acquired on Analyst®

487 1.6.2 software followed by data processing and visualization using MultiQuant™ 3.0.1 software.

488 **MS parameters and List of MRMs**

489 MS was run in positive mode. Dwell time of 65 milliseconds were used for experiments with CAD value
490 at medium range, GS1 and GS2 at 20, CUR (Curtain gas) at 37, IS (ESI Voltage) as 5200 and TEM
491 (Source Temperature) as 300, DP (Declustering Potential) at 140 for PIPs, 60 for PIP₂s, EP (Entrance
492 Potential) at 12 for PIPs, 11 for PIP₂s, CE (Collision Energy) at 29 for PIPs, 37 for PIP₂s, CXP (Collision
493 cell Exit Potential) at 15 for PIPs, 12 for PIP₂s. Both Q1 and Q3 masses were scanned at unit mass
494 resolution.

495

Acyl chain length	PIP parent ion	PIP ₂ parent ion	Daughter ion 496
30:1	-	1011.5	521.5
32:0	933.5	1041.5	551.5
32:1	931.5	1039.5	549.5
32:2	929.5	1037.5	547.5
34:0	961.5	1069.5	579.5
34:1	959.5	1067.5	577.5
34:2	957.5	1065.5	575.5
34:3	955.5	1063.5	573.5
34:4	-	1061.5	571.5
36:0	-	1097.5	607.5
36:1	987.5	1095.5	605.5
36:2	985.5	1093.5	603.5
36:3	983.5	1091.5	601.5
36:4	981.5	1089.5	599.5
38:0	-	1125.5	635.5
38:1	-	1123.5	633.5
38:2	-	1121.5	631.5
17:0 20:4 ISD	995.5	1103.5	613.5

497 **Statistical Analysis**

498 Raw data of imaging were processed and analyzed using Fiji ImageJ, processed data was plotted, and
499 the statistical analysis were analyzed using GraphPad Prism. For all experiments, error bars represent
500 SEM, and p values were calculated by using the student's unpaired t-test with welch correction. * P <
501 0.05, ** P < 0.01, *** P < 0.001. To establish significance in growth curve analyses and nephrocyte
502 filtration assay a two-way Anova was performed. Survival analysis was done for survival assay.

503 **Acknowledgements**

504 This work was supported by the Department of Atomic Energy, Government of India, under Project
505 Identification No. RTI 4006, a Wellcome-DBT India Alliance Senior Fellowship to PR (IA/S/14/2/501540)
506 and a Department of Biotechnology, Government of India grant to AV (BT/PR11030/MED/30/1644/2016).

507

508 **References**

509 **Abrams, J. M., Lux, A., Steller, H. and Krieger, M.** (1992). Macrophages in *Drosophila* embryos and L2 cells
510 exhibit scavenger receptor-mediated endocytosis. *Proc Natl Acad Sci U S A* **89**, 10375–9.

511 **Ahmed P, H., Singh, P., Thakur, R., Kumari, A., Krishnan, H., Philip, R. G., Vasudevan, A. and PADINJAT, R.**
512 (2021). Genomic sequencing of Lowe syndrome trios reveal a mechanism for the heterogeneity of
513 neurodevelopmental phenotypes. *bioRxiv* 2021.06.22.449382.

514 **Attree, O., Olivos, I., Okabe, I., Bailey, L., Nelson, D., Lewis, R., McInnes, R. and Nussbaum, R.** (1992). The
515 Lowe's oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol
516 polyphosphate-5-phosphatase. - PubMed - NCBI. *Nature* **358**, 239–42.

517 **Balakrishnan, S. S., Basu, U. and Raghu, P.** (2015). Phosphoinositide signalling in *Drosophila*. *Biochim Biophys
518 Acta Mol Cell Biol Lipids* **1851**, 770–784.

519 **Balakrishnan, S. S., Basu, U., Shinde, D., Thakur, R., Jaiswal, M. and Raghu, P.** (2018). Regulation of PI4P
520 levels by PI4KIII α during G-protein-coupled PLC signaling in *Drosophila* photoreceptors. *J Cell Sci* **131**,
521 jcs217257.

522 **Ben El Kadhi, K., Roubinet, C., Solinet, S., Emery, G. and Carréno, S.** (2011). The inositol 5-phosphatase
523 dOCRL controls PI(4,5)P2 homeostasis and is necessary for cytokinesis. *Curr Biol* **21**, 1074–9.

524 **Bockenhauer, D., Bokenkamp, A., Hoff, W. Van, Levchenko, E., Holthe, J. E. K., Tasic, V. and Ludwig, M.**
525 (2008). Renal Phenotype in Lowe Syndrome : A Selective Proximal Tubular Dysfunction. *0292*.

526 **De Leo, M. G., Staiano, L., Vicinanza, M., Luciani, A., Carissimo, A., Mutarelli, M., Di Campli, A., Polishchuk,
527 E., Di Tullio, G., Morra, V., et al.** (2016). Autophagosome-lysosome fusion triggers a lysosomal response
528 mediated by TLR9 and controlled by OCRL. *Nat Cell Biol* **18**, 839–850.

529 **De Matteis, M. A., Staiano, L., Emma, F. and Devuyst, O.** (2017). The 5-phosphatase OCRL in Lowe syndrome
530 and Dent disease 2. *Nat Rev Nephrol* **13**, 455–470.

531 **Festa, B. P., Berquez, M., Gassama, A., Amrein, I., Ismail, H. M., Samardzija, M., Staiano, L., Luciani, A.,
532 Grimm, C., Nussbaum, R. L., et al.** (2019). OCRL deficiency impairs endolysosomal function in a
533 humanized mouse model for Lowe syndrome and Dent disease. *Hum Mol Genet* **28**, 1931–1946.

534 **Fu, Y., Zhu, J. yi, Zhang, F., Richman, A., Zhao, Z. and Han, Z.** (2017). Comprehensive functional analysis of
535 Rab GTPases in *Drosophila* nephrocytes. *Cell Tissue Res* **368**, 615–627.

536 **Ghosh, A. and Raghu, P.** (2021). Label-Free Quantification of Phosphoinositides in *Drosophila* by Mass
537 Spectrometry. In *Methods in molecular biology* (Clifton, N.J.), pp. 19–37. Methods Mol Biol.

538 **Ghosh, A., Sharma, S., Shinde, D., Ramya, V. and Raghu, P.** (2019). A novel mass assay to measure
539 phosphatidylinositol-5-phosphate from cells and tissues. *Biosci Rep* **39**,

540 **Ghosh, A., Venugopal, A., Shinde, D., Sharma, S., Krishnan, M., Mathre, S., Krishnan, H., Saha, S. and Raghu,**
541 P. (2023). PI3P-dependent regulation of cell size and autophagy by phosphatidylinositol 5-phosphate
542 4-kinase. *Life Sci Alliance* **6**, e202301920.

543 **Grawe, F., Garcia-lo, A., Artero, R., Weavers, H., Prieto-sa, S., Skaer, H., Denholm, B., Ruiz-go, M. and**
544 **Wilsch-bra, M.** (2009). The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. **457**,
545 3–8.

546 **Hammond, G. R. V and Balla, T.** (2015). Polyphosphoinositide binding domains: Key to inositol lipid biology.
547 *Biochim Biophys Acta* **1851**, 746–58.

548 **Helmstädtter, M., Huber, T. B. and Hermle, T.** (2017). Using the *Drosophila* Nephrocyte to Model Podocyte
549 Function and Disease. *Front Pediatr* **5**,

550 **Ivy, J. R., Drechsler, M., Catterson, J. H., Bodmer, R. and Ocorr, K.** (2015). Klf15 Is Critical for the
551 Development and Differentiation of *Drosophila* Nephrocytes. 1–17.

552 **Jones, D. R., Ramirez, I. B.-R., Lowe, M. and Divecha, N.** (2013). Measurement of phosphoinositides in the
553 zebrafish *Danio rerio*. *Nat Protoc* **8**, 1058–72.

554 **Koehler, S. and Huber, T. B.** (2023). Insights into human kidney function from the study of *Drosophila*. *Pediatr*
555 *Nephrol* **38**, 3875–3887.

556 **Mehta, Z. B., Pietka, G. and Lowe, M.** (2014). The Cellular and Physiological Functions of the Lowe Syndrome
557 Protein OCRL1. *Traffic* **15**, 471–487.

558 **Oltrabella, F., Pietka, G., Ramirez, I. B.-R., Mironov, A., Starborg, T., Drummond, I. a., Hinchliffe, K. a. and**
559 **Lowe, M.** (2015). The Lowe Syndrome Protein OCRL1 Is Required for Endocytosis in the Zebrafish
560 Pronephric Tubule. *PLoS Genet* **11**, e1005058.

561 **Preston, R., Naylor, R. W., Lennon, R., Stewart, G., Bierzynska, A., Saleem, M. A., Lowe, M. and Lowe, M.**
562 (2020). A role for OCRL in glomerular function and disease. **5**, 641–648.

563 **Recker, F., Zaniew, M., Böckenhauer, D., Miglietti, N., Bökenkamp, A., Moczulska, A., Rogowska-Kalisz, A.,**
564 **Laube, G., Said-Conti, V., Kasap-Demir, B., et al.** (2015). Characterization of 28 novel patients expands
565 the mutational and phenotypic spectrum of Lowe syndrome. *Pediatr Nephrol* **30**, 931–43.

566 **Trivedi, D., CM, V., Bisht, K., Janardan, V., Pandit, A., Basak, B., H, S., Ramesh, N. and Raghu, P.** (2020). A
567 genome engineering resource to uncover principles of cellular organization and tissue architecture by
568 lipid signaling. *Elife* **9**,

569 **Ungewickell, A., Ward, M. E., Ungewickell, E. and Majerus, P. W.** (2004). The inositol polyphosphate 5-
570 phosphatase Ocr1 associates with endosomes that are partially coated with clathrin. *Proc Natl Acad Sci*
571 *U S A* **101**, 13501–6.

572 **Vicinanza, M., Di Campli, A., Polishchuk, E., Santoro, M., Di Tullio, G., Godi, A., Levchenko, E., De Leo, M.**
573 **G., Polishchuk, R., Sandoval, L., et al.** (2011). OCRL controls trafficking through early endosomes via
574 PtdIns4,5P₂-dependent regulation of endosomal actin. *EMBO J* **30**, 4970–4985.

575 **Zhang, X., Jefferson, A. B., Auethavekiat, V. and Majerus, P. W.** (1995). The protein deficient in Lowe
576 syndrome is a phosphatidylinositol-4,5- bisphosphate 5-phosphatase. *Proc Natl Acad Sci U S A* **92**,
577 4853–4856.

578 **Zhang, X., Hartz, P. A., Philip, E., Racusen, L. C. and Majerus, P. W.** (1998). Cell lines from kidney proximal
579 tubules of a patient with Lowe syndrome lack OCRL inositol polyphosphate 5-phosphatase and
580 accumulate phosphatidylinositol 4,5-bisphosphate. *J Biol Chem* **273**, 1574–1582.

581

582 **Figure Legends**

583 **Figure 1: dOCRL regulates growth and development of larvae.**

584 (A) Quantitative RT-PCR to check transcript levels of *dOCRL* in Control and *dOCRL*^{KO}. (B) Survival plot
585 of *dOCRL*^{KO} and control larvae, Y axis represents the percentage of survival of larvae and X axis
586 represents the days post larval hatching. (C) represents the growth curve to analyze the percentage of
587 pupariation over time after egg laying (AEL) for both control and *dOCRL*^{KO}. (D) Average weight of third
588 instar wandering larvae of control, *dOCRL*^{KO} and *dOCRL*^{KO} reconstituted with the wild type *dOCRL* gene
589 (*dOCRL*^{KO};hs>HA::*dOCRL*) was calculated. (E) Percentage of pupariation was calculated for the wild
590 type, *dOCRL*^{KO} and *dOCRL*^{KO};hs>HA::*dOCRL*. (F) Micrographs of wild type, *dOCRL*^{KO} and
591 *dOCRL*^{KO};hs>HA::*dOCRL* at third instar wandering stage. We observed that *dOCRL*^{KO} is lethal at pupal
592 stage/late 3rd instar. (G) Immunoblots for verification of dOCRL protein expression in control, *dOCRL*^{KO}
593 and *dOCRL*^{KO};hs>HA::*dOCRL*. Statistical tests: (A, D, E) Column plots with mean ± S.E.M are shown.
594 Two tailed unpaired t-test with welch correction is used. ****p<0.0001, ***p<0.001, **p<0.01. (B) Survival
595 curve used Long-rank (Mantel-cox) test and Gehan-Breslow-Wilcoxon test to analyze the statistical
596 significance between two genotypes, ****p<0.0001.

597

598 **Figure 2: dOCRL is required to maintain the levels of PIP₂ and PI4P in nephrocytes.**

599 (A-B) Confocal micrographs and quantification of PI(4,5)P₂ in control and *dOCRL*^{KO} was done using PH-
600 PLCδ::mCherry probe. (C-D) PI4P was measured similarly using P4M::GFP as a probe.
601 (E-F) Whole larval PIP and PIP₂ levels were quantified by LC-MS/MS. Statistical tests: (B, D) Column
602 graph is plotted with individual dot representing the value of each nephrocytes with mean ± S.E.M are

603 shown. Two tailed unpaired t-test is used. ****p<0.0001, ***p<0.001, **p<0.01. (E,F) Unpaired t-test with
604 Welch's correction is used ****p<0.05.

605

606 **Figure 3: Loss of dOCRL perturbs filtration function in nephrocytes.**

607 (A) A cartoon illustrating the method of silver nitrate AgNO₃ clearance assay. (B) Micrographs of
608 dissected nephrocytes from control, dOCRL^{KO}, and dOCRL^{KO};hs>HA::dOCRL larvae showing AgNO₃
609 clearance at 36,42 and 56 hours after transfer from AgNO₃ yeast media to just yeast media and their
610 respective 8-bit 16 color pixel converted micrographs. 16 color pixels are arranged in the order of intensity
611 levels from minimum with black to maximum level with white. (C) Percentage of cells with red pixel
612 intensity corresponding to highest levels of AgNO₃ in nephrocytes of control, dOCRL^{KO},
613 dOCRL^{KO};hs>HA::dOCRL at 36,42 and 56 hours after transfer. (D) Survival of larvae til third instar grown
614 on increasing concentrations of AgNO₃. Statistical tests: (C, D) XY plots with mean ± S.E.M are
615 represented. Two-way ANOVA grouped analysis with Bonferroni's post multiple comparison tests was
616 performed using graph pad prism to compare between each group. Ns-Non significance, ****p<0.0001,
617 ***p<0.001, *p<0.05. This statistical significance is represented on graph.

618

619 **Figure 4: Loss of dOCRL perturbs the endocytosis in nephrocytes.**

620 (A) Confocal micrographs of 10KDa TMR-dextran uptake assay in control, dOCRL^{KO} and
621 dOCRL^{KO};hs>HA::dOCRL. (B) Mean fluorescence intensity (MFI) of 10KDa TMR-Dextran in nephrocytes
622 per unit area calculated using imageJ. (C) Confocal micrographs of mBSA-Cy5 uptake assay in control,
623 dOCRL^{KO} and dOCRL^{KO};hs>HA::dOCRL. (D) Quantification of uptake of mBSA by calculating the MFI.
624 (E-F) Confocal micrographs and quantification of Immunostaining of control, dOCRL^{KO} nephrocytes with
625 early endosome marker EEA-1, nucleus of these cells was stained with DAPI. (G) Confocal micrographs
626 of nephrocytes labelled with 2XFYVE domain. UAS-mCherry::2XFYVE is driven in nephrocytes using Dot
627 Gal4. (H) Quantification of MFI of mCherry::2XFYVE by Imagej. Statistical tests: XY plots with mean ±
628 S.E.M are represented. Two tailed unpaired t-test is used. ****p<0.0001, ***p<0.001, **p<0.01.

629

630 **Figure 5: dOCRL^{KO} is required to maintain organelle homeostasis.**

631 (A) Confocal micrographs of Immunostaining of control and dOCRL^{KO} nephrocytes with late endosome
632 marker Rab7,(B) Mean fluorescence intensity (MFI) of Rab7 antibody staining calculated using imagej.

633 (C) Confocal micrographs of nephrocytes stained with lysotracker deep red to label the acidified
634 compartments of control and $dOCRL^{KO}$. (D) MFI of Lysotracker staining measured using ImageJ. (E)
635 Confocal micrograph of nephrocytes labelled with lysosome targeting probe LTS::mcherry in control and
636 $dOCRL^{KO}$ (F) MFI of Lysosome levels in nephrocytes measured using imagej. (G) Confocal micrograph
637 of nephrocytes labelled with autophagosomes targeting probe mcherry::Atg8a in control and
638 $dOCRL^{KO}$. (H) Number of Atg8a puncta in nephrocytes in control and $dOCRL^{KO}$ were counted using
639 ImageJ and normalized to unit area of nephrocytes. Statistical tests: XY plots with mean \pm S.E.M are
640 represented. Two tailed unpaired t-test is used. ****p<0.0001, ***p<0.001, **p<0.01.

641

642 **Figure 6: Generation of Nephrocyte specific $dOCRL^{N-KO}$**

643 (A) Quantification of plasma membrane to cytoplasmic MFI levels of PIP₂ in control and $dOCRL^{N-KO}$. (B)
644 Percentage of cells with red pixel intensity corresponding to highest levels of AgNO₃ in nephrocytes at
645 36h, 42h, and 56h after transfer. (C) Quantification of mean fluorescence intensity (MFI) of 10KD_a TMR-
646 Dextran in nephrocytes calculated using imageJ. (D) Quantification of MFI of Lysotracker staining in
647 nephrocytes of control and $dOCRL^{N-KO}$ measured using imageJ (E) Growth curve to analyze the
648 percentage pupariation over time after egg laying (AEL) for both control and $dOCRL^{N-KO}$. (F) Average
649 weight of third instar wandering larvae of control, $dOCRL^{KO}$, $dOCRL^{N-KO}$ was measured and plotted. Each
650 data set corresponds to weight in milligram per 5 larvae. Statistical tests: XY plots with mean \pm S.E.M are
651 represented. (A, B, E, F) Two tailed unpaired t-test is used. ns-Non significance, ****p<0.0001,
652 ***p<0.001, **p<0.01. (D) Two-way ANOVA grouped analysis with Bonferroni's post multiple comparison
653 tests was performed using graph pad prism to compare between each group. ns-Non significance,
654 ****p<0.0001, ***p<0.001, *p<0.05. This statistical significance is represented on graph.

655

656 **Figure 7: $hOCRL$ reconstitution rescued the phenotypes of $dOCRL^{KO}$**

657 (A) Micrographs of third instar wandering larvae after reconstituting with the wild type $hOCRL$ gene,
658 $hOCRL^{PD}$ and $hOCRL-688^{C>T}$. (B) Immunoblots depicting reconstitution of the wild type and transgenes
659 with mutations in the $dOCRL^{KO}$ background. (C) Mean fluorescence intensity of 10KD_a TMR-Dextran in
660 nephrocytes of control, $dOCRL^{KO}$, $dOCRL^{KO};hs>HA::hOCRL$, $dOCRL^{KO};hs>HA::hOCRL^{PD}$ and
661 $dOCRL^{KO};hs>HA::hOCRL-688^{C>T}$ was calculated using ImageJ. (D) Percentage of cells with red pixel
662 intensity corresponding to highest levels of AgNO₃ in nephrocytes of control, $dOCRL^{KO}$ and
663 $dOCRL^{KO};hs>HA::hOCRL$ at 36,42 and 56 hours after transfer. Statistical tests: XY plots with mean \pm

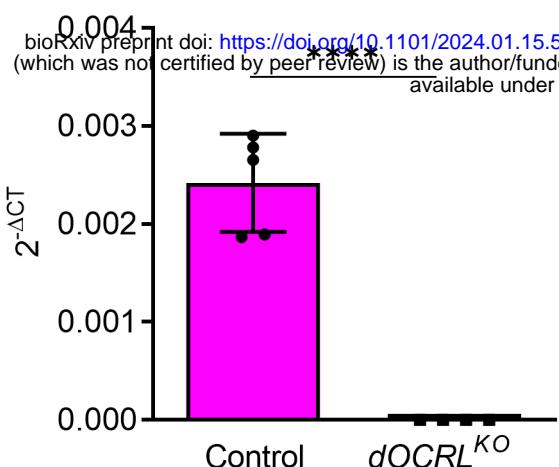
664 S.E.M are represented. (B, D) Two tailed unpaired t-test is used. ns-Non significance, ****p<0.0001,
665 ***p<0.001. (E) Two-way ANOVA grouped analysis with Bonferroni's post multiple comparison tests was
666 performed using graph pad prism to compare between each group. ns-Non significance, ****p<0.0001,
667 ***p<0.001, *p<0.05. This statistical significance is represented on graph.

668

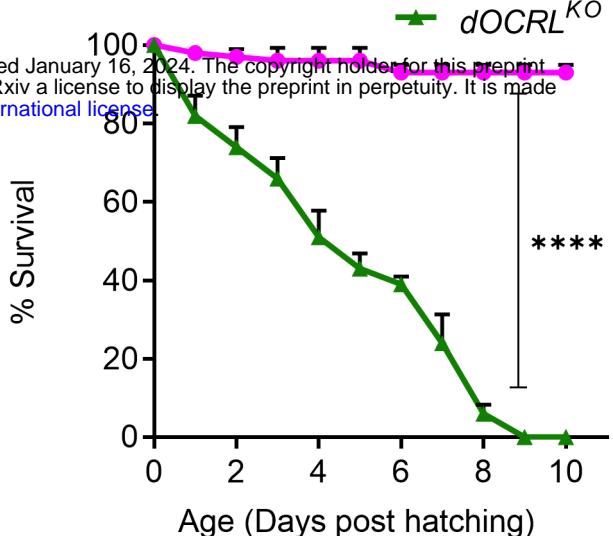
669 **Supplementary Figure 1:**

670 Immunoblots to verify the expression of Ph-PLC δ ::mCherry (A), P4M::GFP (C), mCherry::2XFYVE (E),
671 LTS::mCherry (G) and mCherry::ATG8a (I) probe levels in control and *dOCRL*^{KO} nephrocytes.
672 Quantification of probe levels of Ph-PLC δ ::mCherry (B), P4M::GFP (D), mCherry::2XFYVE (F),
673 LTS::mCherry (H) and mCherry::Atg8a (J). Statistical tests: XY plots with mean \pm S.E.M are represented.
674 Two tailed unpaired t-test is used. ***p<0.001, *- p<0.05.

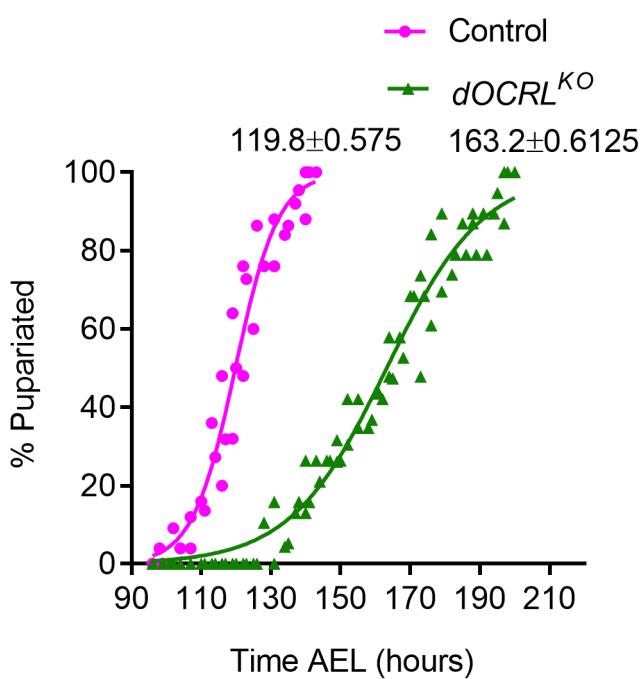
675

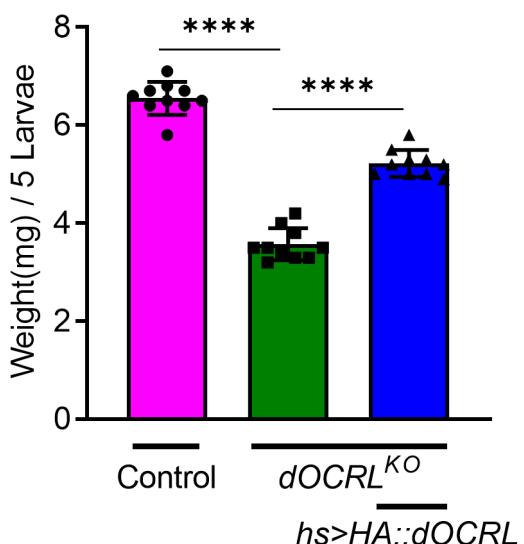

676 **Supplementary Figure 2: Nephrocyte specific *dOCRL* knockout phenocopies the defects of whole**
677 **body *dOCRL*^{KO}**

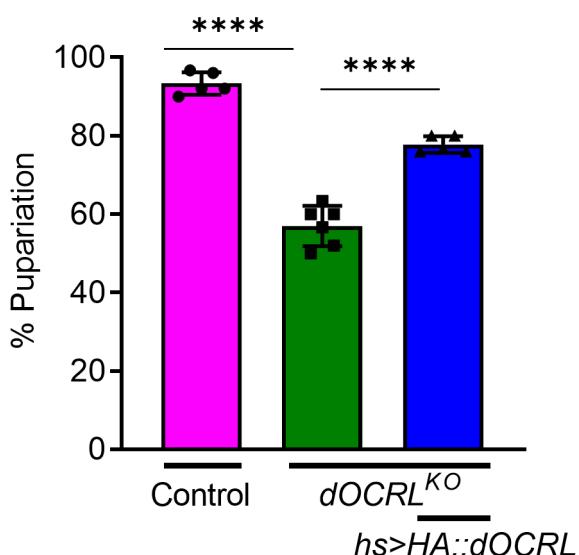
678 (A) Verification of knock out of dOCRL gene in nephrocytes by agarose gel electrophoresis in control,
679 *dOCRL*^{KO} and *dOCRL*^{N-KO}. (B) Micrographs of third instar larvae of control, *dOCRL*^{N-KO} and *dOCRL*^{KO}.
680 (C-D) Percentage of control and *dOCRL*^{N-KO} larvae puparated and the percentage of adult flies eclosed
681 respectively. (E) Confocal micrographs of PIP₂ localization in control, *dOCRL*^{KO} and *dOCRL*^{N-KO}. (F)
682 Quantification of plasma membrane to cytoplasmic MFI of PIP₂ measured using ImageJ. Statistical tests:
683 XY plots with mean \pm S.E.M are represented. Two tailed unpaired t-test is used. ***p<0.001, *- p<0.05.

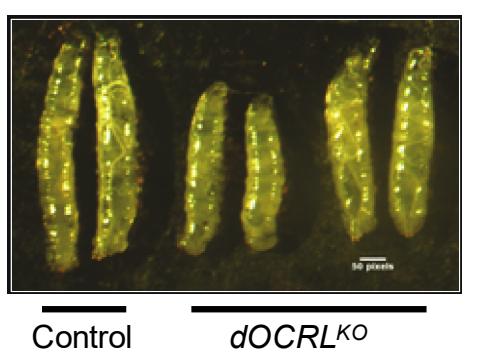

684

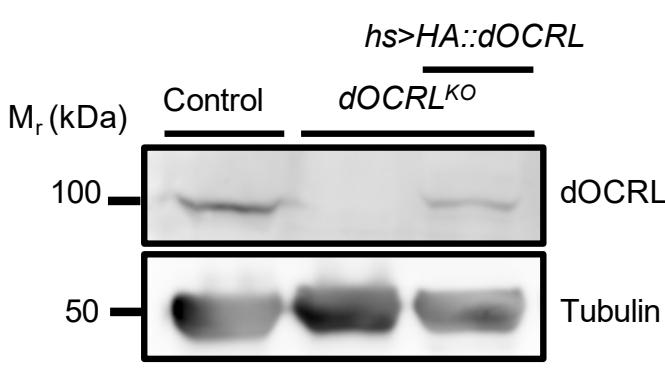
685

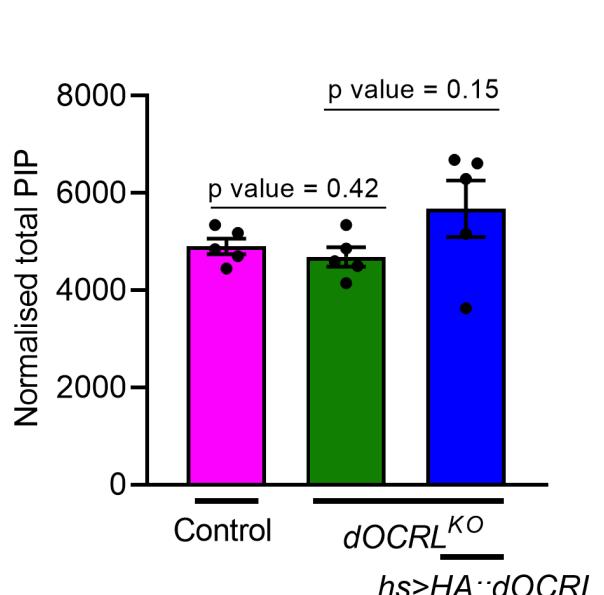
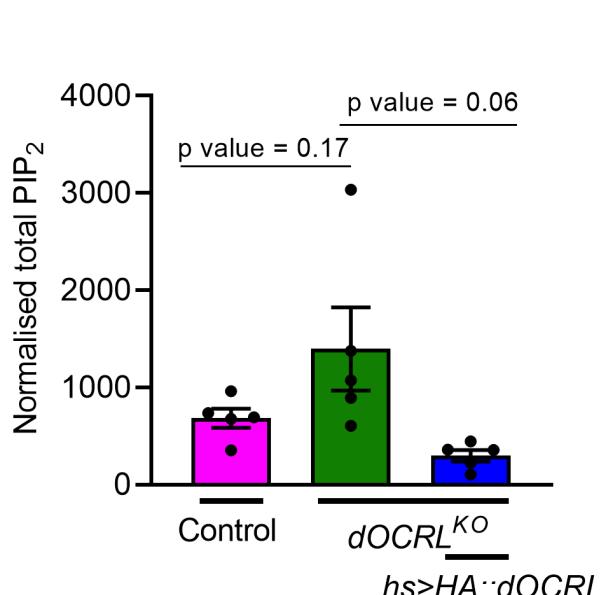
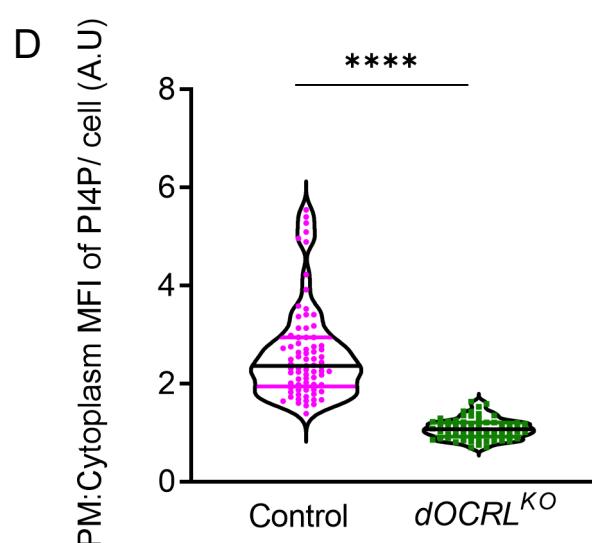
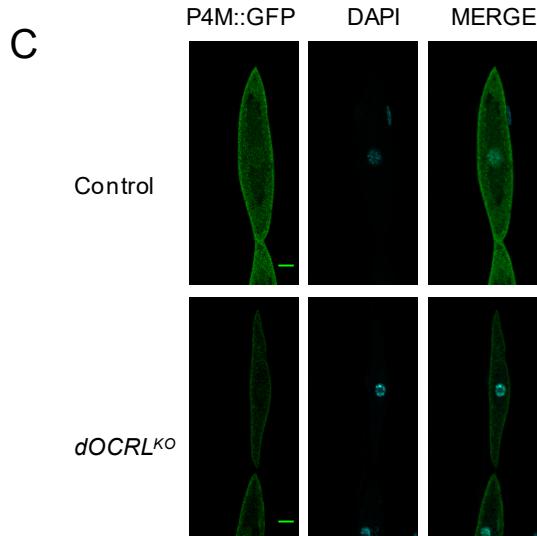
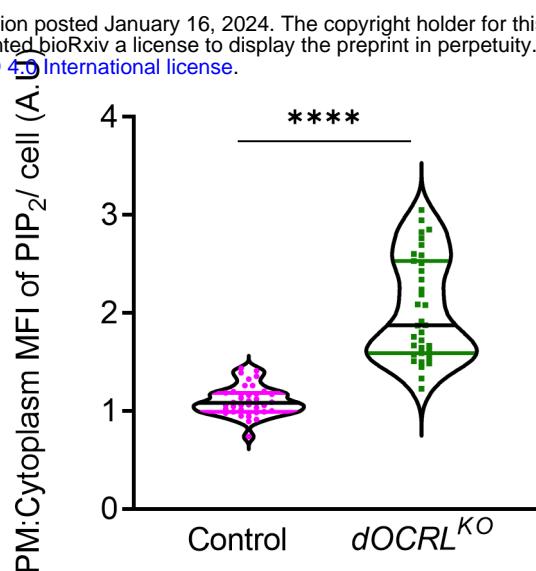
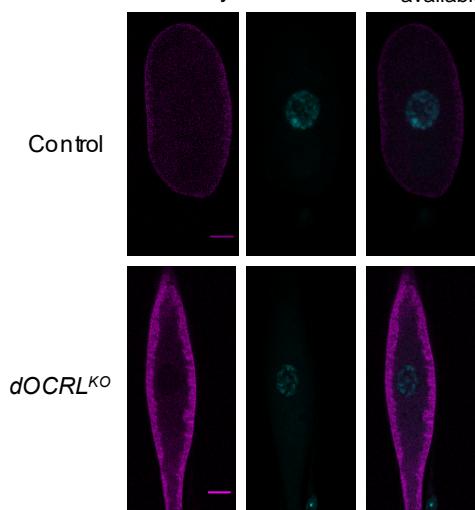

A


B

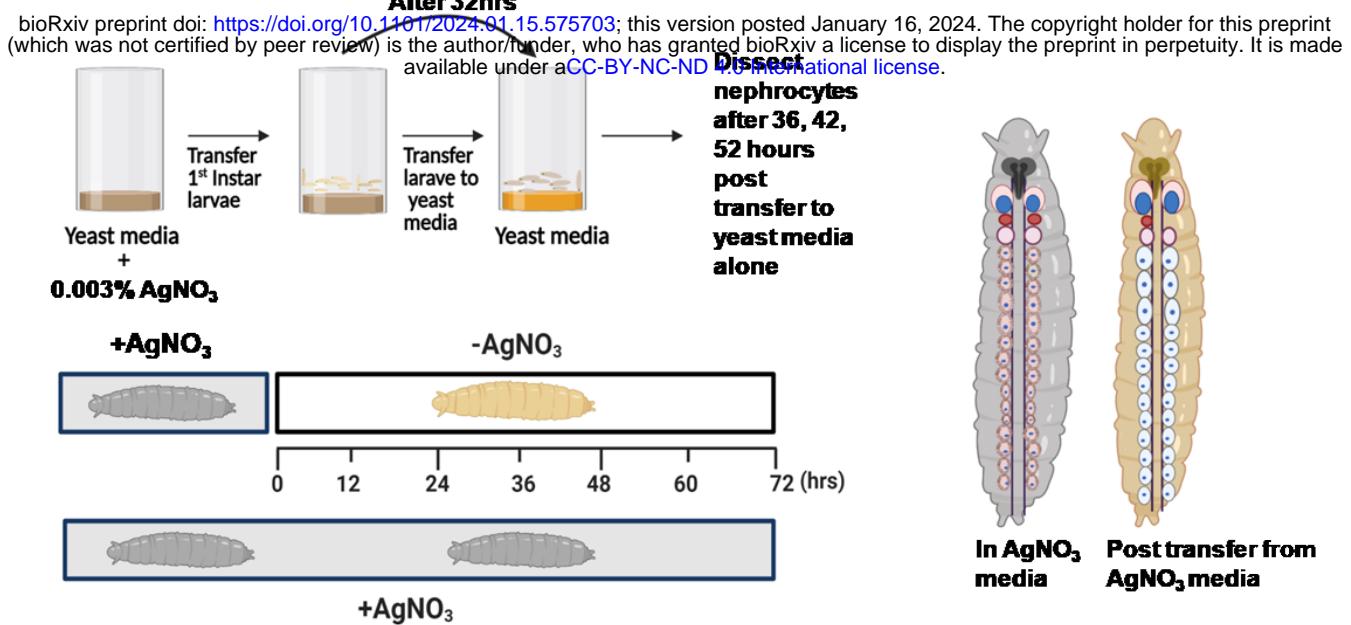

C


D

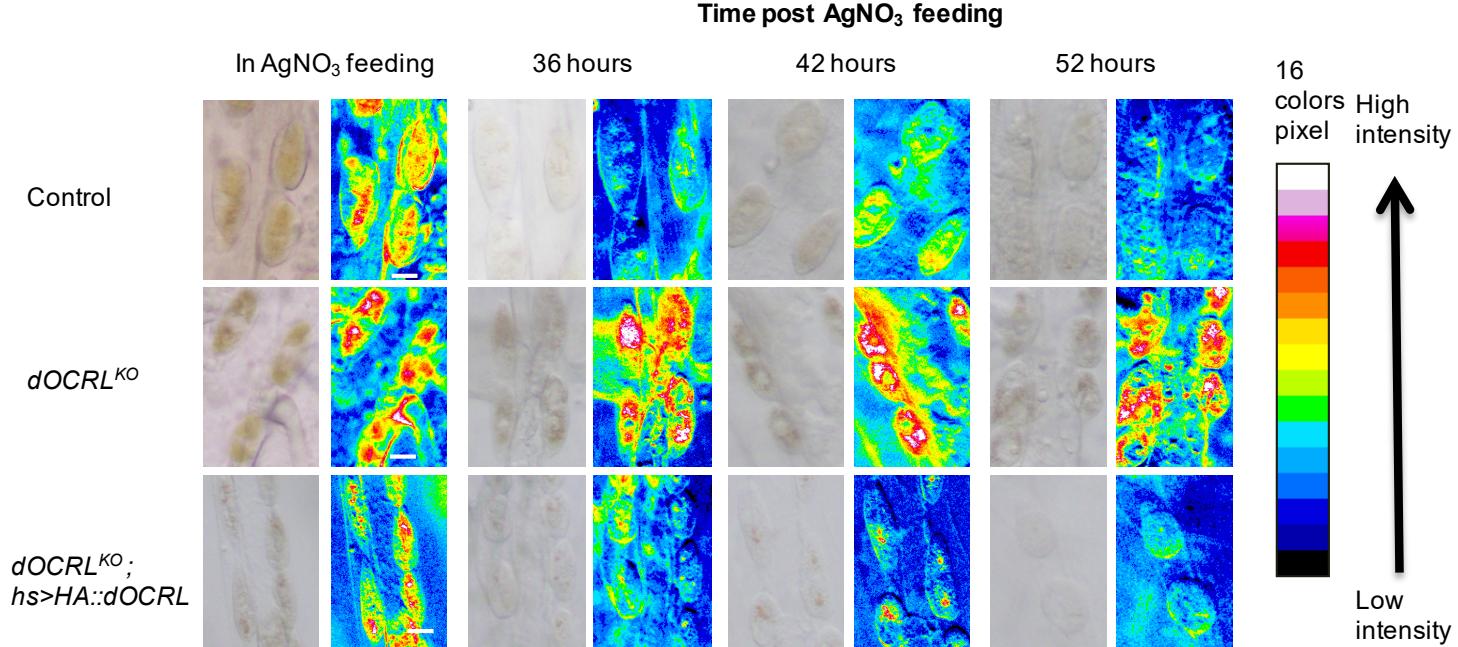

E

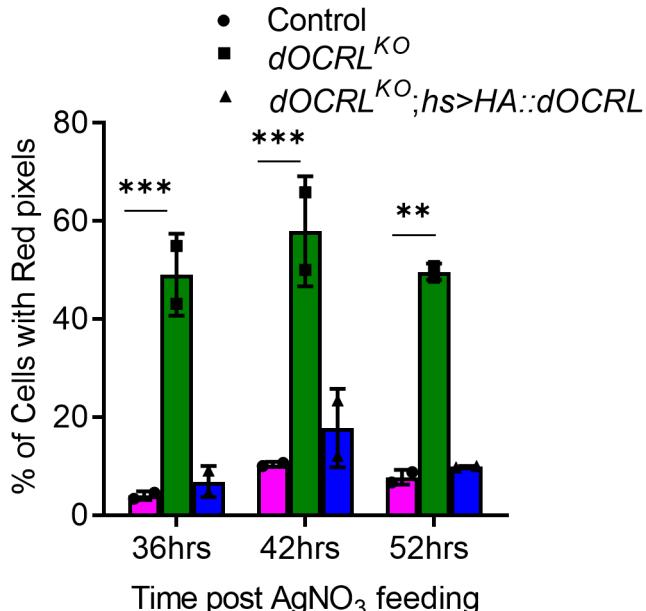







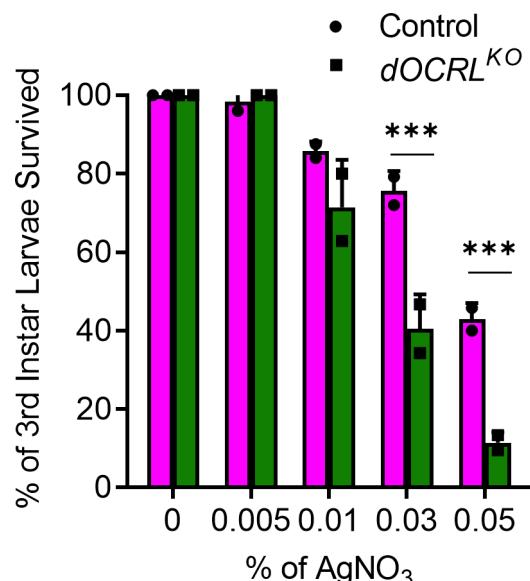
F



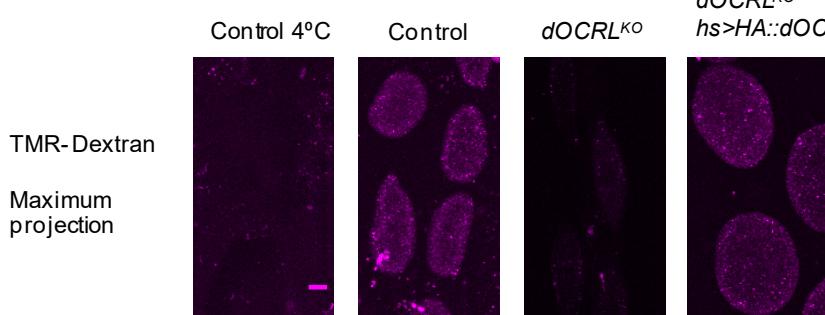
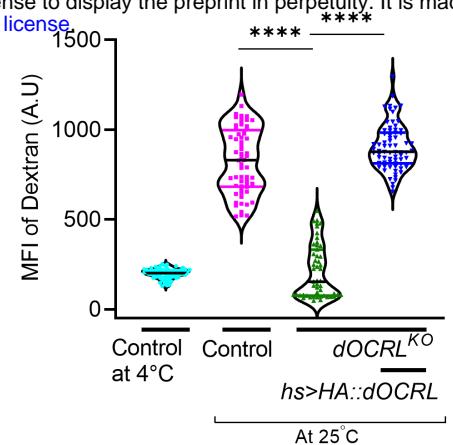
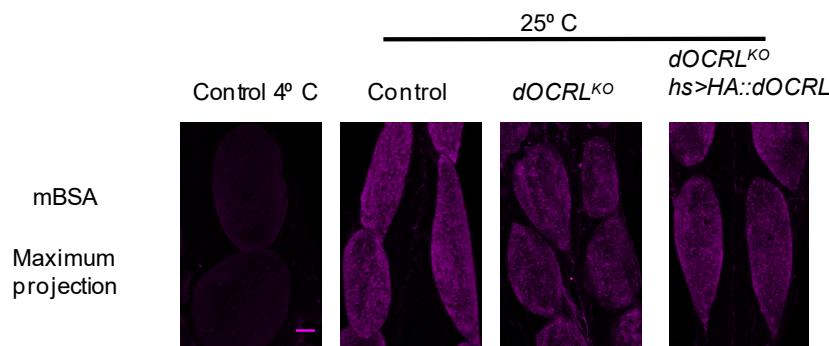
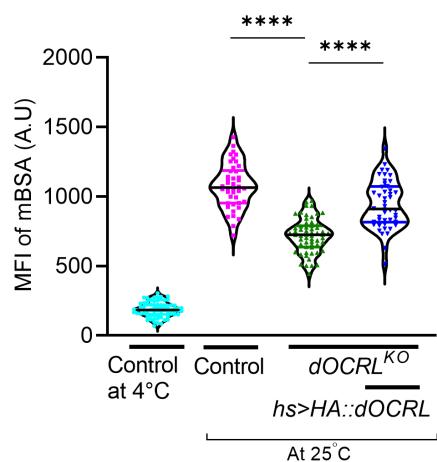
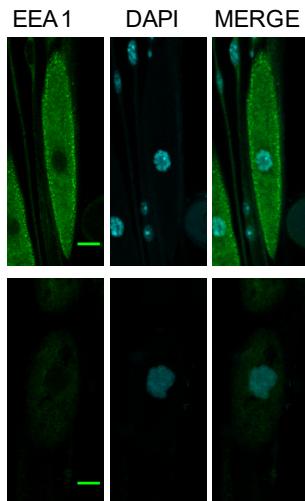
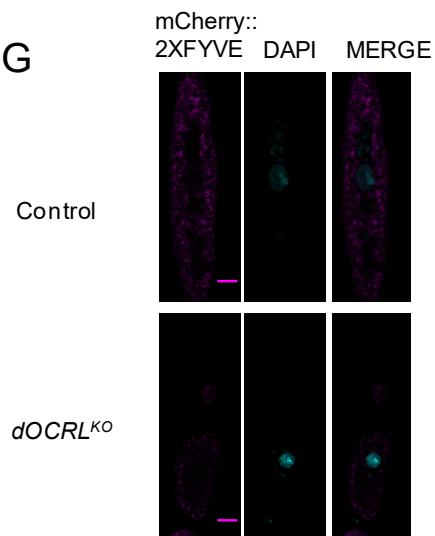
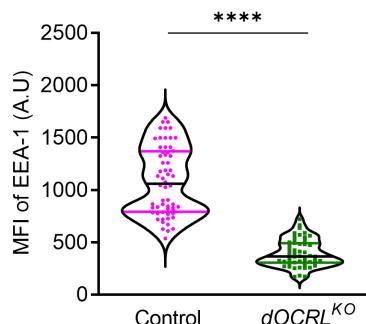
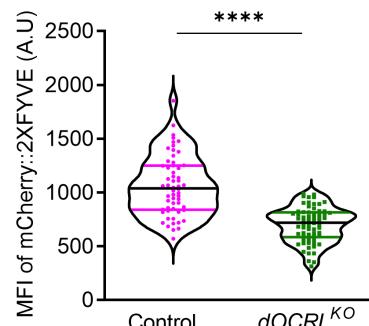
G



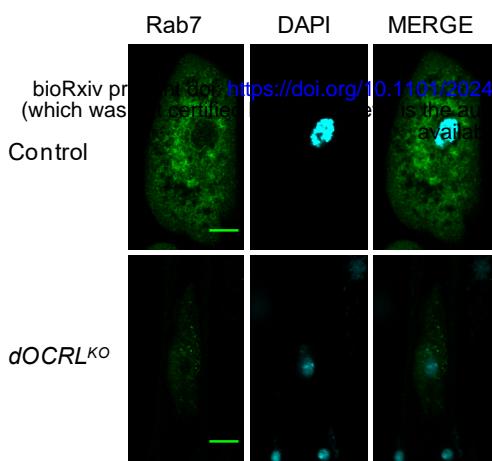

A


B

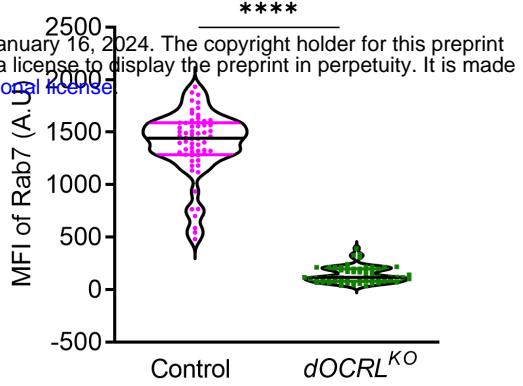
C

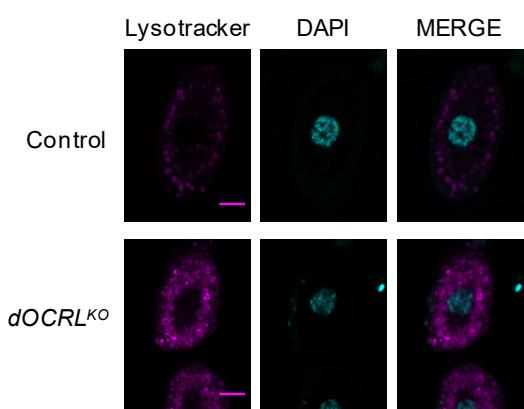
D

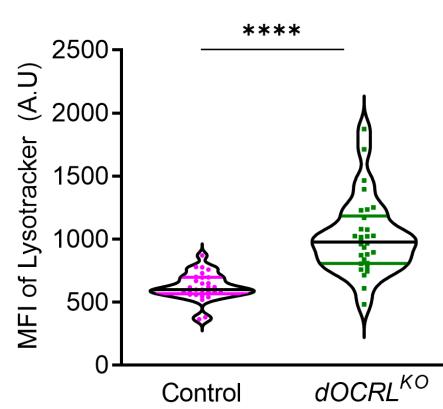


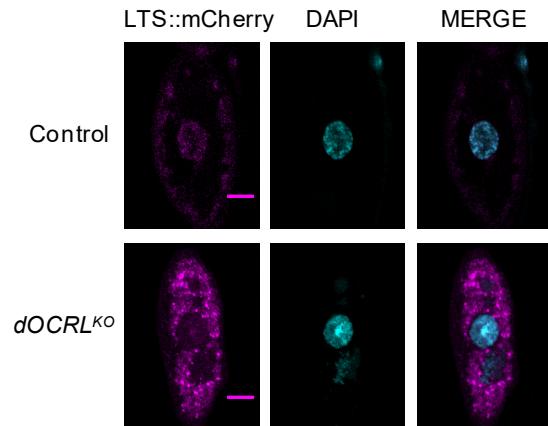
A

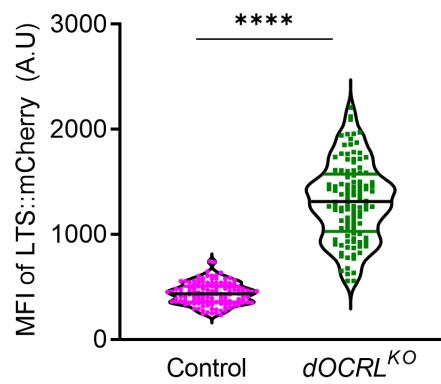

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.15.575703>; this version posted January 16, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

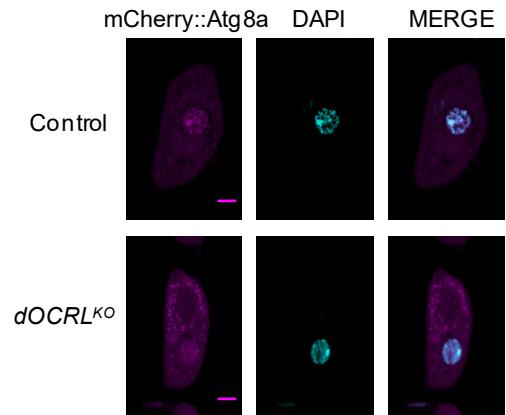
B**C****D****E****G****F****H**

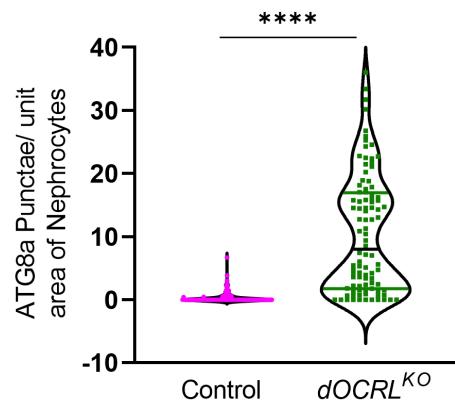

A

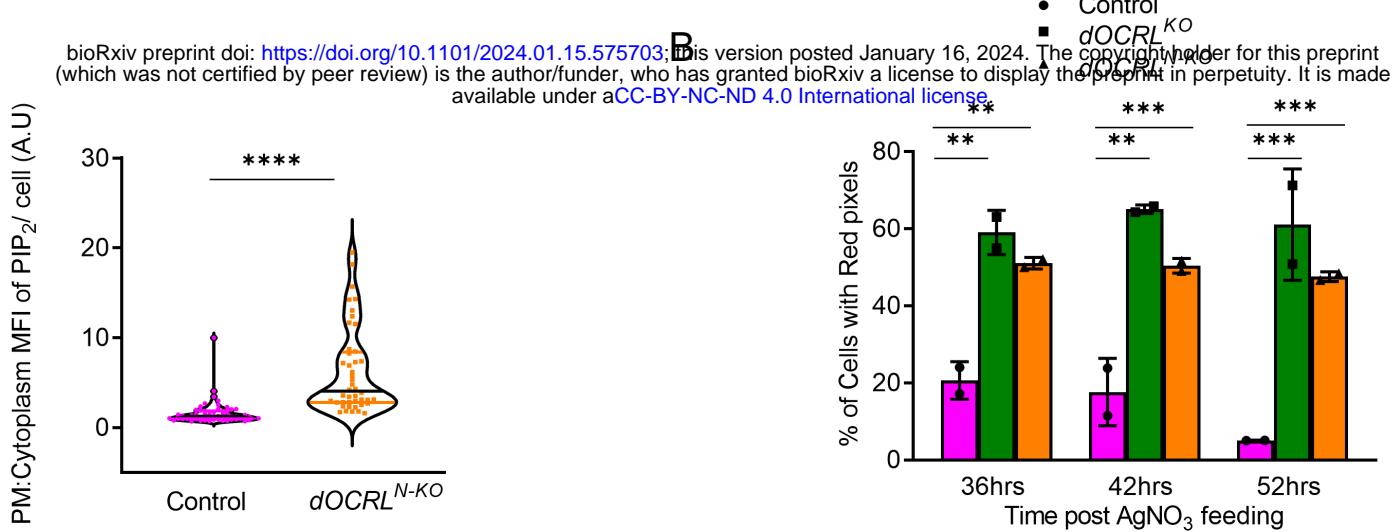

B

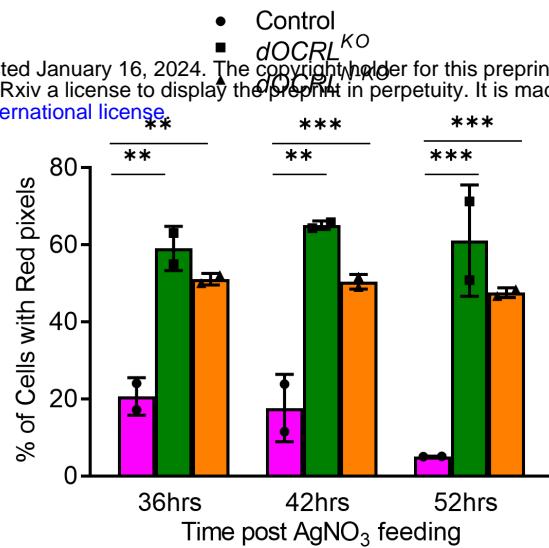

C

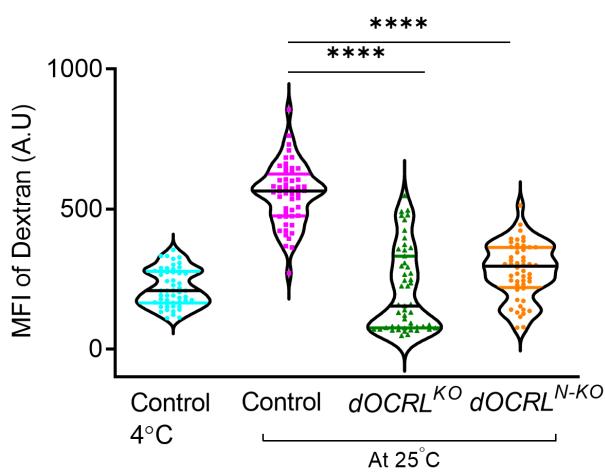

D

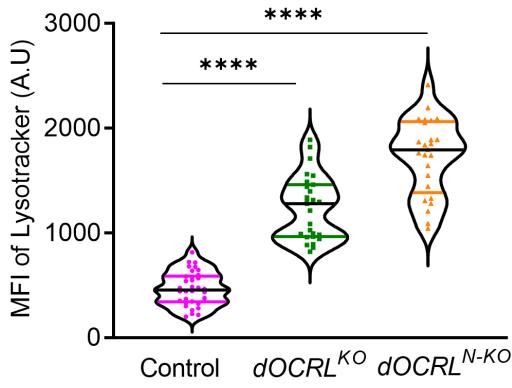

E

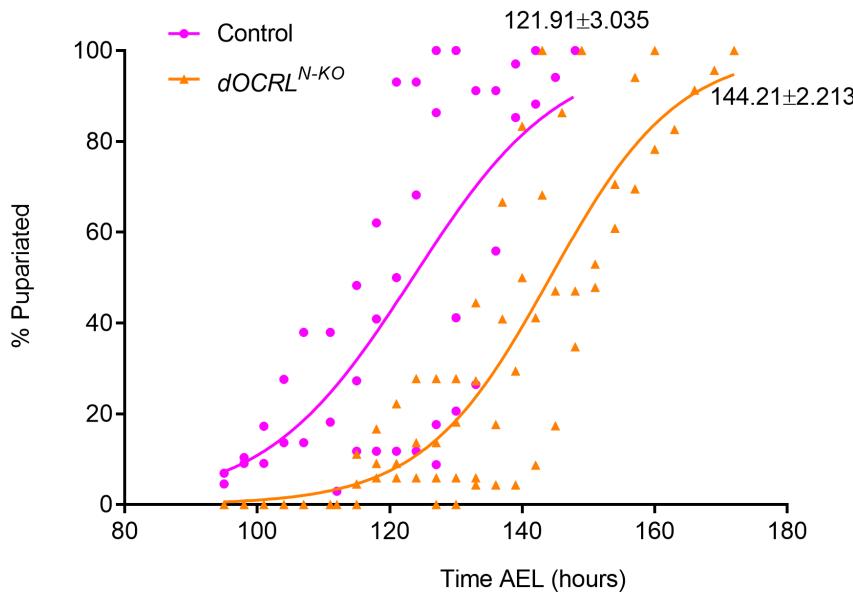

F

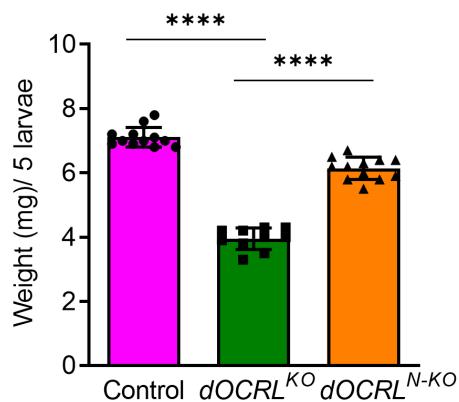

G


H

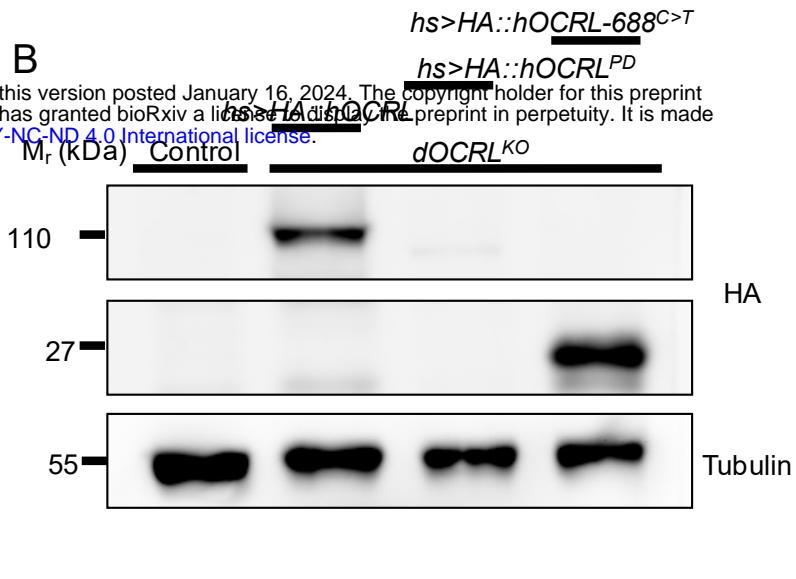

A

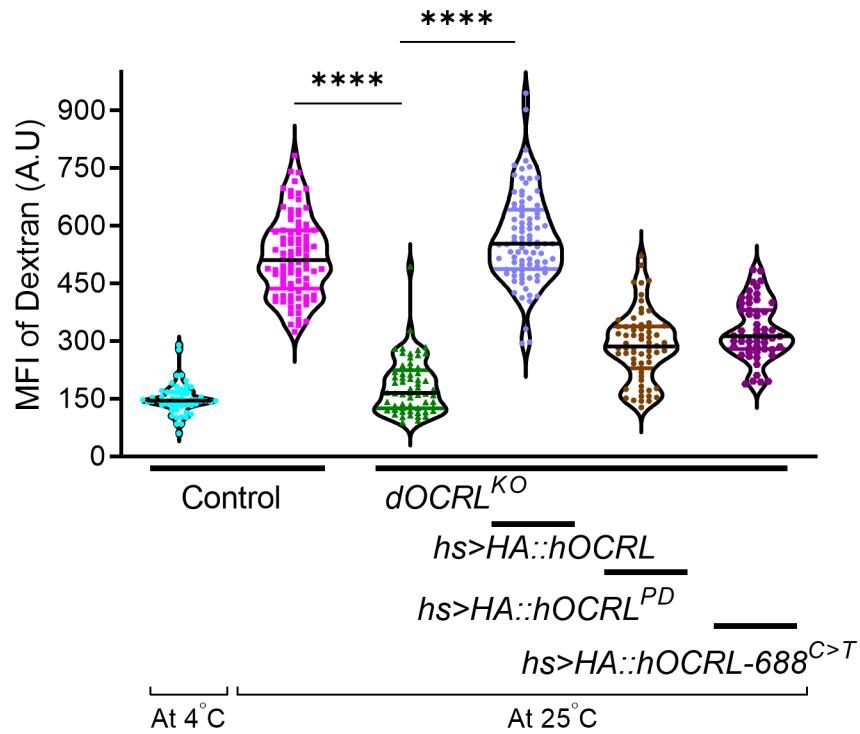

B

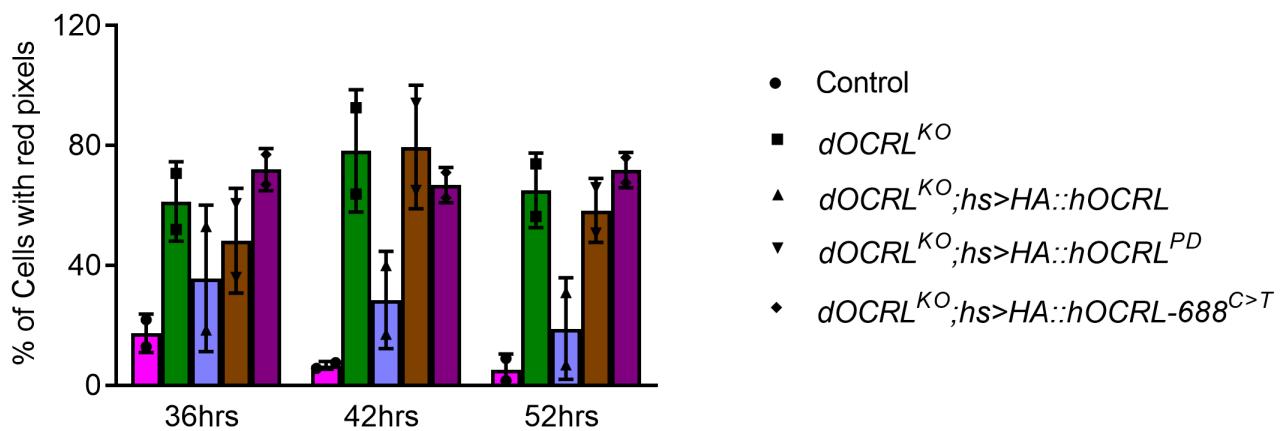

C


D


E


F


A


B

C

D

