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Abstract

Data is the driving engine of learning-based algorithms, the creation of which fundamentally

determines the performance, accuracy, generalizability and quality of anymodel or method trained

on it. When only skilled or trained personnel can create reliable annotations, assisted software

solutions are desirable to reduce the time and effort the expert must spend on labelling. Herein is

proposed an automated annotation helper software package in napari that offers multiple methods

to assist the annotator in creating object-based labels on 2D or 3D images.

Main text

Supervised learning relies on labelled data as its training set. Several clever augmentation

techniques have been applied [1-4] to address the problem of inadequate amount of labelled data,

even though semi- or self-supervised algorithms with more moderate requirements are also

applied in the domain of microscopy image analysis. Themost commonly used deep learning-based

methods for cell or nucleus segmentation such as StarDist [5], Cellpose [6] provide pre-trained

models e.g. in ImageJ [7-8], QuPath [9], CellProfiler [10] or BIAS [11] plugins convenient for the

users, yet in most cases accuracy strongly depends on the image data. When applied to a certain

experiment type the pre-trained models do not meet the expectations, and re-training or training

from scratch is needed. To this end annotated (labelled) images must be prepared for which

available software tools can be used; a recent article reviews them [12]. The challenging part of

object annotation is either the number of objects to label or the difficulty of the morphology

(shape), texture, border recognition by eye even for experts. To help create annotations, automatic

solutions have been added to annotation tools [7-9,12-15] (see also Fig.1A). The most challenging

task remains 3D object labelling due to the generally low resolution along the z axis in case of

z-stack images, the implicitly complicated structure/texture of the sample such as spheroids or

organoids (see examples on Figure 1B-C) and the large file size of such data.
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Figure 1. Overview of napari-biomag-annotator when labelling single nuclei in a spheroid. A)

Schematic representation of the annotation methods. B) Data used for benchmarking the tool with

average time saved compared to manual annotation. Datasets are visualized in the napari viewer

with annotations overlayed. Pie charts show annotation times using manual, minimal contour or

additionally interpolation; gray section corresponds to difference between two sets of manual

annotations, while on the 2D cells minimal contour is shown for nuclei and cytoplasm separately. C)

Representative co-culture spheroid used in the ground truth dataset at

https://doi.org/10.6084/m9.figshare.c.7020531.v1. Abbreviations: GT - ground truth, interp -

interpolation.

We present a toolbox of annotation methods implemented in the napari [13] ecosystem entitled

napari-biomag-annotator as a plugin, freely available at

https://github.com/biomag-lab/napari-biomag-annotator and at the napari hub (at

https://www.napari-hub.org/plugins/napari-biomag-annotator). Napari supports n-dimensional

image inspection in its viewer and several plugins are available for different image processing tasks

(e.g. StarDist [5], Cellpose [6] are available as napari plugins). Our toolbox consists of four methods,

each aims to assist in single object annotation (presented on Figure 1) as follows. 1)Minimal contour
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allows 2D annotation in a few clicks by approximating the contour of the annotated object between

two points via image features with high values near object boundaries (e.g. gradient for fluorescent

images), 2) Minimal surface can be used for 3D annotation similarly to minimal contour by

approximating surfaces using as few as two points as reference, 3) Slice interpolation is most helpful

in z-stack annotation when one object is present onmultiple layers and only sparse annotations are

available by interpolating contours on unlabelled layers using energy minimization of a functional,

4) AnnotatorJ [14] suggests contours around the object using deep learning after an initial contour

is quickly drawn. A detailed discussion of the underlying methods is found in Methods (section
Annotation tools) and Supplementary Note 1 (methods 1-3), see also Supplementary Videos 1-2.

The effectiveness of our proposed plugin is demonstrated on microscopy image data arising from

six experiments: I) 2D, II) Embryo [16], III) Neurosphere [17], IV) Co-culture, V) Mitotic spheroid

data [18] and VI) Melanoma (Supp. Table 1). We asked expert annotators with relevant expertise in

single-cell labelling on 2D and 3D images to label single cell objects on the datasets using the

proposed automatic annotation tools in napari-biomag-annotator. The combined dataset contains

overall 5861 images with more than 3000 labelled objects including nucleus and cytoplasm

annotations. Data I) was used for validation on different cell compartments, while data II) and III)

were used as a benchmark where the experts annotated the same objects twice manually to

provide an accurate time and intersection over union (IoU) comparison. Datasets IV) and V) were

used to provide curated ground truth annotations for 3D images. Dataset VI) served as a test to

validate the Python reimplementation of AnnotatorJ. Experimental description of the datasets is

provided inMethods.

In our experiments, we measured the annotation time and precision according to the IoU metric

against manual labelling (E) comparing inter- and intra-annotators, as well as against our tools. The

usage of Minimal contour (MC) by itself and combined with Slice interpolation (I) were tested on

datasets II-III) and compared against two times repeated manual labelling; the performance of the

Minimal Surface (MS) tool was assessed on dataset II); AnnotatorJ was already benchmarked in an

earlier study [14] - thus only a comparison to an existing manual annotation from an expert is

shown on dataset VI) (see Methods). We have come to the following conclusions (see Fig. 2). 1)
Manual annotations tend to have an average 0.8825 (II) and 0.8042 (III) intra-expert IoU difference,

while 0.8900 (I), 0.8238 (II) and 0.5789 (III) inter-expert (see Fig. 2A,C,E,G) on the given datasets

matching our expectations based on [14,19,20]. 2) The average precision based on IoU did not

change considerably when using either only MC (intra-person: I: 0.8870, II: 0.8555, III: 0.7539,

inter-person: I: 0.8784, II: 0.8164, III: 0.6153) or together with interpolation (intra-person: II:

0.8481, III: 0.7539, inter-person: II: 0.8079, III: 0.5904) compared to manual labelling (Fig.
2A,C,E,G, Supp. Fig.1A,D-F), confirming the reliable performance and usability of the tools when

creating ground truth annotations or manual (semi-automatic) segmentation on cell culture images.

The Minimal surface method was tested only on dataset II), as dataset III) contains small objects

which removes the advantage of the technique; yielding an IoU of 0.8032 (Supp. Fig.1B). 3)
Annotation times were reduced by an average of 22.88% (20.83 minutes per image and 20.35

seconds per object) when usingMinimal contour compared tomanual labelling times (85.76minutes

per image and 94.81 seconds per object). However, when using both tools we could save an

additional 26.4% totalling a 49.28% time saved on annotations (42.35minutes per image and 46.62

seconds per object) (see Fig. 2B,D,F,H, Supp. Fig.1C). Minimal surface achieved 12.35% (7.97

minutes) acceleration in annotation time compared to the fastest manual timewith an extra 10.43

minutes of algorithm runtime. Nevertheless, not every image or annotator resulted in such an ideal
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time difference: the negative outlier had an 187.92% increase in time on dataset III while the

highest annotation time decrease was 85.74% on dataset II. See more detailed results and

experiment setup inMethods (section Evaluation) and Supp. Fig.1.

Figure 2. Results on the three benchmark datasets. Swarm-, violin- and pie plots are grouped by

datasets as indicated by titles and shown by annotators (experts, #1-3). Comparisons are

colour-coded as in the legend, see also abbreviations. A-B) Neurosphere, C-D) embryo, E-F) 2D cells

cytoplasm, G-H) 2D cells nucleus data. A,C,E,G) Inter-expert IoU scores were corresponded in a

pairwise manner according to the legend in the bottom, insets on the left show intra-expert

differences in manual annotation. B,D,F,H) Violin plots (without idle times) and pie charts (total)

represent relative annotation time efficiency compared tomanual annotation as 100% indicated by

dashed line and full circle, respectively. Pie charts show the difference betweenmanual annotations
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in grey where applicable. See also Supplementary Fig. 1 for averaged and detailed results on all

annotators.

Such a tool is invaluable for the bioimage analyst community as it saves the expert time while

making the labelling process more convenient and less exhausting. When training a segmentation

model is not feasible (e.g. due to the lack of computational resources), annotations created in

napari-biomag-annotator can be directly used in downstream analysis such as statistics or further

analysis of cellular data. The tools rely on strong mathematical foundations whose efficiency was

proven to surpass manual labelling and other popular tools by approximately 38% and 32% in time,

respectively (see Supp. Tables 2-3 and Supp. Fig.1C) while keeping accuracy on par. The released

annotated spheroid dataset may be used for model training in its domain or method development

generally.
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[ —--------------------------------------- S U P P L EMENTARY —--------------------------------------- ]

Methods

Annotation tools

Mathematical foundations of the methods are briefly summarized as follows; for an in-depth

discussion see Supplementary Note 1.

Minimal contour: This tool provides easy and quick annotation in 2 dimensions. Given two ormore

reference points, our method approximates the optimal curve between these points with

variational minimization, thus, annotation of objects with continuous contours can be carried out

even with just two clicks. Formally, the task is to find a path between two reference points that

minimizes , where denotes the curve going between the two reference points and is∫ ϕ(𝑟) 𝑟̇| |𝑑𝑡 𝑟 ϕ

a carefully defined function usually denoting image intensity gradient information according to

which the optimal curve can be found.𝑟
Minimal surface: 3D surface annotation with as few points as possible is done with the minimal

surface algorithm, which is an extension of theminimal contourmethod. The surface approximation

is carried out by optimizing the energy function , where denotes the surface,
𝑎

𝑢

∫
𝑣
∮ Φ(𝑆) 𝑆

 𝑣| | 𝑆
𝑢| |𝑑𝑣𝑑𝑢 𝑆

however, there is no known solution for this problem as of today, so we reformulate this task to

approximate the surface as a set of minimal contours, thus, we optimizemultiple curves that lie on

the surface in 3D. Technically, two points were applied in the software. The algorithm will also

require a 2D annotation of a slice between the two points.

Mean contour: We provide a 2-dimensional contour averaging method with this tool which can

mainly be used to annotate just a few z-slices while interpolating the ones in-between the

annotations. Our method is based on variational optimization, where we represent the annotations

as 2D parametric contours. To achieve an optimal approximation between two slices, we find a

reparametrization function that minimizes , whereγ ∮(𝑟
 1

(𝑡) 𝑟
 1
˙ (𝑡)|||

||| − 𝑟
2
(γ(𝑡)) 𝑟

 2
˙ (γ(𝑡))|||

|||)
2𝑑𝑡

and denote two annotated slices between which we would like to approximate the𝑟
 1

(𝑡) 𝑟
 2

(𝑡)

contours.

AnnotatorJ: Adaptation of the original ImageJ version of AnnotatorJ [14], this tool is intended for

2D object annotation and export offering a convenient contour assist method via prediction with

an integrated deep learning model, specifically U-Net [21], based on an initial contour drawn by the

user quickly and imprecisely. The initial contour is used to approximate the area where the

prediction is desired and returned as a thresholded version of the predicted probabilities. Further

functionalities include the training of new models to be used in contour assist, editing of contours,
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class annotation, import and export to training data formats, annotation types (instance, bounding

box, semantic).

Datasets

In total six image datasets were used to benchmark (datasets I-III) and demonstrate the capabilities

and performance of the annotation tools (datasets IV-VI), see Supp. Table 1 below and

https://doi.org/10.6084/m9.figshare.c.7020531.v1.

Supplementary Table 1. Summary of the datasets used.

# Name Images

(slices)

Type 2D/3D Object Number of

objects

Origin Modality Reference

1 2D 10 2D Nucleus/

Cytoplasm

212/221 Hela Kyoto confocal -

2 Embryo 1 (99) 3D Nucleus 56 mouse confocal [16]

3 Neurosphere 1 (116) 3D Nucleus 52 mouse LSFM [17]

4 Co-culture 6 (335) 3D Nucleus 2048 Hela Kyoto +

MRC-5

LSFM -

5 Mitotic spheroid data 90 (5301) 3D Nucleus 878 T-47D, 5-8F,

Huh-7D12

LSFM [18]

6 Melanoma 100 2D Mole 100 Human

patients

Brightfield

RGB

[22]

1. 2D cells
HeLa Kyoto cells were seeded on a glass coverslip and after one day of incubation time the cells

were fixed with 4% paraformaldehyde (PFA) and washed with Dulbecco's Phosphate Buffered

Saline (DPBS) and treated with 0.1% TRITON-X for 10 minutes. After that, the cells were washed

with DPBS three times, then stained with 1 µg/ml DAPI and 1:200 Flash Phalloidin NIR 647

(424205, Biolegend) dissolved in DPBS for 10 minutes at room temperature. After staining, the

cells were washed with DPBS three times and the coverslip was secured on a glass slide for further

analysis. For imaging, an Olympus Fluoview FV 1000 microscope was used with a 60x/1.35

objective, and the exposure time and laser power were adjusted for each channel separately (DAPI

405, Alexa Fluor 488, and Alexa Fluor 633. Each fluorescent image is 2048 × 2048 pixel resolution

with 0.103 µm pixel size.

This dataset was used as datasets II-III) except only as 2D segmentation training data for nucleus

and cytoplasm.

2. Embryo data [15-16]
This dataset of a mouse embryo was primarily used for quantitative evaluation of our tools while

also creating manual ground truth annotations to be later used as 2/3D nucleus segmentation

training data. The dataset contains easily distinguishable objects that offer minimal overlapping

regions. Images may be downloaded free of charge from

https://www.3d-cell-annotator.org/download.html.

3. Neurosphere data [15,17]
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This LSFM (light-sheet fluorescence microscopy) dataset was used as dataset II), it contains a 3D

image of a small spheroid on 116 slices with nuclei labelled fluorescently. This dataset is valuable

since it has a lower resolution with overlapping objects. Images are also free to download from

https://www.3d-cell-annotator.org/download.html.

4. Co-culture spheroid data This dataset was not published before.
Three-dimensional co-cultures were generated using the HeLa Kyoto

EGFP-alpha-tubulin/H2B-mCherry cervical cancer cells (Cell Lines Service) andMRC-5 fibroblasts

(American Type Culture Collection). Cell cultures were maintained following the manufacturer’s

instructions. For spheroid generation, we used a co-culturemedium consisting of DMEM, 10% FBS

(Euroclone), 1% L-glutamine (2mM), and 1% Penicillin-Streptomycin-Amphotericin B mixture (all

from Lonza). First, 60 cancer cells were seeded into eachwell on U-bottom, cell-repellent 384-well

plates (Greiner Bio-One); and after 24 hours of incubation at 37 °C and 5%CO2, 240 fibroblasts per

well were added onto the HeLa cells. After 24 hours, the co-culture spheroids were collected,

washed three times with Dulbecco’s Phosphate Buffered Saline (DPBS), fixed with 4% PFA for 60

min, then washed again with DPBS three times, and stored at 4°C in DPBS until imaging. Before

imaging, spheroids were incubated in 1% Triton X-100 overnight at room temperature andwashed

three times with DPBS. For labelling, spheroids were stained with 1 µg/ml DAPI overnight, then

1:200 Flash Phalloidin NIR 647 (424205, Biolegend) was applied for 60 min. In the end, spheroids

were washed with DPBS three times before imaging. The preparation for imaging and all the

imaging parameters were the same as we discussed in the data article [18]. The Leica SP8 Digital

LightSheet microscope was used to create fluorescent images of each spheroid. The images were

taken with 200 ms exposure time with adjusted laser intensity for each channel at 405, 488, 552,

and 638 nm (maximum laser intensity 350 mW), and a 25x/0.95 detection objective was used for

the light-sheet imaging with the 2.5 mm mirror device on the objective. For each spheroid, dH2O

mounting medium was used. The images have a 2048 × 2048 pixel resolution with 0.14370117 µm

pixel size andwith a 3.7 µm distance between the images in each z-stack. This dataset is intended to

be used for 2/3D nucleus segmentation training purposes, to specifically target 3D spheroids. To

decrease the blurry effect of light scattering inside of the co-culture spheroids, LIGHTNING was

used as a post-processing step ( available with the LAS-X 4.4 software, Leica).

5.Mitotic spheroid data [18]
This dataset was used to create ground truth annotations for the particularly problematic mitotic

nucleus phenotype which tends to cause problems for automatic segmentationmethods due to the

intrinsically complicated geometry of condensed DNA. The dataset includes 90multicellular cancer

spheroids derived from 3 cell lines (i.e. T-47D, 5-8F, and Huh-7D12) with a diameter of 250±30 µm.

The images have 1 channel for the fluorescently (DRAQ5-ThermoFisher, USA) labelled nucleus and

were acquired with a light-sheet microscope. This dataset is intended to be used for 2/3D nucleus

segmentation training purposes, to specifically target dividing cells. Overall 878 objects were

annotated and classified as dividing cells. Images are also free to download from

https://doi.org/10.6084/m9.figshare.12620078.v1.

6.Melanoma [22-23]
The HAM10000 dataset consists of high-resolution 2D colour images from different populations in

RGB format, each with metadata containing the patients' previous health records. The images are

taken by dermatologists using a dermoscope and capture different skin lesions from different

patients, covering all major diagnostic categories related to pigmented moles. Each image

represents a distinct skin lesion, accurately labelled with the corresponding dermatological
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modification (benign or malignant), validated by dermatologists. For cases without

histopathological confirmation, ground truth class label was established by follow-up, expert

consensus or confirmation by in vivo confocal microscopy. The entire dataset can be downloaded

from https://doi.org/10.7910/DVN/DBW86T and used for academic purposes.

A subset of 100 images was selected to include both benign and malignant cases. These images

were annotated by outlining the lesion and separating the object under examination from the

background using our annotation tool. This dataset can be used as segmentation training data for

example in mAIskin, an automated melanoma detection system that supports and simplifies the

work of dermatologists.

Experiments

Annotation strategy
Datasets I-III) were used to evaluate the effectiveness and time consumption of our assisted

annotation napari plugin tools compared to manual annotations. Three field experts with relevant

background and experience in cell and nucleus identification on microscopy images were asked to

do the experiments as follows. Each participant labelled every object on every image or slice of a 3D

image such that the experts discussed and agreed upon a common annotation strategy regarding

which image object to identify as a single nucleus or touching adjacent nuclei, especially in mitotic

cases, and the approximate brightness and contrast settings in napari so that the annotations could

be comparable and the created ground truth annotated datasets (datasets I, IV-V) could be

consistently used for training purposes. Still, differences occurred even intra-expert when the same

person annotated the images twice due to the natural effect of tiring of the human eye and

decreased focus and patience completing a repetitive and long task; also seeResults.
The annotators labelled all images manually twice; this was the basis of our comparative

measurements of both time and accuracy intra- and inter-expert and against the tools. Then,

experts labelled the images using 1) only Minimal contour, 2) together with Slice interpolation.
AnnotatorJ has already been quantified in [14] earlier thus we did not repeat the same experiment

on its napari plugin.

When using only Minimal contour the experts utilized the image feature-based edge detection

capability of the tool, having only to place a few points on the object contour for the tool to extend

the path between the points creating a closed curve around the border of the object.

Slice interpolation allowed several 3D slices to be skipped when annotating the same object

extending to multiple z-stack slices and the contour on themissing slices interpolated. This method

especially reduces annotation timewhen the resolution in z is high i.e. an object is present on a high

number of z slices. Themost efficient annotation strategy was using both tools.

For the embryo data, the following parameters were used: Param: 6, Blur sigma: 0.2, Smooth

contour: 0.75, while for the neurosphere data Param: 8, Smooth contour: 0.52.
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Quantitative evaluation of annotation tools
Experiments were quantitatively evaluated using the classical definition of IoU (intersection over

union) determining the ratio of pixels corresponding to the overlapping area between the two

objects i.e. intersection and their union including all pixels of the two objects. This pixel-level

calculation of quality assessment results in a single floating point-precision score for annotation

pairs of the same object while object-level evaluation (see TS referred as mAP2 in [24] below)

returns the counts of TP (true positive), FP (false positive) and FN (false negative) objects on the

image then calculates a single IoU score for the image based on an overlap threshold being

considered as a positive detection. Using the following pixel-level metric for IoU

𝐼𝑜𝑈 =
𝑆

1
∩ 𝑆

2

𝑆
1
∪ 𝑆

2
 

where are the set of pixels marked as object pixels by two annotators, accuracy scores are𝑆
1
,  𝑆

2

yielded for all objects which then can be aggregated to e.g. averaged IoU scores such as those

displayed on Supp. Fig. 1D-F.
Additionally, annotations were also assessed using the following definition of threat score (TS)

which shows the ratio of TP, FP and FN objects commonly applied in standard computer vision

problems such as object detection or instance segmentation.We rely on the following definition of

threat score formulated as follows

𝑇𝑆 = 𝑇𝑃
(𝑇𝑃+𝐹𝑃+𝐹𝑁)  

where TP is the number of labelled objects with an overlap to the ground truth object above a given

threshold, FP is the number of labelled objects that have no corresponding ground truth object with

overlap above the given threshold and FN is the number of ground truth objects that have no

corresponding labelled object with overlap above the given threshold. We used thresholds

between 0.5 and 0.95with steps of 0.05 in our evaluation.

Each annotation was compared to all other annotations one by one resulting in amatrix of average

IoU scores. Annotation times were similarly compared. Results are represented as heatmaps on

Supp. Fig. 1D-F.
Annotation times were measured inside the plugin on object level considering long pauses above

10 seconds as idle time such that only relevant times are quantifiedwhen the expert is creating an

annotation for an object. These filtered times are displayed as violin plots on Fig.2B,D,F,H and Supp.
Fig.1C, while the total time taken to annotate all objects on the entire image from start to finish

including idle times is displayed on pie charts (see also Fig.1B).
One of the challenges of manual annotation, outlining complex borders, can be observed in dataset

I). Cells adhere to the surface of the culture container therefore their borders (visualized by the

Phalloidin channel) become irregular and difficult to manually track. Thus, assisted annotation is

especially advantageous in single-cell cytoplasm contouring.

Ground truth data
As the fundamental purpose of the annotation tool is to create ground truth annotations that can

later be used for training, we demonstrated this capability by labelling datasets IV-V) made freely

available at https://doi.org/10.6084/m9.figshare.c.7020531.v1. Dataset V) of the mitotic nucleus

annotations fills a niche in open annotated datasets in its domain. Whereas dataset IV) presents

co-culture spheroid annotations to which similar open annotated dataset the authors have not

found as of writing. Both datasets can be easily used to train new single-cell segmentationmodels

or start developing newmethods.
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Results

Annotation tool comparison
In previous studies [12,14,25] we have conducted comparative analysis of annotation software

available to the target community focusing on free and open source tools. In addition to those

detailed before, further tools are shown below in Supp. Table 2 and detailed as follows.

Supplementary Table 2. Comparison of annotation software tools.

feature

tool

LabelIm

g
AnnotatorJ QuPath

3D-Cell-

Annotator
Paintera ITK-SNAP LabKit webKnossos

napari-biomag-

annotator

Platform W,L,M W,L,M W,L,M W,L W,L,M W,L,M W,L,M W,L,M W,L,M

Implementation Python Java Java,web C++ Python C++ Java Java Python

Open source

code
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Annotation

2D annotation ✓ ✓ ✓ x x ✓ ✓ x ✓

3D annotation x ✓ x ✓ ✓ ✓ ✓ ✓ ✓

Assistance x U-Net
Built-in

segmentation

Active

contour

Segment

anything

Active

contour
WEKA

Segment

anything

Minimal

contour/

Minimal surface

Interpolation - - - x ✓ ✓

✓ (with

ImageJ

macro)

✓ ✓

Drawing

Bounding box ✓ ✓ ✓ x x x ✓ ✓ ✓

Freehand x ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Polygon x ✓ ✓ ✓ x ✓ x x ✓

XY,XZ,YZ

plane views
- - - ✓ ✓ ✓ ✓ ✓ ✓

3D viewer - - - ✓ ✓ ✓ ✓ ✓ ✓

Recently an in-browser annotation tool was published for 3D electron microscopic data called

webKnossos [26]. For comparison, webKnossos was tested on the embryo dataset (data II) where

accuracy and time were measured. Based on the feedback of the expert, webKnossos is a

user-friendly tool that requires no parametrization. Exceptional performance was noted with

blurry and less visible objects, while the automatic detection utilizing the implemented AI model

was less convincing in the case of dividing/mitotic cells. The AI-based prediction frequently

connects small, nearby objects that are not in contact, necessitating human correction.

Furthermore, a single object prediction often takes more than 1 or 2 seconds (Supplementary
Video 2) which greatly increases the annotation time. To enhance the performance, an

interpolation method is available, however, it can only interpolate between the last two contours.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 16, 2024. ; https://doi.org/10.1101/2024.01.15.575658doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.15.575658
http://creativecommons.org/licenses/by-nc-nd/4.0/


Considering that webKnossos was developed for 3D electron microscopic data and more models

are under development, it offers an easy-to-use solution for annotation.

ITK-SNAP (Insight Segmentation and Registration Toolkit for Semi-Automatic Segmentation of

Structures in Medical Images) is an open-source software application that is a part of the broader

ITK initiative, which aims to provide a collection of software tools for medical image analysis and

computational anatomy [27]. In order to compare this tool to our proposed one, one of our experts

annotated the embryo dataset with ITK-SNAP (Supplementary Video 2). The expert acknowledged
the utility of ITK-SNAP as a valuable tool. However, ITK-SNAP may have a steeper learning curve,

especially for users who are new to medical image analysis or 3D annotation tools. The software

offers a variety of features, and users may need some time to become familiar with its

functionalities. During annotation the expert found that the active contour method (that is

employed within the tool as part of a region growing process) works with high precision even in

blurry parts of the original image.

Paintera (https://github.com/saalfeldlab/paintera) is a visualization and annotation tool that was

developed to handle large-scale volumetric data, such as those generated by various imaging

modalities in the field of connectomics. Again, we used the embryo dataset as a base to compare

this tool to napari-biomag-annotator. The assessment of the expert indicates that this tool has many

useful annotation functionalities such as live visualization of interpolation between slides or

built-in keyboard shortcuts. However, there is a limitation of this tool, namely it can import only N5,

HDF7, and Zarr files and can export only in its own data format.

For an in-depth comparison our experts annotated dataset II) with the aforementioned tools:

expert #1 with Paintera and ITK-SNAP, and expert #2 with webKnossos (Supp. Table 3). We found

that using Paintera we got a similar precision compared to our semi-automatic methods, but the

annotation time remained the same. As for ITK-SNAP we have seen a small drop in the IoU score,

the annotation time was significantly higher (~+40%) thanmanually. Only webKnossos was able to

achieve similar annotation time as ourMinimal contourmethod but was slower thanMinimal contour
with interpolationwhile the IoU score was inferior to ours.

Supplementary Table 3. Assessment of other annotation tools compared to ours.

Expert Metric
Annotation Toolbox (ours) Othermethod

E +MC +MC+I Paintera ITK-SNAP webKnossos

#1
IoU 0.8830 0.8500 0.8473 0.8431 0.8145 -

time (min) 98 77 57 99 138 -

#2
IoU 0.8813 0.8536 0.8608 - 0.8195

time (min) 78 53 48 - 55

Evaluation
Annotation accuracies according to the classical definition of IoU and times are represented on

Supplementary Figure 1A and C, respectively. IoU scores were aggregated for all three expert

annotators on Supp. Fig. 1A and are displayed by datasets whereas on Fig. 2A,C,E,G scores are

compared between the experts (inter-expert). The matrices in Supp. Fig. 1D-F represent individual
IoU scores for the three experts and the applied methods, also comparing the entire stack of 3D
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images in case of datasets II-III) (denoted as full) and the central 50% of slices in the z-stack (center)

corresponding to the given object. Obviously, scores are generally higher in the central region for

both datasets.

For intra-person similarity (i.e. the IoU score between different annotations of the same annotator)

we experienced a relative difference of II) -3.06% and III) -6.06% using minimal contour, while it

was II) -3.89% and III) -6.10% when combining Minimal contour and Slice interpolation. 2) The
inter-person similarity (that is the IoU score between different annotators) was I) -2.09%, II) -0.79%

and III) +8.78% with Minimal contour, while withMinimal contour and interpolation II) -1.76% and III)

+4.27% was achieved. Using the Minimal surface method the inter-person IoU score changewas on

average II) -2,42%, without anymanual correction.

Minimal surface was tested on dataset II) since the method is intended for larger 3D objects while

dataset III) comprised small nuclei and our third dataset used for benchmarking (dataset I) was 2D,

concluding the annotation accuracies remained comparable to manual labelling, thus proving the

efficiency of the method. See Supp. Fig 1.B. Additionally, the time required by the annotator

operating the plugin with theMinimal surfacemethod decreased by 12.35%.

We inspected the most extreme outliers in our dataset, both with the highest deterioration and the

largest improvement in regards to annotation time. The negative outlier was an 187.92% increase

in annotation time on dataset III). For this object the annotation time using Minimal contour was
near average, while manually it was the fastest annotated object with one third of the average

annotation time. This was a rather difficult object as it was both blurry and touching another object

which is reflected in the IoU as well: the intra-person IoU was 0.5122 (0.4708 for the annotator in

question), and the inter-person IoU was 0.2134 for manual annotation. On the other hand, the

highest annotation time decrease was 85.74% on dataset II) usingMinimal contour and interpolation.
This was an easy task for theMinimal contourmethod, as the object had clear contours, thus the IoU

was not affected: 0.8592 and 0.8930 against the two manual annotations of the same annotator

(compared to 0.8918 between the two manual annotations). Note this annotator had less

experience in image annotation which shows the power of the method guiding annotators new to

the task.

Additionally, we conducted evaluation of the performance of AnnotatorJ on dataset VI)

representing a non-microscopy image domain, yielding an average IoU of 0.9700with thresholds in

[0.5-0.8] and 0.7820 with thresholds in [0.5-0.95] by steps of 0.05 according to the object-level

definition of IoU (referred as TS or mAP2 in [24]). Annotation times were reduced by an average

77.94% (3.63 seconds per object from 16.46), aligned with our expectations from a previous study

[14]. As a comparison, using the same object-level assessment on dataset II), the average IoUwith

Minimal contour and interpolationwas 0.8333 and 0.6575with thresholds in [0.5-0.8] and [0.5-0.95],
respectively, while without interpolation 0.7774 and 0.6176. Manual labelling yielded 0.8214 and

0.6814 on the above threshold ranges.
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Supplementary Figure 1. Averaged measurements on datasets and annotators. Visualization and

labels are as on Figure 2 (see also legend in the bottom right). A) Averaged IoU scores plotted in a

pairwisemanner according to the legend in the bottom of Fig. 2, inset on the left shows intra-expert
differences in manual annotation. B) Minimal surface measurements. C) Violin plots (without idle

times) and pie charts (total) represent relative annotation time efficiency compared to manual

annotation as 100% indicated by dashed line and full circle, respectively. Pie charts show the

difference between manual annotations in gray where applicable. D-F)Matrices of measuredmean

IoU scores by annotators and methods, datasets are as on the title and y axis labels next to the

colour bars in the upper and lower triangular, respectively; full and center on D-E stand for objects

in the entire 3D structure and on the central 50% of slices, respectively, experts are labelled #1-#3

(shortened on F).
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