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Abstract

Data is the driving engine of learning-based algorithms, the creation of which fundamentally
determines the performance, accuracy, generalizability and quality of any model or method trained
on it. When only skilled or trained personnel can create reliable annotations, assisted software
solutions are desirable to reduce the time and effort the expert must spend on labelling. Herein is
proposed an automated annotation helper software package in napari that offers multiple methods
to assist the annotator in creating object-based labels on 2D or 3D images.

Main text

Supervised learning relies on labelled data as its training set. Several clever augmentation
techniques have been applied [1-4] to address the problem of inadequate amount of labelled data,
even though semi- or self-supervised algorithms with more moderate requirements are also
applied in the domain of microscopy image analysis. The most commonly used deep learning-based
methods for cell or nucleus segmentation such as StarDist [5], Cellpose [6] provide pre-trained
models e.g. in Image) [7-8], QuPath [9], CellProfiler [10] or BIAS [11] plugins convenient for the
users, yet in most cases accuracy strongly depends on the image data. When applied to a certain
experiment type the pre-trained models do not meet the expectations, and re-training or training
from scratch is needed. To this end annotated (labelled) images must be prepared for which
available software tools can be used; a recent article reviews them [12]. The challenging part of
object annotation is either the number of objects to label or the difficulty of the morphology
(shape), texture, border recognition by eye even for experts. To help create annotations, automatic
solutions have been added to annotation tools [7-9,12-15] (see also Fig.1A). The most challenging
task remains 3D object labelling due to the generally low resolution along the z axis in case of
z-stack images, the implicitly complicated structure/texture of the sample such as spheroids or
organoids (see examples on Figure 1B-C) and the large file size of such data.
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Figure 1. Overview of napari-biomag-annotator when labelling single nuclei in a spheroid. A)
Schematic representation of the annotation methods. B) Data used for benchmarking the tool with
average time saved compared to manual annotation. Datasets are visualized in the napari viewer
with annotations overlayed. Pie charts show annotation times using manual, minimal contour or
additionally interpolation; gray section corresponds to difference between two sets of manual
annotations, while on the 2D cells minimal contour is shown for nuclei and cytoplasm separately. C)
Representative  co-culture  spheroid used in the ground truth dataset at

https://doi.org/10.6084/m9.figshare.c.7020531.v1. Abbreviations: GT - ground truth, interp -
interpolation.

We present a toolbox of annotation methods implemented in the napari [13] ecosystem entitled
napari-biomag-annotator as a plugin, freely available at
https://github.com/biomag-lab/napari-biomag-annotator ~and at the napari hub (at
https://www.napari-hub.org/plugins/napari-biomag-annotator). Napari supports n-dimensional
image inspection in its viewer and several plugins are available for different image processing tasks
(e.g. StarDist [5], Cellpose [6] are available as napari plugins). Our toolbox consists of four methods,
each aims to assist in single object annotation (presented on Figure 1) as follows. 1) Minimal contour
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allows 2D annotation in a few clicks by approximating the contour of the annotated object between
two points via image features with high values near object boundaries (e.g. gradient for fluorescent
images), 2) Minimal surface can be used for 3D annotation similarly to minimal contour by
approximating surfaces using as few as two points as reference, 3) Slice interpolation is most helpful
in z-stack annotation when one object is present on multiple layers and only sparse annotations are
available by interpolating contours on unlabelled layers using energy minimization of a functional,
4) AnnotatorJ [14] suggests contours around the object using deep learning after an initial contour
is quickly drawn. A detailed discussion of the underlying methods is found in Methods (section
Annotation tools) and Supplementary Note 1 (methods 1-3), see also Supplementary Videos 1-2.

The effectiveness of our proposed plugin is demonstrated on microscopy image data arising from
six experiments: 1) 2D, II) Embryo [16], Ill) Neurosphere [17], IV) Co-culture, V) Mitotic spheroid
data [18] and VI) Melanoma (Supp. Table 1). We asked expert annotators with relevant expertise in
single-cell labelling on 2D and 3D images to label single cell objects on the datasets using the
proposed automatic annotation tools in napari-biomag-annotator. The combined dataset contains
overall 5861 images with more than 3000 labelled objects including nucleus and cytoplasm
annotations. Data |) was used for validation on different cell compartments, while data Il) and 1ll)
were used as a benchmark where the experts annotated the same objects twice manually to
provide an accurate time and intersection over union (loU) comparison. Datasets V) and V) were
used to provide curated ground truth annotations for 3D images. Dataset VI) served as a test to
validate the Python reimplementation of AnnotatorJ. Experimental description of the datasets is
provided in Methods.

In our experiments, we measured the annotation time and precision according to the loU metric
against manual labelling (E) comparing inter- and intra-annotators, as well as against our tools. The
usage of Minimal contour (MC) by itself and combined with Slice interpolation (I) were tested on
datasets Il-111) and compared against two times repeated manual labelling; the performance of the
Minimal Surface (MS) tool was assessed on dataset Il); Annotator) was already benchmarked in an
earlier study [14] - thus only a comparison to an existing manual annotation from an expert is
shown on dataset VI) (see Methods). We have come to the following conclusions (see Fig. 2). 1)
Manual annotations tend to have an average 0.8825 (1) and 0.8042 (l11) intra-expert loU difference,
while 0.8900 (I), 0.8238 (I1) and 0.5789 (lll) inter-expert (see Fig. 2A,C,E,G) on the given datasets
matching our expectations based on [14,19,20]. 2) The average precision based on loU did not
change considerably when using either only MC (intra-person: I: 0.8870, II: 0.8555, IIl: 0.7539,
inter-person: |: 0.8784, II: 0.8164, Ill: 0.6153) or together with interpolation (intra-person: Il:
0.8481, lll: 0.7539, inter-person: Il: 0.8079, Ill: 0.5904) compared to manual labelling (Fig.
2A,C,E,G, Supp. Fig.1A,D-F), confirming the reliable performance and usability of the tools when
creating ground truth annotations or manual (semi-automatic) segmentation on cell culture images.
The Minimal surface method was tested only on dataset Il), as dataset Ill) contains small objects
which removes the advantage of the technique; yielding an loU of 0.8032 (Supp. Fig.1B). 3)
Annotation times were reduced by an average of 22.88% (20.83 minutes per image and 20.35
seconds per object) when using Minimal contour compared to manual labelling times (85.76 minutes
per image and 94.81 seconds per object). However, when using both tools we could save an
additional 26.4% totalling a 49.28% time saved on annotations (42.35 minutes per image and 46.62
seconds per object) (see Fig. 2B,D,FH, Supp. Fig.1C). Minimal surface achieved 12.35% (7.97
minutes) acceleration in annotation time compared to the fastest manual time with an extra 10.43
minutes of algorithm runtime. Nevertheless, not every image or annotator resulted in such an ideal
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time difference: the negative outlier had an 187.92% increase in time on dataset Il while the
highest annotation time decrease was 85.74% on dataset Il. See more detailed results and

experiment setup in Methods (section Evaluation) and Supp. Fig.1.
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Figure 2. Results on the three benchmark datasets. Swarm-, violin- and pie plots are grouped by
datasets as indicated by titles and shown by annotators (experts, #1-3). Comparisons are
colour-coded as in the legend, see also abbreviations. A-B) Neurosphere, C-D) embryo, E-F) 2D cells
cytoplasm, G-H) 2D cells nucleus data. A,C,E,G) Inter-expert loU scores were corresponded in a
pairwise manner according to the legend in the bottom, insets on the left show intra-expert
differences in manual annotation. B,D,F,H) Violin plots (without idle times) and pie charts (total)
represent relative annotation time efficiency compared to manual annotation as 100% indicated by
dashed line and full circle, respectively. Pie charts show the difference between manual annotations
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in grey where applicable. See also Supplementary Fig. 1 for averaged and detailed results on all
annotators.

Such a tool is invaluable for the bioimage analyst community as it saves the expert time while
making the labelling process more convenient and less exhausting. When training a segmentation
model is not feasible (e.g. due to the lack of computational resources), annotations created in
napari-biomag-annotator can be directly used in downstream analysis such as statistics or further
analysis of cellular data. The tools rely on strong mathematical foundations whose efficiency was
proven to surpass manual labelling and other popular tools by approximately 38% and 32% in time,
respectively (see Supp. Tables 2-3 and Supp. Fig.1C) while keeping accuracy on par. The released
annotated spheroid dataset may be used for model training in its domain or method development
generally.
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Methods

Annotation tools

Mathematical foundations of the methods are briefly summarized as follows; for an in-depth
discussion see Supplementary Note 1.

Minimal contour: This tool provides easy and quick annotation in 2 dimensions. Given two or more
reference points, our method approximates the optimal curve between these points with
variational minimization, thus, annotation of objects with continuous contours can be carried out
even with just two clicks. Formally, the task is to find a path between two reference points that

minimizes [ c|)(r)|r.|dt, where r denotes the curve going between the two reference points and ¢ is

a carefully defined function usually denoting image intensity gradient information according to
which the optimal curve r can be found.

Minimal surface: 3D surface annotation with as few points as possible is done with the minimal
surface algorithm, which is an extension of the minimal contour method. The surface approximation

is carried out by optimizing the energy function [ ¢ ®(5) |S 17| |Su|dvdu, where S denotes the surface,
av

however, there is no known solution for this problem as of today, so we reformulate this task to
approximate the surface as a set of minimal contours, thus, we optimize multiple curves that lie on
the surface in 3D. Technically, two points were applied in the software. The algorithm will also
require a 2D annotation of a slice between the two points.

Mean contour: We provide a 2-dimensional contour averaging method with this tool which can
mainly be used to annotate just a few z-slices while interpolating the ones in-between the
annotations. Our method is based on variational optimization, where we represent the annotations
as 2D parametric contours. To achieve an optimal approximation between two slices, we find a

reparametrization function y that minimizes gs(rl(t)1/|r'1(t)| — rz(y(t))«/|r'2(y(t))i)2dt, where

r (® and r,(®) denote two annotated slices between which we would like to approximate the

contours.

AnnotatorJ: Adaptation of the original ImageJ version of AnnotatorJ [14], this tool is intended for
2D object annotation and export offering a convenient contour assist method via prediction with
an integrated deep learning model, specifically U-Net [21], based on an initial contour drawn by the
user quickly and imprecisely. The initial contour is used to approximate the area where the
prediction is desired and returned as a thresholded version of the predicted probabilities. Further
functionalities include the training of new models to be used in contour assist, editing of contours,
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class annotation, import and export to training data formats, annotation types (instance, bounding
box, semantic).

Datasets

In total six image datasets were used to benchmark (datasets I-111) and demonstrate the capabilities
and performance of the annotation tools (datasets IV-VI), see Supp. Table 1 below and

https://doi.org/10.6084/m9.figshare.c.7020531.v1.

Supplementary Table 1. Summary of the datasets used.

# Name Images Type 2D/3D Object Number of Origin Modality Reference
(slices) objects
1 2D 10 2D Nucleus/ 212/221 Hela Kyoto confocal
Cytoplasm
2 Embryo 1(99) 3D Nucleus 56 mouse confocal [16]
Neurosphere 1(116) 3D Nucleus 52 mouse LSFM [17]
4 Co-culture 6(335) 3D Nucleus 2048 Hela Kyoto + LSFM
MRC-5
5 Mitotic spheroiddata 90 (5301) 3D Nucleus 878 T-47D, 5-8F, LSFM [18]
Huh-7D12
6 Melanoma 100 2D Mole 100 Human Brightfield [22]
patients RGB
1.2D cells

HelLa Kyoto cells were seeded on a glass coverslip and after one day of incubation time the cells
were fixed with 4% paraformaldehyde (PFA) and washed with Dulbecco's Phosphate Buffered
Saline (DPBS) and treated with 0.1% TRITON-X for 10 minutes. After that, the cells were washed
with DPBS three times, then stained with 1 pg/ml DAPI and 1:200 Flash Phalloidin NIR 647
(424205, Biolegend) dissolved in DPBS for 10 minutes at room temperature. After staining, the
cells were washed with DPBS three times and the coverslip was secured on a glass slide for further
analysis. For imaging, an Olympus Fluoview FV 1000 microscope was used with a 60x/1.35
objective, and the exposure time and laser power were adjusted for each channel separately (DAPI
405, Alexa Fluor 488, and Alexa Fluor 633. Each fluorescent image is 2048 x 2048 pixel resolution
with 0.103 pm pixel size.

This dataset was used as datasets lI-11l) except only as 2D segmentation training data for nucleus
and cytoplasm.

2.Embryo data[15-16]

This dataset of a mouse embryo was primarily used for quantitative evaluation of our tools while
also creating manual ground truth annotations to be later used as 2/3D nucleus segmentation
training data. The dataset contains easily distinguishable objects that offer minimal overlapping
regions. Images may be downloaded free of charge from

https://www.3d-cell-annotator.org/download.html.

3. Neurosphere data[15,17]
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This LSFM (light-sheet fluorescence microscopy) dataset was used as dataset Il), it contains a 3D
image of a small spheroid on 116 slices with nuclei labelled fluorescently. This dataset is valuable
since it has a lower resolution with overlapping objects. Images are also free to download from
h ://www.3d-cell-ann r.or wnload.html.

4. Co-culture spheroid data This dataset was not published before.

Three-dimensional co-cultures were generated using the Hela Kyoto
EGFP-alpha-tubulin/H2B-mCherry cervical cancer cells (Cell Lines Service) and MRC-5 fibroblasts
(American Type Culture Collection). Cell cultures were maintained following the manufacturer’s
instructions. For spheroid generation, we used a co-culture medium consisting of DMEM, 10% FBS
(Euroclone), 1% L-glutamine (2mM), and 1% Penicillin-Streptomycin-Amphotericin B mixture (all
from Lonza). First, 60 cancer cells were seeded into each well on U-bottom, cell-repellent 384-well
plates (Greiner Bio-One); and after 24 hours of incubation at 37 °C and 5% CO,, 240 fibroblasts per
well were added onto the Hela cells. After 24 hours, the co-culture spheroids were collected,
washed three times with Dulbecco’s Phosphate Buffered Saline (DPBS), fixed with 4% PFA for 60
min, then washed again with DPBS three times, and stored at 4°C in DPBS until imaging. Before
imaging, spheroids were incubated in 1% Triton X-100 overnight at room temperature and washed
three times with DPBS. For labelling, spheroids were stained with 1 pg/ml DAPI overnight, then
1:200 Flash Phalloidin NIR 647 (424205, Biolegend) was applied for 60 min. In the end, spheroids
were washed with DPBS three times before imaging. The preparation for imaging and all the
imaging parameters were the same as we discussed in the data article [18]. The Leica SP8 Digital
LightSheet microscope was used to create fluorescent images of each spheroid. The images were
taken with 200 ms exposure time with adjusted laser intensity for each channel at 405, 488, 552,
and 638 nm (maximum laser intensity 350 mW), and a 25x/0.95 detection objective was used for
the light-sheet imaging with the 2.5 mm mirror device on the objective. For each spheroid, dH,O
mounting medium was used. The images have a 2048 x 2048 pixel resolution with 0.14370117 pm
pixel size and with a 3.7 um distance between the images in each z-stack. This dataset is intended to
be used for 2/3D nucleus segmentation training purposes, to specifically target 3D spheroids. To
decrease the blurry effect of light scattering inside of the co-culture spheroids, LIGHTNING was
used as a post-processing step ( available with the LAS-X 4.4 software, Leica).

5. Mitotic spheroid data [18]

This dataset was used to create ground truth annotations for the particularly problematic mitotic
nucleus phenotype which tends to cause problems for automatic segmentation methods due to the
intrinsically complicated geometry of condensed DNA. The dataset includes 90 multicellular cancer
spheroids derived from 3 cell lines (i.e. T-47D, 5-8F, and Huh-7D12) with a diameter of 250+30 um.
The images have 1 channel for the fluorescently (DRAQ5-ThermoFisher, USA) labelled nucleus and
were acquired with a light-sheet microscope. This dataset is intended to be used for 2/3D nucleus
segmentation training purposes, to specifically target dividing cells. Overall 878 objects were
annotated and classified as dividing cells. Images are also free to download from
https://doi.org/10.6084/m9.figshare.12620078.v1.

6.Melanoma [22-23]

The HAM10000 dataset consists of high-resolution 2D colour images from different populations in
RGB format, each with metadata containing the patients' previous health records. The images are
taken by dermatologists using a dermoscope and capture different skin lesions from different
patients, covering all major diagnostic categories related to pigmented moles. Each image
represents a distinct skin lesion, accurately labelled with the corresponding dermatological
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modification (benign or malignant), validated by dermatologists. For cases without
histopathological confirmation, ground truth class label was established by follow-up, expert
consensus or confirmation by in vivo confocal microscopy. The entire dataset can be downloaded

from https://doi.org/10.7910/DVN/DBW86T and used for academic purposes.

A subset of 100 images was selected to include both benign and malignant cases. These images
were annotated by outlining the lesion and separating the object under examination from the
background using our annotation tool. This dataset can be used as segmentation training data for
example in mAlskin, an automated melanoma detection system that supports and simplifies the
work of dermatologists.

Experiments

Annotation strategy

Datasets I-1ll) were used to evaluate the effectiveness and time consumption of our assisted
annotation napari plugin tools compared to manual annotations. Three field experts with relevant
background and experience in cell and nucleus identification on microscopy images were asked to
do the experiments as follows. Each participant labelled every object on every image or slice of a 3D
image such that the experts discussed and agreed upon a common annotation strategy regarding
which image object to identify as a single nucleus or touching adjacent nuclei, especially in mitotic
cases, and the approximate brightness and contrast settings in napari so that the annotations could
be comparable and the created ground truth annotated datasets (datasets I, IV-V) could be
consistently used for training purposes. Still, differences occurred even intra-expert when the same
person annotated the images twice due to the natural effect of tiring of the human eye and
decreased focus and patience completing a repetitive and long task; also see Results.

The annotators labelled all images manually twice; this was the basis of our comparative
measurements of both time and accuracy intra- and inter-expert and against the tools. Then,
experts labelled the images using 1) only Minimal contour, 2) together with Slice interpolation.
AnnotatorJ has already been quantified in [14] earlier thus we did not repeat the same experiment
on its napari plugin.

When using only Minimal contour the experts utilized the image feature-based edge detection
capability of the tool, having only to place a few points on the object contour for the tool to extend
the path between the points creating a closed curve around the border of the object.

Slice interpolation allowed several 3D slices to be skipped when annotating the same object
extending to multiple z-stack slices and the contour on the missing slices interpolated. This method
especially reduces annotation time when the resolution in zis high i.e. an object is present on a high
number of z slices. The most efficient annotation strategy was using both tools.

For the embryo data, the following parameters were used: Param: 6, Blur sigma: 0.2, Smooth
contour: 0.75, while for the neurosphere data Param: 8, Smooth contour: 0.52.
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Quantitative evaluation of annotation tools

Experiments were quantitatively evaluated using the classical definition of loU (intersection over
union) determining the ratio of pixels corresponding to the overlapping area between the two
objects i.e. intersection and their union including all pixels of the two objects. This pixel-level
calculation of quality assessment results in a single floating point-precision score for annotation
pairs of the same object while object-level evaluation (see TS referred as mAP, in [24] below)
returns the counts of TP (true positive), FP (false positive) and FN (false negative) objects on the
image then calculates a single loU score for the image based on an overlap threshold being

considered as a positive detection. Using the following pixel-level metric for loU
S1n S2

IoU =
s,Us,

where 51' 52 are the set of pixels marked as object pixels by two annotators, accuracy scores are

yielded for all objects which then can be aggregated to e.g. averaged loU scores such as those
displayed on Supp. Fig. 1D-F.

Additionally, annotations were also assessed using the following definition of threat score (TS)
which shows the ratio of TP, FP and FN objects commonly applied in standard computer vision
problems such as object detection or instance segmentation. We rely on the following definition of

threat score formulated as follows
™
(TP+FP+FN)

where TP is the number of labelled objects with an overlap to the ground truth object above a given
threshold, FP is the number of labelled objects that have no corresponding ground truth object with
overlap above the given threshold and FN is the number of ground truth objects that have no
corresponding labelled object with overlap above the given threshold. We used thresholds
between 0.5 and 0.95 with steps of 0.05 in our evaluation.

Each annotation was compared to all other annotations one by one resulting in a matrix of average
loU scores. Annotation times were similarly compared. Results are represented as heatmaps on
Supp. Fig. 1D-F.

Annotation times were measured inside the plugin on object level considering long pauses above
10 seconds as idle time such that only relevant times are quantified when the expert is creating an
annotation for an object. These filtered times are displayed as violin plots on Fig.2B,D,F,H and Supp.
Fig.1C, while the total time taken to annotate all objects on the entire image from start to finish
including idle times is displayed on pie charts (see also Fig.1B).

One of the challenges of manual annotation, outlining complex borders, can be observed in dataset
[). Cells adhere to the surface of the culture container therefore their borders (visualized by the
Phalloidin channel) become irregular and difficult to manually track. Thus, assisted annotation is
especially advantageous in single-cell cytoplasm contouring.

TS =

Ground truth data

As the fundamental purpose of the annotation tool is to create ground truth annotations that can
later be used for training, we demonstrated this capability by labelling datasets 1V-V) made freely
available at https://doi.org/10.6084/m9.figshare.c.7020531.v1. Dataset V) of the mitotic nucleus
annotations fills a niche in open annotated datasets in its domain. Whereas dataset 1V) presents
co-culture spheroid annotations to which similar open annotated dataset the authors have not
found as of writing. Both datasets can be easily used to train new single-cell segmentation models
or start developing new methods.
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Results

Annotation tool comparison

In previous studies [12,14,25] we have conducted comparative analysis of annotation software
available to the target community focusing on free and open source tools. In addition to those
detailed before, further tools are shown below in Supp. Table 2 and detailed as follows.

Supplementary Table 2. Comparison of annotation software tools.

tool
feature Labell D-Cell- i-bi -
bellm )notators  Qupath 2“1 paintera ITK-SNAP LabKit webKnossos NP2 Piomag
Annotator annotator
Platform W,LM W,LM W,LM W,L WLM  WLM WLM W,L.M W,L.M
Implementation  Python Java Java,web C++ Python C++ Java Java Python
Open source Y v Y v v v Y v v
code
Annotation
2D annotation v v v X X v v X v
3D annotation X v X v v v v v v
Built-in Active  Segment Active Segment Minimal
Assistance X U-Net segmentation contour angthin contour WEKA angthin e
e i SR Minimal surface
v (with
Interpolation - - - X v v Image) v v
macro)
Drawing
Bounding box v v v X X X v v v
Freehand X v v v v v v v v
Polygon X v v v X v X X v
XY,XZ,YZ ) ) } v v/ v/ 4 v v
plane views
3D viewer - - - v v v v v v

Recently an in-browser annotation tool was published for 3D electron microscopic data called
webKnossos [26]. For comparison, webKnossos was tested on the embryo dataset (data Il) where
accuracy and time were measured. Based on the feedback of the expert, webKnossos is a
user-friendly tool that requires no parametrization. Exceptional performance was noted with
blurry and less visible objects, while the automatic detection utilizing the implemented Al model
was less convincing in the case of dividing/mitotic cells. The Al-based prediction frequently
connects small, nearby objects that are not in contact, necessitating human correction.
Furthermore, a single object prediction often takes more than 1 or 2 seconds (Supplementary
Video 2) which greatly increases the annotation time. To enhance the performance, an
interpolation method is available, however, it can only interpolate between the last two contours.
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Considering that webKnossos was developed for 3D electron microscopic data and more models
are under development, it offers an easy-to-use solution for annotation.

ITK-SNAP (Insight Segmentation and Registration Toolkit for Semi-Automatic Segmentation of
Structures in Medical Images) is an open-source software application that is a part of the broader
ITK initiative, which aims to provide a collection of software tools for medical image analysis and
computational anatomy [27]. In order to compare this tool to our proposed one, one of our experts
annotated the embryo dataset with ITK-SNAP (Supplementary Video 2). The expert acknowledged
the utility of ITK-SNAP as a valuable tool. However, ITK-SNAP may have a steeper learning curve,
especially for users who are new to medical image analysis or 3D annotation tools. The software
offers a variety of features, and users may need some time to become familiar with its
functionalities. During annotation the expert found that the active contour method (that is
employed within the tool as part of a region growing process) works with high precision even in
blurry parts of the original image.

Paintera (https://github.com/saalfeldlab/paintera) is a visualization and annotation tool that was
developed to handle large-scale volumetric data, such as those generated by various imaging
modalities in the field of connectomics. Again, we used the embryo dataset as a base to compare
this tool to napari-biomag-annotator. The assessment of the expert indicates that this tool has many
useful annotation functionalities such as live visualization of interpolation between slides or
built-in keyboard shortcuts. However, there is a limitation of this tool, namely it can import only N5,
HDF7, and Zarr files and can export only in its own data format.

For an in-depth comparison our experts annotated dataset |l) with the aforementioned tools:
expert #1 with Paintera and ITK-SNAP, and expert #2 with webKnossos (Supp. Table 3). We found
that using Paintera we got a similar precision compared to our semi-automatic methods, but the
annotation time remained the same. As for ITK-SNAP we have seen a small drop in the loU score,
the annotation time was significantly higher (~+40%) than manually. Only webKnossos was able to
achieve similar annotation time as our Minimal contour method but was slower than Minimal contour
with interpolation while the loU score was inferior to ours.

Supplementary Table 3. Assessment of other annotation tools compared to ours.

Annotation Toolbox (ours) Other method
Expert Metric
E +MC +MC+I Paintera ITK-SNAP webKnossos
loU 0.8830 0.8500 0.8473 0.8431 0.8145
#1
time (min) 98 77 57 99 138
loU 0.8813 0.8536 0.8608 - 0.8195
#2
time (min) 78 53 48 - 55
Evaluation

Annotation accuracies according to the classical definition of loU and times are represented on
Supplementary Figure 1A and C, respectively. loU scores were aggregated for all three expert
annotators on Supp. Fig. 1A and are displayed by datasets whereas on Fig. 2A,C,E,G scores are
compared between the experts (inter-expert). The matrices in Supp. Fig. 1D-F represent individual
loU scores for the three experts and the applied methods, also comparing the entire stack of 3D
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images in case of datasets lI-11l) (denoted as full) and the central 50% of slices in the z-stack (center)
corresponding to the given object. Obviously, scores are generally higher in the central region for
both datasets.

For intra-person similarity (i.e. the loU score between different annotations of the same annotator)
we experienced a relative difference of Il) -3.06% and Ill) -6.06% using minimal contour, while it
was Il) -3.89% and Ill) -6.10% when combining Minimal contour and Slice interpolation. 2) The
inter-person similarity (that is the loU score between different annotators) was 1) -2.09%, 1) -0.79%
and I11) +8.78% with Minimal contour, while with Minimal contour and interpolation I1) -1.76% and 111)
+4.27% was achieved. Using the Minimal surface method the inter-person loU score change was on
average Il) -2,42%, without any manual correction.

Minimal surface was tested on dataset II) since the method is intended for larger 3D objects while
dataset Ill) comprised small nuclei and our third dataset used for benchmarking (dataset I) was 2D,
concluding the annotation accuracies remained comparable to manual labelling, thus proving the
efficiency of the method. See Supp. Fig 1.B. Additionally, the time required by the annotator
operating the plugin with the Minimal surface method decreased by 12.35%.

We inspected the most extreme outliers in our dataset, both with the highest deterioration and the
largest improvement in regards to annotation time. The negative outlier was an 187.92% increase
in annotation time on dataset Il1). For this object the annotation time using Minimal contour was
near average, while manually it was the fastest annotated object with one third of the average
annotation time. This was a rather difficult object as it was both blurry and touching another object
which is reflected in the loU as well: the intra-person loU was 0.5122 (0.4708 for the annotator in
guestion), and the inter-person loU was 0.2134 for manual annotation. On the other hand, the
highest annotation time decrease was 85.74% on dataset Il) using Minimal contour and interpolation.
This was an easy task for the Minimal contour method, as the object had clear contours, thus the loU
was not affected: 0.8592 and 0.8930 against the two manual annotations of the same annotator
(compared to 0.8918 between the two manual annotations). Note this annotator had less
experience in image annotation which shows the power of the method guiding annotators new to
the task.

Additionally, we conducted evaluation of the performance of AnnotatorJ on dataset VI)
representing a non-microscopy image domain, yielding an average loU of 0.9700 with thresholds in
[0.5-0.8] and 0.7820 with thresholds in [0.5-0.95] by steps of 0.05 according to the object-level
definition of loU (referred as TS or mAP, in [24]). Annotation times were reduced by an average
77.94% (3.63 seconds per object from 16.46), aligned with our expectations from a previous study
[14]. As a comparison, using the same object-level assessment on dataset |l), the average loU with
Minimal contour and interpolation was 0.8333 and 0.6575 with thresholds in [0.5-0.8] and [0.5-0.95],
respectively, while without interpolation 0.7774 and 0.6176. Manual labelling yielded 0.8214 and
0.6814 on the above threshold ranges.
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Supplementary Figure 1. Averaged measurements on datasets and annotators. Visualization and
labels are as on Figure 2 (see also legend in the bottom right). A) Averaged loU scores plotted in a
pairwise manner according to the legend in the bottom of Fig. 2, inset on the left shows intra-expert
differences in manual annotation. B) Minimal surface measurements. C) Violin plots (without idle
times) and pie charts (total) represent relative annotation time efficiency compared to manual
annotation as 100% indicated by dashed line and full circle, respectively. Pie charts show the
difference between manual annotations in gray where applicable. D-F) Matrices of measured mean
loU scores by annotators and methods, datasets are as on the title and y axis labels next to the
colour bars in the upper and lower triangular, respectively; full and center on D-E stand for objects
in the entire 3D structure and on the central 50% of slices, respectively, experts are labelled #1-#3
(shortened on F).
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