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Abstract  14 

Syphilis dramatically hit Europe at the end of the fifteen century before spreading to other 15 

continents. Yet the origin of the sudden pandemic in the Old World remains debated, in 16 

particular because the leading Columbus hypothesis of a New World origin of historical 17 

syphilis in Europe lacks paleomicrobiological confirmation. Here we screened a worldwide 18 

set of >1,700 ancient humans and identified ancient Treponema pallidum strains in two pre-19 

Columbian child sacrifices from Tlatelolco, Mexico. Over 12,000 Treponema-specific reads 20 

were recovered to define a novel Treponema pallidum ancient population: Treponema 21 

pallidum str. tlatelolcoensis. Phylogenetics show that this population displays ancestral 22 

features but also bears the genetic building blocks of disease-causing modern Treponema 23 

pallidum subspecies, hence demonstrating how pre-Colombian Americas were the source of 24 

worldwide spread of treponematosis.  25 
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Introduction 26 

Syphilis started ravaging Europe at the end of the fifteen century1, 2 and is still a worldwide 27 

disease over five hundred years later, with modern pandemic strains that trace back to a 28 

common ancestor in the mid-twentieth century3 having caused an estimated 6.3 million 29 

cases in 20164. Although the first complete genome of the syphilis spirochete was 30 

characterized 25 years ago5, and dozens of additional Treponema genomes followed, the 31 

antiquity, sources, and dynamics of diffusion of human treponematoses in modern 32 

populations in Europe remains uncertain. Part of the challenge is that the T. pallidum 33 

subspecies that cause venereal syphilis (T. pallidum subsp. pallidum) and non-venereal yaws 34 

(T. pallidum subsp. pertenue) and bejel (T. pallidum subsp. endemicum) remain 35 

undistinguishable by morphology and antigenicity6, 7, and can only be identified through 36 

study of multiple genetic markers and near whole-genome sequencing7, 8, 9. In addition, only 37 

a limited number of investigations convincingly yielded ancient Treponema pallidum 38 

(T. pallidum) complex in Europe and Mexico, and none of those could be identified as 39 

unambiguously pre-Columbian10, 11, 12. Hence the leading Columbus hypothesis of a New 40 

World origin of historical syphilis in Europe13, 14 lacks paleomicrobiological confirmation. 41 

Here we searched for Treponema pallidum strains in a worldwide set of >1,700 ancient 42 

human genomes and identified two such cases from 14th-15th century Mexico15. These 43 

ancient genomes prove that Treponema pallidum genomes existed in pre-Columbian 44 

Americas and provide an unprecedented opportunity to define what role Christopher 45 

Columbus’ travels played in worldwide spread of syphilis. 46 

 47 

 48 
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Results 49 

Two ancient Treponema genomes from pre-Columbian Tlatelolco, Mexico 50 

To search for ancient Treponema pallidum genomes, we screened a worldwide set of over 51 

1,700 ancient human genomes (Supplementary Figs. 1-2) with five Treponema-specific 52 

probes (see Methods). Two positive cases were identified in the remains of children who 53 

died in Tlatelolco city, Mexico in AD 1325-1520, at ages 4-6 (individuals IF #9 and IF #11 in 54 

ref15). Genomewide investigation isolated over 12,000 unique reads through a stringent 3-55 

step procedure designed to capture all specific Treponema reads: 8,922 reads for IF #9 and 56 

3,458 reads for IF #11 (Supplementary Fig. 3). The reads displayed the typical features of 57 

ancient DNA (Supplementary Fig. 4) and were then mapped against a reference T. pallidum 58 

genome to cover 38% (428kb; IF #9) and 17% (193kb; IF #11) of that reference (Fig. 1b,d) 59 

with a homogenous distribution (Fig. 1a, c).   60 

 61 

The Tlatelolco genomes are new members of the T. pallidum complex  62 

To investigate the relationships between the two Tlatelolco genomes and other Treponema 63 

genomes, we first performed a genomewide phylogenetic analysis with the raw sequences 64 

using three methods (Fig. 1e). All three methods indicate that the two strains represent a 65 

monophyletic group that is a sister group to that formed by T. pallidum subsp. pertenue and 66 

T. pallidum subsp. endemicum. Yet, the two Tlatelolco genomes appear relatively distinct on 67 

the phylogenetic tree and display a raw divergence of ~1.4% (Supplementary Fig. 5). Taking 68 

into account the differences that are due to the cytosine deamination of the ancient DNA 69 

(Supplementary Fig. 4) cuts this divergence to an estimated maximum of 0.86% 70 
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(Supplementary Fig. 5). This is still a relatively high level and so it is possible these genomes 71 

are indeed distinct despite originating from the same ancient city. Consistent with this 72 

possibility, the two genomes display the same differences at 21 positions than those 73 

observed between the modern Trepanoma genome sequences used in the alignment.  74 

Hence the Tlatelolco genomes represent the first two Pre-Columbian sequences of the 75 

T. pallidum complex. Because they also represent a new clade, we named them T. pallidum 76 

str. tlatelolcoensis #1 (IF #9) and #2 (IF #11). 77 

 78 

T. pallidum str. tlatelolcoensis carries distinct phylogenetic signals  79 

To further analyze the T. pallidum str. tlatelolcoensis sequences, we then focused on just the 80 

largest sequence of the two so that the region in common with the other sequences would 81 

shift from ~72kb (Fig. 1e) to ~403kb (Fig. 1f). The first noticeable difference is that while the 82 

position of the sequence in the phylogenetic tree does not change, phylogenetic support 83 

does and increases with two methods (NJ, ML) but decreases with one (parsimony). While 84 

this could be just phylogenetic noise, this could also be indicative of underlying divergent 85 

signals in the dataset (see comment in methods) and to test this possibility, we did a simple 86 

split of the dataset in two halves and analyzed them independently (Supplementary Fig. 6). 87 

This analysis shows that for the first half of the dataset (Supplementary Fig. 6a and 6b), the 88 

methods diverge significantly, as assessed by a Shimodaira-Hasgawa test of alternative 89 

phylogenetic hypotheses that does reject the NJ and parsimony trees (Supplementary 90 

Fig. 6d; alpha=0.05).     91 
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Because visual inspection of the alignment hinted at the presence of divergent signals in 92 

different regions, we set to test the homogeneity of the phylogenetic signal by dividing the 93 

whole genome into segments. For this analysis, we used windows of 15kb after checking that 94 

this would lead to segments with an average of at least 10 differences between the 95 

T. pallidum subspecies (Supplementary Fig. 7), which should ensure good resolution of the 96 

relationships between the groups. Interestingly, this analysis reveals distinct patterns 97 

regarding the position of T. pallidum str. tlatelolcoensis comparing to the three modern T. 98 

pallidum strains: for 7 of the 27 segments (~26%), its split is anterior to that of the three 99 

subspecies, for another 11 segments (~41%), its split is anterior to that of two the three 100 

subspecies, and for four segments (~15%) the split is associated with just one subspecies 101 

(Supplementary Fig. 8 and Fig. 2). To confirm this phylogenetic signal, we concatenated the 102 

segments with the same individual signal for the three largest groups (Fig. 2). This analysis 103 

shows strong and consistent phylogenetic signal between the methods for the position of 104 

the T. pallidum str. tlatelolcoensis. To further test this signal, we also conducted Shimodaira-105 

Hasegawa tests of alternative phylogenetic hypotheses (Supplementary Fig. 9) and for two of 106 

the three patterns, these tests significantly reject the alternative tree topologies: for the 107 

clustering with the two subspecies T. pallidum subsp. pertenue and T. pallidum subsp. 108 

endemicum (alpha=0.001; Supplementary Fig. 9c) and for the clustering with T. pallidum 109 

subsp. pallidum (alpha=0.05; Supplementary Fig. 9b). 110 

This analysis hence shows that T. pallidum str. tlatelolcoensis represents a genome with 111 

distinct phylogenetic signals. This pattern is consistent with T. pallidum str. tlatelolcoensis 112 

having evolved in pre-Columbian America as part of the ancestral T. pallidum population that 113 

experienced the transition from a single common ancestor to the three ancestors of the 114 

three T. pallidum subspecies (Fig. 3).  115 
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Discussion 116 

Mexico-Tlatelolco was a pre-Columbian city state built around 1337 on a small island of now 117 

dried-up Texcoco’s lake. It was regarded as the rival of the ancient capital Mexico-118 

Tenochtitlan after Tlatelolco city developed a merchant empire considered one of the most 119 

important centers of activity of Mesoamerica16. Human sacrifice in pre-Columbian 120 

civilizations was highly ritualized and sacrificial inclusion was recently linked to 121 

impoverishment and to a high prevalence of infectious diseases17. It is thus noteworthy that 122 

the two children who carried the T. pallidum str. tlatelolcoensis characterized here were 123 

sacrificed girls, aged 4-6 years15, supporting the possibility that they displayed visible signs of 124 

the Treponema infection.  125 

 126 

In the absence of previously reported paleomicrobiological traces of treponematoses in the 127 

New world14, the cases reported here represent the first genetic evidence of a T. pallidum 128 

complex species in pre-Columbian America. This result is in agreement with phylogenetic 129 

predictions18 and the observation of Pre-Columbian skeletal lesions characteristic of 130 

syphilis19. Importantly, this result is unambiguous as every single sequence read used for the 131 

genome assemblies belonged to the T. pallidum complex and the phylogenetic position of 132 

the resulting reconstructed genomes within the T. pallidum complex is confirmed by simple 133 

(NJ, parsimony) and more elaborated (ML) methods, which underlines the clear phylogenetic 134 

signal. Finally, while the two reconstructed genomes are incomplete, all analyses were 135 

restricted to the segments common to all the genomes used so as to avoid any potential bias 136 

due to sequence size differences. Taken together, these data thus clearly demonstrate the 137 

presence of a T. pallidum complex species in pre-Columbian America. 138 
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 139 

The pre-Columbian T. pallidum complex species identified in this study are closely related in 140 

global phylogenies to the modern T. pallidum complex species. In and of itself, this 141 

phylogenetic closeness is strong evidence that the two are direct descendants rather than 142 

just cousins. Indeed, any evolutionary scenario that would not make them direct 143 

descendants would require them to have separated well before the peopling of America, 144 

over 10kya20. This ancient split would be inconsistent with recent molecular estimates of the 145 

split between the three T. pallidum subspecies estimated at ~4.6kya (with 95% highest 146 

posterior density intervals of ~6.9-2.6 kya)11. Consistent with this, T. pallidum str. 147 

tlatelolcoensis includes both segments that are equivalent to those of two or three of the 148 

T. pallidum subspecies and segments that are equivalent to those of just one subspecies. 149 

This shows that pre-Columbian America is the region of the world where the transition from 150 

a single common ancestor to the direct ancestors of the three subspecies occurred. Hence 151 

the building blocks that are necessary to form the three T. pallidum subspecies were present 152 

in this geographical location and time period. 15th century America is thus a required stop on 153 

the evolutionary path that led to modern T. pallidum subspecies. Notably, the largest group 154 

of segments related to just one Treponema subspecies in the genome of T. pallidum str. 155 

tlatelolcoensis is for Treponema pallidum subsp. pallidum, the subspecies that causes 156 

syphilis. And so, for the syphilis outbreaks to occur in Europe, those ~75kb blocks 157 

(Supplementary Fig. 9a) would have had to be brought to Europe. Hence the 158 

characterization of T. pallidum str. tlatelolcoensis provides paleomicrobiological support to 159 

the hypothesis that Christopher Columbus ‘crew returning in Europe in 1493 brought 160 

venereal treponematosis to the continent, leading to the 1495 outbreak during the siege of 161 

Naples by the army of French King Charles VIII2, 21.  162 
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 163 

Interestingly, about half of the T. pallidum str. tlatelolcoensis genome has segments that are 164 

not related to just one single T. pallidum subspecies. While the exact age of the remains is 165 

not known and was initially associated with the Pre-Columbian era for this region of the 166 

Americas (1325-1520 CE), recent radiocarbon dating for remains excavated in the same 167 

locations points at date estimates that fall between 1332 and 1445 CE17. The strain 168 

characterized here may thus have preceded the arrival of Cristopher Columbus by 50-150 169 

years. Hence the level of differentiation of T. pallidum strains in 1492 was more advanced 170 

than that observed for T. pallidum str. tlatelolcoensis, and full differentiation between the 171 

three T. pallidum subspecies likely occurred around the time of Cristopher Columbus’ 172 

travels. This raises interesting questions about how this differentiation is linked to the travels 173 

themselves (potential founder effect) or to the impact of encountering a naïve population in 174 

Europe.  175 

  176 
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Methods 177 

Screening ancient human genomes for T. pallidum DNA. 178 

To identify studies that characterized ancient human genomes, we conducted bibliographical 179 

searches in Pubmed (https://pubmed.ncbi.nlm.nih.gov/) with ‘ancient’, ‘human’, ‘DNA’, and 180 

‘genomes’ keywords. Raw genome data for the identified studies was obtained from the 181 

European Nucleotide Archive database (https://www.ebi.ac.uk/ena/browser/home). A total 182 

of 1,783 genomes from four regions of the world were obtained (Supplementary Figs. 1-2).  183 

These ancient genomes were screened in silico using a low stringency approach with the 184 

Bowtie2 software22 and five probes: one specific to the Treponema genus (flgE) and four 185 

T. pallidum-specific ones (polA, tpp47, tprL and tp0619)8, 9. Specificity of the isolated reads 186 

was assessed through BLAST searches23 against the National Center for Biotechnology 187 

Information (NCBI) non-redundant nucleotide database.  188 

 189 

Reconstruction of the T. pallidum str. tlatelolcoensis genomes. 190 

After two positive cases were identified with our screening probes, we isolated Treponema-191 

specific genomewide reads using a 3-step approach (Supplementary Fig. 3). To maximize the 192 

likelihood to capture all relevant reads, the first step was the same low stringency approach 193 

as that used for the screen with the probes using Bowtie2 software and a complete T. 194 

pallidum reference genome (T. pallidum subsp. pallidum strain Nichols; NC_021490.2). 195 

A filtering stage was then performed, using Kraken2 software24 to assess specificity of the 196 

isolated reads and identify the source organisms for the non-Treponema reads. Monitoring  197 

of the results was performed with Krona software25. References for the five most 198 
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represented non-Treponema genomes were obtained and a specificity analysis was 199 

conducted with Bowtie2 to isolate reads that were more related to the Treponema 200 

reference than to the non-Treponema references. Specificity was then reassessed with 201 

Kraken and the new five most represented non-Treponema genomes were used as negative 202 

references for another filtering. This loop was repeated until 25 negative genome references 203 

were used and the pool of reads reached 98% specificity for Treponema. In all these analyses 204 

a tolerance of eight differences comparing to the references was allowed.  205 

Finally, to validate the specificity of the reads obtained after step #2, we conducted BLAST 206 

searches23 for each read as a third and final step. Searches were performed using the 207 

MEGABLAST program against the bacteria section of the NCBI non-redundant nucleotide 208 

database. Reads that produced no hit at this step were analyzed again using the BLASTN 209 

program. Reads with a non-Treponema best hit were discarded before the assembly step.    210 

 211 

Authenticity of ancient DNA. 212 

Authenticity of ancient DNA was verified by investigating for signs of cytosine deamination 213 

with mapDamage26 and for signs of DNA fragmentation by assessing read size distribution 214 

(Supplementary Fig. 4).  215 

 216 

Assembly and consensus. 217 

After filtering, the isolated reads were mapped against a T. pallidum subsp. pallidum strain 218 

Nichols genome sequence (NC_021490.2) using Mira assembly software27. Assemblies were 219 
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visualized with the gap4 software of the STADEN package28 and a consensus sequence was 220 

extracted using a ‘Base frequencies’ algorithm with a 51% cutoff.   221 

Representation of the coverage for the genome assembly was performed with Circleator29; 222 

in those representations, GC content and gene content is from the reference (T. pallidum 223 

subsp. pallidum strain Nichols).  224 

 225 

Phylogenetic analyses.  226 

Treponema pallidum str. tlatelolcoensis genomes were aligned with a representative set of 227 

30 complete and modern Treponema genome sequences representing the three T. pallidum 228 

subspecies. Alignment was performed with the MAFFT software30 followed by manual 229 

corrections. In all analyses, the columns with alignment gaps or missing information were 230 

discarded (complete deletion datasets). Because of this, we did not include other ancient 231 

sequences: indeed, when trying to compare our sequences to those of Majander and 232 

colleagues11 for example, there was less than 10kb of common sequence. 233 

All phylogenetic analyses were conducted with three methods: maximum-likelihood (ML), 234 

neighbor-joining (NJ) and parsimony. While ML methods are often the preferred choice over 235 

the other two methods, such a combination of simple and more elaborated phylogenetic 236 

methods can be helpful to detect underlying issues in the sequence data such as 237 

recombination, positions of functional divergence between paralogues, or biases created by 238 

outgroups as those issues often lead to incongruence in the results between the methods31. 239 

NJ phylogenetic analyses were performed with MEGA1132 using the Tamura-Nei method 240 

with 500 replicates. PAUP*4.0a16933 and the tree bisection-reconnection branch swapping 241 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 16, 2024. ; https://doi.org/10.1101/2024.01.15.575648doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.15.575648
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

algorithm were used for parsimony analyses with 500 replicates and a heuristic search. ML 242 

analyses were performed with RAXML834 under the available model (GTR+gamma) with 500 243 

replicates (rapid bootstrapping).  244 

Tree topology comparisons were performed using the Shimodaira-Hasegawa test of 245 

alternative phylogenetic hypotheses with re-sampling estimated log-likelihood optimization, 246 

and 10,000 bootstrap replicates (as implemented in PAUP*4.0b10). This comparison was 247 

made with the maximum likelihood model of DNA substitution defined using MODELTEST35 248 

and the Akaike information criterion. 249 

  250 
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FIGURE LEGENDS 251 

Fig. 1. Treponema pallidum str. tlatelolcoensis is a basal, pre-Columbian T. pallidum strain. 252 

(a to d) Characteristics of the T. pallidum str. tlatelolcoensis genomes from individuals IF #9 253 

(a and b) and IF #11 (c and d). (a and c) Circleators plot for the novel genomes with read 254 

coverage (internal layer; minimum, average and maximum coverage are given) plotted 255 

against GC content (outer layer) and gene content (two middle layers) from the reference 256 

(T. pallidum subsp. pallidum strain Nichols). (b and d) Statistics for the genome assemblies. 257 

(e and f) T. pallidum str. tlatelolcoensis is a basal T. pallidum strain. Full-genome 258 

phylogenetic analysis on the common segments of 32 (e) or 31 (f) Treponema genomes using 259 

neighbor-joining (NJ), parsimony, and maximum-likelihood (ML) methods. The NJ tree 260 

topology was used for the display, with a midpoint rooting. Bootstrap support is given for six 261 

(f) or seven (e) nodes (from top to bottom: ML, parsimony, NJ). Circles at nodes indicate 262 

bootstrap support of 100 with all methods. *, bootstrap support <50. Black pentagons, 263 

T. paraluiscuniculi outgroup. 264 

 265 

Fig. 2. T. pallidum str. tlatelolcoensis displays distinct phylogenetic patterns in its 266 

relationships to modern T. pallidum subspecies. The genome sequence of T. pallidum str. 267 

tlatelolcoensis was divided in 27 segments of 15kb each and phylogenetically compared to 268 

the corresponding sequences of 30 other Treponema genomes using NJ, parsimony, and ML 269 

methods (Supplementary Fig. 8). The central bloc summarizes orthology to T. pallidum str. 270 

tlatelolcoensis for each segment using the colour scheme displayed in the bottom left 271 

corner. Pal, T. pallidum subsp. pallidum. End, T. pallidum subsp. endemicum. Per, T. pallidum 272 

subsp. pertenue. ‘Concatenated’ phylogenetic analyses were conducted for the three largest 273 
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groups of segments: results are displayed above and below the central bloc and, together 274 

with statistical tests of topologies (Supplementary Fig. 9) confirm that these segments have 275 

distinct phylogenetic signals.  276 

 277 

Fig. 3. T. pallidum str. tlatelolcoensis belongs to a Treponema population that is ancestral to 278 

the three modern T. pallidum subspecies. The model of evolution has three stages 279 

(ancestral, differentiation and recombination, and modern) and uses the same colour 280 

scheme and segments as those of Fig. 2. In the upper part of the model is the ancestral 281 

T. pallidum genome. The central part of the model shows the emergence of the three 282 

T. pallidum subspecies through differentiation and recombination, as well as the presence of 283 

T. pallidum str. tlatelolcoensis in the population, together with two putative variants. The 284 

colour scheme uses the modern species as references and may give the impression that 285 

modern sequences did not recombine while some, like T. pallidum str. tlatelolcoensis did: 286 

this is arbitrary and would require more sequences from the ancestral population to 287 

reconstruct how the three modern subspecies were formed.  288 

  289 
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