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ABSTRACT 

Naïve pluripotency is sustained by a self-reinforcing gene regulatory network (GRN) 

comprising core and naïve pluripotency-specific transcription factors (TFs). Upon exiting naïve 

pluripotency, ES cells transition through a formative post-implantation-like pluripotent state, 

where they acquire competence for lineage-choice. However, the mechanisms underlying 

disengagement from the naïve GRN and initiation of the formative GRN are unclear. Here, we 

demonstrate that phosphorylated AKT acts as a gatekeeper that prevents nuclear localization 

of FoxO TFs in naïve ESCs. PTEN-mediated reduction of AKT activity upon exit from naïve 

pluripotency allows nuclear entry of FoxO TFs, enforcing a cell fate transition by binding and 

activating formative pluripotency-specific enhancers. Indeed, FoxO TFs are necessary and 

sufficient for transition from the naïve to the formative pluripotent state. Our work uncovers a 

pivotal role for FoxO TFs and AKT signalling in mechanisms establishing formative post-

implantation pluripotency, a critical early embryonic cell fate transition.  
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INTRODUCTION 

Pluripotent cells can give rise to all specialised cells that form an adult organism. During mouse 

embryonic development, a population of naïve pluripotent cells arises in the pre-implantation 

epiblast around embryonic day E3.5-E4.5 (Boroviak et al. 2014). During the transition from 

pre- to post-implantation development, epiblast cells navigate through a continuum of 

pluripotency states. Starting from a naïve state with unrestricted potential, cells transit through 

a formative state to acquire competence for somatic and germ cell lineage specification, 

ultimately entering a primed state where they initiate expression of lineage markers (Kinoshita 

et al. 2021; Kinoshita and Smith 2018; Nichols and Smith 2009; A. Smith 2017). 

The naïve pluripotent state of pre-implantation epiblast cells can be captured in vitro using 

mouse embryonic stem cells (mESCs) (Evans and Kaufman 1981; Martin 1981). Maintenance 

of a homogeneous ground-state of pluripotency requires the addition of two small molecule 

inhibitors to the culture media: PD0325901 (MEK1/2 inhibitor) and CHIRON (GSK3ɑ/ꞵ 

inhibitor), collectively referred to as 2i (Ying et al. 2008). mESCs cultured in 2i resemble the 

E4.5 pre-implantation epiblast in terms of epigenetic and transcriptional status (Boroviak et al. 

2014, 2015; Ficz et al. 2013; Lee, Hore, and Reik 2014). Naïve identity is defined by the 

expression of a self-reinforcing gene regulatory network (GRN) that comprises the core 

pluripotency transcription factors (TFs) Oct4 (gene name: Pouf51) and Sox2, and naïve-

specific TFs including Nanog, Esrrb, Klf4, and others (Chen et al. 2008; Dunn et al. 2014; 

Martello and Smith 2014; Niwa et al. 2009). 

A balanced interplay of several signalling inputs is responsible for the maintenance of the 

naïve-specific GRN (Huang et al. 2015). The cytokine LIF (Leukaemia Inhibitory Factor) plays 

a key role in the GRN and was the first identified exogenous factor that can support mouse 

ESC culture along with serum supplementation (Smith et al. 1988; Williams et al. 1988). LIF 

mainly activates the JAK/STAT3 and PI3K/AKT pathways which are crucial to sustain naïve 

pluripotency (Niwa et al. 2009). Although the role of the JAK/STAT pathway has been 

intensively studied, the function of PI3K/AKT signalling in pluripotency has received much less 

attention (Ohtsuka, Nakai-Futatsugi, and Niwa 2015). Overexpression of a constitutively active 

form of AKT is sufficient to maintain mESCs in an undifferentiated state, even in the absence 

of LIF (Watanabe et al. 2006). PI3K/AKT signalling is thought to support naïve pluripotency 

through inhibition of both the MEK/ERK and the GSK3 pathways (Paling et al. 2004; Wang et 

al. 2020; Wray et al. 2011), although the underlying mechanisms are unclear. Furthermore, 

AKT signalling feeds directly into the naïve GRN by activating the expression of Tbx3 and 

Nanog (Niwa et al. 2009; Storm et al. 2007). 
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Exit from the naïve pluripotent state and initiation of formative pluripotency can be 

recapitulated in vitro by releasing cells from 2i inhibition into basal N2B27 medium. This 

change in conditions leads to loss of self-renewal in the naïve state and an irreversible 

commitment to differentiate approximately 48h after 2i withdrawal (Wray et al. 2011). The exit 

from naïve pluripotency results in the dismantling of the naïve-specific GRN and the 

establishment of a new formative state-specific GRN. This is accompanied by a profound shift 

in the signalling landscape: LIF and AKT signalling are reduced, concomitant with an increase 

in FGF/ERK activity (Kunath et al. 2007; Niwa et al. 2009; Stavridis et al. 2007). We and others 

found that Pten, a negative regulator of AKT, is among the top hits in genetic screens for 

drivers of ESC differentiation, highlighting the importance of downregulating the PI3K/AKT 

pathway to ensure timely exit from the naïve state (Betschinger et al. 2013; Lackner et al. 

2021; Leeb et al. 2014; Li et al. 2018; Villegas et al. 2019). However, how exactly Pten 

regulates the exit from naïve pluripotency remains elusive. 

In this study, we find that FoxO transcription factors are regulated by AKT and play a previously 

unrecognized but critical role in the transition from naïve to formative pluripotency. Our findings 

indicate that AKT acts as a gatekeeper by maintaining FoxO TFs in the cytoplasm in the naïve 

state. However, PTEN reduces AKT signalling at the initiation of differentiation, allowing FoxO 

TFs to relocalize to the nucleus where they play a pivotal role in facilitating the transition from 

naïve to formative pluripotency by regulating a switch in operative GRNs. Our findings uncover 

an intricate mechanism that regulates the orderly transition between gene regulatory networks 

that maintain distinct pluripotent states. 

RESULTS 

PTEN-mediated downregulation of AKT activity results in timely exit from the 
naïve pluripotent state 

We previously found that mESCs lacking Pten exhibit a pronounced defect in the exit from 

naïve pluripotency (Lackner et al. 2021). Indeed, 24h after 2i-removal in N2B27 medium (N24), 

Pten KO mESCs displayed higher Rex1-GFPd2 (Rex1-GFP) reporter activity than wild-type 

(WT) cells (Fig. 1A, B). Rex1 is specifically expressed in the naïve state, and its 

downregulation coincides with irreversible commitment to differentiation (Betschinger et al. 

2013; Wray et al. 2011). This defect in exit from the naïve state in Pten KO ESCs was rescued 

by expressing Pten through transfection of a plasmid encoding 3xFLAG-PTEN 

(Supplementary Fig. 1A, B). 
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Pten mRNA and protein levels increase during exit from naïve pluripotency, while phospho-

AKT (pAKT) levels are concomitantly reduced (Fig. 1C-E), suggesting that PTEN may promote 

the transition to formative pluripotency by decreasing AKT activity. In Pten KOs, levels of 

phospho-AKT were significantly higher than in WT cells (Fig. 1D). Thus, we set out to delineate 

the molecular mechanism by which PTEN-mediated AKT inhibition might drive exit from naïve 

pluripotency. 

When active, AKT phosphorylates several targets that play crucial roles in distinct cellular 

processes. Among AKT targets, TSC2 (Tuberous Sclerosis 2), GSK3 (Glycogen Synthase 

Kinase 3), and the FOXO (Forkhead box O) class of transcription factors are strong candidates 

for mediating changes in mESC differentiation states. Indeed, these factors have been 

identified as hits in genetic screens for differentiation drivers (Betschinger et al. 2013; Lackner 

et al. 2021; Leeb et al. 2014; Li et al. 2018; Villegas et al. 2019), suggesting that the 

AKT/mTORC1, AKT/GSK3 and AKT/FoxO signalling axes could all participate in the 

regulation of the transition from naïve to formative pluripotency. 

Therefore, we started by investigating the involvement of AKT/mTORC1. AKT-mediated 

phosphorylation leads to TSC2 inhibition and consequent mTORC1 activation. mTORC1 is 

one of two distinct complexes containing the serine/threonine protein kinase mTOR. mTORC1 

regulates essential cellular processes including cell growth, protein synthesis and autophagy 

via phosphorylation of S6K, 4EBP-1 and ULK1, respectively (Yu and Cui 2016). ESCs lacking 

Tsc2 retained higher Rex1-GFP and NANOG levels at N24 compared to WT cells, similar to 

Pten KO cells (Lackner et al. 2021) (Supplementary Fig. 1C, D).  

To evaluate whether Pten acts through the AKT/mTORC1 axis during exit from naïve 

pluripotency, we inspected RNA sequencing (RNA-seq) data from Pten and Tsc2 KO mESCs 

(Lackner et al. 2021) (Supplementary Fig. 1E). Both KOs showed delayed downregulation of 

naïve and delayed upregulation of formative marker genes at N24, with more pronounced 

effects observed in Tsc2 KOs (Fig. 1F). Both in 2i and at N24, Pten and Tsc2 KOs deregulated 

a similar set of genes (differentially expressed genes, DEGs; Fig. 1G). In 2i, DEGs were 

enriched for terms associated with lysosomal and metabolic regulation, in line with the known 

role of mTORC1 in regulating those processes (Betschinger et al. 2013; Villegas et al. 2019; 

Yu and Cui 2016) (Supplementary Fig. 1F). Consistent with the observed naïve exit defect, 

genes upregulated at N24 were enriched for terms related to pluripotency (Supplementary Fig. 

1G).  

Next, we inspected the phosphorylation level of direct targets of mTORC1 in WT, Pten KO 

and Tsc2 KO ESCs. Phospho-4EBP1 (p4EBP1) and phospho-S6K (pS6K) were similarly 
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increased in both KOs, confirming that Pten or Tsc2 deletion increases mTORC1 pathway 

activity. Addition of the mTORC1 inhibitor Rapamycin reduced mTORC1 activity in both KOs 

(Fig. 1H and Supplementary Fig. 1H, I).  

We then assessed whether this reduction restored normal differentiation potential. Rapamycin 

treatment promoted faster downregulation of Rex1-GFP in WT ESCs, and resulted in a 

complete rescue of the differentiation defect of Tsc2 KO cells (Fig. 1I), in line with previously 

published data (Betschinger et al. 2013). However, in Pten KO cells, Rapamycin achieved 

only a partial rescue. Restoration of differentiation potential was specific for ESCs depleted 

for members of the PI3K/AKT/mTOR pathway, and differentiation-defective ESCs lacking the 

WNT/GSK3 pathway effector Tcf7l1 (Lackner et al. 2021; Wray et al. 2011) did not restore 

Rex1-GFP downregulation kinetics upon Rapamycin treatment (Fig. 1I). 

To further evaluate the extent of phenotypic rescue of Pten KO cells by Rapamycin, we 

performed RNA-Seq on WT, Pten KO and Tsc2 KO mESCs, differentiated in presence of 

DMSO or Rapamycin (Supplementary Fig. 1J). We observed TF-specific changes in naïve 

pluripotency expression upon Rapamycin treatment. While addition of Rapamycin restored 

Nanog expression to WT levels in both Pten and Tsc2 KOs, Esrrb and Klf5 expression 

remained high in Pten KOs. Furthermore, a set of 436 previously identified naïve pluripotency-

specific genes (Carbognin et al. 2023) consistently showed a significantly stronger reduction 

in expression levels upon Rapamycin treatment in Tsc2 compared to Pten KOs (Fig. 1K). 

Together, these results show that the Pten KO phenotype is not exclusively determined by 

hyperactivity of mTORC1. 

This prompted us to first investigate the role of AKT-mediated phosphorylation of GSK3 on 

Serine 9, which tags it for degradation and thereby stabilises ꞵ-catenin (Wray et al. 2011). 

GSK3 phosphorylation was recently proposed to be crucial for maintaining pluripotency in Pten 

KO mESCs (Wang et al. 2020). Indeed, phospho-GSK3 (pGSK3) levels are increased in Pten 

KO cells (Supplementary Fig. 1K). We hypothesised that if indeed deactivation of the GSK3-

TCF7L1 axis of the WNT pathway leads to the differentiation defect in Pten KO cells, then the 

resulting WNT pathway hyperactivity should be epistatic to the pharmacological inhibition of 

GSK3 by CHIRON. Such an epistatic interaction was observed in Tcf7l1 KOs, where the 

activity of the ꞵ-catenin destruction complex is rendered obsolete and, hence, the addition of 

CHIRON had no additional effect (Supplementary Fig. 1L). In contrast, treatment of Pten KOs 

with CHIRON resulted in delayed differentiation speeds akin to WT cells. Furthermore, we did 

not previously observe a transcriptional signature typical of increased WNT activity in Pten KO 

ESCs (Lackner et al. 2021). This suggests that AKT-hyperactivity-dependent phosphorylation 

of GSK3 in Pten mutants has little direct impact on the exit from naïve pluripotency.  
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Collectively, these data show that Pten regulates pathways, in addition to mTORC1, relevant 

for proper exit from naïve pluripotency. As the role of GSK3 appeared minor, we focussed our 

attention on FoxO TFs. 

AKT-dependent nuclear translocation of FoxO transcription factors promotes 
the exit from naïve pluripotency 

FoxO TFs regulate several crucial cellular processes, including cell cycle, apoptosis and DNA 

repair (Herman, Todeschini, and Veitia 2020). AKT-mediated phosphorylation retains FoxO 

TFs in the cytoplasm. In WT and Pten KO ESCs cultured in 2i, immunofluorescence (IF) 

analysis revealed a largely cytoplasmic localization of FOXO1. Upon exit from the naïve state, 

we observed that FOXO1 translocated to the nucleus, concomitant with reduced ESRRB 

levels (Fig. 2A, B) and a downregulation of AKT activity (Fig. 1D, E) (Yang et al. 2019). IF 

experiments revealed that increased nuclear FOXO1 levels could be observed as early as 8h 

after 2i withdrawal (N8), and increased further until N24. Nuclear translocation of FOXO1 at 

the onset of ESC differentiation was severely impaired in Pten KO cells, which maintained a 

clear cytoplasmic localization at N24 (Fig. 2A, C). Nucleo-cytoplasmic fractionation 

experiments showed similar results for FoxO3 (Supplementary Fig. 2A). Supporting a 

functional relevance of nuclear shuttling of FoxO TFs in vivo, we detected nuclear FoxO1 in 

the OTX2 positive epiblast of E4.75 and E5.5 embryos (Fig. 2D). In contrast, extraembryonic 

tissues showed lower FoxO1 levels and a more pronounced cytoplasmic FoxO1 localization. 

To test whether nuclear translocation of FOXO1 was indeed AKT-dependent, we analysed the 

nuclear vs. cytoplasmic localization of FOXO1 after treatment with the specific allosteric AKT 

inhibitor MK-2206 (Hirai et al. 2010). MK-2206 treatment elevated levels of nuclear FOXO1, 

in both 2i and at N24, and resulted in expedited downregulation of Rex1-GFP in WT cells 

(Supplementary Fig. 2B-D), consistent with a requirement for reduced AKT activity to enable 

and possibly trigger the exit from naïve pluripotency.  

Together, our results supported the hypothesis that impaired nuclear translocation of FoxO 

TFs at the onset of differentiation contributes to the inability of Pten KO ESCs to properly exit 

the naïve state. To further test this hypothesis, we used doxycycline-induced expression of a 

constitutively nuclear version of FoxO1 (3xFLAG-FoxO1nuc) (Nakae et al. 2001). This 

treatment was sufficient to extinguish naïve pluripotency in WT cells cultured in 2i within 8h 

hours in a dose-dependent manner (Fig. 2E, Supplementary Fig. 2E-G). Furthermore, 

3xFLAG-FoxO1nuc expression in Pten KO ESCs rescued their differentiation defect (Fig. 2F, 

Supplementary Fig. 2H, I). We noticed that prolonged exposure to high levels of nuclear 
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FoxO1 (>24h) was cytotoxic, probably due to induction of the pro-apoptotic programme by 

FoxO1 (Greer and Brunet 2005). 

In summary, our data show that AKT-mediated nuclear translocation of FoxO1, and possibly 

other FoxO TFs, is essential for the timely exit from naïve pluripotency. We conclude that lack 

of FoxO TF nuclear translocation underlies, at least in part, the differentiation defect observed 

in Pten KO mESCs.  

FoxO TFs bind to enhancers that are activated during the naïve to formative 
transition 

To explore the role of FoxO TFs in the transition from naïve to formative pluripotency, we 

performed chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) 

analysis for FOXO1 and FOXO3 in WT and Pten KO cells. This analysis was performed in 2i 

and at N24, that is, 24 hours into the formative transition (Fig. 3A and Supplementary Fig. 3A-

C). In WT cells, we observed a strong increase in the number of genomic loci bound by FOXO1 

and FOXO3 at N24 compared to 2i. We detected 1314 and 391 peaks in 2i and 2840 and 623 

peaks at N24 for FoxO1 and FoxO3, respectively. This is consistent with increased nuclear 

localization of FoxO TFs at the exit from naïve pluripotency. In agreement with the largely 

cytoplasmic localization in the absence of Pten, FOXO-TF ChIP-seq signals were barely 

detectable in Pten KO cells (Supplementary Fig. 3B, C). Of note, due to low amounts of 

precipitated DNA in 2i, ChIP-seq library-prep will most likely have amplified signal in 2i relative 

to N24; hence a direct quantitative comparison between 2i and N24 FOXO-TF signal is not 

possible. 

FOXO1 and FOXO3 ChIP-seq data showed a significant overlap. Almost 50% of FOXO3 

peaks overlapped with FOXO1 peaks, and FOXO1 signal was detected at virtually all FoxO3 

peaks (Supplementary Fig. 3C, D). We divided FOXO1- and FOXO3-bound regions into three 

groups depending on peak-calling results: 2i-only peaks (612 for FOXO1 and 152 for FOXO3), 

N24-only peaks (2138 for FOXO1 and 384 for FOXO3) and shared peaks (702 for FOXO1 

and 239 for FOXO3) (Fig. 3A). All peak categories were enriched for FoxO motifs 

(Supplementary Table 1).  Altogether, this supports the specificity of our ChIP-seq analysis. 

FoxO TF peaks were located mainly outside of promoter regions (Supplementary Fig. 3E), 

indicating a potential contribution of FoxO TFs to enhancer regulation. To test this, we utilised 

published ChIP-seq datasets (Buecker et al. 2014) for the enhancer marks H3K27ac and 

p300, obtained in ESCs and in EpiLCs. EpiLCs represent the in vitro counterpart of formative 

epiblast cells of the E5.5 blastocyst (Hayashi et al. 2011) and correspond to a developmental 

state similar to our cells at N24. We found that strong H3K27ac and p300 signals in EpiLCs 
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overlapped with the regions we identified as bound by FoxO TFs at N24 (Fig. 3B). Moreover, 

regions bound by FoxO TFs in 2i were significantly enriched in ESC-specific enhancers and 

enhancers active in ESCs and EpiLCs (Thomas et al. 2021) (Fig. 3C). EpiLC-specific 

enhancers were not significantly bound by FOXO1 in 2i. In contrast, N24 FoxO1-peaks 

significantly overlapped with shared and EpiLCs-specific enhancers while showing much less 

overlap with ESC-specific enhancers. We found that a total of xX% of FoxO1 peaks at N24 

overlaps with EpiLCs enhancers. This points towards a role for FoxO TFs in activating 

formative-specific regulatory regions upon exit from the naïve state. Consistently, we detected 

a significant enrichment of FoxO1 and FoxO3 motifs in EpiLC-specific enhancers 

(Supplementary Fig. 3F).  

We then performed ATAC-seq in WT and Pten KO cells, in 2i and at N24 (Fig. 3D, 

Supplementary Fig. 3G). Regions that showed FoxO-TF binding exclusively in 2i were open 

only in the naïve state and showed weak ATAC-seq signal at N24. However, regions exhibiting 

FoxO TF binding at N24 showed near equal ATAC-seq signal in both 2i and at N24. At the 

resolution of our analysis, ATAC-seq signal was indistinguishable between WT and Pten KO 

cells, in which FoxO-TF translocation to the nucleus is largely abolished. This suggests that 

FoxO TFs are not likely to act as pioneer factors that open up chromatin during the naïve to 

formative transition. Instead, our data is consistent with a role of FoxO TFs in activating already 

open poised chromatin (Eijkelenboom et al. 2013) during the exit from naïve pluripotency. 

OCT4 and OTX2 are key regulators of general and formative pluripotency, respectively. OTX2 

causes relocation of OCT4 from ESC- to EpiLC-specific enhancers upon exit from the naïve 

state (Buecker et al. 2014). We found that regions bound by FoxO1 at N24 showed a 

significant and strong overlap with OCT4-bound regions detected in EpiLCs. This contrasted 

with lower overlap between regions bound by FoxO1 in 2i and OCT4 in ESCs (Fig. 3E, F). A 

large portion of 14% of OTX2-bound EpiLC enhancers were also bound by FoxO1 at N24. In 

addition, our analysis clearly showed that colocalization of FOXO1 with OCT4 and OTX2 

occurs nearly exclusively on enhancers, suggesting that FoxO TFs regulate enhancer 

activation in cooperation with pluripotency-state specific TFs. 

Recently it was shown that Esrrb, originally identified as a naïve pluripotency-specific TF, 

performs additional functions in the initiation of the formative transcription programme 

(Carbognin et al. 2023). To investigate whether FoxO-TFs cooperate with ESRRB, we 

examined the overlap on chromatin between FOXO1 and ESRRB throughout the pluripotency 

continuum (Fig. 3G, H and Supplementary Fig. 3H, I). These analyses showed that 35% of 2i-

specific and 38% of shared FoxO1 peaks are also bound by ESRRB in 2i (Fig. 3H). Regions 

bound by ESRRB at N48 still showed a highly significant overlap with FoxO1 binding, with 
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28% of shared FoxO1 peaks also decorated by ESRRB at N48. These loci were in close 

proximity to, and thus potentially regulate, known formative (Otx2, Dnmt3a, Lef1) and naive 

marker genes (Nanog, Esrrb, Zfp42, Klf2, Klf4, Klf5, Tfcp2l1, Nr5a2, Prdm14). Overall, regions 

co-bound by FOXO1 and ESRRB showed the strongest signals for enhancer marks, indicating 

that the concomitant presence of FoxO TFs and ESRRB triggers the strongest transcriptional 

response (Supplementary Fig. 3H, I).  

FoxO TFs have been shown to interact with the WNT pathway effector β-catenin to enhance 

transcriptional output (Essers et al. 2005). In line with this, a highly significant 50% of all FoxO1 

bound regions were also occupied by β-catenin (Fig. 3I), suggesting a functional interaction 

of FoxO TFs and β-catenin also during the transition to formative pluripotency. 

Our findings reveal that FoxO TFs bind to enhancers that are activated upon the exit from 

naïve pluripotency. This suggests that FoxO TFs cooperate with core components of the naïve 

and formative TF-repertoire to ensure faithful firing of the formative GRN.  

FoxO TFs instruct the rewiring of the naïve to the formative GRN  

We next sought to identify the transcriptional consequences of FoxO-TF induced changes to 

chromatin at the exit from naïve pluripotency. We specifically wanted to know which 

components of the formative state specific GRN might be functionally dependent on regulation 

by FoxO TFs. To this end, we compared the changes in transcript levels upon exit from naïve 

pluripotency (Lackner et al. 2021) between distinct sets of FoxO1-bound genes as defined 

above. Overall, FoxO1 targets were highly enriched in genes differentially expressed within 

the first 24h of ESC differentiation (Supplementary Fig. 4A). 2i-specific FoxO1 targets were 

overall downregulated at N24, while N24-specific targets showed an overall upregulation 

during naïve exit (Fig. 4A, Supplementary Fig. 4B). In contrast, the expression of targets bound 

in both conditions did not show a consistent directional change in gene expression during the 

exit from naïve pluripotency. To further investigate the exact expression kinetics of FoxO1 

target genes during the exit from naïve pluripotency, we followed their transcript levels across 

a 32h differentiation time course at a 2h-resolution (Lackner et al. 2021). We found that 2i-

specific FoxO1 targets showed a largely continuous downregulation, N24-specific targets a 

continuous upregulation, and 2i&N24 targets a lack of clear directionality (Supplementary Fig. 

4C). 

Recent work reported transcriptome analysis of differentiating mESCs up to 96 hours after 2i 

withdrawal and defined 6 distinct groups based on gene expression kinetics: naïve early and 

naïve late (downregulated early or late upon naïve exit), formative early and formative late 

(upregulated during naïve exit), committed early and committed late (upregulated late during 
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naïve exit) (Carbognin et al. 2023). We found that 2i-specific FoxO1 targets were enriched for 

naïve and formative early genes, whereas N24-specific and 2i&N24 FoxO1 targets were 

enriched for naïve early, formative (early and late) and committed early genes (Fig. 4B).  

As this result indicated a link between FoxO TFs and central components of the naïve and 

formative GRNs, we further tested whether FoxO1 binds and potentially regulates core 

members of the naïve or formative GRN. We found that 9 out of 13 core naïve marker genes 

(modified from Kalkan et al. 2019) were bound by FoxO1 in 2i (Tfcp2l1, Nr5a2) or in both 2i 

and at N24 (Nanog, Esrrb, Zfp42, Klf2, Klf4, Prdm14). Conversely, 8 out of 12 key formative 

marker genes (hereafter referred to as core formative genes) (Kalkan et al. 2019) were bound 

by FoxO1 at N24 (Dnmt3b, Pou3f1, Fgf5, Sall2, Pim2) or under both conditions (Dnmt3a, Otx2, 

Lef1) (Fig. 4C, D and Supplementary Fig. 4D, Supplementary Table 2). Notably, formative 

genes (early and late, as described above) and core formative genes that are direct FoxO1 

targets showed a significantly stronger upregulation during the exit from naïve pluripotency 

than non FoxO-targets (Fig. 4E, F). 

Among the FoxO1 targets, we identified a significant number of genes that were also found in 

a genetic screen for genes controlling the exit from naïve pluripotency, here referred to as “exit 

factors” (Fig. 4G) (Lackner et al. 2021; Leeb et al. 2014). Most exit factors show little dynamic 

change in gene expression during the exit from naïve pluripotency. However, among those 

that are upregulated during naïve exit, FoxO1 targets showed significantly stronger regulation 

(Supplementary Fig. 4E). This suggests that FoxO TFs function as upstream regulators of the 

cell fate transition from naïve to formative pluripotency by facilitating the activity of multiple 

processes required for proper differentiation. 

Further suggesting a causal link between inactivation of the FoxO-signalling axis in Pten KOs 

and the differentiation delay in these mutants, 22% of genes differentially expressed between 

WT and Pten KOs at N24 were FoxO1 target genes (Supplementary Fig. 4F). Furthermore, 

those components of the core formative GRN that are FoxO1 targets exhibited a stronger 

deficiency in upregulation compared to non-targets in Pten mutant cells at N24 

(Supplementary Fig. 4G). 

In sum, our data argue that FoxO1 is a key regulator of the naïve to formative transition by 

binding to and regulating major components of the naïve and formative specific GRNs. This 

function is potentially performed in cooperation with TFs such as OCT4, ESRRB, OTX2 and 

β-CATENIN that are known to regulate multiple pluripotency states and transitions. 
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FoxO TFs are required for the exit from naïve pluripotency 

To investigate a potential requirement for FoxO1 for the transition from naïve to formative 

pluripotency, we analysed the differentiation capacity of cells after FoxO1 depletion. To this 

end, we turned to knockdown (KD) experiments using short-interfering RNAs (siRNAs). 

Treatment with siRNAs against Foxo1 resulted in the downregulation of transcript and protein 

levels (Supplementary Fig. 5A, B). Cells with reduced levels of Foxo1 (siFoxO1) retained 

higher expression of Rex1-GFP at N24 compared to cells treated with scrambled siRNAs 

(siScr), suggesting that Foxo1 is required for proper exit from naïve pluripotency (Fig. 5A).  

KEGG pathway enrichment analysis after RNA-seq analysis of WT cells at N24 treated with 

siFoxO1 showed that upregulated genes (UP) were enriched for signalling pathways 

associated with pluripotency maintenance (Supplementary Table 1), suggesting a fortified 

naïve pluripotent state and confirming the differentiation defect. Further consistent with the 

differentiation delay upon FoxO1 depletion, we observed that naïve pluripotency markers 

failed to be down- and formative markers upregulated upon FoxO1 KD (Fig. 5B). Both genes 

that were up- and downregulated upon FoxO1 depletion were highly enriched in FoxO1 ChIP-

seq targets (Fig. 5C and Supplementary Fig. 5C), with 30% and 25%, respectively, being 

bound by FOXO1.  

In line with the proposition that the Pten KO phenotype is caused, in part, by misregulated 

FoxO-TF localization, genes upregulated or downregulated in Pten KO at N24 were also 

upregulated or downregulated in siFoxO1-treated cells at N24 (Supplementary Fig. 5D). More 

specifically, FoxO1 target genes showed a stronger deregulation in the absence of either Pten 

or Foxo1 compared to non-targets (Supplementary Fig. 5E). 

Our results show that reduced expression of FoxO1 delays the exit from naïve pluripotency, 

suggesting that FoxO TF-activity is required for the regulation of the naïve to formative 

pluripotency transition.  

Forced nuclear shuttling of FoxO1 through AKT inhibition is sufficient to 
promote formative GRN activation in 2i 

If nuclear shuttling of FoxO-TFs is indeed involved in initiating the formative GRN, then artificial 

inactivation of AKT in the naïve pluripotent state should lead to nuclear accumulation of FoxO-

TFs and, thus, trigger expression of formative specific genes. To test this proposition, we again 

employed the allosteric AKT inhibitor MK-2206. MK-2206 treatment leads to a substantial 

increase in nuclear FoxO1 and a concomitant reduction of Rex1-GFP expression levels, as 

shown before. To evaluate the global impact of AKT-inhibition in naïve ESCs and during the 
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exit from naïve pluripotency, we performed RNA-seq after MK-2206 treatment in 2i and at 

N24. In general, MK treatment appeared to push cells towards a more differentiated state, 

both when added to naïve ESCs or to cells exiting naïve pluripotency (Supplementary Fig. 

5F). Importantly, putative FoxO1 targets identified by ChIP represented 27% and 30% of all 

deregulated genes upon MK treatment in 2i cells or at N24, respectively (Fig. 5D). Overall, 

core formative FoxO1 targets Pou3f1, Pim2, Dnmt3b, Lef1, Fgf5, Otx2 and Sall2 showed a 

stronger response to MK-2206 treatment in both 2i and at N24 than non-targets (Hes6, Sox12, 

Sox3, Tead2) (Fig. 5E, F). Consistent results were obtained using a larger set of formative-

specific genes (Fig. 5G). Interestingly, FoxO1-bound components of the naïve GRN also 

showed a positive response to MK-2206 treatment in 2i medium (Fig. 5H). Showing a specific 

response to FoxO signalling rather than mTORC1 deregulation, treatment with Rapamycin 

had no specific effect on FoxO1 targets (Supplementary Fig. 5G) 

In sum, our work uncovers a novel role for FoxO TFs downstream of AKT signalling in 

actuating the transition from a naïve to a formative pluripotency specific GRN. Our data shows 

that this is achieved by FoxO-TFs targeting and regulating large parts of the formative and 

naïve specific GRNs. Hence, FoxO TFs are pivotal factors in mediating the transition from 

naïve to formative pluripotency. 

 

DISCUSSION 

In this work, we uncovered a mechanism through which PTEN-mediated AKT regulation 

controls the transition from naïve to formative pluripotency by regulating nuclear FoxO-TF 

localization. We demonstrate that FoxO TFs play a fundamental role in orchestrating the exit 

from naïve pluripotency. Their activity is precisely gated by PTEN and released once the exit 

from naïve pluripotency commences (Fig. 6).  

FoxO TFs are well established regulators of multiple fundamental cellular processes including 

stress response, DNA repair, cell cycle and apoptosis, metabolism and ageing (Carter and 

Brunet 2007). Although mostly studied for their role in apoptosis, longevity, and cancer, 

previous studies have reported a function for FoxO TFs in the regulation of cell fate (Greer 

and Brunet 2005; Paik et al. 2009; Renault et al. 2009; Vilchez et al. 2012, 2013; Webb et al. 

2013; Zhang et al. 2011). FoxO TFs are required for the maintenance of neural progenitor 

cells (NPCs) by preventing neurogenesis in vivo and in vitro (Paik et al. 2009; Renault et al. 

2009; Webb et al. 2013). FoxO4 was proposed to be the only FoxO TF family member 

necessary for human ESC differentiation into the neuronal lineage (Vilchez et al. 2013), 

whereas FoxO1 depletion resulted in loss of ESC pluripotency in human and mouse ESCs 
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(Zhang et al. 2011). These data may explain our unsuccessful attempts to generate stable 

clonal Foxo1 KO mESCs (data not shown), though the molecular requirement for FoxO1 in 

ESC self-renewal remains unclear. 

Relocating transcription factors from the cytoplasm to the nucleus or vice versa allows cells to 

rapidly respond to changes in signalling inputs by providing a cell state switch with rapid on-

off kinetics. A relevant example is the regulation of TFE3, a bHLH transcription factor that is 

relocated from the nucleus to the cytoplasm. TFE3 is found in the nucleus of naïve ESCs, 

where it sustains the naïve GRN via transcriptional control of Esrrb (Betschinger et al. 2013). 

Induced by a metabolic shift, mTORC1-dependent and mTORC1-independent nutrient-

sensing pathways converge to cause TFE3 export from the nucleus, thus contributing to the 

extinction of the naïve GRN (Betschinger et al. 2013; Villegas et al. 2019). Whether the export 

of TFE3 and the import of FoxO TFs are coordinated remains an interesting open question. 

Once translocated to the nucleus, FoxO TFs play key roles in the establishment of the 

formative GRN and contribute to the expression of a large number of genes that are 

themselves required for the exit from naïve pluripotency. Our ChIP-seq experiment revealed 

that FoxO1 binds to multiple genomic locations even in naïve conditions and that FoxO1 2i 

targets are part of the core naïve TF-network. Hence, FoxO1 could be necessary for the 

maintenance of naïve identity by directly regulating the naïve TF-network. However, FoxO TFs 

remain bound to core naïve genes even 24h after the onset of differentiation, when most of 

the core naïve genes have been transcriptionally inactivated. These binding dynamics pose 

the question of whether FoxO TFs can act as activators or repressors depending on the 

cellular context. This suggestion is consistent with the observed downregulation of naïve 

genes upon FoxO1 nuclear overexpression, the increased levels of FoxO-TF bound core 

naïve genes after FoxO1 siRNA treatment, and the increased expression of naïve specific 

genes upon AKT inhibition and subsequent nuclear translocation of FoxO TFs. 

But how can such a silencing function be reconciled with the fact that FoxO TFs are mainly 

known as activators of gene expression? In a recent study on human transcriptional effector 

domains it was shown that FoxO1 can also display repressor activity (DelRosso et al. 2023). 

Whether FoxO TFs act as activators or repressors might depend on cellular environment, post-

translational modifications on FoxO TFs, or on the co-binding of other TFs and co-factors. This 

potential dual role of FoxO TFs in mediating both activation and silencing will be an exciting 

question for future research. 

Our data show that a large number of FoxO TF-bound genomic regions are also bound by 

ESRRB, OCT4 and OTX2. This places FoxO TFs as a core component of both naïve and 
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formative GRNs. Which other factors are involved in initiating the formative GRN remains 

unclear. β-catenin or Tcf TFs represent attractive candidates. β-CATENIN was found to 

physically interact with FOXO4 (Bourgeois et al. 2021; Doumpas et al. 2019), thereby  

increasing the activity of FoxO (Essers et al. 2005). In contrast, interaction between FoxO and 

TCF transcription factor derived peptides was reported to disrupt β-CATENIN condensate 

formation, thereby interfering with β-catenin-driven gene expression (Gui et al. 2023). Whether 

such interactions also exist in pluripotency transitions, and if they contribute to the FoxO TF-

dependent role in establishing the formative GRN, remains unclear. However, the significant 

overlap of β-CATENIN and FoxO1 peaks in our analysis indicates a functional interaction on 

chromatin. 

It is also tempting to speculate about a function for phosphorylated cytoplasmic FoxO TFs, 

which are abundant in the naïve state in 2i. Cytoplasmic phosphorylated FoxO TFs can bind 

to the scaffold protein IQGAP1. This interaction prevents IQGAP1-mediated ERK-activation 

(Pan et al. 2017). Such an interaction would enable cytoplasmic phospho-FoxO to stabilise 

naïve identity by inhibiting ERK signalling. Nuclear translocation of FoxO TFs at the onset of 

differentiation would release ERK inhibition. Hence, the contribution of FoxO shuttling to the 

transition into formative pluripotency could be a dual one: Firstly, transcriptional control of the 

naïve and formative core GRNs, and secondly by allowing ERK to exert its crucial function at 

the exit from naïve pluripotency. This would position FoxO TFs as a central cell fate switch 

that can both shield naïve identity and disrupt it under differentiation-permissive conditions. 

FoxO TFs are reported inhibitors of reprogramming to a naïve pluripotent ESC state (Fu et al. 

2021; Yu et al. 2014). Our data indicate that the molecular reason for this effect could lie in 

the post-implantation-fate inducing function of FoxO TFs.  

FoxO TFs are classically seen as tumour suppressors, but a pro-tumorigenic role has been 

proposed (Hornsveld et al. 2018; Jiramongkol and Lam 2020). Whether the control of cell fate 

specific programmes in response to a shift in signalling states, as reported here, contributes 

to the role of FoxO TFs in tumour biology remains to be investigated.  

In sum, our work highlights a previously unappreciated role of AKT in maintenance of 

pluripotency by ensuring cytoplasmic sequestration of FoxO TFs. Upon nuclear translocation, 

FoxO TFs play a key role in the shutdown of the naïve pluripotent identity and the initiation of 

the formative gene expression programme.  

Our findings support the generalization of a paradigm where relocation of TFs regulates the 

delicately balanced GRNs that govern stem cell transitions. 
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MATERIALS & METHODS 

Cell culture 

Mouse embryonic stem cells (mESCs) were cultured on gelatin-coated (Sigma-Aldrich, 

G1890) plates in DMEM high-glucose medium (Sigma-Aldrich, D5671) supplemented with 

10% FBS (Gibco, 10270-106), 2 mM L-Glutamine (Sigma-Aldrich, G7513), 0.1 mM NEAA 

(Sigma-Aldrich, M7145), 1 mM Sodium Pyruvate (Sigma-Aldrich, S8636), 10 µg/ml penicillin-

streptomycin (Sigma-Aldrich, P4333), 55 µM β-mercaptoethanol (Fisher-Scientific, 21985-

023), 10 ng/ml LIF (batch tested, in-house) and 2i (1.5 μM PD0325901 and 3 μM CHIR99021), 

referred to here as ES DMEM-2i medium. mESCs were passaged every second day and 

routinely tested negative for mycoplasma infection. 

All cell lines used in this study were derived from a parental cell line carrying a Rex1-GFPd2 

reporter (destabilised version of the GFP transgene (GFPd2) under control of the endogenous 

Rex1 promoter, (Wray et al. 2011)) and a Cas9 transgene (EF1alpha-Cas9 cassette targeted 

to the Rosa26 locus, (Li et al. 2018) (RC9 cells). Cells lacking Pten, Tsc2 or Tcf7l1 (Pten KO 

#1, Tsc2 KO and Tcf7l1 KO) had been previously generated (Lackner et al. 2021). An 

additional Pten KO clone (#2) was generated during this study, following the same procedure 

described in Lackner et al. 2021. Pten rescue cell lines were generated by cloning the PTEN 

coding sequence (amplified by PCR from RC9 genomic DNA) into a pCAG-3xFLAG-empty-

pgk-hph vector (Betschinger et al. 2013). 

Monolayer differentiation 

mESCs were plated on gelatin-coated plates at a final density of 1 × 104 cells/cm2 in N2B27 

medium (1:1 mix of DMEM/F12 (Gibco, 21331020) and Neurobasal medium (Gibco, 

21103049) supplemented with  N2 (homemade), B27 Serum-Free Supplement (Gibco, 17504-

044), 2 mM L-Glutamine (Sigma-Aldrich, G7513), 0.1 mM NEAA (Sigma-Aldrich, M7145), 10 

µg/ml penicillin-streptomycin (Sigma-Aldrich, P4333), 55 µM β-mercaptoethanol (Fisher-

Scientific, 21985-023)) and 2i (1 μM PD0325901 and 3 μM CHIR99021), hereby referred to 

as N2B27-2i medium. The following day, cells were washed with PBS and medium was 

exchanged to either N2B27 without 2i to induce differentiation for the indicated time, or to fresh 

N2B27-2i for the undifferentiated controls. 

Rapamycin treatment 

mESCs were plated on gelatin-coated plates in N2B27-2i + DMSO (Sigma-Aldrich, D2650) or 

N2B27-2i + 20 nM Rapamycin (Enzo Life Sciences, BML-A275-0005). The following day, cells 
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were washed with PBS and medium was exchanged to N2B27+DMSO or N2B27+ 20 nM 

Rapamycin to induce differentiation for the indicated time. 

MK-2206 treatment 

mESCs were plated on gelatin-coated plates in N2B27-2i or N2B27-2i + 1 μM MK-2206 

(Cayman Chemical, 11593). The following day, cells were washed with PBS and medium was 

exchanged to either N2B27 or N2B27+1 μM MK-2206 to induce differentiation for the indicated 

time, or to N2B27-2i or N2B27-2i+1 μM MK-2206 for the undifferentiated controls. 

RNAi assay 

mESCs were plated on gelatin-coated plates in N2B27-2i and transfected with FlexiTube 

siRNAs (Qiagen) using DharmaFECT 1 (Fisher Scientific, T-2001). The next day, cells were 

washed with PBS and medium was exchanged to either N2B27 without 2i to induce 

differentiation, or fresh N2B27-2i for the undifferentiated controls. Two siRNAs targeting 

FoxO1 (SI01005200, SI02694153) were used at a final concentration of 20 nM. As controls, 

siRNAs targeting GFP (siGFP) or scrambled siRNAs (siScr) were used. 

Expression of nuclear FoxO1 

A FoxO1 coding sequence carrying three mutations (T24A, S253D and S316A) was cloned 

from the an addgene vector (Plasmid #12149) (Kitamura et al. 2005) into a pB-TetOn-3xFLAG-

Empty-PolyA-Puro vector. The resulting plasmid, hereby referred to as 3xFLAG-FoxO1nuc, 

was transfected into RC9 and Pten KO cells. Single-cell derived, independent clones were 

selected and expanded for further experiments. For experiments in differentiation-permissive 

conditions, RC9-based and Pten KO-based clones were plated on gelatin-coated plates in 

N2B27-2i. The following day, cells were washed with PBS and medium was exchanged to 

N2B27 with or without 500 ng/ml of Doxycycline (Sigma-Aldrich, D9891). After 8 hours, 

medium was changed to N2B27 and cells were differentiated for further 16 hours. For the 

experiments in naïve conditions, RC9-based clones were plated in N2B27-2i and cultured for 

48 hours. The last 8 hours before harvesting, 500 ng/ml of Doxycycline was added to the 

medium. 

Flow Cytometry analysis 

After the indicated amount of time in differentiation (N2B27-based) or control (N2B27-2i-

based) medium conditions, cells were harvested using 0.25% trypsin/EDTA and resuspended 

in ES-DMEM medium to neutralise trypsin. Rex1-GFPd2 levels were measured using the 
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LSRFortessa flow cytometer (BD bioscience) and then analysed with the FlowJo software 

(v10, BD bioscience).  

Real-time PCR analysis 

After the indicated amount of time in differentiation (N2B27-based) or control (N2B27-2i-

based) medium conditions, cells were washed with PBS and harvested in RNA Lysis buffer 

containing 1% (v/v) 2-mercaptoethanol and stored at -80°C before isolation of RNA. RNA was 

extracted using the ExtractMe kit (Blirt, EM15) following the manufacturer's instructions. 0.25–

1 µg of RNA was reverse-transcribed into cDNA using the SensiFAST cDNA Synthesis Kit 

(Bioline, BIO-65054). Real-time PCR was performed on the CFX384 Touch real-time PCR 

detection system (Bio-Rad) using the Sensifast SYBR no Rox kit (Bioline, BIO-98020). Data 

analysis and visualisation was performed using Microsoft Excel (Office 365) and R. Used 

primers are listed in Supplementary Table 3. 

Immunoblotting analysis 

After the indicated amount of time in differentiation (N2B27-based) or control (N2B27-2i-

based) medium conditions, cells were washed with PBS and harvested in RIPA buffer (Sigma-

Aldrich, 20-188) supplemented with Complete Mini EDTA-free protease inhibitor cocktail 

(Roche, 04693159001) and PhosSTOP (phosphatase inhibitor cocktail (Roche, 

04906845001). Protein extraction was performed by incubating the samples on ice for 15 

minutes and then collecting the supernatant after centrifugation at 13,000 rpm at 4°C for 30 

minutes. Protein concentration was determined using a Bradford Assay (Bio-Rad). 8-20 µg 

whole cell lysates were separated on 8-12% SDS–PAGE gels (depending on the molecular 

weight of the target proteins) and subsequently blotted on 0.2 µm nitrocellulose membranes 

(Amersham). Membranes were blocked at RT for 1 hour with 5 % milk diluted in PBS (Sigma-

Aldrich, P4417) containing 0.1% Tween-20 (PBS-T). Primary antibodies were incubated 

overnight at 4°C or for 1 h at room temperature (RT). Secondary antibodies were incubated 

for 1 h at RT. The following primary antibodies were diluted in PBS-T containing 5% BSA and 

used 1:1000 for anti-phospho-Akt(Ser473) (rabbit; Cell Signaling, 4058), 1:1000 for anti-

phospho-Akt(Thr308) (rabbit; Cell Signaling, 13038), 1:1000 for anti-pan-Akt (rabbit; Cell 

Signaling, 4691), 1:1000 for anti-phospho-GSK3β(Ser9) (rabbit; Cell Signaling, 9336), 1:1000 

for anti-GSK3β (rabbit; Cell Signaling, 12456), 1:1000 for anti-phospho-4E-BP1(Ser65) 

(rabbit; Cell Signaling, 9451), 1:1000 for anti- 4E-BP1 (rabbit; Cell Signaling, 9644), 1:1000 

for anti-phospho-p70 S6 kinase(Thr389) (rabbit; Cell Signaling, 9234), 1:1000 for anti-p70 S6 

kinase (rabbit; Cell Signaling, 2708), 1:1000 for anti-PTEN (rabbit; Cell Signaling, 9559), 

1:1000 for anti-TSC2 (rabbit; Cell Signaling, 4308), 1:1000 for anti-FoxO1 (rabbit; Cell 
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Signaling, 2880) and 1:1000 for anti-FoxO3a (rabbit; Cell Signaling, 2497). The following 

primary antibodies were diluted in PBS-T containing 5% milk and used 1:1000 for anti-NANOG 

(rabbit; NovusBio, NB100-58842), 1:5000 for anti-Tubulin (mouse; Sigma-Aldrich, T8203), 

1:10,000 for anti-GAPDH(G-9) (mouse; Santa Cruz Biotechnology, sc-365062) and 1:10,000 

for anti-Vinculin(H-10) (mouse; Santa Cruz Biotechnology, sc-25336). Secondary antibodies 

were diluted in 5% milk and used 1:10,000 for anti-rabbit IgG (Amersham, NA934) and 

1:15,000 for anti-mouse IgG (goat; Santa Cruz Biotechnology, sc-2064). Chemiluminescence 

signal was detected using the ECL Select detection kit (GE Healthcare, GERPN2235) with a 

ChemiDoc system (Bio-Rad). Data analysis was performed using ImageLab. 

Immunofluorescence analysis 

mESCs were plated at a final density of 1 × 104 cells/cm2 on fibronectin-coated (MM Merck 

Millipore, FC010) µ-Slide 8 Well Glass Bottom Chamber Slides (Ibidi, 80827) in N2B27-2i 

medium. The following day, cells were washed with PBS and medium was exchanged to either 

N2B27 without 2i to induce differentiation, or to fresh N2B27-2i for the undifferentiated 

controls. After the indicated amount of time, cells were washed with PBS and fixed for 15 

minutes at RT with freshly diluted 4% PFA (16% paraformaldehyde diluted in 1:4 in PBS) (SCI 

Science Services, E15710). Cells were washed in PBS and subsequently permeabilized with 

PBS containing 0.1% Triton-X for 10 minutes at RT. Cells were washed 3x in PBS-T and then 

blocked using PBS-T containing 5 % BSA (blocking buffer) for 30 minutes at 4°C. Primary 

antibodies were incubated overnight at 4°C. Cells were washed 3x with PBS-T. Secondary 

antibodies were incubated for 1 hour at RT. Cells were washed 2x with PBS-T. Nuclei were 

stained with 1 µg/ml DAPI (Sigma-Aldrich, D9542) for 10 minutes at RT. Cells were washed 

3x with PBS and stored in PBS at 4°C until the image acquisition procedure. Primary and 

secondary antibodies were diluted in blocking buffer and used 1:100 for anti-FoxO1 (rabbit; 

Cell Signaling, 2880), 1:100 for anti-ESRRB (mouse; R&D Systems, PP-H6705-00), 1:250 for 

anti-FLAG M2 (mouse; Sigma-Aldrich F1804), 1:200 for anti-NANOG (rabbit; NovusBio, 

NB100-58842), 1:500 for anti-mouse Alexa-555 (donkey; Cell Signaling, 4409), 1:500 for anti-

rabbit Alexa-647 (goat; Cell Signaling, 4414). Images were acquired using a Zeiss LSM 980 

confocal microscope. Images were analyzed using Fiji/ImageJ. For quantifying the nuclear 

intensity of the stained proteins, segmentation was performed on the DAPI channel with 

cellpose with the following settings: cell diameter (in pixels) = 170, flow_threshold = 0.4, 

cellprob_threshold = 0.0, stitch_threshold = 0.0, model = cyto2. The obtained nuclei outlines 

were imported into Fiji/ImageJ and used to create mask objects. The latter were used to 

measure the mean fluorescence intensity of each nucleus in all recorded channels (besides 
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the DAPI channel). Nuclei out of focus were manually removed from the analysis. Data 

analysis and visualisation was subsequently performed in R. 

Intracellular staining 

After the indicated amount of time in differentiation (N2B27-based) or control (N2B27-2i-

based) medium conditions, cells were harvested using 0.25% trypsin/EDTA and resuspended 

in ES-DMEM medium to neutralise trypsin. Cells were centrifuged, and cell pellets were 

washed twice with PBS before fixation with 2% PFA for 15 minutes at RT. Cells were washed 

with FACS buffer (PBS containing 5% BSA) and subsequently permeabilized with ice-cold 

MeOH for 10 minutes on ice. After 3 washes in FACS buffer, cells were incubated in FACS 

buffer for 10 minutes in the dark. Subsequently, cells were incubated with primary antibodies 

for 1 hour at RT. Cells were then washed 3x with FACS buffer, and incubated with secondary 

antibodies for 15 minutes on ice. Cells were washed 3x with FACS buffer, and stored in FACS 

buffer until flow cytometry analysis at the LSRFortessa flow cytometer. Primary and secondary 

antibodies were diluted in FACS buffer and used 1:100 for anti-phospho-Akt(Ser473) (rabbit; 

Cell Signaling, 4058) and 1:500 for anti-rabbit Alexa-647 (goat; Cell Signaling, 4414). Flow 

cytometry data was analysed with the FlowJo software. Mean fluorescence intensities (MFI) 

for stained samples were calculated by subtracting the MFI of their relative controls (cells 

stained only with the secondary antibody). Data analysis and visualisation was performed in 

R. 

Nucleo-cytoplasmic fractionation 

Subcellular fractionation experiments were performed following a protocol adapted from 

Rockland (https://www.rockland.com/resources/nuclear-and-cytoplasmatic-extract-protocol/). 

1.0 × 104 cells/cm2 of WT and Pten KO cells were plated in 10 cm gelatine-coated plates. The 

next day, cells were washed with PBS and medium was exchanged to either N2B27 without 

2i to induce differentiation, or to fresh N2B27-2i for the undifferentiated controls. After 24 hours 

cells were harvested. 1/20 of cells were processed as described above for total protein 

extraction. The rest was used for the nucleo-cytoplasmic fractionation. Cell pellets were 

resuspended in 5 pellet volumes of CE buffer adjusted to pH 7.6 (10 mM HEPES, 60 mM KCl, 

1 mM EDTA, 0.075% NP-40, 1mM DTT, 1 mM PMSF) and incubated on ice for 3 minutes. 

Samples were pelleted by centrifugation at 1300 rpm for 4 minutes at 4°C and the supernatant 

(the cytoplasmic fraction) was transferred to clean tubes. The nuclei were washed carefully 

with 5 pellet volumes of CE buffer (without NP-40), and then pelleted at 1300 rpm for 4 minutes 

at 4°C. The supernatant was discarded, and the nuclei were resuspended in 1 pellet volume 

of NE buffer adjusted to pH 8.0 (20 mM Tris Cl, 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 
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1mM PMSF, 25% glycerol) and the salt concentration was then adjusted to 400 mM with 5 M 

NaCl. An additional pellet volume of NE buffer was added to the extracts before incubating 

them for 10 minutes on ice. The extracts were vortexed every 3 minutes during the incubation 

time. Both cytoplasmic and nuclear fractions were spun at maximum speed to pellet any 

remaining nuclei. Cytoplasmic and nuclear fractions were transferred to clean tubes, glycerol 

was added to the cytoplasmic fraction to 20%. Both fractions were stored at -80°C. 

RNA-sequencing analysis 

For differentiation experiments using RC9, Pten KO and Tsc2 KO cells, and for the 2h-

resolved time course, count tables generated in a previous study were used (Lackner et al. 

2021). QuantSeq analysis was performed for all the other RNA-seq experiments described in 

the manuscript. For the Rapamycin experiment, WT, Pten KO and Tsc2 KO cells treated with 

DMSO or Rapamycin from two independent differentiation assays were sequenced 

(duplicates). For the FoxO1 knockdown experiment, WT cells were treated either with an 

individual siRNA sequence targeting Foxo1 transcript, or with a combination of both siRNAs 

(triplicates, siRNA #1, siRNA#2, siRNA#1 + siRNA#2). For the control sample (siCtrl), two 

siGFP samples combined with 1 siScr sample were considered a triplicate. For the MK-2206 

experiment, WT cells left untreated or treated with MK-2206 from two independent 

differentiation assays were sequenced (duplicates). Library preparation (according to the 

Lexogen 3' mRNA Seq Library Prep Kit), multiplexing (by qPCRs) and sequencing on an 

Illumina NextSeq2000 P3 platform was carried out at the VBC NGS facility. 5-10 million of 

single end reads at 50 bp read length were generated per sample. The resulting fastq files 

were analysed with a Nextflow 23.04.1.5866 /nf-core/rnaseq v3.10.1 pipeline. Quality control 

was performed using fastQC (v0.11.9), and transcripts were mapped to the mm10 assembly 

mouse reference genome using Salmon (v1.9.0) as a pseudoaligner and STAR (v2.7.10a) as 

an aligner. DESeq2 (v1.38.3) was used to generate normalised count tables and to perform 

differential expression analyses (FDR-adjusted p-value ≤ 0.05; H0: log2FC = 0). pheatmap 

(v1.0.12), EnhancedVolcano (v1.16.0), UpsetR (v1.4.0), eulerr (v7.0.0) and ggplot2 (v3.4.0) 

were used for data visualisation in R. Combined lists of upregulated and downregulated genes 

in Pten KO and Tsc2 KO were generated by selecting genes differentially expressed (DEGs) 

in both KOs (log2FC ≥ 0.5 for the upregulated genes, and log2FC ≤ -0.5 for the downregulated 

genes).  

Chromatin Immunoprecipitation (ChIP) 

FoxO1 and FoxO3 ChIP were performed as described in Thomas et al. 2021. 1.5 × 104 

cells/cm2 of WT and Pten KO cells were plated in duplicate on 15 cm gelatine-coated plates. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 14, 2024. ; https://doi.org/10.1101/2024.01.13.575494doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.13.575494
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

The next day, cells were washed with PBS and medium was exchanged to either N2B27 

without 2i to induce differentiation, or to fresh N2B27-2i for the undifferentiated controls. After 

24 hours, cells were harvested. Cells were washed with PBS, and then cross-linked directly 

on the plate with 1% formaldehyde in PBS for 10 minutes. Subsequently, 0.125 M glycine was 

added to the plates for 10 minutes to quench cross-linking. The plates were washed 2x with 

PBS, and then cells were scraped off in ice-cold PBS containing 0.01% Triton-X. Cells were 

pelleted by centrifugation at 500 g for 5 minutes and flash-frozen in liquid nitrogen. Cell pellets 

were resuspended in 5 ml LB1 (50 mM Hepes pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% 

glycerol, 0.5% NP-40, 0.25% TX-100, 1 mM PMSF, 1×Complete Mini EDTA-free protease 

inhibitor cocktail) to extract nuclei and rotated vertically for 10 minutes at 4°C. Nuclei were 

pelleted by centrifugation at 1350 g for 5 minutes at 4°C, and then resuspended in 5 ml LB2 

(10 mM Tris pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA1, mM PMSF, 1xComplete Mini 

EDTA-free protease inhibitor cocktail), and rotated vertically for 10 minutes at RT. Samples 

were pelleted by centrifugation at 1350 g for 5 minutes at 4°C and then resuspended in 1.5 ml 

LB3 (10 mM Tris–HCl pH 8.0, 100 mM NaCl, 1 mM EDTA 0.5 mM EGTA, 0.1% Na-

deoxycholate, 0.5% N-lauroylsarcosine, 1 mM PMSF, 1xComplete Mini EDTA-free protease 

inhibitor cocktail) and 200 μl sonification beads (diagenode) in Bioruptor® Pico Tubes 

(diagenode). Chromatin was sonicated for 13 cycles with 30 seconds on, 45 seconds off 

parameters. Sonicated samples were transferred to fresh tubes and centrifuged at 16’000 g 

at 4°C to pellet cellular debris. 1.1 ml of supernatant were collected and transferred to fresh 

tubes. 110 μl of 10% Triton-X were added to a final concentration of 1%. For each sample, 50 

μl were collected as input and 1 ml was used for immunoprecipitation. Chromatin was 

incubated with 20 μl (1:50 dilution) of anti-FoxO1 (rabbit; Cell Signaling, 2880) or anti-FoxO3a 

(rabbit; Cell Signaling, 2497) antibodies overnight at 4°C with vertical rotation. Samples were 

collected after 14 hours. 100 μl of Dynabeads protein G (Thermo Fisher Scientific, 10765583) 

per sample were washed in ice-cold blocking solution (PBS containing 0.5% BSA) and then 

incubated with the antibody-bound chromatin solutions for 4 hours. Beads were washed 5x in 

ice-cold RIPA wash buffer (50 mM Hepes pH 7.5, 500 mM LiCl, 1 mM EDTA, 1% NP-40, 0.7% 

Na-Deoxycholate), and then 3x with TE + 50 mM NaCl. Samples were eluted in 210 μl elution 

buffer (50 mM Tris pH 8.0, 10 mM EDTA, 1% SDS) for 15 min at 65°C. Supernatant containing 

the antibody-bound chromatin fraction was separated from the beads. Three volumes of 

elution buffer were added to the Input samples. Decrosslinking was performed by incubating 

both Input and ChIP samples at 65°C overnight. The next day, one volume of TE and RNase 

A (to a 0.2 mg/ml final concentration) were added to the Input and ChIP samples, followed by 

incubation for 2 hours at 37°C. Final salt concentration was adjusted to 5.25 mM CaCl2 with 

300 mM CaCl2 in 10 mM Tris pH 8.0. Samples were then incubated with 0.2 mg/ml Proteinase 

K for 30 minutes at 55°C. DNA was extracted with phenol-chloroform using Phase Lock GelTM 
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tubes (Quantabio, 733-2478) and then precipitated in EtOH. DNA pellets were dissolved in 

H2O. 

ChIP-sequencing analysis 

Libraries were prepared at the VBC NGS facility and sequenced on an Illumina NovaSeq 

platform. Within the FoxO1 ChIP experiment, 20-40 million paired end reads at 150 bp read 

length were generated for the Input samples, and 80-130 million reads for the ChIP samples. 

Within the FoxO3 ChIP experiment, ~ 25 million single end reads at 100 bp read length were 

generated for both Input and ChIP samples. RC9-based FoxO3 ChIP samples were re-

sequenced to increase sequencing depth, and an additional ~ 60 million of paired end reads 

at 150 bp read length per sample were generated. R1 reads from the two sequencing runs 

were concatenated before data processing. FoxO1 ChIP and Input reads were processed 

following a paired end mode, while FoxO3 ChIP and Input samples following a single end 

mode. Quality control of fastq files was performed using fastQC (v0.11.9) before and after 

trimming the sequencing adapter fragments with trim-galore (v0.6.7) and cutadapt (v3.5). 

Additional 2 bp at the 3’ end were removed with the parameters --three_prime_clip_R1 2 (--

three_prime_clip_R2 2 in case of paired end reads). The trimmed reads were aligned to the 

mm10 assembly mouse reference genome with bowtie2 (v2.4.4), with an alignment rate of 80-

98%. The obtained sam files were converted to bam files with samtools (v1.13), and uniquely 

mapping reads were extracted by removing duplicate reads (as potential PCR artefacts) with 

samtools markdup. Peak calling was performed on bam files with macs2 (v2.2.7.1) on 

combined ChIP duplicates, using all Input samples as control files. Potential artefactual 

regions listed in the mm10 blacklist 

(http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-

mouse/mm10.blacklist.bed.gz) were removed from the obtained bed files using bedtools 

(v2.31.0). Peaks assigned to unidentified regions (chrUn) were manually removed. 

ATAC-sequencing analysis 

1.0 × 104 cells/cm2 cells were plated on gelatine-coated plates. The next day, cells were 

washed with PBS and medium was exchanged to either N2B27 without 2i to induce 

differentiation, or to fresh N2B27-2i for the undifferentiated controls. After 24 hours cells were 

harvested and counted. 250,000 cells per sample were submitted to the VBC NGS facility for 

further processing and ATAC-seq library preparation (Bulk ATAC-seq Illumina). In brief, cells 

were lysed with 0.5x lysis buffer (0.01 M Tris-HCl pH 7.5, 0.01 M NaCl, 0.003M MgCl2, 1 % 

BSA, 0.1% Tween-20, 0.05% NP-40, 0.005% Digitonin, 0.001 M DTT, 1 U/μl RNAse inhibitor), 

and tagmentation reaction (Tn5 Illumina) was performed on 50,000 isolated nuclei. Libraries 
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were prepared with the Nextera DNA Library Preparation kit and sequenced on an Illumina 

NovaSeq platform. 80-170 million of paired end reads at 150 bp read length were generated 

per sample. The resulting fastq files were analysed with a Nextflow 23.04.1.5866 /nf-

core/atacseq v2.0 pipeline. Quality control was performed using fastQC (v0.11.9), and reads 

were mapped to the mm10 assembly mouse reference genome using bowtie2 (v2.4.4). Peak 

calling was performed on the bam files generated by the nfcore pipeline with Genrich (v0.6.1). 

Consensus peaks were defined as peaks with at least a 50% overlap between replicates and 

generated with samtools intersect. Bed files were filtered for the mm10 blacklist using 

bedtools. Peaks assigned to unidentified regions (chrUn) were manually removed. 

Motif enrichment analyses 

Motif enrichment analysis was performed with Homer (v4.11). For finding motifs enriched in 

FoxO1 or FoxO3-bound regions, findMotifsGenome.pl was used with default settings.  

For finding enriched motifs in ESCs or EpiLCs enhancers, enhancer lists from the Bücker lab 

were used (filtered to exclude TSS, Thomas et al. 2021). A list of overlapping enhancers 

between ESCs and EpiLCs was generated with bedtools and used as background to identify 

ESC-specific and EpiLC-specific enriched motifs with findMotifsGenome.pl using default 

settings. According to Homer’s documentation, a motif can be considered enriched when its 

associated p-value is lower than 1e-50. 

Data integration analyses 

Downstream analyses for ChIP-seq and ATAC-seq were performed with Deeptools (v3.5.1). 

BigWigs were generated from single bam files with bamCoverage using a binsize of 10 bp and 

a normalisation coverage to 1x mouse genome size (RPGC) excluding the X chromosome. 

Principal component analysis (PCA) was performed with multiBigwigSummary and plotPCA. 

Bigwigs replicates were merged using bigWigMerge, and heatmaps were plotted on merged 

BigWigs using computeMatrix and plotHeatmap. Heatmaps were sorted based on FoxO1 or 

FoxO3 signals. 3 lists of peaks (separately for FoxO1 and FoxO3 ChIP) were generated with 

bedtools by intersecting WT (RC9) bed files: 2i-only peaks, N24-only peaks and shared peaks. 

Peak to gene association was performed on these peak lists in R with ChIPSeeker (v1.34.1). 

Oct4 and Otx2 ChIP BigWigs and peak lists were obtained from the Bücker lab (Buecker et 

al. 2014). Esrrb ChIP BigWigs and bed files were obtained from the Martello lab (Carbognin 

et al. 2023). β-catenin ChIP bed files were downloaded from CODEX 

(https://codex.stemcells.cam.ac.uk/), and mm9 coordinates were converted into mm10 

coordinates using the liftOver tool from UCSC (https://genome.ucsc.edu/cgi-bin/hgLiftOver). 
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Overlap between genomic regions was performed with ChIPPeakAnno (v3.32.0). For the 

FoxO1-FoxO3 ChIP overlap, the background for the hypergeometric test was set to the total 

number of detected open chromatin regions (generated by merging ATAC-seq peaks in 2i with 

ATAC-seq peaks at N24 with ESC). For all other overlaps, the background used was obtained 

by merging all ATAC-seq peaks with the lists of ESC and EpiLC enhancers (Thomas et al. 

2021). Genome tracks shown in Figure 4 were generated using karyoploteR (v1.24.0) in R. 

Enrichment analyses 

All enrichment analyses presented in this work were performed in R with hypeR (v2.0.1). For 

KEGG pathway enrichment analysis, mouse KEGG database was downloaded from 

http://rest.kegg.jp/link/mmu/pathway and transformed into a hypeR-compatible gene set using 

the gsets function. As background, the list of all detected genes in the relative RNA-seq 

experiment was used. 

Custom gene sets were also generated with the gsets function. As background for FoxO TF-

based enrichments, a list of genes associated with all open chromatin regions was used. 

Enrichment results were visualised with ggplot2. 

Statistical analysis 

All statistical analyses were performed in R with the ggpubr (v0.6.0) package. Information on 

statistical tests and replicate numbers are provided in the figure legends. Wherever necessary, 

correction for multiple testing was performed. 
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FIGURE LEGENDS 

Fig. 1 | mTORC1 inhibition only partially rescues the differentiation defect of Pten KO 
ESCs. 

A, Schematic representation of our experimental cell line. Rex1-GFP reporter levels are 
measured at the indicated time point in N2B27-only medium (Nx) after 2i withdrawal to assess 
the differentiation state. 
B, Flow cytometry analysis of Rex1-GFP levels in WT and in Pten KO cells (two independent 
clones) in naïve pluripotency supporting conditions (2i, green profiles) and 24h after 2i removal 
(N24, light blue profiles). One representative of n >10 independent experiments is shown. 
C, Pten expression levels (transcript per million, TPM) as measured by an RNA-seq 
experiment from a 2 hour-resolved WT differentiation time course (Lackner et al. 2021). 
D, Western blot analysis for the indicated proteins in WT and Pten KO cells in naïve 
pluripotency supporting conditions (2i/LIF) and 24h (N24) and 48h (N48) after 2i removal. 
TUBULIN was used as a loading control. 
E, Quantification of pAkt (S473) levels measured by flow cytometry in WT and Pten KO cells 
in 2i and at N48. Mean and standard deviation (SD) of mean fluorescence intensity (MFI) 
values from n=3 independent experiments (distinguished by distinct shades of grey) are 
shown. Normalised MFI values (see Materials and Methods) are presented relative to WT cells 
in 2i. The indicated p-values shows the result of paired, two-tailed t-tests.  
F, Heatmap showing row-normalised (z-score) expression values of the indicated naïve and 
formative markers in WT, Pten KO and Tsc2 KO cells in 2i and at N24. 
G, Scatter plots showing the correlation between differentially expressed genes (DEGs, p-adj. 
≤ 0.01, |log2foldchange (log2FC)| ≤ 0.5) in Pten KO or Tsc2 KO in 2i (left) and at N24 (right). 
Pearson's correlation coefficient (R) values are indicated in each plot. 
H, Quantification of p4EBP1 protein expression measured by Western blot analysis in WT, 
Pten KO and Tsc2 KO cells at N24 after treatment with DMSO (light blue) or 20 nM Rapamycin 
(dark blue). Expression was normalised to VINCULIN. Mean and SD for n=2 independent 
experiments (distinguished by distinct shades of grey) are shown. Indicated p-values show 
results of paired, two-tailed t-tests. 
I, Flow cytometry analysis of Rex1-GFP levels in indicated cell lines at N24, after treatment 
with DMSO (light blue profiles) or with 20 nM Rapamycin (Rapa, dark blue profiles). 
Rapamycin-treated WT cells are shown as a grey dashed line. One representative of n=5 
independent experiments is shown. 
J, Expression levels (normalised counts) of Nanog, Esrrb and Klf5 measured in the indicated 
cell lines at N24 after treatment with DMSO or 20 nM Rapamycin measured by RNA-seq. 
Mean and SD of n=2 independent experiments (distinguished by distinct shades of grey) are 
shown. p-adj. values resulting from DESeq analysis between pairwise comparisons of Rapa-
treated cell lines are indicated in the plot. 
K, Box plot showing the expression of naïve genes (combination of naïve early and naïve late 
genes as defined in Carbognin et al. 2023) in Pten and Tsc2 KO cells treated with DMSO or 
Rapamycin as measured by RNA-seq. Data is shown as log2FC relative to WT. The resulting 
p-values from two-tailed Wilcoxon signed rank tests are indicated in the plot. 
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Fig. 2 | FoxO TFs translocate into the nucleus upon exit from naive pluripotency. 

A, Confocal microscopy images after IF showing FOXO1 (purple) and ESRRB (green) in WT 
and Pten KOs in 2i and at N24. DAPI staining is shown in blue. One representative of n=2 
independent experiments is shown. Scale bar = 20 μM. 
B, Quantification of FOXO1 and ESRRB nuclear intensity (arbitrary units, AU) measured from 
confocal images of WT cells in 2i (n=135) and 8h (N8, n=136), 16h (N16, n=88) and 24h (N24, 
n=127) after 2i withdrawal. Data from n=2 independent experiments is shown. The indicated 
p-value shows the result of a two-tailed Wilcoxon rank sum test. 
C, Quantification of FOXO1 nuclear intensity (in arbitrary unit, AU) measured from confocal 
images of WT (n=189 in 2i and n=164 at N24) and Pten KO cells (n=100 in 2i and n=153 at 
N24) as in A. Data from n=2 independent experiments is shown. The indicated p-values show 
the results of two-tailed Wilcoxon rank sum tests. 
D, Confocal microscopy images after IF showing FOXO1 (white), OTX2 (red) and ECAD 
(green) in WT E4.75 and E5.5 embryos. Hoechst staining is shown in blue. One representative 
of n=2 independent experiments is shown.  
E, Expression levels of Nanog and Esrrb measured by RT-qPCR in WT cells expressing 
3xFLAG-FoxO1nuc (FoxO1nuc-med and FoxO1nuc-hi) in 2i after 8 hours treatment with 500 ng/ml 
doxycycline (+dox, purple) and in untreated controls (-dox, green). Mean and SD of n=3 
independent experiments (distinguished by distinct shades of grey) are shown. Expression 
was normalised to β-actin. p-values show results of paired, two-tailed t-tests. 
F, Expression levels of Nanog and Esrrb measured by RT-qPCR in Pten KO cells expressing 
3xFLAG-FoxO1nuc (P-FoxO1nuc) at N24 after 8 hours treatment with 500 ng/ml doxycycline 
(+dox, purple) and in untreated controls (-dox, light blue). Control WT cells and Pten KO cells 
are also included. Mean and SD of n=2 independent experiments (distinguished by distinct 
shades of grey) are shown. Expression was normalised to β-actin and shown as relative to 
WT in -dox condition. p-values show results of paired, two-tailed t-tests. 
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Fig. 3 | Chromatin dynamics of FoxO TFs upon exit from the naïve pluripotent state. 

A, Heatmap showing FOXO1 signal in a 1.5 kb window around the center of FoxO1 peaks, 
divided in 2i-only peaks (n=612, green), N24-only peaks (n=2138, light blue) and shared peaks 
(n=702, purple), in WT cells in 2i or at N24. 
B, Heatmaps showing H3K27ac (left) and p300 (right) signals in ESCs or EpiLCs (from 
Buecker et al. 2014) in a 1.5 kb window around the center of FoxO1 peak categories as defined 
in A. 
C, Venn diagrams showing the overlap between FoxO1 peaks in 2i or at N24 with ESC and 
EpiLC enhancers (top). Barplots showing the % of FoxO1 peaks that overlap with ESC-specific 
(ESCe), EpiLC-specific (EpiLCe) or shared (ESCe&EpiLCe) enhancers, (bottom). The 
resulting p-values from hypergeometric tests of the overlaps are shown. 
D, Heatmap showing ATAC-seq signal in a 1.5 kb window around the center of FoxO1 peak 
categories as defined in A in WT and Pten KO cells in 2i or at N24. 
E, Heatmaps showing OCT4 (left) and OTX2 (right) signals in ESCs or EpiLCs (from Buecker 
et al. 2014) in a 1.5 kb window around the center of FoxO1 peak categories as defined in A. 
F, Venn diagrams showing the overlap between FoxO1 peaks in 2i or at N24 with Oct4 or Otx2 
peaks in ESCs or EpiLCs (top). Barplots showing the % of OCT4- or OTX2-bound enhancers 
that overlap with FoxO1 peaks (bottom). The resulting p-values from hypergeometric tests of 
the overlaps are shown. 
G Heatmap showing ESRRB signal in WT cells in 2iL, N48 and N96 (from Carbognin et al. 
2023) in a 1.5 kb window around the center of FoxO1 peak categories as defined in A. 
H, Venn diagrams showing the overlap between FoxO1 peaks in 2i and at N24 with Esrrb 
peaks in 2iL, N48 or N96 (top). Barplots showing the % of FoxO1 peaks (2i-only, N24-only or 
shared) that overlap with Esrrb peaks (bottom). The resulting p-values from hypergeometric 
tests of the overlaps are shown. 
I, Venn diagrams showing the overlap between FoxO1 peaks in 2i and at N24 with β-catenin 
peaks in 2iL, N48 or N96 (top). Barplots showing the % of FoxO1 peaks (2i-only, N24-only or 
shared) that overlap with β-catenin peaks (bottom). The resulting p-values from 
hypergeometric tests of the overlaps are shown. 
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Fig. 4 | FoxO TF targets are key players in the naïve to formative pluripotency transition. 

A, Box plot showing the expression of 2i-specific (green), N24-specific (light blue) and 2i&N24 
(purple) FoxO1 targets in WT cells at N24 as measured by RNA-seq. Data is shown as log2FC 
relative to 2i. The resulting p-values from two-tailed Wilcoxon rank sum tests are indicated in 
the plot. 
B, Enrichment analysis (EA) of FoxO1 targets within lists of naïve, formative and committed 
genes as defined in Carbognin et al. 2023. Dot colour and size indicate the FDR-values (only 
FDR ≤ 0.05 are shown) and the GeneRatio (ratio between the overlap size and the category 
size), respectively. 
C, Upset plot showing the overlap of FoxO1 targets with core naïve and formative marker 
genes. 
D, Genome browser snapshots showing FoxO1 ChIP signal in WT cells over selected 
formative (top) and naïve (bottom) core marker genes in 2i (green) and at N24 (light blue). 
Called peaks are also indicated in the plots (2i-only peaks: green, N24-only peaks: light blue, 
shared peaks: purple).  
E, Box plot showing the expression of formative genes (combination of formative early and 
formative late, as defined in Carbognin et al. 2023) in WT cells at N24, divided into FoxO1 
N24 targets (light blue) or non-targets (grey), as measured by RNA-seq. Data is shown as 
log2FC relative to 2i. The resulting p-value from two-tailed Wilcoxon rank sum tests is 
indicated in the plot. 
F, Box plot showing the expression of core formative genes (as defined in the text) in WT cells 
at N24, divided into FoxO1 N24 targets (light blue) or non-targets (grey), as measured by 
RNA-seq. Data is shown as log2FC relative to 2i. The resulting p-value from two-tailed 
Wilcoxon rank sum test is indicated in the plot. 
G, Venn diagram showing the overlap between FoxO1 targets (purple) and exit factors 
(Lackner et al. 2021) (grey). The resulting p-value from a hypergeometric test of the overlap 
is shown. 
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Fig. 5 | Interference with FoxO1 nuclear shuttling impairs the transition from the naïve 
to the formative GRN. 

A, Flow cytometry analysis of Rex1-GFP levels in WT cells transfected with control (siGFP 
and siScr) or siRNAs targeting FoxO1 (siFoxO1). One representative of n=3 independent 
experiments is shown. 
B, Box plot showing the expression of naïve (green) and formative (blue) core genes in 
siFoxO1 at N24 as measured by RNA-seq. Data is shown as log2FC relative to siCtrl. p-values 
from two-tailed Wilcoxon signed rank tests are indicated in the plot.  
C, Volcano plot showing RNA-seq data of WT cells at N24, treated with siRNA against Foxo1. 
DEGs (p-adj. ≤ 0.2) that are bound by FoxO1 are colour coded depending on whether they 
are bound only in 2i (green), only at N24 (light blue) or in both conditions (purple). Selected 
naïve and formative genes are indicated in the plot. For each quadrant, percentages (%) of 
FoxO1 2i-only, N24-only and 2i&N24 targets are indicated. 
D, Venn diagrams showing the overlap between FoxO1 targets (purple) and genes 
differentially expressed upon MK-2206 treatment in 2i (left) or at N24 (right) (DEGs, p-value ≤ 
0.05, grey). The resulting p-values from hypergeometric tests of the overlaps are shown. 
E, Box plot showing the expression of core formative genes in WT cells after MK-2206 
treatment in 2i, divided into FoxO1 N24 targets (light blue) or non-targets (grey). Data is shown 
as log2FC relative to NT cells. The resulting p-value from two-tailed Wilcoxon rank sum test 
is indicated in the plot. 
F, Box plot showing the expression of core formative genes in WT cells after MK-2206 
treatment at N24, divided into FoxO1 N24 targets (light blue) or non-targets (grey). Data is 
shown as log2FC relative to NT cells. The resulting p-value from two-tailed Wilcoxon rank sum 
test is indicated in the plot.  
G, Box plot showing the expression of formative genes (combination of formative early and 
formative late, as defined in Carbognin et al. 2023) in WT cells treated with the MK-2206 
inhibitor in 2i, divided into FoxO1 N24 targets (light blue) or non-targets (grey). Data is shown 
as log2FC relative to NT cells. The resulting p-value from two-tailed Wilcoxon rank sum test 
is indicated in the plot. 
H, Box plot showing the expression of naïve genes (combination of naïve early and naïve late, 
as defined in Carbognin et al. 2023) in WT cells treated with the MK-2206 inhibitor in 2i, divided 
into FoxO1 N24 targets (light blue) or non-targets (grey). Data is shown as log2FC relative to 
NT cells. The resulting p-value from two-tailed Wilcoxon rank sum test is indicated in the plot. 
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Fig. 6 | Akt signalling regulation through FoxO TFs of the naïve to formative 
pluripotency transition. 

Schematic illustration of the proposed model of FoxO-TF action at the exit from naive 
pluripotency. 
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Figure 3
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Supplementary Fig. 1 | mTORC1 inhibition only partially rescues the differentiation 
defect of Pten KO ESCs. 

A, Western blot analysis for FLAG expression in WT, Pten KO, and PTEN rescue mESCs 
(FLAG-rescue (FR) or empty vector control, PTEN EV). TUBULIN was used as a loading 
control. 
B, Flow cytometry analysis of Rex1-GFP levels in WT (grey dashed line), PTEN EV (light blue 
profiles) and PTEN FR mESCs (dark blue profiles) at N24. One representative of n=3 
independent experiments is shown. 
C, Flow cytometry analysis of Rex1-GFP levels in WT and in Tsc2 KO cells in 2i (green 
profiles) and at N24 (light blue profiles). One representative of n >10 independent experiments 
is shown. 
D, Western blot analysis for TSC2 expression in WT and Tsc2 KO cells in naïve pluripotency 
supporting conditions (2i and 2i/LIF) and 24h (N24), 48h (N48), 72h (N72) and 96h (N96) after 
2i removal. TUBULIN was used as a loading control. 
E, Principal component analysis (PCA) based on the top 500 DEGs in RNA-Seq data of WT, 
Pten KO and Tsc2 KO mESCs in 2i (green) and at N24 (light blue).  
F, KEGG pathway enrichment analysis (EA) on combined lists of upregulated (UP) and 
downregulated (DOWN) genes in Pten and Tsc2 KO mESCs (x axis). Top 5 categories 
enriched in each list are shown on the y axis. Dot colour indicates p-values (only p ≤ 0.1 are 
shown). Dot size indicates the GeneRatio (ratio between the overlap size and the category 
size). 
G, Similar to F for DEGs at N24. 
H, Western blot analysis for the indicated proteins in WT, Pten KO, Tsc2 KO and Tcf7l1 KO 
mESCs at N24 after treatment with DMSO (-) or 20 nM Rapamycin (+). VINCULIN was used 
as a loading control. One representative of n=2 independent experiments is shown. 
I, Quantification of pS6K protein expression measured by Western blot analysis in WT, Pten 
KO and Tsc2 KO cells at N24 after treatment with DMSO (light blue) or 20 nM Rapamycin 
(Rapa, dark blue). Expression was normalised to VINCULIN. Mean and SD for n=2 
independent experiments (distinguished by a greyscale) are shown. Indicated p-values show 
results of paired, two-tailed t-tests. 
J, PCA analysis based on the top 500 DEGs in RNA-Seq data of WT, Pten KO and Tsc2 KO 
mESCs at N24 after treatment with DMSO (light blue) or 20 nM Rapamycin (Rapa, dark blue). 
Each symbol refers to one specific cell line as indicated in the legend. 
K, Western blot analysis for the indicated proteins in WT, Pten KO and Tsc2 KO mESCs in 
naïve pluripotency supporting conditions (2i and 2i/LIF) and 24h (N24) and 48h (N48) after 2i 
removal. TUBULIN was used as a loading control. 
L, Flow cytometry analysis of Rex1-GFP levels in WT, Tcf7l1 KO and Pten KO cells at N48 
after treatment with 3 μM CHIRON (CH, green profiles) or left untreated (NT, light blue 
profiles). One representative of n=2 independent experiments is shown. 
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Supplementary Fig. 2 | FoxO TFs translocate into the nucleus upon exit from the naive 
pluripotent state. 

A, Subcellular localization of the indicated proteins measured by Western blot analysis of 
nucleo-cytoplasmic fractionation experiments in indicated cell lines at N24. Equal amounts of 
total (tot), nuclear (nuc) and cytoplasmic (cyt) fractions were loaded. VINCULIN and OCT4 
were used as controls for the purity of the cytoplasmic and nuclear fractions, respectively. 
B, Confocal microscopy images after IF showing FOXO1 (purple) and ESRRB (green) in WT 
and Pten KOs in 2i and at N24 after treatment with 1 μM MK-2206. DAPI staining is shown in 
blue. One representative of n=2 independent experiments is shown. Scale bar = 20 μM. 
C, Quantification of FOXO1 nuclear intensity measured from confocal images of untreated WT 
(n=189 in 2i and n=164 at N24) and Pten KO cells (n=100 in 2i and n=153 at N24) as in Fig. 
2A and upon treatment with the MK-2206 inhibitor (WT: n=176 in 2i and n=111 at N24; Pten 
KO: n=100 in 2i and n=121 at N24) as in Supplementary Fig. 2B. Data from n=2 independent 
experiments is shown. The indicated p-values show the results of two-tailed Wilcoxon rank 
sum tests. 
D, Flow cytometry analysis of Rex1-GFP levels in WT cells 24h after treatment with 1 μM MK-
2206 (MK, dark blue profiles) and untreated control (NT, light blue profiles). One 
representative of n=3 independent experiments is shown. 
E, Expression levels of Foxo1 measured by RT-qPCR in WT cells expressing 3xFLAG-
FoxO1nuc (FoxO1nuc-med and FoxO1nuc-hi) in 2i after 8 hours treatment with 500 ng/ml 
doxycycline (+dox, purple) or left untreated (-dox, green). Control WT cells are also included. 
Mean and SD of n=3 independent experiments (distinguished by distinct shades of grey) are 
shown. Expression was normalised to β-actin. p-values show results of paired, two-tailed t-
tests. 
F, Flow cytometry analysis of Rex1-GFP levels in WT, FoxO1nuc-med and FoxO1nuc-hi cells in 2i 
after 8 hours treatment with 500 ng/ml doxycycline (+dox, purple) or left untreated (-dox, 
green). One representative of n=3 independent experiments is shown. 
G, Confocal analysis after IF of 3xFLAG-FoxO1 (yellow) and NANOG (red) in WT, FoxO1nuc-

med and FoxO1nuc-hi cells in 2i after 8 hours treatment with 500 ng/ml doxycycline (+dox) or left 
untreated (-dox). 
H, Expression levels of Foxo1 measured by RT-qPCR in Pten KO cells expressing 3xFLAG-
FoxO1nuc (P-FoxO1nuc) at N24 after 8 hours treatment with 500 ng/ml doxycycline (+dox, 
purple) or left untreated (-dox, light blue). Control WT cells and Pten KO cells are also included. 
Mean and SD of n=2 independent experiments (distinguished by a greyscale) are shown. 
Expression was normalised to β-actin and shown as relative to WT in -dox condition. p-values 
show results of paired, two-tailed t-tests. 
I, Flow cytometry analysis of Rex1-GFP levels in Pten KO cells expressing 3xFLAG-FoxO1nuc 
(P-FoxO1nuc) at N24 after 8 hours treatment with 500 ng/ml doxycycline (+dox, purple profiles) 
or left untreated (-dox, light blue profiles). Rex1-GFP levels of dox-treated WT cells are shown 
as a grey dashed line. One representative of n=2 independent experiments is shown.  
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Supplementary Fig. 3 | Chromatin dynamics of FoxO TFs at the exit from naïve 
pluripotency. 

A, PCA analysis of FOXO1 (top) or FOXO3 (bottom) ChIP-Seq data in WT and Pten KO cells 
in 2i (green) and at N24 (light blue). Each symbol refers to one specific cell line as indicated 
in the legend. 
B, Heatmap showing FOXO1 signal in a 1.5 kb window around the center of FoxO1 peaks, 
divided in 2i-only peaks (n=612, green), N24-only peaks (n=2138, light blue) and shared peaks 
(n=702, purple), in WT and Pten KO cells in 2i or at N24. 
C, Heatmap showing FOXO3 signal (left) and FOXO1 signal (right) in a 1.5 kb window around 
the center of FoxO3 peaks, divided in 2i-only peaks (n=152, green), N24-only peaks (n=384, 
light blue) and shared peaks (n=239, purple), in WT and Pten KO cells in 2i or at N24. 
D, Venn diagram showing the overlap between FoxO1 (purple) and FoxO3 (pink) peaks. The 
resulting p-value from the hypergeometric test of the overlap is shown in italics. 
E, Feature distribution of FoxO1 and FoxO3 peaks. The categories are indicated in the legend. 
F, Enrichment analysis of FOXO1 and FOXO3 motifs in ESC- or EpiLC-specific enhancers. 
Dot colour and size indicate the p-values and the percentage of enhancers (“peaks”) with the 
motif, respectively. 
G, PCA analysis of ATAC-Seq data in WT and Pten KO cells in 2i (green) and at N24 (light 
blue). Each symbol refers to one specific cell line as indicated in the legend. 
H, Heatmaps showing FOXO1, ESRRB, ATAC-seq, H3K27ac and p300 signal in the indicated 
samples in a 1.5 kb window around the center of FoxO1 2i and Esrrb 2iL peaks, divided in co-
bound peaks (n=477, pink), FoxO1-only peaks (n=840, purple) and Esrrb-only peaks (n=5842, 
grey). 
I, Heatmaps showing FOXO1, ESRRB, ATAC-seq, H3K27ac and p300 signal in the indicated 
samples in a 1.5 kb window around the center of FoxO1 N24 and Esrrb N48 peaks, divided in 
co-bound peaks (n=389, pink), FoxO1-only peaks (n=2445, purple) and Esrrb-only peaks 
(n=2616, grey). 
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Supplementary Fig. 4 | FoxO TF targets are key players in the naïve to formative 
pluripotency transition. 

A, Venn diagram showing the overlap between FoxO1 targets (purple) and genes differentially 
expressed during WT differentiation (DEGs, log2FC N24 vs 2i ≤ -0.5 | ≥ 0.5, p-adj. ≤ 0.05, 
grey). The resulting p-value from the hypergeometric test of the overlap is shown. 
B, Volcano plot showing RNA-seq data from WT differentiation (N24 vs 2i). DEGs (as defined 
above) that are bound by FoxO1 are colour coded depending on whether they are bound only 
in 2i (green), only at N24 (light blue) or in both conditions (purple). Selected naïve and 
formative genes are indicated in the plot. For each quadrant, percentages (%) of FoxO1 2i-
only, N24-only and 2i&N24 targets are shown. 
C, Expression dynamics of 2i-specific (green), N24-specific (light blue) and 2i&N24 (purple) 
FoxO1 targets measured across a 2 hours-resolved WT differentiation time course by RNA-
seq (Lackner et al. 2021). Mean and confidence interval (CI) of log2FC values (relative to 2i) 
are shown. 
D, Genome browser snapshots showing FoxO1 ChIP signal in WT cells over selected 
formative core marker genes in 2i (green) and at N24 (light blue). Called peaks are also 
indicated in the plots (N24-only peaks: light blue, shared peaks: purple). 
E, Box plot showing the expression of exit factors (as defined in the text) that are upregulated 
during WT differentiation (log2FC > 0) in WT cells at N24, divided into FoxO1 N24 targets 
(light blue) or non-targets (grey), as measured by RNA-seq. Data is shown as log2FC relative 
to 2i. The resulting p-value from two-tailed Wilcoxon rank sum test is indicated in the plot. 
F, Venn diagram showing the overlap between FoxO1 targets (purple) and genes differentially 
expressed in Pten KO at N24 (DEGs, log2FC Pten KO vs WT ≤ -0.5 | ≥ 0.5, p-adj. ≤ 0.05, 
grey). The resulting p-value from the hypergeometric test of the overlap is shown. 
G, Box plot showing the expression of core formative genes (as defined in the text) in Pten 
KO cells at N24, divided into FoxO1 N24 targets (light blue) or non-targets (grey), as measured 
by RNA-seq. Data is shown as log2FC relative to WT. The resulting p-value from two-tailed 
Wilcoxon rank sum test is indicated in the plot. 
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Supplementary Fig. 5 | Interference with FoxO1 nuclear shuttling impairs the transition 
from the naïve to the formative GRN. 

A, Foxo1 expression levels measured by RT-qPCR in WT cells transfected with control 
(siGFP, green) or siRNAs targeting FoxO1 (siFoxO1, purple). Mean and SD of n=2 
independent experiments (depicted as distinct shades of grey) are shown. Expression was 
normalised to β-actin. 
B, Western blot analysis for FOXO1 expression in cells transfected with control (siGFP and 
siScr) or siRNAs targeting FoxO1 (siFoxO1). VINCULIN was used as a loading control. One 
representative of n=3 independent experiments is shown. 
C, Venn diagram showing the overlap between FoxO1 targets (purple) and genes differentially 
expressed in siFoxO1 at N24 (DEGs, p-adj. ≤ 0.2). The p-value from the hypergeometric test 
of the overlap is shown. 
D, Enrichment analysis (EA) of up- (UP) and down-regulated (DOWN) genes in siFoxO1 at 
N24 with upregulated (UP) or downregulated (DOWN) genes in Pten KO at N24. Dot colour 
and size indicate the FDR values (only FDR ≤ 0.05 are shown) and the GeneRatio (ratio 
between overlap size and the category size), respectively. 
E, Box plot showing the expression of up- (UP, green) or downregulated (DOWN, light blue) 
genes upon Foxo1 knockdown (siFoxO1) in Pten KO cells at N24, divided into FoxO1 N24 
targets or non-targets. Data is shown as log2FC relative to WT. The resulting p-value from 
two-tailed Wilcoxon rank sum test is indicated in the plot. 
F, PCA analysis based on the top 500 DEGs in RNA-Seq data of WT cells non-treated (NT, 
triangles) or after treatment with 1 μM MK-2206 (circles), in 2i (green) or at N24 (light blue). 
G, Box plot showing the expression of core formative genes in WT cells after Rapamycin 
treatment at N24, divided into FoxO1 N24 targets (light blue) or non-targets (grey). Data is 
shown as log2FC relative to DMSO-treated cells. The resulting p-value from two-tailed 
Wilcoxon rank sum test is indicated in the plot. 
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Supplementary Figure 3
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Supplementary Figure 4
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Supplementary Figure 5
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