

1 **An oomycete effector co-opts a host RabGAP protein to remodel pathogen interface and**
2 **subvert defense-related secretion**

3
4 Enoch Lok Him Yuen¹, Yasin Tumtas¹, Lok I Chan¹, Tarhan Ibrahim¹, Edouard Evangelisti^{2,3}, Frej
5 Tulin^{2,4}, Jan Sklenar⁵, Frank Menke⁵, Sophien Kamoun⁵, Doryen Bubeck¹, Sebastian Schornack²,
6 Tolga O. Bozkurt¹

7

8 **Affiliation**

9 ¹: Department of Life Sciences, Imperial College, London, United Kingdom.

10 ²: Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, United Kingdom.

11 ³: Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands.

12 ⁴: Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.

13 ⁵: The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United
14 Kingdom.

15

16 *Correspondence to: o.bozkurt@imperial.ac.uk (T.O.B.) and sebastian.schornack@slcu.cam.ac.uk
17 (S.S.)

18

19 **Abstract**

20

21 Pathogens have evolved sophisticated mechanisms to manipulate host cell membrane dynamics, a
22 crucial adaptation to survive in hostile environments shaped by innate immune responses. Plant-
23 derived membrane interfaces, engulfing invasive hyphal projections of fungal and oomycete
24 pathogens, are prominent junctures dictating infection outcomes. Understanding how pathogens
25 transform these host-pathogen interfaces to their advantage remains a key biological question. Here,
26 we identified a conserved effector, secreted by plant pathogenic oomycetes, that co-opts a host Rab
27 GTPase-activating protein (RabGAP), TBC1D15L, to remodel the host-pathogen interface. The
28 effector, PiE354, hijacks TBC1D15L as a susceptibility factor to usurp its GAP activity on Rab8a—a
29 key Rab GTPase crucial for defense-related secretion. By hijacking TBC1D15L, PiE354 purges Rab8a
30 from the plasma membrane, diverting Rab8a-mediated immune trafficking away from the pathogen
31 interface. This mechanism signifies an uncanny evolutionary adaptation of a pathogen effector in co-
32 opting a host regulatory component to subvert defense-related secretion, thereby providing
33 unprecedented mechanistic insights into the reprogramming of host membrane dynamics by
34 pathogens.

35

36

37

38 **Introduction**

39

40 Plants are equipped with a dynamic innate immune system to sense and confront pathogens. This
41 system fundamentally relies on endomembrane trafficking, which facilitates a hostile environment
42 against pathogens by directing immune components, such as pathogenesis-related (PR) proteins, to
43 the pathogen interface. Consistent with this notion, a growing number of studies have revealed
44 pathogen manipulation of plant vesicle trafficking as a ubiquitous infection strategy¹⁻⁶.

45

46 Pathogens intimately interact with plant cells via specialized structures that facilitate the transfer of
47 effector proteins and the uptake of nutrients. Filamentous plant pathogens, including oomycetes and
48 fungi, project hyphal extensions that breach the cell wall and penetrate host cells. At these junctures,
49 plants mount targeted immune responses, which include cellular reinforcements and secretion of
50 defense molecules⁷⁻¹⁰. Filamentous pathogens have developed strategies to overcome these
51 defenses, forming specialized infection structures like haustoria or infection vesicles (formed by
52 oomycete pathogens), which are accommodated inside host cells. These infection structures are
53 enveloped by plant-derived membranes with unique biochemical compositions, often lacking
54 transmembrane proteins including pattern recognition receptors, delineating a polarized membrane
55 interface^{11,12}. At these interfaces, pathogens are thought to manipulate the environment, creating safe
56 niches for efficient effector delivery and nutrient absorption. However, the regulatory mechanisms
57 governing the trafficking of immune components at the host-pathogen interface and the extent to which
58 they are manipulated by pathogen effectors remain largely unknown.

59

60 Rab GTPases (Rabs) are integral to vesicle trafficking and immunity, mediating the movement and
61 fusion of vesicles with membrane compartments¹³. While the immune functions of plant Rabs remain
62 largely unknown, members of the Rab8 and Rab11 have been identified to contribute to pathogen
63 resistance by facilitating defense-related secretion^{3,4,14}. Rabs function as molecular switches cycling
64 between GTP-bound active and GDP-bound inactive states. Their activation is regulated by guanine
65 nucleotide exchange factors (GEFs), which facilitate GTP loading, and their inactivation is mediated
66 by GTPase-activating proteins (GAPs), which accelerate GTP hydrolysis. Most RabGAPs are
67 characterized by the Tre2/Bub2/Cdc16 (TBC) domain featuring dual catalytic fingers accelerating the
68 GTP hydrolysis of their cognate Rabs¹⁵, thereby controlling their localization and functions. Although
69 a few RabGAPs have been implicated in immunity^{16,17}, the mechanisms behind their action, their
70 specific Rab substrates, and the trafficking pathways they regulate in immune responses remain
71 largely unexplored in both plants and animals.

72

73 The critical role of membrane trafficking in plant pathogen defense is increasingly evident, with diverse
74 pathogens deploying effectors that virtually target every facet of vesicle trafficking^{5,6,10,18-20}. Proteomic
75 screens have highlighted the strategic targeting of the host vesicle trafficking system by *Phytophthora*

76 pathogens^{6,21}. Notably, these pathogens deploy effectors converging on key Rab GTPases, like Rab8
77 and Rab11, which are integral to defense-related secretion^{3,4,14}. However, the detailed mechanisms of
78 these interactions and their impact on host membrane dynamics are still not fully understood. Despite
79 extensive documentation of effectors targeting host Rab GTPases in plant and animal pathosystems,
80 the potential targeting of RabGAPs by pathogen effectors remains an unexplored area. This is
81 particularly intriguing given the crucial role of RabGAPs in regulating Rab functions.

82

83 Here, we elucidate an unprecedented mechanism employed by a conserved effector family from the
84 *Phytophthora* species, notably PiE354 and its homologs, in reconfiguring host cell membrane
85 dynamics at the pathogen interface. PiE354 adeptly co-opts the host RabGAP protein TBC1D15L to
86 harness its GAP activity on Rab8a. This manipulation expels Rab8a from the plasma membrane,
87 redirecting Rab8a-mediated secretion of antimicrobial compounds away from the site of pathogen
88 attack. Our findings suggest a detailed mechanistic model where PiE354 physically perturbs the
89 TBC1D15L-Rab8a complex, leveraging the GAP activity of TBC1D15L to subvert Rab8a-mediated
90 immune trafficking. Our research uncovers a sophisticated strategy employed by pathogen effectors,
91 demonstrating how they exploit the catalytic functions of a host transport regulator to effectively
92 remodel host membrane dynamics to subvert immune responses.

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

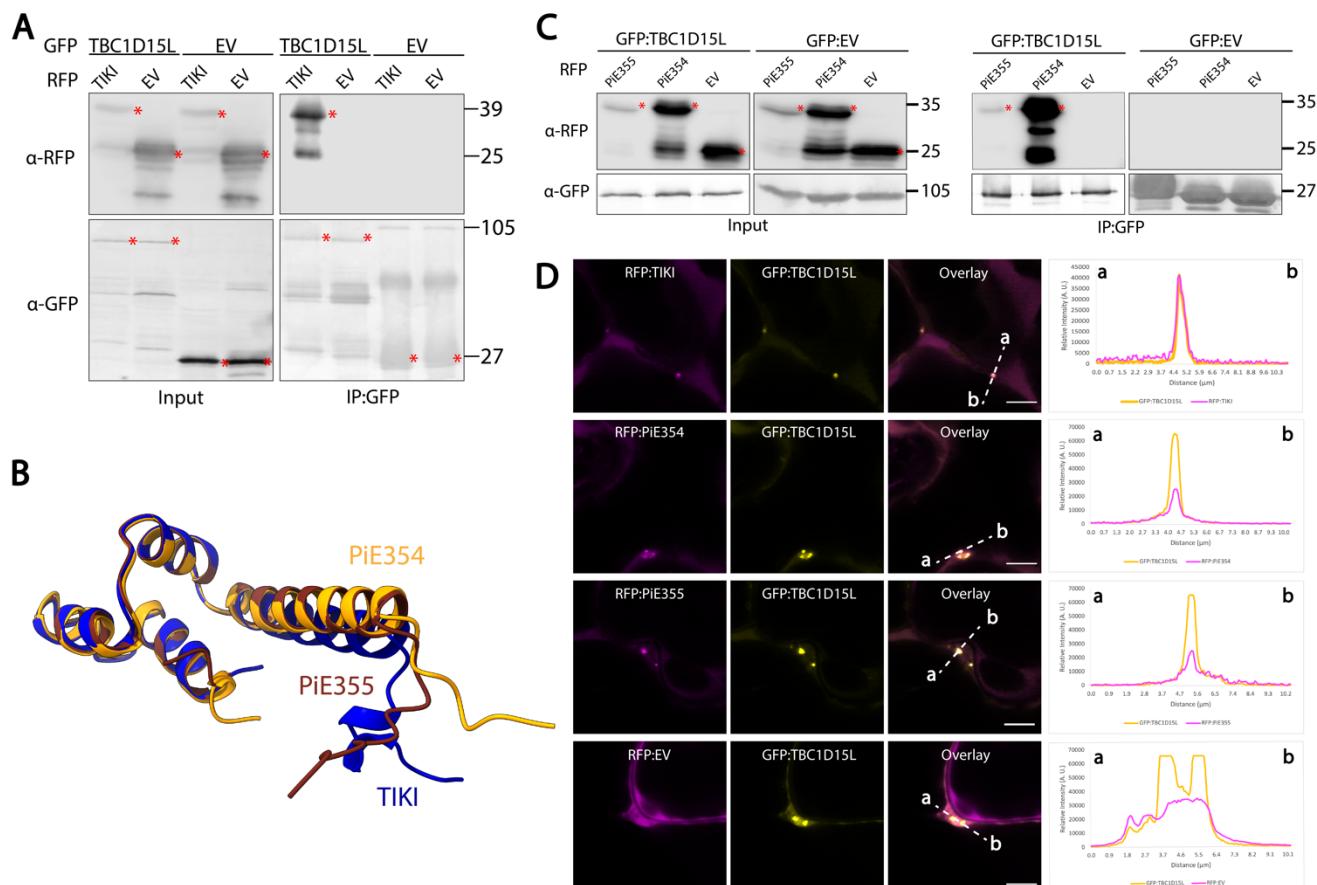
114 **Results**

115

116 **A plant RabGAP protein is targeted by a conserved *Phytophthora* effector**

117

118 To elucidate how *Phytophthora* species manipulate vesicle trafficking pathways, we focused on
119 identifying effectors that target the plant endomembrane transport machinery. As part of an unbiased
120 yeast two-hybrid (Y2H) screen, we discovered that the *P. palmivora* effector TIKI (trafficking
121 interference and tissue killing effector, PLTG_0964243, Table S1) associates with a *Nicotiana*
122 *benthamiana* TBC-containing RabGAP protein (Nbe.v1.s00100g29830, TBC1D15L hereafter) akin to
123 members of the mammalian TBC1D15 family (Table S2). To corroborate the Y2H results, we
124 conducted an immunoprecipitation-mass spectrometry (IP-MS) analysis, which again pinpointed
125 TBC1D15L as a candidate interactor of TIKI (Table S3).


126

127 We validated the association between TIKI and TBC1D15L through *in planta* reverse co-
128 immunoprecipitation (co-IP), pulling down N-terminally green fluorescent protein (GFP)-tagged
129 TBC1D15L with a plant expression construct of TIKI effector domain N-terminally-tagged with red
130 fluorescent protein (RFP) (Figure 1A). In *N. benthamiana* expression assays, we observed that TIKI
131 triggers plant cell death (Figure S1A), presenting challenges for conducting accurate biochemical and
132 cellular biology assays. However, the two TIKI homologs from *P. infestans* (Figure S1B), named
133 PiE354 (*Phytophthora infestans* effector 354, PITG_04354, Table S1) and PiE355 (*Phytophthora*
134 *infestans* effector 355, PITG_04355, Table S1), showed varying cell death responses. PiE355 induced
135 less severe cell death than TIKI, whereas PiE354 showed no visible symptoms (Figure S1C),
136 presenting an excellent opportunity for elucidating the functions of these effectors. AF2 structural
137 predictions showed notable similarity among these three *Phytophthora* effectors, indicated by a low
138 root-mean-square deviation (RMSD) value of 0.810 and 0.374 when comparing TIKI to PiE354 and
139 PiE355, respectively, hinting at a conserved mode of action (Figures 1B and S1D). Consistent with
140 this notion, co-IP experiments using protein extracts from *N. benthamiana* demonstrate that
141 GFP:TBC1D15L interacts with both RFP:PiE354 and RFP:PiE355, but not with RFP:EV control (Figure
142 1C). Conversely, the GFP:EV control did not interact with any of the effectors (Figure 1C). Consistent
143 with these findings, confocal microscopy analysis revealed that TBC1D15L colocalizes with all three
144 effectors (TIKI, PiE354, and PiE355) at discrete punctate structures and in the cytosol. (Figure 1D). It
145 is worth noting that while PiE354 exhibited puncta formation, the frequency was less than the other
146 two effectors (Figure S1E). Altogether, these results show that TIKI and its *P. infestans* homologs,
147 PiE354 and PiE355, target TBC1D15L in host plants.

148

149

150

152 **Figure 1. Conserved effectors from *Phytophthora* species target TBC1D15L.** (A) TIKI interacts
153 with TBC1D15L *in planta*. RFP:TIKI, or RFP:EV was transiently co-expressed with either
154 GFP:TBC1D15L, or GFP:EV. IPs were obtained with anti-GFP antibody. Total protein extracts were
155 immunoblotted. Red asterisks indicate expected band sizes. Numbers on the right indicate kDa values.
156 (B) Structural alignment of the effectors TIKI (blue) from *P. palmivora*, PiE354 (orange) and PiE355
157 (brown) from *P. infestans*. Structural predictions were obtained via AF2. The model shows overall
158 structural conservation of the effectors. (C) PiE355 and PiE354 interact with TBC1D15L *in planta*.
159 GFP:TBC1D15L was transiently co-expressed with either RFP:PiE355, RFP:PiE354, or RFP:EV. IPs
160 were obtained with anti-GFP antibody. Total protein extracts were immunoblotted. Red asterisks
161 indicate expected band sizes. Numbers on the right indicate kDa values. (D) TBC1D15L colocalizes
162 with TIKI, PiE354 and PiE355 in puncta *in planta*. Confocal micrographs of *N. benthamiana* leaf
163 epidermal cells transiently expressing either RFP:TIKI (1st row), RFP:PiE354 (2nd row), RFP:PiE355
164 (3rd row), or RFP:EV (4th row), with GFP:TBC1D15L. Presented images are single plane images.
165 Transects in overlay panels correspond to line intensity plots depicting the relative fluorescence across
166 the marked distance. Scale bars, 5 μm.

167

168

169

170

171

172 **PiE354 targets the N-terminal Rab-binding domain of TBC1D15L**

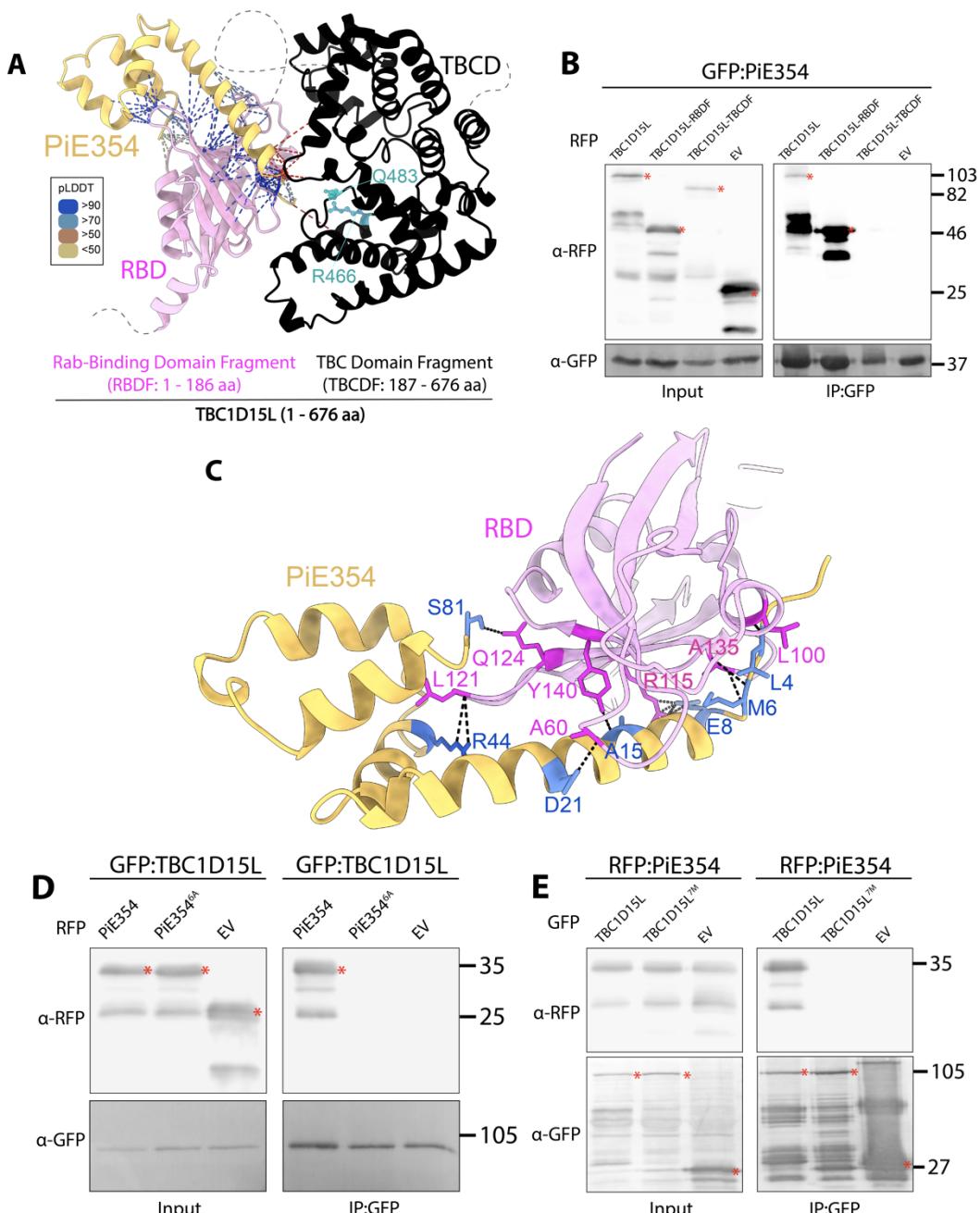
173

174 We next investigated the mechanisms by which PiE354 interacts with TBC1D15L. We chose PiE354
175 because, unlike its homologs TIKI and PiE355, it does not induce cell death in plants, thus avoiding
176 complications in physiological and functional analyses (Figure S1C). Taking advantage of AF2, we
177 first visualized the protein architecture of TBCD15L. This analysis revealed a domain of unknown
178 function, DUF3548, at the N-terminus, and a TBC domain (TBCD) near the C-terminus (Figure S2A).
179 The DUF3548, although not fully characterized, has been reported to function as a Rab-binding
180 domain (RBD) in the human TBC-RabGAP protein RUTBC2²². Notably, AF2-multimer (AF2-M)
181 structural predictions of the TBC1D15L-PiE354 complex indicated that PiE354 establishes multiple
182 high-confidence contacts with the candidate RBD (DUF3548) and a few low confidence contacts with
183 the TBCD, spanning a distance of about 5 Å (Figures 2A and S2B), suggesting that the effector targets
184 the RBD of TBC1D15L. This finding aligns with our Y2H results (Table S2), which indicated that the
185 N-terminal region of TBC1D15L is sufficient for binding TIKI.

186

187 To experimentally validate the predicted binding interface between PiE354 and TBC1D15L, we
188 designed two plant expression constructs encoding N- and C-terminal fragments of TBC1D15L. The
189 first construct included the N-terminal RBD fragment, denoted RBDF (1-186), and the second
190 comprised the C-terminal TBC domain fragment, named TBCDF (186-676). Interestingly, the TBCDF
191 construct triggered a slight cell death response, typically noticeable within 3-4 days of transient
192 expression (Figure S2C). Nevertheless, western blot analysis confirmed the successful *in planta*
193 expression of both TBC1D15L fragments, though the protein levels of TBCDF were slightly lower
194 compared to RBDF and full length TBC1D15L (Figure 2B). Our pulldown assays, conducted with
195 protein extracts from *N. benthamiana*, revealed a strong interaction between PiE354 and the RBDF
196 construct. In contrast, we did not detect any interaction between PiE354 and the TBCDF construct.
197 Notably, this finding is in line with our Y2H results (Table S2) and AF2-M predictions (Figure 2A),
198 confirming that PiE354 specifically targets the N-terminal RBD fragment of TBC1D15L.

199


200 The AF2-M analysis with stringent parameters identified seven crucial residues on PiE354 (L4, M6,
201 E8, A15, D21, R44, and S81) that are pivotal for its interaction with TBC1D15L (Figures 2C and S2D).
202 To characterize this interaction further, we adopted an alanine scanning strategy, mutating these
203 essential residues in PiE354. Since one of these residues was already encoding alanine (A15), we
204 created a 6A mutant of PiE354 (PiE354^{6A}) by substituting the other 6 residues for alanine. Our co-IP
205 assays confirmed that TBC1D15L interacts with PiE354, but not with the PiE354^{6A} mutant or EV
206 (Figure 2D). This result underscores the critical role of these six residues in PiE354 for its interaction
207 with TBC1D15L. Our confocal microscopy analyses further support this notion, showing colocalization
208 of TBC1D15L with PiE354 in puncta, whereas no puncta colocalization was evident with the PiE354^{6A}
209 mutant, mirroring the behavior of the EV control (Figure S2E).

210

211 To further elucidate the effector targeting mechanism, we conducted reciprocal mutation experiments
212 focusing on the AF2-predicted binding interface on the host target, TBC1D15L. The AF2-M analysis
213 had previously identified seven crucial residues on TBC1D15L (L100, A135, R115, Y140, A60, L121,
214 and Q124) vital for binding with PiE354 (Figures 2C and S2D). Since A60 and A135 were already
215 encoding alanine, we engineered a mutant, named TBC1D15L^{7M}, featuring substitutions of non-
216 alanine residues to alanine and alanine residues to glycine, resulting in a total of seven mutations. We
217 confirmed the expression of GFP:TBC1D15L^{7M} using confocal microscopy, displaying similar
218 characteristics to the WT GFP:TBCD1D15L protein, including cytoplasmic localization and puncta
219 formation (Figure S2F). Our subsequent co-IP assays demonstrated that the TBC1D15L^{7M} mutant was
220 unable to interact with PiE354 (Figure 2E), highlighting the critical role of these seven residues in
221 TBC1D15L for PiE354 targeting. Confocal microscopy analysis provide further support for this notion,
222 as TBC1D15L^{7M} did not colocalize with any of the effectors PiE354, PiE355, and TIKI in punctate
223 structures (Figure S2G). This comprehensive analysis elucidates the binding mechanism between
224 PiE354 and its host target TBC1D15L with key residues in both proteins pinpointed.

225

226

227

228 **Figure 2. PiE354 targets the N-terminal RBD fragment of TBC1D15L.** (A) AF2-M-predicted model
 229 of PiE354 targeting TBC1D15L. PiE354, RBD of TBC1D15L, and TBCD of TBC1D15L are depicted in
 230 yellow, pink, and black, respectively. The key residues responsible for the GAP activity of TBC1D15L,
 231 R466 and Q483, are highlighted in cyan. The bonds between PiE354 and TBC1D15L are predicted
 232 by ChimeraX with a distance of 5 Å. The colors of the bonds are based on the AF2-calculated
 233 prediction confidence score (pLDDT) as indicated in the rectangular box. (B) PiE354 interacts with full
 234 length TBC1D15L and RBDF of TBC1D15L, but not with TBCDF of TBC1D15L and EV. GFP:PiE354
 235 was transiently co-expressed with either RFP:TBC1D15L, RFP:RBDF, RFP:TBCDF, or RFP:EV. (C)
 236 AF2-M-predicted model of PiE354 (yellow) targeting the RBD of TBC1D15L (pink), depicting their
 237 interacting residues. The bonds between PiE354 and TBC1D15L are predicted by PyMOL with a
 238 distance of 3 Å. The PiE354-RBD interaction interface consists of 7 key residues on both proteins,

239 colored as blue on PiE354, and as magenta on RBD. (D) PiE354 targets TBC1D15L through 6 key
240 residues on PiE354. GFP:TBC1D15L was transiently co-expressed with either RFP:PiE354,
241 RFP:PiE354^{6A}, or RFP:EV. (E) TBC1D15L interacts with PiE354 through 7 key residues on
242 TBC1D15L. RFP:PiE354 was transiently co-expressed with either GFP:TBC1D15L,
243 GFP:TBC1D15L^{7M}, or GFP:EV. For all co-IP assays, IPs were obtained with anti-GFP antibody. Total
244 protein extracts were immunoblotted. Red asterisks indicate expected band sizes. Numbers on the
245 right indicate kDa values.

246

247 **TBC1D15L negatively regulates plant immunity and immune-related secretion in a GAP-
248 dependent manner**

249

250 Convergence of a conserved *Phytophthora* effector on TBC1D15L hints at a key regulatory role of this
251 RabGAP in immune-related subcellular trafficking. To assess the impact of TBC1D15L on plant
252 immunity, we conducted infection assays with *P. infestans* upon overexpression or silencing of
253 TBC1D15L. The dual catalytic fingers of TBC1D15L, crucial for stimulating GTP hydrolysis of Rab
254 GTPases, are located at R446 and Q483 positions within the TBC domain (Figure 2A). We created
255 the TBC1D15L GAP mutant (TBC1D15L^{GAP}) by the dual mutations at R446A and Q483A positions,
256 which typically impair the GAP activity of TBC-containing RabGAP proteins²³. AF2 modeling revealed
257 that the WT and GAP mutant of TBC1D15L maintain a high level of structural similarity, indicated by
258 a low RMSD value of 0.286 (Figures 3A and S3A), suggesting that the overall protein architecture of
259 the TBC1D15L^{GAP} mutant is not perturbed. Both GFP:TBC1D15L and GFPTBC1D15L^{GAP} successfully
260 pulled down RFP:TIKI from *N. benthamiana* protein extracts, but not the RFP:EV control (Figure S3B).
261 Reciprocal co-IP experiments using RFP fusions of TBC1D15L constructs with GFP:TIKI further
262 validated the specific interaction between the effector and the RabGAP protein (Figure S3B). These
263 results provide strong evidence that TIKI associates with TBC1D15L *in planta* independent of the GAP
264 activity of TBC1D15L.

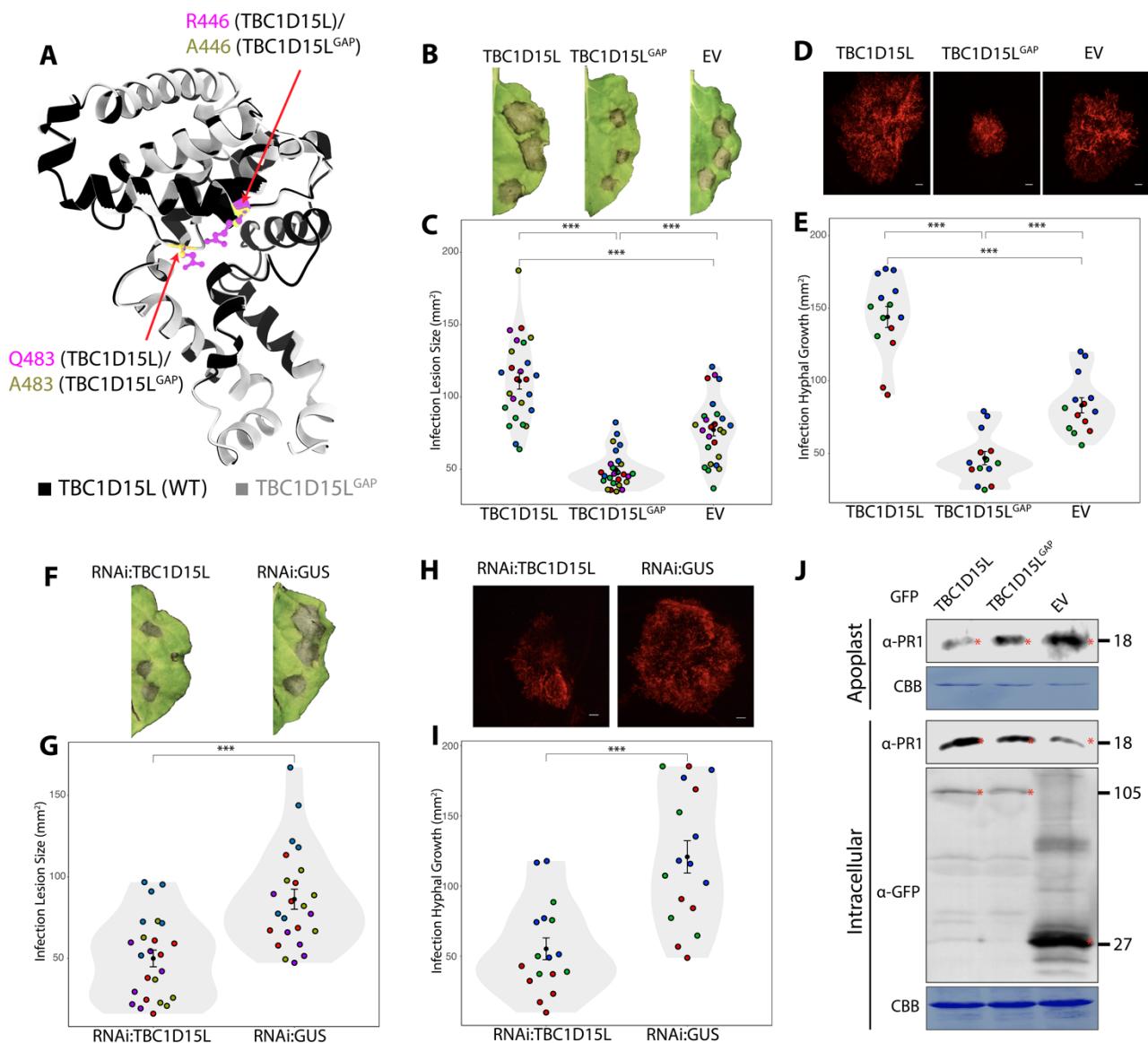
265

266 Across five independent experiments, we observed that overexpression of TBC1D15L consistently
267 enhanced *P. infestans* infection symptoms, notably increasing lesion size, compared to the EV control
268 (Figures 3B and 3C). Intriguingly, overexpression of the GAP mutant TBC1D15L^{GAP} led to a significant
269 reduction in infection lesion size relative to the EV control (Figures 3B and 3C), suggesting a functional
270 link between the GAP activity of TBC1D15L and its role in plant immunity. To further substantiate the
271 adverse effect of TBC1D15L on immunity, we performed additional infection assays using the red
272 fluorescent *P. infestans* strain 88069td. This approach allows for the direct quantification of pathogen
273 biomass by measuring biotrophic hyphal growth using fluorescence microscopy. Parallel to our earlier
274 infection assays (Figures 3B and 3C), elevating TBC1D15L levels significantly boosted *P. infestans*
275 hyphal growth in three independent experiments (Figures 3D and 3E). Conversely, the overexpression
276 of the GAP mutant TBC1D15L^{GAP} led to a marked decrease in pathogen hyphal growth compared to

277 the EV control (Figures 3D and 3E), indicating that the GAP activity of TBC1D15L is crucial for
278 facilitating disease susceptibility.

279

280 To complement the overexpression assays, we performed RNA interference (RNAi) to downregulate
281 *TBC1D15L* gene expression in *N. benthamiana* using a hairpin RNAi construct (RNAi:TBC1D15L)
282 (Figure S3C). Consistent with our overexpression assays, which hinted at a negative role for
283 TBC1D15L in plant immunity, silencing of TBC1D15L significantly reduced *P. infestans* infection
284 lesions compared to the silencing control, RNAi:GUS (Figures 3F and 3G). In addition, silencing of
285 TBC1D15L also reduced *P. infestans* hyphal growth compared to the GUS silencing control (Figures
286 3H and 3I). Collectively, these results further confirm the role of TBC1D15L as a negative regulator of
287 plant immunity. This notion is supported by the observed dominant negative phenotype of the
288 TBC1D15L^{GAP} mutant, which enhances resistance.


289

290 Given the regulatory role of RabGAPs in subcellular trafficking and our finding that TBC1D15L
291 negatively regulates plant immunity via its GAP function, we reasoned that TBC1D15L might be
292 controlling immune-related secretion. To test this hypothesis, we analyzed the potential impact of
293 TBC1D15L on defense-related secretion by monitoring the native levels of pathogenesis-related
294 protein 1 (PR1) in the apoplast. We measured PR1 levels by using a specific antibody raised against
295 it following overexpression of TBC1D15L, TBC1D15L^{GAP} mutant, or the GFP:EV control. We noted a
296 drastic decrease in PR1 secretion into the apoplast when TBC1D15L was overexpressed, in contrast
297 to the TBC1D15L^{GAP} mutant or EV control overexpression (Figure 3J). This outcome strongly supports
298 the notion that TBC1D15L subverts plant immunity by suppressing defense-related secretion.

299

300

301

302

Figure 3. TBC1D15L negatively regulates plant immunity through its GAP function. (A) Structural alignment of TBC1D15L and its GAP mutant TBC1D15L^{GAP}. Structural predictions were obtained via AF2. The model shows conservation of the overall protein structure, with RMSD value being 0.286. (B-C) TBC1D15L increases susceptibility to *P. infestans* in a GAP activity dependent manner. (B) *N. benthamiana* leaves expressing TBC1D15L, TBC1D15L^{GAP} or EV control were infected with *P. infestans*, and pathogen growth was calculated by measuring infection lesion size at 8 days post-inoculation. (C) TBC1D15L expression (111.0 mm², N = 78) significantly increases *P. infestans* lesion size compared to EV control (77.3 mm², N = 78), while TBC1D15L^{GAP} expression (49.5 mm², N = 78) significantly reduces the lesion size compared to EV control. (D-E) TBC1D15L increases *P. infestans* hyphal growth in a GAP activity dependent manner. (D) *N. benthamiana* leaves expressing TBC1D15L, TBC1D15L^{GAP} or EV control were infected with tdTomato-expressing *P. infestans*, and pathogen growth was calculated by measuring hyphal growth using fluorescence stereomicroscope at 5 days post-inoculation. Scale bars, 10 μ m. (E) TBC1D15L expression (144.0 mm², N = 42) significantly increases *P. infestans* hyphal growth compared to EV control (83.2 mm², N = 42), while

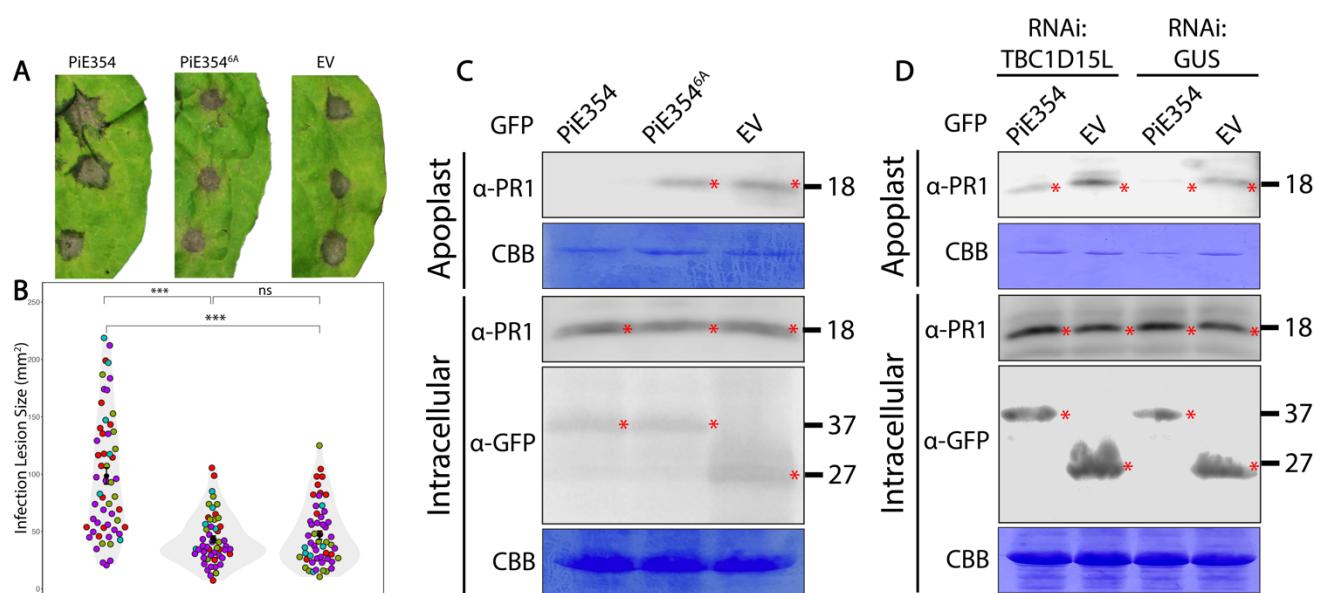
317 TBC1D15L^{GAP} expression (46.9 mm², N = 42) significantly reduces the hyphal growth compared to EV
318 control. (F-G) Silencing TBC1D15L reduces susceptibility to *P. infestans*. (F) *N. benthamiana* leaves
319 expressing RNAi:TBC1D15L, or RNAi:GUS control were infected with *P. infestans*, and pathogen
320 growth was calculated by measuring infection lesion size at 8 days post-inoculation. (G)
321 RNAi:TBC1D15L expression (50.0 mm², N = 72) significantly reduces *P. infestans* lesion size
322 compared to RNAi:GUS control (86.3 mm², N = 72). (H-I) Silencing TBC1D15L reduces hyphal growth
323 of *P. infestans*. (H) *N. benthamiana* leaves expressing RNAi:TBC1D15L, or RNAi:GUS control were
324 infected with tdTomato-expressing *P. infestans*, and pathogen growth was calculated by measuring
325 hyphal growth using fluorescence stereomicroscope at 5 days post-inoculation. Scale bars, 10 µm. (I)
326 RNAi:TBC1D15L expression (55.3 mm², N = 51) significantly reduces *P. infestans* lesion size
327 compared to RNAi:GUS control (120.8 mm², N = 51). Each color represents an independent biological
328 replicate. Each dot represents the average of 3 infection spots on the same leaf. Statistical differences
329 were analyzed by Student's t-test or Mann-Whitney U test in R. Measurements were highly significant
330 when p<0.001 (**). (J) *N. benthamiana* leaves were agroinfiltrated to express GFP:TBC1D15L,
331 GFP:TBC1D15L^{GAP}, or GFP:EV. The infiltrated leaves were challenged with *P. infestans* extract at 3
332 dpi and proteins were extracted from the apoplast and leaf tissue at 4 dpi and immunoblotted. Western
333 blot shows TBC1D15L, but not its GAP mutant TBC1D15L^{GAP}, reduces antimicrobial PR1 secretion
334 into the apoplast, compared to EV control. Red asterisks show expected band sizes. Numbers on the
335 right indicate kDa values.

336

337 **PiE354 co-opts TBC1D15L to subvert plant immunity and defense-related secretion**

338

339 To elucidate the functional relationship between PiE354 and TBC1D15L, we first determined the extent
340 to which PiE354 or its mutant PiE354^{6A}—impaired in binding to its host target TBC1D15L (Figure 2D)—
341 influence susceptibility to *P. infestans*. We measured this through infection assays on *N. benthamiana*
342 leaf patches that transiently express PiE354, PiE354^{6A}, or EV control. In four independent infection
343 assays, we observed a consistent increase in *P. infestans* infection lesion size in leaf patches
344 expressing PiE354 compared to EV control (Figures 4A and 4B). In contrast, leaf samples expressing
345 PiE354^{6A} mutant did not exhibit any increase in infection lesion size relative to the EV control (Figures
346 4A and 4B). These findings demonstrate that PiE354 enhances *P. infestans* virulence on plants and
347 its ability to exacerbate *P. infestans* virulence is linked to its interaction with TBC1D15L.


348

349 We then investigated whether PiE354 similarly affects PR1 secretion in *N. benthamiana*, similar to the
350 effects observed with TBC1D15L overexpression (Figure 3J). Heterologous expression of PiE354, but
351 not the EV control, effectively suppressed PR1 secretion into the apoplast (Figures 4C and S4). In
352 contrast, PiE354^{6A} mutant did not have any effect on PR1 secretion, behaving much like the EV control
353 (Figure 4C). This suggests that PiE354 mirrors the effects of TBC1D15L overexpression, reinforcing

354 the notion that it facilitates the GAP function of TBC1D15L to hinder defense-related secretion (Figure
355 3J).

356
357 Lastly, to ascertain the role of PiE354 in disrupting defense-related secretion through its interaction
358 with TBC1D15L, we conducted PR1 secretion assays in *TBC1D15L*-silenced plants. As expected, in
359 leaf patches with RNAi:GUS silencing control, PiE354 effectively reduced PR1 secretion into the
360 apoplast, relative to the EV (Figure 4D). Conversely, when *TBC1D15L* was silenced, the capacity of
361 PiE354 to inhibit PR1 secretion was less pronounced, although there was still a noticeable reduction
362 in PR1 secretion compared to the EV (Figure 4D). This is a reasonable outcome given the
363 RNAi:*TBC1D15L* construct does not fully deplete the *TBC1D15L* transcripts (Figure S3C). These
364 findings demonstrate that the capacity of PiE354 to interfere with defense-related secretion and plant
365 immunity is intricately linked to TBC1D15L.

366

367
368 **Figure 4. PiE354 co-opts TBC1D15L to subvert plant immunity and defense-related secretion.**
369 (A-B) PiE354 enhances susceptibility to *P. infestans*, contingent on its interaction with TBC1D15L. (A)
370 *N. benthamiana* leaves expressing PiE354, PiE354^{6A}, or EV control were infected with WT *P.*
371 *infestans*, and pathogen growth was calculated by measuring infection lesion size at 8 days post-
372 inoculation. (B) PiE354 expression (98.3 mm², N = 56) significantly increases *P. infestans* lesion size
373 compared to EV control (43.2 mm², N = 52), while the expression of PiE354^{6A} (46.8 mm², N = 54) has
374 no significant effect compared to EV control. Each color represents an independent biological
375 replicate. Each dot represents an infection spot. Statistical differences were analyzed by Mann-
376 Whitney U test in R. Measurements were highly significant when p<0.001 (**). (C-D) For PR1
377 secretion assays, the infiltrated leaves were challenged with *P. infestans* extract at 3 dpi and proteins
378 were extracted from the apoplast and leaf tissue at 4 dpi and immunoblotted. (C) Western blot shows
379 PiE354 suppresses antimicrobial PR1 secretion into the apoplast, dependent on the interaction with

380 its host target TBC1D15L. *N. benthamiana* leaves were infiltrated to express GFP:PiE354,
381 GFP:PiE354^{6A} (mutant that lacks the capability to interact with TBC1D15L), or GFP:EV. (D) Western
382 blot shows the ability of PiE354 to inhibit PR1 secretion is less pronounced when TBC1D15L is
383 silenced, compared to GUS-silenced control condition. *N. benthamiana* leaves were infiltrated to
384 express RNAi:TBC1D15L or RNAi:GUS control, with either PiE354 or EV control. Red asterisks show
385 expected band sizes. Numbers on the right indicate kDa values.

386

387 **Rab8a, a Rab GTPase that mediates defense-related secretion, is a GAP substrate of TBC1D15L**

388

389 We next focused on determining the cognate Rab GTPase partner of TBC1D15L. Through an IP-MS
390 interactome screen, we identified Rab8a as a candidate Rab substrate of TBC1D15L (Table S4).
391 Given the previous findings by us and others that Rab8a plays a positive role in plant immunity against
392 *P. infestans* and mediates PR1 secretion^{3,14,24}, we reasoned that Rab8a could be the cognate partner
393 of TBC1D15L.

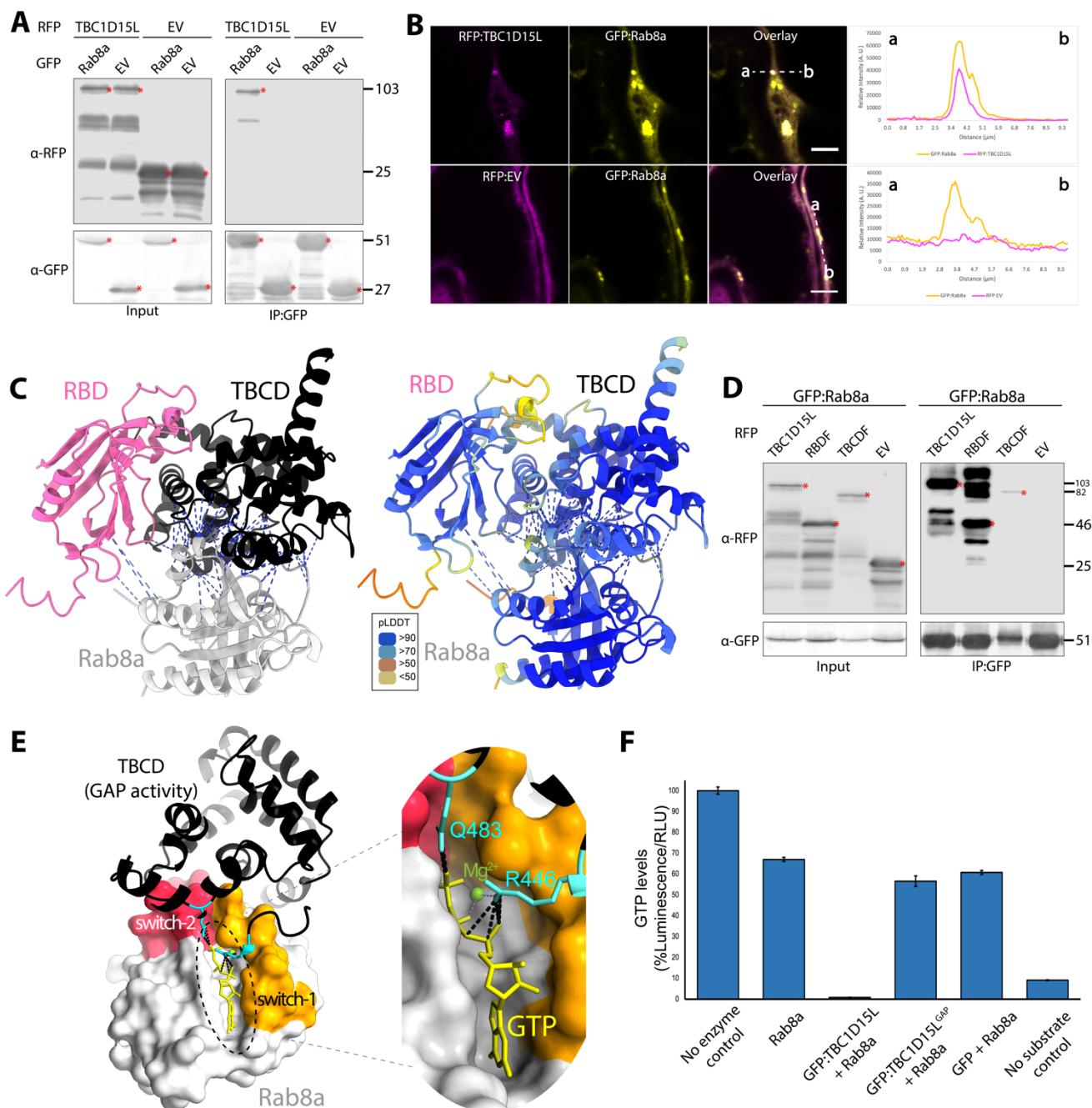
394

395 To corroborate our IP-MS findings, we set out to verify the interaction between Rab8a and TBC1D15L
396 through co-IPs. These assays confirmed that RFP:TBC1D15L interacts with GFP:Rab8a but not with
397 GFP:EV. Also, RFP:EV control did not interact with GFP:Rab8a, indicating that TBC1D15L specifically
398 binds GFP:Rab8a (Figure 5A). Our confocal microscopy analysis also showed that TBC1D15L, but
399 not the EV control, colocalizes with Rab8a in puncta (Figure 5B).

400

401 The AF2-M prediction of the TBC1D15L-Rab8a complex revealed interactions between Rab8a and
402 both the RBD and TBC domains of TBC1D15L, with the binding interface predominantly oriented
403 towards the TBC domain (Figure S5A). This bias could be due to the presence of available GAP-Rab
404 crystal structures in the mammalian field and the higher sequence conservation of the TBC domain
405 compared to the RBD, resulting in higher confidence score models for the TBC domain binding
406 interface than the RBD interface. AF2-M modeling of Rab8a with individual RBD and TBC domain of
407 TBC1D15L showed high-confidence interactions between each domain of TBC1D15L and Rab8a
408 (Figure 5C). To determine if Rab8a engages both the RBD and TBC domain as suggested by the AF2-
409 M models, we performed pulldown assays using Rab8a with the two TBC1D15L fragments.
410 Remarkably, our co-IP results revealed that Rab8a interacts with both the RBD and TBCD fragments
411 of TBC1D15L (Figure 5D), corroborating the AF2-M model predictions. However, it is difficult to discern
412 whether Rab8a binds both domains simultaneously or alternates between them. To further
413 characterize the binding mechanism between Rab8a and TBC1D15L, we investigated whether their
414 interaction is dependent on the GAP activity of TBC1D15L. Co-IP and western blot analysis showed
415 that Rab8a interacts with both WT TBC1D15L and its GAP mutant, but not with the EV control,
416 indicating that Rab8a interacts with TBC1D15L independently of the GAP function of TBC1D15L
417 (Figure S5B). Our confocal microscopy analysis also revealed that both TBC1D15L and its GAP

418 mutant, but not the EV control, colocalize with Rab8a (Figures 5B and S5C). These findings indicate
419 that while the RBD and TBCD of TBC1D15L facilitate its association with Rab8a, the catalytic function
420 of the GAP domain is dispensable for Rab8a binding.


421

422 Having validated the TBC1D15L-Rab8a interaction, we next investigated the functional interplay
423 between the two proteins, focusing on investigating whether Rab8a is a GAP substrate of TBC1D15L.
424 We first employed AF2-M to visualize the interaction between TBC1D15L and Rab8a, with a specific
425 focus on the TBCD fragment that contains the GAP activity. AF2-M prediction of the Rab8a-TBC1D15L
426 complex revealed a high-confidence model in which the TBCD makes multiple contacts with the
427 switch-1 and switch-2 regions of Rab8a, which are flanking the GTP binding pocket of Rab8a and is
428 crucial for regulating its GTP hydrolysis activity (Figure S5D). We then introduced GTP inside the
429 Rab8a GTP pocket on the AF2-M model by using the crystal structure of human Rab8a bound to GTP
430 (PDB: 6WHE) as described before²⁴. The resulting model revealed that the catalytic dual fingers of the
431 TBC domain, specifically R446 and Q483, are favorably positioned to establish contacts with the GTP
432 molecule within the Rab8a GTP-binding pocket (Figure 5E). This high-confidence AF2-M model
433 suggests a reasonable configuration of the GAP domain to catalyze the conversion of Rab8a-GTP to
434 Rab8a-GDP.

435

436 To experimentally determine whether Rab8a is a substrate of TBC1D15L, we conducted on beads
437 GAP activity assays. We isolated total protein extracts from *N. benthamiana* leaves expressing
438 GFP:TBC1D15L, GFP:TBC1D15L^{GAP} mutant, or GFP:EV control and concentrated them on GFP-trap
439 beads via immunoprecipitation. Prior to assessing the activities of the immobilized constructs on
440 beads, we confirmed the functionality of the GTPase activity of Rab8a purified from *E. coli* (Figure
441 S5E). Next, we incubated purified Rab8a alone, or with GFP:TBC1D15L, GFP:TBC1D15L^{GAP}, or the
442 GFP:EV control. Rab8a alone induced a 30-35% reduction in GTP levels compared to the buffer with
443 no enzyme control within two hours. Remarkably, incubation of Rab8a with the affinity resin that pulled
444 down GFP:TBC1D15L completely depleted GTP levels (Figure 5F). In contrast, incubation with
445 GFP:TBC1D15L^{GAP} or the EV control did not considerably alter GTP levels compared to Rab8a alone
446 (Figure 5F). These findings conclusively show that TBC1D15L substantially enhances the GTP
447 hydrolysis activity of Rab8a, acting as a canonical GAP, and this activity is reliant on the functional
448 integrity of its TBC domain.

449

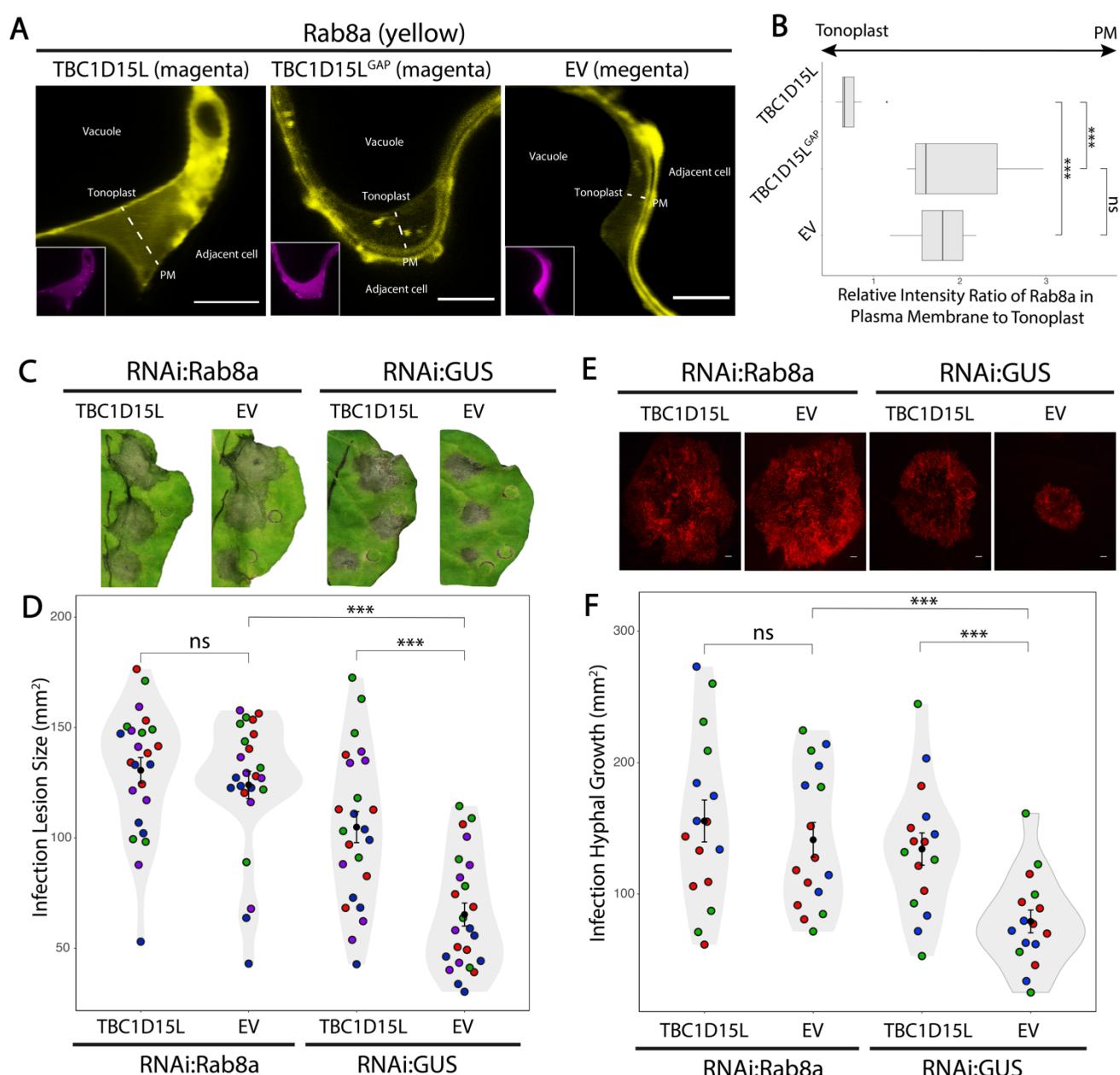
450

451 **Figure 5. Rab8a is a GAP substrate of TBC1D15L.** (A) TBC1D15L, but not the EV control, interacts
452 with Rab8a *in planta*. RFP:TBC1D15L was transiently co-expressed with either GFP:Rab8a, or the
453 GFP:EV control. RFP:EV was used as a control for RFP:TBC1D15L. IPs were obtained with anti-GFP
454 antibody. Total protein extracts were immunoblotted. Red asterisks indicate expected band sizes.
455 Numbers on the right indicate kDa values. (B) Rab8a colocalizes with TBC1D15L in puncta *in planta*.
456 Confocal micrographs of *N. benthamiana* leaf epidermal cells transiently expressing either
457 RFP:TBC1D15L (1st row), or RFP:EV (2nd row), with GFP:Rab8a. Presented images are single plane
458 images. Transects in overlay panels correspond to line intensity plots depicting the relative
459 fluorescence across the marked distance. Scale bars, 5 μ m. (C) AF2-M modeling of Rab8a with
460 individual RBD and TBCD of TBC1D15L in complex. (Left panel) Rab8a interacts with both the RBD and
461 TBCD of TBC1D15L. (Right panel) The colors of the AF2-M model are based on the AF2-

462 calculated prediction confidence score (pLDDT) as indicated in the rectangular box. (D) Rab8a
463 interacts with the full length, N-terminal RBD fragment (RBDF) and C-terminal TBCD fragment
464 (TBCDF) of TBC1D15L, but not with the EV control. GFP:Rab8a was transiently co-expressed with
465 either RFP:TBC1D15L, RFP:RBDF, RFP:TBCDF, or RFP:EV. IPs were obtained with anti-GFP
466 antibody. Total protein extracts were immunoblotted. Red asterisks indicate expected band sizes.
467 Numbers on the right indicate kDa values. (E) Predicted AF2-M model of Rab8a in complex with full
468 length TBC1D15L, focusing on TBCDF of TBC1D15L. The catalytic dual fingers of the TBCD, R446
469 and Q483 (colored cyan), are favorably positioned across the GTP binding pocket of Rab8a, flanked
470 by switch-1 (pink) and switch-2 (orange) regions, and making contacts with the GTP molecule within
471 the pocket. (F) TBC1D15L stimulates the GTPase activity of Rab8a, dependent on its GAP activity. A
472 luciferase-based GTPase assay (GTPase-Glo™ Assay kit by Promega) was employed to quantify the
473 amount of GTP levels over a 120-minute duration at room temperature. The bar graph illustrates the
474 effect of TBC1D15L, TBC1D15L^{GAP}, or GFP control on the GTPase activity of Rab8a across three
475 technical repeats. No enzyme control does not contain Rab8a. No substrate control does not contain
476 GTP.

477

478 **TBC1D15L negatively regulates immunity by restricting Rab8a-mediated subcellular trafficking 479 towards the cell surface**


480

481 Having determined the *in vitro* GAP activity of TBCD15L on Rab8a, we next sought to determine how
482 TBC1D15L regulates Rab8a functions *in vivo*. Our previous work showed that Rab8a localizes with a
483 more pronounced signal at the plasma membrane compared to the vacuolar membrane (tonoplast),
484 indicating a predominant Rab8a transport route towards the cell surface¹⁴. To investigate if TBC1D15L
485 modulates subcellular localization of Rab8a, we used confocal microscopy. Overexpression of
486 RFP:TBC1D15L resulted in a marked reduction of the plasma membrane levels of GFP:Rab8a with
487 respect to the tonoplast, indicating the redistribution of GFP:Rab8a trafficking towards the vacuole
488 (Figures 6A and 6B). In contrast, co-expression with either TBC1D15L^{GAP} mutant or the EV control
489 maintained the primary localization of GFP:Rab8a at the plasma membrane (Figures 6A and 6B),
490 aligning with our previous findings¹⁴. These results provide compelling evidence that TBC1D15L
491 regulates Rab8a-mediated trafficking from the cell surface to the vacuole, further affirming its role as
492 a GAP for Rab8a. Consistent with prior research showing the role of Rab8a in PR1 release into the
493 apoplast³, we infer that TBC1D15L hinders PR1 secretion (Figure 3J) by redirecting Rab8a-mediated
494 trafficking away from the cell surface.

495

496 Considering previous studies demonstrating the role of Rab8a in plant immunity, we hypothesized that
497 the negative impact of TBC1D15L on immunity might be due to its influence on Rab8a trafficking. To
498 elucidate the interplay between TBC1D15L and Rab8a in plant immunity, we silenced Rab8a using a
499 hairpin RNAi construct¹⁴, and examined whether TBC1D15L can still suppress immunity. Consistent

500 with the well-established defense roles of Rab8a against *P. infestans*^{3,14}, silencing Rab8a increased
 501 infection lesion sizes compared to the GUS-silencing control. In GUS-silenced plants, TBC1D15L
 502 overexpression significantly enlarged infection lesions relative to the EV control, aligning with our
 503 findings of TBC1D15L negatively impacts immunity (Figures 6C and 6D). Conversely, in Rab8a-
 504 silenced plants, TBC1D15L overexpression did not significantly alter infection lesion sizes compared
 505 to the EV control (Figures 6C and 6D). This pattern was also evident when measuring pathogen
 506 biomass in infection assays using the red fluorescent *P. infestans* strain 88069td (Figures 6E and 6F).
 507 These results collectively indicate that the negative influence of TBC1D15L on plant immunity is
 508 dependent on its regulation on Rab8a.
 509

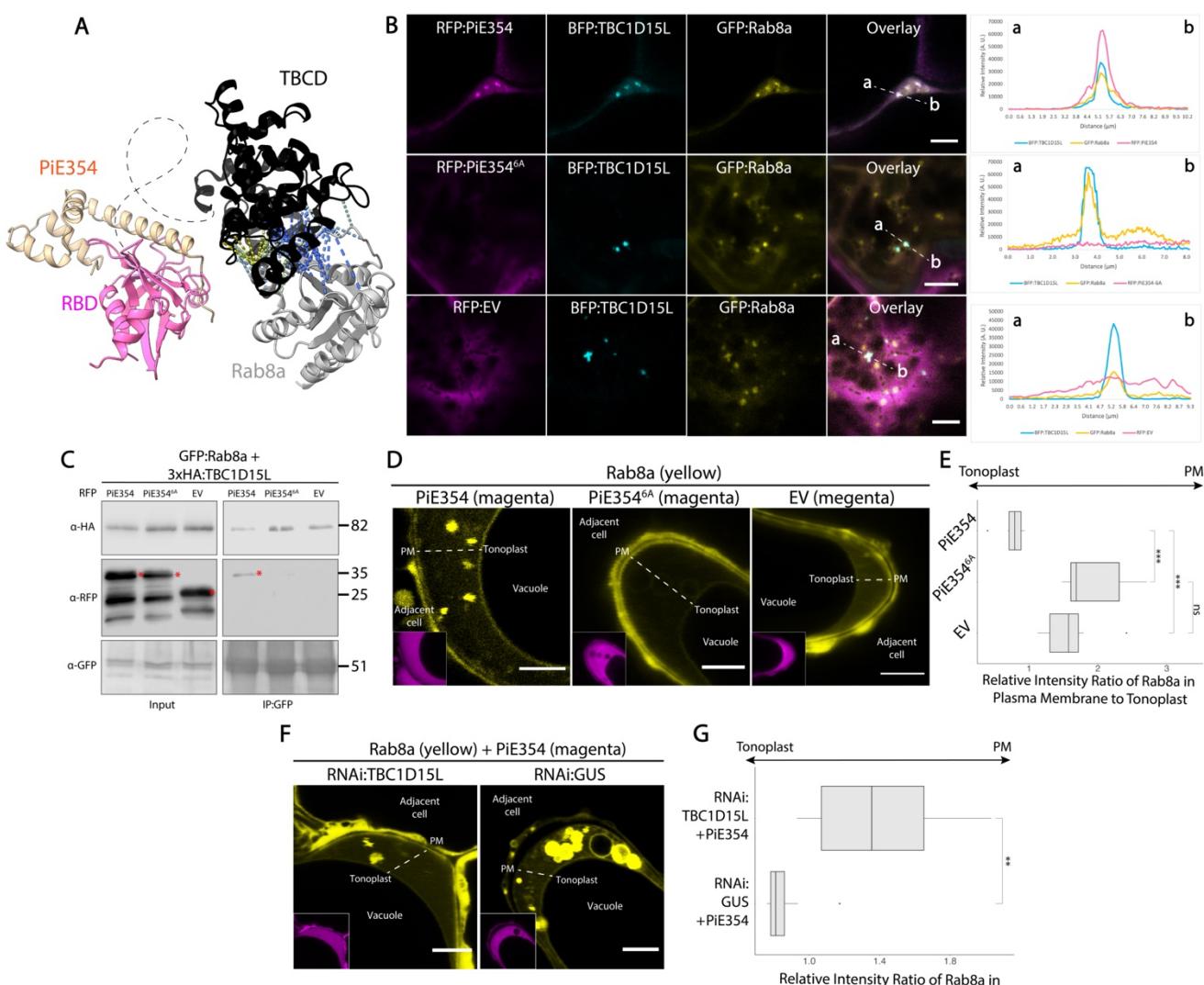
510
 511 **Figure 6. TBC1D15L negatively regulates immunity by restricting Rab8a-mediated subcellular**
 512 **trafficking towards the cell surface. (A-B) TBC1D15L diverts Rab8a localization from the plasma**

513 membrane to the tonoplast dependent on its GAP activity. (A) Confocal micrographs of *N.*
514 *benthamiana* leaf epidermal cells transiently co-expressing either RFP:TBC1D15L,
515 RFP:TBC1D15L^{GAP}, or RFP:EV, with GFP:Rab8a. Presented images are single plane images. Scale
516 bars, 5 μ m. (B) Box plot illustrates that TBC1D15L expression (0.74, N = 8) significantly reduces the
517 relative intensity ratio of Rab8a in plasma membrane to tonoplast compared to the EV control (1.76,
518 N = 8), while TBC1D15L^{GAP} expression (1.94, N = 8) has no significant effect compared to the EV
519 control. (C-D) The significant increase in *P. infestans* lesion size caused by TBC1D15L expression is
520 negated when Rab8a is silenced. (C) RNAi:Rab8a, or RNAi:GUS control was co-expressed with either
521 TBC1D15L, or EV control in WT leaves. The agroinfiltrated leaves were infected with WT *P. infestans*,
522 and pathogen growth was calculated by measuring infection lesion size at 7 days post-inoculation. (D)
523 In RNAi:Rab8a leaves, TBC1D15L expression (130.6 mm², N = 72) has no significant effect on *P.*
524 *infestans* lesion size compared to the EV control (124.0 mm², N = 72). In RNAi:GUS control leaves,
525 TBC1D15L expression (104.9 mm², N = 72) significantly increases *P. infestans* lesion size compared
526 to the EV control (65.3 mm², N = 72). (E-F) The significant increase in *P. infestans* hyphal growth
527 caused by TBC1D15L expression is negated when Rab8a is silenced. (E) RNAi:Rab8a, or RNAi:GUS
528 control was co-expressed with either TBC1D15L, or EV control in WT leaves. The agroinfiltrated
529 leaves were infected with tdTomato-expressing *P. infestans*, and pathogen growth was calculated by
530 measuring hyphal growth using fluorescence stereomicroscope at 5 days post-inoculation. Scale bars,
531 10 μ m. (F) In RNAi:Rab8a leaves, TBC1D15L expression (155.6 mm², N = 48) has no significant effect
532 on *P. infestans* hyphal growth compared to the EV control (141.3 mm², N = 48). In RNAi:GUS control
533 leaves, TBC1D15L expression (134.2 mm², N = 48) significantly increases *P. infestans* hyphal growth
534 compared to the EV control (79.1 mm², N = 48). Each color represents an independent biological
535 replicate. Each dot represents the average of 3 infection spots on the same leaf. All statistical
536 differences were analyzed by Student's T-test, or Mann-Whitney U test in R. Measurements were
537 highly significant when p<0.001 (**).

538

539 **PiE354 diverts Rab8a trafficking by hijacking the TBC1D15L-Rab8a complex**

540


541 AF2-M modeling of the PiE354-Rab8a-TBC1D15L complex reveals a compelling tripartite interaction
542 (Figures 7A and S6), aligning with our protein-protein interaction assays (Figures 2B and 5D). It
543 appears that PiE354 alters the orientation of Rab8a towards the TBCD fragment harboring the GAP
544 activity while associating with the RBD interface (Figure 7A). This is supported by the loss of AF2-M-
545 predicted contacts between RBD and Rab8a (Figure 5C) when PiE354 is present (Figure 7A).

546

547 To explore the potential tripartite interaction of PiE354, TBC1D15L and Rab8a, we first performed
548 colocalization assays using confocal microscopy. In agreement with the AF2-M prediction of the
549 complex mediated by TBCD15L, TBC1D15L and Rab8a colocalized in punctate structures with

550 PiE354, but not with the PiE354^{6A} mutant or the EV control (Figure 7B). To gain further evidence that
551 PiE354 can form a complex with TBC1D15L and Rab8a, we next performed co-IPs using protein
552 extracts from *N. benthamiana* leaves expressing GFP:Rab8a and 3xHA:TBC1D15L with either
553 RFP:PiE354, RFP:PiE354^{6A} mutant or the RFP:EV control. GFP pull-down assays showed that
554 GFP:Rab8a pulls-down both 3xHA:TBC1D15L and RFP:PiE354, but not the RFP:PiE354^{6A} mutant or
555 RFP:EV (Figure 7C). These results are in agreement with the predicted AF2-M models (Figure 7A)
556 and outputs of the colocalization assays (Figure 7B), reinforcing the view that PiE354 targets the
557 TBC1D15L-Rab8a complex. Since Rab8a did not pull-down the PiE354^{6A} mutant, which cannot bind
558 TBC1D15L, we conclude that Rab8a-PiE354 interaction is mediated by TBC1D15L.
559

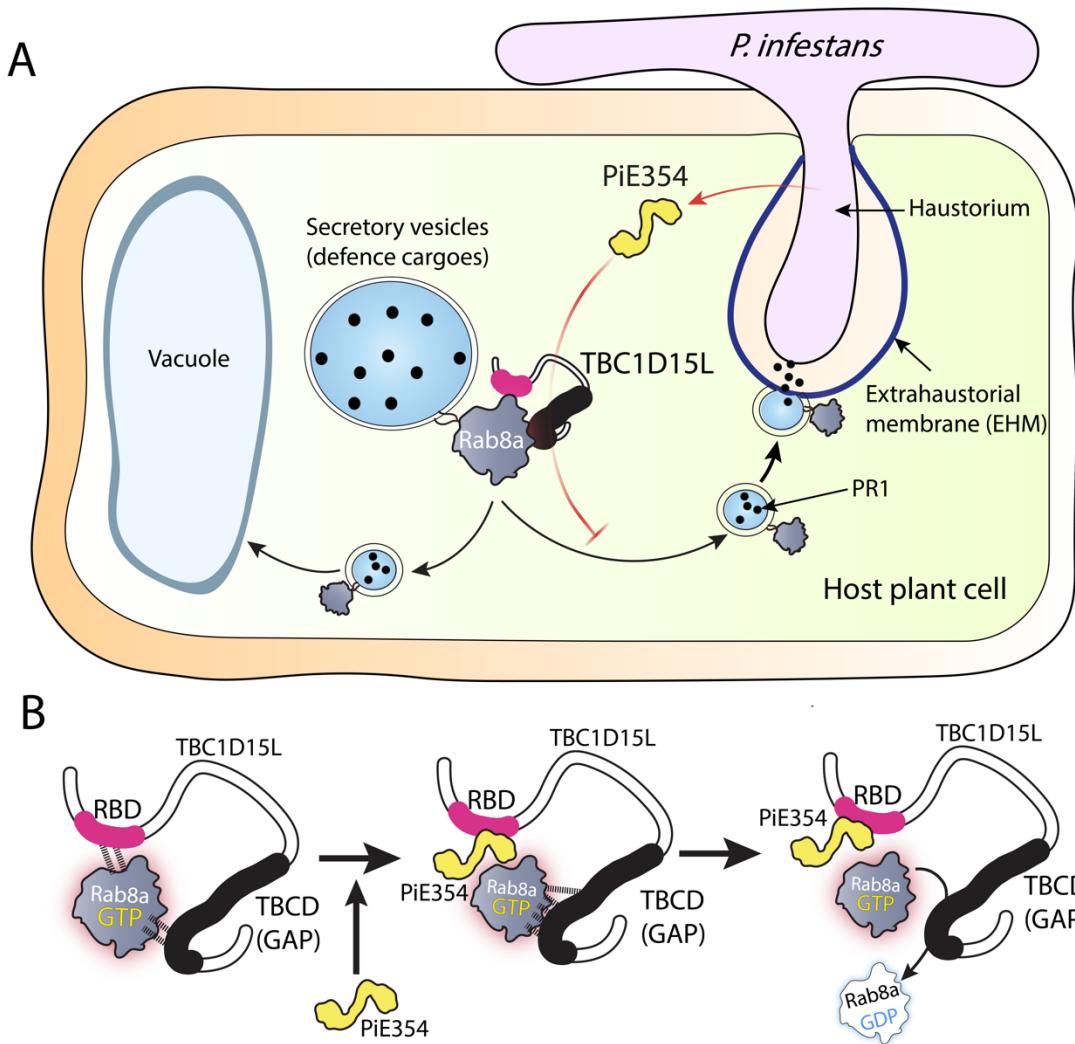
560 Building on these insights, we hypothesized that PiE354 targets TBC1D15L to leverage its GAP
561 activity for disrupting Rab8a-mediated trafficking. To determine if PiE354 mirrors the effects of
562 TBC1D15L overexpression, specifically in redirecting Rab8a trafficking towards the vacuole, we
563 conducted detailed observations using confocal microscopy. Quantitative image analysis showed that
564 when co-expressed with PiE354, Rab8a predominantly localized to the tonoplast, diverging from its
565 usual plasma membrane localization¹⁴ observed with the PiE354^{6A} mutant or the EV control (Figures
566 7D and 7E). This finding aligns with our hypothesis, suggesting that PiE354 mimics the effect of
567 TBC1D15L overexpression, promoting the deactivation of Rab8a by TBC1D15L. This notion is further
568 reinforced by our experiments on the diversion of Rab8a trafficking by PiE354 following the silencing
569 of *TBC1D15L*. Quantitative analysis of confocal micrographs from these experiments revealed that in
570 *TBC1D15L*-silenced leaf patches, but not in GUS-silenced control leaves, PiE354 was unable to
571 redirect Rab8a toward the tonoplast (Figures 7F and 7G). These results, combined with the fact that
572 the PiE354^{6A} mutant, which cannot bind TBC1D15L, does not alter the trafficking of Rab8a, suggest
573 that PiE354 potentiates the GAP activity of TBC1D15L, ultimately diverting Rab8a trafficking from the
574 cell surface to the vacuole. These findings are in line with our earlier results showing diminished PR1
575 secretion caused by the PiE354-TBC1D15L complex (Figures 4C and 4D), showing that PiE354
576 engages TBC1D15L to divert Rab8a-mediated trafficking critical for defense at the pathogen interface.
577

578

579 **Figure 7. PiE354 targets the TBC1D15L-Rab8a complex and re-routes Rab8a trafficking towards**
 580 **the vacuole. (A) AF2-M-predicted model of PiE354 in complex with the TBC1D15L-Rab8a pair. The**
 581 **model reveals that in the presence of PiE354, Rab8a and the RBD of TBC1D15L are no longer**
 582 **interacting, as PiE354 tilts Rab8a towards the functional TBCD of TBC1D15L. (B) PiE354, but not**
 583 **PiE354^{6A} or EV, colocalizes with Rab8a and TBC1D15L altogether in puncta. Confocal micrographs**
 584 **of *N. benthamiana* leaf epidermal cells transiently co-expressing either RFP:PiE354 (1st row),**
 585 **RFP:PiE354^{6A} (2nd row), or RFP:EV (3rd row), with BFP:TBC1D15L and GFP:Rab8a. Presented images**
 586 **are single plane images. Transects in overlay panels correspond to line intensity plots depicting the**
 587 **relative fluorescence across the marked distance. Scale bars, 5 μm. (C) PiE354 binds to the**
 588 **TBC1D15L-Rab8a pair dependent on its interaction with TBC1D15L. GFP:Rab8a and**
 589 **3xHA:TBC1D15L were transiently co-expressed with either RFP:PiE354, RFP:PiE354^{6A}, or RFP:EV.**
 590 **IPs were obtained with anti-GFP antibody. Total protein extracts were immunoblotted. Red asterisks**
 591 **indicate expected band sizes. Numbers on the right indicate kDa values. (D-E) PiE354 diverts Rab8a**
 592 **localization from the plasma membrane to the tonoplast dependent on its interaction with TBC1D15L.**
 593 **(D) Confocal micrographs of *N. benthamiana* leaf epidermal cells transiently expressing either**
 594 **RFP:PiE354, RFP:PiE354^{6A}, or RFP:EV, with GFP:Rab8a. Presented images are single plane images.**

595 Scale bars, 5 μ m. (E) Box plot showing the expression of PiE354 (0.77, N = 8), but not PiE354^{6A} which
596 lacks binding capability to TBC1D15L (1.93, N = 8), significantly reduces the relative intensity ratio of
597 Rab8a in plasma membrane to tonoplast compared to EV control (1.59, N = 8). EV and PiE354^{6A} result
598 in a predominant localization of Rab8a to the plasma membrane, while PiE354 re-directs the
599 predominant localization of Rab8a to the tonoplast. (F-G) Silencing *TBC1D15L* nullifies the ability of
600 PiE354 diverting Rab8a localization from plasma membrane to the tonoplast. (F) Confocal
601 micrographs of *N. benthamiana* leaf epidermal cells transiently expressing either RNAi:TBC1D15L, or
602 RNAi:GUS control, with RFP:PiE354 and GFP:Rab8a. Presented images are single plane images.
603 Scale bars, 5 μ m. (G) Box plot illustrating under *TBC1D15L*-silenced condition, PiE354 expression
604 (1.40, N = 8) leads to a significant increase in the relative intensity ratio of Rab8a in plasma membrane
605 to tonoplast, compared to the GUS-silenced control condition (0.86, N = 8). All statistical differences
606 were analyzed by Mann-Whitney U test in R. Measurements were significant when p<0.01 (**), and
607 highly significant when p<0.001 (***).

608


609 **A plant pathogen effector that redirects defense-related secretion by co-opting a key transport
610 regulator**

611

612 Our results suggest a model where PiE354, along with its homologs PiE355 and TIKI, harness the
613 GAP function of TBC1D15L on Rab8a, a key Rab GTPase involved in antimicrobial secretion. This
614 process reroutes Rab8a-mediated antimicrobial secretion away from the pathogen interface and
615 towards the vacuole, thereby hindering the ability of the plant to mount an effective immune response
616 (Figure 8A). We propose a mechanistic model in which PiE354 binds to the RBD of TBC1D15L,
617 propelling Rab8a towards the TBCD of TBC1D15L, harboring the GAP function. This triggers an
618 accelerated GTP hydrolysis on Rab8a, leading to its rapid disengagement from TBC1D15L. This rapid
619 turnover potentially facilitates the continuous and premature inactivation of new Rab8a-GTP
620 molecules (Figure 8B), perturbing their trafficking functions.

621

622

624 **Figure 8. Summary models of the effector PiE354 co-opting the RabGAP TBC1D15L and**
625 **suppressing plant immunity by redirecting defense-related secretion.** (A) Following penetration
626 by *P. infestans* into the host plant cell, the effector PiE354 is secreted into the cytoplasm through its
627 haustoria. Subsequently, PiE354 targets the host RabGAP protein TBC1D15L, facilitating TBC1D15L
628 to deactivate its cognate RabGAP Rab8a. This leads to the redirection of Rab8a trafficking towards
629 the vacuole instead of the plasma membrane, resulting in the suppression of plant immunity by
630 inhibiting antimicrobial PR1 secretion towards the pathogen interface. (B) In the absence of pathogen
631 effectors, Rab8a interacts with both the RBD and TBCD of TBC1D15L. Introduction of the effector
632 PiE354, which binds to the RBD, causes a shift in the positioning of Rab8a towards the TBCD, where
633 the GAP function is housed. Consequently, this facilitates the deactivation of Rab8a through increased
634 GTP hydrolysis.

635

636

637

638

639

640

641 **Discussion**

642

643 Accumulating evidence points to host vesicle trafficking as a major hub targeted by pathogen effectors,
644 though the underlying mechanisms are not well understood. Here we uncovered an unprecedented
645 immune subversion mechanism by which *Phytophthora* effectors, PiE354 and its homologs, remodel
646 host membrane dynamics to prevent defense-related secretion through co-opting the host RabGAP
647 protein TBC1D15L. This manipulation effectively redirects defense-related trafficking governed by
648 Rab8a, underscoring the pivotal but previously unknown role of TBC1D15L in plant defense. Our
649 findings provide a comprehensive molecular framework illustrating how pathogen effectors co-opt host
650 regulatory components to transform the host-pathogen interface by subverting key immune pathways
651 such as defense-related secretion.

652

653 **How does PiE354 co-opt TBC1D15L to subvert Rab8a-mediated trafficking?**

654 A key aspect of our findings is the elucidation of how PiE354 co-opts TBC1D15L to manipulate Rab8a-
655 mediated trafficking. We identified that DUF3548, reported to function as a Rab-binding domain (RBD)
656 in the mammalian TBC-containing RabGAP protein RUTBC2²², fulfills a similar role in plant RabGAPs
657 (Figures 5C and 5D). While some RabGAPs like TBC1D15L are characterized by the presence of an
658 RBD, the functional principles of the domain remained enigmatic. Our findings contribute to this
659 understanding by revealing that PiE354 targets the RBD of TBC1D15L, exploiting its GAP function on
660 Rab8a (Figure 7). This association hints at an intramolecular regulatory role for the RBD in modulating
661 the GAP activity.

662

663 Building on this, our findings using AF2-M models (Figure 5C) and co-IP experiments (Figure 5D)
664 indicate that Rab8a dynamically interacts with both the Rab-binding and TBC domains of TBC1D15L.
665 We propose that PiE354 binding to the RBD does not necessarily cause a premature release of GTP-
666 bound Rab8a from TBC1D15L, which would otherwise prevent Rab8a inactivation by TBC1D15L.
667 Instead, the docking of PiE354 at the RBD seems to guide Rab8a towards the TBC domain, as
668 indicated by structural predictions (Figures 5C, 7A and 8). This dynamic might negate any restrictive
669 role of the RBD—such as hindering the access of Rab8a to the catalytic GAP interface—thereby
670 boosting the conversion of Rab8a from its active GTP-bound state to its inactive GDP-bound state.
671 However, further studies are needed to comprehensively understand the role of RBDs in TBC-
672 containing RabGAP proteins across various species.

673

674 ***Phytophthora* effectors converge on Rab8a-mediated vesicle trafficking pathways**

675 Our research highlights the significance of the Rab8 family of GTPases in plant immunity. This finding
676 resonates with the known roles of the Rab8 family in polarized secretion in both animals and yeast²⁵,
677 and its implication in plants for defense-related trafficking of pattern recognition receptors (PRRs) to
678 the plasma membrane³. Consistent with the role of Rab8 in polarized secretion in other eukaryotes,

679 our earlier work observed Rab8a-associated vesicles around *P. infestans* haustoria¹⁴. This study
680 further reveals that Rab8a-mediated trafficking is a key pathway in plant immunity, targeted by
681 effectors from *P. infestans* and *P. palmivora* that co-opt TBC1D15L, the cognate GAP of Rab8a. This
682 aligns with findings which PexRD54, a *P. infestans* effector, redirects a subset of Rab8a towards
683 autophagy¹⁴, and RXLR242 from *P. capsici*, which hampers PR1 secretion by interacting with Rab8
684 members³. It is likely that other pathogen effectors have evolved strategies to counter the functions of
685 Rab8a-mediated trafficking, as highlighted by an earlier study indicating the positive role of a Rab8
686 member in antibacterial immunity²⁶. These patterns align with the notion that effectors from the same
687 or different pathogens converge on key immune pathways²⁷, emphasizing the critical role of Rab8a in
688 plant defense. Although our study underscores the crucial role of TBC1D15L in regulating Rab8a-
689 mediated trafficking in plant defense, further research is needed to determine if TBC1D15L has
690 regulatory roles across other Rab GTPases.

691

692 **PiE354-mediated remodeling of the pathogen interface**

693 The PiE354-mediated subversion of host immunity exemplifies an elaborated strategy employed by
694 pathogen effectors to remodel the host-pathogen interface. By depleting Rab8a from the plasma
695 membrane, PiE354 effectively hampers the secretion of PR1 into the apoplast (Figures 4C and 4D),
696 highlighting a critical pathogen strategy in steering immune components away from the pathogen
697 interface. This mechanism provides insight into the unique biochemistry of membrane interfaces at
698 the pathogen incursion points, such as the formation of haustoria, indicative of a host susceptibility
699 state.

700

701 In conclusion, our study illuminates the intricate interplay between plant vesicle trafficking and
702 pathogen effectors, revealing an unprecedented immune evasion strategy to reconfigure pathogen
703 interface. Specifically, we have shown that the effector PiE354 targets the plant RabGAP protein
704 TBC1D15L, effectively subverting defense-related trafficking governed by Rab8a. Our findings thus
705 elucidate a sophisticated evolutionary adaptation by a pathogen effector, which capitalizes on the
706 catalytic functionality of a host transport regulator to compromise innate immune responses.

707
708
709
710
711
712
713
714
715
716

717 **Materials and Methods**

718

719 **Molecular cloning**

720 The molecular cloning of TBC1D15L, TBC1D15L^{7M}, TBC1D15L^{GAP}, RBDF, TBCDF, PiE354, PiE354^{6A},
721 and PiE355 were conducted using Gibson Assembly, following the methods described in previous
722 works^{24,28}. Specifically, the vector backbone is a pK7WGF2 derivative domesticated for Gibson
723 Assembly. The desired sequence for cloning was either manufactured as a synthetic fragment or
724 amplified using designed primers. The fragments were then inserted into the vector using Gibson
725 Assembly, and then transformed into DH5 α chemically-competent *E. coli* through heat shock. These
726 plasmids were subsequently amplified and extracted by PureYieldTM Plasmid Miniprep System
727 (Promega), and electroporated into *Agrobacterium tumefaciens* GV3101 electrocompetent cells.
728 Sequencing was done by Eurofins. LB agar containing gentamicin and spectinomycin was used to
729 grow constructs carrying pK7WGF2 plasmid. TIKI DNA was synthesized including an N-terminal FLAG
730 tag and flanking attL1, attL2 sites in pUC57, FLAG-linker replaces the signal peptide. For the RNAi
731 interference silencing construct of TBC1D15L (RNAi:TBC1D15L), an intron-containing hairpin RNA
732 vector for RNA interference in plants (pRNAi-GG) was employed, based on Golden Gate cloning
733 method described in a previous study²⁹. RNAi:TBC1D15L targeted the region between 1790 and 2031
734 bp of *TBC1D15L*. The target fragment (TBC1D15L-silencing_synthfrag) was synthesized and then
735 inserted into the pRNAi-GG vector both in sense and anti-sense orientation, utilizing the overhangs
736 left by Bsal cleavage. This resulted in the expression of a construct that folds back onto itself, forming
737 the silencing hairpin structure. The subsequent steps of *E. coli* transformation, Miniprep, sequencing,
738 and agrobacterium transformation were the same as those used for the overexpression constructs.
739 LB agar containing gentamicin, kanamycin and chloramphenicol was used to grow constructs carrying
740 pRNAi-GG plasmid. All primers and synthetic fragments used in this study are detailed in **Table S5**.
741 All constructs used in this study are detailed in **Table S6**.

742

743 **Plant material**

744 *Nicotiana benthamiana* plants were cultivated in a controlled growth chamber at a temperature of
745 24°C, using a mixture of organic soil (3:1 ratio of Levington's F2 with sand and Sinclair's 2-5 mm
746 vermiculite). The plants were exposed to high light intensity and subjected to a long day condition (16
747 hours of light and 8 hours of darkness photoperiod). The experiments were performed using plants
748 that were 4 to 5 weeks old.

749

750

751

752 ***Phytophthora infestans* growth and infection assays**

753 WT and tdTomato-expressing *Pytophthora infestans* 88069 isolates were cultivated on rye sucrose
754 agar (RSA) media in the dark at 18°C for a period of 10 to 15 days before harvesting zoospores³⁰.
755 Zoospore solution was obtained by adding cold water at 4°C to the media and then incubating it at 4°C
756 in the dark for 90 minutes. For the infection assay, 10 µl droplets of zoospore solution containing 50000
757 spores/ml were applied to the abaxial side of agroinfiltrated leaves. The leaves were then kept in a
758 humid environment. Daylight and fluorescent images were captured at 5 to 7 days post-infection, and
759 both lesion sizes and hyphal growth were measured and analyzed using ImageJ.

760

761 **Confocal laser scanning microscopy**

762 The confocal microscopy analyses were conducted three days after agroinfiltration. To image the
763 infiltrated leaf tissue, they were excised using a size 4 cork borer, live-mounted on glass slides, and
764 submerged in wells of dH₂O using Carolina observation gel (Carolina Biological). The imaging of the
765 abaxial side of the leaf tissue was performed using either a Leica TCS SP8 inverted confocal
766 microscope equipped with a 40x water immersion objective lens or a Leica STELLARIS 5 inverted
767 confocal microscope equipped with a 63x water immersion objective lens. The laser excitations for
768 GFP, RFP, and BFP tags were Argon 488 nm (15%), DPSS 561 nm and Diode 405 nm, respectively.
769 The emission ranges for GFP, RFP, and BFP tags were 495 - 550 nm, 570 - 620 nm, and 402 - 457
770 nm, respectively. To prevent spectral mixing from different fluorescent tags when imaging samples
771 with multiple tags, sequential scanning between lines was applied. Confocal images, comprising both
772 Z-stack and single plane images, were analyzed using ImageJ.

773

774 **Fluorescence microscopy**

775 Fluorescence microscopy was utilized to visualize the hyphal growth of *P. infestans* expressing
776 tdTomato. The imaging setup consisted of a Leica MZ 16 F microscope coupled with the Leica
777 DFC300 FX Digital Color Camera designed for fluorescence imaging. Infected leaf samples were
778 positioned on a petri dish within the microscope imaging area. The imaging filter employed was DsRed,
779 with an excitation range spanning 510 – 560 nm.

780

781 **Structural and sequence analyses**

782 The AF2-multimer was employed via a Google Colab subscription, adhering to the set guidelines³¹.
783 With the aid of the "align" command in UCSF ChimeraX (version 1.7), the AF2 predictions were
784 superimposed onto known structures, and the confidence scores of the AF2 predictions were
785 displayed using the local distance difference test (pLDDT) scores on the IDDT- Ca metric³². The scoring
786 scale ranged from 0 to 100, with 100 indicating the highest confidence values. For sequence

787 alignment, the MUSCLE algorithm was utilized³³, and the resulting alignments were visualized and
788 color-coded using ESPript 3.0³⁴. Detailed information on the proteins and sequences used for AF2 can
789 be found in **Table S7**.

790

791 **Agrobacterium-mediated transient gene expression in *N. benthamiana***

792 Agrobacterium-mediated transient gene expression was conducted through agroinfiltration, following
793 the previously established method¹. *Agrobacterium tumefaciens* carrying the desired plasmid was
794 washed with water and then resuspended in agroinfiltration buffer (10 mM MES, 10 mM MgCl₂, pH
795 5.7). The OD₆₀₀ of the bacterial suspension was measured using the BioPhotometer
796 spectrophotometer (Eppendorf). Subsequently, the suspension was adjusted to the desired OD₆₀₀
797 based on the construct and the specific experiment. The adjusted bacterial suspension was then
798 infiltrated into 3 to 4-week-old *N. benthamiana* leaf tissue using a needleless 1ml Plastipak syringe.

799

800 **RNA isolation, cDNA synthesis, and RT-PCR**

801 To perform RNA extraction, 56 mg of leaf tissue was promptly frozen in liquid nitrogen. The RNA
802 extraction process employed TRIzol RNA Isolation Reagent (Invitrogen), following the manufacturer's
803 guidelines. Subsequently, RNA concentration was quantified using NanoDrop Lite Spectrophotometer
804 (Thermo Scientific). 2 mg of the extracted RNA underwent treatment with RQ1 RNase-Free DNase
805 (Promega) before being used for cDNA synthesis with SuperScript IV Reverse Transcriptase
806 (Invitrogen). The resulting cDNA was then amplified using Phusion High-Fidelity DNA Polymerase
807 (New England Biolabs). GAPDH level was utilized as the transcriptional control. The RT-PCR for
808 *TBC1D15L* was performed using the primers TBC1D15L_RTPCR_F and TBC1D15L_RTPCR_R,
809 while the RT-PCR for *GAPDH* was performed using the primers GAPDH_RTPCR_F and
810 GAPDH_RTPCR_R. All primers used in this study are detailed in **Table S5**.

811

812 **Co-immunoprecipitation and immunoblot analyses**

813 Proteins were transiently expressed in *N. benthamiana* leaves through agroinfiltration, and the harvest
814 took place 3 days after agroinfiltration. For western blotting experiments, six leaf discs were excised
815 using a size 4 cork borer (42 mg in total). Meanwhile, co-immunoprecipitation experiments utilized 2 g
816 of leaf tissues. The procedures for protein extraction, purification, and immunoblot analysis followed
817 the previously described protocols¹. The primary antibodies used included polyclonal anti-GFP
818 produced in rabbit (Chromotek), polyclonal anti-PR1 produced in rabbit (Agrisera), monoclonal anti-
819 RFP produced in mouse (Chromotek), and monoclonal anti-HA produced in rat (Chromotek). As for
820 secondary antibodies, anti-rabbit antibody for HRP detection and AP detection (Sigma-Aldrich), anti-
821 mouse antibody for HRP detection (Sigma-Aldrich), and anti-rat antibody for HRP detection (Sigma-
822 Aldrich) were employed. Comprehensive information regarding the antibodies used is detailed below.

823

Primary/Secondary	Detail	Company	Product Code
Primary	Anti-GFP (Rabbit polyclonal)	Chromotek	PABG1
Primary	Anti-RFP (Mouse monoclonal)	Chromotek	6G6
Primary	Anti-HA (Rat monoclonal)	Chromotek	7C9
Primary	Anti-PR1 (Rabbit polyclonal)	Agrisera	AS10 687
Secondary	Anti-rabbit (HRP)	Sigma-Aldrich	A9169
Secondary	Anti-rabbit (AP)	Sigma-Aldrich	SAB3700834
Secondary	Anti-rat (HRP)	Sigma-Aldrich	A9037
Secondary	Anti-mouse (HRP)	Sigma-Aldrich	SAB3700986

824 **List of antibodies used in this research.**

825

826 ***Phytophthora infestans* extract preparation and injection**

827 Mycelia obtained from *P. infestans* RSA plates were collected and suspended in 5 ml of water per
828 petri dish. The suspension was vortexed for 1 minute and subsequently heated at 95°C for 20 minutes.
829 Then, the mixture was filtered through filter paper with a 5-13 µm pore size. The resulting filtrate
830 underwent an additional filtration step using a syringe filter with a 0.45 µm pore size. This resultant
831 solution was then administered to plants to serve as a PAMP cocktail.

832

833 **Apoplastic washing fluid extraction**

834 Apoplastic proteins were obtained following the previously described procedure³⁵. Detached and
835 washed *N. benthamiana* leaves, which had undergone infiltration, were rolled up and placed into a
836 needleless syringe containing distilled water. Negative pressure was generated within the syringe to
837 facilitate the infiltration of the entire leaves with water. Afterwards, the infiltrated leaves were wrapped
838 in parafilm, placed into a syringe with the plunger removed, and inserted into a Falcon tube. The entire
839 setup was then centrifuged for 10 minutes at 1000 g at 4°C. The apoplastic washing fluid accumulated
840 at the bottom of the tube was collected and promptly frozen using liquid nitrogen. The remaining leaf
841 tissue was gathered for subsequent immunoblotting analysis.

842

843 **Cell death assay**

844 Cell death elicitors were introduced into the abaxial side of *N. benthamiana* leaves through
845 agroinfiltration. Subsequently, at 2-4 dpi, the leaves were detached and subjected to imaging under

846 both daylight and UV light conditions. The intensity of cell death was evaluated using a well-
847 established seven-tiered cell death index³⁶.

848

849 **Rab8a purification**

850 His-tagged Rab8a in Rosetta2 (DE3) pLysS strain *E. coli* was received from Yasin Dagdas. In brief,
851 *E. coli* transformed with Rab8a was grown to OD₆₀₀ of 0.6 and induced overnight with 0.3 mM IPTG at
852 18°C. Harvested cells were frozen in -80°C until needed. Cells were resuspended in 100 mM sodium
853 phosphate pH 7.2, 300mM NaCl, 50mM imidazole (buffer A) with an EDTA-free protease inhibitor
854 tablet (cComplete™, Roche). Following cell disruption (CF Cell Disrupter (Constant Systems Ltd) at 27
855 kpsi, 4°C, for 3 times) and ultracentrifugation, clear lysate was applied to a 5 mL HisTrap HP (Cytiva)
856 using a peristaltic pump (P1, Cytiva). Elutions were performed using an imidazole gradient (buffer A
857 and buffer A + 500mM imidazole) applied by an ÄKTA pure protein purification system (Cytiva).
858 Fractions were analysed with SDS-PAGE and eluted Rab8a was pooled and concentrated using an
859 Amicon Ultra 30kDa centrifugation filter. Rab8a was dialysed into 100 mM sodium phosphate pH 7.2,
860 150 mM NaCl buffer and stored at -80°C. Using purified Rab8a above the concentration of 0.1 mg/ml
861 led to a reduction in GTP levels, verifying the functionality of the purified Rab8a (Figure S5E). We
862 decide to carry out subsequent GTPase activity assays with 0.2 mg/ml Rab8a since this concentration
863 gave a robust and clear GTPase readout.

864

865 **GTPase activity assay**

866 To investigate the impact of proteins of interest on the GTPase activity of Rab8a, we employed a
867 luciferase-based GTPase assay utilizing the GTPase-Glo™ Assay Kit (Promega). The assay was
868 conducted following the guidelines provided by the manufacturer. Specifically, a mastermix of 2X GTP-
869 GAP solution was prepared, containing 10 µM GTP and 1 mM DTT in GTPase/GAP buffer. In each
870 well of the microplate, 12.5 µl of 0.4 mg/ml Rab8a was added, which was diluted in the buffer provided.
871 The GTPase reaction was initiated by adding 12.5 µl of the 2X GTP-GAP solution to each well. The
872 reaction was incubated for 120 minutes at RT with continuous shaking. Upon completion of the
873 GTPase reaction, 25 µl of reconstituted GTPase-Glo™ Reagent was introduced to convert the
874 unhydrolyzed GTP to ATP. The plate was then incubated for 30 minutes at RT with shaking.
875 Subsequently, 50 µl of Detection Reagent was added to all the wells, and they were incubated for 10
876 minutes at RT. Finally, luminescence was measured using CLARIOstar® Plus plate reader.

877

878 **Image processing and data analysis**

879 The confocal microscopy images were processed using Leica LAS X software and ImageJ. Depending
880 on the specific experiment, the confocal images could be either single plane images or Z-stack images,
881 and this information is provided in the figure legends. Image analysis and quantification for cell death

882 and infection assay experiments were performed using ImageJ. For data representation, violin plots
883 and box plots were created using R, while bar graphs were generated using Microsoft Excel. To assess
884 statistical differences, a range of tests, including Student's t-test and Mann-Whitney U test, were
885 conducted based on statistical normality and variance. Measurements were deemed significant when
886 $p < 0.05$ (*), $p < 0.01$ (**) and highly significant when $p < 0.001$ (***) $.$ Detailed information regarding all
887 the statistical calculations can be found in **Table S8**.

888

889 **Accession numbers/identifiers:**

890 TBC1D15L (Nbe.v1.s00100g29830)

891 TIKI (PLTG_0964243, Table S1)

892 PiE354 (PITG_04354, Table S1)

893 PiE355 (PITG_04355, Table S1)

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917 **Acknowledgments**

918 We extend our sincere appreciation to the Imperial College FILM facility for their technical expertise
919 and provision of microscopy equipment. We would also like to acknowledge Mehdi Doumane and
920 Ayoub Kadoussi for their technical contributions. Additionally, we would like to express our gratitude
921 to the members of the Bozkurt, Schornack, and Kamoun groups for their insightful suggestions and
922 engaging discussions. E.L.H.Y. would like to thank Baptiste Castel, Cécile Segonzac, Mark Banfield,
923 Şuayib Üstün, and Thorsten Langner for providing useful feedback and encouragement during the
924 OMGN 2022, MPMI 2023 and ICPP 2023 conferences.

925

926 **Funding**

927 BBSRC grant BB/X016382/1 (E.L.H.Y.)
928 BBSRC grant BB/T006102/1 (Y.T., T.O.B.)
929 BBSRC Impact Acceleration Fund BB/X511055/1 (T.I.)

930

931 **Author contributions**

932 Conceptualization: E.L.H.Y., S.K., S.S., T.O.B.
933 Methodology: E.L.H.Y., S.S., T.O.B., E.E., F.T.,
934 Validation: E.L.H.Y., Y.T., L.I.C., E.E., F.T.,
935 Formal Analysis: E.L.H.Y., Y.T., L.I.C., T.I., E.E., F.T., J.S., F.M.
936 Investigation: E.L.H.Y., Y.T., L.I.C., T.I., E.E., F.T., J.S., F.M.
937 Data Curation: E.L.H.Y., S.S., T.O.B.
938 Visualization: E.L.H.Y., T.O.B.
939 Writing – Original Draft: E.L.H.Y., T.O.B.
940 Writing – Review & Editing: E.L.H.Y., T.O.B.
941 Supervision: E.L.H.Y., F.M., S.K., D.B., S.S., T.O.B.
942 Funding Acquisition: S.K., D.B., S.S., T.O.B.

943

944 **Competing interest statement**

945 T.O.B. and S.K. receive funding from industry on NLR biology. T.O.B. and S.K. cofounded Resurrect
946 Bio Ltd. on resurrecting disease resistance. The remaining authors have no conflicts of interest to
947 declare.

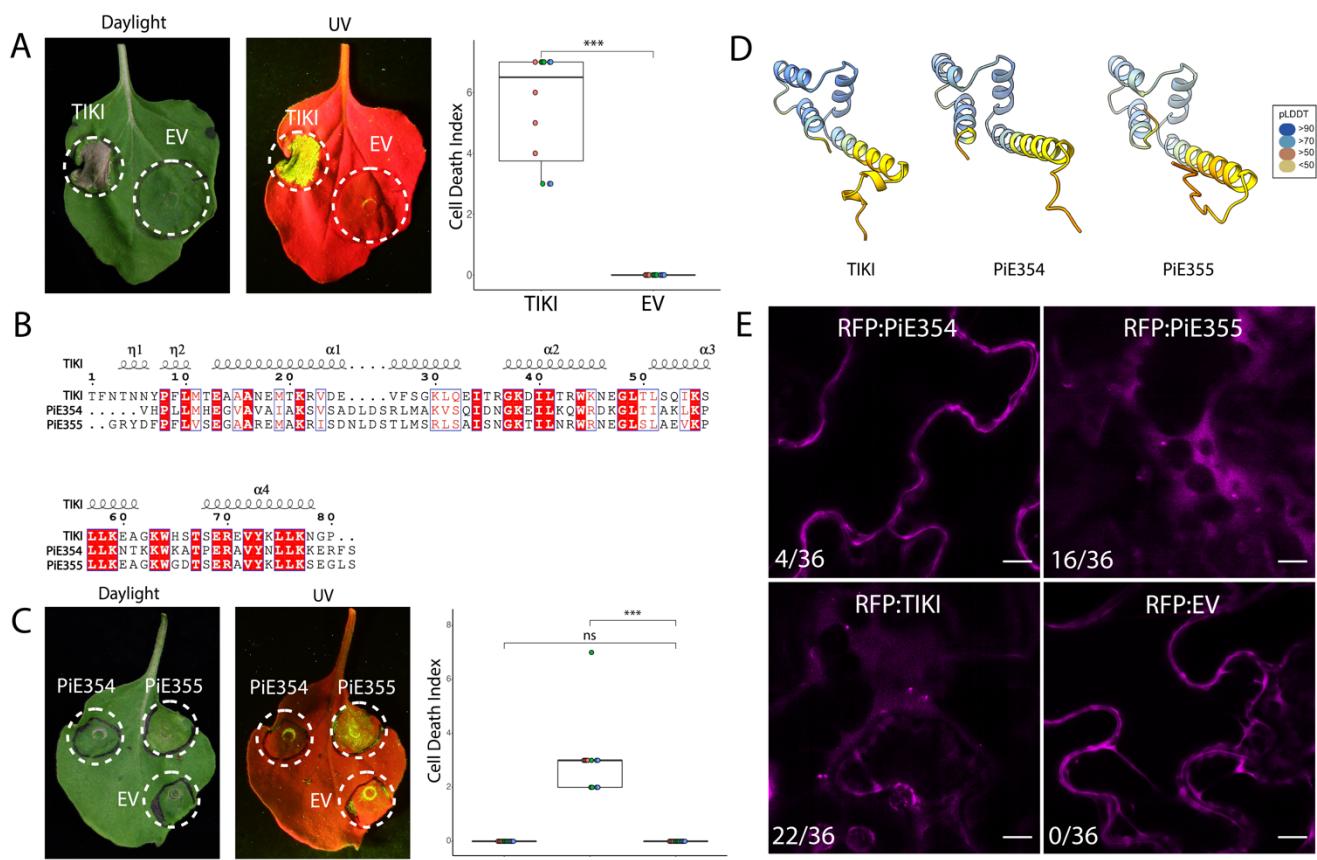
948

949

950

951

952 **Declaration of generative AI and AI-assisted technologies in the writing process**
953 During the preparation of this work, the authors used ChatGPT to check grammar and phrasing. After
954 using ChatGPT, the authors reviewed and edited the content as needed and take full responsibility for
955 the content of the publication.
956


957 **Data and materials availability**
958 All relevant study data are included in the article, and in the Supplementary Materials files. AF2-
959 multimer predictions are uploaded to the public repository Figshare and is available at
960 <https://doi.org/10.6084/m9.figshare.24846558>.
961

962 **Supplementary materials in this combined PDF include:**
963 Supplementary figures S1-S6
964

965 **Other supplementary materials for this manuscript include:**
966 Table S1. Protein and DNA sequences of effectors
967 Table S2. List of interactors of TIKI identified in Y2H
968 Table S3. List of interactors of TIKI identified by IP-MS
969 Table S4. List of interactors of TBC1D15L identified by IP-MS
970 Table S5. Primers and synthetic fragments used
971 Table S6. Detail of all constructs
972 Table S7. Proteins and sequences used for AF2
973 Table S8. Statistics details and summary
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988

989 Supplementary Figures

990

991

992 **Figure S1. Conserved effectors from *Phytophthora* species target TBC1D15L. Related to Figure**
993 **1.** (A) Expression of TIKI causes cell death. Representative *N. benthamiana* leaves infiltrated with TIKI
994 or EV. Daylight and UV images were taken at 4 dpi, and cell death was scored at 4 dpi. Box and dot
995 plot showing TIKI expression causes cell death in plants (5.5, N = 12), while EV control does not (0.0,
996 N = 12). (B) Pairwise amino acid sequence alignment of the *Phytophthora* effectors TIKI, PiE354 and
997 PiE355. Alignments were obtained using the MUSCLE algorithm and were visualized and color-coded
998 via ESPript 3.0³⁴. The squiggle symbols on top indicate α -helices. Red box indicates strict identical
999 residues, while blue frame indicates similar residues. (C) Expression of PiE355, but not PiE354,
1000 causes cell death. Representative *N. benthamiana* leaves infiltrated with PiE354, PiE355, or EV.
1001 Daylight and UV images were taken at 4 dpi, and cell death was scored at 4 dpi. Box and dot plot
1002 showing PiE355 expression causes cell death in plants (3.0, N = 12), while PiE354 expression (0.0, N
1003 = 12) and EV expression (0.0, N = 12) do not. (D) AF2 structures of the effectors TIKI from *P.*
1004 *palmivora*, and PiE354 & PiE355 from *P. infestans*. The colors of TIKI, PiE354 and PiE355 are based
1005 on the AF2-calculated prediction confidence score (pLDDT) as indicated in the rectangular box. (E)
1006 PiE354 forms punctate structures less frequently than PiE355 and TIKI. Confocal micrographs of *N.*
1007 *benthamiana* leaf epidermal cells transiently expressing RFP:PiE354, RFP:PiE355, RFP:TIKI, or
1008 RFP:EV control. For RFP:PiE354, 4 out of 36 images contain punctate structures. For RFP:PiE355,
1009 16 out of 36 images contain punctate structures. For RFP:TIKI, 22 out of 36 images contain punctate

1010 structures. For RFP:EV, none of the 36 images contain punctate structures. Presented images are
1011 single plane images. Scale bars, 5 μ m. All statistical differences were analyzed by Mann-Whitney U
1012 test in R. Measurements were highly significant when $p < 0.001$ (***)�

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

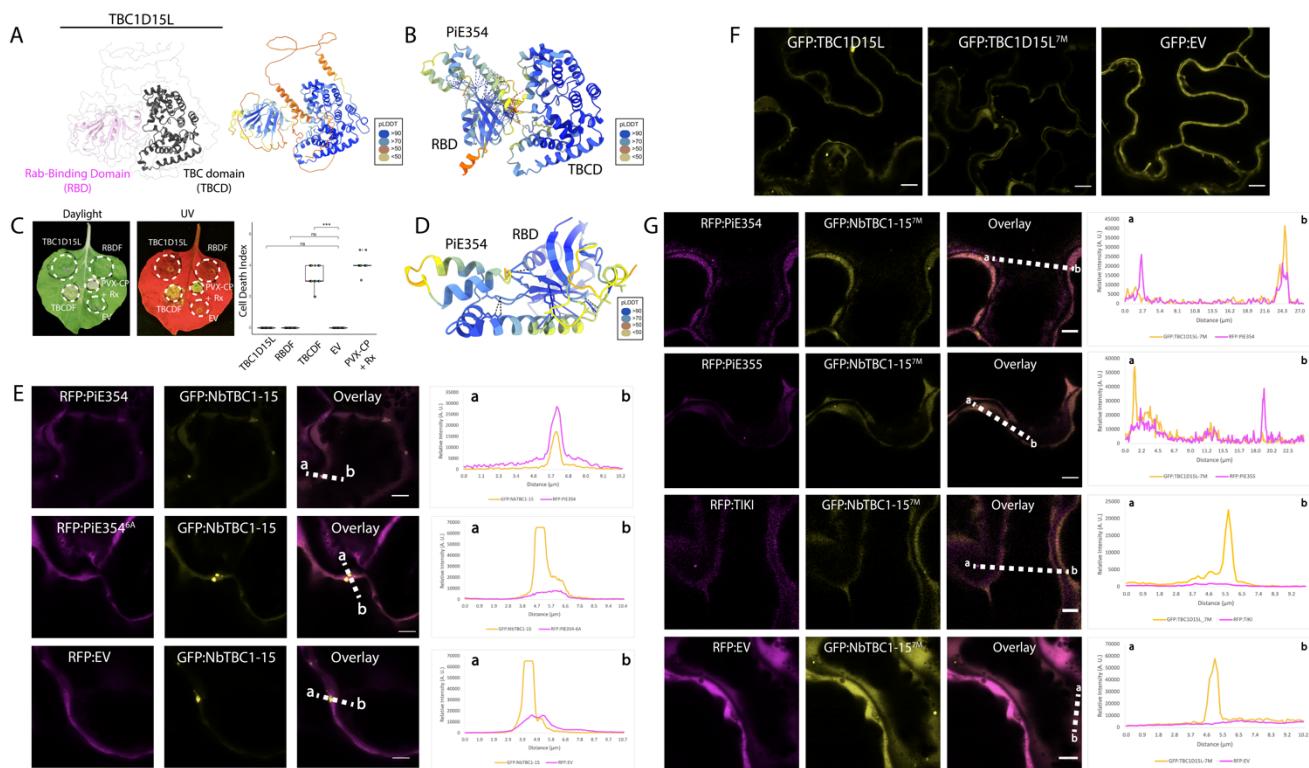
1038

1039

1040

1041

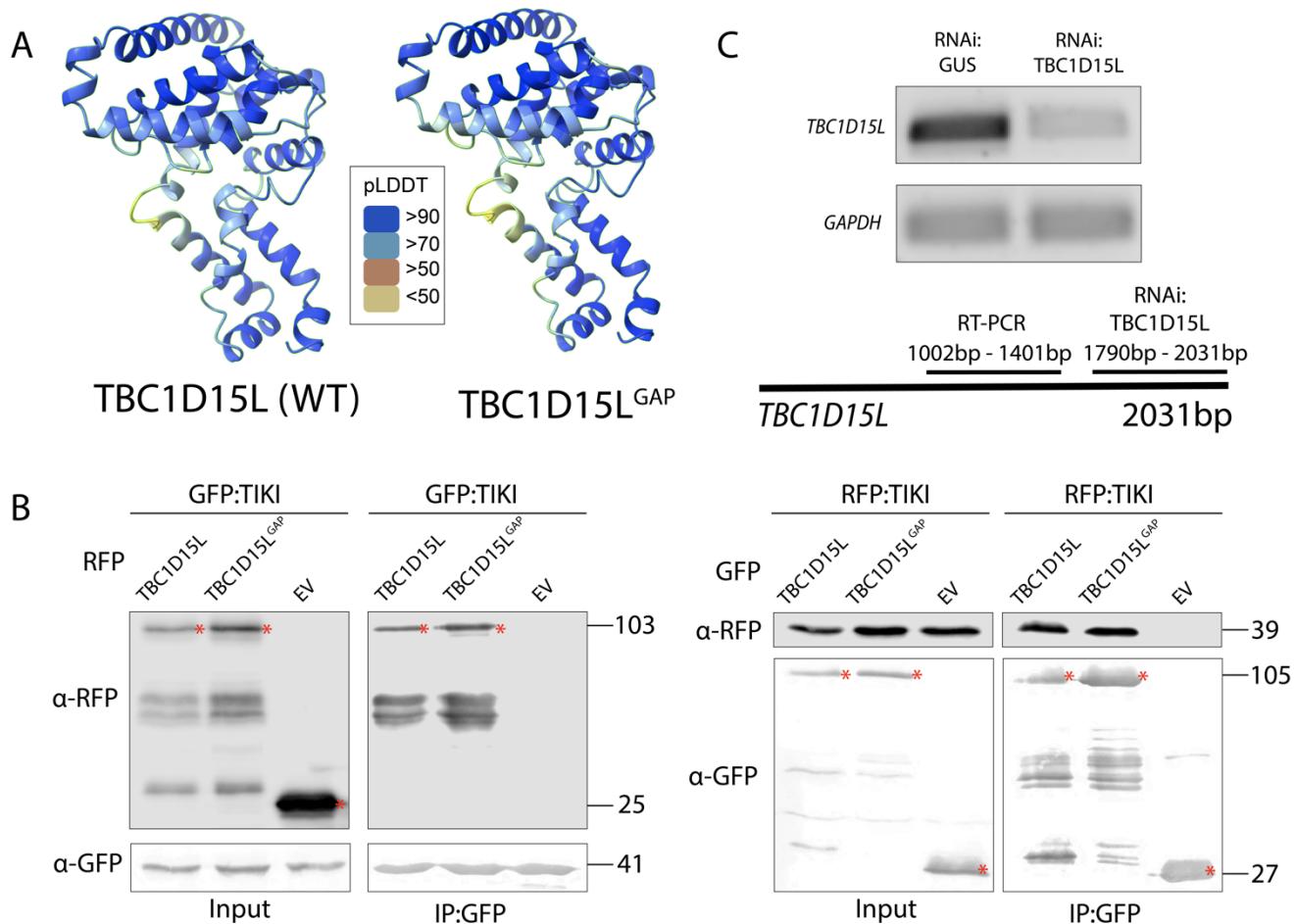
1042

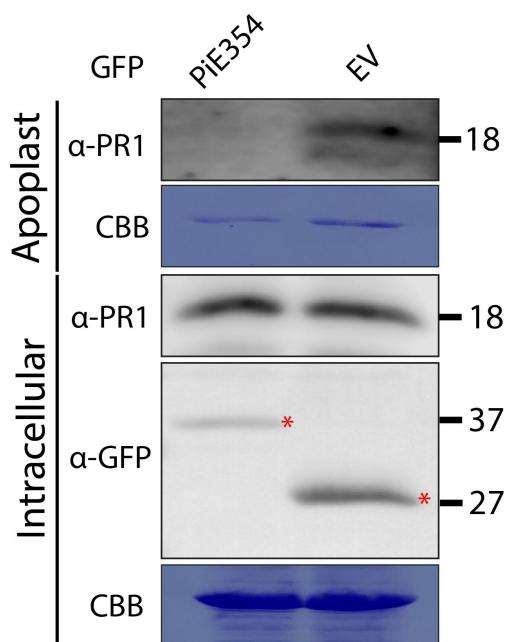

1043

1044

1045

1046


1047



1048

1049 **Figure S2. PiE354 targets the N-terminal RBD fragment of TBC1D15L. Related to Figure 2. (A)**
1050 AF2 model of TBC1D15L architecture. (Left panel) A Rab-binding domain (RBD) is located at the N-
1051 terminal, and a TBC domain (TBCD) is located at the C-terminal. (Right panel) The colors of the AF2-
1052 model of TBC1D15L are based on the AF2-calculated prediction confidence score (pLDDT) as
1053 indicated in the rectangular box. (B) AF2-M-predicted model of PiE354 targeting TBC1D15L. The
1054 colors of the PiE354-TBC1D15L AF2-M model are based on the AF2-calculated prediction confidence
1055 score (pLDDT) as indicated in the rectangular box. (C) Expression of TBCDF elicits cell death activity.
1056 Representative *N. benthamiana* leaves infiltrated with TBC1D15L, RBDF, TBCDF or EV control. PVX-
1057 CP and Rx were co-infiltrated as a positive control for cell death activity. Daylight and UV images were
1058 taken at 4 dpi, and cell death was scored at 4dpi. Box and dot plot showing TBCDF expression causes
1059 cell death in plants (3.3, N = 20) while TBC1D15L (0.0, N = 20), RBDF (0.0, N = 20) and EV control
1060 expression (0.0, N = 20) do not. Statistical differences were analyzed by Mann-Whitney U test in R.
1061 Measurements were highly significant when p<0.001 (**). (D) AF2-M-predicted model of PiE354
1062 targeting the RBD of TBC1D15L. The colors of the PiE354-RBD AF2-M model are based on the AF2-
1063 calculated prediction confidence score (pLDDT) as indicated in the rectangular box. (E) PiE354
1064 colocalizes with TBC1D15L through 6 key residues on PiE354. Confocal micrographs of *N.*
1065 *benthamiana* leaf epidermal cells transiently expressing either RFP:PiE354 (1st row), RFP:PiE354^{6A}
1066 (2nd row), or RFP:EV (3rd row), with GFP:TBC1D15L. (F) TBC1D15L and TBC1D15L^{7M} show
1067 cytoplasmic localization with puncta formation. Confocal micrographs of *N. benthamiana* leaf
1068 epidermal cells transiently expressing GFP:TBC1D15L, GFP:TBC1D15L^{7M}, or GFP:EV control. (G)
1069 TBC1D15L^{7M} does not colocalize with the effectors PiE354, PiE355 and TIKI in puncta. Confocal
1070 micrographs of *N. benthamiana* leaf epidermal cells transiently co-expressing GFP:TBC1D15L^{7M} with

1071 either RFP:PiE354 (1st row), RFP:PiE355 (2nd row), RFP:TIKI (3rd row), or RFP:EV control (4th row).
1072 All presented confocal images are single plane images. Transects in overlay panels correspond to line
1073 intensity plots depicting the relative fluorescence across the marked distance. Scale bars, 5 μ m.
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107

1127

1128 **Figure S4. PiE354 disrupts antimicrobial PR1 secretion into the apoplast. Related to Figure 4.**
1129 To conduct PR1 secretion assays, the infiltrated leaves were challenged with *P. infestans* extract at
1130 3 dpi and proteins were extracted from the apoplast and leaf tissue at 4 dpi and immunoblotted.
1131 Western blot shows PiE354 disrupts antimicrobial PR1 secretion into the apoplast. *N. benthamiana*
1132 leaves were infiltrated to express GFP:PiE354, or GFP:EV. Red asterisks show expected band
1133 sizes. Numbers on the right indicate kDa values.

1134

1135

1136

1137

1138

1139

1140

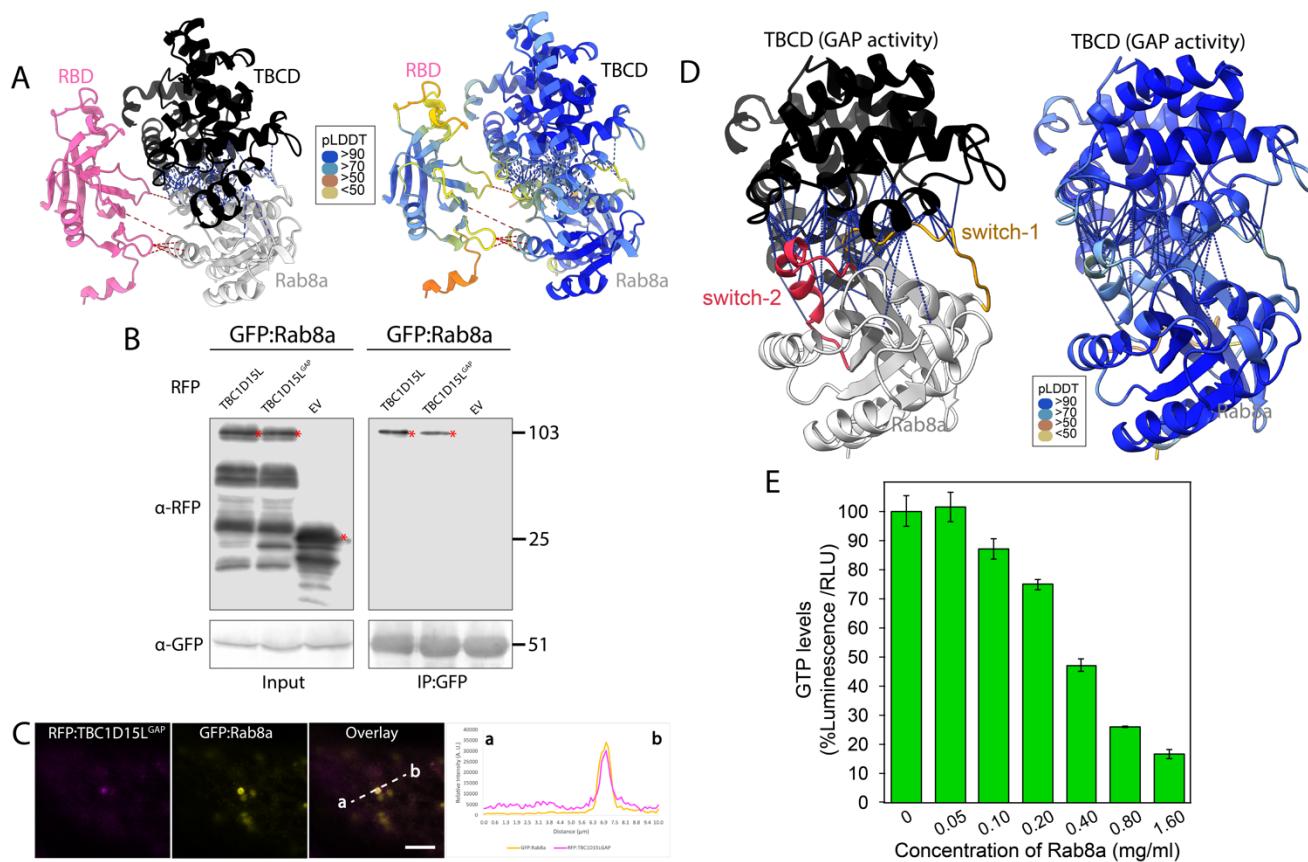
1141

1142

1143

1144

1145


1146

1147

1148

1149

1150

1151

1152 **Figure S5. Rab8a is a GAP substrate of TBC1D15L. Related to Figure 5.** (A) AF2-M-predicted
1153 model of full length TBC1D15L and Rab8a in complex. (Left panel) Rab8a interacts with both the RBD
1154 fragment (RBDF) and TBCD fragment (TBCDF) of TBC1D15L. (Right panel) The colors of full length
1155 TBC1D15L-Rab8a AF2-M model are based on the AF2-calculated prediction confidence score
1156 (pLDDT) as indicated in the rectangular box. (B) Rab8a interacts with TBC1D15L *in planta*
1157 independent of the GAP activity of TBC1D15L. GFP:Rab8a was transiently co-expressed with either
1158 RFP:TBC1D15L, RFP:TBC1D15L^{GAP}, or RFP:EV. IPs were obtained with anti-GFP antibody. Total
1159 protein extracts were immunoblotted. Red asterisks indicate expected band sizes. Numbers on the
1160 right indicate kDa values. (C) Rab8a colocalizes with TBC1D15L in puncta independent of the GAP
1161 activity of TBC1D15L. Confocal micrographs of *N. benthamiana* leaf epidermal cells transiently
1162 expressing RFP:TBC1D15L^{GAP} with GFP:Rab8a. Presented images are single plane images.
1163 Transects in overlay panels correspond to line intensity plots depicting the relative fluorescence across
1164 the marked distance. Scale bars, 5 μm. (D) AF2-M-predicted model of Rab8a in a complex with the
1165 TBCD of TBC1D15L. (Left panel) TBCD, which is crucial for the GAP activity of TBC1D15L, makes
1166 multiple contacts with the switch-1 and switch-2 regions of Rab8a that regulate GTP hydrolysis activity.
1167 Switch-1 and switch-2 regions that are flanking the GTP binding pocket are colored bronze and red
1168 respectively. (Right panel) The colors of TBCDF-Rab8a AF2-M model are based on the AF2-
1169 calculated prediction confidence score (pLDDT) as indicated in the rectangular box. (E) Bar graph
1170 depicting the impact of varying concentrations of Rab8a on intrinsic GTPase activity. Serially diluted
1171 Rab8a in GTPase/GAP Buffer was combined with 2X GTP solution containing 10 μM GTP and 1 mM

1172 DTT, resulting in initial reaction mixtures with Rab8a concentrations ranging from 0 to 1.60 mg/ml.
1173 These mixtures were then incubated at 25°C for 120 minutes as per manufacturer's guidelines. An
1174 equal volume of reconstituted GTPase-Glo™ Reagent was added to the solutions to cease the GTP
1175 hydrolysis reaction, and the mixture was incubated for 30 minutes at room temperature. Following the
1176 incubation, the detection buffer was added, and luminescence levels were recorded, which correspond
1177 to the quantity of unhydrolyzed GTP remaining in the solution after the GTPase reaction.

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

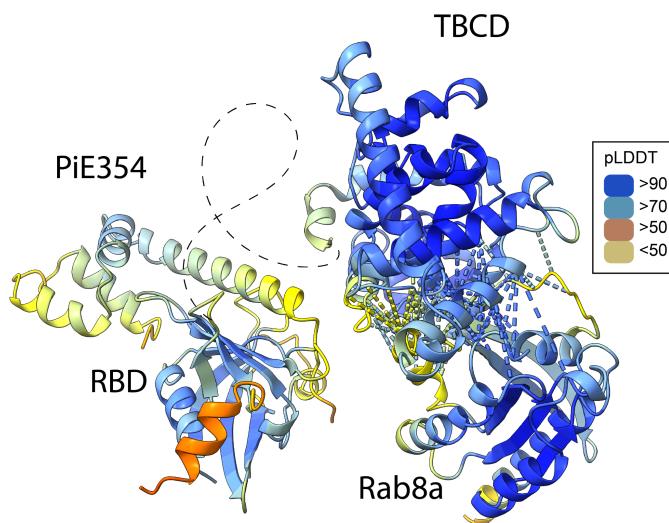
1190

1191

1192

1193

1194


1195

1196

1197

1198

1199

1200

1201 **Figure S6. AF2-M-predicted model of PiE354 in complex with the TBC1D15L-Rab8a pair.**

1202 **Related to Figure 7.** The colors of PiE354-TBC1D15L-Rab8a AF2-M model are based on the AF2-

1203 calculated prediction confidence score (pLDDT) as indicated in the rectangular box.

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228 **References**

1229

- 1230 1. Bozkurt, T.O., Schornack, S., Win, J., Shindo, T., Illyas, M., Oliva, R., Cano, L.M., Jones, A.M.,
1231 Huitema, E., and van der Hoorn, R.A. (2011). Phytophthora infestans effector AVRblb2
1232 prevents secretion of a plant immune protease at the haustorial interface. *Proceedings of the*
1233 *National Academy of Sciences* **108**, 20832-20837.
- 1234 2. Nomura, K., Mecey, C., Lee, Y.-N., Imboden, L.A., Chang, J.H., and He, S.Y. (2011). Effector-
1235 triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic
1236 regulator in *Arabidopsis*. *Proceedings of the National Academy of Sciences* **108**, 10774-10779.
- 1237 3. Li, T., Ai, G., Fu, X., Liu, J., Zhu, H., Zhai, Y., Pan, W., Shen, D., Jing, M., and Xia, A. (2022).
1238 A *Phytophthora capsici* RXLR effector manipulates plant immunity by targeting RAB proteins
1239 and disturbing the protein trafficking pathway. *Molecular Plant Pathology* **23**, 1721.
- 1240 4. Tomczynska, I., Stumpe, M., and Mauch, F. (2018). A conserved Rx LR effector interacts with
1241 host RABA-type GTP ases to inhibit vesicle-mediated secretion of antimicrobial proteins. *The*
1242 *Plant Journal* **95**, 187-203.
- 1243 5. Michalopoulou, V.A., Mermigka, G., Kotsaridis, K., Mentzelopoulou, A., Celie, P.H., Moschou,
1244 P.N., Jones, J.D., and Sarris, P.F. (2022). The host exocyst complex is targeted by a conserved
1245 bacterial type-III effector that promotes virulence. *The Plant Cell* **34**, 3400-3424.
- 1246 6. Petre, B., Contreras, M.P., Bozkurt, T.O., Schattat, M.H., Sklenar, J., Schornack, S., Abd-El-
1247 Haliem, A., Castells-Graells, R., Lozano-Durán, R., and Dagdas, Y.F. (2021). Host-interactor
1248 screens of *Phytophthora infestans* RXLR proteins reveal vesicle trafficking as a major effector-
1249 targeted process. *The Plant Cell* **33**, 1447-1471.
- 1250 7. Dagdas, Y.F., Pandey, P., Tumtas, Y., Sanguankiatthai, N., Belhaj, K., Duggan, C., Leary,
1251 A.Y., Segretin, M.E., Contreras, M.P., and Savage, Z. (2018). Host autophagy machinery is
1252 diverted to the pathogen interface to mediate focal defense responses against the Irish potato
1253 famine pathogen. *Elife* **7**, e37476.
- 1254 8. Kwon, C., Neu, C., Pajonk, S., Yun, H.S., Lipka, U., Humphry, M., Bau, S., Straus, M.,
1255 Kwaaitaal, M., and Rampelt, H. (2008). Co-option of a default secretory pathway for plant
1256 immune responses. *Nature* **451**, 835-840.
- 1257 9. Nielsen, M.E., and Thordal-Christensen, H. (2013). Transcytosis shuts the door for an
1258 unwanted guest. *Trends in plant science* **18**, 611-616.
- 1259 10. Yuen, E.L.H., Shepherd, S., and Bozkurt, T.O. (2023). Traffic Control: Subversion of Plant
1260 Membrane Trafficking by Pathogens. *Annual Review of Phytopathology* **61**.
- 1261 11. Bozkurt, T.O., Belhaj, K., Dagdas, Y.F., Chaparro-Garcia, A., Wu, C.H., Cano, L.M., and
1262 Kamoun, S. (2015). Rerouting of plant late endocytic trafficking toward a pathogen interface.
1263 *Traffic* **16**, 204-226.
- 1264 12. Bozkurt, T.O., and Kamoun, S. (2020). The plant-pathogen haustorial interface at a glance.
1265 *Journal of Cell Science* **133**, jcs237958.
- 1266 13. Inada, N., Betsuyaku, S., Shimada, T.L., Ebine, K., Ito, E., Kutsuna, N., Hasezawa, S., Takano,
1267 Y., Fukuda, H., and Nakano, A. (2016). Modulation of plant RAB GTPase-mediated membrane
1268 trafficking pathway at the interface between plants and obligate biotrophic pathogens. *Plant*
1269 and *Cell Physiology* **57**, 1854-1864.

1270 14. Pandey, P., Leary, A.Y., Tumtas, Y., Savage, Z., Dagvadorj, B., Duggan, C., Yuen, E.L.,
1271 Sanguankiatthai, N., Tan, E., and Khandare, V. (2021). An oomycete effector subverts host
1272 vesicle trafficking to channel starvation-induced autophagy to the pathogen interface. *Elife* 10,
1273 e65285.

1274 15. Gabernet-Castello, C., O'Reilly, A.J., Dacks, J.B., and Field, M.C. (2013). Evolution of tre-
1275 2/bub2/Cdc16 (TBC) rab GTPase-activating proteins. *Molecular biology of the cell* 24, 1574-
1276 1583.

1277 16. De Arras, L., Yang, I.V., Lackford, B., Riches, D.W., Prekeris, R., Freedman, J.H., Schwartz,
1278 D.A., and Alper, S. (2012). Spatiotemporal inhibition of innate immunity signaling by the
1279 Tbc1d23 RAB-GAP. *The Journal of Immunology* 188, 2905-2913.

1280 17. Roos, J., Bejai, S., Oide, S., and Dixielius, C. (2014). RabGAP22 is required for defense to the
1281 vascular pathogen *Verticillium longisporum* and contributes to stomata immunity. *PLoS one* 9,
1282 e88187.

1283 18. Nomura, K., DebRoy, S., Lee, Y.H., Pumplin, N., Jones, J., and He, S.Y. (2006). A bacterial
1284 virulence protein suppresses host innate immunity to cause plant disease. *Science* 313, 220-
1285 223.

1286 19. Üstün, S., Hafrén, A., Liu, Q., Marshall, R.S., Minina, E.A., Bozhkov, P.V., Vierstra, R.D., and
1287 Hofius, D. (2018). Bacteria exploit autophagy for proteasome degradation and enhanced
1288 virulence in plants. *The Plant Cell* 30, 668-685.

1289 20. Machado Wood, A.K., Panwar, V., Grimwade-Mann, M., Ashfield, T., Hammond-Kosack, K.E.,
1290 and Kanyuka, K. (2021). The vesicular trafficking system component MIN7 is required for
1291 minimizing *Fusarium graminearum* infection. *Journal of Experimental Botany* 72, 5010-5023.

1292 21. McLellan, H., Harvey, S.E., Steinbrenner, J., Armstrong, M.R., He, Q., Clewes, R., Pritchard,
1293 L., Wang, W., Wang, S., and Nussbaumer, T. (2022). Exploiting breakdown in nonhost
1294 effector-target interactions to boost host disease resistance. *Proceedings of the National
1295 Academy of Sciences* 119, e2114064119.

1296 22. Zhang, Z., Wang, S., Shen, T., Chen, J., and Ding, J. (2014). Crystal structure of the Rab9A-
1297 RUTBC2 RBD complex reveals the molecular basis for the binding specificity of Rab9A with
1298 RUTBC2. *Structure* 22, 1408-1420.

1299 23. Pan, X., Eathiraj, S., Munson, M., and Lambright, D.G. (2006). TBC-domain GAPs for Rab
1300 GTPases accelerate GTP hydrolysis by a dual-finger mechanism. *Nature* 442, 303-306.

1301 24. Yuen, E.L.H., Leary, A.Y., Clavel, M., Tumtas, Y., Mohseni, A., Picchianti, L., Jamshidiha, M.,
1302 Pandey, P., Duggan, C., and Cota, E. (2023). A RabGAP-Rab GTPase pair regulates plant
1303 autophagy and immunity. *bioRxiv*, 2023.2007. 2003.547386.

1304 25. Henry, L., and Sheff, D.R. (2008). Rab8 regulates basolateral secretory, but not recycling,
1305 traffic at the recycling endosome. *Molecular biology of the cell* 19, 2059-2068.

1306 26. Speth, E.B., Imboden, L., Hauck, P., and He, S.Y. (2009). Subcellular localization and
1307 functional analysis of the *Arabidopsis* GTPase RabE. *Plant physiology* 149, 1824-1837.

1308 27. Win, J., Chaparro-Garcia, A., Belhaj, K., Saunders, D., Yoshida, K., Dong, S., Schornack, S.,
1309 Zipfel, C., Robatzek, S., and Hogenhout, S. (2012). Effector biology of plant-associated
1310 organisms: concepts and perspectives. (Cold spring harbor laboratory press), pp. 235-247.

1311 28. Dagdas, Y.F., Belhaj, K., Maqbool, A., Chaparro-Garcia, A., Pandey, P., Petre, B., Tabassum, N., Cruz-Mireles, N., Hughes, R.K., and Sklenar, J. (2016). An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. *Elife* 5, e10856.

1312

1313

1314 29. Yan, P., Shen, W., Gao, X., Li, X., Zhou, P., and Duan, J. (2012). High-throughput construction of intron-containing hairpin RNA vectors for RNAi in plants. *PLOS one* 7, e38186.

1315

1316 30. van West, P., de Jong, A.J., Judelson, H.S., Emons, A.M.C., and Govers, F. (1998). The ipiO Gene of *Phytophthora infestans* Is Highly Expressed in Invading Hyphae during Infection. *Fungal Genetics and Biology* 23, 126-138.

1317

1318

1319 31. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., and Potapenko, A. (2021). Highly accurate protein structure prediction with AlphaFold. *Nature* 596, 583-589.

1320

1321

1322 32. Mariani, V., Biasini, M., Barbato, A., and Schwede, T. (2013). IDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. *Bioinformatics* 29, 2722-2728.

1323

1324

1325 33. Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic acids research* 32, 1792-1797.

1326

1327 34. Robert, X., and Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. *Nucleic acids research* 42, W320-W324.

1328

1329 35. O'Leary, B.M., Rico, A., McCraw, S., Fones, H.N., and Preston, G.M. (2014). The infiltration-centrifugation technique for extraction of apoplastic fluid from plant leaves using *Phaseolus vulgaris* as an example. *JoVE (Journal of Visualized Experiments)*, e52113.

1330

1331

1332 36. Wu, C.-H., Abd-El-Haliem, A., Bozkurt, T.O., Belhaj, K., Terauchi, R., Vossen, J.H., and Kamoun, S. (2017). NLR network mediates immunity to diverse plant pathogens. *Proceedings of the National Academy of Sciences* 114, 8113-8118.

1333

1334

1335