

1 **Comparative analysis of the plasma metabolome of migrating passerines during stopover:**2 **Novel insights into flight metabolism**3 bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not yet certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.4 By Adi Domer *¹, Weronika Jasinska¹, Leah Rosental¹, Eyal Shochat^{1,2}, Saleh Alseekh^{3,4}, Alisdair5 R. Fernie^{3,4}, Yariv Brotman¹ and Ofer Ovadia^{1,5}

6

7 ¹ Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel8 ² Yerucham Center of Ornithology and Ecology, Yerucham, Israel9 ³ Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany10 ⁴ Institute of Plants Systems Biology and Biotechnology, Plovdiv, Bulgaria11 ⁵ The Goldman Sonnenfeldt School of and Climate Change, Ben Gurion University of the Negev,

12 Beer Sheva 84105, Israel

13 *Corresponding Author: adiyech@post.bgu.ac.il

14

15 **Classification:** Biological Sciences/Ecology16 **Key words:** Avian insulin resistance, Bird migration, Flight metabolism, Stopover ecology,

17 Untargeted metabolomics.

18

19

20 **Abstract**

21 During long distance migration, many birds may experience periods of either prolonged

22 bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. It is made available under a [CC-BY-ND 4.0 International license](#).

23 that habitat selection during stopover can largely affect the migration outcome of an individual.

24 Despite decades of research of the avian metabolism during stopover and migration, many

25 questions have remained unanswered, as such research mainly focused on targeted metabolites and

26 fat metabolism. Here, we examined the plasma-metabolome of migrating passerines prior to their

27 crossing the Sahara Desert. Birds were sampled at two sites populated by Pistacia trees, bearing

28 fat-rich fruits, and at an additional site dominated by blooming Eucalyptus trees. The blood

29 samples were analyzed using both GC-MS and LC-MS, using an untargeted approach. We found

30 that birds from one of the sites had a distinguish metabolic profile, suggesting recent landing.

31 Examination of metabolic pathways activated during stopovers indicated a crucial role for cycling

32 glucose through the Cori and Cahill cycles in resting and recovery processes. This novel

33 perspective, conducted on free-ranging birds, suggests the evolution of avian insulin resistance

34 due to factors such as endurance exercise, fasting, and a preference for fatty acid oxidation during

35 migration, akin to cell trauma recovery. Additionally, we investigated inter-site variations in birds'

36 metabolic profiles. Significant variations were observed in both polar and lipophilic metabolites

37 among the sites. Differences in polar metabolites were primarily attributed to variations in the

38 physiological state of the birds between sites, while distinctions in the lipophilic profiles of rested

39 birds were linked to variations in their primary food sources. This study underscores the challenge

40 of interpreting commonly used indicators for assessing migrating birds' physiological states and

41 site quality, which are predominantly derived from lipid metabolism, in complex ecological

42 systems.

43 **Introduction**

44 Animal migration – one of nature's most visible and widespread phenomena (Wilcove and

45 Wikelski 2008) – has evolved independently several in varying taxa (Aldrey 1981; Migratory

46 behavior is widely common in the avian taxon, with approximately half of the species performing

47 some type of migratory movements (Berthold 1996). Migratory birds alternate between two

48 extreme physiological states, fasting during the long-distance endurance flights and resting or

49 extensively feeding during stopovers (McWilliams and Karasov 2005). Hence, selecting a proper

50 stopover site is crucial for long-distance migrants as low fuel deposition rates can extend their total

51 migration period and affect their fitness (Gómez et al. 2017, Domer et al. 2021). We present an in-

52 depth comparative analysis of the untargeted metabolomic profiling of wild migratory passerines

53 sampled in the eastern Mediterranean region during autumn, along one of the most important

54 flyways in the old world. Previous targeted metabolic studies on wild and captive migratory birds

55 have provided important insights into flight metabolism modalities, including fuel utilization

56 (Jenni and Jenni-Eiermann 1998, Jenni-Eiermann et al. 2002, Smith et al. 2007), protein

57 catabolism (Robin et al. 1987, Smith et al. 2007), and oxidative damage repair of flight muscles

58 (Costantini et al. 2007). While these studies have laid the foundations for the metabolic migration

59 framework, they considered only a few targeted metabolites (Jenni-Eiermann and Jenni 1991,

60 Jenni and Jenni-Eiermann 1998, Jenni-Eiermann et al. 2002, Guglielmo et al. 2005, Seaman et al.

61 2005) while mainly focusing on lipid metabolism. Flight metabolism comprises many inter-

62 dependent pathways and modalities, some of which have recently gained attention (Levin et al.

63 2017, Potter et al. 2021, Satoh 2021). To broaden the current perspective of flight metabolism and

64 to better link the different metabolic pathways it comprises, we have adopted an untargeted

65 metabolomic approach.

66 Within the adopted untargeted approach, we focused on the following metabolic pathways:

67 (1) lipid metabolism, (2) amino acid metabolism, and (3) glucose metabolism.

68 bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

69 (1) Lipids are considered the primary energy source during endurance migration flights

70 (Blem 1976, Stevens 2004), accumulated before the migration journey. Plasma triglycerides
71 (TAGs) are usually elevated during refueling (Jenni-Eiermann and Jenni 1992) but may also
72 increase during flight (Bordel and Haase 1993, Schwilch et al. 1996a). Such TAGs differ in their
73 fatty acid (FA) composition in terms of the length of the carbon chain and the unsaturation levels.

74 Most lipid reserves in migrating birds are polyunsaturated FA (PUFA) and they are usually
75 considered as the preferred fuel for endurance exercise (Maillet and Weber 2006). Two additional

76 metabolites reflecting the physiological state of an individual bird are plasma glycerol, which
77 increases during fasting due to high rates of lipolysis (Jenni-Eiermann and Jenni 1991), and plasma
78 β -Hydroxybutyric acid (BUTY), which increases during fasting owing to ketone formation. The

79 level of BUTY increases shortly after exercise (~20 minutes), indicating post-exercise ketosis that
80 lasts for several hours (Jenni-Eiermann and Jenni 2001). BUTY levels gradually decrease after
81 sufficient rest (~10 hours). Metabolic studies also highlight birds' tolerance to hypoxia, which is
82 indicated by elevated plasma lactate (Faraci 1991), as well as by the post-flight metabolic state,
83 during which birds continue lipolysis at a reduced level to meet the energy demands of resting
84 (Jenni-Eiermann 2017).

85 (2) The role of protein catabolism in bird migration was thoroughly investigated

86 (Bauchinger and McWilliams 2012). During long-distance flights, birds catabolize not only lipids
87 but also proteins. These proteins originate in the muscles and other internal organs, especially
88 digestive organs (McWilliams and Karasov 2001, Bauchinger and McWilliams 2012). Free amino

88 acids derived from protein catabolism were previously suggested to serve as substrates for a)
89 gluconeogenesis necessary to meet the brain energy requirements, b) building new energy stores

90 when the fat stores are depleted, and c) maintain water balance during nonstop flights (Gerson and
Guglielmo 2011). Additionally, catabolizing protein is known to have antioxidative capacity
91 benefits, as amino acids' bioactive properties are liberated during detaching from the parent protein
92 in which these peptides are usually inactive (Dai et al. 2017).

94 (3) An additional metabolite of high importance in birds is glucose. Birds are naturally
95 hyperglycemic, maintaining approximately twice the plasma-glucose concentration of mammals
96 at equivalent size while using mechanisms of insulin resistance (Braun and Sweazea 2008).
97 Although the ultimate causation of this phenomenon is largely unknown, recent studies have
98 suggested that hyperglycemia and insulin resistance are related to the drop of oxygen
99 concentrations in the atmosphere at the Permian–Triassic (PT) boundary, forcing theropods to lose
100 certain genes to maximize their efficiency of oxygen usage (Satoh 2021). Indeed, omentin and
101 insulin-sensitive glucose transporter 4 (GLUT4) are considered missing or unfunctional in the bird
102 genome (Braun and Sweazea 2008, Luo et al. 2023). Because these gene products play essential
103 roles in maintaining insulin sensitivity, this loss probably forced theropods to become insulin
104 resistant (Satoh 2021). These high blood glucose levels were also suggested to be correlated with
105 the high metabolic rate and body temperature of birds associated with the extreme energetic
106 requirements of powered flights (Clarke and Rothery 2008, Clarke and Pörtner 2010). Blood
107 glucose levels usually increase after endurance flight (Viswanathan et al. 1987, Schwilch et al.
108 1996b, Abdel-Rachied et al. 2014), Yet it is not clear if this hyperglycemia represents an adaptive
109 metabolic mechanism or constraint.

110 We quantified the plasma metabolome of two most common migratory warbler species in
111 Israel: The Eurasian Blackcap (*Sylvia atricapilla*) and Lesser Whitethroat (*Curruca curruca*).

112 Although related, these two species differ in their breeding areas and habitat selection during a
bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

113 stopover. Differences are also manifested in their diet preferences during migration, as the
114 Eurasian Blackcap is more restricted to water consumption (Sapir et al. 2004). Birds were sampled
115 at two previously studied stopover sites dominated by Pistacia trees, bearing fat-rich fruits during
116 autumn (Domer et al. 2018), namely Midreshet Ben-Gurion (hereafter BGS) and Ein-Rimon
117 (hereafter ER), located in arid and semi-arid areas, respectively. While ER is a planted
118 homogeneous *Pistacia atlantica* grove, BGS is a mixed pistachio grove comprising four primary
119 species: *Pistacia atlantica*, *Pistacia chinensis*, *Pistacia vera*, and *Pistacia lentiscus*. Birds were
120 also sampled at a third site, located in the semi-arid area of Israel, ~11 km south of ER, and mainly
121 populated by autumn-blooming Eucalyptus trees (Negev Brigade Monument, hereafter AN,
122 (31°16'N 34°49'E)). Previous research showed that fuel accumulation and recapture rates were
123 substantially lower in BGS compared with ER (Domer et al. 2018). These findings may suggest
124 that most birds captured at BGS (arid region) are leaving soon after arrival, and are captured
125 several hours after landing, and most of those caught at ER (semi-arid area) are at a
126 resting/refueling state. Therefore, we hypothesized that plasma metabolome varies among sites,
127 depending on the type of the primary food source (fat-rich fruits vs. nectar) and the physiological
128 state of staging birds (either well rested or landed during the previous night).

129 **Methods**

130 We conducted metabolomic profiling of the Eurasian Blackcap (N=43, Table 1) and the
131 Lesser Whitethroat (N=30, Table 1). Birds were captured for 3 hours during the morning using

132 mist-nets, opened at first light for three hours. Captured birds were individually tagged with
133 numbered aluminum leg rings, weighed to ± 0.1 g with a digital balance, and measured for wing
134 length. Soon after (a few minutes after capture), a blood sample of 0.1 ml was extracted from the
bird's jugular vein using 25G insulin needle and heparinized tubes. The blood samples were then
135 stored on ice for several hours, before being centrifuged at 10,000 RPM for 10 min at 4°C.
136 Extracted plasma was maintained at -80°C until processing for metabolomic analyses.

138 Metabolomic analyses

139 *Lipid and Polar Metabolite Extraction Protocol*

140 Metabolites were extracted from 50 μ l of plasma using a protocol described by Hummel et
141 al. (2011). In brief, metabolites from each aliquot were extracted with 1 ml of pre-cooled (-20°C)
142 extraction buffer (homogenous methanol/methyl-*tert*-butyl-ether [1:3] mixture). After 10 min
143 incubation at 4°C and sonication for 10 min in a sonic bath, 500 μ l of methanol/water [1:3] mixture
144 was added. Samples were then centrifuged (5 min, 14 000 g), leading to a lipophilic and polar
145 phase forming. Five hundred microliters of the lipophilic (upper) phase and 150 μ l of the polar
146 phase were collected and dried under a vacuum. The lipophilic phase was resuspended in 200 μ l
147 of ACN/isopropanol and used for lipid analysis. The polar phase residue was derivatized for
148 120 min at 37°C (in 50 μ l of 20 mg ml $^{-1}$ methoxyamine hydrochloride in pyridine) followed by
149 a 30-min treatment at 37°C with 50 μ l of MSTFA (with fatty acid methyl esters) and was used for
150 gas chromatography–mass spectrometry (GC–MS) analysis.

151 *Lipid Profiling*

152 Samples were processed using UPLC-FT-MS (Hummel et al. 2011) on a C8 reverse-phase
153 column (100 × 2.1 mm × 1.7 µm particle size, Waters) at 60°C. The mobile phases consisted of
154 1% 1 M NH₄OAc and 0.1% acetic acid in water (buffer A), and acetonitrile/isopropanol (7:3
155 UPLC grade BioSolve) supplemented with 1 M NH₄Ac and 0.1% acetic acid (buffer B). The
156 following gradient profile was applied: 1 min 45% A, 3 min linear gradient from 45% A to 35%
157 A, 8 min linear gradient from 25% to 11% A, 3 min linear gradient from 11% to 1% A. Finally,
158 after washing the column for 3 min with 1% A the buffer was set back to 45% A and the column
159 was re-equilibrated for 4 min, leading to a total run time of 22 min. The flow rate of the mobile
160 phase was 400 µl/min.

161 The mass spectra were acquired using a Q-Exactive mass spectrometer (Thermo
162 Fisher, <http://www.thermofisher.com>) equipped with an ESI interface. All the spectra were
163 recorded using altering full-scan mode, covering a mass range from 150–1500 *m/z* at a capillary
164 voltage of 3.0 kV, with a sheath gas flow value of 60 and an auxiliary gas flow of 35. The resolution
165 was set to 30000 with 3 scans per second, restricting the Orbitrap loading time to a maximum of
166 100 ms with a target value of 1E6 ions. The capillary temperature was set to 150°C, while the
167 drying gas in the heated electrospray source was set to 350°C. The skimmer voltage was held at
168 25 V while the tube lens was set to a value of 130 V. The spectra were recorded from minute 1 to
169 minute 20 of the UPLC gradients.

170 Processing of chromatograms, peak detection, and integration was performed using
171 REFINER MS 14.0 (GeneData, <http://www.genedata.com>) or Xcalibur (Version 3.1, Thermo
172 Fisher, Bremen, Germany). In the first approach, the molecular masses, retention time, and
173 associated peak intensities of the sample were extracted from the raw files, which contained the

174 full-scan MS. Processing MS data included removing the fragmentation information, isotopic
175 peaks, and chemical noise. Further peak filtering on the manually extracted spectra or the aligned
176 data matrices was performed. Obtained features (m/z at a certain retention time) were queried
177 against an in-house lipid database (Lapidot-Cohen et al. 2020).

178 *Polar Metabolite Analysis*

179 The GC-MS system was a gas chromatograph coupled to a time-of-flight mass
180 spectrometer (Pegasus III, Leco). An autosampler system (PAL) injected the samples. Helium was
181 used as carrier gas at a constant flow rate of 2 ml s^{-1} , and gas chromatography was done on a 30-
182 m DB-35 column. The injection temperature was 230°C , and the transfer line and ion source were
183 set to 250°C . The initial temperature of the oven (85°C) increased at a rate of $15^\circ\text{C min}^{-1}$ up to a
184 final temperature of 360°C . After a solvent delay of 180 s, mass spectra were recorded at 20 scans
185 s^{-1} with m/z 70–600 scanning range. Chromatograms and mass spectra were evaluated by using
186 Chroma TOF 1.0 (Leco) (Schauer et al. 2008) together with TargetSearch (Cuadros-Inostroza et
187 al. 2009) and Xcalibur Software (Thermo Scientific). Data for the lipid and polar metabolites is
188 available at Dryad (Domer Adi 2023).

189 Statistical analyses

190 To test for differences in the plasma metabolite composition between birds sampled at the
191 different stopover sites, we used non-metric multidimensional scaling (nMDS) ordinations of the
192 Bray-Curtis dissimilarity matrix, followed by PERMANOVA and SIMPER analyses. The latter
193 allowed quantifying the contribution of different metabolites to the observed inter-site variation.
194 To test for differences in plasma BUTY and TAG levels, we used a generalized linear model (glm)

195 with normal distribution for each response variable, using the site as a categorical variable, and
196 body condition (derived from the residuals of regressing individuals' body mass against wing
197 length) as a covariate. To test for differences in the levels of specific metabolites (annotated amino
biorexv preprint doi: <https://doi.org/10.1101/01.09.374878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not
preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International
198 acids and non-annotated metabolites detected by SIMPER analyses) among sites, we used
199 multivariate analysis of variance (MANOVA), with annotated metabolites as response variables,
200 the site as a categorical variable, and body condition (derived from the residuals of regressing
201 individuals' body mass against wing length) as a covariate. All statistical analyses were performed
202 in R 3.4.4 (Team 2013).

203 **Results**

204 *Polar metabolites*

205 Bird plasma samples were analyzed using GC-MS, generating 414 distinct metabolites. To
206 test for inter-site differences in the composition of these metabolites, we used a non-metric
207 multidimensional scaling (nMDS) ordination of the Bray-Curtis dissimilarity matrix, followed by
208 a PERMANOVA and SIMPER analysis. In both warbler species, the composition of blood polar
209 metabolites varied significantly among sites (Fig. 1; PERMANOVAs: $F_{2,37}=36.135$, $P<0.001$,
210 $R^2=0.629$ and $F_{2,27}=15.653$, $P<0.001$, $R^2=0.504$ for Eurasian Blackcap and Lesser Whitethroat,
211 respectively). The polar metabolic profile of Eurasian Blackcap varied significantly with body
212 condition, derived from the residuals of regressing body mass against wing length ($F_{1,37}=3.872$,
213 $P=0.038$, $R^2=0.034$) but not that of Lesser Whitethroat ($F_{1,27}=0.563$, $P=0.567$, $R^2=0.009$). In both
214 species, the interaction between site and body condition was not significant ($F_{2,37}=0.814$, $P=0.496$,
215 $R^2=0.014$ and $F_{2,27}=1.617$, $P=0.179$, $R^2=0.052$ for Eurasian Blackcap and Lesser Whitethroat,
216 respectively). Pairwise comparisons revealed that the polar metabolic profile, characterizing birds

217 in BGS varied significantly from that of birds in ER ($P=0.003$ and $P=0.003$ for Eurasian Blackcap
218 and Lesser Whitethroat, respectively) and AN ($P=0.003$ and $P=0.003$ for Eurasian Blackcap and
219 Lesser Whitethroat, respectively), but not between ER and AN ($P=0.078$ and $P=0.063$ for Eurasian
220 Blackcap and Lesser Whitethroat, respectively), although both might be considered as marginally
221 non-significant.

222 SIMPER analysis identified ten metabolites contributing most to the dissimilarity among
223 sites. These metabolites were identical in both warbler species and appeared significantly different
224 at all inter-site pairwise comparisons. In Eurasian Blackcap, these metabolites contributed 48.5%
225 (ER vs. BGS), 46.2% (AN vs. BGS), and 51.6% (AN vs. ER) to the inter-site dissimilarity. In
226 Lesser Whitethroat, these metabolites contributed 49.6% (ER vs. BGS), 48.1% (AN vs. BGS), and
227 49.9% (AN vs. ER) to the inter-site dissimilarity. Among these ten metabolites, we annotated six
228 metabolites: lactic acid, malic acid, glycerol, glycerol 3-phosphate, glucose and alanine (Fig. 2).
229 The level of these metabolites varied significantly among sites (approx. $F_{12,66}=4.615$, $P<0.001$, and
230 approx. $F_{12,46}=6.575$, $P<0.001$, for Eurasian Blackcap and Lesser Whitethroat, respectively; Tables
231 1S and 2S, Supplementary material). The intensity of these metabolites did not vary significantly
232 as a function of body condition (approx. $F_{6,32}=0.734$, $P=0.626$, and $F_{6,22}=1.897$ $P=0.127$, for
233 Eurasian Blackcap and Lesser Whitethroat, respectively). Nevertheless, the interaction between
234 site and body condition was significant for Lesser Whitethroat (approx. $F_{12,46}=2.253$ $P=0.024$) but
235 not for Eurasian Blackcap (approx. $F_{12,66}=0.944$, $P=0.510$). In Eurasian Blackcap, the levels of all
236 six metabolites were significantly higher in BGS than in ER and AN (Tukey HSD $p<0.01$), while
237 in Lesser Whitethroat, the level of lactic acid, alanine and glycerol 3-phosphate, were significantly
238 higher in BGS than in ER and AN. A similar pattern was evident for malic acid with significant
239 differences only between BGS and AN ($P=0.006$), glycerol with all pairwise comparisons being

240 significant ($P<0.05$), and glucose with significant differences only between BGS and ER
241 ($P=0.003$).

242 bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY-ND 4.0 International license](#).

243 Multivariate analysis of variance (MANOVA) followed by univariate tests, indicated that
244 the intensities of all 12 annotated plasma amino acids were significantly higher in BGS, compared
245 with the other two sites (approx. $F_{26,52}=3.291$, $P<0.001$ and approx. $F_{26,30}=2.486$, $P=0.008$, for
246 Blackcap and Lesser Whitethroat, respectively; tables 3S and 4S, supplementary material).
247 Additionally, individuals' body condition did not significantly affect the plasma amino acids of
248 both, Eurasian Blackcaps (approx. $F_{13,25}=2.077$, $P=0.057$) and Lesser Whitethroats ($F_{13,14}=0.708$,
249 $P=0.729$), though the trend for Blackcaps is only marginally insignificant. Lastly, the interaction
250 between site and body condition was not significant for both species (approx. $F_{26,52}=0.940$,
251 $P=0.557$ and approx. $F_{26,30}=1.379$, $P=0.197$, for Blackcap and Lesser Whitethroat, respectively)

252 *Lipophilic profile*

253 An nMDS ordination of the Bray-Curtis dissimilarity matrix, followed by a
254 PERMANOVA indicated that in both warbler species the composition of lipophilic metabolites
255 varied significantly among sites (Fig. 1S, supplementary material; PERMANOVAs: $F_{2,37}=6.6465$,
256 $P>0.001$, $R^2=0.237$ in Eurasian Blackcap, and $F_{2,27}=3.540$, $P=0.001$, $R^2=0.183$ in Lesser
257 Whitethroat). Additionally, individuals' body condition, derived from the residuals of regressing
258 body mass against wing length, significantly affected the lipophilic profile of both species
259 ($F_{1,37}=2.523$, $P=0.038$, $R^2=0.041$ in Eurasian Blackcap, and $F_{1,27}=2.951$, $P=0.017$, $R^2=0.076$ in
260 Lesser Whitethroat). The interaction between site and body condition was not significant in both

261 species ($F_{2,37}=1.601$, $P=0.114$, $R^2=0.057$ in Eurasian Blackcap, and $F_{2,27}=0.832$, $P=0.582$, $R^2=0.043$
262 in Lesser Whitethroat). Pairwise comparisons revealed that the lipophilic profile of Blackcaps was
263 significantly different when staging at ER compared with AN and BGS ($P=0.009$ and $P=0.003$ for
bioRxiv preprint doi: <https://doi.org/10.1101/282481>; this version posted January 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.)
264 Eurasian Blackcap and Lesser Whitethroat, respectively). Similarly, for Lesser whitethroats,
265 pairwise comparison revealed significantly different lipophilic profile when staging at AN
266 compared with ER and BGS ($P=0.003$ and $P=0.036$ for Eurasian Blackcap and Lesser Whitethroat,
267 respectively).

268 SIMPER analysis identified ten metabolites contributing most to the dissimilarity among
269 sites. In both species, and at all inter-site pairwise comparisons This list of lipids was comprised
270 of 6-7 TAGs (50-54 carbons, with varying saturation levels of 1-5 double bonds) and 2-4
271 phosphatidylcholine (34-38 carbons, with varying saturation levels of 1-4 double bonds). In
272 Eurasian Blackcap, these lipids contributed 31.8% (ER vs. BGS), 32.3% (AN vs. BGS), and 31.7%
273 (AN vs. ER) to the inter-site dissimilarity. In Lesser Whitethroat, these metabolites contributed
274 33.6% (ER vs. BGS), 31.4% (AN vs. BGS), and 36.2% (AN vs. ER) to the inter-site dissimilarity.
275 The annotated lipids mean intensities varied, and consistent pattern across sites could not be
276 detected. We therefore added additional analyses of TAGs and BUTY.

277 To further examine the plasma lipids, we quantified the accumulated level of plasma TAGs
278 (Fig. 3), manifested as intensities. Total TAG intensities were not significantly different among
279 sites, for both species ($F_{2,37}=0.995$, $P=0.379$ and $F_{2,26}=0.689$, $P=0.511$, for Eurasian Blackcap and
280 Lesser Whitethroat, respectively). Body condition did not significantly affect the total TAG
281 intensities for both species ($F_{1,37}=2.050$, $P=0.161$ and $F_{1,26}=0.044$, $P=0.836$, for Eurasian Blackcap
282 and Lesser Whitethroat, respectively). We further compared PUFA TAGs (with 6-8 double bonds

283 within the TAG) to explore potential differences not exposed by total TAG comparison. The
284 patterns of PUFA TAGs were consistent between the two warbler species: PUFA TAG varied
285 among sites ($F_{2,37}=6.122$, $P=0.005$ and $F_{2,26}=3.163$, $P=0.059$, for Eurasian Blackcap and Lesser
Whitethroat, respectively), though the trend for Lesser whitethroat could be considered as
287 marginally insignificant. However, there was no effect of body condition on the TAGs intensity
288 ($F_{1,37}=0.052$, $P=0.820$ and $F_{1,26}=0.208$, $P=0.652$, for Eurasian Blackcap and Lesser Whitethroat,
289 respectively). Specifically, PUFA TAG intensities were higher in ER than in AN ($t_{37}=2.16$,
290 $P=0.031$, and $t_{26}=2.33$, $P=0.020$ for Eurasian Blackcap and Lesser Whitethroat, respectively) and
291 BGS, with the latter being marginally non-significant in Lesser Whitethroat ($t_{37}=2.16$, $P=0.031$,
292 and $t_{26}=1.7$, $P=0.088$ for Eurasian Blackcap and Lesser Whitethroat, respectively). No significant
293 differences in PUFA TAG intensity were detected between BGS and AN ($t_{37}=0.094$, $P=0.926$, and
294 $t_{26}=0.655$, $P=0.518$ for Eurasian Blackcap and Lesser Whitethroat, respectively).

295 *β -Hydroxybutyric acid*

296 We focused on an additional metabolite, β -Hydroxybutyric acid (BUTY), which was not
297 included in the list of metabolites detected by SIMPER but is considered to play a key role in avian
298 metabolism (Jenni-Eiermann and Jenni 1991, Guglielmo et al. 2005), particularly during fat
299 accumulation and ketogenesis. In both species, BUTY levels varied among sites ($F_{2,37}=3.480$,
300 $P=0.041$, and $F_{2,26}=8.304$, $P=0.002$, for Eurasian Blackcap and Lesser Whitethroat, respectively;
301 Fig. 4). Moreover, BUTY levels were significantly lower in AN compared with ER and BGS for
302 both the Blackcaps ($t_{37}=2.330$, $P=0.025$ and $t_{37}=2.911$, $P=0.006$, for comparing AN with ER and
303 BGS, respectively) and the Lesser Whitethroats ($t_{26}=2.508$, $P=0.019$ and $t_{26}=3.630$, $P=0.001$, for
304 comparing AN with ER and BGS, respectively). Body condition significantly affected the plasma

305 BUTY levels of the Blackcaps ($F_{1,37}=4.580$, $P=0.039$) with the interaction between body condition
306 and site also being significant ($F_{2,37} = 5.044$, $P=0.039$), however, body condition did not affect

307 plasma BUTY levels of the lesser whitethroats ($F_{2,37}=0.067$, $P=0.798$).

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

308 **Discussion**

309 We conducted a comparative field study to quantify the plasma metabolome of two
310 common migratory passerine species at three different stopover sites in the northern Negev desert
311 of Israel during autumn migration. We found that both warbler species' polar and lipophilic
312 metabolites varied significantly among sites. The inter-site variation in the polar metabolites can
313 be mainly attributed to the inter-site variation in the birds' physiological state. That is, the above-
314 mentioned metabolites, differentiating among sites are mainly related to fasting and flight
315 recovery. In this way, lactic acid, glucose, and glycerol are examples of metabolites that were
316 previously demonstrated to vary between birds before and after resting (Viswanathan et al. 1987,
317 Jenni-Eiermann and Jenni 1992). Our previous research efforts (Domer et al. 2018, 2021) have
318 shown that during autumn migration, both recapture and fuel accumulation rates are higher in ER
319 than in BGS. These findings, in combination with the results presented here, strongly suggest that
320 most birds at BGS leave soon after arrival (i.e., do not spend another night at this site) while most
321 birds in ER are at a resting/refueling state. Importantly, we could not detect significant correlation
322 of body condition with the annotated metabolites identified by SIMPER, as well as with the amino
323 acids, except for two distinct cases, glycerol and isoleucine, both were significantly different
324 across body condition only for Blackcaps, with the latter also showing a significant site by body
325 condition interaction. The inter-site variation in the lipophilic profiles of birds was harder to
326 interpret and is suspected to reflect the variation in the primary food source.

327 The body condition of the birds seemed to significantly affect the plasma metabolic profile
328 or the levels of metabolites only in distinct occasions and not for both species. That is, while body
329 condition may have affected the plasma level of some metabolites, the variation in plasma polar
bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
330 metabolites is mainly associated with differences in site characteristics. Importantly, all birds
331 captured at the arid site (BGS) were in a physiological state indicating only a short rest after flight
332 (e.g., high lactic acid) and are suspected to have landed during the previous night. Lastly, the inter-
333 site variation in the polar metabolic profile was mainly generated by ten metabolites, six of which
334 were successfully annotated. Below, we discuss the involvement of these six metabolites in critical
335 metabolic pathways activated during stopovers.

336 *Stopover metabolism*

337 The polar metabolites found to vary among stopover sites were identical in both species.
338 These metabolites mainly participate in four energy metabolism pathways: (1) fatty acid oxidation,
339 (2) protein catabolism, (3) glucose-alanine (Cahill) cycle, and (4) lactic acid (Cori) cycle. These
340 pathways, activated during fasting and endurance exercise, often operate simultaneously during
341 migration. The primary energy source for long flights is derived from subcutaneous lipids. TAG
342 degradation in the cytosol produces glycerol and glycerol 3-phosphate, which can also be a
343 precursor for gluconeogenesis (Roberts and Griffin 1998). Fat stores are essential for birds (Pond
344 1978, Guglielmo 2010), as they do not carry large glycogen stores, probably due to the high cost
345 of maintaining such hygroscopic storage molecule (Hickey et al. 2012).

346 In addition to glycerol, another energy source can be amino acids, derived from protein
347 catabolism. Such catabolism occurs during flight and starvation in flight muscles, but also in the
348 liver and other digestive organs (Bauchinger and McWilliams 2010). We found that the intensities

349 of plasma amino acids are higher in birds that landed at BGS, which are suspected to have landed
350 during the previous night, compared to the other sites accompanied by elevated plasma glucose.

351 Previous research has thoroughly discussed the role protein catabolism plays during migration
bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

352 flight and fasting (Bauchinger and McWilliams 2012). Given that all suggested hypotheses are not
353 mutually exclusive, and in the light of the high intensities of plasma amino acids in birds from
354 BGS, which are likely to have landed a few hours prior capture, we suggest that an additional main
355 pathway for these amino acids is to serve as precursors for cycling glucose in the liver via
356 gluconeogenesis (Fig. 5).

357 During fasting, peripheral organs become more catabolic, and such protein catabolism can
358 support stress and healing processes by cycling glucose towards Cahill and Cori cycles (Deutz et
359 al. 1992, Soeters and Soeters 2012). Furthermore, the cycled glucose can also facilitate reducing
360 equivalent NADPH, which is necessary to maintain redox potential (Levin et al. 2017), a common
361 result of endurance exercise. We, therefore, suggest that protein degradation facilitates the
362 metabolic cycling of glucose to support physiological stress.

363 Cahill (alanine) and Cori (lactic acid) cycles are responsible for cycling nutrients between
364 the skeletal muscles and liver. In the Cori cycle, the lactate, produced by anaerobic glycolysis in
365 muscles, is transported to the liver and converted to glucose, then returns to the muscles and
366 metabolized back to lactate, preventing the accumulation of blood lactate. The contribution of
367 lactate to overall glucose production increases with fasting duration (Katz and Tayek 1998).
368 Nonetheless, fasting requires utilizing substrates already present in the body. For birds,
369 subcutaneous lipids can provide most energy for long-distance migration (Pond 1978), yet this
370 metabolic pathway occurs alongside protein catabolism (McWilliams and Karasov 2005). In the

371 Cahill (or alanine) cycle, the nitrogen, generated from amino acid degradation is trans-aminated to
372 pyruvate, forming alanine (Felig 1973), and mobilized to the liver for nitrogen disposal via the
373 urea or uric acid cycle in birds (Milroy 1903). In contrast to the Cori cycle, this pathway causes
bioRxiv preprint doi: <https://doi.org/10.1101/09.574876>; this version posted January 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
374 NAD⁺ deficiency, which in turn can be counteracted via the malate shuttle (Mettler and Beevers
375 1980) or the glycerol-3-phosphate shuttle (Shen et al. 2006). Both are mechanisms for generating
376 NAD⁺, and are supported by our data, namely, the higher plasma malic acid, glycerol, and glycerol
377 3-phosphate, detected in non-rested birds.

378 Insulin resistance and hyperglycemia are one of the most important mechanisms for coping
379 with prolonged fasting in animals (Soeters and Soeters 2012). Remarkably, the Cori and Cahill
380 cycles were previously related to insulin resistance (Katz and Tayek 1998, Sarabhai and Roden
381 2019). Soeters et al. (2021) suggested that cycling glucose metabolites, alongside insulin
382 resistance, are metabolically connected, serving as a beneficial survival response. They also
383 suggested that this pattern leads to fatty acid oxidation and may be a consequence rather than a
384 cause of insulin resistance. Adaptive insulin resistance was previously documented in some animal
385 species, as an adaptation for living in nutrient-limited environments (Houser et al. 2013, Riddle et
386 al. 2018). As flying vertebrates, characterized by extremely high metabolic rates, migrating birds
387 should constantly deal with endurance exercise, even during simple movements, as well as
388 prolonged fasting associated with migration. We suggest that avian insulin resistance and
389 hyperglycemia are mechanisms for recovering from long-endurance flights, despite incapability
390 of feeding.

391 *Ecological perspective*

392 Here we show that the same ten polar metabolites, which largely generate the inter-site
393 dissimilarly in the metabolome of both warbler species, are highly related to the physiological
394 status of the birds, suggesting they have recently landed from long flight. While the detected inter-
site variation in the polar metabolic profile could be attributed to variation in the birds'
395 physiological state, this intrinsic factor could not explain the observed inter-site variation in the
396 lipophilic profiles. Most birds in ER and AN were in a resting/refueling state, although these sites
397 offered them different food types (fat-rich fruits and nectar, respectively). Nevertheless, there were
398 significant differences not only in their lipophilic profile but also in their PUFA TAGs, and BUTY
399 intensities, which were higher in ER and are known to increase not only when fasting, but also
400 when feeding on a lipid food source (Smith et al. 2007). We therefore suggest that the lipophilic
401 profile variation between ER and AN should be attributed to the primary food source these two
402 sites provide. Nectar is comprised mainly of sugars dissolved in water which are absorbed quickly
403 into the digestive tract of birds (Tracy et al. 2010). Therefore, the blood glucose associated with
404 nectar consumption may have little or no immediate effect on the respective lipophilic profile
405 compared to the consumption of fat-rich fruits. (Jenni-Eiermann and Jenni 1991)

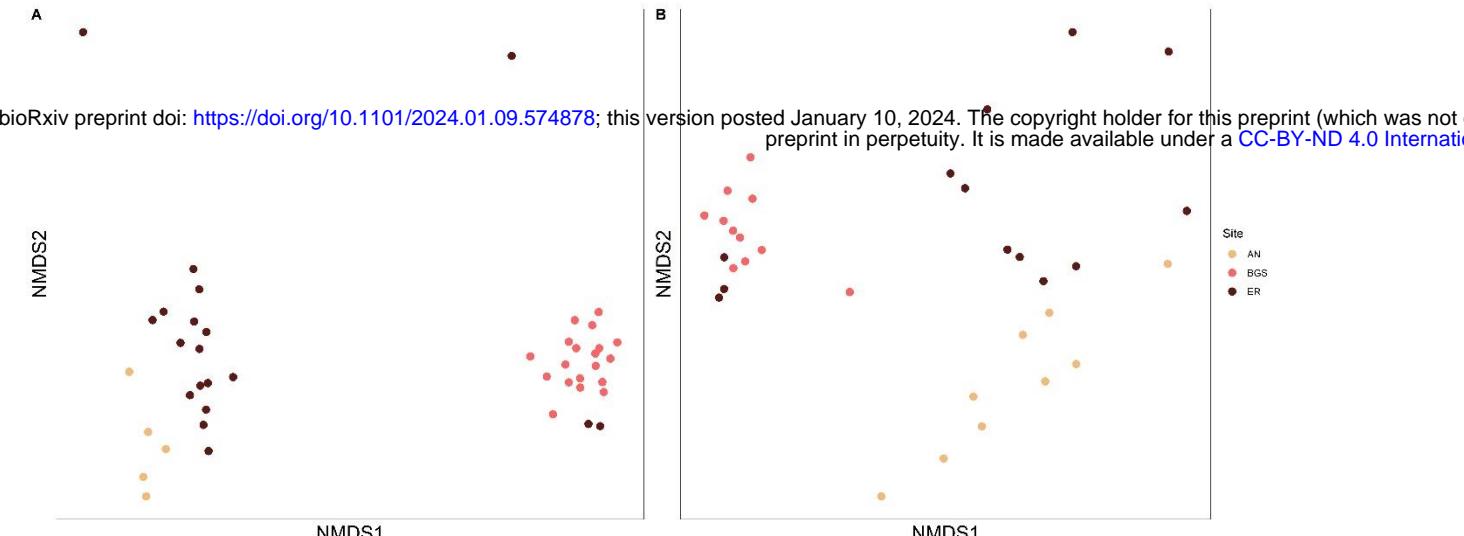
407 *Conclusions*

408 Although lipid metabolism is considered as the primary metabolic pathway during long-
409 endurance flights (Ramenofsky 1990, Jenni-Eiermann 2017), the results of blood lipid profiles
410 were hard to interpret, as they contained many lipophilic compounds that do not necessarily relate
411 to lipid metabolism during exercise. Additionally, TAG and BUTY levels were not a good
412 indicator of site quality. These findings are consistent with previous research suggesting that the
413 context of these metabolites may be species-specific or related to food sources (Jenni-Eiermann

414 and Jenni 1992, Guglielmo et al. 2005, Smith et al. 2007). Essentially, the pathways proposed here
415 to be activated during a stopover indicate a need for flight recovery and suggest that glucose
416 bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

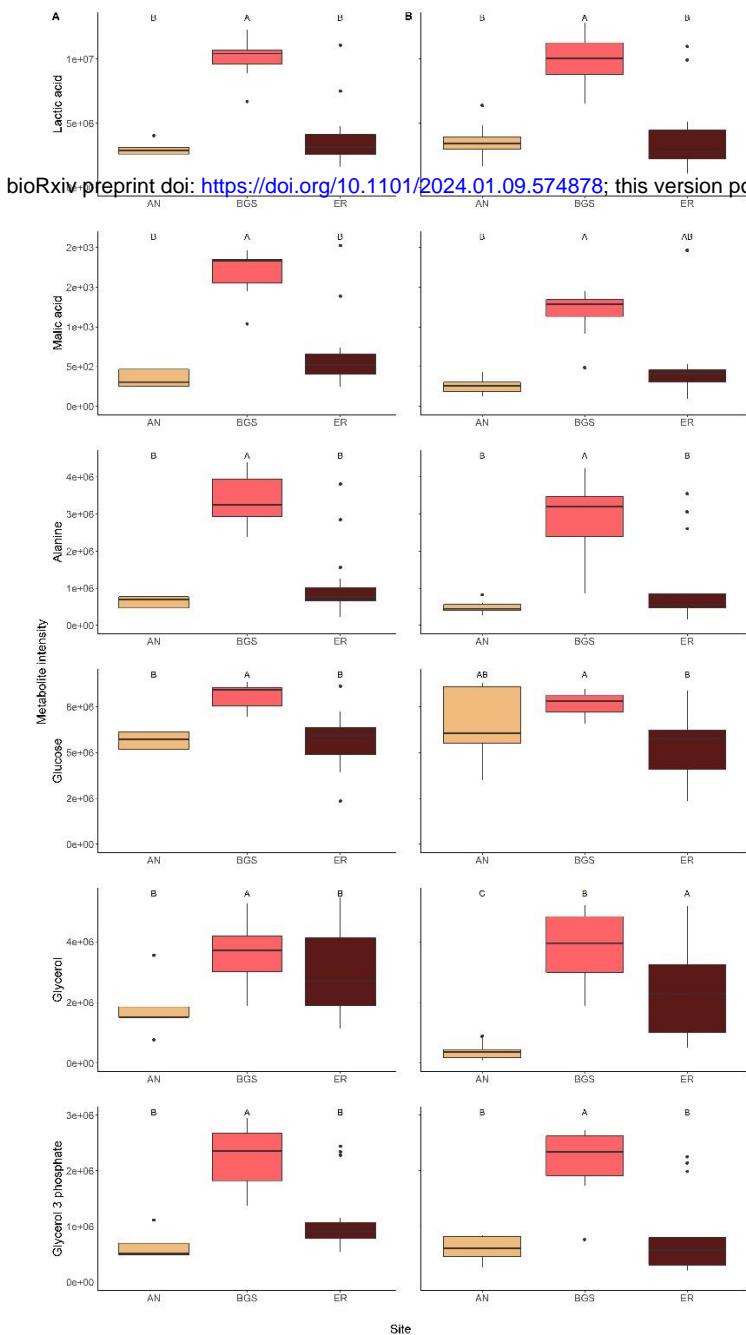
417 viewpoint also suggests that avian insulin resistance and hyperglycemia have evolved due to
418 endurance exercise, prolonged fasting, and fatty acid oxidation, similar to trauma recovery in other
419 animals.

420 **Tables**


421 Table 1. Number of Blackcaps and Lesser Whitethroats sampled at each study site.

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

<u>Site</u>		
AN	8	5
ER	11	19
BGS	11	19

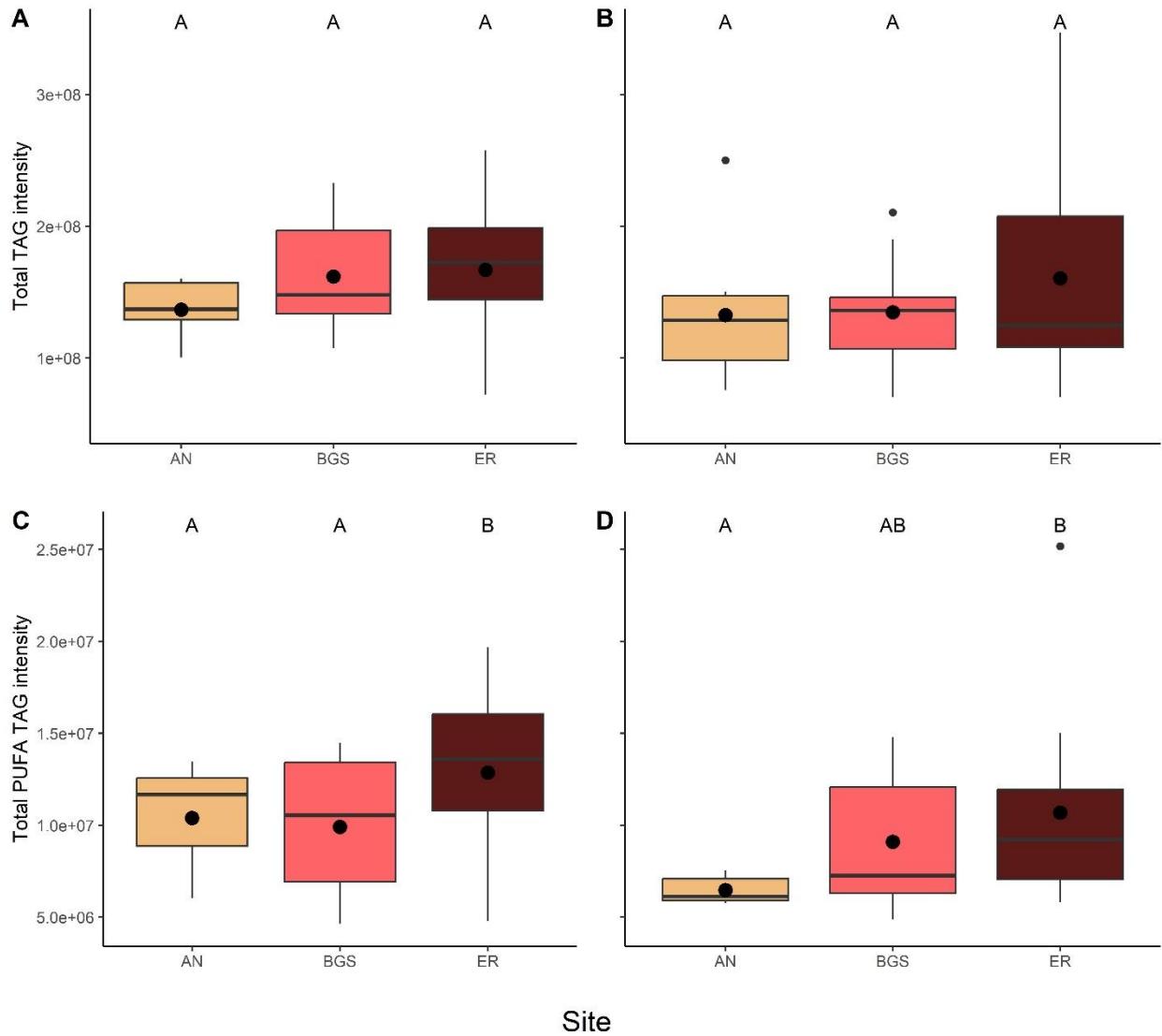

422

423

424 **Figures**

425

426 Figure 1: Nonmetric multidimensional scaling ordinations for the Bray-Curtis dissimilarity matrix,
 427 demonstrating clear separation in the composition of polar metabolic profile. Eurasian Blackcap
 428 (A) and Lesser Whitethroat (B) in the three different stopover sites. Freshly landed vs. rested
 429 Eurasian Blackcap (C) and Lesser Whitethroat (D).

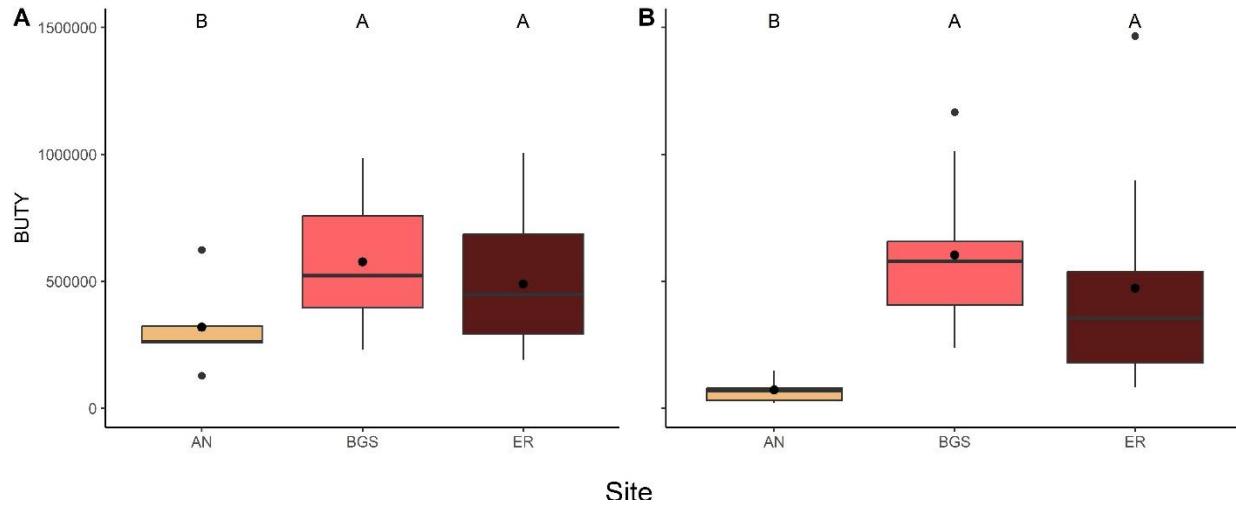


430

431 Figure 2: Differences in key polar metabolites in Eurasian Blackcap (A) and Lesser Whitethroat
 432 (B) among the three different stopover sites, as detected in SIMPER analyses. Different letters
 433 account for significant differences. Within boxes, horizontal lines indicate the median; black dots

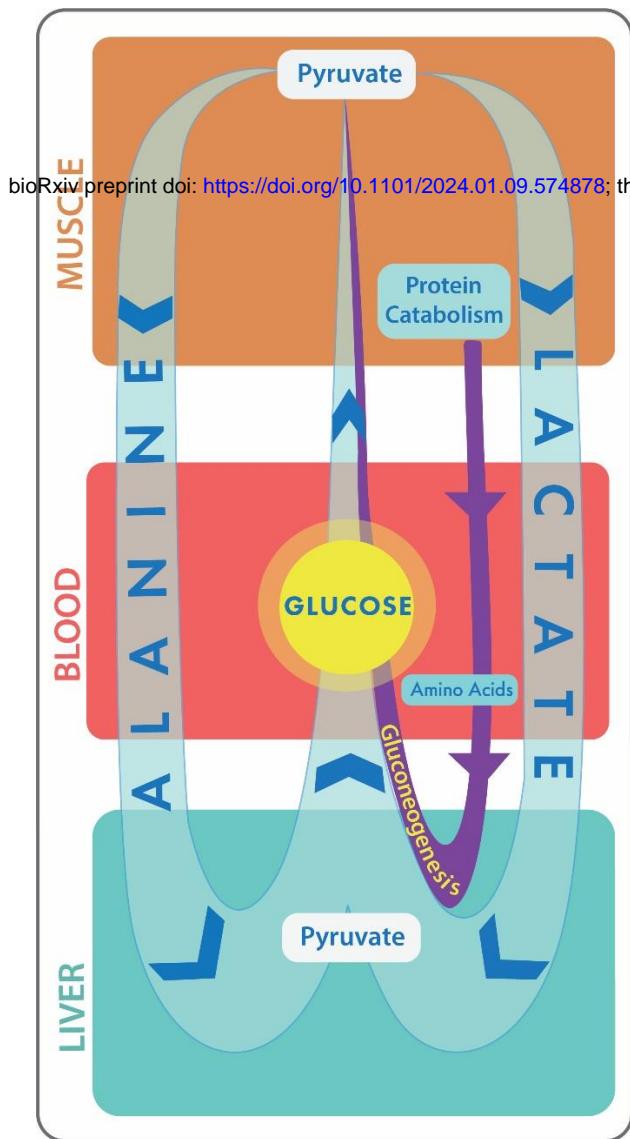
434 show the mean; box boundaries indicate the interquartile range; whiskers indicate minimum and
 435 maximum.

436 bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.



437

438 Figure 3: Differences in relative intensity of total TAG in Eurasian Blackcap (A) and Lesser
 439 Whitethroat (B), and total PUFA TAG in Eurasian Blackcap (C) and Lesser Whitethroat (D)
 440 among the three different stopover sites. Different letters account for significant differences.


441 Within boxes, horizontal lines indicate the median; black dots show the mean; box boundaries
 442 indicate the interquartile range; whiskers indicate minimum and maximum.

443 bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

444

445 Figure 4: Differences in relative intensity of β -Hydroxybutyric acid (BUTY) in Eurasian Blackcap
 446 (A) and Lesser Whitethroat (B) among the three different stopover sites. Different letters account
 447 for significant differences. Within boxes, horizontal lines indicate the median; black dots show the
 448 mean; box boundaries indicate the interquartile range; whiskers indicate minimum and maximum.

449

450 Figure 5: The suggested fate of protein catabolism and elevated plasma glucose during and post
 451 long-endurance flights. Free amino acids are delivered to the liver through the bloodstream. These
 452 amino acids are then used to produce glucose using gluconeogenesis. Lactic acid is maintained as
 453 a result of anaerobic conditions. The alanine cycle is maintained for disposal of the ammonium
 454 group through the uric acid cycle. The lack of NAD⁺ is compensated via the malate and glycerol
 455 shuttles. High plasma glucose can also facilitate repair mechanisms for high oxidative stress.

456 **References**

457 Abdel-Rachied, H. G., S. A. Zaahkouk, E. I. El-Zawhry, and K. S. Elfeky. 2014. Flying or
458 bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not
459 running stress effect on some hematological and biochemical parameters in some birds and
mammals. *J. Entomol. Zool. Stud* 2:153–158.

460 Aidley, D. J. 1981. Animal migration. CUP Archive.

461 Bauchinger, U., and S. R. McWilliams. 2010. Extent of phenotypic flexibility during long-
462 distance flight is determined by tissue-specific turnover rates: a new hypothesis. *Journal of
463 Avian Biology* 41:603–608.

464 Bauchinger, U., and S. R. McWilliams. 2012. Tissue-specific mass changes during fasting: the
465 protein turnover hypothesis. Pages 193–206 *Comparative physiology of fasting, starvation,*
466 and food limitation. Springer.

467 Berthold, P. 1996. Control of bird migration. Springer Science & Business Media.

468 Blem, C. R. 1976. Patterns of lipid storage and utilization in birds. *Integrative and Comparative
469 Biology* 16:671–684.

470 Bordel, R., and E. Haase. 1993. Effects of flight on blood parameters in homing pigeons. *Journal
471 of Comparative Physiology B* 163:219–224.

472 Braun, E. J., and K. L. Sweazea. 2008. Glucose regulation in birds. *Comparative Biochemistry
473 and Physiology Part B: Biochemistry and Molecular Biology* 151:1–9.

474 Clarke, A., and H. Pörtner. 2010. Temperature, metabolic power and the evolution of
475 endothermy. *Biological Reviews* 85:703–727.

476 bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not
Clarke, A., and P. Rothery. 2008. Scaling of body temperature in mammals and birds. *Functional
Ecology* 22:58–67.

477 Costantini, D., M. Cardinale, and C. Carere. 2007. Oxidative damage and anti-oxidant capacity
478 in two migratory bird species at a stop-over site. *Comparative Biochemistry and Physiology*
479 Part C: *Toxicology & Pharmacology* 144:363–371.

480 Cuadros-Inostroza, A., C. Caldana, H. Redestig, M. Kusano, J. Liseć, H. Peña-Cortés, L.
481 Willmitzer, and M. A. Hannah. 2009. TargetSearch-a Bioconductor package for the
482 efficient preprocessing of GC-MS metabolite profiling data. *BMC bioinformatics* 10:1–12.

483 Dai, C., W. Zhang, R. He, F. Xiong, and H. Ma. 2017. Protein breakdown and release of
484 antioxidant peptides during simulated gastrointestinal digestion and the absorption by
485 everted intestinal sac of rapeseed proteins. *LWT* 86:424–429.

486 Deutz, N. E. P., P. L. M. Reijven, G. Athanasas, and P. B. Soeters. 1992. Post-operative changes
487 in hepatic, intestinal, splenic and muscle fluxes of amino acids and ammonia in pigs.
488 *Clinical Science* 83:607–614.

489 Domer, A., O. Ovadia, and E. Shochat. 2018. Energy for the road: Influence of carbohydrate and
490 water availability on fueling processes in autumn-migrating passerines. *Auk* 135.

492 Domer, A., E. Vinepinsky, A. Bouskila, E. Shochat, and O. Ovadia. 2021. Optimal Stopover
493 Model: a state dependent habitat selection model for staging passerines. *Journal of Animal*
494 *Ecology* bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not yet peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY-ND 4.0 International license](#).

495 Domer Adi. 2023. Comparative analysis of the plasma metabolome of migrating passerines
496 during stopover: Novel insights into flight metabolism, Dryad, Dataset,
497 <https://doi.org/10.5061/dryad.k3j9kd5cf>.

498 Faraci, F. M. 1991. Adaptations to hypoxia in birds: how to fly high. *Annual Review of*
499 *Physiology* 53:59–70.

500 Felig, P. 1973. The glucose-alanine cycle. *Metabolism* 22:179–207.

501 Gerson, A. R., and C. G. Guglielmo. 2011. Flight at low ambient humidity increases protein
502 catabolism in migratory birds. *Science* 333:1434–1436.

503 Gómez, C., N. J. Bayly, D. R. Norris, S. A. Mackenzie, K. V Rosenberg, P. D. Taylor, K. A.
504 Hobson, and C. D. Cadena. 2017. Fuel loads acquired at a stopover site influence the pace
505 of intercontinental migration in a boreal songbird. *Scientific reports* 7:1–11.

506 Guglielmo, C. G. 2010. Move that fatty acid: Fuel selection and transport in migratory birds and
507 bats. *Integrative and Comparative Biology* 50:336–345.

508 Guglielmo, C. G., D. J. Cerasale, and C. Eldermire. 2005. A field validation of plasma
509 metabolite profiling to assess refueling performance of migratory birds. *Physiological and*
510 *Biochemical Zoology* 78:116–125.

511 Hickey, A. J. R., M. Jüllig, J. Aitken, K. Loomes, M. E. Hauber, and A. R. J. Phillips. 2012.

512 Birds and longevity: does flight driven aerobicity provide an oxidative sink? *Ageing*

513 *research reviews* 11:242–253. bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY-ND 4.0 International](#) license.

514 Houser, D. S., C. D. Champagne, and D. E. Crocker. 2013. A non-traditional model of the

515 metabolic syndrome: the adaptive significance of insulin resistance in fasting-adapted seals.

516 *Frontiers in endocrinology* 4:164.

517 Hummel, J., S. Segu, Y. Li, S. Irgang, J. Jueppner, and P. Giavalisco. 2011. Ultra performance

518 liquid chromatography and high resolution mass spectrometry for the analysis of plant

519 lipids. *Frontiers in plant science* 2:54.

520 Jenni, L., and S. Jenni-Eiermann. 1998. Fuel supply and metabolic constraints in migrating birds.

521 *Journal of Avian Biology*:521–528.

522 Jenni-Eiermann, S. 2017. Energy metabolism during endurance flight and the post-flight

523 recovery phase. *Journal of Comparative Physiology A* 203:431–438.

524 Jenni-Eiermann, S., and L. Jenni. 1991. Metabolic responses to flight and fasting in night-

525 migrating passerines. *Journal of Comparative Physiology B* 161:465–474.

526 Jenni-Eiermann, S., and L. Jenni. 1992. High plasma triglyceride levels in small birds during

527 migratory flight: a new pathway for fuel supply during endurance locomotion at very high

528 mass-specific metabolic rates? *Physiological Zoology* 65:112–123.

529 Jenni-Eiermann, S., and L. Jenni. 2001. Postexercise ketosis in night-migrating passerine birds.

530 *Physiological and Biochemical Zoology* 74:90–101.

531 Jenni-Eiermann, S., L. Jenni, A. Kvist, A. Lindström, T. Piersma, and G. H. Visser. 2002. Fuel
532 use and metabolic response to endurance exercise: a wind tunnel study of a long-distance
533 migrant shorebird. *Journal of Experimental Biology* 205:2453–2460. bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY-ND 4.0 International license](#).

534 Katz, J., and J. A. Tayek. 1998. Gluconeogenesis and the Cori cycle in 12-, 20-, and 40-h-fasted
535 humans. *American Journal of Physiology-Endocrinology And Metabolism* 275:E537–E542.

536 Lapidot-Cohen, T., L. Rosental, and Y. Brotman. 2020. Liquid Chromatography–Mass
537 Spectrometry (LC-MS)-Based Analysis for Lipophilic Compound Profiling in Plants.
538 *Current protocols in plant biology* 5:e20109.

539 Levin, E., G. Lopez-Martinez, B. Fane, and G. Davidowitz. 2017. Hawkmoths use nectar sugar
540 to reduce oxidative damage from flight. *Science* 355:733–735.

541 Luo, P., Z. Wang, C. Su, H. Li, H. Zhang, Y. Huang, and W. Chen. 2023. Chicken GLUT4
542 undergoes complex alternative splicing events and its expression in striated muscle changes
543 dramatically during development. *Poultry Science* 102:102403.

544 Maillet, D., and J.-M. Weber. 2006. Performance-enhancing role of dietary fatty acids in a long-
545 distance migrant shorebird: the semipalmated sandpiper. *Journal of Experimental Biology*
546 209:2686–2695.

547 McWilliams, S. R., and W. H. Karasov. 2001. Phenotypic flexibility in digestive system
548 structure and function in migratory birds and its ecological significance. *Comparative
549 Biochemistry and Physiology Part A: Molecular & Integrative Physiology* 128:577–591.

550 McWilliams, S. R., and W. H. Karasov. 2005. Migration takes guts. Birds of two worlds: the
551 ecology and evolution of migration. Smithsonian Institution Press, Washington, DC:67–78.

552 bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not
553 Mettler, I. J., and H. Beevers. 1980. Oxidation of NADH ~~in phytoxopinase by mammalian aspartate~~ CC-BY-ND 4.0 International
shuttle. *Plant physiology* 66:555–560.

554 Milroy, T. H. 1903. The formation of uric acid in birds. *The Journal of physiology* 30:47.

555 Pond, C. M. 1978. Morphological aspects and the ecological and mechanical consequences of fat
556 deposition in wild vertebrates. *Annual Review of Ecology and Systematics* 9:519–570.

557 Potter, J. H. T., R. Drinkwater, K. T. J. Davies, N. Nesi, M. C. W. Lim, L. R. Yohe, H. Chi, X.
558 Zhang, I. Levantis, and B. K. Lim. 2021. Nectar-feeding bats and birds show parallel
559 molecular adaptations in sugar metabolism enzymes. *Current Biology* 31:4667–4674.

560 Ramenofsky, M. 1990. Fat storage and fat metabolism in relation to migration. Pages 214–231
561 *Bird migration*. Springer.

562 Riddle, M. R., A. C. Aspiras, K. Gaudenz, R. Peuß, J. Y. Sung, B. Martineau, M. Peavey, A. C.
563 Box, J. A. Tabin, and S. McGaugh. 2018. Insulin resistance in cavefish as an adaptation to a
564 nutrient-limited environment. *Nature* 555:647–651.

565 Robergs, R. A., and S. E. Griffin. 1998. Glycerol. *Sports Medicine* 26:145–167.

566 Robin, J.-P., Y. Cherel, H. Girard, A. Géloen, and Y. Le Maho. 1987. Uric acid and urea in
567 relation to protein catabolism in long-term fasting geese. *Journal of Comparative
568 Physiology B* 157:491–499.

569 Sapir, N., I. Tsurim, B. Gal, and Z. Abramsky. 2004. The effect of water availability on fuel
570 deposition of two staging *Sylvia* warblers. *Journal of Avian Biology* 35:25–32.

571 bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not yet peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

572 Sarabhai, T., and M. Roden. 2019. Hungry for your alanine? when liver depends on muscle
proteolysis. *The Journal of clinical investigation* 129:4563–4566.

573 Satoh, T. 2021. Bird evolution by insulin resistance. *Trends in Endocrinology & Metabolism*
574 32:803–813.

575 Schauer, N., Y. Semel, I. Balbo, M. Steinfath, D. Repsilber, J. Selbig, T. Pleban, D. Zamir, and
576 A. R. Fernie. 2008. Mode of inheritance of primary metabolic traits in tomato. *The Plant
577 Cell* 20:509–523.

578 Schwilch, R., L. Jenni, and S. Jenni-Eiermann. 1996a. Metabolic responses of homing pigeons to
579 flight and subsequent recovery. *Journal of Comparative Physiology B* 166:77–87.

580 Schwilch, R., L. Jenni, and S. Jenni-Eiermann. 1996b. Metabolic responses of homing pigeons to
581 flight and subsequent recovery. *Journal of Comparative Physiology B* 166:77–87.

582 Seaman, D. A., C. G. Guglielmo, and T. D. Williams. 2005. Effects of physiological state, mass
583 change and diet on plasma metabolite profiles in the western sandpiper *Calidris mauri*.
584 *Journal of Experimental Biology* 208:761–769.

585 Shen, W., Y. Wei, M. Dauk, Y. Tan, D. C. Taylor, G. Selvaraj, and J. Zou. 2006. Involvement of
586 a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD⁺ ratio provides
587 evidence of a mitochondrial glycerol-3-phosphate shuttle in *Arabidopsis*. *The Plant Cell*
588 18:422–441.

589 Smith, S. B., S. R. McWILLIAMS, and C. G. Guglielmo. 2007. Effect of diet composition on
590 plasma metabolite profiles in a migratory songbird. *The Condor* 109:48–58.

591 bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not yet peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY-ND 4.0 International license](#).

592 Soeters, M. R., and P. B. Soeters. 2012. The evolutionary benefit of protein in resistance. *Clinical*

593 nutrition 31:1002–1007.

594 Soeters, P. B., A. Shenkin, L. Sobotka, M. R. Soeters, P. W. de Leeuw, and R. R. Wolfe. 2021.
595 The anabolic role of the Warburg, Cori-cycle and Crabtree effects in health and disease.
596 Clinical Nutrition 40:2988–2998.

597 Stevens, L. 2004. Avian biochemistry and molecular biology. Cambridge university press.

598 Team, R. C. 2013. R: A language and environment for statistical computing.

599 Tracy, C. R., T. J. McWhorter, M. S. Wojciechowski, B. Pinshow, and W. H. Karasov. 2010.
600 Carbohydrate absorption by blackcap warblers (*Sylvia atricapilla*) changes during migratory
refuelling stopovers. *Journal of Experimental Biology* 213:380–385.

601 Viswanathan, M., T. M. John, J. C. George, and R. J. Etches. 1987. Flight effects on plasma
602 glucose, lactate, catecholamines and corticosterone in homing pigeons. *Hormone and*
603 *metabolic research* 19:400–402.

604 Wilcove, D. S., and M. Wikelski. 2008. Going, going, gone: is animal migration disappearing.
605 PLoS biology 6:e188.

606

607

608 **Contact information**609 Adi Domer – adiyech@post.bgu.ac.il610 Weronika Jensinka – jasinska@post.bgu.ac.il611 bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.09.574878>; this version posted January 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY-ND 4.0 International license](#).612 Eyal Shochat – eyal.shochat1@gmail.com613 Alisdair R. Fernie – Fernie@mpimp-golm.mpg.de614 Saleh Alseekh – Alseekh@mpimp-golm.mpg.de615 Yariv Brotman – brotmany@post.bgu.ac.il616 Ofer Ovadia – oferovad@bgu.ac.il

617

618

619

620 All authors declare to have no competing interests.

621 The data that support the findings of this study will be made openly available in a repository.