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Abstract

During long distance migration, many birds may experience periods of either prolonged
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that habitat selection during stopover can largely affect the migration outcome of an individual.
Despite decades of research of the avian metabolism during stopover and migration, many
questions have remained unanswered, as such research mainly focused on targeted metabolites and
fat metabolism. Here, we examined the plasma-metabolome of migrating passerines prior to their
crossing the Sahara Desert. Birds were sampled at two sites populated by Pistacia trees, bearing
fat-rich fruits, and at an additional site dominated by blooming Eucalyptus trees. The blood
samples were analyzed using both GC-MS and LC-MS, using an untargeted approach. We found
that birds from one of the sites had a distinguish metabolic profile, suggesting recent landing.
Examination of metabolic pathways activated during stopovers indicated a crucial role for cycling
glucose through the Cori and Cahill cycles in resting and recovery processes. This novel
perspective, conducted on free-ranging birds, suggests the evolution of avian insulin resistance
due to factors such as endurance exercise, fasting, and a preference for fatty acid oxidation during
migration, akin to cell trauma recovery. Additionally, we investigated inter-site variations in birds'
metabolic profiles. Significant variations were observed in both polar and lipophilic metabolites
among the sites. Differences in polar metabolites were primarily attributed to variations in the
physiological state of the birds between sites, while distinctions in the lipophilic profiles of rested
birds were linked to variations in their primary food sources. This study underscores the challenge
of interpreting commonly used indicators for assessing migrating birds' physiological states and
site quality, which are predominantly derived from lipid metabolism, in complex ecological

systems.
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Introduction

Animal migration — one of nature's most visible and widespread phenomena (Wilcove and
Wikelski 20085' — has evolved independently several in wapying peaneaviAi exidd
behavior is widely common in the avian taxon, with approximately half of the species performing
some type of migratory movements (Berthold 1996). Migratory birds alternate between two
extreme physiological states, fasting during the long-distance endurance flights and resting or
extensively feeding during stopovers (McWilliams and Karasov 2005). Hence, selecting a proper
stopover site is crucial for long-distance migrants as low fuel deposition rates can extend their total
migration period and affect their fitness (Gomez et al. 2017, Domer et al. 2021). We present an in-
depth comparative analysis of the untargeted metabolomic profiling of wild migratory passerines
sampled in the eastern Mediterranean region during autumn, along one of the most important
flyways in the old world. Previous targeted metabolic studies on wild and captive migratory birds
have provided important insights into flight metabolism modalities, including fuel utilization
(Jenni and Jenni-Eiermann 1998, Jenni-Eiermann et al. 2002, Smith et al. 2007), protein
catabolism (Robin et al. 1987, Smith et al. 2007), and oxidative damage repair of flight muscles
(Costantini et al. 2007). While these studies have laid the foundations for the metabolic migration
framework, they considered only a few targeted metabolites (Jenni-Eiermann and Jenni 1991,
Jenni and Jenni-Eiermann 1998, Jenni-Eiermann et al. 2002, Guglielmo et al. 2005, Seaman et al.
2005) while mainly focusing on lipid metabolism. Flight metabolism comprises many inter-
dependent pathways and modalities, some of which have recently gained attention (Levin et al.
2017, Potter et al. 2021, Satoh 2021). To broaden the current perspective of flight metabolism and
to better link the different metabolic pathways it comprises, we have adopted an untargeted

metabolomic approach.
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Within the adopted untargeted approach, we focused on the following metabolic pathways:

(1) lipid metabolism, (2) amino acid metabolism, and (3) glucose metabolism.

(1) Lipids are considered the primary energy sousceriduringpengurancedeigiaionydig
(Blem 1976, Stevens 2004), accumulated before the migration journey. Plasma triglycerides
(TAGs) are usually elevated during refueling (Jenni-Eiermann and Jenni 1992) but may also
increase during flight (Bordel and Haase 1993, Schwilch et al. 1996a). Such TAGs differ in their
fatty acid (FA) composition in terms of the length of the carbon chain and the unsaturation levels.
Most lipid reserves in migrating birds are polyunsaturated FA (PUFA) and they are usually
considered as the preferred fuel for endurance exercise (Maillet and Weber 2006). Two additional
metabolites reflecting the physiological state of an individual bird are plasma glycerol, which
increases during fasting due to high rates of lipolysis (Jenni-Eiermann and Jenni 1991), and plasma
B-Hydroxybutyric acid (BUTY), which increases during fasting owing to ketone formation. The
level of BUTY increases shortly after exercise (~20 minutes), indicating post-exercise ketosis that
lasts for several hours (Jenni-Eiermann and Jenni 2001). BUTY levels gradually decrease after
sufficient rest (~10 hours). Metabolic studies also highlight birds' tolerance to hypoxia, which is
indicated by elevated plasma lactate (Faraci 1991), as well as by the post-flight metabolic state,
during which birds continue lipolysis at a reduced level to meet the energy demands of resting

(Jenni-Eiermann 2017).

(2) The role of protein catabolism in bird migration was thoroughly investigated
(Bauchinger and McWilliams 2012). During long-distance flights, birds catabolize not only lipids
but also proteins. These proteins originate in the muscles and other internal organs, especially

digestive organs (McWilliams and Karasov 2001, Bauchinger and McWilliams 2012). Free amino
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88 acids derived from protein catabolism were previously suggested to serve as substrates for a)

89  gluconeogenesis necessary to meet the brain energy requirements, b) building new energy stores
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91  Guglielmo 2011). Additionally, catabolizing protein is known to have antioxidative capacity
92  benefits, as amino acids' bioactive properties are liberated during detaching from the parent protein

93 in which these peptides are usually inactive (Dai et al. 2017).

94 (3) An additional metabolite of high importance in birds is glucose. Birds are naturally
95  hyperglycemic, maintaining approximately twice the plasma-glucose concentration of mammals
96 at equivalent size while using mechanisms of insulin resistance (Braun and Sweazea 2008).
97  Although the ultimate causation of this phenomenon is largely unknown, recent studies have
98  suggested that hyperglycemia and insulin resistance are related to the drop of oxygen
99  concentrations in the atmosphere at the Permian—Triassic (PT) boundary, forcing theropods to lose
100  certain genes to maximize their efficiency of oxygen usage (Satoh 2021). Indeed, omentin and
101 insulin-sensitive glucose transporter 4 (GLUT4) are considered missing or unfunctional in the bird
102 genome (Braun and Sweazea 2008, Luo et al. 2023). Because these gene products play essential
103  roles in maintaining insulin sensitivity, this loss probably forced theropods to become insulin
104  resistant (Satoh 2021). These high blood glucose levels were also suggested to be correlated with
105 the high metabolic rate and body temperature of birds associated with the extreme energetic
106  requirements of powered flights (Clarke and Rothery 2008, Clarke and Pdortner 2010). Blood
107  glucose levels usually increase after endurance flight (Viswanathan et al. 1987, Schwilch et al.
108  1996h, Abdel-Rachied et al. 2014), Yet it is not clear if this hyperglycemia represents an adaptive

109 metabolic mechanism or constraint.
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110 We quantified the plasma metabolome of two most common migratory warbler species in

111 Israel: The Eurasian Blackcap (Sylvia atricapilla) and Lesser Whitethroat (Curruca curruca).
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113  stopover. Differences are also manifested in their diet preferences during migration, as the
114  Eurasian Blackcap is more restricted to water consumption (Sapir et al. 2004). Birds were sampled
115  at two previously studied stopover sites dominated by Pistacia trees, bearing fat-rich fruits during
116  autumn (Domer et al. 2018), namely Midreshet Ben-Gurion (hereafter BGS) and Ein-Rimon
117  (hereafter ER), located in arid and semi-arid areas, respectively. While ER is a planted
118  homogeneous Pistacia atlantica grove, BGS is a mixed pistachio grove comprising four primary
119  species: Pistacia atlantica, Pistacia chinensis, Pistacia vera, and Pistacia lentiscus. Birds were
120  also sampled at a third site, located in the semi-arid area of Israel, ~11 km south of ER, and mainly
121 populated by autumn-blooming Eucalyptus trees (Negev Brigade Monument, hereafter AN,
122 (31°16'N 34°49'E)). Previous research showed that fuel accumulation and recapture rates were
123 substantially lower in BGS compared with ER (Domer et al. 2018). These findings may suggest
124  that most birds captured at BGS (arid region) are leaving soon after arrival, and are captured
125  several hours after landing, and most of those caught at ER (semi-arid area) are at a
126  resting/refueling state. Therefore, we hypothesized that plasma metabolome varies among sites,
127  depending on the type of the primary food source (fat-rich fruits vs. nectar) and the physiological

128  state of staging birds (either well rested or landed during the previous night).
129 Methods

130 We conducted metabolomic profiling of the Eurasian Blackcap (N=43, Table 1) and the

131 Lesser Whitethroat (N=30, Table 1). Birds were captured for 3 hours during the morning using
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mist-nets, opened at first light for three hours. Captured birds were individually tagged with

numbered aluminum leg rings, weighed to +0.1 g with a digital balance, and measured for wing
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bird's jugular vein using 25G insulin needle and heparinized tubes. The blood samples were then
stored on ice for several hours, before being centrifuged at 10,000 RPM for 10 min at 4°c.

Extracted plasma was maintained at -80°c until processing for metabolomic analyses.

Metabolomic analyses

Lipid and Polar Metabolite Extraction Protocol

Metabolites were extracted from 50 pl of plasma using a protocol described by Hummel et
al. (2011). In brief, metabolites from each aliquot were extracted with 1 ml of pre-cooled (—20°C)
extraction buffer (homogenous methanol/methyl-tert-butyl-ether [1:3] mixture). After 10 min
incubation at 4°C and sonication for 10 min in a sonic bath, 500 pl of methanol/water [1:3] mixture
was added. Samples were then centrifuged (5 min, 14 000 g), leading to a lipophilic and polar
phase forming. Five hundred microliters of the lipophilic (upper) phase and 150 pl of the polar
phase were collected and dried under a vacuum. The lipophilic phase was resuspended in 200 pl
of ACN/isopropanol and used for lipid analysis. The polar phase residue was derivatized for
120 min at 37°C (in 50 pl of 20 mg ml—1 methoxyamine hydrochloride in pyridine) followed by
a 30-min treatment at 37°C with 50 pul of MSTFA (with fatty acid methyl esters) and was used for

gas chromatography—mass spectrometry (GC-MS) analysis.

Lipid Profiling
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152 Samples were processed using UPLC-FT-MS (Hummel et al. 2011) on a C8 reverse-phase

153  column (100 x 2.1 mm x 1.7 um particle size, Waters) at 60°C. The mobile phases consisted of
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155  UPLC grade BioSolve) supplemented with 1 M NH4Ac and 0.1% acetic acid (buffer B). The

15

N

156  following gradient profile was applied: 1 min 45% A, 3 min linear gradient from 45% A to 35%
157 A, 8 min linear gradient from 25% to 11% A, 3 min linear gradient from 11% to 1% A. Finally,
158  after washing the column for 3 min with 1% A the buffer was set back to 45% A and the column
159  was re-equilibrated for 4 min, leading to a total run time of 22 min. The flow rate of the mobile

160  phase was 400 pl/min.

161 The mass spectra were acquired using a Q-Exactive mass spectrometer (Thermo
162  Fisher, http://www.thermofisher.com) equipped with an ESI interface. All the spectra were
163  recorded using altering full-scan mode, covering a mass range from 150-1500 m/z at a capillary
164  voltage of 3.0 kV, with a sheath gas flow value of 60 and an auxiliary gas flow of 35. The resolution
165  was set to 30000 with 3 scans per second, restricting the Orbitrap loading time to a maximum of
166 100 ms with a target value of 1E6 ions. The capillary temperature was set to 150°C, while the
167  drying gas in the heated electrospray source was set to 350°C. The skimmer voltage was held at
168 25V while the tube lens was set to a value of 130 V. The spectra were recorded from minute 1 to

169  minute 20 of the UPLC gradients.

170 Processing of chromatograms, peak detection, and integration was performed using
171  REFINER MS 14.0 (GeneData, http://www.genedata.com) or Xcalibur (Version 3.1, Thermo
172 Fisher, Bremen, Germany). In the first approach, the molecular masses, retention time, and

173  associated peak intensities of the sample were extracted from the raw files, which contained the
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174  full-scan MS. Processing MS data included removing the fragmentation information, isotopic

175  peaks, and chemical noise. Further peak filtering on the manually extracted spectra or the aligned
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177  against an in-house lipid database (Lapidot-Cohen et al. 2020).
178 Polar Metabolite Analysis

179 The GC-MS system was a gas chromatograph coupled to a time-of-flight mass
180  spectrometer (Pegasus Il1, Leco). An autosampler system (PAL) injected the samples. Helium was
181  used as carrier gas at a constant flow rate of 2 ml s—1 , and gas chromatography was done on a 30-
182  m DB-35 column. The injection temperature was 230°C, and the transfer line and ion source were
183  set to 250°C. The initial temperature of the oven (85°C) increased at a rate of 15°C min—1 up to a
184  final temperature of 360°C. After a solvent delay of 180 s, mass spectra were recorded at 20 scans
185  s—1 with m/z 70-600 scanning range. Chromatograms and mass spectra were evaluated by using
186  Chroma TOF 1.0 (Leco) (Schauer et al. 2008) together with TargetSearch (Cuadros-Inostroza et
187  al. 2009) and Xcalibur Software (Thermo Scientific). Data for the lipid and polar metabolites is

188  available at Dryad (Domer Adi 2023).

189 Statistical analyses

190 To test for differences in the plasma metabolite composition between birds sampled at the
191  different stopover sites, we used non-metric multidimensional scaling (hMDS) ordinations of the
192 Bray-Curtis dissimilarity matrix, followed by PERMANOVA and SIMPER analyses. The latter
193  allowed quantifying the contribution of different metabolites to the observed inter-site variation.

194  Totest for differences in plasma BUTY and TAG levels, we used a generalized linear model (glm)
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with normal distribution for each response variable, using the site as a categorical variable, and

body condition (derived from the residuals of regressing individuals’ body mass against wing
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acids and non-annotated metabolites detected by SIMPER analyses) among sites, we used
multivariate analysis of variance (MANOVA), with annotated metabolites as response variables,
the site as a categorical variable, and body condition (derived from the residuals of regressing
individuals’ body mass against wing length) as a covariate. All statistical analyses were performed

in R 3.4.4 (Team 2013).
Results
Polar metabolites

Bird plasma samples were analyzed using GC-MS, generating 414 distinct metabolites. To
test for inter-site differences in the composition of these metabolites, we used a non-metric
multidimensional scaling (nMDS) ordination of the Bray-Curtis dissimilarity matrix, followed by
a PERMANOVA and SIMPER analysis. In both warbler species, the composition of blood polar
metabolites varied significantly among sites (Fig. 1; PERMANOVAs: F237=36.135, P<0.001,
R?=0.629 and F227=15.653, P<0.001, R?>=0.504 for Eurasian Blackcap and Lesser Whitethroat,
respectively). The polar metabolic profile of Eurasian Blackcap varied significantly with body
condition, derived from the residuals of regressing body mass against wing length (F137=3.872,
P=0.038, R?=0.034) but not that of Lesser Whitethroat (F1,27=0.563, P=0.567, R?>=0.009). In both
species, the interaction between site and body condition was not significant (F2,37= 0.814, P=0.496,
R?=0.014 and F227=1.617, P=0.179, R?=0.052 for Eurasian Blackcap and Lesser Whitethroat,

respectively). Pairwise comparisons revealed that the polar metabolic profile, characterizing birds
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217  in BGS varied significantly from that of birds in ER (P=0.003 and P=0.003 for Eurasian Blackcap
218  and Lesser Whitethroat, respectively) and AN (P=0.003 and P=0.003 for Eurasian Blackcap and

21
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220  Blackcap and Lesser Whitethroat, respectively), although both might be considered as marginally

221 non-significant.

222 SIMPER analysis identified ten metabolites contributing most to the dissimilarity among
223  sites. These metabolites were identical in both warbler species and appeared significantly different
224  at all inter-site pairwise comparisons. In Eurasian Blackcap, these metabolites contributed 48.5%
225 (ER vs. BGS), 46.2% (AN vs. BGS), and 51.6% (AN vs. ER) to the inter-site dissimilarity. In
226  Lesser Whitethroat, these metabolites contributed 49.6% (ER vs. BGS), 48.1% (AN vs. BGS), and
227  49.9% (AN vs. ER) to the inter-site dissimilarity. Among these ten metabolites, we annotated six
228  metabolites: lactic acid, malic acid, glycerol, glycerol 3-phosphate, glucose and alanine (Fig. 2).
229  The level of these metabolites varied significantly among sites (approx. Fi2,66=4.615, P<0.001, and
230  approx. F12,46=6.575, P<0.001, for Eurasian Blackcap and Lesser Whitethroat, respectively; Tables
231 1S and 2S, Supplementary material). The intensity of these metabolites did not vary significantly
232 as a function of body condition (approx. Fez32=0.734, P=0.626, and Fs22=1.897 P=0.127, for
233 Eurasian Blackcap and Lesser Whitethroat, respectively), Nevertheless, the interaction between
234  site and body condition was significant for Lesser Whitethroat (approx. Fi246=2.253 P=0.024) but
235  not for Eurasian Blackcap (approx. F12,66=0.944, P=0.510). In Eurasian Blackcap, the levels of all
236  six metabolites were significantly higher in BGS than in ER and AN (Tukey HSD p<0.01), while
237  in Lesser Whitethroat, the level of lactic acid, alanine and glycerol 3-phosphate, were significantly
238  higher in BGS than in ER and AN. A similar pattern was evident for malic acid with significant

239  differences only between BGS and AN (P=0.006), glycerol with all pairwise comparisons being
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240 significant (P<0.05), and glucose with significant differences only between BGS and ER

241 (P=0.003).
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243 Multivariate analysis of variance (MANOVA) followed by univariate tests, indicated that
244  the intensities of all 12 annotated plasma amino acids were significantly higher in BGS, compared
245  with the other two sites (approx. F2e52=3.291, P<0.001 and approx. F2s30=2.486, P=0.008, for
246  Blackcap and Lesser Whitethroat, respectively; tables 3S and 4S, supplementary material).
247  Additionally, individuals’ body condition did not significantly affect the plasma amino acids of
248  both, Eurasian Blackcaps (approx. Fi325=2.077, P=0.057) and Lesser Whitethroats (F1314=0.708,
249  P=0.729), though the trend for Blackcaps is only marginally insignificant. Lastly, the interaction
250 between site and body condition was not significant for both species (approx. F2652=0.940,

251  P=0.557 and approx. F2630=1.379, P=0.197, for Blackcap and Lesser Whitethroat, respectively)

252 Lipophilic profile

253 An nMDS ordination of the Bray-Curtis dissimilarity matrix, followed by a
254 PERMANOVA indicated that in both warbler species the composition of lipophilic metabolites
255  varied significantly among sites (Fig. 1S, supplementary material, PERMANOVAS: F37=6.6465,
256  P>0.001, R?=0.237 in Eurasian Blackcap, and F2.7=3.540, P=0.001, R?=0.183 in Lesser
257  Whitethroat). Additionally, individuals’ body condition, derived from the residuals of regressing
258 body mass against wing length, significantly affected the lipophilic profile of both species
259  (F137=2.523, P=0.038, R?=0.041 in Eurasian Blackcap, and F1,7=2.951, P=0.017, R?=0.076 in

260  Lesser Whitethroat). The interaction between site and body condition was not significant in both
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261  species (F237=1.601, P=0.114, R?=0.057 in Eurasian Blackcap, and F227=0.832, P=582, R?=0.043
262  in Lesser Whitethroat). Pairwise comparisons revealed that the lipophilic profile of Blackcaps was

26
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264  Eurasian Blackcap and Lesser Whitethroat, respectively). Similarly, for Lesser whitethroats,
265  pairwise comparison revealed significantly different lipophilic profile when staging at AN
266  compared with ER and BGS (P=0.003 and P=0.036 for Eurasian Blackcap and Lesser Whitethroat,

267  respectively).

268 SIMPER analysis identified ten metabolites contributing most to the dissimilarity among
269  sites. In both species, and at all inter-site pairwise comparisons This list of lipids was comprised
270  of 6-7 TAGs (50-54 carbons, with varying saturation levels of 1-5 double bonds) and 2-4
271 phosphatidylcholine (34-38 carbons, with varying saturation levels of 1-4 double bonds). In
272 Eurasian Blackcap, these lipids contributed 31.8% (ER vs. BGS), 32.3% (AN vs. BGS), and 31.7%
273 (AN vs. ER) to the inter-site dissimilarity. In Lesser Whitethroat, these metabolites contributed
274  33.6% (ER vs. BGS), 31.4% (AN vs. BGS), and 36.2% (AN vs. ER) to the inter-site dissimilarity.
275  The annotated lipids mean intensities varied, and consistent pattern across sites could not be

276  detected. We therefore added additional analyses of TAGs and BUTY.

277 To further examine the plasma lipids, we quantified the accumulated level of plasma TAGs
278  (Fig. 3), manifested as intensities. Total TAG intensities were not significantly different among
279  sites, for both species (F2,37=0.995, P=0.379 and F226=0.689, P=0.511, for Eurasian Blackcap and
280  Lesser Whitethroat, respectively). Body condition did not significantly affect the total TAG
281 intensities for both species (F1,37=2.050, P=0.161 and F1,26=0.044, P=0.836, for Eurasian Blackcap

282  and Lesser Whitethroat, respectively). We further compared PUFA TAGs (with 6-8 double bonds
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283  within the TAG) to explore potential differences not exposed by total TAG comparison. The

284  patterns of PUFA TAGs were consistent between the two warbler species: PUFA TAG varied
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286  Whitethroat, respectively), though the trend for Lesser whitethroat could be considered as
287  marginally insignificant. However, there was no effect of body condition on the TAGs intensity
288  (F137=0.052, P=0.820 and F126=0.208, P=0.652, for Eurasian Blackcap and Lesser Whitethroat,
289  respectively). Specifically, PUFA TAG intensities were higher in ER than in AN (t37=2.16,
290 P=0.031, and t26=2.33, P=0.020 for Eurasian Blackcap and Lesser Whitethroat, respectively) and
291  BGS, with the latter being marginally non-significant in Lesser Whitethroat (t37=2.16, P=0.031,
292  and t2=1.7, P=0.088 for Eurasian Blackcap and Lesser Whitethroat, respectively). No significant
293  differences in PUFA TAG intensity were detected between BGS and AN (t37=0.094, P=0.926, and

294  t26=0.655, P=0.518 for Eurasian Blackcap and Lesser Whitethroat, respectively).
295  p-Hydroxybutyric acid

296 We focused on an additional metabolite, B-Hydroxybutyric acid (BUTY), which was not
297 included in the list of metabolites detected by SIMPER but is considered to play a key role in avian
298  metabolism (Jenni-Eiermann and Jenni 1991, Guglielmo et al. 2005), particularly during fat
299  accumulation and ketogenesis. In both species, BUTY levels varied among sites (F2,37=3.480,
300 P=0.041, and F26 = 8.304, P=0.002, for Eurasian Blackcap and Lesser Whitethroat, respectively;
301  Fig. 4). Moreover, BUTY levels were significantly lower in AN compared with ER and BGS for
302  both the Blackcaps (ts7 = 2.330, P=0.025 and t37=2.911, P=0.006, for comparing AN with ER and
303  BGS, respectively) and the Lesser Whitethroats (t2s = 2.508, P=0.019 and t26=3.630, P=0.001, for

304 comparing AN with ER and BGS, respectively). Body condition significantly affected the plasma
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305 BUTY levels of the Blackcaps (F1,37=4.580, P=0.039) with the interaction between body condition

306  and site also being significant (F237 = 5.044, P=0.039), however, body condition did not affect
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308 Discussion

309 We conducted a comparative field study to quantify the plasma metabolome of two
310 common migratory passerine species at three different stopover sites in the northern Negev desert
311 of Israel during autumn migration. We found that both warbler species' polar and lipophilic
312  metabolites varied significantly among sites. The inter-site variation in the polar metabolites can
313  be mainly attributed to the inter-site variation in the birds' physiological state. That is, the above-
314 mentioned metabolites, differentiating among sites are mainly related to fasting and flight
315  recovery. In this way, lactic acid, glucose, and glycerol are examples of metabolites that were
316  previously demonstrated to vary between birds before and after resting (Viswanathan et al. 1987,
317  Jenni-Eiermann and Jenni 1992). Our previous research efforts (Domer et al. 2018, 2021) have
318  shown that during autumn migration, both recapture and fuel accumulation rates are higher in ER
319 than in BGS. These findings, in combination with the results presented here, strongly suggest that
320 most birds at BGS leave soon after arrival (i.e., do not spend another night at this site) while most
321  birds in ER are at a resting/refueling state. Importantly, we could not detect significant correlation
322 of body condition with the annotated metabolites identified by SIMPER, as well as with the amino
323 acids, except for two distinct cases, glycerol and isoleucine, both were significantly different
324  across body condition only for Blackcaps, with the latter also showing a significant site by body
325  condition interaction. The inter-site variation in the lipophilic profiles of birds was harder to

326  interpret and is suspected to reflect the variation in the primary food source.


https://doi.org/10.1101/2024.01.09.574878
http://creativecommons.org/licenses/by-nd/4.0/

16

327 The body condition of the birds seemed to significantly affect the plasma metabolic profile
328  orthe levels of metabolites only in distinct occasions and not for both species. That is, while body

32
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330 metabolites is mainly associated with differences in site characteristics. Importantly, all birds
331  captured at the arid site (BGS) were in a physiological state indicating only a short rest after flight
332 (e.g., high lactic acid) and are suspected to have landed during the previous night. Lastly, the inter-
333  site variation in the polar metabolic profile was mainly generated by ten metabolites, six of which
334  were successfully annotated. Below, we discuss the involvement of these six metabolites in critical

335  metabolic pathways activated during stopovers.
336 Stopover metabolism

337 The polar metabolites found to vary among stopover sites were identical in both species.
338  These metabolites mainly participate in four energy metabolism pathways: (1) fatty acid oxidation,
339  (2) protein catabolism, (3) glucose-alanine (Cahill) cycle, and (4) lactic acid (Cori) cycle. These
340 pathways, activated during fasting and endurance exercise, often operate simultaneously during
341  migration. The primary energy source for long flights is derived from subcutaneous lipids. TAG
342  degradation in the cytosol produces glycerol and glycerol 3-phosphate, which can also be a
343  precursor for gluconeogenesis (Robergs and Griffin 1998). Fat stores are essential for birds (Pond
344 1978, Guglielmo 2010), as they do not carry large glycogen stores, probably due to the high cost

345  of maintaining such hygroscopic storage molecule (Hickey et al. 2012).

346 In addition to glycerol, another energy source can be amino acids, derived from protein
347  catabolism. Such catabolism occurs during flight and starvation in flight muscles, but also in the

348 liver and other digestive organs (Bauchinger and McWilliams 2010). We found that the intensities
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349  of plasma amino acids are higher in birds that landed at BGS, which are suspected to have landed

350  during the previous night, compared to the other sites accompanied by elevated plasma glucose.
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352  flightand fasting (Bauchinger and McWilliams 2012). Given that all suggested hypotheses are not
353  mutually exclusive, and in the light of the high intensities of plasma amino acids in birds from
354  BGS, which are likely to have landed a few hours prior capture, we suggest that an additional main
355 pathway for these amino acids is to serve as precursors for cycling glucose in the liver via

356  gluconeogenesis (Fig. 5).

357 During fasting, peripheral organs become more catabolic, and such protein catabolism can
358  support stress and healing processes by cycling glucose towards Cahill and Cori cycles (Deutz et
359 al. 1992, Soeters and Soeters 2012). Furthermore, the cycled glucose can also facilitate reducing
360 equivalent NADPH, which is necessary to maintain redox potential (Levin et al. 2017), a common
361 result of endurance exercise. We, therefore, suggest that protein degradation facilitates the

362  metabolic cycling of glucose to support physiological stress.

363 Cahill (alanine) and Cori (lactic acid) cycles are responsible for cycling nutrients between
364  the skeletal muscles and liver. In the Cori cycle, the lactate, produced by anaerobic glycolysis in
365 muscles, is transported to the liver and converted to glucose, then returns to the muscles and
366  metabolized back to lactate, preventing the accumulation of blood lactate. The contribution of
367 lactate to overall glucose production increases with fasting duration (Katz and Tayek 1998).
368  Nonetheless, fasting requires utilizing substrates already present in the body. For birds,
369  subcutaneous lipids can provide most energy for long-distance migration (Pond 1978), yet this

370  metabolic pathway occurs alongside protein catabolism (McWilliams and Karasov 2005). In the
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371 Cabhill (or alanine) cycle, the nitrogen, generated from amon acid degradation is trans-aminated to

372 pyruvate, forming alanine (Felig 1973), and mobilized to the liver for nitrogen disposal via the
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374  NAD" deficiency, which in turn can be counteracted via the malate shuttle (Mettler and Beevers
375  1980) or the glycerol-3-phosphate shuttle (Shen et al. 2006). Both are mechanisms for generating
376  NAD", and are supported by our data, namely, the higher plasma malic acid, glycerol, and glycerol

377  3-phosphate, detected in non-rested birds.

378 Insulin resistance and hyperglycemia are one of the most important mechanisms for coping
379  with prolonged fasting in animals (Soeters and Soeters 2012). Remarkably, the Cori and Cabhill
380 cycles were previously related to insulin resistance (Katz and Tayek 1998, Sarabhai and Roden
381  2019). Soeters et al. (2021) suggested that cycling glucose metabolites, alongside insulin
382  resistance, are metabolically connected, serving as a beneficial survival response. They also
383  suggested that this pattern leads to fatty acid oxidation and may be a consequence rather than a
384  cause of insulin resistance. Adaptive insulin resistance was previously documented in some animal
385  species, as an adaptation for living in nutrient-limited environments (Houser et al. 2013, Riddle et
386 al. 2018). As flying vertebrates, characterized by extremely high metabolic rates, migrating birds
387 should constantly deal with endurance exercise, even during simple movements, as well as
388  prolonged fasting associated with migration. We suggest that avian insulin resistance and
389  hyperglycemia are mechanisms for recovering from long-endurance flights, despite incapability

390  of feeding.

391  Ecological perspective
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392 Here we show that the same ten polar metabolites, which largely generate the inter-site
393  dissimilarly in the metabolome of both warbler species, are highly related to the physiological
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395 site variation in the polar metabolic profile could be attributed to variation in the birds'
396  physiological state, this intrinsic factor could not explain the observed inter-site variation in the
397 lipophilic profiles. Most birds in ER and AN were in a resting/refueling state, although these sites
398  offered them different food types (fat-rich fruits and nectar, respectively). Nevertheless, there were
399 significant differences not only in their lipophilic profile but also in their PUFA TAGs, and BUTY
400 intensities, which were higher in ER and are known to increase not only when fasting, but also
401  when feeding on a lipid food source (Smith et al. 2007). We therefore suggest that the lipophilic
402  profile variation between ER and AN should be attributed to the primary food source these two
403  sites provide. Nectar is comprised mainly of sugars dissolved in water which are absorbed quickly
404  into the digestive tract of birds (Tracy et al. 2010). Therefore, the blood glucose associated with
405  nectar consumption may have little or no immediate effect on the respective lipophilic profile

406  compared to the consumption of fat-rich fruits. (Jenni-Eiermann and Jenni 1991)
407 Conclusions

408 Although lipid metabolism is considered as the primary metabolic pathway during long-
409  endurance flights (Ramenofsky 1990, Jenni-Eiermann 2017), the results of blood lipid profiles
410  were hard to interpret, as they contained many lipophilic compounds that do not necessarily relate
411 to lipid metabolism during exercise. Additionally, TAG and BUTY levels were not a good
412  indicator of site quality. These findings are consistent with previous research suggesting that the

413  context of these metabolites may be species-specific or related to food sources (Jenni-Eiermann
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and Jenni 1992, Guglielmo et al. 2005, Smith et al. 2007). Essentially, the pathways proposed here

to be activated during a stopover indicate a need for flight recovery and suggest that glucose
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viewpoint also suggests that avian insulin resistance and hyperglycemia have evolved due to
endurance exercise, prolonged fasting, and fatty acid oxidation, similar to trauma recovery in other

animals.
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420 Tables

421  Table 1. Number of Blackcaps and Lesser Whitethroats sampled at each study site.
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Site

AN 8 5
ER 11 19
BGS 11 19
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Figure 1: Nonmetric multidimensional scaling ordinations for the Bray-Curtis dissimilarity matrix,

demonstrating clear separation in the composition of polar metabolic profile. Eurasian Blackcap

(A) and Lesser Whitethroat (B) in the three different stopover sites. Freshly landed vs. rested

Eurasian Blackcap (C) and Lesser Whitethroat (D).
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Figure 2: Differences in key polar metabolites in Eurasian Blackcap (A) and Lesser Whitethroat

(B) among the three different stopover sites, as detected in SIMPER analyses. Different letters

account for significant differences. Within boxes, horizontal lines indicate the median; black dots


https://doi.org/10.1101/2024.01.09.574878
http://creativecommons.org/licenses/by-nd/4.0/

24

434  show the mean; box boundaries indicate the interquartile range; whiskers indicate minimum and
435  maximum.
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438  Figure 3: Differences in relative intensity of total TAG in Eurasian Blackcap (A) and Lesser
439  Whitethroat (B), and total PUFA TAG in Eurasian Blackcap (C) and Lesser Whitethroat (D)

440 among the three different stopover sites. Different letters account for significant differences.
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Within boxes, horizontal lines indicate the median; black dots show the mean; box boundaries

indicate the interquartile range; whiskers indicate minimum and maximum.
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Figure 4: Differences in relative intensity of B-Hydroxybutyric acid (BUTY) in Eurasian Blackcap
(A) and Lesser Whitethroat (B) among the three different stopover sites. Different letters account
for significant differences. Within boxes, horizontal lines indicate the median; black dots show the

mean; box boundaries indicate the interquartile range; whiskers indicate minimum and maximum.
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Figure 5: The suggested fate of protein catabolism and elevated plasma glucose during and post

long-endurance flights. Free amino acids are delivered to the liver through the bloodstream. These

amino acids are then used to produce glucose using gluconeogenesis. Lactic acid is maintained as

a result of anaerobic conditions. The alanine cycle is maintained for disposal of the ammonium

group through the uric acid cycle. The lack of NAD+ is compensated via the malate and glycerol

shuttles. High plasma glucose can also facilitate repair mechanisms for high oxidative stress.
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