

1 Running title:

2 ARC6 Regulates FtsZ-Ring Assembly through ARC3

3

4 Corresponding Author:

5 Cheng Chen

6 Department of Plant Sciences, School of Agriculture and Biology

7 Shanghai Jiao Tong University, Shanghai 200240, China

8 Tel.: +86-21-34208413; +86-18221737665

9 E-mail: cgchen@sjtu.edu.cn

10 **The J-Like Protein ARC6 Regulates Chloroplast FtsZ-Ring Assembly through**
11 **Fine-tuning ARC3 Activity in Arabidopsis**

12

13 Wenbin Du,^{1,†} Lingyan Cao,^{2,†} Yuelong Zhou,^{1, 3,†} Shanelle Jackson,⁴ Maryam
14 Naeem,⁴ Yue Yang,^{4, 5} Jonathan M. Glynn,^{4, 6} Katie J. Porter,⁴ Qian He,¹ Jie Xu,⁷ Wanqi
15 Liang,² Katherine W. Osteryoung⁴ and Cheng Chen^{1, 8, 9, *}

16

17 ¹ Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong
18 University, Shanghai 200240, China

19 ² Joint International Research Laboratory of Metabolic and Developmental Sciences,
20 State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology,
21 Shanghai Jiao Tong University, Shanghai 200240, China

22 ³ Present address: College of Bioscience and Bioengineering, Jiangxi Agricultural
23 University, Nanchang 330045, China

24 ⁴ Department of Plant Biology, Michigan State University, East Lansing, Michigan
25 48824, United States

26 ⁵ Present address: Cataya Bio, 88 Daerwen Road, 4F/Building 2, Pudong New District,
27 Shanghai, 201203, China

28 ⁶ Present address: Pfizer Inc, 7000 Portage Rd. Portage MI 49001, United States

29 ⁷ The Core Facility and Service Center (CFSC) for School of Life Sciences and
30 Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

31 ⁸ Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Jiao Tong
32 University, Shanghai 200240, China

33 ⁹ Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240,
34 China

35

36 [†] These authors contributed equally to the article

37 * Address correspondence to cgchen@sjtu.edu.cn

38

39 One Sentence Summary

40 The chloroplast membrane protein ARC6 recruits ARC3 to the chloroplast division site
41 and regulates the assembly of the FtsZ ring by fine-tuning ARC3 activity through its J-
42 like domain.

43

44 The author responsible for distribution of materials integral to the findings presented in
45 this article in accordance with the policy described in the Instructions for Authors
46 (<https://academic.oup.com/plcell/pages/General-Instructions>) is: Cheng Chen
47 (cgchen@sjtu.edu.cn).

48 **ABSTRACT**

49 Chloroplast division is initiated by the establishment of the stromal FtsZ ring (Z ring).
50 Assembly and positioning of the Z ring are governed by the chloroplast Min system,
51 which inhibits Z-ring formation everywhere but the middle of the chloroplast.
52 ACCUMULATION AND REPLICATION OF CHLOROPLASTS3 (ARC3), the core
53 component of this system, is a direct inhibitor of Z-ring assembly. Regulation of ARC3
54 activity is vital thus for chloroplast division. Here, we report that ARC6, which localizes
55 on the chloroplast inner envelope membrane, interacts with ARC3 and acts upstream of
56 ARC3 during chloroplast division. We show that the C-terminal MORN domain of ARC3,
57 demonstrated previously to prevent ARC3-FtsZ interaction, binds to the J-like domain
58 (JLD) of ARC6, enabling full-length ARC3 to interact with FtsZ proteins and activating
59 the inhibitory activity of ARC3 on the assembly of FtsZ filaments. Overexpression of a
60 JLD-deleted version of ARC6 causes disruption of Z-ring formation in an ARC3-
61 dependent manner. Finally, we reveal that ARC6 recruits ARC3 to the middle of the
62 chloroplast. Our findings suggest a model whereby ARC6 regulates the assembly and
63 positioning of the Z ring through fine-tuning the inhibitory activity of ARC3 at the
64 chloroplast division site.

65 **INTRODUCTION**

66 Chloroplasts, the photosynthetic organelles, are derived from endosymbiosis when a
67 cyanobacterium was engulfed by an ancient eukaryotic host cell about a billion years
68 ago (Keeling, 2010; Zimorski et al., 2014; Martin et al., 2015). Thus, like the
69 cyanobacterial endosymbiont, chloroplasts are surrounded by double membranes.
70 Chloroplasts are responsible for the production of photosynthesis and for providing
71 lipids, amino acids, and phytohormones (Cackett et al., 2022). During plant growth, the
72 number of chloroplasts needs to increase to fulfill the ever-increasing demands for
73 energy (Leech and Baker, 1983). Such an increase in chloroplast number is achieved
74 through chloroplast division. Analogous to their prokaryotic ancestor, chloroplasts
75 propagate from pre-existing organelles by binary fission (division in the middle)
76 (Osteryoung and Pyke, 2014; Chen et al., 2018a).

77 Chloroplast division is carried out by the midplastid-localized macromolecular
78 machinery (Osteryoung and Pyke, 2014; Yoshida, 2018). The major components of the
79 division machinery are the contractile ring structures formed across the two chloroplast
80 envelope membranes (Chen et al., 2018a). Among them, the stromal FtsZ ring (Z ring)
81 is the first ring structure formed during chloroplast division (Miyagishima et al., 2001).
82 The Z ring is assembled from the cytoskeletal GTPase protein FtsZ (TerBush et al.,
83 2013; McQuillen and Xiao, 2020). In *Arabidopsis*, there are two FtsZ proteins, namely
84 FtsZ1 and FtsZ2 (Osteryoung et al., 1998; Schmitz et al., 2009). Chloroplast FtsZ1 and
85 FtsZ2 co-assemble into dynamic filaments and ring-like structures (Olson et al., 2010;
86 Yoshida et al., 2016; Porter et al., 2021). The stromal Z ring is tethered to the inner
87 envelope membrane both directly through the amphiphilic motif at the C-terminus of
88 FtsZ1 (Liu et al., 2022) and indirectly through the interaction of FtsZ2 with the inner
89 envelope membrane protein ARC6 (Maple et al., 2005; Johnson et al., 2013). The Z ring
90 is highly dynamic, and it coordinates with the cytosolic DRP5B (also known as ARC5)
91 ring to constrict (Gao et al., 2003; Miyagishima et al., 2003; Johnson et al., 2015;
92 Yoshida et al., 2016). The inner and outer rings simultaneously constrict to squeeze the
93 chloroplast membranes and eventually generate two daughter chloroplasts of
94 approximately equal size.

95 The key step for chloroplast division is the positioning and subsequent
96 constriction of the Z ring in the middle of the chloroplast. This is governed by the
97 chloroplast Min system, which is a negative regulatory mechanism inhibiting the
98 assembly of the Z ring at non-division sites in order to allow Z-ring formation only in the
99 middle of the chloroplast (Osteryoung and Pyke, 2014; Chen et al., 2018a). The
100 chloroplast Min system consists of ARC3, MinD1, MinE1, and MCD1 (Colletti et al.,
101 2000; Maple et al., 2002; Maple et al., 2007; Nakanishi et al., 2009). Among them,
102 ARC3 is the central player, acting as the direct inhibitor of Z-ring assembly (TerBush
103 and Osteryoung, 2012; Zhang et al., 2013). There are multiple Z rings in the enlarged
104 chloroplasts of *arc3* mutants, while Z-ring formation is abolished in transgenic plants
105 overexpressing ARC3 (Glynn et al., 2007; Zhang et al., 2013).

106 The inhibitory activity of ARC3 on FtsZ assembly is regulated by its C-terminal
107 MORN domain (Figure 1A) (Zhang et al., 2013). Previous studies demonstrated that the
108 MORN domain prevents ARC3 from interacting with the FtsZ proteins (Zhang et al.,
109 2013), implying the existence of auto-inhibition in terms of the activity of ARC3 on the
110 assembly of the FtsZ filaments. Previous studies reported that PARC6, an inner
111 envelope membrane protein, binds ARC3 through the MORN domain, and such binding
112 activates the inhibitory activity of ARC3 on the assembly of the FtsZ filaments (Glynn et
113 al., 2009; Zhang et al., 2016; Chen et al., 2019). ARC3 localizes both diffusely in the
114 stroma and as a ring-like structure at the division site (Chen et al., 2019). It was
115 proposed that the diffuse ARC3 is mainly responsible for inhibiting Z-ring formation at
116 non-division sites. Regarding the midplastid ARC3, it has been suggested that it will
117 enhance the dynamics of the Z ring and facilitate the constriction of chloroplasts
118 (Johnson et al., 2015; Chen et al., 2019). Despite these findings, it still remains elusive
119 how the activity of ARC3 is regulated, specifically at the division site, since the activity of
120 ARC3 there must be precisely controlled in order to simultaneously allow the
121 establishment of the Z ring and to promote the dynamics of the Z ring during the
122 constriction and division of chloroplast.

123 ARC6 has been shown to play an indispensable role in chloroplast division, as
124 evidenced by the severe chloroplast division defect in the *arc6* mutant plant. The
125 mesophyll cells of *arc6* typically harbor only 1~2 giant chloroplasts per cell (Pyke et al.,

126 1994). In addition, the formation of the Z ring is totally disrupted, and only dots or
127 patches of the FtsZ filaments are observed in the *arc6* mutant (Vitha et al., 2003),
128 indicating that ARC6 is a positive regulator for Z-ring formation. This could be due to the
129 prevention of the disassembly of GDP-bound FtsZ2 protein by ARC6, as suggested by
130 a recent study (Sung et al., 2018). Given that both FtsZ proteins are still able to
131 assemble into filaments even in the absence of ARC6 *in vitro* (Olson et al., 2010; Porter
132 et al., 2021) or *ex vivo* (TerBush and Osteryoung, 2012; TerBush et al., 2016; Yoshida
133 et al., 2016; TerBush et al., 2018), it could not be totally accountable for the disruption
134 of Z-ring formation in the *arc6* mutant. ARC6 has been shown to bridge MCD1 to
135 interact with FtsZ2, which may allow MCD1 to recognize the membrane-tethered Z ring
136 and ultimately to regulate the positioning of the division machinery (Chen et al., 2018b).
137 A recent study reported that ARC6 directly interacts with MinD1 (Zhang et al., 2021).
138 The biological significance of such an interaction, however, is unsolved. Nevertheless,
139 the molecular mechanisms by which ARC6 is used to regulate chloroplast division,
140 particularly Z-ring assembly and positioning, are still lacking.

141 ARC6 is a descendant of the cyanobacterial protein Ftn2 (also known as ZipN)
142 (Vitha et al., 2003). In addition to the transmembrane domain, there is a J-like domain
143 downstream of the N-terminal predicted chloroplast transit peptide of ARC6 (Figure 1B).
144 The J domain was originally designated for the DNAJ proteins, which serve as
145 cochaperones of Hsp70 proteins (Pulido and Leister, 2018; Tamadaddi et al., 2022).
146 The J domain is responsible for DNAJ proteins to interact with Hsp70s (Pulido and
147 Leister, 2018), which results in the stimulation of Hsp70 ATPase activity and may
148 provide substrate specificity to Hsp70-mediated processes. However, the J-like domain
149 of ARC6 is not a canonical J domain since it lacks the conserved tripeptide HPQ found
150 in DNAJ proteins (Pulido and Leister, 2018). The J-like domain of ARC6 is not required
151 for interaction with FtsZ2 (Maple et al., 2005; Glynn et al., 2009; Zhang et al., 2016). In
152 contrast, it is required for interaction with CJD, a J-like protein involved in the regulation
153 of the fatty acid composition of chloroplast lipids, though the biological significance is
154 unknown (Ajjawi et al., 2011). Thus, the function of the J-like domain of ARC6,
155 particularly in chloroplast division, remains elusive.

156 Here, we investigated the functional relationship between ARC6 and ARC3 and
157 characterized the underlying molecular mechanisms by which ARC6 regulates ARC3
158 during chloroplast division. Our results reveal that ARC6 directly binds to ARC3 and
159 enables full-length ARC3 to interact with FtsZ proteins. We further demonstrated that
160 ARC6 activates the inhibitory activity of ARC3 on the assembly of FtsZ filaments in a
161 heterologous system. The activation of ARC3 by ARC6 is fine-tuned by the J-like
162 domain of ARC6, allowing the establishment of the Z ring at the division site. Finally, we
163 show that the midplastid-localized ARC3 is recruited by ARC6. Our findings unveil novel
164 functions of ARC6 during chloroplast division and advance the understanding of the
165 regulatory mechanisms of the formation and positioning of the Z ring at the division site.

166 **RESULTS**

167 **ARC6 Is Required for ARC3 to Function in Chloroplast Division**

168 It has been reported that ARC6 and ARC3 are purified together in a complex containing
169 FtsZ proteins in Arabidopsis (McAndrew et al., 2008), suggesting a possible functional
170 dependency. To investigate the functional relationship between *ARC6* and *ARC3* during
171 chloroplast division, we generated a double mutant by crossing the *arc6-5* and *arc3-2*
172 single mutants. Unlike wild-type Col-0, which harbored plenty of relatively small
173 chloroplasts within the mesophyll cells (Figure 2, A and E), both *arc3-2* and *arc6-5*
174 single mutants contained a reduced number while enlarged chloroplasts (Figure 2, B, C
175 and E), indicating a defect in chloroplast division. In line with prior reports, the
176 chloroplast division defect was more profound in *arc6-5*, which harbored only 1~2 giant
177 chloroplasts within mesophyll cells, as compared to the *arc3-2* mutant (Figure 2, B, C
178 and E) (Maple et al., 2007; Ajjawi et al., 2011; Zhang et al., 2013). We found that both
179 the morphology of chloroplasts and the plant growth phenotype observed in the *arc3-2*
180 *arc6-5* mutant were similar to those detected in *arc6-5* (Figure 2, B to E; Supplemental
181 Figure 1).

182 To determine the assembly and positioning of the Z ring in these mutant plants,
183 we further conducted immunofluorescence staining. We found that a single Z ring was
184 formed in the middle of chloroplasts from the wild-type Col-0 (Figures 2A, middle and
185 right panels). In contrast, multiple Z rings across the whole chloroplast were detected in
186 the *arc3-2* mutant (Figure 2B, middle and right panels) (Zhang et al., 2013). As
187 previously reported for an allelic mutant of *ARC6* (*arc6-1*) (Vitha et al., 2003), only short
188 FtsZ fragments or puncta were observed in the *arc6-5* mutant (Figures 2C, middle and
189 right panels). Similar to *arc6-5*, we observed only short FtsZ fragments, but not the
190 intact Z ring, in the *arc3-2 arc6-5* double mutant (Figure 2D, middle and right panels).
191 These results suggest that *ARC6* acts upstream of *ARC3* during chloroplast division.
192

193 **ARC6 Interacts with ARC3**

194 Given the functional relationship between *ARC6* and *ARC3*, we were prompted to ask
195 whether they interact directly. To this end, we adopted the yeast two-hybrid (Y2H)
196 assay. Since the N-terminus of *ARC6* faces the stroma where *ARC3* is localized (Vitha

197 et al., 2003), we generated a truncated version of ARC6 lacking the predicted transit
198 peptide, ARC6₆₈₋₆₁₄ (Figure 1B), and tested its interaction with various versions of
199 ARC3. As revealed in Figure 3A, ARC6₆₈₋₆₁₄ interacted with full-length ARC3 (ARC3₄₁₋₇₄₁)
200 (Figure 3A, row 1) but not with a version of ARC3 missing the MORN domain
201 (ARC3₄₁₋₅₉₈) (Figure 3A, row 2). Interestingly, neither ARC3_{Δ630-675} nor ARC3_{6G to A}
202 interacted with ARC6₆₈₋₆₁₄ (Figure 3A, rows 4 and 5), demonstrating that the C-terminal
203 MORN domain of ARC3 is critical for its interaction with ARC6 since the function of the
204 MORN domain was disrupted within both ARC3 derivatives (Chen et al., 2019). Indeed,
205 we showed that ARC6 directly binds to the MORN domain of ARC3 (ARC3₅₉₈₋₇₄₁)
206 (Figure 3A, row 3). In line with prior reports, ARC6 interacted with FtsZ2 but not with
207 FtsZ1, which served as a positive and negative control, respectively (Figure 3A, rows 7
208 and 6) (Maple et al., 2005; Glynn et al., 2009; Schmitz et al., 2009).

209 To explore whether ARC6 interacts with ARC3 *in planta*, we performed the Co-
210 immunoprecipitation (Co-IP) assay using tobacco plants. The results showed that
211 ARC3-6×HA could be co-precipitated with the ARC6-eGFP fusion protein (Figure 3B).
212 As a positive control, we showed that FtsZ2-6×HA interacted with ARC6-eGFP in this
213 assay (Figure 3B). To further validate the ARC6-ARC3 interaction *in vivo*, we
214 implemented a split-luciferase complementation (split-LUC) assay in tobacco.
215 Consistent with the results obtained from the Y2H and Co-IP assays, we detected a
216 direct interaction between ARC6 and ARC3 in the split-LUC assay (Figure 3C). As a
217 positive control, the ARC6-FtsZ2 interaction was observed as well (Figure 3C). Thus,
218 our data demonstrate that ARC6 directly binds to ARC3, presumably through the C-
219 terminal MORN domain of ARC3.

220

221 **ARC6-ARC3 Interaction Is Regulated by the J-like Domain of ARC6**

222 ARC6 contains a conserved J-like domain, but its biological function remains elusive.
223 Phylogenetic analysis revealed that ARC6 proteins from various species harbor a
224 conserved PPQ motif within the J-like domain (Supplemental Figure 2). Thus, the ARC6
225 J-like domain is not a *bona fide* J domain since it lacks the conserved HPQ motif of the
226 conventional J domain (Vitha et al., 2003). Accordingly, we found that the J-like domain
227 of ARC6 did not interact with chloroplastic Hsp70 proteins (Supplemental Figure 3). To

228 explore the function of the ARC6 J-like domain, we constructed ARC6 variants lacking
229 either the intact J-like domain (ARC6_{ΔJLD}) or only the PPQ motif (ARC6_{ΔPPQ}), and tested
230 their interaction with various ARC3 derivatives. Our Y2H results showed that the
231 ARC6_{ΔJLD} not only interacted with full-length ARC3 and the MORN domain of ARC3
232 (Figure 4A, rows 7 and 9), but also with the MORN-truncated version of ARC3 (Figure
233 4A, row 8). Moreover, ARC6_{ΔJLD} interacted more strongly with full-length ARC3 and the
234 MORN domain of ARC3 compared to ARC6 (Figure 3A, rows 1 and 3, right panels), as
235 evidenced by the growth of the transformed yeast cells on the more stringent –His –Ade
236 selective plates (Figure 4A, rows 7 and 9, right panels). We further found that the J-like
237 domain of ARC6 could directly bind to the ARC3 MORN domain (Figure 4A, row 21).
238 Analogous to ARC6_{ΔJLD}, ARC6_{ΔPPQ} exhibited a similar interaction pattern with the
239 various ARC3 derivatives (Figure 4A, rows 13 to 18). Intriguingly, the interaction
240 between ARC6 and FtsZ2 was reduced, but not abolished, by the truncation of the J-like
241 domain (Figure 4A, row 11), whereas it was not affected if only the PPQ motif was
242 deleted (Figure 4A, row 17), suggesting that the entire J-like domain contributes to the
243 ARC6-FtsZ2 interaction. Taken together, these data suggest that the unconventional J-
244 like domain of ARC6 regulates both ARC6-ARC3 and ARC6-FtsZ2 interactions.
245

246 **ARC6 Enables Full-length ARC3 to Interact with FtsZ Proteins**

247 The MORN domain has previously been shown to prevent ARC3 from interacting with
248 FtsZ proteins. In line with the prior reports, ARC3₄₁₋₇₄₁, the full-length ARC3, did not
249 interact with either FtsZ1 or FtsZ2 due to the presence of the MORN domain (Figure 4A,
250 rows 1 and 2) (Maple et al., 2007; Zhang et al., 2013). In contrast, ARC3₄₁₋₅₉₈, the
251 MORN-truncated version of ARC3, interacted with both FtsZ proteins (Figure 4A, rows 4
252 and 5), and the transformed yeast cells even grew on the more stringent –His –Ade
253 selective plates as shown in the Y2H assay (Figure 4A, rows 4 to 6, right panels).
254 Based on our finding that ARC6 directly binds to the MORN domain of ARC3, we
255 hypothesized that the binding of ARC6 to ARC3 may sequester the MORN domain,
256 thereby allowing ARC3 to interact with FtsZ proteins. To test this hypothesis, we
257 conducted the yeast three-hybrid (Y3H) assay (Chen et al., 2019). In contrast to the
258 results obtained from Y2H, our Y3H data showed that ARC3₄₁₋₇₄₁ interacted with both

259 FtsZ proteins when ARC6 was included (Figure 4B, rows 1 and 2). Intriguingly, ARC3₄₁₋₇₄₁ bound more strongly with FtsZ2 than with FtsZ1 in the presence of ARC6, as
260 evidenced by the growth of the transformed yeast cells on –His –Ade plates for FtsZ2
261 (Figure 4B, rows 1 and 2, right panels). This could be due, at least in part, to the ARC6-
262 FtsZ2 interaction (Figure 3A, row 7), whereas ARC6 does not interact with FtsZ1
263 (Figure 3A, row 6) (Maple et al., 2005). The obtained positive interactions resulted only
264 from interaction between ARC3₄₁₋₇₄₁ and FtsZ proteins since the ARC6 expression
265 cassette in the Y3H assay contained neither the GAL4 activation domain (AD) nor the
266 binding domain (BD) and thus was unable to activate expression of the reporter genes
267 (Supplemental Figure 4). This was verified when vectors encoding AD-Empty and BD-
268 FtsZ2; ARC6 were cotransformed, and no growth of the transformed yeast cells on the
269 selective plates could be observed in Y3H (Figure 4B, row 5), despite the fact that AD-
270 ARC6 interacts with BD-FtsZ2 in standard Y2H assays (Figure 3A, row 7). The
271 expression of ARC6 and ARC3 in these Y3H assays was validated by Western blot
272 (Figure 4C). Altogether, these results demonstrate that ARC6 enables full-length ARC3
273 to interact with FtsZ proteins.

275 We further adopted the Y3H assay to determine the effect of the J-like domain on
276 the ARC6-ARC3-FtsZ interaction. Our data revealed that both ARC6_{ΔJLD} and ARC6_{ΔPPQ}
277 enabled full-length ARC3 to interact with FtsZ proteins (Figure 4B, rows 7, 8, 13 and
278 14). Moreover, both derivates were more efficient in promoting the ARC3-FtsZ
279 interactions when compared to wild-type ARC6 (Figure 4B, rows 7, 8, 13 and 14;
280 Supplemental Figure 5). Intriguingly, ARC6_{ΔPPQ} exhibited a stronger ability to enable the
281 ARC3-FtsZ interactions than did ARC6_{ΔJLD} (Supplemental Figure 5, rows 7, 8, 13 and
282 14). Western blot analysis validated the expression of ARC6_{ΔJLD} and ARC6_{ΔPPQ} as well
283 as ARC3 fusion proteins in these Y3H assays (Figure 4C). These data suggest that the
284 J-like domain of ARC6 ultimately regulates the ARC3-FtsZ interactions enabled by
285 ARC6.

286
287 **ARC6 Activates the Inhibitory Activity of Full-length ARC3 on the Assembly of**
288 **FtsZ Filaments**

289 Given that ARC6 enables full-length ARC3 to directly interact with FtsZ proteins, we
290 next investigated whether ARC6 could further activate the inhibitory activity of ARC3 on
291 the assembly of FtsZ filaments. Towards addressing this, we adopted the heterologous
292 yeast *Schizosaccharomyces pombe* to investigate the assembly of chloroplast FtsZ
293 filaments (TerBush and Osteryoung, 2012; TerBush et al., 2016; TerBush et al., 2018).
294 *S. pombe* lacks endogenous FtsZ and its regulators, which makes it a valuable system
295 to address our hypothesis. Previous studies reported that ARC6 colocalizes with FtsZ2
296 filaments when coexpressed in *S. pombe* yeast cells (TerBush et al., 2016; Sung et al.,
297 2018). To exclude the potential effect of ARC6 on FtsZ2 due to their direct interaction,
298 we used FtsZ1 instead in this assay. We generated constructs encoding ARC3-
299 mCerulean, ARC6-mRuby2, and FtsZ1-mVenus fusion proteins and expressed them in
300 *S. pombe* cells. As previously shown (TerBush et al., 2016; Chen et al., 2019), FtsZ1-
301 mVenus assembled into filaments (Figure 5A), while ARC6-mRuby2 was diffuse when
302 expressed alone in *S. pombe* cells (Figure 5B). Consistent with prior reports (TerBush
303 and Osteryoung, 2012; Zhang et al., 2013; Chen et al., 2019), we observed both
304 aggregates and diffuse signals formed by ARC3₄₁₋₇₄₁-mCerulean (Figure 5C), but only
305 diffuse signals for ARC3₄₁₋₅₉₈-mCerulean (Figure 5D). In line with the ARC3-FtsZ
306 interaction data obtained from the above Y2H assays, ARC3₄₁₋₇₄₁-mCerulean did not
307 (Figure 5E), whereas ARC3₄₁₋₅₉₈-mCerulean did (Figure 5F), inhibit the assembly of
308 FtsZ1 filaments, as evidenced by the decrease in filament length and increase in
309 filament number of the assembled FtsZ1 filaments. As expected, ARC6 alone did not
310 interfere with the assembly of FtsZ1 filaments due to a lack of interaction between them
311 (Figure 5G).

312 To determine the effect of ARC6 on the inhibitory activity of ARC3 on the
313 assembly of FtsZ filaments, we cotransformed *FtsZ1-mVenus* with constructs
314 expressing *ARC6-mRuby2* and *ARC3-mCerulean*. Our data showed that the assembly
315 of FtsZ1 filaments was not affected when ARC3₄₁₋₇₄₁-mCerulean was coexpressed with
316 the fluorescent tag protein mRuby2 (Figure 5M), which served as a control. However,
317 we found that the assembly of FtsZ1 filaments was significantly inhibited by ARC3₄₁₋₇₄₁-
318 mCerulean when ARC6-mRuby2 was introduced in the yeast cells (Figure 5, I and J;
319 Supplemental Figure 6), as demonstrated by the decrease in the length of the filaments

320 and increase in the number of filaments within the yeast cells (Figure 5, O and Q). The
321 inhibition was positively correlated with the protein level of ARC6-mRuby2 (Figure 5, P
322 and R, middle panels), but not with the level of mRuby2 (Figure 5, P and R, left panels),
323 demonstrating that full-length ARC3-mediated inhibition of FtsZ1 assembly was
324 genuinely imposed by ARC6. As expected, ARC3₄₁₋₅₉₈-mCerulean inhibited the
325 assembly of FtsZ1 filaments when coexpressed with mRuby2, which served as an
326 additional control (Figure 5, N, O and Q). Intriguingly, we noticed that the MORN-
327 truncated version of ARC3 was more efficient in inhibiting the assembly of FtsZ1
328 filaments than the full-length ARC3-ARC6 complex (Figure 5, I, J, N, O and Q). Taken
329 together, these data provide direct evidence that ARC6 activates the inhibitory activity of
330 ARC3 on the assembly of FtsZ filaments. Moreover, our data suggest that ARC6 not
331 only activates ARC3, but also constrains it enough to allow the assembly of FtsZ
332 filaments to occur to some extent.

333

334 **ARC6 Acts through Its J-like Domain to Fine-tune the Inhibitory Activity of ARC3
335 on the Assembly of FtsZ Filaments**

336 The observation that the J-like domain of ARC6 regulates the ARC6-ARC3 interaction
337 prompted us to investigate whether ARC6 could fine-tune the inhibitory activity of ARC3
338 on the assembly of FtsZ filaments through this domain. To this end, we first examined
339 the assembly of FtsZ1 filaments in the presence of full-length ARC3 and ARC6_{ΔJLD}
340 using the above heterologous yeast system. Our results showed that ARC6_{ΔJLD}-mRuby2
341 increased the inhibitory activity of ARC3₄₁₋₇₄₁-mCerulean on FtsZ1-mVenus filament
342 assembly in *S. pombe* cells (Figure 5, K, L, O and Q), as indicated by the more
343 significant changes in filament length and number in the transformed yeast cells (Figure
344 5, O and Q). Such inhibition was positively correlated with the protein level of ARC6_{ΔJLD}-
345 mRuby2 (Figure 5, P and R, right panels).

346 These findings led us to further investigate the function of the J-like domain of
347 ARC6 *in vivo*. To this end, we generated constructs expressing *ARC6-mNeonGreen-3×HA* (ARC6-*mNG-3×HA*) and *ARC6_{ΔJLD}-mNG-3×HA*, both driven by the 35S promoter,
348 and expressed them in Arabidopsis. Consistent with a prior report (Vitha et al., 2003),
349 we found that overexpression of ARC6-*mNG-3×HA* in wild-type Col-0 caused multiple

351 Z-ring formation and thus led to chloroplast division defects in transgenic plants
352 (Supplemental Figure 7). In contrast, we observed that overexpression of $ARC6_{\Delta JLD}$ -
353 mNG-3×HA inhibited the assembly and formation of the Z ring, which resulted in the
354 defect of chloroplast division in transgenic plants (Figure 6, A and B; Supplemental
355 Figure 8). Interestingly, we observed the formation of mini-Z rings in transgenic plants
356 overexpressing $ARC6_{\Delta JLD}$ -mNG-3×HA (Figure 6A), resembling those observed in
357 transgenic plants overexpressing ARC3 (Zhang et al., 2013; Chen et al., 2019). To
358 determine whether $ARC6_{\Delta JLD}$ -caused inhibition of FtsZ assembly depends on ARC3, we
359 transformed $35S_{pro}:ARC6_{\Delta JLD}$ -mNG-3×HA into the *arc3-2* mutant. We found that the
360 chloroplast division defect in these transgenic plants (Figure 6, C and D, left panels)
361 resembled that in the non-transformed *arc3-2* mutant plants (Figure 2B, left panel).
362 Immunofluorescence staining results showed that there were multiple Z rings in *arc3-2*
363 transformed with $35S_{pro}:ARC6_{\Delta JLD}$ -mNG-3×HA (Figure 6, C and D, right panels),
364 suggesting that $ARC6_{\Delta JLD}$ acted through ARC3 to impose the inhibition on Z-ring
365 assembly and formation. Expression of the $ARC6_{\Delta JLD}$ fusion protein was at a
366 comparable level in wild-type Col-0 and *arc3-2* mutant transgenic plants, as detected by
367 Western blot (Figure 6E). Therefore, the presence of the J-like domain of ARC6 enables
368 it to modulate the inhibitory activity of ARC3 on FtsZ assembly.
369

370 **The J-like Domain of ARC6 Is Required for Chloroplast Division Activity but Not
371 for ARC6 Localization**

372 To further characterize the role of the J-like domain of ARC6 in chloroplast division, we
373 generated constructs expressing $ARC6_{\Delta JLD}$ -mNG-3×HA, $ARC6_{\Delta PPQ}$ -mNG-3×HA, and
374 ARC6-mNG-3×HA, all of which were driven by the *ARC6* native promoter. All
375 transgenes were transformed back into the *arc6-5* mutant to evaluate their
376 functionalities. As shown in Figure 7, ARC6-mNG-3×HA was able to restore both the
377 chloroplast division defect and the disruption of Z-ring assembly in the *arc6-5* mutant
378 (Figure 7, A and J), validating the functionality of this fusion protein *in vivo*. In contrast,
379 neither $ARC6_{\Delta JLD}$ -mNG-3×HA nor $ARC6_{\Delta PPQ}$ -mNG-3×HA complemented the chloroplast
380 morphology and Z-ring assembly phenotypes in the *arc6-5* transgenic plants (Figure 7,
381 B to D). These differences were presumably not caused by the distinct expression

382 levels of the fusion proteins since they were expressed at a similar level in the *arc6-5*
383 transgenic plants (Figure 7I). Intriguingly, ARC6_{ΔPPQ} worked better than ARC6_{ΔJLD} in
384 terms of complementing the division defects in the *arc6-5* transgenic plants (Figure 7, B
385 to D, and J).

386 To determine whether the J-like domain is required for ARC6 localization, we
387 assessed the fluorescence signal of ARC6 fusion proteins in these transgenic plants. As
388 previously reported (Vitha et al., 2003), we observed a midplastid ring-like structure for
389 wild-type ARC6-mNG-3×HA (Figure 7E). In addition, we observed diffuse ARC6 signals
390 in the chloroplasts of these plants (Figure 7E). To validate whether these signals
391 derived from ARC6 fusion protein or autofluorescence from chlorophyll, we examined
392 ARC6 in root tip and petal of flowers to exclude potential interference of chlorophyll
393 autofluorescence. As in mesophyll cells, ARC6 exhibited diffuse localization in plastids
394 from the root tip and petal cells (Supplemental Figure 9), suggesting that the diffuse
395 signals found in the chloroplasts of the complemented plants were genuine ARC6. We
396 found that both the ARC6_{ΔJLD} and ARC6_{ΔPPQ} fusion proteins formed ring-like structures
397 in addition to being diffuse in chloroplasts from transgenic *arc6-5* plants (Figure 7, F to
398 H). These data demonstrate that the J-like domain of ARC6 is required for its activity but
399 not for its localization during chloroplast division.

400

401 **ARC6 Recruits ARC3 to the Chloroplast Division Site**

402 In a previous study (Chen et al., 2019), we demonstrated that ARC3 localizes to two
403 distinct pools in the chloroplast: one is diffusely distributed throughout the stroma, and
404 the other forms a ring-like structure at the division site. Since ARC6 localizes at the
405 midplastid division site and interacts with ARC3, we wondered whether it directly
406 recruits ARC3 to form the ring-like structure at the division site. Towards addressing
407 this, we employed a construct encoding an ARC3-mNeonGreen (ARC3-mNG) fusion
408 protein driven by its native promoter, whose functionality has been previously validated
409 (Figure 8A) (Chen et al., 2019). We transformed this construct into the *arc3-2 arc6-5*
410 double mutant and observed the distribution of ARC3-mNG in the transgenic plants. As
411 previously reported (Chen et al., 2019), ARC3-mNG formed a ring-like structure at the
412 middle of the chloroplast (Figure 8, A to C), in addition to being diffusely distributed

413 throughout the chloroplast stroma (Figure 8, A to C). In contrast, we barely observed
414 any ARC3-mNG ring structures in the *arc3-2 arc6-5* transgenic mutant (Figure 8, D to F,
415 M). However, the pool of diffuse ARC3-mNG still existed despite the absence of ARC6
416 (Figure 8, D to F), indicating that localization of the diffuse ARC3 is not regulated by
417 ARC6. Statistical analysis showed that the percentage of ARC3-mNG ring structures
418 formed in the absence of ARC6 (10.1%) decreased significantly compared to the
419 percentage in its presence (53.8%) (Figure 8M). Western blot analysis confirmed that
420 ARC3-mNG was expressed at a similar level in the complemented *arc3-2* transgenic
421 line and *arc3-2 arc6-5* transgenic line (Figure 8N).

422 In the *arc6-5* mutant, there are only 1~2 chloroplasts with dramatically enlarged
423 size (Figure 2D). To exclude the possibility that the lack of ARC3-mNG ring formation
424 was due to the giant chloroplast size in the *arc6-5* mutant, we employed the *arc1 arc6-1*
425 double mutant. ARC1 (also known as FtsHi1) is a negative regulator of chloroplast
426 division, and the division defect is partially restored in the *arc1 arc6* double mutant
427 (Supplemental Figure 10) (Kadirjan-Kalbach et al., 2012). We therefore transformed the
428 ARC3-mNG construct into the *arc1* and *arc1 arc6-1* mutants (Figure, G to L). As in the
429 complemented *arc3-2* transgenic line (Figure 8, A to C), the ARC3-mNG ring was
430 observed in the transformed *arc1* plants (Figure 8, G to I). We noticed that the
431 percentage of ARC3-mNG ring was lower in *arc1* (41.2%) than in *arc3-2* (53.8%)
432 transgenic plants (Figure 8M), which could be, at least partially, due to the endogenous
433 expression of non-tagged ARC3 in the *arc1* mutant. Our results showed that the
434 percentage of ARC3-mNG rings detected in *arc1 arc6-1* (14.9%) was much lower than
435 in the *arc1* transgenic plants (41.2%) (Figure 8M). The expression level of the ARC3-
436 mNG fusion protein was similar among the distinct background plants (Figure 8N).
437 Taken together, these data demonstrate that ARC6 recruits ARC3 to the midplastid
438 during chloroplast division.

439 **DISCUSSION**

440 ARC6 is considered one of the central components of the chloroplast division machinery
441 (Pyke et al., 1994; Vitha et al., 2003; Maple et al., 2005; Glynn et al., 2008; Johnson et
442 al., 2013; Wang et al., 2017). The molecular mechanisms underlying ARC6's function in
443 chloroplast division, however, remain largely unknown. In this study, ARC3 was
444 identified as a novel interactor of ARC6, and the biological significance of the ARC6-
445 ARC3 interaction was investigated. Our work provided compelling evidence that ARC6
446 regulates the formation and positioning of the Z ring by fine-tuning ARC3 activity at the
447 chloroplast division site. A working model depicting the function of the ARC6-ARC3
448 complex at the midplastid site is presented in Figure 9.

449 ARC6 and ARC3 were found to be co-precipitated within a protein complex
450 obtained from *Arabidopsis* (McAndrew et al., 2008), suggesting a potential direct
451 interaction between them during chloroplast division. We investigated the ARC6-ARC3
452 protein interaction in the current study using yeast and plant systems. In contrast to a
453 previous report (Maple et al., 2007), our Y2H result showed a positive interaction
454 between ARC6 and ARC3. The lack of such interaction in prior study could be due to
455 the inclusion of transit peptides in their Y2H assay, which could interfere with the
456 interaction between the two proteins (Maple et al., 2007). Transit peptides of the
457 precursor chloroplast proteins are removed after import into the chloroplast and thus are
458 not part of the mature chloroplast proteins (Bruce, 2000; Lee and Hwang, 2018;
459 McKinnon and Theg, 2019). In the current study, the predicted transit peptides of both
460 proteins were excluded when performing this assay. Our Co-IP and split-LUC assays
461 further validated the ARC6-ARC3 interaction *in planta*. In contrast, the prior study failed
462 to detect such an interaction using the bimolecular fluorescence complementation
463 (BiFC) assay in tobacco plants (Maple et al., 2007). We revisited the detailed methods
464 for the BiFC experiments and noticed that the fluorescent tag was fused to the C-
465 terminus of ARC6, which faces the intermembrane space of the chloroplast instead of
466 the stroma where ARC3 localizes (Vitha et al., 2003; Maple et al., 2007). We therefore
467 considered the absence of the ARC6-ARC3 interaction reported by Maple et al. (2007)
468 a false negative. Thus, we identified ARC3 as a novel interactor of ARC6.

469 ARC6 is known to be a positive regulator of Z-ring assembly, as the *arc6* mutant
470 shows only short FtsZ fragments or patches (Vitha et al., 2003). A recent *in vitro* study
471 suggested that this may be achieved through ARC6's prevention of the disassembly of
472 GDP-bound FtsZ proteins from the assembled filaments, resulting in the stabilization of
473 the assembled FtsZ filaments (Sung et al., 2018). In contrast, we showed that ARC6 not
474 only interacts with ARC3, the direct inhibitor of Z-ring assembly (Zhang et al., 2013), but
475 also activates the inhibitory activity of ARC3 on FtsZ filament assembly, which
476 presumably leads to the inhibition of Z-ring assembly by ARC3 *in vivo*. This is the first
477 report of these novel functions of ARC6, highlighting the complexity of ARC6's role
478 during chloroplast division. Given that ARC6 binds to FtsZ2 as well (Maple et al., 2005;
479 Schmitz et al., 2009), it's difficult to test the effect of the ARC6-ARC3 complex on the
480 dynamics of the reconstituted Z ring in the heterologous yeast *Pichia pastoris*, as we did
481 for the PARC6-ARC3 complex previously (Chen et al., 2019). However, we previously
482 showed that the mid-plastid localized ARC3 functions to prevent non-specific Z-ring
483 formation in the vicinity of the division site as well as to promote the dynamics of the Z
484 ring in order to facilitate Z-ring constriction and completion of chloroplast division (Chen
485 et al., 2019). Thus, we propose that activation of ARC3 by ARC6 functions similarly at
486 the division site. In addition, ARC6, ARC3, and FtsZ2 may form a complex to regulate
487 chloroplast division. This was initially evidenced by the finding that ARC6 and ARC3 co-
488 existed in a native FtsZ complex purified from the leaf of the Arabidopsis plant
489 (McAndrew et al., 2008). In accordance with this, our Y3H data validated the formation
490 of the ARC6-ARC3-FtsZ2 complex since the transformed cell can grow on the more
491 stringent –His –Ade selective plates. In contrast, the transformed cells expressing
492 ARC6, ARC3, and FtsZ1 cannot grow on such stringent selective plates since they lack
493 a direct interaction between ARC6 and FtsZ1. Overall, our results demonstrate that
494 ARC6 functions together with ARC3 and FtsZ2 during chloroplast division.

495 The establishment and subsequent constriction of the chloroplast division
496 machinery require coordination of the stromal Z ring with the cytosolic DRP5B ring
497 across the chloroplast membranes (Osteryoung and Pyke, 2014; Chen et al., 2018a).
498 As an inner envelope membrane protein, ARC6 is a key player in such coordinated
499 behavior. The stromal region of ARC6 interacts with FtsZ2 and is mainly responsible for

500 tethering the stromal localized Z ring to the inner chloroplast envelope membrane
501 (Maple et al., 2005; Johnson et al., 2013). The intermembrane space (IMS) region of
502 ARC6 interacts with the outer envelope membrane protein PDV2 and recruits it to the
503 chloroplast division site (Glynn et al., 2008). Recently, PDV2 was shown to induce the
504 dimerization of ARC6 through interaction in the IMS region of the chloroplast (Wang et
505 al., 2017). The lack of such dimerization in the *pdv2* mutant leads to mislocalization of
506 ARC6 at the chloroplast division site and results in clustered ARC6 ring-like structures
507 around the middle of the chloroplasts in the *pdv2* mutant (Wang et al., 2017). The
508 positioning of the Z ring is ultimately governed by ARC3, in the context of the
509 chloroplast Min system (Maple et al., 2007; Nakanishi et al., 2009; Zhang et al., 2013).
510 However, it has been shown that there are multiple Z rings in the *pdv2* mutant,
511 suggesting that ARC3 is not fully functional in the absence of PDV2 (Miyagishima et al.,
512 2006). Thus, we hypothesize that the presence of PDV2 may be required for stable
513 ARC6-ARC3 interaction at the chloroplast division site. Further study is required to
514 investigate the ARC6-ARC3 interaction in the *pdv2* mutant and its impact on chloroplast
515 division.

516 ARC6 is a non-canonical J protein since the J-like domain within ARC6 lacks the
517 conserved tripeptide HPD (Vitha et al., 2003; Pulido and Leister, 2018). Consistent with
518 this, we failed to detect a direct interaction between the J-like domain of ARC6 and the
519 chloroplastic Hsp70 proteins (Supplemental Figure 3). Thus, ARC6 was designated as a
520 DNAJD protein in recent literatures since it contains only a J-like domain with an
521 unknown function (Pulido and Leister, 2018; Tamadaddi et al., 2022). The Y2H assays
522 performed with ARC6 derivates, missing the intact J-like domain or only the conserved
523 PPQ motif, suggested that the J-like domain of ARC6 functions to reduce the binding
524 strength between ARC6 and ARC3. This was further supported by the data obtained
525 from the heterologous yeast *S. pombe*, where the ARC6_{ΔJLD} activated the inhibitory
526 activity of ARC3 much more than full-length ARC6. Moreover, overexpression of
527 ARC6_{ΔJLD} in wild-type Col-0 led to the disruption of Z-ring assembly and formation,
528 resembling the phenotypes observed in ARC3 overexpression transgenic plants (Zhang
529 et al., 2013). The ability of ARC6_{ΔJLD} to do so, however, depended on the availability of
530 ARC3, since no such disruption of the Z ring was detected when ARC6_{ΔJLD} was

531 expressed at a similar level in *arc3-2* mutant as compared to the wild-type Col-0 plant,
532 implying that it acts through activating ARC3. Given that ARC6_{ΔPPQ} behaved like
533 ARC6_{ΔJLD} in terms of promoting the interaction between full-length ARC3 and the FtsZ
534 proteins, we proposed that overexpression of ARC6_{ΔPPQ} would cause the disruption of
535 Z-ring formation in an ARC3-dependent manner as well. Our data suggested that the
536 major function of the J-like domain of ARC6 is to fine-tune the activity of ARC3 to keep it
537 at a proper level at the chloroplast division site. By doing so, ARC3 could be active
538 enough to prevent the non-specific assembly of Z rings in the vicinity of the division site
539 but not be too active to inhibit Z-ring assembly and formation (Chen et al., 2019).
540 Interestingly, we noticed that ARC6_{ΔPPQ} was more efficient than ARC6_{ΔJLD} in
541 complement of the chloroplast division defect in the *arc6* mutant. Our Y2H data showed
542 that the interaction between ARC6 and FtsZ2 was reduced by the depletion of the J-like
543 domain while not affected by the removal of only the PPQ motif. Thus, the functional
544 difference between ARC6_{ΔPPQ} and ARC6_{ΔJLD} in chloroplast division could be attributed,
545 at least partially, to the distinct binding affinity of these ARC6 derivatives with FtsZ2.
546 Our findings demonstrated that the biological function of the ARC6 J-like domain is to
547 modulate the binding intensity of the ARC6-ARC3 interaction and the subsequent
548 activation of ARC3 by ARC6, as well as to promote the ARC6-FtsZ2 interaction.

549 We previously reported that PARC6 activates ARC3 to promote Z-ring dynamics
550 at the chloroplast division site (Chen et al., 2019). Moreover, we noticed that PARC6
551 partially activates ARC3 (Zhang et al., 2016; Chen et al., 2019). Interestingly, it seems
552 that ARC6 partially activates ARC3 as well in the current study. It's unclear whether
553 PARC6 and ARC6 will interfere with each other in terms of regulating the activity of
554 ARC3 at the chloroplast division site. Regarding the regulation of ARC3 activity, ARC6
555 and PARC6 presumably work cooperatively to maintain the inhibitory activity of ARC3 at
556 the proper level at the chloroplast division site. Thus, we propose that the activity of
557 ARC3 is under strict control by multiple factors to ensure both the correct positioning
558 and the proper dynamics of the Z ring during chloroplast division. Given the morphology
559 of the Z ring in the *arc6* mutant (Vitha et al., 2003), one possible function of ARC6 is to
560 inhibit the activity of the chloroplast Min system. Since ARC3 is the core component of
561 the Min system, the J-like domain is likely to regulate the interaction between ARC6 and

562 other Min components as well. It has been reported that ARC6 interacts with both MinD
563 and MCD1 (Chen et al., 2018b; Zhang et al., 2021). It would be interesting to investigate
564 whether the J-like domain could regulate the interaction between ARC6 and these Min
565 system components in future studies.

566

567 **METHODS**

568 **Plant Materials and Growth Conditions**

569 *Arabidopsis thaliana* ecotype Columbia-0 (Col-0) and Landsberg *erecta* (Ler) were used
570 as the wild type in this study. The *arc3-2* (SALK_057144) and *arc6-5* (SAIL_693_G04)
571 are in the Col-0 background (Shimada et al., 2004; Glynn et al., 2008); *arc1* is in the Ler
572 background, and *arc6-1* is in the Wassilewskija (WS) background (Pyke and Leech,
573 1992; Pyke et al., 1994; Vitha et al., 2003; Kadirjan-Kalbach et al., 2012). The *arc3-2*
574 *arc6-5* double mutant was generated through genetic crossing and confirmed by
575 genotyping. All seeds were surface-sterilized in 70% (v/v) ethanol with 0.05% (v/v)
576 Triton X-100 and sown on half-strength Murashige and Skoog Basal Medium with
577 Vitamins (PhytoTech, M519) in 1% (w/v) sucrose and 0.7 (w/v) agar at pH 5.7. The
578 seeds were kept in the dark for 2 d at 4°C and then transferred to the growth room (100
579 $\mu\text{mol m}^{-2} \text{s}^{-1}$) at 22°C with a 16-h light/8-h dark cycle and 70% humidity. *Nicotiana*
580 *benthamiana* plants were grown (125 $\mu\text{mol m}^{-2} \text{s}^{-1}$) at 23°C with the identical
581 photoperiod and humidity of *Arabidopsis*.

582

583 **Plasmid Design and Construction Strategies**

584 All chloroplast division genes expressed in yeast cells were amplified from the cDNA
585 sequences of *Arabidopsis thaliana* and did not contain the coding sequences for the
586 predicted transit peptides. Regarding expression *in planta*, the chloroplast division
587 genes were amplified from the genomic sequences. All PCR amplifications were
588 performed using Phanta Max Super-Fidelity DNA Polymerase (Vazyme, P505) in a
589 Biometra Tone 96 G, 230 V Thermocycler (Analytik Jena). Restriction enzymes were
590 acquired from New England Biolabs and TransGen Biotech. The Gibson Assembly
591 approach was employed for the construction of all vectors (Gibson et al., 2009). The

592 primers are detailed in Supplemental Table 1, and the obtained constructs were verified
593 by sequencing prior to further use.

594 The pGADT7 (AD) and pGBKT7 (BD) vectors (Clontech) served as the backbone
595 for generating constructs in the yeast two-hybrid (Y2H) and yeast three-hybrid (Y3H)
596 assays. The CC268/CC269 primer set was used to amplify the *ARC6₆₈₋₆₁₄* coding
597 sequence, and the obtained fragment was inserted into the AD vector digested with
598 NdeI and BamHI, yielding pGADT7-ARC6₆₈₋₆₁₄. The CC268/CC270 and CC271/CC269
599 primer sets amplified *ARC6_{ΔJLD}* from pGADT7-ARC6₆₈₋₆₁₄, and the resulting fragment
600 was cloned into the AD vector digested with NdeI and BamHI, yielding pGADT7-
601 ARC6_{ΔJLD}. The CC268/WB352 and WB353/WB354 primer sets were used to amplify
602 *ARC6_{ΔPPQ}* from pGADT7-ARC6₆₈₋₆₁₄, and the product was inserted into the AD vector
603 digested with NdeI, yielding pGADT7-ARC6_{ΔPPQ}. The rest of the constructs employed in
604 the Y2H assays were described previously (Glynn et al., 2009; Zhang et al., 2013;
605 Zhang et al., 2016; Chen et al., 2019).

606 To generate constructs used in the Y3H assays, the *ARC6₆₈₋₆₁₄* expression cassette
607 (without the GAL4 activation domain) was amplified from pGADT7-ARC6₆₈₋₆₁₄ with
608 CC172/CC169 and CC170/CC173 primers. The obtained fragments were inserted into
609 AvrII-digested pGBKT7-FtsZ1, pGBKT7-FtsZ2 and pGBKT7-Empty, respectively, to
610 generate pGBKT7-FtsZ1; ARC6, pGBKT7-FtsZ2; ARC6 and pGBKT7-Empty; ARC6
611 vectors. Similarly, the *ARC6_{ΔJLD}* and the *ARC6_{ΔPPQ}* expression cassettes, both deprived
612 of the GAL4 activation domain, were amplified from pGADT7-ARC6_{ΔJLD} and pGADT7-
613 ARC6_{ΔPPQ}, respectively, with the identical CC172/CC169 and CC170/CC173 primer
614 sets. The obtained fragments were inserted into AvrII-digested pGBKT7-FtsZ1,
615 pGBKT7-FtsZ2 and pGBKT7-Empty, respectively, in order to obtain the rest of Y3H
616 constructs.

617 The pGREEN and pCAMBIA1300-20 (Zhang et al., 2013) vectors were used as
618 the backbone to generate constructs for the Co-IP assays. The genomic sequence of
619 *ARC3* was amplified with WB378/WB379 primer set, and the obtained product was
620 cloned into Xhol/PstI digested pGREEN, leading to pGREEN-35S_{pro}:ARC3-6×HA.
621 Likely, the genomic sequence of *FtsZ2* was amplified with WB382/WB383 primers, and
622 the fragment was inserted into pGREEN vector digested with Xhol and PstI, in order to

623 make pGREEN-35S_{pro}:FtsZ2-6×HA. To generate pCAMBIA1300-20-35S_{pro}:ARC6-
624 eGFP, the sequences for *ARC6* (genomic) and eGFP as well as 3'UTR of *ARC6* were
625 amplified using primer set WB345/WB339, WB340/WB341 and WB342/WB343,
626 respectively. The obtained three fragments were inserted into pCAMBIA1300-20 vector
627 digested with BamHI and SacI through Gibson Assembly, resulting in the
628 pCAMBIA1300-20-35S_{pro}:ARC6-eGFP construct. The transit peptide of RecA (RecA_{TP})
629 has been shown to target fusion proteins into chloroplasts (Kohler et al., 1997; Chen et
630 al., 2018b). The pCAMBIA1300-20-35S_{pro}:RecA_{TP}-eGFP construct was generated by
631 amplifying *RecA_{TP}* and eGFP sequences using primer set WB69/WB497 and
632 WB340/WB498, respectively. Subsequently, the resulting fragments were then inserted
633 into pCAMBIA1300-20 vector digested with BamHI and SacI.

634 The pCAMBIA1300 vector was used as the backbone to generate constructs for
635 the split-luciferase complementation (split-LUC) assays. To amplify *N-terminal*
636 *luciferase* (*NLuc*), *C-terminal luciferase* (*CLuc*), and 6×HA fragments, we used
637 pCAMBIA1300-NLuc, pCAMBIA1300-CLuc, and pGREEN-35S_{pro}:6×HA as templates.
638 To generate pCAMBIA1300-ARC6_{TP}-NLuc-ARC6, the primer sets WB460/WB461,
639 WB462/WB463, WB464/WB465 and WB466/WB467 (for amplifying 6×HA sequence)
640 were used. The obtained fragments were then cloned into pCAMBIA1300 digested with
641 KpnI and PstI. To make the pCAMBIA1300-ARC3-CLuc and pCAMBIA1300-FtsZ2-
642 CLuc constructs, the pCAMBIA1300 backbone was digested with SacI and Sall. The
643 primer sets WB468/WB469, WB470/WB471 and WB472/WB473 were used to produce
644 fragments for *ARC3-CLuc* transgene; WB474/WB475, WB470/WB471 and
645 WB472/WB473 were used to generate fragments for *FtsZ2-CLuc* transgene. The
646 sequencing results indicated that a 3×HA, instead of 6×HA, was fused with *FtsZ2-CLuc*.

647 The pREP41X and pREP42X vectors (<http://www-bcf.usc.edu/>;
648 forsburg/vectortable.html) were employed as the backbone for constructing plasmids
649 expressing chloroplast division proteins in yeast *Schizosaccharomyces pombe* (*S.*
650 *pombe*). The *ARC6₆₈₋₆₁₄* and *ARC6_{ΔJLD}* fragments were amplified with the primers
651 CC101/CC102. The *mRuby2* fragment was amplified using the CC85/CC86 primers
652 from pREP41X-mRuby2. These fragments were then cloned into BamHI-digested
653 pREP41X to generate pREP41X-ARC6₆₈₋₆₁₄-mRuby2 and pREP41X-ARC6_{ΔJLD}-mRuby2

654 constructs, respectively. To generate pREP41X-ARC3₄₁₋₇₄₁-mCerulean; ARC6₆₈₋₆₁₄-
655 mRuby2 and pREP41X-ARC3₄₁₋₇₄₁-mCerulean; ARC6_{ΔJLD}-mRuby2, primers
656 AT109/AT110 were used to amplify the *ARC6₆₈₋₆₁₄-mRuby2* and *ARC6_{ΔJLD}-mRuby2*
657 expression cassettes (including the *nmt1** promoter and terminator sequences) from
658 pREP41X-ARC6₆₈₋₆₁₄-mRuby2 and pREP41X-ARC6_{ΔJLD}-mRuby2, respectively. The
659 obtained PCR products were inserted into AatII-digested pREP41X-ARC3₄₁₋₇₄₁-
660 mCerulean, yielding pREP41X-ARC3₄₁₋₇₄₁-mCerulean; ARC6₆₈₋₆₁₄-mRuby2 and
661 pREP41X-ARC3₄₁₋₇₄₁-mCerulean; ARC6_{ΔJLD}-mRuby2 constructs, respectively. Likewise,
662 the AT109/AT110 primer set was used to amplify the *mRuby2* expression cassette
663 (including the *nmt1** promoter and terminator sequences) from pREP41X-mRuby2,
664 followed by insertion into pREP41X-ARC3₄₁₋₅₉₈-mCerulean digested with AatII,
665 generating pREP41X-ARC3₄₁₋₅₉₈-mCerulean; mRuby2 construct as a control. The rest
666 of constructs used in *S. pombe*, including pREP41X-ARC3₄₁₋₇₄₁-mCerulean, pREP41X-
667 ARC3₄₁₋₅₉₈-mCerulean, pREP42X-FtsZ1-mVenus and pREP41X-ARC3₄₁₋₇₄₁-mCerulean;
668 mRuby2 were described in previous reports (TerBush et al., 2016; TerBush et al., 2018;
669 Chen et al., 2019).

670 The pCAMBIA1300-20 vector was used as the backbone to generate constructs
671 expressing distinct ARC6 derivates and ARC3 in Arabidopsis plants. To generate
672 construct expressing *ARC6_{pro}:ARC6(g)-mNeonGreen (mNG)-3×HA*, primers
673 WB336/WB337 and WB338/WB339 were used to amplify a fragment harboring the
674 promoter region of *ARC6* (~2 kb) and *ARC6* genomic sequence; primers
675 WB520/WB521, WB522/WB523 and WB342/WB343 were used to amplify *mNG*, 3×*HA*,
676 and the 3'UTR (276 bp) of *ARC6*. Subsequently, the resulting fragments were inserted
677 into pCAMBIA1300-20 backbone after digestion with *PstI* and *SacI*. To obtain construct
678 expressing *ARC6_{pro}:ARC6_{ΔJLD}(g)-mNG-3×HA*, primers WB336/WB337 and
679 WB344/WB339 were used to amplify a fragment containing the promoter region of
680 *ARC6* (~2 kb) and *ARC6_{ΔJLD}* genomic sequence. Likewise, primers WB336/WB352 and
681 WB353/WB339 were used to amplify a fragment containing the promoter region of
682 *ARC6* (~2 kb) and *ARC6_{ΔPPQ}* genomic sequence in order to make
683 *ARC6_{pro}:ARC6_{ΔPPQ}(g)-mNG-3×HA*. Regarding the identical part of the two transgenes,
684 primers WB520/WB521, WB522/WB523 and WB342/WB343 were used to amplify

685 *mNG*, 3×*HA*, and the 3'UTR (276 bp) of *ARC6*. The obtained fragments were then
686 cloned into PstI/SacI-digested pCAMBIA1300-20 to generate the destined constructs
687 expressing *ARC6_{pro}:ARC6_{ΔJLD}(g)-mNG-3×HA* and *ARC6_{pro}:ARC6_{ΔPPQ}(g)-mNG-3×HA*.
688 To obtain 35S_{pro}:*ARC6(g)-mNG-3×HA*, primers of WB345/WB339, WB520/WB523 and
689 WB342/WB343 were used to amplify fragments of *ARC6* genomic region, *mNG-3×HA*
690 and 3' UTR of *ARC6*. To make 35S_{pro}:*ARC6_{ΔJLD}(g)-mNG-3×HA*, primers
691 WB345/WB337, WB338/WB339, WB520/WB523 and WB342/WB343 were used to
692 amplify fragments of *ARC6_{ΔJLD}* genomic region, *mNG-3×HA* and 3' UTR of *ARC6*.
693 These fragments were inserted into the pCAMBIA1300-20 digested with BamHI and
694 SacI in order to generate the final constructs. Construction of *ARC3_{pro}:ARC3-mNG* was
695 described previously (Chen et al., 2019).

696

697 **Generation of Transgenic Plants**

698 All transgenic plants were generated by floral dipping (Clough and Bent, 1998) using the
699 *Agrobacterium tumefaciens* GV3101 strain. Transgenic plants were screened on half-
700 strength Murashige and Skoog Basal Medium (PhytoTech, M519) supplemented with
701 20 µg/mL hygromycin (Yeasen, 60225ES03). After one week of growth on selective
702 plates, positive transgenic seedlings were transferred to soil and cultivated in the growth
703 room. T₁ plants were utilized for all transgenic backgrounds, except for transgenic *arc3-*
704 2 expressing *ARC3_{pro}:ARC3(g)-mNG*, where T₃ plants were used.

705

706 **Chloroplast Phenotype Analysis**

707 For the analysis of chloroplast phenotypes, young expanding leaves from 3-week-old
708 plants were fixed according to previously established protocol (Pyke and Leech, 1991).
709 Briefly, leaf tissue samples were fixed in 3.5% (v/v) glutaraldehyde for 1 hour, followed
710 by transfer into 0.1 M Na₂EDTA (pH = 9.0). The samples were kept at 50°C for 2 h, and
711 were stored overnight at 4°C before observation. Mesophyll cells were examined using
712 differential interference contrast optics equipped on an epifluorescence microscope
713 (Olympus BX53) and imaged with an Olympus DP23 camera. The cell plane area was
714 quantified using Fiji (ImageJ) software (<http://fiji.sc/Fiji>), and the number of chloroplasts
715 in individual cells was counted manually.

716

717 **Immunofluorescence Staining of FtsZ Localization**

718 FtsZ assembly and Z-ring positioning were analyzed by immunofluorescence staining
719 utilizing an anti-FtsZ2-1 antibody as described previously (Vitha et al., 2001; Yoder et
720 al., 2007; Vitha and Osteryoung, 2011; Chen et al., 2019). Briefly, young expanding
721 rosette leaves were collected from 4- to 5-week-old plants and then cut into 2 mm width
722 strips. The samples were embedded with wax (PEG distearate, Sigma-Aldrich 305413;
723 1-Hexadecanol, Sigma-Aldrich 258741). The sections were cut to a thickness of 5 μ m
724 using a Manual Rotary Microtome (Thermo Fisher Scientific). Sections were incubated
725 with the primary anti-FtsZ2-1 antibody (1:3500 dilution), followed by incubation with the
726 Alexa Fluor 488 Goat Anti-Rabbit secondary antibody (1:500 dilution) (Yeasen,
727 33106ES60). Images shown in Figure 6 and 7, and Supplemental Figure 7 and 8 were
728 acquired with a Nikon A1 HD25 laser scanning confocal microscope. The confocal
729 channel settings for detecting the FtsZ2-1 signal were 488 nm excitation with emission
730 recorded between 500 and 550 nm, while chlorophyll autofluorescence was captured
731 using 561 nm excitation and emission recorded between 662 and 737 nm. Single
732 images were stacked using a maximum intensity projection method after Z-axis
733 scanning in the confocal microscope. Images were merged by Fiji (ImageJ) software
734 (<http://fiji.sc/Fiji>). Samples in Figure 2 were observed using an Olympus FV3000 laser
735 scanning confocal microscope, and samples in Supplemental Figure 10 were observed
736 with a Zeiss LSM-900 laser scanning confocal microscope. The parameters for the
737 channel setting were similar to those mentioned for the Nikon A1 confocal.

738

739 **Yeast Two-Hybrid and Yeast Three-Hybrid Assays**

740 The *HIS3* and *ADE2* reporter genes were employed to assess the protein interactions in
741 the yeast strain Y2HGold (Takara Bio). Yeast transformation was carried out using the
742 lithium acetate (LiAc)-mediated method. Positive transformants were selected based on
743 growth on synthetic dropout (SD) medium lacking leucine and tryptophan (-Leu -Trp)
744 for three days. Protein interactions were further examined based on growth on SD
745 medium lacking leucine, tryptophan, histidine (-Leu -Trp -His), as well as lacking
746 leucine, tryptophan, histidine, and adenine (-Leu -Trp -His -Ade). To prevent the leaky

747 expression of *HIS3*, 3-Amino-1,2,4-triazole (3-AT, [BBI, A601149]) was added to the SD
748 medium as suggested by the manufacturer. The detailed procedure has been described
749 in a previous study (Chen et al., 2019).

750 For dropout assays, 10 μ L of the original culture ($OD_{600} = 1.0$) and diluted
751 cultures ($OD_{600} = 0.1, 0.01$) were streaked on SD/-Leu -Trp, SD/-Leu -Trp -His
752 supplemented with 3-AT, and SD/-Leu -Trp -His -Ade agar plates as indicated. In the
753 Y2H and Y3H assays, positive transformants were grown on the SD/-Trp -Leu and
754 SD/-Trp -Leu -His for three days, and on the SD/-Trp -Leu -His -Ade for five days at
755 30°C. Images were acquired with a gel documentation and analysis system (Clnix,
756 GenoSens 2100) using the same parameters. Validation of interactions was conducted
757 through a minimum of three independent assays, and representative images were
758 presented.

759

760 **Co-immunoprecipitation and Split-luciferase Complementation Assays**

761 *Agrobacterium tumefaciens* strain GV3101 and *Nicotiana benthamiana* plants were
762 used for the Co-IP and split-LUC assays. The overnight cultures were centrifuged and
763 the pellets were resuspended with the injection buffer (4.43 g/L Murashige and Skoog
764 Basal Medium, 10 mM MES, 10 mM MgCl₂ and 150 μ M Acetosyringone, pH = 5.7).
765 Equal volumes of two adjusted cultures ($OD_{600} = 1$) were mixed and kept in the dark for
766 3 h before agroinfiltration. The injected plants were kept in dark overnight and then
767 transferred to normal light conditions.

768 To conduct the Co-IP assay, total proteins were extracted two days after injection
769 using lysis buffer (50 mM Tris-HCl, pH = 8.0, 150 mM NaCl, 10% glycerol, 1 mM DTT,
770 1× Cocktail [Yeasen, 20124ES03] and 0.5% NP-40). After centrifugation, one part of the
771 sample was used as input, while the other part was utilized for subsequent experiments.
772 An equal volume of the supernatant was collected and incubated with 15 μ L Anti-GFP
773 Nanobody Magarose Beads (AlpalifeBio, KTS1334) at 4°C for 3 h. The beads were
774 washed with lysis buffer four times and each washing lasted 8 min. Subsequently, the
775 beads were boiled with 2× SDS loading buffer at 95°C for 5 min. The protein samples
776 were separated on 10% SDS-PAGE, and probed with an anti-GFP antibody (1:3000
777 dilution; Abcam, Ab290) or anti-HA antibody (1:5000 dilution; Yeasen, 30701ES60),

778 followed by the incubation with the correspond secondary antibodies (see “Protein
779 Extraction and Western Blot Analysis” for details).

780 To perform the split-LUC assay, the injected plants were observed for protein
781 interactions two days after agroinfiltration. The plants were further injected with the
782 solution of 1 mM D-Luciferin potassium salt (Beyotime, ST196) and then incubated for
783 30 min before observation. The leaves were imaged using a Chemiluminescent Imaging
784 System (Tanon 4600).

785

786 **Protein Extraction and Western Blot Analysis**

787 Total protein was extracted from Y2HGold yeast cells according to previous studies
788 (Kushnirov, 2000; Chen et al., 2019). Briefly, three milliliters of yeast cells ($OD_{600} = 4.0$)
789 were harvested by centrifugation of 13,000 g, 1 min at room temperature. The cells
790 were resuspended and pre-treated with 100 μ L 2 M LiAc for 5 min on ice. After
791 centrifugation at 1,000 g for 1 min, the supernatant was removed and cells were treated
792 with 100 μ L 0.4 M NaOH for 5 min on ice. Then, cells were pelleted down by
793 centrifugation at 300 g for 2 min and resuspended in 100 μ L SDS-PAGE loading buffer
794 (60 mM Tris-HCl pH = 6.8, 10% glycerol, 2% [w/v] SDS, 5% [v/v] β -Mercaptoethanol
795 and 0.0025% [w/v] bromophenol blue). The samples were further boiled at 95°C for 5
796 min. After centrifugation at 16,000 g for 5 min, 20 μ L of the supernatant was loaded for
797 each sample.

798 To extract total protein from rosette leaves of 4- to 5-week-old plants, 50 mg of
799 the leaves were frozen in liquid nitrogen and then homogenized using a high-throughput
800 tissue grinder (Wonbio-48R). The resulting samples were resuspended in 100 μ L lysis
801 buffer (50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, pH = 8.0, 10% glycerol, 0.2%
802 Triton X-100, and 1× Cocktail) and centrifugated at 16,000 g for 5 min at 4°C. The
803 supernatant was boiled at 95°C for 10 min in SDS-PAGE loading buffer (60 mM Tris-
804 HCl pH = 6.8, 10% glycerol, 2% [w/v] SDS, 5% [v/v] β -Mercaptoethanol and 0.0025%
805 [w/v] bromophenol blue). After centrifugation at 16,000 g for 5 min, 10 μ L of the
806 supernatant was loaded for each sample.

807 All protein samples were separated by electrophoresis on 10% SDS-PAGE gels
808 and subsequently transferred onto the nitrocellulose membranes (Cytiva, 10600001).

809 After blocking in TBS buffer supplemented with 0.5% (v/v) Tween 20 and 5% (v/v)
810 nonfat milk, the membranes were probed with anti-HA antibody (1:5000 dilution;
811 Yeasen, 30701ES60) or anti-mNeonGreen antibody (1:3000 dilution; Agrisera,
812 AS214525) overnight at 4°C. After washing, the membranes were further incubated with
813 a goat anti-mouse secondary antibody (1:5000 dilution) (Yeasten, 33201ES60), or a
814 goat anti-rabbit secondary antibody (1:5000 dilution) (ABclonal, AS014) for 1 h at room
815 temperature. The protein bands were detected using Super Signal West Pico PLUS
816 Chemiluminescent Substrate (Thermo Fisher Scientific, 34577). Membranes were
817 imaged using a Chemiluminescent Imaging System (Tanon 4600). Regarding Western
818 blot with actin, the primary and secondary antibodies were removed using a mild
819 striping buffer (15 g/L glycine, 1 g/L SDS, 1% tween-20, pH = 2.2), followed by probing
820 the membrane with anti-actin antibody (Abclonal, AC009). Ponceau S (Diamond,
821 A100860) stained nitrocellulose membranes were served as an additional loading
822 control.

823

824 **Expression and Observation of Chloroplast Division Proteins in *S. pombe***
825 Fission yeast *S. pombe* (*h⁻ ade6-210 leu1-32 ura4-D18*) was used in this study. The
826 wild-type yeast cells were cultured in YES medium (5 g/L yeast extract, 30 g/L glucose,
827 and supplemented with 225 mg/L adenine, histidine, leucine, uracil and lysine
828 hydrochloride). Transformation of *S. pombe* cells was conducted using the lithium
829 acetate approach, as previously described (TerBush and Osteryoung, 2012; Chen et al.,
830 2019). Transformed yeast cells were grown on selective synthetic dropout PMG
831 medium (3 g/L potassium hydrogen phthalate, 2.2 g/L Na₂HPO₄, 3.75 g/L L-glutamic
832 acid, 20 g/L glucose, 20 mL/L salts, 1 mL/L vitamins, and 0.1 mL/L minerals) lacking
833 either Leu (for pREP41X) or uracil (for pREP42X) or both (for cotransformation) (see
834 <https://dornsife.usc.edu/pombenet/media/> for details). Positive colonies expressing the
835 fusion proteins were further verified under microscope, and then inoculated into the
836 corresponding PMG selective media. The cultures were diluted (OD₆₀₀ = 1), and 15 µL
837 of each diluted culture was reinoculated into 2 mL selective PMG media, in order to
838 minimize the growth differences among distinct transformed yeast cells. The cultures
839 were further incubated at 32°C for 36 to 40 h prior to observation.

Transformed cells expressing the chloroplast fusion proteins were visualized by epifluorescence microscopy (Olympus BX53) equipped with a CCD camera (Retiga R6). The fluorescence signals of mCerulean, mVenus and mRuby2 fusion proteins were captured using FluoCa filters FS301 (430 to 450 nm excitation/465 to 495 nm emission), FS303 (480 to 500nm excitation/517.5 to 542.5 nm emission), and FS308 (545 to 575 nm excitation/595 to 665 nm emission), respectively. The excitation intensity of the LED light source (FluoCa) for the mCerulean, mVenus and mRuby2 channel was set to 30%, 5%, and 50%, respectively. The exposure time was 500 ms for all channels. To quantitatively determine the inhibitory effect of ARC3 on FtsZ assembly, the length of the FtsZ1-mVenus filaments (the average length of the two shortest filaments within cells) was measured and normalized to the cell length; the number of the FtsZ1-mVenus filaments was counted manually using Fiji (ImageJ) software (<http://fiji.sc/Fiji>). The protein expression level of ARC6-mRuby2, ARC6_{ΔJLD}-mRuby2 and mRuby2 was assessed by measuring the fluorescence intensity of the mRuby2 signal within cells, which was further normalized to cell size.

855

856 Confocal Microscopy

Localization of ARC3-mNG and ARC6 (or its derivates)-mNG-3×HA fusion proteins in transgenic plants was detected using a laser scanning confocal microscope (Nikon A1 HD25) with a 100× oil immersion objective (numerical aperture, 1.4). Identical confocal setting was applied when observing same fusion protein in distinct transgenic plants.

861 To detect ARC3-mNG, the abaxial side of leaves from 10- to 14-day-old
862 seedlings was used. The laser intensity for detecting the mNG fluorescence signal (488
863 nm excitation/500 to 550 nm emission) and the chlorophyll autofluorescence (561 nm
864 excitation/662 to 737 nm emission) was both 10%.

865 To dissect the localization of ARC6 and its derivates tagged with mNG, leaves
866 from 3- to 4-week-old plants were adopted. The laser intensity for detecting the mNG
867 fluorescence signal (488 nm excitation/500 to 550 nm emission) and the chlorophyll
868 autofluorescence (640 nm excitation/662 to 737 nm emission) was 60 and 55%. Root
869 tips of 7-day-old seedlings and petals of 5-week-old plants were also examined using
870 confocal with the identical setting as leaf samples.

871 Fluorescent images of immunostained FtsZ2-1 in plants were captured with a
872 laser scanning confocal microscope (Nikon A1 HD25) with a 100× oil immersion
873 objective (numerical aperture, 1.4). To detect Alexa Fluor 488 (488 nm excitation/500 to
874 550 nm emission) and chlorophyll fluorescence (561 nm excitation/662 to 737 nm
875 emission), the laser intensity was set to 30 and 50%. A 0.5 μ m interval was employed to
876 collect z stacks images for both channels. NIS-Elements software was used to perform
877 projection of the obtained z stack images based on the max intensity algorithm.

878

879 **Accession Numbers**

880 Sequence data from this study can be found in The Arabidopsis Information Resource
881 (TAIR) database (<https://www.arabidopsis.org/>) under the following names and
882 accession numbers: *ARC6* (AT5G42480), *ARC3* (AT1G75010), *FtsZ1* (AT5G55280),
883 *FtsZ2-1* (AT2G36250) and *ARC1* (AT4G23940). The single mutants used in this study
884 are *arc6-1* (CS286), *arc6-5* (SAIL_693_G04), *arc3-2* (SALK_057144) and *arc1* (CS262).

885

886 **Supplemental Figure 1.** Functional relationship between *ARC6* and *ARC3* during
887 chloroplast division.

888 **Supplemental Figure 2.** Multiple sequence alignments to identify the conserved
889 tripeptide PPQ in the J-like domain of *ARC6*.

890 **Supplemental Figure 3.** The J-like domain of *ARC6* does not interact with cpHsp70s.

891 **Supplemental Figure 4.** Design of constructs for the yeast three-hybrid assays.

892 **Supplemental Figure 5.** *ARC6_{ΔPPQ}* promotes the interaction between *ARC3* and *FtsZs*
893 more effectively than *ARC6_{ΔJLD}*.

894 **Supplemental Figure 6.** Effect of full-length *ARC3* on assembly of *FtsZ1* filaments in
895 the presence of *ARC6* and *ARC6_{ΔJLD}* in *S. pombe*.

896 **Supplemental Figure 7.** Effect of *ARC6* overexpression in wild-type Col-0.

897 **Supplemental Figure 8.** Disruption of Z-ring formation by *ARC6_{ΔJLD}* overexpression
898 depends on *ARC3*.

899 **Supplemental Figure 9.** Localization of *ARC6-mNG-3×HA* in petals and roots.

900 **Supplemental Figure 10.** Chloroplast and Z-ring morphologies of *arc1* and *arc1 arc6*
901 mutants.

902 **Supplemental Table 1.** List of primers and restriction enzymes.

903

904 **ACKNOWLEDGEMENTS**

905 We thank Xiangwei He and Wenzhu Li from Zhejiang University for providing the *S.*
906 *pombe* strain and Lu Liu from Shanghai Jiao Tong University for providing the pGREEN
907 vector. We thank the core facilities at the School of Agricultural and Biology, and the
908 School of Life Sciences and Biotechnology from Shanghai Jiao Tong University. This
909 work was supported by the National Science Foundation of China (grant no. 32170333
910 to C.C.), the Shanghai Pujiang Program from Science and Technology Commission of
911 Shanghai Municipality (grant no. 20PJ1405700 to C.C.), the China Postdoctoral Science
912 Foundation (285751 to L.C. and 278185 to Y.Z.), the Shanghai Super Postdoc Incentive
913 Plan from Shanghai Municipal Human Resources and Social Security Bureau (to L.C.),
914 the U.S. Department of Energy, Office of Science, Basic Energy Sciences (grant no.
915 DE-FG02-06ER15808 to K.W.O.), and the National Science Foundation (grant no.
916 1719376 to K.W.O.).

917

918 **AUTHOR CONTRIBUTIONS**

919 C.C. and K.W.O. conceived the project, and C.C. supervised the study. C.C., W.D. and
920 L.C. designed the experiments; W.D., L.C. and Y.Z. performed most of the experiments
921 and analyzed the data; S.J., M.N., Y.Y., J.M.G. and K.J.P. performed some Y2H
922 assays; Q.H. helped with data analysis; J.X. helped with confocal microscopy; K.W.O.
923 and W.L. provided critical suggestions to the study and the preparation of the
924 manuscript. C.C., L.C., W.D. and K.W.O. wrote the manuscript.

925 **REFERENCE**

926 **Ajjawi, I., Coku, A., Froehlich, J.E., Yang, Y., Osteryoung, K.W., Benning, C., and**
927 **Last, R.L.** (2011). A J-like protein influences fatty acid composition of chloroplast
928 lipids in *Arabidopsis*. *PLoS One.* **6**, e25368.

929 **Bruce, B.D.** (2000). Chloroplast transit peptides: structure, function and evolution.
930 *Trends Cell Biol.* **10**, 440-447.

931 **Cackett, L., Luginbuehl, L.H., Schreier, T.B., Lopez-Juez, E., and Hibberd, J.M.**
932 (2022). Chloroplast development in green plant tissues: the interplay between
933 light, hormone, and transcriptional regulation. *New Phytol.* **233**, 2000-2016.

934 **Chen, C., MacCready, J.S., Ducat, D.C., and Osteryoung, K.W.** (2018a). The
935 Molecular Machinery of Chloroplast Division. *Plant Physiol.* **176**, 138-151.

936 **Chen, C., Cao, L., Yang, Y., Porter, K.J., and Osteryoung, K.W.** (2019). ARC3
937 Activation by PARC6 Promotes FtsZ-Ring Remodeling at the Chloroplast
938 Division Site. *Plant Cell.* **31**, 862-885.

939 **Chen, L., Sun, B., Gao, W., Zhang, Q.Y., Yuan, H., and Zhang, M.** (2018b). MCD1
940 Associates with FtsZ Filaments via the Membrane-Tethering Protein ARC6 to
941 Guide Chloroplast Division. *Plant Cell.* **30**, 1807-1823.

942 **Clough, S.J., and Bent, A.F.** (1998). Floral dip: a simplified method for *Agrobacterium*-
943 mediated transformation of *Arabidopsis thaliana*. *Plant J.* **16**, 735-743.

944 **Colletti, K.S., Tattersall, E.A., Pyke, K.A., Froelich, J.E., Stokes, K.D., and**
945 **Osteryoung, K.W.** (2000). A homologue of the bacterial cell division site-
946 determining factor MinD mediates placement of the chloroplast division
947 apparatus. *Curr Biol.* **10**, 507-516.

948 **Gao, H., Kadirjan-Kalbach, D., Froehlich, J.E., and Osteryoung, K.W.** (2003). ARC5,
949 a cytosolic dynamin-like protein from plants, is part of the chloroplast division
950 machinery. *Proc.Natl.Acad.Sci.USA* **100**, 4328-4333.

951 **Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison, C.A., 3rd, and**
952 **Smith, H.O.** (2009). Enzymatic assembly of DNA molecules up to several
953 hundred kilobases. *Nat Methods.* **6**, 343-345.

954 **Glynn, J.M., Froehlich, J.E., and Osteryoung, K.W.** (2008). *Arabidopsis* ARC6
955 coordinates the division machineries of the inner and outer chloroplast

membranes through interaction with PDV2 in the intermembrane space. *Plant Cell.* **20**, 2460-2470.

958 **Glynn, J.M., Miyagishima, S.Y., Yoder, D.W., Osteryoung, K.W., and Vitha, S.**
959 (2007). Chloroplast division. *Traffic*. **8**, 451-461.

960 **Glynn, J.M., Yang, Y., Vitha, S., Schmitz, A.J., Hemmes, M., Miyagishima, S.Y., and**
961 **Osteryoung, K.W.** (2009). PARC6, a novel chloroplast division factor, influences
962 FtsZ assembly and is required for recruitment of PDV1 during chloroplast division
963 in *Arabidopsis*. *Plant J.* **59**, 700-711.

964 **Johnson, C.B., Shaik, R., Abdallah, R., Vitha, S., and Holzenburg, A. (2015).**
965 FtsZ1/FtsZ2 Turnover in Chloroplasts and the Role of ARC3. *Microsc Microanal*.
966 **21**, 313-323.

967 **Johnson, C.B., Tang, L.K., Smith, A.G., Ravichandran, A., Luo, Z., Vitha, S., and**
968 **Holzenburg, A.** (2013). Single particle tracking analysis of the chloroplast
969 division protein FtsZ anchoring to the inner envelope membrane. *Microsc
970 Microanal.* **19**, 507-512.

971 **Kadirjan-Kalbach, D.K., Yoder, D.W., Ruckle, M.E., Larkin, R.M., and Osteryoung,**
972 **K.W. (2012). FtsHi1/ARC1 is an essential gene in *Arabidopsis* that links**
973 **chloroplast biogenesis and division. *Plant J.* **72**, 856-867.**

974 Keeling, P.J. (2010). The endosymbiotic origin, diversification and fate of plastids.
975 Philos Trans R Soc Lond B Biol Sci. **365**, 729-748.

976 **Kohler, R.H., Cao, J., Zipfel, W.R., Webb, W.W., and Hanson, M.R. (1997). Exchange**
977 **of protein molecules through connections between higher plant plastids. Science.**
978 **276, 2039-2042.**

979 **Kushnirov, V.V.** (2000). Rapid and reliable protein extraction from yeast. *Yeast*. **16**,
980 857-860.

981 **Lee, D.W., and Hwang, I.** (2018). Evolution and Design Principles of the Diverse
982 Chloroplast Transit Peptides. *Mol Cells*. **41**, 161-167.

983 Leech R, Baker NR (1983) The development of photosynthetic capacity in leaves. In JE
984 Dale, FL Milthorpe, eds, *The Growth and Functioning of Leaves*. Cambridge
985 University Press, Cambridge, pp 271–307

986 **Liu, X., An, J., Wang, L., Sun, Q., An, C., Wu, B., Hong, C., Wang, X., Dong, S.,**
987 **Guo, J., Feng, Y., and Gao, H.** (2022). A novel amphiphilic motif at the C-
988 terminus of FtsZ1 facilitates chloroplast division. *Plant Cell.* **34**, 419-432.

989 **Maple, J., Chua, N.H., and Moller, S.G.** (2002). The topological specificity factor
990 AtMinE1 is essential for correct plastid division site placement in *Arabidopsis*.
991 *Plant J.* **31**, 269-277.

992 **Maple, J., Aldridge, C., and Moller, S.G.** (2005). Plastid division is mediated by
993 combinatorial assembly of plastid division proteins. *Plant J.* **43**, 811-823.

994 **Maple, J., Vojta, L., Soll, J., and Moller, S.G.** (2007). ARC3 is a stromal Z-ring
995 accessory protein essential for plastid division. *EMBO Rep.* **8**, 293-299.

996 **Martin, W.F., Garg, S., and Zimorski, V.** (2015). Endosymbiotic theories for eukaryote
997 origin. *Philos Trans R Soc Lond B Biol Sci.* **370**, 20140330.

998 **McAndrew, R.S., Olson, B.J., Kadirjan-Kalbach, D.K., Chi-Ham, C.L., Vitha, S.,**
999 **Froehlich, J.E., and Osteryoung, K.W.** (2008). In vivo quantitative relationship
1000 between plastid division proteins FtsZ1 and FtsZ2 and identification of ARC6 and
1001 ARC3 in a native FtsZ complex. *Biochem J.* **412**, 367-378.

1002 **McKinnon, L., and Theg, S.M.** (2019). Determinants of the Specificity of Protein
1003 Targeting to Chloroplasts or Mitochondria. *Mol Plant.* **12**, 893-895.

1004 **McQuillen, R., and Xiao, J.** (2020). Insights into the Structure, Function, and Dynamics
1005 of the Bacterial Cytokinetic FtsZ-Ring. *Annu Rev Biophys.* **49**, 309-341.

1006 **Miyagishima, S., Takahara, M., Mori, T., Kuroiwa, H., Higashiyama, T., and**
1007 **Kuroiwa, T.** (2001). Plastid division is driven by a complex mechanism that
1008 involves differential transition of the bacterial and eukaryotic division rings. *Plant*
1009 *Cell.* **13**, 2257-2268.

1010 **Miyagishima, S.Y., Froehlich, J.E., and Osteryoung, K.W.** (2006). PDV1 and PDV2
1011 mediate recruitment of the dynamin-related protein ARC5 to the plastid division
1012 site. *Plant Cell.* **18**, 2517-2530.

1013 **Miyagishima, S.Y., Nishida, K., Mori, T., Matsuzaki, M., Higashiyama, T., Kuroiwa,**
1014 **H., and Kuroiwa, T.** (2003). A plant-specific dynamin-related protein forms a ring
1015 at the chloroplast division site. *Plant Cell.* **15**, 655-665.

1016 **Nakanishi, H., Suzuki, K., Kabeya, Y., and Miyagishima, S.Y.** (2009). Plant-specific
1017 protein MCD1 determines the site of chloroplast division in concert with bacteria-
1018 derived MinD. *Curr Biol.* **19**, 151-156.

1019 **Olson, B.J., Wang, Q., and Osteryoung, K.W.** (2010). GTP-dependent heteropolymer
1020 formation and bundling of chloroplast FtsZ1 and FtsZ2. *J Biol Chem.* **285**, 20634-
1021 20643.

1022 **Osteryoung, K.W., and Pyke, K.A.** (2014). Division and dynamic morphology of
1023 plastids. *Annu Rev Plant Biol.* **65**, 443-472.

1024 **Osteryoung, K.W., Stokes, K.D., Rutherford, S.M., Percival, A.L., and Lee, W.Y.**
1025 (1998). Chloroplast division in higher plants requires members of two functionally
1026 divergent gene families with homology to bacterial *ftsZ*. *Plant Cell.* **10**, 1991-
1027 2004.

1028 **Porter, K.J., Cao, L., Chen, Y., TerBush, A.D., Chen, C., Erickson, H.P., and**
1029 **Osteryoung, K.W.** (2021). The *Arabidopsis thaliana* chloroplast division protein
1030 FtsZ1 counterbalances FtsZ2 filament stability *in vitro*. *J Biol Chem.* **296**, 100627.

1031 **Pulido, P., and Leister, D.** (2018). Novel DNAJ-related proteins in *Arabidopsis*
1032 *thaliana*. *New Phytol.* **217**, 480-490.

1033 **Pyke, K.A., and Leech, R.M.** (1991). Rapid Image Analysis Screening Procedure for
1034 Identifying Chloroplast Number Mutants in Mesophyll Cells of *Arabidopsis*
1035 *thaliana* (L.) Heynh. *Plant Physiol.* **96**, 1193-1195.

1036 **Pyke, K.A., and Leech, R.M.** (1992). Chloroplast Division and Expansion Is Radically
1037 Altered by Nuclear Mutations in *Arabidopsis thaliana*. *Plant Physiol.* **99**, 1005-
1038 1008.

1039 **Pyke, K.A., Rutherford, S.M., Robertson, E.J., and Leech, R.M.** (1994). *arc6*, A
1040 Fertile *Arabidopsis* Mutant with Only Two Mesophyll Cell Chloroplasts. *Plant*
1041 *Physiol.* **106**, 1169-1177.

1042 **Schmitz, A.J., Glynn, J.M., Olson, B.J., Stokes, K.D., and Osteryoung, K.W.** (2009).
1043 *Arabidopsis* FtsZ2-1 and FtsZ2-2 are functionally redundant, but FtsZ-based
1044 plastid division is not essential for chloroplast partitioning or plant growth and
1045 development. *Mol Plant.* **2**, 1211-1222.

1046 **Shimada, H., Koizumi, M., Kuroki, K., Mochizuki, M., Fujimoto, H., Ohta, H.,**
1047 **Masuda, T., and Takamiya, K.** (2004). ARC3, a chloroplast division factor, is a
1048 chimera of prokaryotic FtsZ and part of eukaryotic phosphatidylinositol-4-
1049 phosphate 5-kinase. *Plant Cell Physiol.* **45**, 960-967.

1050 **Sung, M.W., Shaik, R., TerBush, A.D., Osteryoung, K.W., Vitha, S., and**
1051 **Holzenburg, A.** (2018). The chloroplast division protein ARC6 acts to inhibit
1052 disassembly of GDP-bound FtsZ2. *J Biol Chem.* **293**, 10692-10706.

1053 **Tamadaddi, C., Verma, A.K., Zambare, V., Vairagkar, A., Diwan, D., and Sahi, C.**
1054 (2022). J-like protein family of *Arabidopsis thaliana*: the enigmatic cousins of J-
1055 domain proteins. *Plant Cell Rep* **41**, 1343-1355.

1056 **TerBush, A.D., and Osteryoung, K.W.** (2012). Distinct functions of chloroplast FtsZ1
1057 and FtsZ2 in Z-ring structure and remodeling. *J Cell Biol.* **199**, 623-637.

1058 **TerBush, A.D., Yoshida, Y., and Osteryoung, K.W.** (2013). FtsZ in chloroplast
1059 division: structure, function and evolution. *Curr Opin Cell Biol.* **25**, 461-470.

1060 **TerBush, A.D., Porzondek, C.A., and Osteryoung, K.W.** (2016). Functional Analysis
1061 of the Chloroplast Division Complex Using *Schizosaccharomyces pombe* as a
1062 Heterologous Expression System. *Microsc Microanal.* **22**, 275-289.

1063 **TerBush, A.D., MacCready, J.S., Chen, C., Ducat, D.C., and Osteryoung, K.W.**
1064 (2018). Conserved Dynamics of Chloroplast Cytoskeletal FtsZ Proteins Across
1065 Photosynthetic Lineages. *Plant Physiol.* **176**, 295-306.

1066 **Vitha, S., and Osteryoung, K.W.** (2011). Immunofluorescence microscopy for
1067 localization of *Arabidopsis* chloroplast proteins. *Methods Mol Biol.* **774**, 33-58.

1068 **Vitha, S., McAndrew, R.S., and Osteryoung, K.W.** (2001). FtsZ ring formation at the
1069 chloroplast division site in plants. *J Cell Biol.* **153**, 111-120.

1070 **Vitha, S., Froehlich, J.E., Koksharova, O., Pyke, K.A., van Erp, H., and Osteryoung,**
1071 **K.W.** (2003). ARC6 is a J-domain plastid division protein and an evolutionary
1072 descendant of the cyanobacterial cell division protein Ftn2. *Plant Cell.* **15**, 1918-
1073 1933.

1074 **Wang, W., Li, J., Sun, Q., Yu, X., Zhang, W., Jia, N., An, C., Li, Y., Dong, Y., Han, F.,**
1075 **Chang, N., Liu, X., Zhu, Z., Yu, Y., Fan, S., Yang, M., Luo, S.Z., Gao, H., and**

1076 **Feng, Y.** (2017). Structural insights into the coordination of plastid division by the
1077 ARC6-PDV2 complex. *Nat Plants*. **3**, 17011.

1078 **Yoder, D.W., Kadirjan-Kalbach, D., Olson, B.J., Miyagishima, S.Y., Deblasio, S.L.,**
1079 **Hangarter, R.P., and Osteryoung, K.W.** (2007). Effects of mutations in
1080 Arabidopsis FtsZ1 on plastid division, FtsZ ring formation and positioning, and
1081 FtsZ filament morphology in vivo. *Plant Cell Physiol*. **48**, 775-791.

1082 **Yoshida, Y.** (2018). Insights into the Mechanisms of Chloroplast Division. *Int J Mol Sci*.
1083 **19**.

1084 **Yoshida, Y., Mogi, Y., TerBush, A.D., and Osteryoung, K.W.** (2016). Chloroplast
1085 FtsZ assembles into a contractile ring via tubulin-like heteropolymerization. *Nat*
1086 *Plants*. **2**, 16095.

1087 **Zhang, M., Schmitz, A.J., Kadirjan-Kalbach, D.K., TerBush, A.D., and Osteryoung,**
1088 **K.W.** (2013). Chloroplast division protein ARC3 regulates chloroplast FtsZ-ring
1089 assembly and positioning in arabidopsis through interaction with FtsZ2. *Plant*
1090 *Cell*. **25**, 1787-1802.

1091 **Zhang, M., Chen, C., Froehlich, J.E., TerBush, A.D., and Osteryoung, K.W.** (2016).
1092 Roles of Arabidopsis PARC6 in Coordination of the Chloroplast Division Complex
1093 and Negative Regulation of FtsZ Assembly. *Plant Physiol*. **170**, 250-262.

1094 **Zhang, Y., Zhang, X., Cui, H., Ma, X., Hu, G., Wei, J., He, Y., and Hu, Y.** (2021).
1095 Residue 49 of AtMinD1 Plays a Key Role in the Guidance of Chloroplast Division
1096 by Regulating the ARC6-AtMinD1 Interaction. *Front Plant Sci*. **12**, 752790.

1097 **Zimorski, V., Ku, C., Martin, W.F., and Gould, S.B.** (2014). Endosymbiotic theory for
1098 organelle origins. *Curr Opin Microbiol*. **22**, 38-48.

1099 **FIGURE LEGENDS**

1100 **Figure 1. Schematic depiction of ARC3 and ARC6 domain structures.**

1101 Schematic structural features of **(A)** ARC3 and **(B)** ARC6 from *Arabidopsis thaliana*. TP,
1102 predicted chloroplast transit peptide; FtsZ-like, FtsZ-like domain; MD, middle domain;
1103 MORN, Membrane Occupation and Recognition Nexus domain; JLD, J-like domain;
1104 TMD, transmembrane domain; IMS, intermembrane space region; a. a., amino acid.

1105

1106 **Figure 2. ARC6 is required for ARC3 function in chloroplast division.**

1107 **(A-D)** Chloroplast morphology (left panels) and FtsZ localization (middle and right
1108 panels) in mesophyll cells of **(A)** wild-type Col-0, **(B)** *arc3-2*, **(C)** *arc6-5*, and **(D)** *arc3-2*
1109 *arc6-5* mutant plants. Chloroplast morphology and FtsZ localization were observed
1110 using differential interference contrast (DIC) microscopy and immunofluorescence
1111 staining of FtsZ2-1, respectively. The middle and right panels are merged images of
1112 immunostained FtsZ2-1 (green) and autofluorescence of chlorophyll (magenta). Scale
1113 bars are 25 μ m (left panels) and 10 μ m (middle and right panels), respectively.
1114 **(E)** Quantitative analysis of chloroplast number versus mesophyll cell size ($n = 50$) in
1115 the designated genotypes from **(A-D)** The computed slopes of the best-fit lines are: Col-
1116 0, 0.0191 ($R^2 = 0.965$); *arc3-2*, 0.0022 ($R^2 = 0.635$); *arc6-5*, 0.0002 ($R^2 = 0.102$); *arc3-2*
1117 *arc6-5*, 0.0002 ($R^2 = 0.024$).

1118

1119 **Figure 3. ARC6 interacts with ARC3.**

1120 **(A)** Yeast two-hybrid (Y2H) assays of ARC6₆₈₋₆₁₄ with ARC3 derivatives and FtsZ
1121 proteins. Constructs were expressed from the pGADT7 (AD) and pGBKT7 (BD) vectors
1122 in Y2HGold cells. Transformed cells were grown on a selective medium lacking leucine
1123 and tryptophan (–Leu –Trp). Interactions were determined based on the activation of the
1124 *HIS3* and *ADE2* reporter genes, as indicated by the growth on medium lacking histidine
1125 (–His) alone or both histidine and adenine (–His –Ade). The interaction between Simian
1126 Virus-40 large-T antigen (T) and p53 was used as a positive control (row 17). Empty
1127 vectors were used as negative controls. Transformed cells were grown on –Leu –Trp
1128 and –Leu –Trp –His medium for three days, and five days on –Leu –Trp –His –Ade

1129 medium. Dilutions from the same initial culture are denoted at the bottom. Three
1130 independent replicates yielded similar results.

1131 **(B)** Co-immunoprecipitation (Co-IP) assays of ARC6-eGFP with ARC3-6×HA and
1132 FtsZ2-6×HA in *Nicotiana benthamiana*. The transit peptide (TP) of RecA, a stroma-
1133 localized protein (Kohler et al., 1997), was fused to the N-terminus of eGFP to generate
1134 RecA_{TP}-eGFP fusion protein (Chen et al., 2018b), which served as control. Total
1135 proteins were extracted 48 h after agroinfiltration, and samples were separated on 10%
1136 SDS-PAGE. Asterisks indicate potential protein complexes formed by ARC6-ARC3 and
1137 ARC6-FtsZ2, respectively.

1138 **(C)** Split-luciferase complementation (split-LUC) assays of ARC6 with ARC3 and FtsZ2.
1139 Samples were observed 48 h after agroinfiltration into the *N. benthamiana* leaves. N-
1140 terminal luciferase (nLUC) and C-terminal luciferase (cLUC) were used as negative
1141 controls. Red dashed circles indicated the region of infiltration. Assays in **(B)** and **(C)**
1142 were replicated three times with similar results.

1143

1144 **Figure 4. ARC6 enables full-length ARC3 to interact with FtsZ proteins.**

1145 **(A)** Y2H assays to investigate interactions between ARC3 and FtsZ proteins and
1146 between ARC6 derivatives and ARC3. ARC6_{ΔJLD}, ARC6₆₈₋₆₁₄ without the JLD domain;
1147 ARC6_{ΔPPQ}, ARC6₆₈₋₆₁₄ without the tripeptide PPQ; ARC6_{JLD}, ARC6₈₉₋₁₅₃. **(B)** Y3H assays
1148 to test for interactions between full-length ARC3 (ARC3₄₁₋₇₄₁) and FtsZ proteins in the
1149 presence of ARC6 derivatives. Vectors and assays are as described in Figure 3A
1150 except that in vectors expressing ARC6 derivatives, ARC6 derivatives were not fused to
1151 the GAL4 activation domain or binding domain. The ARC6 expression cassettes were
1152 inserted into the pGKKT7 vectors (BD) expressing the BD-FtsZ1, BD-FtsZ2, and BD-
1153 Empty constructs (see Supplemental Figure 4). Transformed cells in **(A)** and **(B)** were
1154 grown on –Leu –Trp and –Leu –Trp –His medium for three days, and five days on –Leu
1155 –Trp –His –Ade medium. Dilutions from the same initial culture are indicated at the
1156 bottom. Assays in **(A)** and **(B)** were replicated three times with similar results.

1157 **(C)** Immunoblot assays of transformed yeast cells expressing the indicated constructs.
1158 Total proteins were separated on 10% SDS-PAGE gels, and membranes were probed
1159 with an anti-HA antibody, given that all ARC6 derivatives and ARC3 fusion proteins

1160 were HA-tagged. The predicted protein molecular weights were: AD-ARC3₄₁₋₇₄₁, 96 kDa;
1161 ARC6₆₈₋₆₁₄, 66 kDa; ARC6_{ΔJLD}, 59 kDa; ARC6_{ΔPPQ}, 66 kDa. AD-ARC3₄₁₋₇₄₁ ran slightly
1162 larger than predicted.

1163

1164 **Figure 5. Activation of full-length ARC3 by ARC6 inhibits assembly of FtsZ1**
1165 **filaments in *S. pombe*.**

1166 The epifluorescence and DIC micrographs of transformed *S. pombe* cells expressing
1167 the indicated proteins are shown. In epifluorescence images, mVenus, mCerulean, and
1168 mRuby2 signals are falsely colored green, magenta, and yellow, respectively. BF, bright
1169 field. Bars = 5 μ m. **(A-D)** Single expression of **(A)** FtsZ1-mVenus, **(B)** ARC6₆₈₋₆₁₄-
1170 mRuby2, **(C)** ARC3₄₁₋₇₄₁-mCerulean, and **(D)** ARC3₄₁₋₅₉₈-mCerulean. **(E-H)**
1171 Coexpression of FtsZ1-mVenus with **(E)** ARC3₄₁₋₇₄₁-mCerulean, **(F)** ARC3₄₁₋₅₉₈-
1172 mCerulean, **(G)** ARC6₆₈₋₆₁₄-mRuby2, **(H)** ARC6_{ΔJLD}-mRuby2, **(I, J)** ARC3₄₁₋₇₄₁-
1173 mCerulean + ARC6₆₈₋₆₁₄-mRuby2, **(K, L)** ARC3₄₁₋₇₄₁-mCerulean + ARC6_{ΔJLD}-mRuby2,
1174 **(M)** ARC3₄₁₋₇₄₁-mCerulean + mRuby2, and **(N)** ARC3₄₁₋₅₉₈-mCerulean + mRuby2.

1175 Outlines of the imaged cells from **(I-N)** are indicated by white dashed lines.

1176 **(O-R)** Quantitative analysis of ARC3 derivatives on the assembly of FtsZ1 filaments in
1177 the presence of ARC6₆₈₋₆₁₄-mRuby2 (n = 30 cells), ARC6_{ΔJLD}-mRuby2 (n = 30 cells), or
1178 mRuby2 (n = 30 cells). **(O)** The length and **(Q)** number of FtsZ1 filaments were
1179 calculated to determine the inhibitory effect imposed by ARC3. In **(O)**, filament length
1180 was normalized to cell length, and the average of the two shortest filaments within the
1181 cell was presented. Error bars are SD. **** P < 0.0001; *** P < 0.001; ** P < 0.01 as
1182 determined by the *t* test. ns, not significant. **(P)** The length of FtsZ1 filaments in **(O)** was
1183 plotted against the protein expression level of mRuby2 (left, red), ARC6₆₈₋₆₁₄-mRuby2
1184 (middle, blue), or ARC6_{ΔJLD}-mRuby2 (right, green). The slopes of the best-fit lines are:
1185 mRuby2, -3e-6 (R^2 = 0.001); ARC6₆₈₋₆₁₄-mRuby2, -6e-5 (R^2 = 0.048); ARC6_{ΔJLD}-
1186 mRuby2, -4e-5 (R^2 = 0.184). **(R)** The number of FtsZ1 filaments in **(Q)** was plotted
1187 against the protein expression level of mRuby2 (left, red), ARC6₆₈₋₆₁₄-mRuby2 (middle,
1188 blue), or ARC6_{ΔJLD}-mRuby2 (right, green). The slopes of the best-fit lines are: mRuby2,
1189 9e-6 (R^2 = 0.002); ARC6₆₈₋₆₁₄-mRuby2, 3e-4 (R^2 = 0.037); ARC6_{ΔJLD}-mRuby2, 4e-4 (R^2

1190 = 0.114). The protein expression level in (**P**, **R**) was indicated by the total fluorescence
1191 intensity normalized to the cell area. A. U., arbitrary unit.

1192

1193 **Figure 6. Overexpression of ARC6_{ΔJLD} causes disruption of Z-ring formation in an**
1194 **ARC3-dependent manner.**

1195 **(A-D)** Chloroplast morphology (left panels) and FtsZ localization (right panels) in
1196 mesophyll cells of T₁ transgenic plants expressing 35S_{pro}:ARC6_{ΔJLD}-mNeonGreen
1197 (*mNG*)-3×HA in **(A, B)** wild-type Col-0 and **(C, D)** *arc3-2* mutant plants. Untransformed
1198 wild-type Col-0 and *arc3-2* mutant are shown in Figure 2, A and B. The inset in the right
1199 panel of **(A)** is a magnified image of the mini-ring, as indicated by the dashed line.
1200 Chloroplast morphology and FtsZ localization were observed using differential
1201 interference contrast (DIC) microscopy and immunofluorescence staining of FtsZ2-1,
1202 respectively. Scale bars are 20 μm for DIC images and 10 μm for all
1203 immunofluorescence images except the inset, which is 2 μm.

1204 **(E)** Immunoblot analysis of ARC6_{ΔJLD}-mNG-3×HA from T₁ transgenic Col-0 and *arc3-2*
1205 plants expressing 35S_{pro}:ARC6_{ΔJLD}-mNG-3×HA. Total proteins extracted from leaf tissue
1206 of 4- to 5-week-old plants were separated on a 10% SDS-PAGE gel, and the membrane
1207 was probed with an anti-HA antibody. The expression of Actin, detected with an anti-
1208 Actin antibody, was used as a loading control.

1209

1210 **Figure 7. The J-like domain of ARC6 is required for chloroplast division but not**
1211 **for ARC6 localization.**

1212 **(A-D)** Chloroplast morphology (left panels) and FtsZ localization (middle and right
1213 panels) in mesophyll cells of T₁ transgenic plants expressing **(A)** ARC6_{pro}:ARC6-*mNG*-
1214 3×HA, **(B, C)** ARC6_{pro}:ARC6_{ΔJLD}-*mNG*-3×HA, and **(D)** ARC6_{pro}:ARC6_{ΔPPQ}-*mNG*-3×HA in
1215 *arc6-5*, respectively. Untransformed *arc6-5* is shown in Figure 2C. Chloroplast
1216 morphology and FtsZ localization were observed using differential interference contrast
1217 (DIC) microscopy and immunofluorescence staining of FtsZ2-1, respectively. Scale bars
1218 are 20 μm for DIC images and 10 μm for all immunofluorescence images.

1219 **(E-H)** Subcellular localization of **(E)** ARC6-*mNG*-3×HA, **(F, G)** ARC6_{ΔJLD}-*mNG*-3×HA,
1220 and **(H)** ARC6_{ΔPPQ}-*mNG*-3×HA in 4- to 5-week-old T₁ transgenic *arc6-5* plants. *mNG*

1221 signals (green) are shown in the left panels, and chlorophyll autofluorescence
1222 (magenta) is shown in middle panels. White arrowheads indicated ring-like structures
1223 formed by ARC6 and its derivative fusion proteins. Bars = 10 μ m.
1224 (I) Immunoblot analysis of T₁ transgenic *arc6-5* plants expressing *ARC6-mNG-3×HA*,
1225 *ARC6_{ΔJLD}-mNG-3×HA*, and *ARC6_{ΔPPQ}-mNG-3×HA*, respectively, under the control of
1226 the native *ARC6* promoter. Total proteins extracted from leaf tissue of 4- to 5-week-old
1227 plants were separated on a 10% SDS-PAGE gel, and the membrane was probed with
1228 an anti-HA antibody. The expression of Actin, detected with an anti-Actin antibody, was
1229 used as a loading control.
1230 (J) Quantitative analysis of chloroplast number versus mesophyll cell size ($n = 50$ cells)
1231 in the designated genotypes from (A-D). The computed slopes of the best-fit lines are:
1232 *arc6-5*, 0.0001 ($R^2 = 0.015$); *arc6-5 + ARC6_{pro}:ARC6-mNG-3×HA*, 0.0126 ($R^2 = 0.856$);
1233 *arc6-5 + ARC6_{pro}:ARC6_{ΔJLD}-mNG-3×HA* (#10), 0.0016 ($R^2 = 0.525$); *arc6-5 +*
1234 *ARC6_{pro}:ARC6_{ΔJLD}-mNG-3×HA* (#17), 0.0021 ($R^2 = 0.562$); *arc6-5 + ARC6_{pro}:ARC6_{ΔPPQ}-*
1235 *mNG-3×HA*, 0.0033 ($R^2 = 0.631$).
1236

1237 **Figure 8. ARC6 recruits ARC3 to the chloroplast division site.**
1238 (A-L) Subcellular localization of ARC3-mNG in transgenic (A-C) *arc3-2*, (D-F) *arc3-2*
1239 *arc6-5*, (G-I) *arc1*, and (J-L) *arc1 arc6-1* mutant plants expressing *ARC3_{pro}:ARC3-mNG*.
1240 The mNG fluorescence (green) and chlorophyll autofluorescence (magenta) signals
1241 were acquired through confocal laser scanning microscopy. Midplastid-localized ARC3-
1242 mNG ring structures are associated with both (A, B, G-I, L) unconstricted chloroplasts
1243 (yellow arrowheads) and (C) constricted chloroplasts (white arrows). The white double-
1244 arrowheads in (A) indicate the presence of additional ARC3-mNG strands that are not
1245 affiliated with the division site. Asterisk indicates an ARC3-mNG filament instead of an
1246 intact ring in a giant chloroplast of transgenic *arc3-2 arc6-5*. The regions enclosed by
1247 the white dashed box in (A, D, G, J) are magnified in (B, E, H, K). Bars are as indicated.
1248 (M) Quantification of ARC3-mNG ring structures in chloroplasts of transgenic *arc3-2*,
1249 *arc3-2 arc6-5*, *arc1*, and *arc1 arc6-1* plants expressing *ARC3_{pro}:ARC3-mNG*. The
1250 percentage of chloroplasts with ARC3-mNG rings was 53.8% ($n = 145$) in *arc3-2*, 10.1%

1251 ($n = 158$) in *arc3-2 arc6-5*, 41.2% ($n = 143$) in *arc1* and 14.9% ($n = 161$) in *arc1 arc6-1*.

1252 n is the total number of chloroplasts analyzed.

1253 **(N)** Immunoblot analysis of ARC3-mNG fusion protein in transgenic *arc3-2*, *arc3-2 arc6-*

1254 *5*, *arc1*, and *arc1 arc6-1* plants expressing *ARC3_{pro}:ARC3-mNG*. Total proteins

1255 extracted from leaf tissue of 4-week-old plants were separated on a 10% SDS-PAGE

1256 gel, and membrane was probed with an anti-mNG antibody. Ponceau S-stained large

1257 subunit of Rubisco (bottom panel) was served as a loading control.

1258

1259 **Figure 9. Working model of the ARC6-ARC3 complex in the regulation of Z-ring**
1260 **assembly during chloroplast division.**

1261 (A) Full-length ARC3 is inhibited from interacting with FtsZ proteins due to the presence

1262 of the MORN domain and thus is inactive in terms of inhibiting Z-ring assembly or

1263 accelerating Z-ring dynamics during the constriction of chloroplasts (Zhang et al., 2013;

1264 Chen et al., 2019). Binding of ARC3 by wild-type ARC6 activates ARC3 to a moderate

1265 extent. ARC6_{ΔJLD}, the JLD-deleted version of ARC6, however, binds ARC3 more

1266 strongly and thus results in overactivated ARC3. (B) The FtsZ-ring, comprising

1267 heteropolymers of FtsZ1 and FtsZ2 (Vitha et al., 2001; Yoder et al., 2007; Yoshida et

1268 al., 2016), anchors to the chloroplast inner membrane through the interaction between

1269 FtsZ2 and ARC6 (Maple et al., 2005; Johnson et al., 2013). ARC6 recruits ARC3 to the

1270 chloroplast division site and activates the inhibitory activity of ARC3 on the assembly of

1271 FtsZ filaments. Such activation may result from the binding of the ARC3 MORN domain

1272 by the JLD of ARC6, which may alter the conformation of ARC3. Binding of ARC3 by

1273 ARC6 leads to moderately activated ARC3, which is able to inhibit non-specific Z-ring

1274 formation in the vicinity of the division site and accelerate Z-ring dynamics during

1275 constriction of chloroplasts (Chen et al., 2019). (C) ARC6_{ΔJLD}, the JLD-deleted version

1276 of ARC6, binds and activates full-length ARC3 more strongly than ARC6.

1277 Overexpression of ARC6_{ΔJLD} leads to excessive activation of ARC3, which causes

1278 disruption of the assembly and formation of the Z ring. MORN, Membrane Occupation

1279 and Recognition Nexus domain; JLD, J-like domain; OEM, outer envelope membrane;

1280 IMS, intermembrane space region; IEM, inner envelope membrane.

1281

1282 **Supplemental Figure 1. Functional relationship between ARC6 and ARC3 during**
1283 **chloroplast division.**

1284 **(A-D)** The plant growth phenotype of 3-week-old **(A)** wild-type Col-0, **(B)** *arc3-2*, **(C)**
1285 *arc6-5*, and **(D)** *arc3-2 arc6-5*. Scale bars, 2 cm.

1286

1287 **Supplemental Figure 2. Multiple sequence alignments to identify the conserved**
1288 **tripeptide PPQ in the J-like domain of ARC6.**

1289 Protein sequences of DnaJ and J-like domain (JLD) proteins from diverse species were
1290 obtained from the National Center for Biotechnology Information (NCBI,
1291 <https://www.ncbi.nlm.nih.gov/protein/>), the Phytozome database at the Joint Genome
1292 Institute (JGI, <https://phytozome.jgi.doe.gov/pz/portal.html>), and Fernbase
1293 (<https://fernbase.org/>). Multiple sequence alignment (MSA) was performed using the
1294 European Molecular Biology Laboratory (EMBL)-European Bioinformatics Institute (EBI,
1295 <https://www.ebi.ac.uk/Tools/msa/muscle/>) MUSCLE tools, and the result was submitted
1296 to Esprift 3.0 (Robert and Gouet, 2014) with the sequence similarities depiction
1297 parameter set as %Equivalent and the global score set at 0.7
1298 (<http://esprift.ibcp.fr/ESPrift/ESPrift/index.php>). Only a partial MSA corresponding to
1299 amino acids 89-153 of ARC6 from *Arabidopsis thaliana* is shown. Blue boxes indicate
1300 amino acids with 70% or greater identity. Red shading highlights 100% conserved
1301 amino acids among all aligned sequences. Asterisks indicate the three conserved
1302 residues (PPQ) in angiosperms. The accession numbers of the protein sequences in
1303 NCBI are: AAA00009.1 (*Escherichia coli*); AIE75001.1 (*Synechocystis* sp. PCC 6714).
1304 The accession number of the protein sequences in Fernbase is
1305 Sacu_v1.1_s0076.g017490 (*Salvinia cucullata*). The accession numbers of the protein
1306 sequences in JGI are: *Volvox carteri*, Vocar.0016s0119.1.p; *Chlamydomonas*
1307 *reinhardtii*, Cre12.g488500.t1.2; *Marchantia polymorpha*, Mapoly0064s0104.1.p;
1308 *Sphagnum fallax*, Sphfalx17G074000.1.p; *Physcomitrella patens*,
1309 Pp3c22_12970V3.1.p; *Selaginella moellendorffii*, 92361; *Hordeum vulgare*,
1310 HORVU6Hr1G012020.11; *Oryza sativa*, LOC_Os02g03000.2; *Sorghum bicolor*,
1311 Sobic.004G020100.1.p; *Zea mays*, Zm00001d053923_P005; *Amborella trichopoda*,
1312 evm_27.model.AmTr_v1.0_scaffold00182.17; *Solanum lycopersicum*,

1313 Solyc04g081070.3.1; *Solanum tuberosum*, Soltu.DM.04G036190.1; *Theobroma cacao*,
1314 Thecc.08G038000.1.p; *Malus domestica*, MD15G1016900; *Vitis vinifera*,
1315 VIT_202s0033g00060.1; *Medicago truncatula*, Medtr1g023310.1; *Gossypium raimondii*,
1316 Gorai.009G196600.1; *Populus trichocarpa*, Potri.005G235000.4.p; *Glycine max*,
1317 Glyma.17G255300.2.p; *Brassica rapa*, Brara.F03845.1.p; *Arabidopsis thaliana*,
1318 AT5G42480.1.

1319

1320 **Supplemental Figure 3. The J-like domain of ARC6 does not interact with**
1321 **cpHsp70s.**

1322 Y2H assays of ARC6 J-like domain (ARC6_{JLD}) with cpHsp70s. Constructs pGADT7-
1323 cpHsp70-1, pGADT7-cpHsp70-2, pGBKT7-ARC6_{JLD}, pGBKT7-AtDjA24 were
1324 transformed into YH109 yeast cells. Dilutions from the same starting culture are
1325 indicated at the bottom. Transformed cells were grown on –Leu –Trp and –Leu –Trp –
1326 His medium. The interaction of AtDjA24 with cpHsc70-1 was used as a positive control.
1327

1328 **Supplemental Figure 4. Design of constructs for the yeast three-hybrid assays.**

1329 **(A-E)** Fragments of *ADH1* promoter (fragment 1) and *HA-ARC6₆₈₋₆₁₄-ADH1* terminator
1330 (fragment 2) were PCR amplified from **(B)** pGADT7-ARC6₆₈₋₆₁₄, and subsequently
1331 cloned into AvrII-digested pGBKT7 vectors using Gibson Assembly. This process
1332 yielded **(C)** pGBKT7-Empty; ARC6₆₈₋₆₁₄, **(D)** pGBKT7-FtsZ1; ARC6₆₈₋₆₁₄, and **(E)**
1333 pGBKT7-FtsZ2; ARC6₆₈₋₆₁₄.

1334

1335 **Supplemental Figure 5. ARC6_{ΔPPQ} promotes the interaction between ARC3 and**
1336 **FtsZs more effectively than ARC6_{ΔJLD}.**

1337 Y3H assays of the interaction between full-length ARC3 (ARC3₄₁₋₇₄₁) and FtsZ proteins
1338 in the presence of ARC6_{ΔJLD} or ARC6_{ΔPPQ}. Representative images show transformed
1339 Y2HGold cells grown on –Leu –Trp and –Leu –Trp –His (200 µM 3-AT) medium for
1340 three (left) and four (right) days. Dilutions from the same starting culture are indicated at
1341 the bottom.

1342

1343 **Supplemental Figure 6. Effect of full-length ARC3 on assembly of FtsZ1 filaments**
1344 **in the presence of ARC6 and ARC6_{ΔJLD} in *S. pombe*.**

1345 Epifluorescence micrographs of transformed *S. pombe* cells expressing the indicated
1346 proteins are shown. Effect of ARC3₄₁₋₇₄₁-mCerulean on assembly of FtsZ1-mVenus
1347 filaments in strains coexpressing **(A, B)** ARC6₆₈₋₆₁₄-mRuby2 and **(C-E)** ARC6_{ΔJLD}-
1348 mRuby2. **(F)** Effect of ARC3₄₁₋₅₉₈-mCerulean on assembly of FtsZ1-mVenus filaments in
1349 strains coexpressing mRuby2, which serves as a positive control. In the epifluorescence
1350 images, the signals for mCerulean, mVenus, and mRuby2 are falsely colored magenta,
1351 green, and yellow, respectively. Scale bars, 5 μ m.

1352

1353 **Supplemental Figure 7. Effect of ARC6 overexpression in wild-type Col-0.**

1354 **(A)** Chloroplast morphology (left panels) and FtsZ localization (middle and right panels)
1355 in mesophyll cells of T₁ transgenic plants expressing 35S_{pro}:ARC6-mNG-3×HA in wild-
1356 type Col-0. Untransformed wild-type Col-0 is shown in Figure 2A. Chloroplast
1357 morphology and FtsZ localization were visualized using DIC microscopy and
1358 immunofluorescence staining of FtsZ2-1 (FtsZ), respectively. Scale bars are 20 μ m (left
1359 panel) and 10 μ m (middle and right panels), respectively.

1360 **(B)** Analysis of chloroplast number in relation to mesophyll cell plane area was
1361 statistically performed for different genotypes ($n = 50$ cells). The determined slopes for
1362 the best-fit lines are: Col-0, 0.018 ($R^2 = 0.95$); Col-0 + 35S_{pro}:ARC6-mNG-3×HA, 0.003
1363 ($R^2 = 0.17$).

1364 **(C, D)** ARC6 localization in mesophyll cells of Col-0 + 35S_{pro}:ARC6-mNG-3×HA
1365 transgenic plants. The fluorescence signals from mNG (green) and chlorophyll
1366 autofluorescence (magenta) were captured using confocal laser scanning microscopy.
1367 White arrowheads indicated ring-like structures formed by ARC6-mNG-3×HA. Bars are
1368 10 μ m.

1369 **(E)** Immunoblot analysis of ARC6-mNG-3×HA fusion protein from T₁ transgenic Col-0
1370 (lane 4) and arc3-2 (lane 3) plants expressing ARC6_{pro}:ARC6-mNG-3×HA. Total
1371 proteins extracted from leaf tissue of 4-week-old plants were separated on a 10% SDS-
1372 PAGE gel, and the membrane was probed with an anti-HA antibody. The expression of
1373 Actin, detected with an anti-Actin antibody, was used as a loading control.

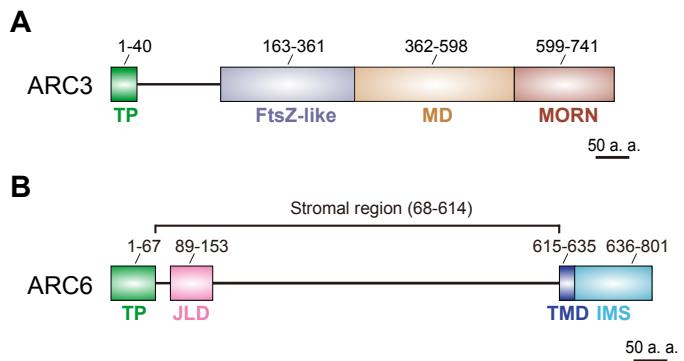
1374

1375 **Supplemental Figure 8. Disruption of Z-ring formation by ARC6_{ΔJLD}**
1376 **overexpression depends on ARC3.**

1377 **(A-C)** Examination of chloroplast morphology (left panels) in 3-week-old mesophyll cells
1378 of T₁ transgenic plants expressing 35S_{pro}:ARC6_{ΔJLD}-mNG-3×HA in Col-0 and *arc3-2*.
1379 Chloroplast morphology was observed using DIC microscopy. The middle and right
1380 panels display merged images of immunostained FtsZ2-1 (green) and chlorophyll
1381 autofluorescence (magenta). The inset in the right panel of **(A)** is a magnified image of
1382 the mini-ring, as indicated by the dashed line. Immunofluorescence staining images
1383 were captured using confocal laser scanning microscopy. Scale bars are as indicated.
1384 **(D)** Immunoblot analysis of the ARC6_{ΔJLD}-mNG-3×HA fusion protein in Col-0 +
1385 35S_{pro}:ARC6_{ΔJLD}-mNG-3×HA transgenic plants (#2) and *arc3-2* + 35S_{pro}:ARC6_{ΔJLD}-
1386 mNG-3×HA transgenic plants (#41) is also displayed in Figure 6. The membrane was
1387 probed with an anti-HA antibody. Ponceau S-stained large subunit of Rubisco served as
1388 a loading control.

1389

1390 **Supplemental Figure 9. Localization of ARC6-mNG-3×HA in petals and roots.**


1391 **(A, B)** ARC6-mNG-3×HA localization in petals from 5-week-old T₁ *arc6-5* +
1392 ARC6_{pro}:ARC6-mNG-3×HA transgenic plants. **(C, D)** ARC6-mNG-3×HA localization in
1393 roots from 7-day-old T₁ *arc6-5* + ARC6_{pro}:ARC6-mNG-3×HA. Scale bars are 10 μm for
1394 petals and 20 μm for roots. mNG, mNeonGreen; BF, bright field.

1395

1396 **Supplemental Figure 10. Chloroplast and Z-ring morphologies of *arc1* and *arc1***
1397 ***arc6* mutants.**

1398 **(A-D)** Chloroplast morphology (left and middle panels) in 3-week-old mesophyll cells of
1399 wild-type Ler, *arc1*, *arc6-1*, and *arc1 arc6-1* mutant plants. Chloroplast morphology was
1400 observed using DIC microscopy. The right panels display merged images of
1401 immunostained FtsZ2-1 (green) and chlorophyll autofluorescence (magenta). Scale
1402 bars are as indicated.

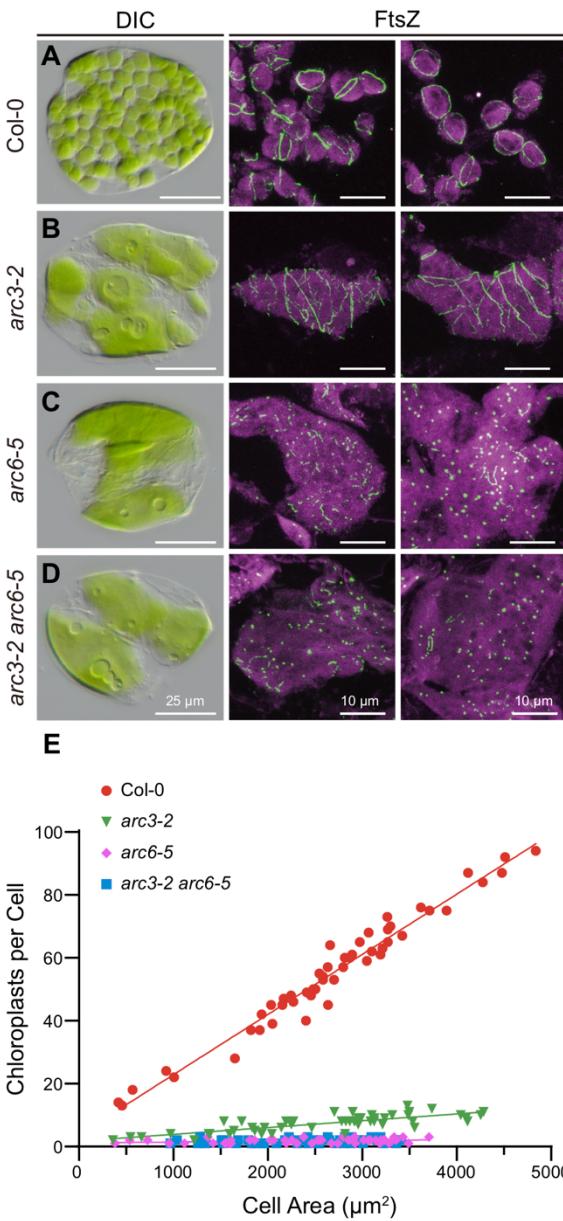

Figure 1

Figure 1. Schematic depiction of ARC3 and ARC6 domain structures.

Schematic structural features of **(A)** ARC3 and **(B)** ARC6 from *Arabidopsis thaliana*. TP, predicted chloroplast transit peptide; FtsZ-like, FtsZ-like domain; MD, middle domain; MORN, Membrane Occupation and Recognition Nexus domain; JLD, J-like domain; TMD, transmembrane domain; IMS, intermembrane space region; a. a., amino acid.

Figure 2

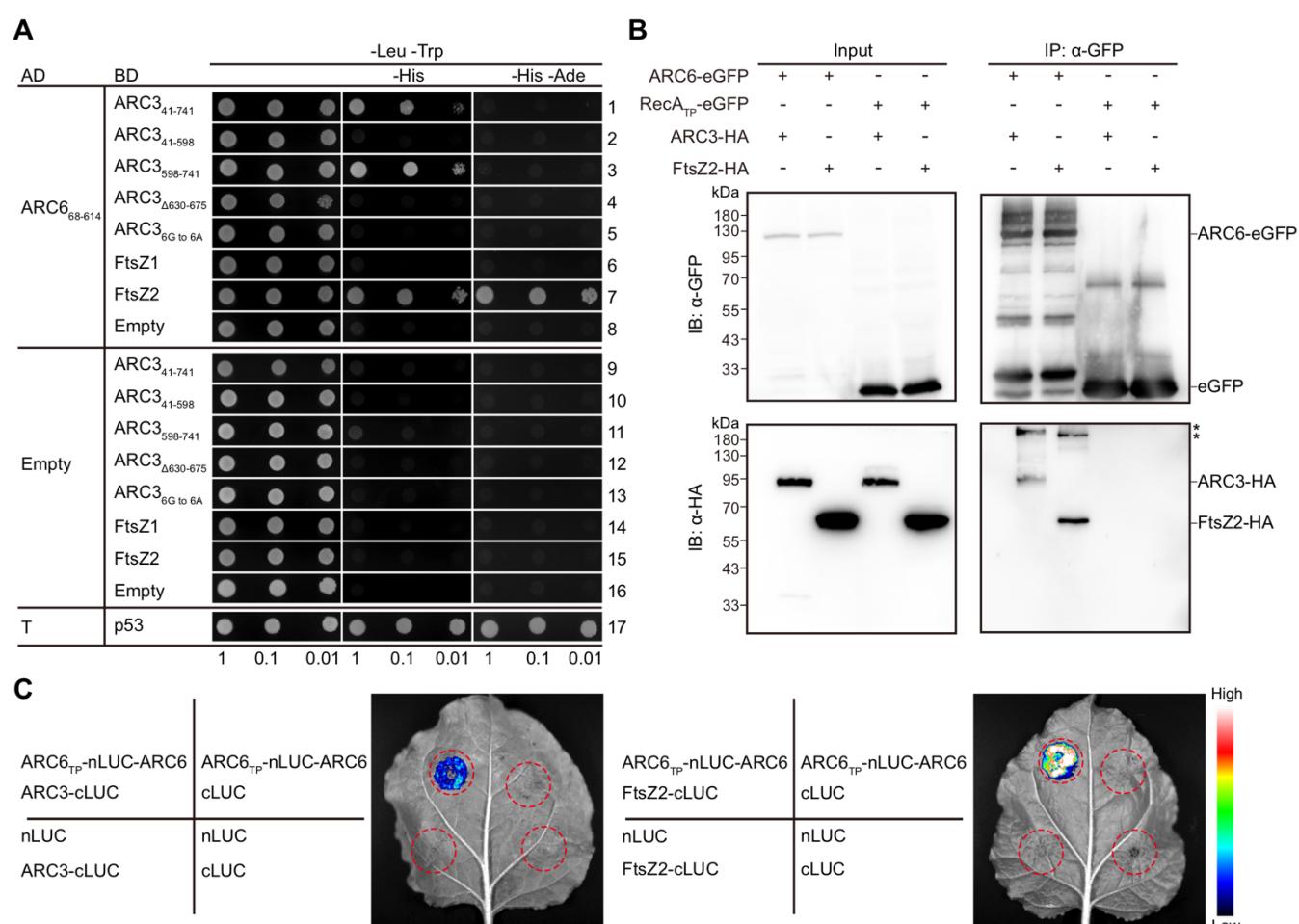
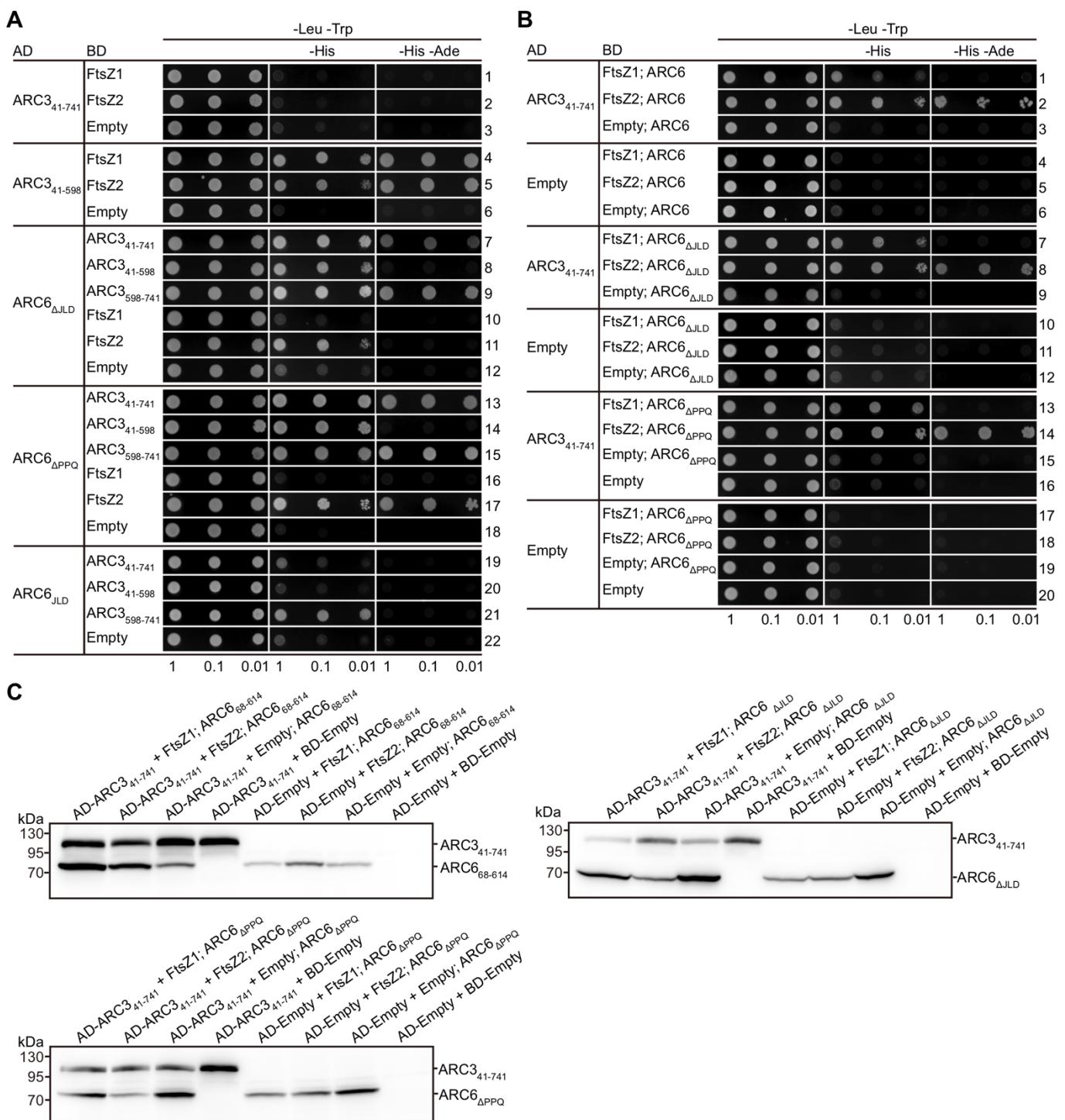


Figure 2. ARC6 is required for ARC3 function in chloroplast division.

(A-D) Chloroplast morphology (left panels) and FtsZ localization (middle and right panels) in mesophyll cells of **(A)** wild-type Col-0, **(B)** *arc3-2*, **(C)** *arc6-5*, and **(D)** *arc3-2 arc6-5* mutant plants. Chloroplast morphology and FtsZ localization were observed using differential interference contrast (DIC) microscopy and immunofluorescence staining of FtsZ2-1, respectively. The middle and right panels are merged images of immunostained FtsZ2-1 (green) and autofluorescence of chlorophyll (magenta). Scale bars are 25 μm (left panels) and 10 μm (middle and right panels), respectively.

(E) Quantitative analysis of chloroplast number versus mesophyll cell size ($n = 50$) in the designated genotypes from **(A-D)**. The computed slopes of the best-fit lines are: Col-0, 0.0191 ($R^2 = 0.965$); *arc3-2*, 0.0022 ($R^2 = 0.635$); *arc6-5*, 0.0002 ($R^2 = 0.102$); *arc3-2 arc6-5*, 0.0002 ($R^2 = 0.024$).

Figure 3

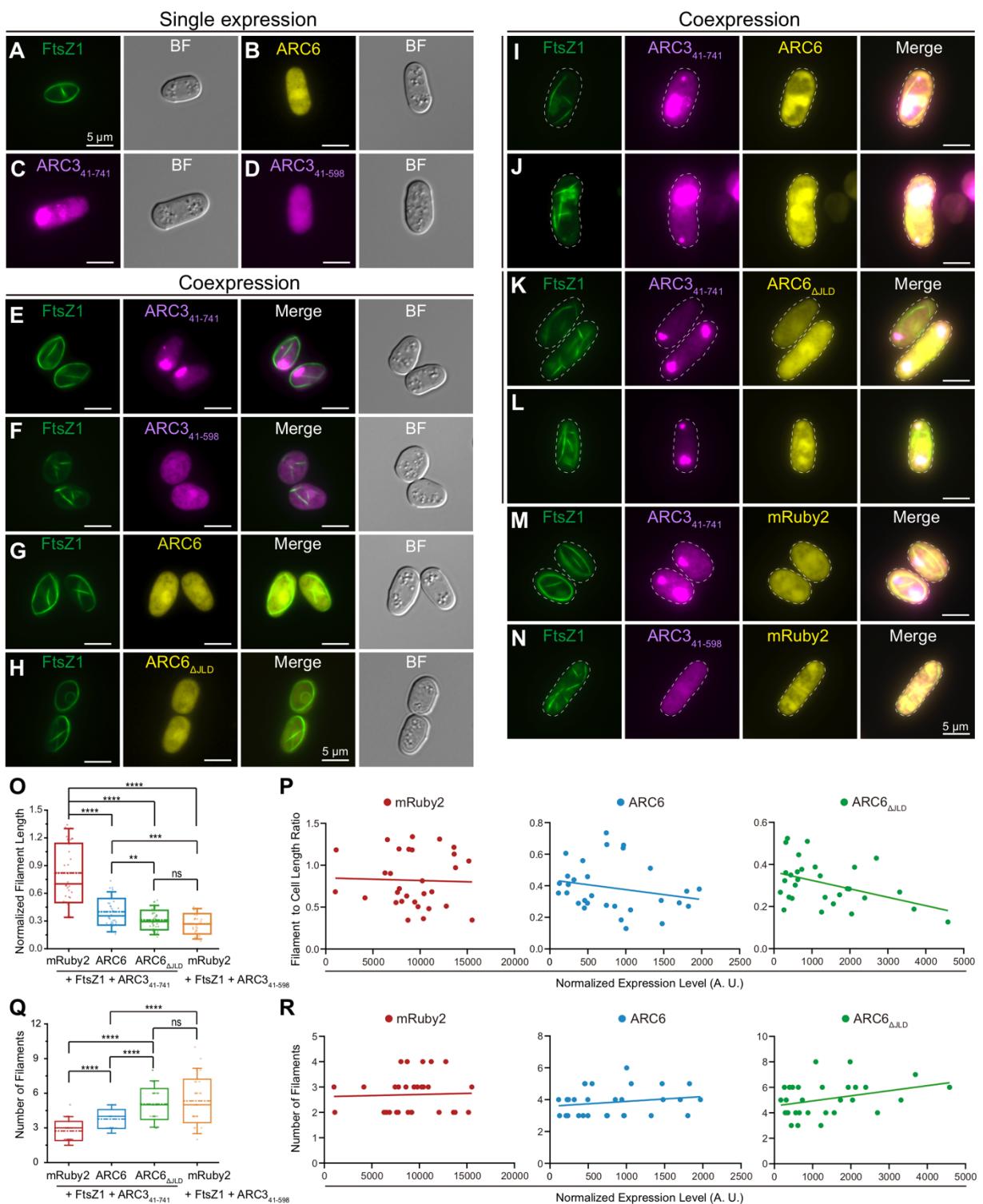

Figure 3. ARC6 interacts with ARC3.

(A) Yeast two-hybrid (Y2H) assays of ARC6₆₈₋₆₁₄ with ARC3 derivatives and FtsZ proteins. Constructs were expressed from the pGADT7 (AD) and pGBKT7 (BD) vectors in Y2HGold cells. Transformed cells were grown on a selective medium lacking leucine and tryptophan (–Leu –Trp). Interactions were determined based on the activation of the *HIS3* and *ADE2* reporter genes, as indicated by the growth on medium lacking histidine (–His) alone or both histidine and adenine (–His –Ade). The interaction between Simian Virus-40 large-T antigen (T) and p53 was used as a positive control (row 17). Empty vectors were used as negative controls. Transformed cells were grown on –Leu –Trp and –Leu –Trp –His medium for three days, and five days on –Leu –Trp –His –Ade medium. Dilutions from the same initial culture are denoted at the bottom. Three independent replicates yielded similar results.

(B) Co-immunoprecipitation (Co-IP) assays of ARC6-eGFP with ARC3-6×HA and FtsZ2-6×HA in *Nicotiana benthamiana*. The transit peptide (TP) of RecA, a stroma-localized protein (Kohler et al., 1997), was fused to the N-terminus of eGFP to generate RecA_{TP}-eGFP fusion protein (Chen et al., 2018b), which served as control. Total proteins were extracted 48 h after agroinfiltration, and samples were separated on 10% SDS-PAGE. Asterisks indicate potential protein complexes formed by ARC6-ARC3 and ARC6-FtsZ2, respectively.

(C) Split-luciferase complementation (split-LUC) assays of ARC6 with ARC3 and FtsZ2. Samples were observed 48 h after agroinfiltration into the *N. benthamiana* leaves. N-terminal luciferase (nLUC) and C-terminal luciferase (cLUC) were used as negative controls. Assays in **(B)** and **(C)** were replicated three times with similar results.

Figure 4


Figure 4. ARC6 enables full-length ARC3 to interact with FtsZ proteins.

(A) Y2H assays to investigate interactions between ARC3 and FtsZ proteins and between ARC6 derivatives and ARC3. ARC6_{ΔJLD}, ARC6₆₈₋₆₁₄ without the JLD domain; ARC6_{ΔPPQ}, ARC6₆₈₋₆₁₄ without the tripeptide PPQ; ARC6_{JLD}, ARC6₈₉₋₁₅₃.

(B) Y3H assays to test for interactions between full-length ARC3 (ARC3₄₁₋₇₄₁) and FtsZ proteins in the presence of ARC6 derivatives. Vectors and assays are as described in Figure 3A except that in vectors expressing ARC6 derivatives, ARC6 derivatives were not fused to the GAL4 activation domain or binding domain. The ARC6 expression cassettes were inserted into the pGBK7 vectors (BD) expressing the BD-FtsZ1, BD-FtsZ2, and BD-Empty constructs (see Supplemental Figure 4). Transformed cells in **(A)** and **(B)** were grown on –Leu –Trp and –Leu –Trp –His medium for three days, and five days on –Leu –Trp –His –Ade medium. Dilutions from the same initial culture are indicated at the bottom. Assays in **(A)** and **(B)** were replicated three times with similar results.

(C) Immunoblot assays of transformed yeast cells expressing the indicated constructs. Total proteins were separated on 10% SDS-PAGE gels, and membranes were probed with an anti-HA antibody, given that all ARC6 derivatives and ARC3 fusion proteins were HA-tagged. The predicted protein molecular weights were: AD-ARC3₄₁₋₇₄₁, 96 kDa; ARC6₆₈₋₆₁₄, 66 kDa; ARC6_{ΔJLD}, 59 kDa; ARC6_{ΔPPQ}, 66 kDa. AD-ARC3₄₁₋₇₄₁ ran slightly larger than predicted.

Figure 5

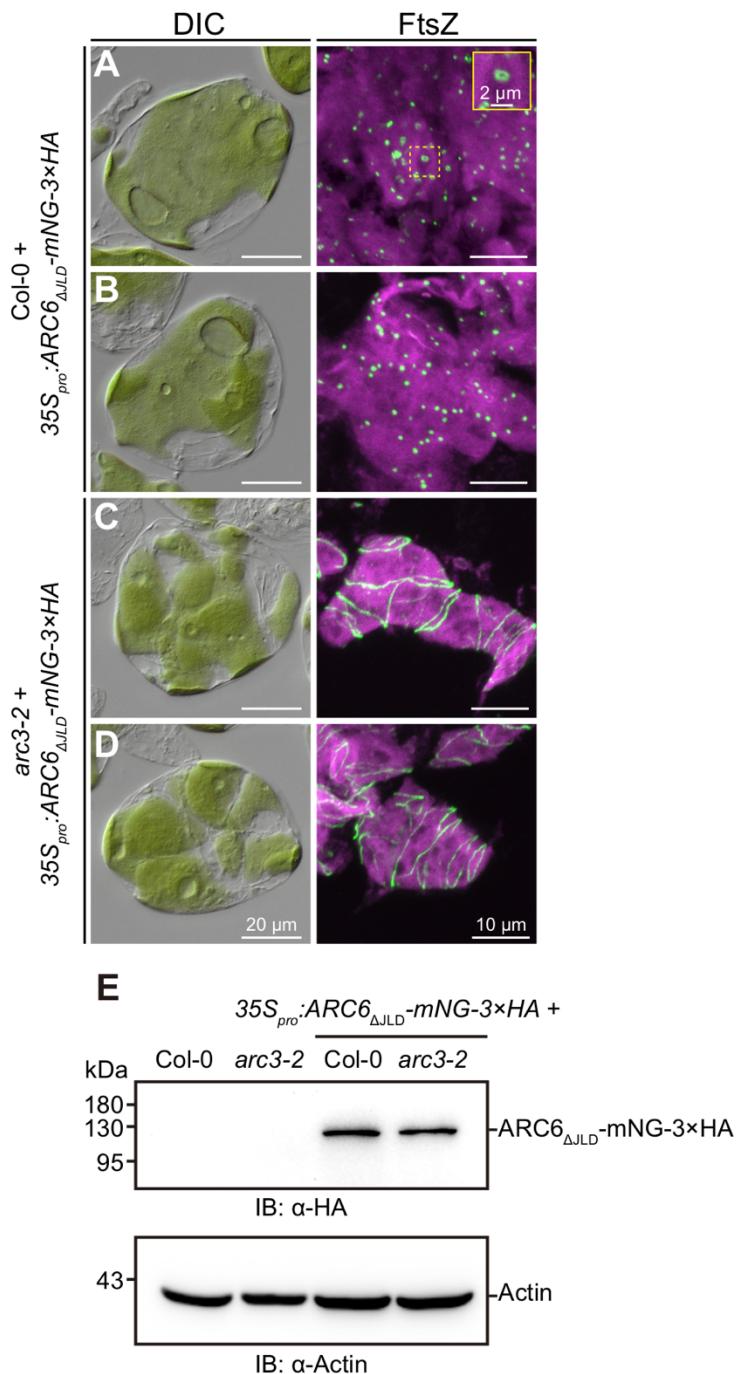


Figure 5. Activation of full-length ARC3 by ARC6 inhibits assembly of FtsZ1 filaments in *S. pombe*.

The epifluorescence and DIC micrographs of transformed *S. pombe* cells expressing the indicated proteins are shown. In epifluorescence images, mVenus, mCerulean, and mRuby2 signals are falsely colored green, magenta, and yellow, respectively. BF, bright field. Bars = 5 μ m. (A-D) Single expression of (A) FtsZ1-mVenus, (B) ARC6₆₈₋₆₁₄-mRuby2, (C) ARC3₄₁₋₇₄₁-mCerulean, and (D) ARC3₄₁₋₅₉₈-mCerulean. (E-H) Coexpression of FtsZ1-mVenus with (E) ARC3₄₁₋₇₄₁-mCerulean, (F) ARC3₄₁₋₅₉₈-mCerulean, (G) ARC6₆₈₋₆₁₄-mRuby2, (H) ARC6_{ΔJLD}-mRuby2, (I, J) ARC3₄₁₋₇₄₁-mCerulean + ARC6₆₈₋₆₁₄-mRuby2, (K, L) ARC3₄₁₋₇₄₁-mCerulean + ARC6_{ΔJLD}-mRuby2, (M) ARC3₄₁₋₇₄₁-mCerulean + mRuby2, and (N) ARC3₄₁₋₅₉₈-mCerulean + mRuby2. Outlines of the imaged cells from (I-N) are indicated by white dashed lines.

(O-R) Quantitative analysis of ARC3 derivatives on the assembly of FtsZ1 filaments in the presence of ARC6₆₈₋₆₁₄-mRuby2 ($n = 30$ cells), ARC6_{ΔJLD}-mRuby2 ($n = 30$ cells), or mRuby2 ($n = 30$ cells). (O) The length and (Q) number of FtsZ1 filaments were calculated to determine the inhibitory effect imposed by ARC3. In (O), filament length was normalized to cell length, and the average of the two shortest filaments within the cell was presented. Error bars are SD. **** $P < 0.0001$; *** $P < 0.001$; ** $P < 0.01$ as determined by the *t* test. ns, not significant. (P) The length of FtsZ1 filaments in (O) was plotted against the protein expression level of mRuby2 (left, red), ARC6₆₈₋₆₁₄-mRuby2 (middle, blue), or ARC6_{ΔJLD}-mRuby2 (right, green). The slopes of the best-fit lines are: mRuby2, -3e-6 ($R^2 = 0.001$); ARC6₆₈₋₆₁₄-mRuby2, -6e-5 ($R^2 = 0.048$); ARC6_{ΔJLD}-mRuby2, -4e-5 ($R^2 = 0.184$). (R) The number of FtsZ1 filaments in (Q) was plotted against the protein expression level of mRuby2 (left, red), ARC6₆₈₋₆₁₄-mRuby2 (middle, blue), or ARC6_{ΔJLD}-mRuby2 (right, green). The slopes of the best-fit lines are: mRuby2, 9e-6 ($R^2 = 0.002$); ARC6₆₈₋₆₁₄-mRuby2, 3e-4 ($R^2 = 0.037$); ARC6_{ΔJLD}-mRuby2, 4e-4 ($R^2 = 0.114$). The protein expression level in (P, R) was indicated by the total fluorescence intensity normalized to the cell area. A. U., arbitrary unit.

Figure 6

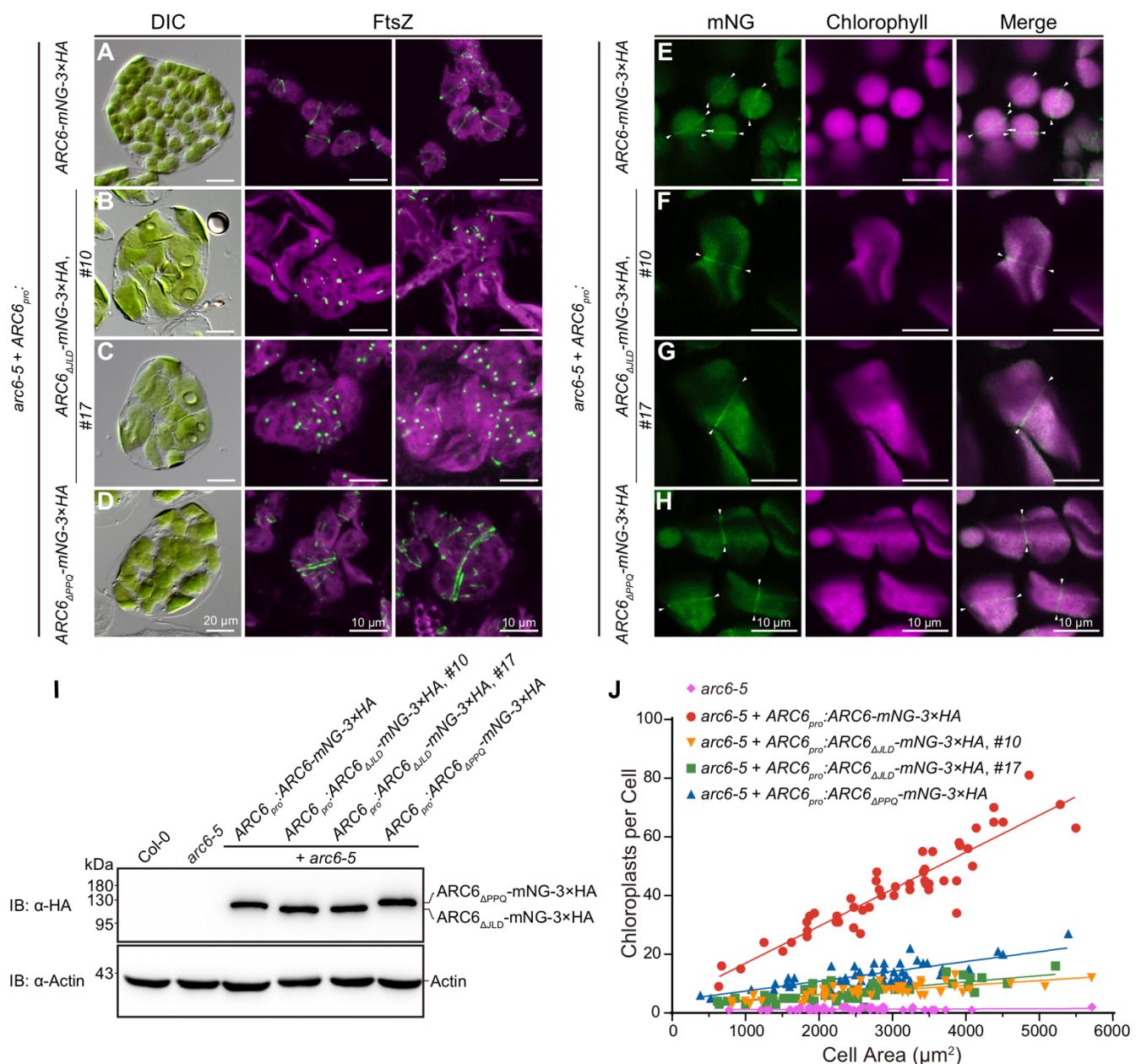


Figure 6. Overexpression of ARC6_{ΔJLD} causes disruption of Z-ring formation in an ARC3-dependent manner.

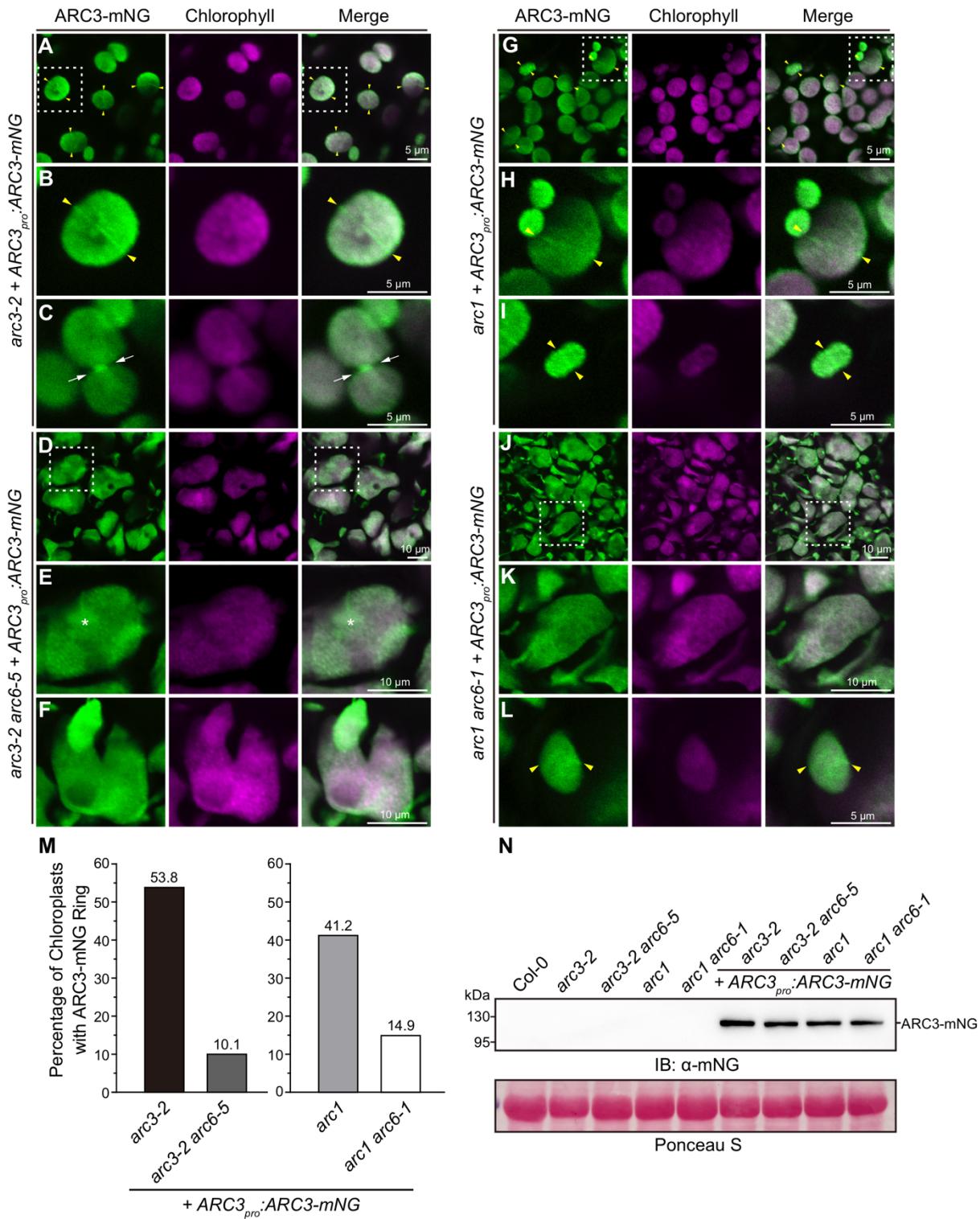
(A-D) Chloroplast morphology (left panels) and FtsZ localization (right panels) in mesophyll cells of T₁ transgenic plants expressing 35S_{pro}:ARC6_{ΔJLD}-mNeonGreen (*mNG*)-3×HA in **(A, B)** wild-type Col-0 and **(C, D)** *arc3-2* mutant plants. Untransformed wild-type Col-0 and *arc3-2* mutant are shown in Figure 2, A and B. The inset in the right panel of **(A)** is a magnified image of the mini-ring, as indicated by the dashed line. Chloroplast morphology and FtsZ localization were observed using differential interference contrast (DIC) microscopy and immunofluorescence staining of FtsZ2-1, respectively. Scale bars are 20 μm for DIC images and 10 μm for all immunofluorescence images except the inset, which is 2 μm.

(E) Immunoblot analysis of ARC6_{ΔJLD}-mNG-3×HA from T₁ transgenic Col-0 and *arc3-2* plants expressing 35S_{pro}:ARC6_{ΔJLD}-mNG-3×HA. Total proteins extracted from leaf tissue of 4- to 5-week-old plants were separated on a 10% SDS-PAGE gel, and the membrane was probed with an anti-HA antibody. The expression of Actin, detected with an anti-Actin antibody, was used as a loading control.

Figure 7

Figure 7. The J-like domain of ARC6 is required for chloroplast division but not for ARC6 localization.

(A-D) Chloroplast morphology (left panels) and FtsZ localization (middle and right panels) in mesophyll cells of T₁ transgenic plants expressing **(A)** $ARC6_{pro}:ARC6\text{-}mNG\text{-}3\times HA$, **(B, C)** $ARC6_{pro}:ARC6_{\Delta JLD}\text{-}mNG\text{-}3\times HA$, and **(D)**

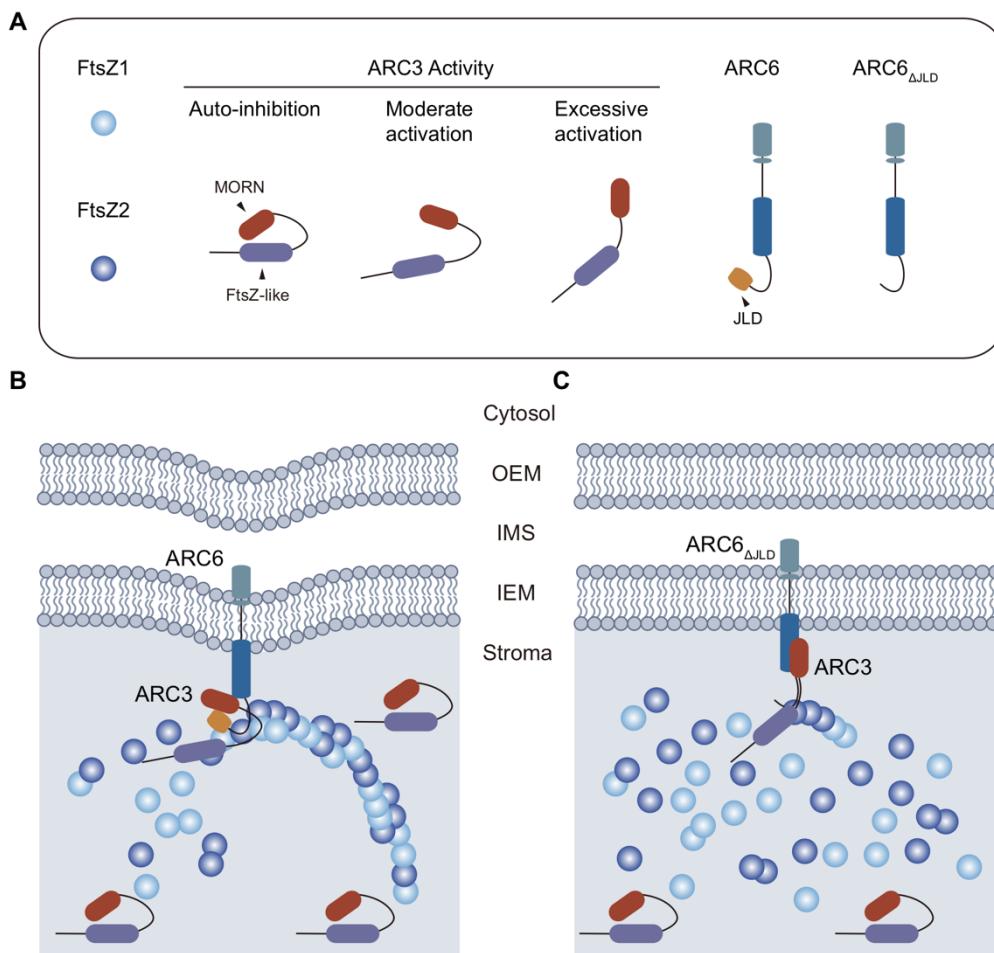

$ARC6_{pro}:ARC6_{\Delta PPQ}\text{-}mNG\text{-}3\times HA$ in *arc6-5*, respectively. Untransformed *arc6-5* is shown in Figure 2C. Chloroplast morphology and FtsZ localization were observed using differential interference contrast (DIC) microscopy and immunofluorescence staining of FtsZ2-1, respectively. Scale bars are 20 μm for DIC images and 10 μm for all immunofluorescence images.

(E-H) Subcellular localization of **(E)** $ARC6\text{-}mNG\text{-}3\times HA$, **(F, G)** $ARC6_{\Delta JLD}\text{-}mNG\text{-}3\times HA$, and **(H)** $ARC6_{\Delta PPQ}\text{-}mNG\text{-}3\times HA$ in 4- to 5-week-old T₁ transgenic *arc6-5* plants. mNG signals (green) are shown in the left panels, and chlorophyll autofluorescence (magenta) is shown in middle panels. White arrowheads indicated ring-like structures formed by ARC6 and its derivative fusion proteins. Bars = 10 μm .

(I) Immunoblot analysis of T₁ transgenic *arc6-5* plants expressing $ARC6\text{-}mNG\text{-}3\times HA$, $ARC6_{\Delta JLD}\text{-}mNG\text{-}3\times HA$, and $ARC6_{\Delta PPQ}\text{-}mNG\text{-}3\times HA$, respectively, under the control of the native ARC6 promoter. Total proteins extracted from leaf tissue of 4- to 5-week-old plants were separated on a 10% SDS-PAGE gel, and the membrane was probed with an anti-HA antibody. The expression of Actin, detected with an anti-Actin antibody, was used as a loading control.

(J) Quantitative analysis of chloroplast number versus mesophyll cell size ($n = 50$ cells) in the designated genotypes from **(A-D)**. The computed slopes of the best-fit lines are: *arc6-5*, 0.0001 ($R^2 = 0.015$); *arc6-5* + $ARC6_{pro}:ARC6\text{-}mNG\text{-}3\times HA$, 0.0126 ($R^2 = 0.856$); *arc6-5* + $ARC6_{pro}:ARC6_{\Delta JLD}\text{-}mNG\text{-}3\times HA$ (#10), 0.0016 ($R^2 = 0.525$); *arc6-5* + $ARC6_{pro}:ARC6_{\Delta JLD}\text{-}mNG\text{-}3\times HA$ (#17), 0.0021 ($R^2 = 0.562$); *arc6-5* + $ARC6_{pro}:ARC6_{\Delta PPQ}\text{-}mNG\text{-}3\times HA$, 0.0033 ($R^2 = 0.631$).

Figure 8


Figure 8. ARC6 recruits ARC3 to the chloroplast division site.

(A-L) Subcellular localization of ARC3-mNG in transgenic **(A-C)** *arc3-2*, **(D-F)** *arc3-2 arc6-5*, **(G-I)** *arc1*, and **(J-L)** *arc1 arc6-1* mutant plants expressing *ARC3_{pro}:ARC3-mNG*. The mNG fluorescence (green) and chlorophyll autofluorescence (magenta) signals were acquired through confocal laser scanning microscopy. Midplastid-localized ARC3-mNG ring structures are associated with both **(A, B, G-I, L)** unconstricted chloroplasts (yellow arrowheads) and **(C)** constricted chloroplasts (white arrows). The white double-arrowheads in **(A)** indicate the presence of additional ARC3-mNG strands that are not affiliated with the division site. Asterisk indicates an ARC3-mNG filament instead of an intact ring in a giant chloroplast of transgenic *arc3-2 arc6-5*. The regions enclosed by the white dashed box in **(A, D, G, J)** are magnified in **(B, E, H, K)**. Bars are as indicated.

(M) Quantification of ARC3-mNG ring structures in chloroplasts of transgenic *arc3-2*, *arc3-2 arc6-5*, *arc1*, and *arc1 arc6-1* plants expressing *ARC3_{pro}:ARC3-mNG*. The percentage of chloroplasts with ARC3-mNG rings was 53.8% ($n = 145$) in *arc3-2*, 10.1% ($n = 158$) in *arc3-2 arc6-5*, 41.2% ($n = 143$) in *arc1* and 14.9% ($n = 161$) in *arc1 arc6-1*. n is the total number of chloroplasts analyzed.

(N) Immunoblot analysis of ARC3-mNG fusion protein in transgenic *arc3-2*, *arc3-2 arc6-5*, *arc1*, and *arc1 arc6-1* plants expressing *ARC3_{pro}:ARC3-mNG*. Total proteins extracted from leaf tissue of 4-week-old plants were separated on a 10% SDS-PAGE gel, and membrane was probed with an anti-mNG antibody. Ponceau S-stained large subunit of Rubisco (bottom panel) was served as a loading control.

Figure 9

Figure 9. Working model of the ARC6-ARC3 complex in the regulation of Z-ring assembly during chloroplast division.

(A) Full-length ARC3 is inhibited from interacting with FtsZ proteins due to the presence of the MORN domain and thus is inactive in terms of inhibiting Z-ring assembly or accelerating Z-ring dynamics during the constriction of chloroplasts (Zhang et al., 2013; Chen et al., 2019). Binding of ARC3 by wild-type ARC6 activates ARC3 to a moderate extent. ARC6_{ΔJLD}, the JLD-deleted version of ARC6, however, binds ARC3 more strongly and thus results in overactivated ARC3. (B) The FtsZ-ring, comprising heteropolymers of FtsZ1 and FtsZ2 (Vitha et al., 2001; Yoder et al., 2007; Yoshida et al., 2016), anchors to the chloroplast inner membrane through the interaction between FtsZ2 and ARC6 (Maple et al., 2005; Johnson et al., 2013). ARC6 recruits ARC3 to the chloroplast division site and activates the inhibitory activity of ARC3 on the assembly of FtsZ filaments. Such activation may result from the binding of the ARC3 MORN domain by the JLD of ARC6, which may alter the conformation of ARC3. Binding of ARC3 by ARC6 leads to moderately activated ARC3, which is able to inhibit non-specific Z-ring formation in the vicinity of the division site and accelerate Z-ring dynamics during constriction of chloroplasts (Chen et al., 2019). (C) ARC6_{ΔJLD}, the JLD-deleted version of ARC6, binds and activates full-length ARC3 more strongly than ARC6. Overexpression of ARC6_{ΔJLD} leads to excessive activation of ARC3, which causes disruption of the assembly and formation of the Z ring. MORN, Membrane Occupation and Recognition Nexus domain; JLD, J-like domain; OEM, outer envelope membrane; IMS, intermembrane space region; IEM, inner envelope membrane.